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Summary 

In recent years, astonishing advances in science and technology have motivated 
researchers to develop new class of structural materials with improved properties. 
Functionally graded materials (FGMs) are new generation of composite materials 
consisting of two or more constituent phases with a continuously variable 
distribution. The concept of FGMs can be used to take advantage of certain desirable 
features of each constituent phases and tailor the distribution of material properties so 
that the desired responses to given mechanical and thermal loadings are achieved or 
natural frequencies are modified to a required manner. In order to take the full 
benefit of exceptional properties of FGMs in new product development, fundamental 
studies on the mechanics of such materials must be carried out along with research 
on their processing.  

Taking theoretical numerically modelling and analysis of FGMs into account, the 
main objective of this thesis is to study thermo-mechanical responses and free 
vibration of plates and shells composed of FGM composites. To this end, 
methodology used in this thesis is organized as follows. 

Firstly, theoretical formulations for free vibration, static and thermal analyses of 
FGMs are developed based on 3-D elasticity theory and 2-D plate theories. The main 
approach in formulations based on 3-D elasticity theory is to combine the 
equilibrium equations with the stress-strain and strain-displacement relations to 
derive the governing equations in term of the displacement components. This 
approach is called Navier method. In case of 2-D theories, the displacements are 
expanded in terms of thickness and transverse displacement is independent of the 
transverse coordinate. This causes coupled governing equations to be independent of 
transverse displacement. For the first time, thermo-elastic governing equations for a 
2-D FGM panel based on third-order-shear deformation theory are derived. 
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Secondly, for modelisation of variation of volume fraction or fiber orientation, 
classic form of power-law distribution is introduced. Then, as one of the 
contributions of this thesis, 1-D and 2-D generalized power-law distributions are 
presented. By using generalized power-law distribution, it is possible to study the 
effects of the various kinds of material profiles including symmetric, asymmetric, 
sigmoidal and classic on mechanical behaviour of FGM structures. To compute 
effective material properties of composites, rule of mixture and Mori-Tanaka method 
are used. In case of nanocomposites, Eshelby-Mori-Tanaka method is employed to 
determine the effective material properties of composites reinforced by various type 
of carbon nanotubes dispersion. 

Thirdly, owing to the complexity of governing equations with variable coefficients 
initiated from non-homogeneity, it is very rigorous to obtain the exact solutions. Due 
to non-linear variation of material properties, seeking a powerful numerical method 
is highly desirable. In this thesis, generalized differential quadrature method 
(GDQM) is adopted to solve coupled governing differential equations. The 1-D and 
2-D GDQM are applied to various problems consisting of thermal, vibration, and 
static analyses of FGMs. By solving free vibration, static, and thermal problems and 
by comparing the results with those of other methodologies, accuracy, convergency 
and efficiency of the methodology are asserted. Less computational efforts of the 
proposed approach for FGMs problems with respect to other available methods have 
been found. 
According to contributions of the thesis into FGMs, significant motivations and 
findings can be categorized into three parts as follows: 1) 1-D FG fiber-reinforced 
composites, 2) 2-D FGM composites, and 3) FG carbon nanotubes-reinforced 
composites.  

1. 1-D FG fiber-reinforced composites 

The fiber-reinforced laminated composites possess some major problems, such as 
failure owing to delamination and other effects in the material formation, and also 
effects of transverse shear deformation because of the low ratio of transverse shear 
modulus to axial modulus. Interlaminar stresses in laminated composites comprising 
the normal and transverse shear stresses are profound effects on the delamination 
phenomena. To overcome those drawbacks, motivated by FG metal-ceramic 
materials, researchers have extended the gradient idea into the design of fiber-
reinforced composites. By using the concept of FGMs, fiber-reinforced composites 
can be tailored to meet various in-plane stiffness or strength requirements. Increasing 
interest towards using the idea of FGM in fiber-reinforced composites, in recent 
years some literature has been allocated to the study of mechanical responses of FG 
fiber-reinforced composites. A critical review on the literature shows that available 



v 

 

studies on the 1-D FG fiber-reinforced composites are still very few to number, and 
more research is notably needed. Inspired by this idea, stress, deformation, 
thermoelastic, and vibration problems of 1-D FG fiber-reinforced plates and shells 
are studied. For the first time, natural frequencies, static and thermal stresses of FG 
fiber orientation and volume fraction fiber-reinforced composites panels have been 
compared with discretely laminated composites. Additionally, effects of continuously 
grading fiber orientation face sheets on free vibration of sandwich panels with FG 
core have been studied. An effort has been made to investigate impacts of Winkler 
and shearing layer elastic parameters on the natural frequencies FG fiber-reinforced 
plates resting on elastic foundation. 

2. 2-D FGM composites 

In most available literature regarding FGMs, the material properties were assumed to 
have a smooth variation only in one direction. Conventional FGM may not be so 
effective in design problems inasmuch as all outer/inner surface of the body have the 
same composition distribution. Furthermore, tailoring of materials profile in two 
directions can be more effective to modify the response of the structure to a required 
manner by selecting suitable different parameters of power-law distribution. 
Motivated by the main idea of 2-D dependent material properties, bending, thermal 
and free vibration problems of 2-D FGM composites are studied. To this end, 2-D 
generalized power-law distribution is proposed for modelisation of material 
properties in two directions. It has been inferred that the 2-D generalized power-law 
distribution proposed for volume fractions of 2-D FGM composites gives designers a 
powerful tool for flexible design of structures under multi-functional requirements. 
Results indicated the advantages of using panels with graded volume fractions in two 
directions to a more flexible design than the conventional 1-D FGM composites.  

3. FG carbon nanotubes-reinforced composites 

In the modelling of carbon nanotube-reinforced composites the concept of FGMs 
might be incorporated to effectively make use of the carbon nanotubes (CNTs). In 
the present thesis, for the first time, effects of CNT agglomeration and various 
graded CNTs volume fractions on the free vibration characteristics of CNT-
reinforced composites are studied. Eshelby-Mori-Tanaka approach and extended rule 
of mixture are employed to calculate the effective elastic moduli of composites 
reinforced by CNTs. In addition, the interesting results for mechanical buckling of an 
FG nanocomposite rectangular plate reinforced by aligned CNTs subjected to 
uniaxial and biaxial in-plane loadings have been presented. It is concluded that CNTs 
distributed close to top and bottom are more efficient than those distributed nearby 
the mid-plane of the plate. 
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Samenvatting 
 
 

 

In de laatste jaren heeft onmiskenbare vooruitgang in wetenschap en technologie 
onderzoekers gemotiveerd om een nieuwe klasse van structurele materialen met 
betere eigenschappen te ontwikkelen. Functionele Gradiënt Materialen (FGMs) zijn 
een nieuwe generatie van composietmaterialen die uit twee of meer fasen met een 
continu veranderlijke distributie bestaan. Het concept FGMs kan worden gebruikt om 
uit bepaalde positieve eigenschappen van elke constituent voordeel te halen. Door 
een geschikte fasering is de distributie van materiële eigenschappen dusdanig dat 
optimale reacties op bepaalde mechanische en thermische belastingen worden bereikt 
of dat eigenfrequenties op gewenste wijze worden verandere. Om het volledige 
voordeel van de uitzonderlijke eigenschappen van FGMs in nieuwe 
productontwikkeling te bekomen, moeten fundamentele studies over de mechanica 
van dergelijke materialen samen met onderzoek in verband met  hun productie 
worden uitgevoerd. 

Theoretische numerieke modellering en analyse van FGMs, is de belangrijkste 
doelstelling van deze thesis waarin thermo-mechanische reacties en vrije trilling van 
platen en schalen, die uit FGM worden samengesteld, worden bestudeerd. Daartoe 
wordt de methodologie die in deze thesis wordt gebruikt, georganiseerd als volgt. 

Ten eerste worden de theoretische formuleringen voor vrije trillingen, statische en 
thermische analyses van FGMs ontwikkeld gebaseerd op 3-D elasticiteitstheorie en 
2-D plaattheorieën. De belangrijkste aanpak voor de formuleringen die op 3-D 
elasticiteitstheorie gebaseerd zijn, is de evenwichtsvergelijkingen met spanning-rek 
en rek-verplaatsing relaties te combineren om de vergelijkingen in functie van de 
verplaatsingscomponenten af te leiden. Deze benadering is beter gekend als de 
vergelijkingen van ‘Navier’. In het geval van 2-D theorieën worden de 
verplaatsingen uitgebreid in functie van dikte en de transversale verplaatsing is 
onafhankelijk van de transversale coördinaat. Dit veroorzaakt dat de gekoppelde 
vergelijkingen van transversale verplaatsing onafhankelijk zijn. Voor het eerst 
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worden thermo-elastische vergelijkingen voor een 2-D paneel uit FGM op basis van 
de theorie van de 'Third-order Shear Deformation Theory (TSDT)' afgeleid. 

Ten tweede, wordt voor de modellering van de variatie van volumefractie of 
vezeloriëntatie de klassieke vorm van gegeneraliseerde machtsfunctie-distributie 
geïntroduceerd. Dan, als één van de bijdragen van deze thesis, worden 1-D en 2-D 
machtsfunctie-distributies voorgesteld. Door de gegeneraliseerde machtsfunctie-
distributie te gebruiken is het mogelijk om de gevolgen van diverse soorten 
graderingsprofielen (symmetrisch, asymmetrisch, sigmavormig en klassiek) op het 
mechanisch gedrag van FGM componenten te bestuderen. Om efficiënte materiële 
eigenschappen van samenstellingen te verwerken, worden de mengregel  en de 
methode van Mori-Tanaka gebruikt. In het geval van nano-composieten is de 
methode Eshelby-Mori-Tanaka aangewend om de materiële eigenschappen te 
bepalen van composieten die door diverse types van koolstof-nanobuizen worden 
versterkt. 

Ten derde, ten gevolge van de complexiteit van de vergelijkingen met veranderlijke 
coëfficiënten ten gevolge van  niet-homogeniteit, is het zeer moeilijk om 
nauwkeurige oplossingen te verkrijgen. Wegens niet-lineaire variaties van materiële 
eigenschappen, is het hoogst wenselijk om naar een krachtige numerieke methode te 
streven. In deze thesis wordt de methode 'Generalized Differential Quadrature 
Method (GDQM)' aangewend om de gekoppelde differentiële vergelijkingen op te 
lossen. 1-D en 2-D GDQM worden toegepast op diverse problemen m.b.t. 
thermische, statische en trillingsanalyses van FGMs. Door vrije trilling, statische en 
thermische problemen op te lossen en door de resultaten te vergelijken met die van 
andere methodologieën, worden nauwkeurigheid, convergentie en efficiëntie van de 
methodologie aangetoond. De voorgestelde benadering voor problemen van FGMs 
leidt tot verminderde computertijd in vergelijking met andere beschikbare methodes 
zijn gevonden. 

De bijdragen van de thesis op gebied van FGMs kunnen in drie delen worden 
gecategoriseerd als volgt: 1) 1-D FG vezelversterkte composieten, 2) 2-D FGM 
composieten en 3) koolstof nanobuis-versterkte FG composieten.  

1. 1-D FG vezelversterkte composieten 

De vezelversterkte gelamineerde composieten vertonen sommige belangrijke 
problemen, zoals schade  ten gevolge van delaminatie, en ook gevolgen van 
transversale afschuiving wegens de lage verhouding van de transversale 
schuifmodulus tot de axiale modulus. Interlaminaire spanningen in gelamineerde 
composieten, die zowel uit normaalspanningen als transversale schuifspanningen 
bestaan, zijn gevolgen van de delaminatie fenomenen. Om die nadelen te 



ix 

 

overwinnen, die door FG metaal-keramische materialen worden gemotiveerd, hebben 
onderzoekers het gradiëntidee in het ontwerp van vezelversterkte composieten 
uitgebreid. Door het concept FGMs te hanteren, kunnen vezelversterkte composieten 
worden gemaakt die aan diverse stijfheid- of sterktevereisten voldoen. De stijgende 
belangstelling naar het gebruiken van het idee van FGM in vezelversterkte 
composieten heeft de laatste jaren geleid tot heel wat literatuur omtrent de studie van 
mechanische reacties van FG vezelversterkte composieten. Een kritische beoordeling 
van de literatuur toont aan dat de beschikbare studies over de FG vezelversterkte 
composieten nog zeer beperkt is en dat meer onderzoek nodig is. Hierdoor 
geïnspireerd worden de spanning, de vervorming, de thermo-elastische en 
trillingsproblemen van FG vezelversterkte platen en schalen bestudeerd. Voor het 
eerst zijn de eigenfrequenties, de statische en thermische spanningen van 
composieten panelen met gradiënten in vezeloriëntatie en in volumefractie  
vergeleken met discreet gelamineerde composieten panelen. Bovendien zijn de 
gevolgen van continu variërende vezeloriëntatie voor de vrije trilling van 
sandwichpanelen met FG kern bestudeerd. Een inspanning is geleverd om effecten te 
onderzoeken van de elastische Winkler parameters op de eigenfrequenties van FG 
vezelversterkte platen die op de elastische fundering rusten. 

2. 2-D FGM composieten 

In de meeste beschikbare literatuur betreffende FGMs werd verondersteld dat de 
materiële eigenschappen een variatie in slechts één richting vertonen. Conventionele 
FGM zijn minder efficiënt voor ontwerpproblemen aangezien zowel de  buiten- als 
de binnenoppervlakte van het lichaam de zelfde samenstellingsdistributie hebben. 
Voorts kan het maken van materiaaldistributies in twee richtingen efficiënter zijn om 
de reactie te wijzigen van de structuur op een vereiste manier. Dit door geschikte 
parameters van de machtsfunctie-distributie te selecteren. Gemotiveerd door het 
belangrijkste idee van 2-D afhankelijke materiële eigenschappen, worden de 
mechanische, thermische en vrije trillingsproblemen van 2-D composieten FGM 
bestudeerd. Daartoe wordt een 2-D algemene machtsfunctie-distributie voorgesteld 
voor het modelleren van materiële eigenschappen in twee richtingen. Men heeft 
geconcludeerd dat de 2-D algemene machtsfunctie-distributie, die voor 
volumefracties is voorgesteld, aan ontwerpers een krachtig hulpmiddel voor flexibel 
ontwerp van structuren onder multifunctionele vereisten beschikbaar stelt. De 
resultaten wezen op de voordelen om panelen met gegradeerde volumefracties in 
twee richtingen tijdens ontwerp te gebruiken, beter dan de conventionele 
samenstellingen 1-D FGM.  
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3. Koolstof nanobuis-versterkte FG composieten  

Voor een effectieve modellering van koolstof nanobuis-versterkte (CNT) 
compsoieten wordt het concept FGMs geïmplementeerd. In deze thesis worden voor 
het eerst de gevolgen van agglomeratie CNT en diverse gradiënt volumefracties 
CNTs op het vrije trillingsgedrag van CNT-versterkte composieten bestudeerd. De 
benadering Eshelby-Mori-Tanaka en de uitgebreide mengregel zijn aangewend om 
de efficiënte elastische modulus van composieten die door CNTs worden versterkt te 
berekenen. Bovendien worden  interessante resultaten voor het knikken van een FG 
nano-composiet rechthoekige plaat, die door gerichte CNTs wordt versterkt, onder de 
actie van éénassige en tweeassige  belastingen voorgesteld. Men besluit dat CNTs 
dicht bij de bovenkant en de bodem efficiënter zijn dan dichtbij het midden van de 
plaat. 
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Symbols 
 
Upper case 

ijklC  Fourth-order elasticity tensor 

0U                                        Strain energy density function 

( , 1, 2, 3, 4, 5, 6)ijC i j         Elastic stiffness elements 

1E , 2E , 3E                          Young’s   (extension)   modulus  in   the  1-,  2-,   and   3- 
directions 

23G , 13G , 12G                    Shear modulus in the 2-3, 3-1,  and  1-2  planes  of  

fiber-reinforced composites 
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1.1  Functionally graded materials 
In the progress of science and technology, materials have played a crucial role. The 
scientific application of base materials into diverse inorganic and organic compounds 
has paved the way for developing the advanced polymers, engineering alloys, 
structural ceramics, etc. The structure of enhancement of advanced material is 
illustrated in Figure 1.1. Functionally graded materials (FGMs) are heterogeneous 
advanced composite materials consisting of two or more constituent phases with a 
continuously variable distribution [1,2]. The variations in the phase distribution may 
be reflected in their volume or weight fraction, orientation, and shape. In the vast 
majority of studies of FGMs in engineering, the researchers aim to achieve their 
goals with only one of these factors, i.e. the volume fraction being a typical variable. 
The variation of the volume fractions may be exclusively through the thickness of the 
structure and/or in any other direction, such as coordinates of a plate or shell. The 
mechanical properties  such  as  Young’s modulus of elasticity, Poisson’s ratio, shear  
 
 
 

 
Figure 1.1. Illustration of advanced material hierarchy. 
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modulus of elasticity, material density, thermal conductivity, and thermal expansion 
coefficient vary smoothly and continuously in preferred directions in FGMs.  
These materials possess numerous advantages over materials composed of similar 
constituents that make them appropriate in potential applications. Grading or 
tailoring the internal microstructure of a composite material or a structural 
component allows the designer to truly integrate both material and structural 
considerations into the final design and final product. This brings the entire structural 
design process to the material level in the purest sense, thereby increasing the 
number of possible material configurations for specific design applications.   
Although the concept of FGMs, and our ability to fabricate them, appears to be a 
modern marvel of engineering innovation, the concept is not new. FGMs have been 
occurring in nature. Some natural examples have been included in Figure 1.2 for 
illustration.  Bamboo   is   an   excellent   example.   Bamboo   stalks    are  optimized  
 
 
 

 

 

Figure 1.2. Some examples of FGMs in nature; a) Bamboo stalks and cross section of culm 
showing radial distribution of fibers through the thickness [3], b) Bone, and c) Human skin. 
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composite materials that naturally exploit the concept of FGMs, as shown in Figure 
1.2a [3]. The bamboo culm is an approximately cylindrical shell that is divided 
periodically by transversal diaphragms at nodes. Between 20% and 30% of the cross-
sectional area of the culm is made of longitudinal fibers that are nonuniformly 
distributed through the wall thickness, the concentration being most dense near the 
exterior. The orientation of these fibers makes bamboo an orthotropic material with 
high strength along fiber direction and low strength along its transverse direction [3]. 
Also, bones have functional grading, as depicted in Figure 1.2b. As shown in Figure 
1.2c, even human skin is graded to provide certain toughness, tactile and elastic 
qualities as a function of skin depth and location on the body. 
In the case of FGMs engineered by humans, the concept of FGMs was proposed in 
1984 as an alternative to conventional thermal barrier ceramic coatings to overcome 
their well documented shortcomings, when Japanese scientists researched advanced 
materials for aerospace industry [4]. FGMs commonly involve two isotropic material 
phases including metal and ceramic. This type of FGMs is called FG isotropic 
materials. Constituents often include, but are not limited to, the engineering alloys of 
magnesium, tungsten, titanium, aluminium, copper, steel, etc. and the structural 
ceramics such as zirconia, alumina, silicon-carbide and tungsten-carbide. FG 
isotropic materials are usually associated with particulate composites where the 
volume fraction of particles varies in one or several directions. While particulate 
composite materials may be locally isotropic, they are also non-homogeneous due to 
spatial variations of volume fractions of the phases. An example of such material is 
shown in Figure 1.3 [5] where spherical or nearly spherical particles are embedded 
within an isotropic matrix. Besides, orthotropic FGMs that employ spatially variation 
of fiber volume fractions and/or fiber orientations can be used to provide certain 
performance characteristics [6]. In recent years, by increasing great interest in carbon 
nanotube-reinforced composites and urgent need to adjusting distribution of 
nanotubes in matrix phase, the concept of FGMs has been used in nanocomposites. 
Accordingly, in the following, incorporation of the concept of FGM in various 
problems mechanics, including thermo-elastic, static, and vibration analyses of plates 
and shells, is categorized as 1-D FG fiber-reinforced composites, 2-D FGMs 
composites and FG carbon nanotubes-reinforced composites.  
 

1.1.1 1-D FG fiber-reinforced composites 

Fibers of high strength and stiffness are greatly applied in lightweight structures. 
Continuous fibers embedded in a matrix, commonly referred to as a lamina or ply, 
constitute the laminated composites. The fiber-reinforced laminated composites  have  
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Figure 1.3. A particulate metal-ceramic FGM with the volume fractions of constituent phases 

graded in one vertical direction [5]. 
 
 
some problems, such as failure owing to delamination and other effects in the 
material formation, and also effects  of  transverse shear deformation because  of  the 
low ratio of transverse shear modulus to axial modulus [1]. For laminated composite 
structures, interlaminar stresses encompassing the normal and transverse shear 
stresses are the profound effects on the delamination phenomena. Such fiber-
reinforced composite structures can be tailored to meet various in-plane stiffness or 
strength requirements by using the idea of FGMs, in which material properties vary 
smoothly and continuously through the thickness from one surface to another one. 
Herein, variation of material properties is referred to as gradation of fiber volume 
fractions and/or fiber orientations. In case of former, fiber volume fractions are 
graded in the thickness direction according to power law distribution. Arthur W. 
Leissa and his colleagues in Ohio State University [7-9] are pioneers to this study. 
The effect of the in-plane fiber volume fraction distribution on the mechanical 
properties of plates was fully studied by them. Their results show that the natural 
frequency and buckling load of a plate can be improved and increased by 21% and 
38%, respectively with variable fiber spacing.  
In case of FG fiber orientations, the fiber-reinforced composite has a continuously 
graded variation of the fiber orientations through the thickness from one surface to  



6                                                                        1. Introduction 

 

 

 
Figure 1.4. Effects of gradations in fiber orientation on indentation damage in laminated 

composites (a) Symmetric, cross-ply laminated composites with aligned carbon fibers. (b) 
Cross-sectional optical micrographs after indentation of functionally graded fiber orientation 

composite [10]. 
 
 
the other one. To provide better explanation of benefits of FG fiber orientations 
composites over discretely laminated composites, an interesting study is introduced 
in the following.  
Jorgensen et al. [10] as a joint work between MIT and Technical University of 
Denmark demonstrated the advantage of fiber-reinforced composites with a through-
thickness gradient in in-plane fiber orientation. Two kinds of plate were studied and 
manufactured. One was a so-called cross ply laminate comprising laminas with fiber 
direction 0° and 90°. The other type was a ply with a graded linear variation of fiber 
orientation through thickness between 0° and 90°. Results showed that gradients in 
elastic properties can suppress damage and cracking through redistributing peak 
stresses to regions beneath the indented surface. Laminated composites with cross-
plies of carbon fiber reinforcements in an organic matrix generally developed cracks 
at interfaces between adjacent laminates, when subjected to indentation, as can be 
seen in Figure 1.4a. Symmetric cross-ply laminated composites with aligned carbon 
fibers in an epoxy matrix developed microcracks at interfaces when subjected to 
indentation, as shown in Figure 1.4a. In the diagram, layers with circular fibers (i.e., 
top, center, and bottom laminates) represent fibers oriented perpendicularly to the 
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plane of the figure. The second and fourth layers from the top denote fibers oriented 
within the plane of the figure. If the carbon fiber orientation was graded in small 
angular increments between adjacent laminates, these interfacial cracks were 
completely suppressed during indentation (Figure 1.4b). In Figure 1.4b, cross-
sectional optical micrographs after indentation of the same fiber-reinforced 
composite where the fiber orientation is gradually changed from 0° to 90° is shown. 
All microcracking at interfaces is completely suppressed as a result of gradients in 
elastic modulus.  
 

1.1.2 2-D FGMs composites 

The high degree of operating temperature involved in several industrial machine 
elements, like combustion chambers, space shuttles, and ovens, needs effective high 
temperature resistant materials to progress the strength of such elements. 
Steinberg [11] demonstrated the variations of the temperature at different places on 
the outer surface of the new aerospace craft when the plane is in sustained flight at a 
speed of Mach 8 and altitude of 29 km. The temperature on the outer surface of such 
a plane ranges from 1033 K along the top of the fuselage to 2066 K at the nose and 
from outer surface temperature to room temperature inside the plane. Such type of 
aerospace craft added a new challenge to develop more high temperature resistant 
materials that can tolerate high external temperatures which have variation in two or 
three  directions.  In  2003,  the  Columbia  space  shuttle  was  lost  in  a catastrophic  
 
 
 

 
 

Figure 1.5. Wreckage of Columbia space shuttle in March 2003 at the Kennedy Space Center 
[12]. 
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breakup due to outer surface insulation that fell loose when the Columbia lifted off. 
Collected wreckage of Columbia space shuttle is shown in Figure 1.5. The physical 
cause of the loss of Columbia and its crew was a breach in the thermal protection 
system on the leading edge of the left wing, caused by a piece of insulating foam. 
This breach in the thermal protection system allowed superheated air to penetrate 
through the leading edge insulation and progressively melt the aluminum structure of 
the left wing, resulting in a weakening of the Orbiter [12,13]. Such damage to the 
space shuttle’s protective thermal tiles can be prevented by using FGMs. It is worth 
mentioning that a conventional FGM may also not be so effective in such design 
problems inasmuch as all outer surface of the body have the same composition 
distribution. This is because temperature distribution in such advanced machine 
elements change in two or three directions. Hence, if the FGM has two-dimensional 
dependent material properties, more effective high-temperature resistant material can 
be gained.  
 
 
 

 

Figure 1.6. Geometrical parameters and coordinate system of the 2-D FGM plate. 
 
 
 
What is more, tailoring material properties in two directions will provide the high 
capability to the designers to modify mechanical responses of structures composed of 
2-D FGMs to a required manner. Based on such fact, a 2-D FGM, whose material 
properties are two-directional dependent, is introduced. In 2-D FGM, volume 
fractions of the constituents are varied through two-directional, and as a result, 
material phases are varied continuously in a predetermined composition profile. For 
further clarification, consider a two-phase (metal and ceramic) plate of width w and 
thickness h as shown in Figure 1.6. For any point on the 2-D FGM plate, the volume 
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fraction of ceramic phase is a continuous function of the coordinates, x and z, and 
varies in a predetermined composition profile. The profile is defined by using 
generalized power-law distribution that will be introduced in detail in Chapter 4. As 
shown in Figure 1.7, the volume fraction of ceramic phase has a continuous variation 
through the two directions.  

 
 

 
Figure 1.7. The variation of ceramic volume fraction in two directions 

 
 

1.1.3 FG carbon nanotubes-reinforced composites 

The discovery of carbon nanotubes (CNTs) by Iijima in 1991 [14] has generated a 
great and sustained interest in carbon based materials and nanotechnologies. CNTs 
have been widely accepted owing to their remarkable mechanical, electrical and 
thermal properties and the applications of CNTs are thus drawing much attention 
currently. The discovery of CNTs has led to a new way to improve the                                                                                                                            
properties of resulting composites by changing reinforcement phases to nano-scaled 
fillers. A detailed summary of the mechanical properties of CNTs can be found in 
Salvetat and Rubio [15]. The exceptional mechanical properties of CNTs have shown 
great promise for a wide variety of applications, such as nanotransistors, nanofillers, 
semiconductors, hydrogen storage devices, structural materials, molecular sensors, 
field-emission-based displays and fuel cells, to name just a few [16]. The addition of 
nano-sized fibers or nanofillers, such as CNTs, can further increase the merits of 
polymer composites [17]. CNT-reinforced composites, easily processed due to the 
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small diameter of the CNTs, exhibit unique properties [18,19], such as enhanced 
modulus and tensile strength, high thermal stability and good environmental 
resistance. This behavior, combined with their low density, makes them suitable for a 
broad range of technological sectors, such as telecommunications, electronics [20] 
and transport industries, and in particular for aeronautic and aerospace applications, 
where the reduction of weight is crucial in order to reduce the fuel consumption. 
Several investigations have shown that the addition of small amounts of CNT can 
considerably improve the mechanical, electrical and thermal properties of polymeric 
composites. On the other hand, mechanical properties of CNT-reinforced composites 
will deteriorate if the volume fraction increases beyond certain limit [21]. Therefore, 
in the modeling of CNT-reinforced composites the concept of FGMs might be 
incorporated to effectively make use of the CNTs.  
 
1.2  Application of FGMs 
Generally FGMs offer great promise in applications where the operating conditions 
are severe, including spacecraft heat shields, fusion reactors, pressure vessels, 
biomedical implants, flywheels, and plasma facings for fusion reactors, etc. Various 
combinations of the ordinarily incompatible functions can be implemented to create 
new materials for aerospace, chemical plants, nuclear energy reactors, etc. As an 
example, in general, the highest temperature on the surface of space-planes is 
estimated to reach 2100 K [22]. Hence, materials at the surface must withstand 
temperatures as high as 2100 K and temperature differences of 1600 K. At high 
temperatures, metals and metal alloys appear to be very susceptible to oxidation, 
creep, and generally to loss of structural integrity. On the other hand, the 
disadvantage of ceramics has always been low strength and low toughness. Thus, a 
variety of metal/ceramic composites and ceramic thermal barrier coatings have been 
developed in an effort to take advantage of the respective favorable properties of 
these two major groups of materials. However, in such composites, to varying 
degrees, oxidation and low toughness are still a problem, while the drawbacks of 
ceramic coatings seem to be poor interfacial bonding, high residual and thermal 
stresses, low toughness, and consequent tendency towards cracking. Another 
alternative can be bonding a discrete ceramic layer to a metal layer. In this case, the 
abrupt transition in material properties across the interface between distinct materials 
can lead to large inter-laminar stresses and cause plastic deformation or cracking 
[23,24]. These harmful effects can be alleviated by FGMs to have a smooth spatial 
variation of material composition, with ceramic-rich material placed at the high 
temperature locations and metal-rich material placed at regions where mechanical 
properties, such as toughness, need to be high. Further, FGMs composed of a mixture 
of a ceramic and a metal with a continuously varying volume fraction is a common 
type of such materials, which can be easily manufactured in practice [25,26]. 
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In engineering applications, although the initial research on FGMs was largely 
motivated by the practical applications of the concept in a wide variety of thermal 
shielding problems, materials with graded physical properties have almost unlimited 
potential in many other technological applications. In the following, some of the 
current engineering applications of FGMs can be found: 

 The aerospace sector is one of the sectors that shows more interest on the 
developments of the FGM. NASA has shown crescent interest on the 
development of these technologies. As the costs for launching space shuttles 
depend on the weight they lift to the space, creating with less connection 
elements is a solution. Also, the optimum design, balancing weight and 
performance can reduce costs for launching. The heat shield of space 
shuttles can be optimized to reduce weight and increase reliability by using 
FGMs [27].  

 One application involves the blast or ballistic protection for critical structure 
or armors for military applications [28,29]. 

 In microelectronics, metal-semiconductor FGM has been applied in 
actuators and transducers [30].  

 High-performance cutting tools can be made of FGM. A design model for 
functionally graded ceramic tool materials with symmetrical composition 
distribution was developed by Zhao et al. [31] based on a deep 
understanding of the requirements of the cutting conditions of ceramic 
tools. The functionally graded ceramics exhibited higher retained strength 
under all thermal shock temperature differences compared to the 
homogeneous ceramics, indicating their higher thermal shock resistance. 

 
 

 

 

Figure 1.8. Schematic view of FGM dental implant with graded material composition. 
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 Wide  application  can   be  also  found   in  energy  conversion,  where  heat 
exchangers, combustion systems and fusion reactors, solar energy 
generators can use FGM components [32].  

 In biomedical area, graded bone and dental implants have shown better 
performance than monolithic implants [33]. Figure 1.8 presents a schematic 
of a functionally graded dental implant. The implant is made of 
hydroxyapatite (HAP), the principal component of bones and teeth, and  
titanium (Ti), one of the best biocompatible metals. The implant with a 
functionally graded structure in the longitudinal direction is designed to 
provide  more  titanium  for  the  outer part where  force  is directly  applied 
and more apatite  for  the  inner part which is implanted inside the jaw bone 
[34]. The main advantages of using FGM dental implant are [35]: 1) 
reduction of stress effect on the surrounding bones that usually arises in the 
presence of fully metallic implants, 2) improvement of biocompatibility 
with bone tissues, 3) preventing the thermal-mechanical failure at the 
interface of HAP coated metallic implants, and 4) meeting the 
biomechanical requirements at each region of the bone, while enhance the 
bone remodeling, hereby maintaining the bone’s health status.  

 Filters with porosity gradient show improved efficiency over those with 
uniform porosity [36].  

 Other applications include optical materials with piezoelectric and 
thermoelectric devices, vehicle and spaceflight structures [37]. 
 

1.3  Objectives of thesis 
Taking theoretical numerically modelling and analysis of FGMs into account, this 
thesis presents the free vibration, static, and thermal analyses of plates and shells 
composed of FGMs. The specific contributions of the present thesis are as follows: 
 1-D and 2-D generalized power-law distribution for modelling gradation of 
material properties are introduced. Various material profiles in one or two directions 
can be illustrated using the generalized power-law distribution. Actually, using the 
generalized power-law distribution, it is possible to study the influence of the 
different kinds of material profiles including symmetric and classic on the 
mechanical responses of FGM structures. Furthermore, responses of the structure are 
modified to a required manner by selecting suitable different parameters of power-
law distribution and volume fractions profiles.  
 Some available literatures [38-40] for structures are based on the assumption that 
the material properties, such as Young’s modulus, shear modulus and Poisson’s ratio, 
have a specific variation in one direction. However, it is difficult to tailor the material 
moduli in practice. Since the designer can control the spatial variation of material 
composition (i.e., volume fraction and microstructure morphology) during the 
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fabrication of functionally graded materials but not the material moduli directly, 
therefore, we used the power-law distribution for variations of volume fractions. 
Moreover, the various micromechanics models, like Mori-Tanaka scheme, are used 
for estimating the homogenized material properties of composite materials. 
 Most analyses available in the open literatures for FGM plates and shells are 
based on the assumption that the material properties have a specific variation in one 
direction. As mentioned earlier in section 1.1.2, a conventional FGM may also not be 
so effective in such design problems since all outer surface of the body will have the 
same composition distribution. In this thesis, we also study, for the first time, 
cylindrical panels with graded volume fractions in radial and axial directions. 
 Noda [41] presented an extensive review that covers a wide range of topics, from 
thermoelastic to thermoinelastic problems. He discussed the effect of temperature-
dependent mechanical properties on stresses and suggested that temperature-
dependent properties of the material be taken into account to perform more accurate 
analysis. Therefore, realistic investigations of FGMs should be carried out 
considering the temperature-dependent properties. In general, the thermal 
conductivity of most materials has a strong dependence on the temperature which 
leads to a nonlinear differential equation for the temperature field. Accordingly, in 
this thesis, thermal analysis of FGMs with temperature-dependent properties is 
presented to provide more realistic study. 
 In the present thesis, both 3-D elasticity and 2-D plate theories for FGM plates 
and shells are developed. 3-D elasticity solutions for plates and shells are useful since 
they provide benchmark results to assess the accuracy of various 2-D plate theories 
and finite element formulations. Because of complexity of solving of governing 
equations with variable coefficients due to variation material properties based on 3-D 
elasticity, a powerful numerical method is required. In this thesis, the generalized 
differential quadrature method (GDQM) approach is used to solve the governing 
equations of FGMs. The GDQM is found to be a simple and efficient numerical 
technique for structural analysis [42,43]. Better convergence behavior is observed by 
GDQM compared with its peer numerical competent techniques viz. the finite 
element method, the finite difference method, the boundary element method and the 
meshless technique [44]. The GDQM is effectively used in various problems in free 
vibration, static, and thermal analyses of FGM plates and shells and the fast rate of 
convergence of the method is demonstrated, and comparison studies are carried out 
to establish its very high accuracy and versatility.  
 By using the concept of FGM in CNT-reinforced composites, free vibration and 
mechanical buckling of nanocomposites reinforced by various types of CNT is 
studied. For the first time, different forms of graded CNT dispersion in the matrix 
phase including aligned, randomly oriented, and agglomerated CNT are taken into 
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account. It will be shown that the desired stiffness of the structure can be achieved by 
properly adjusting the CNTs distribution through the thickness.  
 
1.4 Thesis scopes and methodology 
Following above mentioned objectives, in this thesis free vibration, static, and 
thermal analyses of FGM composite plates and shells are studied. To this end, firstly 
theoretical formulations of several FGM problems is performed and governing 
equations are derived. Then, mathematical modelling of FGMs is conducted. In this 
case, 1-D and 2-D generalized power-law distribution are introduced and discussed.  
In order to determine effective material properties in FG composites and 
nanocomposites, homogenization methods are taken into account. Afterwards, a 
semi-analytical method, GDQM, is adopted for solving coupled governing 
differential equations with variable coefficients. Eventually, numerical results and 
discussion are presented. For this purpose, the present thesis is organized as follows: 
 

Chapter 2 is devoted to basic background and literature survey of FGMs. A brief 
description of composite materials and their macro-mechanical analysis are 
presented, followed by a general overview regarding shell and plate theories. As a 
general feature in this thesis, literature review of FGMs is summarized into three 
parts comprising 1-D FG fiber-reinforced composites, 2-D FGM composites, and FG 
CNT-reinforced composites. 
 

Chapter 3 deals with theoretical formulations of various problems in free vibration, 
static, and thermal of FGMs composite plates and shells. Not only based on 3-D 
elasticity theory governing equations are derived, but also 2-D plate theories are used 
to formulate various problems. 
 

Chapter 4 is dedicated to mathematical modeling of FGMs. For modelisation of 
volume fraction and fiber orientation, firstly, the classic form of power-law 
distribution was introduced. Afterwards, 1-D and 2-D generalized power-law 
distribution are presented and discussed for the first time in this thesis. To compute 
effective material properties of FG composites and nanocomposites, commonly used 
homogenization methods are presented. 
 

Chapter 5 describes solution procedure for solving coupled governing differential 
equations with variable coefficients derived in the chapter 3. In the present 
methodology, GDQM as a semi-analytical approach is adopted to solve the 
governing equations. After brief introduction to GDQM, the method is applied to 
discretize the governing equations and boundary conditions of various problems in 
free vibration, static, thermal analyses of structures composed of FGMs. 
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Chapter 6 presents comprehensive new numerical results and discussion for several 
problems of FGMs summarized into three parts comprising 1-D FG fiber-reinforced 
composites, 2-D FGM composites, and FG CNT-reinforced composites. 
 

Chapter 7 elaborates main conclusions of the thesis and makes suggestions for 
further extension of the present research. 
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2.1 Overview 
In this chapter, to properly explain mechanics of FGMs, which are fundamentally 
composite materials, a short description of composite materials and its macro-
mechanical analysis are introduced. Afterwards, a general overview regarding shell 
and plate theories is presented. Discussion will then be focused on state-of-the-art 
literature regarding 1-D FG fiber-reinforced composites. In order to give readers a 
comprehensive literature review of the variety of articles on responses of FGMs, 
firstly, important literature on the free vibration, static, and thermal stress analysis of 
FG isotropic composites are presented. Later on, a critical review of studies on FG 
fiber-reinforced composites will be provided. Afterwards, a comprehensive review 
on state-of-the-art literature specialized in 2-D FGM composites is carried out. In the 
next section, available literature focused on making use of the FGM concept in CNT-
reinforced composites, termed as FG CNT-reinforced composites, is introduced and 
discussed. In section 2.5.4 main problems in sandwich structures are explained, and 
then the way of using the FGM concept to improve their performance is presented. 
Next available literature on FG sandwich structures is fully reviewed. In the end, a 
critical review on available papers concentrated on plates and shells resting on elastic 
foundations is performed.   
  

2.2 Composite Materials 
A composite material can be defined as a combination of two or more materials that 
results in better properties than those of the individual components used alone. In 
contrast to metallic alloys, each material retains its separate chemical, physical, and 
mechanical properties. The two constituents are a reinforcement and a matrix. The 
main advantages of composite materials are their high strength and stiffness, 
combined with low density, when compared with bulk materials, allowing for a 
weight reduction in the finished part. The reinforcing phase provides the strength and 
stiffness. In most cases, the reinforcement is harder, stronger, and stiffer than the 
matrix. The reinforcement is usually a fiber or a particulate. Particulate composites 
have dimensions that are approximately equal in all directions. They may be 
spherical, platelets, or any other regular or irregular geometry. Particulate composites 
tend to be much weaker and less stiff than continuous fiber composites, but they are 
usually much less expensive. A fiber has a length that is much greater than its 
diameter. The length-to-diameter ratio is known as the aspect ratio and can vary 
greatly. Continuous fibers have long aspect ratios, while discontinuous fibers have 
short aspect ratios. Continuous-fiber composites normally have a preferred 
orientation, while discontinuous fibers generally have a random orientation. As a 
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general rule, the smaller the diameter of the fiber, the higher its strength, but often 
the cost increases as the diameter becomes smaller. In addition, smaller-diameter 
high-strength fibers have greater flexibility and are more amenable to fabrication 
processes such as weaving or forming over radii. Typical fibers include glass, 
aramid, and carbon, which may be continuous or discontinuous. The continuous 
phase is the matrix, which is a polymer, metal, or ceramic. Polymers have low 
strength and stiffness, metals have intermediate strength and stiffness but high 
ductility, and ceramics have high strength and stiffness but are brittle. The matrix 
(continuous phase) performs several critical functions, including maintaining the 
fibers in the proper orientation and spacing and protecting them from abrasion and 
the environment. In polymer and metal matrix composites that form a strong bond 
between the fiber and the matrix, the matrix transmits loads from the matrix to the 
fibers through shear loading at the interface. In ceramic matrix composites, the 
objective is often to increase the toughness rather than the strength and stiffness; 
therefore, a low interfacial strength bond is desirable. 
  
2.2.1  Macromechanical analysis of composite materials  
The kinematic relations, mechanical and thermodynamic principles are applicable to 
any continuum irrespective of its physical constitution. Here, we consider equations 
characterizing the individual material and its reaction to applied loads. These 
equations are called the constitutive equations. In a composite material, the fibers 
may be oriented in an arbitrary manner. Depending on the arrangements of the fibers, 
the material may behave differently in different directions. According to their 
behavior, composites may be characterized as generally anisotropic, monoclinic, 
orthotropic, transversely isotropic, or isotropic. In the following, we also present the 
stress-strain relationships for these types of materials under linearly elastic 
conditions. 
A material body is said to be homogeneous if the material properties are the same 
throughout the body i.e. independent of position. In a heterogeneous body, the 
material properties are a function of position. For example, a structure composed of 
several uniform thickness layers of different materials stacked on top of each other 
and bonded to each other is heterogeneous through the thickness. Another example 
of heterogeneous materials is functionally graded materials. An anisotropic body is 
one that has different values of a material property in different directions at a point; 
i.e., material properties are direction-dependent. An isotropic body is one for which 
every material property in all directions at a point is the same. An isotropic or 
anisotropic material can be nonhomogeneous or homogeneous. 
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2.2.1.1  Anisotropic Materials 
When there are no symmetry planes with respect to the alignment of the fibers the 
material is referred to as generally anisotropic [45]. The generalized Hooke’s law 
relating stresses to strains in the most general form for infinitesimal deformation (i.e. 

1 u ) can be written as [45,46]: 

ij ijkl klC                                                                              (2.1) 

where ijklC  is a fourth-order elasticity tensor with 81 components, which include all 

the material parameters necessary to characterize the material. In the absence of body 
couples, the principle of conservation of angular momentum requires the stress tensor 
to be symmetric, ij ji  . Then it follows from (2.1) that ijklC  must be symmetric in 

the first two subscripts. Hence the number of independent material stiffness 
components reduces to 54. Since the strain tensor is symmetric (by its definition), 

ij ji  , then ijklC  must be symmetric in the last two subscripts as well, further 

reducing the number of independent material stiffness components to 36. If we also 
assume that the material is hyperelastic, i.e., there exists a strain energy density 
function 0 ( )ijU   such that [47]: 

0
ij ijkl kl

ij

U
C 




 


                                                                                                  (2.2) 

we have: 
2

0
ijkl

ij kl

U
C

 



 

                                                                                                         (2.3) 

Since the order of differentiation is arbitrary, 2 2
0 0ij kl kl ijU U          , it 

follows that ijkl klijC C . This reduces the number of independent material stiffness 

components to 21. To show this we express Eq. (2.1) in an alternate form using 
single subscript notation for stresses and strains and two subscript notations for the 
material stiffness coefficients: 
11 1, 22 2, 33 3, 23 4, 13 5, 12 6.       
The single subscript notation for stresses and strains is called the engineering 
notation or Voigt-Kelvin notation. Eq. (2.1) now takes the from 

, 1,...,6i ij jC i j                       (2.4) 

In matrix notation, Eq. (2.4) can be written as: 
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1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 23 33 34 35 36 3

4 41 42 43 44 45 46 4

5 51 52 53 54 55 56 5

6 61 62 63 64 65 66 6

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C

 
 
 
 
 
 

     
     
     
     

     
     
     
     
          

                               (2.5) 

Now the coefficients ijC  must be symmetric ( )ij jiC C  by virtue of assumption 

that the material is hyperelastic. Hence, we have 21 independent stiffness coefficients 
for the most general elastic material, i.e., anisotropic material. 
 
2.2.1.2  Monoclinic Materials 
When the elastic coefficients at a point have the same value for every pair of 
coordinate systems which are the mirror images of each other with respect to a plane, 
the material is called a monoclinic material [47]. For example, let 1 2 3( , , )x x x  and 

1 2 3( , , )x x x   be two coordinate systems, with the 1,x 2x -plane parallel to the plane of 

symmetry. Choose 3x -axis such that 3 3x x    so that one system is the mirror image 
of the other. The definitions and sign conventions of the stress and strain components 
show that: 

23 23    , 31 31    , 23 23    , 31 31                                                      (2.6) 

or, in single-subscript notation: 

4 4    , 5 5    , 4 4    , 5 5                                                               (2.7) 

While all their independent stress and strain components remain unchanged in value 
by the change from one coordinate system to the other. Using the stress-strain 
relations of the generally anisotropic material, we can write: 

1 11 1 12 2 13 3 14 4 15 5 16 6C C C C C C                                                                 (2.8) 

1 11 1 12 2 13 3 14 4 15 5 16 6C C C C C C                                                         (2.9) 
But we also have 

1 11 1 12 2 13 3 14 4 15 5 16 6C C C C C C                                                          (2.10) 

Note that elastic parameters ijC  are the same for two coordinate systems because 

they are the mirror images in the plane of symmetry. From the above two equations 
(subtract one from the other) we obtain:  
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14 4 15 5 0C C             for all values of 4  and 5                                               (2.11) 

The above equation holds only if 14 0C   and 15 0C  . Similar discussion with the 

two alternative expressions of the remaining stress components yield 24 0C   and 

25 0C  ; 34 0C  and 35 0C  ; 46 0C   and 56 0C  . Thus out of 21 material 
parameters in stiffness matrix of the generally anisotropic material, we only have 21-
8=13 independent parameters, as indicated below: 

 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

C C C C
C C C C
C C C C

C
C C
C C

C C C C

 
 
 
 

  
 
 
 
  

                                                 (2.12) 

and the stress-strain relations for a monoclinic material is as follows: 

1 11 12 13 16 1

2 12 22 23 26 2

3 13 23 33 36 3

4 44 45 4

5 45 55 5

6 16 26 36 66 6

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

C C C C
C C C C
C C C C

C C
C C

C C C C

 
 
 
 
 
 

     
     
     
     

     
     
     
     
                                                

(2.13) 

Note that monoclinic materials exhibit shear-extensional coupling; i.e. a shear strain 
can produce a normal stress; for example, 11 16 6C  . Therefore, the principal axes 
of stress do not coincide with those of strain. 

 

2.2.1.3  Orthotropic Materials 

When three mutually orthogonal planes of material symmetry exist, the number of 
elastic coefficients is reduced to 9 using arguments similar to those given for single 
material symmetry plane, and such materials are called orthotropic. The stress-strain 
relations for an orthotropic material take the form: 
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1 11 12 13 1

2 12 22 23 2

3 13 23 33 3

4 44 4

5 55 5

6 66 6

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C
C

C

 
 
 
 
 
 

     
     
     
     

     
     
     
     
                                                 (2.14) 

where 

23 32
11 1

1 v vC E 


 ,            

12 32 13
12 2

v v vC E 



 

31 21 32
13 1

v v vC E 


 ,          

32 12 31
23 2

v v vC E 


           
 

12 21
33 3

1 v vC E 


 ,              

31 13
22 2

1 v vC E 



 

44 23C G ,       55 13C G ,        66 12C G  

12 21 23 32 31 13 21 32 131 2v v v v v v v v v                                                           (2.15) 

where 

1E , 2E , 3E = Young’s (extension) moduli in the 1-,2-, and 3- directions. 

ijv = Poisson’s ratio (extension-extension coupling coefficient), i.e., the negative 

ratio of the transverse strain in the j-direction to the strain in i-direction when 
stress is applied in the i-direction, i.e., 

j
ij

i

v



   

For i   and all other stresses are zero. 

23G , 13G , 12G = shear moduli in the 2-3, 3-1, and 1-2 planes. 
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2.2.1.4  Isotropic materials 

When there exist no preferred directions in the material (i.e. the material has infinite 
number of planes of material symmetry), the number of independent elastic 
coefficients reduces to 2. Such materials are called isotropic. For isotropic materials 
we have: 

1 2 3E E E E   ,  12 13 12G G G G   ,   12 13 12v v v v                                 (2.16) 
Consequently, the stress-strain relations for an isotropic material take the form: 

1 1

2 2

3 3

4 4

5 5

6 6

1 0 0 0
1 0 0 0

1 0 0 0
10 0 0 (1 2 ) 0 0
2

10 0 0 0 (1 2 ) 0
2

10 0 0 0 0 (1 2 )
2

v v v
v v v
v v v

v

v

v

 
 
 
 
 
 

 
     

    
    
         
    
    
    
       

 
                   (2.17)

 

where 

(1 )(1 2 )
E

v v
 

 
                                                                                                 (2.18) 

 

2.2.1.5  Transformation of stresses and strains 

The constitutive relations (2.13) for an orthotropic material were written in terms of 
the stress and strain components that are referred to a coordinate system that 
coincides with the principal material coordinate system. The coordinate system used 
in the problem formulation, in general, does not coincide with the principal material 
coordinate system. Further, FGM composite materials with graded fiber orientation 
behave like composite laminates consisting of several layers, each with different 
orientation of their material coordinates with respect to the laminate coordinates. 
Thus, there is a need to establish transformation relations among stresses and strains 
in one coordinate system to the corresponding quantities in other coordinate system. 
These relations can be used to transform constitutive equations from the material 
coordinates of each layer to the coordinates used in the problem description. 

Let ( , , )z   denote the coordinate system used to write the governing equations of a 

fiber-reinforced composite material, and let 1 2 3( , , )x x x  be the principal material 
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coordinates of the material such that 3x  axis is parallel to the z -axis (i.e. the 1 2x x -

plane and the  -plane are parallel) and the 1x  axis is oriented at an angle of   
counterclockwise (when looking down on the material) from the  -axis, as shown 
in Figure 2.1). The transformation of stresses (and strains) from the 

1 2 3( , , )x x x coordinate to the ( , , )z   coordinate can be performed by [47]: 

2 2

2 2

2 2

0 0 0 2
0 0 0 2

0 0 1 0 0 0
0 0 0 0
0 0 0 0

0 0 0

m n mn
n m mn

T
m n
n m

mn mn m n

 
  
 

  
 

 
 
                                                   (2.19)

 

where  cosm   and  sinn  . Note that the inverse of the transformation 

matrix T can be found by replacing   with  . 
 
 

 

 
Figure 2.1. A lamina with material and coordinate system 

 
The transformation from fiber coordinates 1 and 2 to global coordinate   and   
can be done now as follows: 
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                                                      (2.20) 

The material stiffness in global coordinate can be found as: 

   TC T C T                                                                                                    (2.21) 

where  C  is the material stiffness of an orthotropic material. Performing the matrix 

multiplication in the above equation, the material stiffness ijC  can be written as 
4 2 2 4

11 11 12 66 22cos 2( 2 ) cos sin sinC C C C C        

2 2 4 4
12 11 22 66 12( 4 ) cos sin (cos sin )C C C C C         

2 2
13 13 23cos sinC C C    

3 3
16 11 12 66 12 22 66( 2 ) cos sin ( 2 ) cos sinC C C C C C C          

4 2 2 4
22 11 12 66 22sin 2( 2 ) cos sin cosC C C C C        

2 2
23 23 13cos sinC C C    

33 33C C  

3 3
26 11 12 66 12 22 66( 2 ) cos sin ( 2 ) cos sinC C C C C C C          

36 13 23( ) cos sinC C C     

2 2 4 4
66 11 22 12 66 66( 2 2 ) cos sin (cos sin )C C C C C C          

2 2
44 44 55cos sinC C C    

2 2
55 55 44cos sinC C C    
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45 55 44( ) cos sinC C C                                                                                 (2.22) 

 
2.3  3-D elasticity theory 
The theory of elasticity is an elegant and fascinating subject that treats explicitly a 
special response of materials to applied forces, namely the elastic response, in which 
the stress at every point in a material body (continuum) depends at all times solely on 
the simultaneous deformation in the immediate neighborhood of the point [45]. If the 
relationship of the stress and the deformation is linear, the material is said to be 
linearly elastic, and the corresponding theory is called the linear theory of elasticity. 
Actually, the linear theory of elasticity deals with problems in which deformations, 
displacements, and rotations are "small". In 3-D elasticity theory, a shell is a three-
dimensional body confined by two parallel (unless the thickness is varying) surfaces. 
In general, the distance between those surfaces is small compared with other shell 
parameters. The classical method of analysis in elasticity and thermoelasticity is to 
combine the equilibrium equations with the stress-strain and strain-displacement 
relations to derive the governing equations in term of the displacement components. 
This approach is called Navier method. The methods to solve the Navier equations 
are through either the potential function method, i.e. non-direct method, or direct 
method. The non-direct method is used for isotropic materials [48,49], as well as 
FGMs [50]. The non-direct method proposes the harmonic and biharmonic functions 
for temperature field or displacements which satisfy the Navier equation. The 
method, however, has some limitations. The main limitation of the potential function 
method is the ability to handle the general type of boundary conditions. Also, 
satisfying the mixed boundary conditions by the potential function method is a 
difficult mathematics problem. In this thesis, first the Navier equations are derived, 
and then non-direct method is proposed.  
 
2.3.1  Equations of motion 
In this section, we derive the 3-D elasticity equations of motion for any continuum in 
motion. The basic postulate is that each particle of the continuum must satisfy 
Newton's law of motion. Figure 2.2 shows the stress vectors that are acting on the six 
faces of a small rectangular element that is isolated from the continuum in the 
neighborhood of the position designated by ix . 

Let i iBB e be the body force (such as weight) per unit mass,   be the mass density 

at ix  and a the acceleration of a particle currently at the position ix  ; then Newton's 
law of motion takes the form, valid in rectangular Cartesian coordinate systems [51]: 
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Figure 2.2. Stress vectors acting on the six faces of a small rectangular element [51].  
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Dividing by 1 2 3x x x    and letting 0ix  , we have: 

1 2 3x x x
 

 
  

  
B = a31 2 ee e  

                       (2.24) 

Since i ji j e e
ie   [51], therefore we have (noting that all ie  are of fixed 

directions in Cartesian coordinates: 

ij
i i i i i
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e e = e                                   (2.25) 

and in Cartesian component form: 
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=                                                            (2.26) 

and in cylindrical coordinates: 
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2.4  2-D plate theories 
The 3-D elasticity theory is reduced to a 2-D theory using the assumption that the 
normal strains acting upon the plane parallel to the middle surface are negligible 
compared with other strain components. In 2-D theories, the displacements are 
expanded in terms of thickness. Many classical theories were originally developed 
for thin elastic plates and shells, and are based on the Love-Kirchhoff assumptions, 
which are [52]: 
(1) Straight lines normal to the middle-surface remain straight and normal to the 
deformed middle surface.  
(2) The transverse normals do not experience elongation.  
(3) The transverse normals rotate such that they remain perpendicular to the 
mid-surface after deformation. 
The first two assumptions imply that the transverse displacement is independent of 
the transverse (or thickness) coordinate and the transverse normal strain is zero. The 
third assumption leads to zero transverse shear strains. With these assumptions, the 
theory is known as the Kirchhoff plate theory or classical plate theory (CPT). To 
improve the situation, various refined theories including First-order Shear 
Deformation Theories (FSDT) and Higher-order Shear Deformation Theories 
(HSDT) have been developed. The FSDT is often called Mindlin theory. In the 
FSDT, the Love-Kirchhoff assumptions are relaxed by removing the third part; i.e. 
the transverse normals do not remain perpendicular to the mid-surface after 
deformation. This leads to including transverse shear strains in the theory. HSDT can 
represent the kinematics better and can yield accurate results, especially for thick 
plates and shells. However, they involve more computational effort. In HSDT, we 
relax the assumption on the straightness and normality of the transverse normals after 
deformation by expanding displacements. Among various HSDT, including the 
second-order shear deformation formulation of Whitney and Sun [53] and the Third-
order Shear Deformation Theory (TSDT) of Lo et al. [54] with 11 unknowns, Kant 
[55] with six unknowns, Bhimaraddi and Stevens [56] with five unknowns and 
Hanna and Leissa [57] with four unknowns, the TSDT of Reddy [58] with five 
unknowns is the most widely adopted model in the study of shells, especially FGM 
ones, due to its high efficiency and simplicity. The displacement fields of CPT, 
FSDT, and TSDT are in the form: 
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Figure 2.3. Deformation for the CPT, FSDT and TSDT [47]. 

 
 
CPT: 

0
0( , , , ) ( , , ) wu x y z t u x y t z

x


 


 

0
0( , , , ) ( , , ) wv x y z t v x y t z

y


 


 

0( , , , ) ( , , )w x y z t w x y t                                                                                  (2.28) 

 
FSDT: 
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0( , , , ) ( , , )w x y z t w x y t                                                           (2.29) 
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where 0 0 0( , , )u v w  are the displacement components along the ( ), ,x y z  coordinate 

directions, respectively, of a point on the mid-surface, and x  and y  are rotational 

displacements about the x and y axes at the middle surface of the plate, respectively, 
( , )x y  and ( , )x y   are unknown functions to be determined. Figure 2.3 shows the 

kinematics of the deformation for the CPT, FSDT and TSDT. 
 
2.5  Literature review  
The literature review carried out here, is categorized according to classification of 
FGM concept in three categories, including FG fiber-reinforced composites, 2-D 
FGM composites, and FG CNT-reinforced composites. Furthermore, the following 
review provides a discussion of the more prevalent literature based on different types 
of analysis, elastic foundations, and FG sandwich structures. 

 

2.5.1 1-D FG fiber-reinforced composites 

In order to give readers a full literature review of the variety of studies on mechanical 
responses of FGMs, in each section, firstly, recent state-of-the-art literature on the 
free vibration, static, and thermal stress analyses of FG isotropic composites are 
introduced. Then, a critical review of the reported studies on FG fiber-reinforced 
composites will be provided. An effort will be made here, to include all important 
contributions in the current area of interest.   

 

2.5.1.1  Free vibration and static analyses  

An exact, three-dimensional method was developed by Chen et al. [59] to analyze the 
free vibration of a spherically isotropic hollow sphere made of a functionally graded 
material and filled with a compressible fluid medium. Based on the theory of 
elasticity, an exact free vibration solution of simply supported FGM sandwich 
cylindrical panel was presented by Alibeigloo and Liew [60]. They concluded that 
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for a FGM sandwich cylindrical panel higher mode of vibration is significantly 
affected by mid-radius to thickness ratio S, as shown in Figure 2.4. It is noted that m 
and n are axial and circumferential wave numbers, respectively. It is also observed 
that the influence of S on the first natural frequency of any mode for the thick panel 
is more significant than that for the moderately thick panel. It  is  concluded  that  the  

 

 
Figure 2.4. Effect of mid-radius to thickness ratio S on dimensionless first natural frequency of 

sandwich cylindrical FGM panel for various mode numbers [60]. 

 

variation of first natural frequency for the lower mode via S, contrary to the higher 
mode, can be neglected. A coupled technique, using the Fourier series expansion 
along the axial and circumferential directions and state space technique in the radial 
direction, was used to obtain the solution.  Malekzadeh et al. [61] studied a three-
dimensional free vibration analysis of the functionally graded truncated conical shells 
subjected to thermal environment. They used the differential quadrature method to 
solve the thermo-mechanical governing equations. Santos et al.  [62] developed an 
axisymmetric finite element model to study the free vibrations of FGM cylindrical 
shells using the 3-D theory of elasticity. They reduced the 3-D equations of motion to 
2-D representations by expanding the displacement field in terms of Fourier series 
for the circumferential variable. Qu and Meng [63,54] presented a novel semi-
analytical method and its associated applications for linear vibration analyses of 
functionally graded bodies (either hollow or solid) of revolution with arbitrary 
boundary conditions. A modified variational principle combined with a multi-
segment partitioning procedure was employed to formulate the theoretical model in 
the context of three-dimensional theory of elasticity. Three-dimensional free 
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vibration characteristic of thick circular/annular functionally graded plates with 
surface-bonded piezoelectric layers on the basis of 3-D Ritz solution was studied by 
Hosseini-Hashemi et al. [65]. Three displacement components along with electrical 
potential field of the plate were expressed by a set of Chebyshev polynomials 
multiplied by geometry boundary functions. The large amplitude vibration behavior 
of a shear deformable FGM cylindrical panel resting on elastic foundations in 
thermal environments was studied by Shen and Wang [66]. Two kinds of 
micromechanics models, namely, Voigt model and Mori–Tanaka model, are 
considered. Matsunaga [67] studied natural frequencies and buckling stresses of 
shallow shells made of functionally graded materials by taking into account the 
effects of transverse shear and normal deformations, and rotatory inertia. The 
modulus of elasticity of shells was assumed to vary according to a power law 
distribution in terms of the volume fractions of the constituents. Zhao et 
al. [68] investigated the static response and free vibration of FGM shells subjected to 
mechanical or thermo-mechanical loading based on Sander's first order shear 
deformation shell theory by using the element-free kp-Ritz method. Tornabene et 
al. [69] used generalized differential quadrature method to analyze the dynamic 
behavior of FGM conical, cylindrical shells and annular plates. One of the interesting 
results of their study is that as can be seen from Figure 2.5, natural frequencies of 
FGM panels fall between the natural frequencies of the limit cases of homogeneous 
shell panels of zirconia (p=0) and of aluminum (p=∞). It is interesting to note that the 
frequencies attain a minimum value for a shell made only of metal, due to the fact 
that aluminum has a much smaller Young's modulus that zirconia. In particular, it  
 

 

 
Figure 2.5. Influence of the power-law exponent p on the frequency characteristics of FGM 

conical panel [69]. 
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can be noted that the most of frequencies exhibits a fast descending behavior from 
the ceramic limit case (p=0) varying the power-law index from p=0 to 1, while for 
values of p greater than unity frequencies increase until a maximum value. After this 
maximum, frequencies slowly decrease by increasing the power-law exponent p and 
tend to the metallic limit case (p=∞). 

As aforementioned above, most of the studies regarding the FGM plate and shells are 
confined to isotropic material properties. By increasing interest towards using the 
concept of FGM in fiber-reinforced composites, in recent years some literature has 
been allocated to free vibration and static analyses of FG orthotropic (fiber-
reinforced) materials, although they are few to number. Batra and Jin [70] studied 
natural frequencies of a functionally graded orthotropic material in which the 
gradation of material properties is achieved by varying the fiber orientation angle 
smoothly through the thickness. Nie and Batra [71] studied analytically static plane-
strain deformations of functionally graded polar-orthotropic cylinders with elliptic 
inner and circular outer surfaces by employing the Fourier and the Frobenius series. 
Interlaminar stress distribution of composite laminated plates with functionally 
graded fiber volume fraction was studied by Fu et al. [72]. Classic state space method 
as well as differential quadrature state space method were utilized for different 
boundary and plied conditions. Numerical examples indicated that the non-uniform 
distribution of fibers rearranges the stress field, of which the in-plane stresses are 
sensitive to the fibers’ distribution, while the transverse stresses are not affected so 
much. Vel [73] presented a 3-D elasticity solution for the vibration of FG cylindrical 
shells. Results were presented for two-constituent isotropic and fiber-reinforced 
composite materials. Shen and Zhang [74,75] studied the large amplitude vibration, 
non-linear bending and postbuckling of fiber reinforced composite laminated plates 
resting on an elastic foundation in hygrothermal environments. A two-step 
perturbation technique was employed to determine the non-linear to linear frequency 
ratios of plate vibration, the load-deflection and load-bending moment curves of plate 
bending, and postbuckling equilibrium paths of laminated plates. Li et al. [76] 
presented isogeometric analysis based on nonuniform rational B-splines (NURBS) 
for static and free vibration of laminated composite plates by using the TSDT. Due to 
the noninterpolatory nature of NURBS basis functions, a penalty method was applied 
to enforce the essential boundary conditions. A boundary layer theory for the 
nonlinear flexural vibration of anisotropic shear deformable laminated cylindrical 
shells was developed by Shen [77]. Two kinds of fiber reinforced composite 
laminated cylindrical shells, namely, uniformly distributed and FG reinforcements, 
were considered. The results showed that a FG reinforcement has a moderately effect 
on the linear and nonlinear vibration characteristics of shells. Naderi and Saidi [78] 
investigated static analysis of moderately thick composite beams, whose fiber 
orientation angle varies continuously through the thickness direction. Since 
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anisotropic beams have a monoclinic stiffness matrix form, the strain components, 
which are ignored for isotropic beams must be taken into account. To this end, a 
refined displacement field taking into account the entire shear strains was used.  

 

2.5.1.2  Thermal stress analysis 

Obata and Noda [79] carried out one-dimensional thermal stress analysis of a hollow 
circular cylinder and a hollow sphere made of functionally graded materials under a 
steady state condition using the perturbation method. Thermal stresses in a 
functionally graded cylindrical shell due to fluid have been found and reported by 
Takezono et al. [80]. They derived governing equations using the Sanders elastic 
shell theory and solved the equations with the help of the finite difference method. 
Tutuncu and Ozturk [81] obtained stress and displacement fields in functionally 
graded cylindrical and spherical structures subjected to internal pressure, using the 
theory of elasticity. Cheng and Batra [82] and Reddy and Cheng [83] have used the 
method of asymptotic expansion to study the three-dimensional thermoelastic 
deformations of functionally graded elliptic and rectangular plates, respectively. Vel 
and Batra [84, 85] have presented exact three-dimensional solutions for the steady-
state and quasi-static transient thermoelastic response of functionally graded thick 
plates with an arbitrary variation of material properties in the thickness 
direction. Qian and Batra [86] have obtained results for the steady-state and transient 
thermoelastic response of functionally graded plates using the meshless local Petrov-
Galerkin method that compare well with the exact solution of Vel and Batra [84,85]. 
Darabseh et al. [87] studied the transient thermoelastic response of a thick hollow 
cylinder made of functionally graded material under thermal loading. The 
generalized theory of thermoelasticity based on Green-Lindsay model was used. The 
thermal and mechanical properties of the functionally graded material were assumed 
to be varied in the radial direction according to a power law variation as a function of 
the volume fractions of the constituents. Ghosh and Kanoria [88] investigated 
thermoelastic displacements and stresses in a functionally graded spherically 
isotropic hollow sphere due to prescribed temperature in the context of the linear 
theory of generalized thermoelasticity with two relaxation time parameters. It was 
found that the variation of the thermophysical properties of a material as well as the 
thickness of the body strongly influence the response to loading. Theoretical 
treatment of transient thermoelastic problem involving an orthotropic functionally 
graded rectangular plate due to nonuniform heat supply were studied by Ootao and 
Tanigawa [89]. The thermal and thermoelastic constants of the rectangular plate were 
assumed to vary exponentially in the thickness direction. Based on the 3-D 
thermoelasticity theory, the thermoelastic analysis of laminated cylindrical panels 
with finite length and functionally graded layers subjected to three-dimensional 
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thermal loading were presented by Malekzadeh and Ghaedsharaf [90]. Thermal-
mechanical behavior of functionally graded thick plates, with one pair of opposite 
edges simply supported, was investigated by Ying et al. [91] based on 3D 
thermoelasticity. As for the arbitrary boundary conditions, a semi-analytical solution 
was presented via a hybrid approach combining the state space method and the 
technique of differential quadrature. Analysis of thermoelastic characteristics of a 
thin circular functionally graded material rotating disk having a concentric hole and 
subjected to a thermal load was presented by Go et al. [92]. The Young's modulus, 
coefficient of thermal expansion, and density of the disk were assumed to vary 
exponentially in the radial direction only while the Poisson's ratio is assumed to be 
constant.  

Based on the author’s knowledge, available literature on the thermal analysis of FG 
fiber-reinforced composites is limited. Wang and Sudak [93] studied thermoelastic of 
a multi-layered cylindrical panel made of an oblique pile of functionally graded 
layers having orthotropic  material  properties.  The  influence of the gradation of  the  

 

 

 
Figure 2.6. The temperature variations along the radial direction under different values of 

gradient parameter m [93]. 
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material and ply angle on the distribution of temperature, displacements and stresses 
were investigated. As shown in Figure 2.6, it has been concluded that material 
gradation and ply angle significantly influence the elastic and temperature fields. 
Controlling thermal deformation by using composite materials having variable fiber 
volume fraction was studied by Bouremana et al. [94]. Continuous gradation of the 
fiber volume fraction in the FGM layer was modelled in the form of a mth power 
polynomial of the coordinate axis in thickness direction of the beam. The influence 
of volume fiber fraction distributions were studied to match or eliminate an in-plane 
expansion coefficient, or to match a desired axial stiffness.  Pelletier and Vel [95] 
analyzed the steady-state response of a functionally graded thick cylindrical shell 
subjected to thermal and mechanical loads. The analytically obtained displacements 
and stresses were compared with those obtained using Flügge and Donnell shell 
theories for FG shells for a wide range of geometric parameters. 

 
2.5.2  2-D FGM composites 

Recently, many investigations on the 2-D FGM composites have been carried out. 
The thermal stresses in a two-directionally graded aerospace shuttles and crafts were 
later studied by Nemat-Alla [96] using a finite element model. The same technique 
was later applied by Hedia [97] for the stress analysis on backing shell of the 
cemented acetabular cup made of FGMs. He found that some critical stresses of 
concern for shells fabricated by unidirectional or 2-D FGMs  were reduced by more 
than 50% compared with shells made of homogeneous materials. Further reduction 
of stresses was achieved using 2-D FGMs rather than unidirectional FGMs when 
designing cementless hip stems [98]. Sutradhar and Paulino [99] used the boundary 
element method to investigate the heat conduction problems of 2-D FGMs, while the 
Green functions were obtained by Chan et al. [100] for 2-D unbounded spaces with 
the shear modulus varying in two directions. Qian and Batra [101] made use of the 
meshless local Petrov-Galerkin (MLPG) method to obtain numerical solutions for 
static, free, and forced vibrations of a cantilever beam, for which material properties 
are power-law functions of the two coordinates. Nemat-Alla et al. [102] studied the 
elastic-plastic analysis of 2-D FGM under thermal loading. They showed that heat 
conductivity of the metallic constituents of FGM has great effect on the temperature 
distribution that resulting from the thermal loads.  

It is worth noting that some literature on 2-D FGMs [103-108] has considered 
exponential functions for continuous gradation of the material properties, such as 
Young’s modulus, shear modulus and Poisson’s ratio. Nonetheless, it is difficult to 
tailor the material moduli in practice. It is because the designer can control the spatial 
variation of material composition (i.e., volume fraction and microstructure 
morphology) during the fabrication of functionally graded materials but not the 
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material moduli directly. A few researchers attempted to employ power-law 
distribution for variations of volume fractions in two directions. Aboudi et al. [109] 
proposed a higher-order micro-mechanical theory for thermoelastic/plastic problems 
of materials functionally graded in two directions. In their analysis, stiffness 
coefficients were computed directly from the micro-mechanical level rather than 
using the homogeneous elastic constants and geometric size. Cho and Ha [110] have 
optimized the volume fractions distributions of FGM for relaxing the effective 
thermal stress. They obtained the optimal volume fractions distribution in two 
directions for the FGM. The obtained optimum volume fractions have a random 
distribution, which is very difficult to represent or simulate as that of conventional 
FGM that have continuous variations of the composition. While FGM may serve as 
an excellent optimization and material tailoring tool, the ability to incorporate 
optimization techniques and solutions in practical design depend on the capacity to 
manufacture these materials to required specifications, and it may be difficult to 
achieve an optimized grading in FGM in practice. Nemat-Alla [96] introduced the 
concept of adding a third material constituent to the conventional FGM to withstand 
the induced sever thermal stresses. The rules of mixture for the introduced 2-D FGM 
were used to calculate the effective material properties of SiC/Al1100/Ti-6Al-4V 2-
D FGM plate, with temperature-independent material properties. They found that it is 
possible to reduce the magnitude of thermal stresses by a proper management of the 
material properties in two directions. Asgari and Akhlaghi [112] investigated the 
transient thermal stresses in a 2-D FG thick hollow cylinder with finite length based 
on the classical thermoelasticity. The proposed 2-D FGM model was made of four 
distinct materials consisting of two distinct ceramics on the inner surface and two 
metals on the outer surface. The material properties at each point were obtained by 
using the linear rules of mixture. The same authors [113] studied the transient heat 
conduction in two-dimensional functionally graded hollow cylinder with finite 
length. For modelling and simulation of governing equations, finite element method 
with graded material properties within each element was used that had some 
advantages over the conventional finite element method.  

In all aforementioned research works, the material properties at different positions 
within the 2-D FGM have been calculated using the rules of mixture. In addition, 
available power-law distributions for 2-D FGMs are not applicable to other 
homogenization schemes. Motivated by these ideas, in chapter 4, new 2-D power-law 
distributions, which are applicable to other homogenization methods, will be 
presented for variation of volume fractions in two directions. Various material 
profiles in radial and axial directions can be illustrated using the new 2-D power-law 
distribution.  
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2.5.3  FG CNT-reinforced composites 

As discussed in section 1.1.3, in order to effectively make use of the CNTs, the 
concept of FGMs can be incorporated in CNT-reinforced composites. Shen [114] 
studied  the  nonlinear  bending  behavior  of  CNT-reinforced composites plates  and  

 
 

 

 

 

Figure 2.7. The vibration modes shape of an FG CNT-reinforced square plate, a) Second 
mode, b) Third mode [117]. 
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found that the load-bending moment curves of the plates can be considerably 
improved through the use of a functionally graded distribution of CNTs in the 
matrix. Applying the idea of FGM to the nanocomposites, compressive postbuckling 
and thermal postbuckling strength of CNT-reinforced composites plates under a low 
nanotube volume fraction were studied by Shen et al. [115,116]. They found that in 
some cases the CNT-reinforced composites plate with intermediate CNT volume 
fraction does not have intermediate buckling temperature and initial thermal 
postbuckling strength. Zhu et al. [117] carried out bending and free vibration 
analyses of thin-to-moderately thick FG composite plates reinforced by single-walled 
CNT (SWCNTs) using the finite element method based on the first order shear 
deformation plate theory. Figure 2.7 gives the second and third mode shape of an FG 
CNT-reinforced square plate. They inferred that because the reinforcement only 
aligns in x direction, the mechanical properties of transverse direction (in y axis) of 
the plate are weaker and then the mode sequence is dissimilar to that for an isotropic 
plate. Wang and Shen [118] investigated nonlinear bending and vibration behavior of 
FG sandwich plate with CNT-reinforced composites face sheets by using multiscale 
approach and two-step perturbation technique. Based on three-dimensional theory of 
elasticity, Alibeigloo [119] discussed static analysis of functionally graded carbon 
nanotube reinforced composite plate imbedded in piezoelectric layers with three 
cases of CNT distribution. Lie et al. [120] presented free vibration analysis of 
functionally graded nanocomposite plates reinforced by SWCNTs using the element-
free kp-Ritz method. It was concluded that reinforcements distributed close to top 
and bottom are more efficient than those distributed near the mid-plane for increasing 
the stiffness of FG CNT-reinforced plates. Axisymmetric natural frequencies of 
nanocomposite cylinders reinforced by straight single-walled carbon nanotubes were 
studied by Moradi et al [121] based on a mesh-free method.  It was observed that the 
kind of distributions, aggregation or even randomly orientations of CNTs have 
significant effect on the effective stiffness and frequency parameter.  

Yas and Heshmati [122] studied the vibrational properties of FG nanocomposite 
beams reinforced by SWCNTs under the action of moving load. They used the 
Eshelby-Mori-Tanaka approach based on an equivalent fiber to investigate the 
material properties of the beam. They used FEM to discretize the model and obtain a 
numerical approximation of the motion equation. Jam et al. [123] used the extended 
rule of mixture to show the effects of waviness and aspect ratio of CNT on the 
vibrational behavior of a nanocomposite cylindrical panel. They showed that the 
waviness has a significant effect on the natural frequency of this cylindrical panel. 
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2.5.4  Plates and shells resting on elastic foundations 

Plates resting on elastic foundations have been widely adopted by many researchers 
to model interaction between elastic media and plates for various engineering 
problems such as reinforced-concrete pavements of highways, airport runways, 
foundation of storage tanks, and swimming pools together with foundation slabs of 
buildings, etc. In addition, cylindrical shells are usually laid on or placed in a soil 
medium as an elastic foundation, thus there is a great interest in analysis of the shells 
on elastic foundations. The underlying layers are modeled by a Winkler-type elastic 
foundation. The most serious deficiency of the Winkler foundation model is to have 
no interaction between the springs. The Winkler foundation model is fairly improved 
by adopting the Pasternak [124,125] foundation model, a two-parameter model, in 
which the shear stiffness of the foundation is considered. Despite the evident 
importance in practical applications, investigations on the plates and shell resting on 
elastic foundations are still limited in number. Cheng and Batra [126] used Reddy’s 
third-order plate theory to study steady state vibrations and buckling of a simply 
supported functionally gradient isotropic polygonal plate resting on a Pasternak 
elastic foundation and subjected to uniform in-plane hydrostatic loads. An analytical 
solution for free vibration analysis of moderately thick FGM rectangular plates, 
resting on either Winkler or Pasternak elastic foundations, presented for all six 
possible combinations of boundary conditions by Hosseini-Hashemi et al. [127].  

 
 

 
Figure 2.8. The frequency parameter versus the Winkler foundation stiffness wK  for a thin 

annular plate resting on elastic foundation [130]. 
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Zenkour et al. [128] and [129] have employed the sinusoidal shear deformation plate 
theory to explain the bending behavior of FGM and fiber-reinforced viscoelastic 
structures resting on two-parameter elastic foundations. Based on the elasticity 
theory, a comprehensive study of the 3-D vibration analysis of annular plates resting 
on Pasternak elastic was studied by Hosseini-Hashemi et al. [130].  The validity and 
the range of applicability of the results obtained on the basis of the Mindlin and 
classical plate theories (CLPT) for annular plates with different values of the Winkler 
foundation stiffness was investigated. As depicted in Figure 2.8, unlike the 3-D 
results, the frequency parameters in the Mindlin and the CLPT diverged with 
increasing Winkler foundation stiffness wK . In other words, as the Winkler 
foundation stiffness increased, the CLPT curve could follow the 3-D one better in 
comparison with the Mindlin results. They concluded that in the CLPT and Mindlin 
theory, the foundation was applied on the middle surface of the plate but not on the 
lower surface. That was why the Mindlin theory and CLPT gave incorrect results as 
the Winkler foundation stiffness takes large values. The free vibration of functionally 
graded rectangular plates resting on two-parameter elastic foundation was studied by 
Sheikholeslami and Saidi [131] using the higher-order shear and normal deformable 
plate theory of Batra and Vidoli by an analytical approach. Huang et al. [132] 
presented an exact three-dimensional elasticity solution for FGM thick plates resting 
on a Winkler–Pasternak elastic foundation, using the state space method.  

The available literature on the shells, especially made of FGMs, resting on elastic 
foundations is sparse. Paliwal et al. [133,134] investigated the free vibration of whole 
buried cylindrical shells with simply supported ends in contact with Winkler and 
Pasternak foundations using direct solution to the governing classical shell theory 
equations of motion. Yang et al. [135] investigated the behavior of whole buried 
pipelines subjected to sinusoidal seismic waves by the finite element method. Cai et 
al. [136] investigated free vibration of a cylindrical panel supported on Kerr 
foundation. Kerr model can be reduced to either a Pasternak model or a Winkler one 
by selecting certain values of foundation parameters. Gunawan et al. [137] examined 
the free vibrations of cylindrical shells partially buried in elastic foundations based 
on the finite element method. Farid et al. [138] studied three-dimensional 
temperature dependent free vibration analysis of functionally graded material curved 
panels resting on two-parameter elastic foundation subjected to thermal environment. 
Shen [139] studied nonlinear thermal bending for a functionally graded cylindrical 
panel resting on an elastic foundation. The formulations were based on a higher order 
shear deformation shell theory with a von Kármán-type of kinematic nonlinearity and 
included shell panel-foundation interaction and the thermal effects. Shah et al. [140] 
performed the vibrations of functionally graded cylindrical shells based on the 
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Winkler and Pasternak foundations. A wave propagation approach was employed to 
solve the equations of motion of the shell involving the elastic foundation. 
 

2.5.5  FG sandwich structures 

Sandwich structures are used in a variety of engineering applications including 
aircraft, construction and transportation where strong, stiff and light structures are 
required [141]. Due to the mismatch of stiffness properties between the face sheets 
and the core, sandwich panels are susceptible to face sheet/core debonding, which is 
a major problem in sandwich construction, especially under impact loading [142]. 
Figure 2.9 shows damage in a sandwich laminated plate that was subjected to thermal 
shock [143].  One sees two types of cracks: cracking of the matrix material within a 
ply, and separation cracks (delaminations) at the boundary between plies. To increase 
the resistance of sandwich panels to this type of failure, the concept of a FGM is 
being actively explored in sandwich panel design.  

 

 

 
Figure 2.9. Damage in a sandwich laminated plate that was subjected to thermal [143]. 

 

 

Although there is several research work reported on general sandwich structures, 
studies related to FGM sandwich (FGSW) structures are few in numbers. Li et al. 
[144] studied the free vibration of FGSW rectangular plates with simply supported 
and clamped edges based on the three-dimensional linear theory of elasticity. They 
considered two common types of FGSW plates, namely the sandwich plate with FG 
face sheet and homogeneous core and the sandwich plate with homogeneous face 
sheet and FG core. They expanded the three displacement components of the plates 
by a series of Chebyshev. To investigate the effect of FGM core on performance of 
sandwich panels, Anderson [145] developed 3D elasticity solution for a sandwich 
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panel with orthotropic face sheets and an isotropic functionally graded core subjected 
to transverse loading. Exponential variation of the Young’s modulus with respect to 
transverse direction was assumed. Xiang and Yang [146] presented the free and 
forced vibration of a laminated functionally graded Timoshenko beam of variable 
thickness, which consists of a homogeneous substrate and two inhomogeneous 
functionally graded layers, subjected to one-dimensional steady heat conduction in 
the thickness direction, employing the differential quadrature method. Zenkour 
[147,148] presented a two-dimensional solution to study the bending, buckling and 
free vibration of simply supported FG ceramic-metal sandwich plates. The sandwich 
plate faces assumed to have isotropic, two-constituent material distribution through 
the thickness, and the modulus of elasticity and Poisson’s ratio of the faces assumed 
to vary according to a power law distribution in terms of the volume fractions of the 
constituents. Kashtalyan and Menshykova [149] presented a 3-D elasticity analysis 
of sandwich panels with a FG core subjected to transverse loading. Their analysis 
revealed that the use of a graded core instead of a conventional homogeneous one 
eliminates discontinuity of the in-plane normal and shear stresses across the face 
sheet-core interfaces, which contribute to the structural failure of the panel. Bhangale 
and Ganesan [150] studied buckling and vibration behavior of a FGSW beam having 
constrained viscoelastic layer in thermal environment using finite element 
formulation. 

 

2.6  Summary and conclusions 
This chapter has been devoted to basic useful background and literature survey of 
FGMs. In order to be familiar with constitutive modelling of FGM problems, which 
will be formulated in the next chapter, a short description of composite materials and 
their macro-mechanical analysis were provided. Besides, 3-D elasticity theory has 
been introduced, followed by an overview on the 2-D plate theories. This chapter 
aimed at providing the basic concepts of shell and plate theories whereas in the next 
chapter the basic assumptions will be taken to formulate state-of-the-art problems. 

As a general feature in this thesis, literature review of FGMs has been summarized 
into three parts comprising 1-D FG fiber-reinforced composites, 2-D FGM 
composites, and FG CNT-reinforced composites. An effort was made to include all 
important contributions in the area of interest. By a comprehensive literature review, 
it has been shown that new studies on the mechanical responses 1-D FG fiber-
reinforced composites are still required because of lack of prevalent literature. 
Motivated by these shortcomings, presenting detailed parametric studies on the free 
vibration, static, and thermal problems of 1-D FG fiber-reinforced composites is of 
this thesis‘s contributions. On the other hand, in case of mathematical modelling of 
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2-D FGM composites, generalized 2-D power-law distributions, which are applicable 
to different homogenization methods, is required that will be presented in chapter 4 
for variation of volume fractions in two directions. In addition, no reposted study on 
the realistic investigation of thermal stress analysis of 2-D FGM composites with 
temperature-dependent properties was found. Regarding FG CNT-reinforced 
composites, available literature is very few to number. As a consequence, studies on 
mechanical responses of FG CNT-reinforced composites can undoubtedly contribute 
towards better understanding of structural responses of such composites. It can be 
concluded form the literature survey that most studies have been devoted into graded 
aligned CNTs dispersed in matrix phase. It can be of great interest to study other 
dispersion forms of CNTs including randomly orientation and agglomeration.  



 

 

 

 



 

Chapter 3 
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formulations 
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3.1  Overview 
In this chapter, theoretical formulations of various problems in the mechanics of 
FGMs are presented. Based on types of theory, basic formulations are divided into 
two categories including 3-D elasticity and 2-D plate theories. Then, free vibration, 
static, and thermal stress analyses of FGMs based on 3-D elasticity theory will be 
formulated in section 3.2.1. Depending on the geometry of different structures 
composed of FGM, section 3.2.1 will be divided into several subsections, consisting 
of cylindrical panel, sandwich panel, rectangular plate, and annular sectorial plate. 
Eventually, the derivation of governing equations for free vibration, mechanical 
buckling, and thermal problems of FGMs based on 2-D theories will be explained. 
 
3.2  3-D elasticity 
The analysis of plate and shell structures based on 3-D elasticity theory become more 
complex if one or more of the several complicating effects, such as gradation of 
material properties (as seen in FGMs), are included. Including the effects of variation 
of material properties through one or two directions, which is necessary for most 
FGM composites, increases the complexity of governing equations with variable 
coefficients. This complexity rises by temperature-dependent material properties in 
thermal stress analysis, thereby causing the material properties to be function of both 
temperature and positions. In order to better elaborate the discussion, theoretical 
formulations based on elasticity theory is classified according to the type of analysis. 
 
3.2.1  Free vibration and static analyses  

In the following, we will formulate various problems in free vibration, static and 
thermal stress analyses of plates and shells composed of FGMs. In each problem, 
specific assumptions and structure are introduced so as to provide comprehensive 
studies on the analysis of FGMs. In order to better elaborate the study, this section is 
divided into following subsections depending on the type of geometries of the 
structure.  

 

3.2.1.1 Cylindrical panel 

We describe the geometry of an FG cylindrical panel a standard, global, cylindrical 
coordinate system, with coordinates r,   and z denoting the radial, circumferential 
and axial coordinate directions, respectively, as depicted in Figure 3.1. Here, the 
general form of the problem for a panel with a smooth variation of fiber volume 
fractions, and/or in-plane fiber orientations, through the radial direction and variation 
of fiber volume fraction in the axial direction is defined and governing equations are 
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derived. In the general form, it is assumed that the panel is composed of monoclinic 
materials.  

Strain-displacement relations in cylindrical coordinate are expressed as [45]: 

r uu
r r


 


 


  ,  r

r

u
r







 ,   z
z

u
z







 ,    r
r

u u u
r r r
 

 
  

  
 

 ,      

z r
zr

u u
r z


 

 
 

,       z
z

u u
z r





 
 

 
                                                              (3.1) 

where ru , u  and zu  are radial, circumferential and axial displacement 

components, respectively. Substitution of Eq. (3.1) into Eq. (2.13) in cylindrical 
coordinates and then into Eq. (2.27), the following equations of motion are obtained 
in terms of displacement components: 
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Eqs. (3-2) to (3.4) can be written in a matrix form as: 
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Figure 3.1. Geometry of a cylindrical panel. 
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Eqs. (3-2) to (3.4) are the governing equations for a finite cylindrical panel with 
monoclinic materials or with FG fiber orientation materials. It is because when there 
is a smooth variation in fiber orientation from the inner surface to the outer surface, 
in each point through the radial direction, we have a fiber oriented by different angle 
with the axial direction. In case of panel with graded volume fraction of fibers,  
elements of 16 26 36, , ,C C C  and 45C  in Eqs. (3-2) to (3.4) are equal to zero for an 

orthotropic material. 
The outer and inner surfaces of the cylindrical panel in the state of free vibration are 
tractions free as: 

0r rx r     ,        at      ir r     and   or                                                  (3.6) 

Surface boundary conditions in the state of static loading are: 
0r rz r                                  at        ir r                                              (3.7) 

0 rrz r q     ,          at        or r                                             (3.8) 

The following boundary conditions for Simply (S) support, Clamped (C) support and 
Free (F) at the 0,z L  edges are assumed: 

S : 0r zu u       

C : 0r zu u u    

F : 0z z rz                                                                               (3.9)                                      

 
3.2.1.2  Sandwich panel 

Consider an FG Sandwich (FGSW) panel using a global, cylindrical coordinate 
system, with coordinates r ,   and z  denoting the radial, circumferential and axial 
coordinate directions, respectively, as depicted in Figure 3.2. The core has thickness

ch , and the face sheets have thickness fh . The constitutive relations for the kth layer 

of the FGSW panel can be written according to Eq. (2.13) for a monoclinic material. 
The face sheets are assumed to be perfectly bonded to the core, so the continuity 
conditions to be enforced at any arbitrary interior kth interface can be written as: 

1 1 1k k k k k k
r r r r rz rz            
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                                          (3.10) 

 

 

 
Figure 3.2. Geometry and coordinates of the FGSW panel. 

 
 
3.2.1.3  Rectangular plate 
Consider a functionally graded plate rested on two-parameter elastic foundations as 
shown in Figure 3.3. A Cartesian coordinate system (x,y,z) is used to label the 
material point of the plate in the unstressed reference configuration. The lower 
surface is continuously in contact with an elastic medium that acts as an elastic 

foundation represented by the Winkler/Pasternak model with radial stiffness wk  and 

shear stiffness gk . The Pasternak model is used to describe the reaction of the 

elastic foundation on the thick simply supported plate. The plate has continuous 
grading of volume fraction of fiber reinforcement in the thickness direction.  

The infinitesimal strain tensor is related to the displacements in Cartesian coordinate 
as follows: 
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Figure 3.3. A plate resting on elastic foundation. 

 
 
where u , v  and w  are displacement components along the x, y and z axes 
respectively. Substitution of Eq. (3.11) into (2.14) in Cartesian coordinates and then 
into Eq. (2.26), the following equations of motion as matrix form are obtained in 
terms of displacement components: 
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Above equations in a matrix form can be organized as: 
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The following simply supported conditions are imposed at the edges of the plate: 
0yu w          at              0,x a             and       0,y b                      (3.16) 

Moreover the lower and upper surfaces of the plate are traction free: 

0zx zy                  and            z w gk w k w                at  0z   

0z zx zy           at       z h                                                                 (3.17) 

Where  wk  and gk  are the Winkler and shearing layer elastic coefficients of the 

foundations. 
 
3.2.1.4  Annular sectorial plates 
Consider a annular sectorial plate having inner radius ir , outer radius or , and 

thickness h  resting on a Pasternak elastic foundation, as shown in Figure. 3.8. The 
bottom surface is continuously in contact with an elastic medium that acts as an 
elastic foundation represented by the Winkler/Pasternak model with Winkler elastic 
coefficient  wk  and shearing layer elastic coefficient  sk .  To  deal  with a plate with  
 
 

 
 

 

Figure 3.4.  Geometry of an annular sectorial plate resting on an elastic foundation. 
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3-D flexibility, we use cylindrical polar coordinate to describe the geometry of the 
plate. An annular sectorial plate in cylindrical polar coordinate system ( , , )r z  is 

shown in Figure 3.4 with the displacement components ru , u , zu  at a generic 

point in the radial, circumferential and thickness directions. 
The related boundary conditions at the lower and upper surfaces of the annular 
sectorial plate are as follows: 

2 at  0

at

0,               

0                

zr z z w z s z

z zr z

z

z h

k u k u



  

  





    

  
               (3.18) 

where 2 2 2 2 2 2(*) (*) (1 ) (*) (1 ) (*)r r r r          . 

 

3.2.2  Thermal stress analysis 

Most materials tend to expand if their temperature increases and, to a first 
approximation, the expansion is proportional to the temperature change. If the 
expansion is unrestrained, all dimensions will expand equally. Notice that no shear 
strains are induced in unrestrained thermal expansion, so that a body which is heated 
to a uniformly higher temperature will get larger, but will retain the same shape. The 
mechanical constitutive relations for a cylindrical panel, shown in Figure 3.1, 
composed of orthotropic material are as follows [47]: 
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                      (3.19) 

Where ijC  are elastic stiffnesses and i  are the stresses moduli that are related to the 

thermal expansion coefficients i  as follows: 
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                                                                  (3.20) 

Since the shell is graded in the radial direction, the material properties ik , ijC and i  

are functions of the radial coordinate r.  

The three-dimensional steady-state heat conduction equation, expressed in terms of 
the local coordinates, is [151]: 

1
0r z rqq q q

r r z r



 

   
  

                                                                              (3.21) 

where , rq q  and zq are the components of the heat flux vector. Fourier's law of 

heat conduction, which relates the heat flux to the temperature gradient, is: 
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                                                              (3.22) 

where T is the change in temperature of a material particle from that in the stress-free 

reference configuration and ik  are the thermal conductivities. Upon Eq. (3.1) into 

Eq. (3.19) and then into (2.27), also Eq. (3.22) into (3.21), the following equations of 
motion in matrix form are obtained 

 

1 1 1 1

2 2 2 2

3 3 3 3
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                                                        (3.23) 

where 
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The following simply supported conditions are imposed at the edges of the 
cylindrical panel: 

0
r

u


   ,     0T                  at      0,                                              (3.37) 

0
r z

u    ,     0T                  at      0,z L                                            (3.38) 

Moreover the boundary conditions on the inner and outer surfaces of the panel are as 
follows: 

0r rz r        ,     0T           at       ir r
                                           (3.39) 

0r rz r        ,     oT T         at       or r                                           (3.40) 

 

3.3  2-D plate theories 
Now, based on 2-D theories we formulate free vibration, mechanical buckling, and 
thermal problems of plates and shells composed of FGMs. As discussed in section 
2.5, in 2-D theories, the displacements are expanded in terms of thickness and 
transverse displacement is independent of the transverse (or thickness) coordinate. 
This leads coupled governing equations to be independent of transverse 
displacement. Hence, solutions of such set of equations can be easier than that of 3-D 
elasticity. It is worth noting that we have compared 3-D elasticity solutions with 
those of 2-D theories in recent publication [152] and an excellent agreement obtained 
between the 3-D elasticity results and those of 2-D theories. 

 
3.3.1 First-order shear deformation theory  
In this section, theoretical formulations based on FSDT for free vibration and 
mechanical buckling of CNT-reinforced plates are carried out. 
 
3.3.1.1  Free vibration 
A flat, nanocomposite rectangular plate of length a, width b, and uniform thickness  
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Figure 3.5. Configuration of a rectangular plate 

 
h, made of graded CNT dispersed in the matrix phase, is depicted in Figure 3.5. The 
Cartesian coordinate system (x,y,z) is considered to extract mathematical 
formulations when x and y axes are located in the undeformed mid-plane of the plate. 
According to FSDT, the in-plane displacements are expanded as linear functions of 
the thickness coordinate and the transverse deflection is constant through the plate 
thickness. Thus, displacement components of the middle surface of the rectangular 
plate along the x, y, and z axes, designated by u , v  and w , are expressed by Eq. 
(2.29). By substituting Eq. (2.29) into strain-displacement relations in Cartesian 
coordinate, Eq. (3.11), the relations of strain-displacement are derived: 
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(3.41) 
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(3.42) 

The stress resultant-displacement relations are given by: 
( ௜ܰ (௜ܯ,	 = ∫ ௜ߪ

௛ 2⁄
ି௛ 2⁄ (1	, ݅															ݖ݀(ݖ = ,ݕݕ,ݔݔ  (3.43)                                             ݕݔ
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ܳ௜ = 	 k  ∫ ௜௭ߪ
௛ 2⁄

–௛ 2⁄ ݅																		ݖ݀ =  (3.44)                                            ݕ,ݔ

in which  k   is the transverse shear correction coefficient, applied to the transverse 

shear forces due to the fact that the transverse shear strains ( xz  and yz ) have a 

nearly parabolic dependency on the thickness coordinate and in this study is taken as  
5 6k   . Substituting Eqs. (3.41) and (3.42) into Eq. (2.14) and then into Eqs. (3.43) 

and (3.44) gives the forces and the resultant moments ( ௜ܰ௝ and ܯ௜௝), and the 
transverse shear forces (ܳ௜) per unit length as follows: 
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(3.45)    

where coefficients iiE , ijG are: 
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(3.46)    

Hamilton’s principle is used to derive equations of motion based on the FSDT. The 
principle can be stated as follows: 
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where eK  is the kinetic energy of the plate and eP  is the elastic potential energy of 

the nanocomposite  plate. Simplifying Eqs. (3.48) and (3.49) and inserting the results 
into Eq. (3.47) and performing the integrations by parts in Hamilton’s equation 
(3.45), one obtains: 
௫ܰ௫,௫ + ௫ܰ௬,௬ = 0ݑ0̈ܫ + 1ܫ ̈ ௫ 

௫ܰ௬,௫ + ௬ܰ௬,௬ = 0ݒ0̈ܫ + 1ܫ ̈ ௬ 

ܳ௫,௫ 		+ ܳ௬,௬ 	=     (3.50)                                              0ݓ0̈ܫ
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௫௬,௫ܯ + ௬௬,௬ܯ − ܳ௬ = 0ݒ1̈ܫ + 2ܫ ̈ ௬ 

where 

௜ܫ = 	 ∫௛ 2⁄
–௛ 2⁄ ݅																ݖ݀(ݖ)ߩ௜(ݖ) = 0,1,2							                                           (3.51)    

For a simply supported rectangular plate, the boundary conditions can be expressed 
on the x-constant and y-constant edges as: 
0ݒ = 0ݓ = ௫ܰ௫ = ௫௫ܯ = 

௬
= ݔ																ݐܽ																				0 = 0, ܽ			                    (3.52)    

0ݑ = 0ݓ = ௬ܰ௬ = ௬௬ܯ = 
௫

= ݕ															ݐܽ																				0 = 0, ܾ                       (3.53) 
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3.3.1.2  Mechanical Buckling 
As it is shown in Figure 3.5, a polymer rectangular plate with length a, width b and 
thickness t reinforced by graded SWCNTs distribution in the thickness direction is 
assumed. It is also assumed that the mentioned nanocomposite plate is being 
influenced by plane forces Nx and Ny , which are in x and y direction respectively. In 
order to obtain the equilibrium relations, the energy method will be used. Therefore, 
the plate overall potential energy is written as follows: 

eV P                                                                                                             (3.54)    

In which V  is the overall potential energy and Ω is work done by the external forces 
the relations which are written: 
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(3.55)   
 

By substituting the stress components of Eq. (2.14) into Eq. (3.55), and calculating 
the total potential energy, (V), the functional of energy is obtained as: 
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(3.56)    
Now by applying the Euler-Lagrange equations to the above equation, the 
equilibrium equations of the nanocomposite plate are obtained based on FSDT in the 
form: 
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(3.57)    

In the following, the stability equations of the FG nanocomposite rectangular plate 
are derived by using the adjacent equilibrium criterion [153]. We give small 
increments to the displacement and rotation variables and examine the two adjacent 
configurations represented  by the  displacements  and  rotations  before  and after the  

 
     0 2 0 0 0 1 0 1 1 0

1 1 21 1 1 21 21
12 21

1
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2 1 a d xx xx yy b e xx xx xx yy xx xxF E E E E           
 

      



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Figure 3.6. Nanocomposite rectangular plate reinforced by SWCNTs under the plane forces 

in x and y directions (Nx=N , Ny=γNx) 

 
 
increment, i.e.: 

0 1

0 1

0 1

x x x

y y y

w w w

  
  

 
 

     

(3.58)    

In which the subscript 0 indicates the equilibrium state and the subscript 1 expresses 
a minute change in the plate equilibrium condition. Regarding the incremented 
variation to the rotation and the displacement components, the overall strain is 
expressed as follows: 

     0 0 1 1
0 1 0 1z       

                                                                          
(3.59)   

 
Subsequently the relations of the forces and moments are written: 

0 1

0 1

0 1

, ,

, ,

,

i i i

i i i

i i i

N N N i x y xy

M M M i x y xy

Q Q Q i x y

  

  

                                           

(3.60)   

 
Now, by applying equations (3.58) and (3.59) into (3.60), the relations of the forces 
and moments are written in the form below: 

  1
0 1 1 0, 21 0,1

12 21
N E E

x b e x x y y
  
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Q k G G w
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                                                                 (3.61) 
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By substituting the aforementioned relations into the equilibrium equations and 
applying the following assumptions; the linear stability equations will be obtained in 
the form of the Eq. (3.62). 

a) w0 and all its derivatives are zero. 
b) The expressions conclude the Ni0, Mi0 and Qi0 indicate the initial equilibrium 

condition and should be eliminated. 
c) The expressions consists of multiplying the (Qi0, Mi0 and Ni0) in (wi0, ψx0 

and ψy0) are negligible and should be eliminated. 

 

1, 1, 1

1, 1, 1

1 1 1 1
1, 1, 0 0 0 0

0

0
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    
     

     

   
   
   

        

(3.62)  

Herein, the determination of the critical buckling force of the functionally graded 
composite plate under the effect of plane forces using analytical method is discussed. 
It is assumed that the forces are Nx and Ny in x and y directions respectively and their 
relation is Ny=γNx , as shown in Figure 3.6.  By substituting the Eq. (3.61) in to Eq. 
(3.62) the stability equations will be written in terms of the displacement 
components: 
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 


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1 1 1 1
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w w w w
N N N N

x x y y x y
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                      (3.63) 

By applying plate boundary condition into Eq. (3.63) and regarding that Nx and Ny 
are the plane forces per unit length applied on the plate edges, one would get: 
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x
x

p
N

a
                            y

y

p
N

b
                                                               (3.64) 

  12 12 1, 1, 1, 1, 1, 1, 0y x
a d x x xx y y yy yy xx

p p
k G G w w w w

a b
                 (3.65) 

In which Px and Py are the total imposed forces on the plate in the direction of x and 
y, respectively. According to the simply supported boundary conditions for the 
mentioned plate edges, the following functions have been assumed for quantities of 
w1, ψx1 and ψy1: 

 1
1 1

, sin sinmn
n m

w x y W x y 
 

 

  

 1
1 1

, cos sinx mn
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x y X x y  
 

 

                                                               (3.66) 

 1
1 1

, sin cosy mn
n m

x y Y x y  
 

 



 

in which Wmn , Xmn and Ymn are the amplitude of the above-mentioned functions. m 
and n indicate also number of half wave in x and y directions, respectively, and 
following relations express the relationship between m and n with α and β :   

m n
a b
 

                                                                     (3.67) 

After substituting the Eq. (3.66) in to Eq. (3.65), we reach a system of three 
equations for finding the Wmn, Xmn  and  Ymn as follows:  

 2 2
11 12 13

21 22 23

31 32 33

0
y mn

mn

mn

s N s s W
s s s X
s s s Y

            
   

   

                                                                 

By equalling the determinant of coefficient to zero we have: 
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1
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 
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(3.68) 



67 

 

   21
23 1 1 12 12

12 211 c f c fs E E G G
 

 

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                                                                 (3.69) 

In Eqs. (3.69), Nx or Ny (Nx=γNy) indicated the critical mechanical buckling load as: 

2 2
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2 2

cr d

c

sN
m n s
a b

 
 

 
 


                                                                  

(3.70) 

in which ds  and cs  are given as follows: 

13 23 12

2 2 2
13 12 23 22 11 22 33 11 332ds s s s s s s s s s s s s      

23

2
22 33cs s s s                                                                    

 
(3.71) 

3.3.2 Third-order shear deformation theory 
In the following, for the first time, thermal stress analysis of a 2-D FGM cylindrical 
panel is formulated based on the Reddy’s TSDT, and governing equations and heat 
conduction equation are derived. 
 
3.3.2.1 Thermal stress analysis 
Let us consider a 2-D FGM cylindrical panel of length L , mean radius mZ , uniform 

thickness h , as shown in Figure 3.7. An orthogonal cylindrical coordinate system 
( , , )x z  is used to label the material point of the shell in the unstressed reference 
configuration. 

According to the Reddy’s TSDT [47], straight lines normal to midsurface before 
deformation will no longer remain straight. Satisfying zero shear stress boundary 
conditions at the top and bottom of the shell, the displacement components of an 
arbitrary point within the shell domain, designated by U , V  and W , are expressed 
as: 

3
1 1( , ) ( , ) ( )

w
U u x z x nz

x
   


   


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


    


 

( , )W w x                                                                                        (3.72) 

where 24 3n h . Substituting Eq. (3.72) into the linear strain-displacement 
relations, Eq. (3.1), leads to: 

 

 

Figure 3.7. Geometry of a 2-D FGM cylindrical panel in 2-D theories. 
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                                                                       (3.73) 

where 
0

, 1, 1, ,0 ( )xx xx xx x xx xx x xxu n w              
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The forces and moments of the thick shells can be defined as: 
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                               (3.75) 

It should be noted that the panel is assumed to be composed of ceramic and metal. 
The material properties of the panel of ceramic and metal are continuous functions of 
the radial and axial coordinates and the volume fractions of the constituents vary in a 
predetermined composition profile. The mathematical modelling for smooth 
variation of volume fractions will be elaborated in the next chapter. For reliable and 
accurate prediction of the structural response of 2-D FGM composites, temperature-
dependent material properties are taken into account. Without loss of generality, a 
typical temperature-dependent material property P, such as the modulus of elasticity 
E , the thermal conductivity k  and the thermal expansion coefficient   can be 
expressed as the non-linear functions of environment temperature ( )T K  as [58] 

 1 2 3
0 1 1 2 31P P P T PT PT PT

                                                              (3.76) 
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where 0P , 1P , 1P , 2P  and 3P  are constants in the cubic fit of the material property. 

The material properties are expressed in this way so that the higher order effects of 
the temperature on material properties can be readily discernible. The values of each 
of the coefficients appearing in the preceding equation are listed in Table 3.1 for 
titanium (Ti-6Al-4V) and zirconium oxide ( 2ZrO ). Substituting Eq. (2.17) for 

isotropic materials and Eq. (3.73) into Eq. (3.75) we have: 
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Table 3.1. Material properties of titanium and zirconium oxide. 
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Now, using Hamilton principle the governing equations of the third order shear 
deformation theory of 2-D FGM cylindrical panel can be obtained as: 
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   (3.79) 

In the present study, the following boundary conditions viz. Simply (S) support and 
Clamped (C) support at the 0,x L  edges are assumed: 

2S: 0xx xx xxv w N M P          

1 2C : 0u v w w x                                                     (3.80)                                      

Without the existence of heat sources, the equation of steady-state heat transfer is 
obtained as [95]: 
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where the thermal conductivity ( , , )k z x T  is assumed to be temperature-dependent.  
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3.4  Summary and conclusions 
In this chapter, theoretical formulations of various problems in free vibration, static, 
and thermal analyses of plates and shells composed of FGMs have been performed. 
Not only based on 3-D elasticity theory governing equations have been derived, but 
also 2-D plate theories have been used to formulate various problems. First of all, 3-
D elasticity equations of motion for cylindrical panels composed of FG monoclinic 
materials, in a general form, have been derived. Derived formulations possess the 
potential to be simplified to cylindrical panels composed of FG orthotropic materials. 
Then, basic formulations for sandwich panels have been explained. Afterwards, the 
attention has been paid to formulations of FG rectangular plates and annular sectorial 
plates resting on elastic foundations based on 3-D elasticity theory. Contrary to 2-D 
plate theories, by using 3-D elasticity theory, the foundation has been applied on the 
lower surface of plates but not on the middle surface. This can cause more accurate 
results compared with 2-D theories [130]. In the next section, thermo-elastic 
governing equations for FG orthotropic cylindrical panels based on 3-D elasticity 
have been obtained. Formulating based on 2-D theories, the displacements were 
expanded in terms of thickness and transverse displacement was independent of the 
transverse coordinate. Based on FSDT, theoretical formulations for free vibration of 
CNT-reinforced plates have been carried out. Then, the equilibrium and stability 
equations for mechanical buckling of CNT-reinforced plates were derived using the 
FSDT and variational approach. Last but not least, for the first time, thermal stress 
analysis of a 2-D FGM cylindrical panel was formulated based on the Reddy’s 
TSDT, and governing equations and heat conduction equation were derived. 
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4.1  Overview 
The main aim of this chapter is to present a comprehensive description of 
mathematical modeling of FGMs. For modelisation of volume fraction and fiber 
orientation, firstly, the classic form of power-law distribution will be described. 
Furthermore, various profiles for volume fractions of CNT in FG CNT-reinforced 
composites are introduced. Afterwards, 1-D and 2-D generalized power-law 
distribution are presented and discussed. In the end, commonly used homogenization 
methods to compute effective material properties in composites and nanocomposites 
are presented. 
 
4.2  Power-law distribution 
Although FGMs are highly heterogeneous, it is very useful to idealize them as 
continua with their mechanical properties changing smoothly with respect to the 
spatial coordinates [154]. The homogenization schemes are necessary to simplify 
their complicated heterogeneous microstructures in order to analyze FGM in an 
efficient manner. The distribution of material in FG structures may be designed to 
various spatial specifications by using power-law distribution. In the following, we 
aim to present the classic from of power-law distribution that can be found in most 
literature. Subsequently, the generalization form will be explained and benefits over 
classic one are discussed. 
 
4.2.1  Classic power-law distribution 
Since the volume fraction of each phase in FGMs gradually varies in the gradation 
direction, the effective properties of FGMs change along this direction. Therefore, 
there are two possible approaches to model FGMs. For the first choice, a piecewise 
variation of the volume fraction of ceramic or metal is assumed, and the FGM is 
taken to be layered with the same volume fraction in each region, i.e., 
quasihomogeneous ceramic-metal layers, as shown in Figure 4.1a. For the second 
choice, as Reddy and his collaborators [155-157] as well as numerous other 
researchers [158,159] assumed, a continuous variation of the volume fraction is 
represented, depicted in Figure 4.1b, and the volume fraction can be represented as 
the following function of the thickness coordinate. Herein, for the fiber-reinforced 
composite cylindrical panel shown in Figure 3.1, we assume the following classic 
power-law distribution of the reinforcement volume fraction [156]: 

( ) i
i o i

o i

p
r r

V V V V
r r


  


 
 
 

                                                                            (4.1)  

where iV   and oV  which have values that range from 0 to 1, denote the volume 
fractions on the inner and outer surfaces, respectively. The exponent p  controls the  
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                               (a)                                                    (b) 

Figure 4.1. Modeling of FGM: a) piecewise variation, b) continuous variation of the 
volume fraction. 

 
 

volume fraction profile through the shell’s thickness. The volume fraction profile 
through the thickness is  illustrated in Figure 4.2. In  this figure, it is assumed that the  

 

 
Figure 4.2. Variations of the volume fraction of the matrix phase V through the thickness for 

different values of p . 
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matrix volume fractions for an orthotropic shell with graded fiber volume fraction are 
1iV  (100% matrix constituent) and 0.25oV  (25% matrix constituent) on the 

inner and outer surfaces, respectively. It is noted that r  is a non-dimensional radial 

component   r r R h   . In this figure, the matrix volume fraction decreases 

from 1 at 0.5r    to 0.25 at 0.5r  . At r  away from 0.5r  , the rate of 
increase of the matrix volume fraction  for 1p is high compared to 1p  and at 

r  closer to 0.5r   the rate of increase of the matrix volume fraction for 1p  is 
much higher than for 1p . 

On the other hand, in fiber-reinforced composites, fiber orientation  with respect to 

the z-axis in the z   surface can vary through the thickness by the following classic 
power-law: 

( ) i
i o i
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q
r r
r r

   


  


 
 
 

                                                                        (4.2) 

where i  and 0  denote the fiber orientations on the inner and outer surfaces, 

respectively  and  may  typically  range  from  00   to  090 . The  power  q  denotes the  
 
 
 

 
Figure 4.3. Variations of the fiber orientations ( ) through the thickness for different values 

of q. 
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manner in which the orientation of the fibers varies through the shell’s thickness. 
Figure 4.3 shows the variations of the fiber orientations through the thickness. In this 
figure the fiber orientations are assumed as 00i  and 0

0 90  on the inner and 

outer surfaces respectively. It is noticed that the fiber orientation increases from 00  at 
0.5r    to 090  at 0.5r  . At r  away from 0.5r   , the rate of increase of the 

fiber orientation for 1q  is considerably high, compared  to 1q , and  at  locations 
closer to 0.5r    the rate of increase of the fiber orientation for 1q  is much 
higher than that of 1q .  

In order to study the effect of different CNTs distribution on the free vibration 
characteristics of FG CNT-reinforced composites, various types of material profiles 
through the shell thickness are considered. We assume linear distribution of CNTs 
volume fraction for the different types of the nanocomposite cylindrical panel as 
follows: 

Profile V :     *2 0.5f CN
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                                                           (4.6) 

where *
CNV  is the volume fraction of CNTs [160] that is calculated from the mass 

fraction of nanotubes, fm , assuming two phases and no trapped air, using: 

1

* 1r
CN r
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V
m





  
 
 
 

                      (4.7) 

where r f m   is the ratio of nanotube to matrix density. Note that *
f CNV V  

corresponds to the uniformly distributed CNT-reinforced cylindrical panel, referred 

to as Profile UD . With *
CNV  defined in Eq. (4.7), both the FG shell and 
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Profile UD  shell have the same value of CNTs mass fraction. For type V, the outer 
surface of the shell is CNT-rich, referred to as Profile V . As can be seen from 

Figure 4.4, for Type , the distribution of CNTs reinforcements is inversed and the 
inner surface of the shell is CNT-rich, referred to as Profile . For Type X, a mid-
plane symmetric graded distribution of CNTs reinforcements is achieved and both 

outer and inner surfaces are CNT-rich, referred to as Profile X . For Type  , the 
distribution of CNTs reinforcements is inversed and both outer and inner surfaces are 

CNT-poor, whereas the reference surface  is CNT-rich, referred to as Profile .  
 

 

 

 
Figure 4.4. Variations of CNTs volume fractions through the thickness for different types of 

CNT distributions. 

 
 
4.2.2  Generalized power-law distribution 
In the last years, in most studies dedicated to studying of mechanical responses of 
FGMs, it was assumed that material properties follow a through-thickness variation 
according to a classic power-law distribution in terms of the volume fractions of 
constituents. Shah et al. [161] studied the vibration frequency analysis by proposing 
a volume fraction law in a general exponential form. A comparative study of shell 
frequencies was given by Arshad et al. [162] for polynomial, exponential, and 
trigonometric power-law distribution. Viola and Tornabene [163] presented three-
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parameter power-law distribution for dynamic behaviour of moderately thick 
functionally graded parabolic panels of revolution. Further studies were done on free 
vibrations of four-parameter functionally graded parabolic panels and shells by Viola 
and Tornabene [164] and Tornabene [165]. Vel [73] proposed a power-law 
distribution for sigmoidal variation of fibers through the thickness of the FGM shell. 
In the following, we will introduce brand-new generalized power-law distribution for 
defining variation of volume fraction or fiber orientation in FGMs composites. By 
using generalized power-law distribution, it is possible to study the effect of the 
different kinds of material profiles including symmetric, asymmetric and classic on 
mechanical behavior of a FGM structures. Furthermore, distribution and magnitude 
of thermal stresses/frequency characteristics or modal displacements can be 
reduced/increased to a required manner by selecting appropriate different parameters 
of power-law distribution and volume fractions profiles in the required direction(s). 
Another advantage of generalized power-law distribution is to have a desirable 
volume fraction of the material on the inner or outer surface while we have a smooth 
gradation of volume fraction through the required direction. 
 
4.2.2.1  1-D generalized power-law distribution 

For  an orthotropic material,  the volume fraction of the matrix  phase is  given by the  

 

 

Figure 4.5. Variations of the volume fractions of the matrix phase mV  through the thickness 
for different values of the power-law index d (a=1, b=1, c=2) 



82                                                                         4. Mathematical Modelling of FGMs 

 

 

 

Figure 4.6. Variations of the volume fractions of the matrix phase mV  through the thickness 
for different values of the power-law index d (a=1, b=1, c=4) 

 

 

following function: 

0( )m i i fmV V V V V                                                                                          (4.8) 

Now, for variation of fmV   through the thickness of the shell, 1-D generalized 

power-law distribution is introduced as: 
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                                                   (4.9) 

where the volume fraction index d (0 )d    and the parameters a, b, c dictate the 
material variation profile through the shell thickness. For example, if we assume 

1iV   and 0.25oV  , some material profiles through the thickness are illustrated in 

Figures 4.5 to 4.8. The classical volume fraction profile are presented as special case 
of the general distribution laws (4.9) by setting a=1 and b=0, as shown in Figure 4.2. 

With another choice of the parameters a, b, c, it is possible to obtain  symmetric  and  
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Figure 4.7. Variations of the volume fractions of the matrix phase mV  through the thickness 

for d=1 (a=0, c=2) 

 

 

Figure 4.8. Variations of the volume fractions of the matrix phase mV  through the thickness 
for d=1 (a=1, b=1) 

 
asymmetric volume fraction profiles as shown in Figures 4.5 to 4.8. In Figure 4.5, by 
setting a=1, b=1, and c=2 in Eq. (4.9) symmetric volume fraction with respect to the 
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reference surface is obtained. Figure 4.6 illustrates asymmetric profiles obtained by 
setting a=1, b=1 and c=4. As shown from figures under consideration, we have the 
same constituent at the inner and outer surface but, unlike the previous case (Figure 
4.5), profiles are not symmetric with respect to the reference surface of the panel. 
Figures 4.7 and 4.8 show various power-law distributions obtained by modifying 
parameters b and c. These profiles are characterized by the fact that on the outer 
surface we have m oV V , while inner surface presents a mixture of iV  and 

oV (volume fractions of the matrix phase orthotropic material 1 and 2). In Figure 4.7, 

by varying parameter b, profile of the matrix volume fraction along the thickness as 
well as matrix volume fraction on the inner surface alters. This interesting trend 
cannot be seen by using classic power-law distribution. In Figure 4.8, matrix phase 
volume fraction profile along radial direction became asymmetric with increasing 
parameter c, also matrix phase volume fraction on the inner and outer surface for the 
different values of parameter c is the same ( )m oV V . 

In the following, by using generalized power-law distribution, mathematical 
modeling for material profiles of FGSW panel, as depicted in Figure 3.6, is 
introduced. It is assumed that the fiber orientation  of each layer has the following 

power-law variation: 
 

 

 

 
Figure 4.9. Variations of the fiber orientation through the thickness in the FGSW panel for 

different values of the power-law index p (a=1, b=0, 00i  , 090o  ) 
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Figure 4.10. Variations of the fiber orientation through the thickness for different values of 

the power-law index p ((a): a=1, b=1, c=2 ; (b): a=1, b=1, c=5 , 090i  , 00o  ) 
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                                                                                                                               (4.10) 

where i  and o  denote the fiber orientation of two different orthotropic materials. 

The power-law index p and the parameters a, b, c dictate the fiber orientation 
variation profile through the FGSW shell thickness. The through-thickness variations 
of the fiber orientation for some profiles are illustrated in Figures 4.9 to 4.12. In 
Figure 4.9, the classical fiber orientation profile is presented as special cases of the 
general distribution laws (4.10) by setting a=1 and b=0. With another choice of the 
parameters a, b, c, it is possible to obtain symmetric and asymmetric fiber orientation 
profiles as shown in Figure 4.10. In Figure 4.10a, by setting a=1, b=1, and c=2, the 
fiber orientation distribution presents the same profiles by varying the power-law 
index p and are symmetric with respect  to  the reference surfaces of top  and  bottom  

 
 

 

Figure 4.11. Variations of the fiber orientation through the thickness in the FGSW panel 

(p=1, a=1, b=1, 090i  , 00o  ) 
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faces of the shell. Figure 4.10b illustrates asymmetric profiles obtained by setting 
a=1, b=1 and c=5. Fiber orientation profile for the different values of parameters c is 
shown in Figure 4.11 by considering p=1. In Figure 4.11, fiber orientation profile 
along radial direction became asymmetric with increasing parameter c, also fiber 
orientation on the inner and outer surfaces of top and bottom faces for the different 
values of parameter c is the same. The fiber volume fraction of FGSW panel is 
assumed as follows: 
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            (4.11)                                                                

The exponent q governs the through-thickness fiber volume fraction profile. The 
through-thickness variations of the fiber volume fractions are depicted in Figure 
4.12. As shown in Figure 4.12, the fiber volume fraction of core varies from 0.2 to 
0.8 as r  varies from 2ch  to 2ch , while the fiber volume fractions of top and  

 

 

 

Figure 4.12. Variations of the fiber volume fraction through the thickness in the FGSW 
panel for different values of the power-law index q (

0
0.2, 0.8i VV   ) 



88                                                                         4. Mathematical Modelling of FGMs 

 

 

bottom faces are 0.8 and 0.2, respectively. The rate of increments in fV  depends on 

values of thickness variable  r  and power-aw exponent q. 

 
4.2.2.2  2-D generalized power-law distribution 
For the 2-D FGMs, the material properties are continuous functions of the 
coordinates and the volume fractions of the constituents vary in a predetermined 
composition profile in two directions. Consider a two-phase graded material with a 
power law variation of the volume fraction of the constituents through the radial and 
axial directions of the cylindrical panel, which was depicted in Figure 3.1. It is 
proposed that the volume fraction of the ceramic phase follows 2-D six-parameter 
power-law distribution: 
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(4.12) 

where  the radial volume fraction index  r , the axial volume fraction index  z  and 

 

 
Figure 4.13.  Variations of the classical volume fraction profile through the radial and axial 

directions 4)( 0,r z r z        



89 

 

parameters , ,,r r z z     govern the material variation profile  through the radial 

and axial directions, respectively. With assumption 1oV   and 0.3iV  , some 

material profiles through the radial  and axial directions are illustrated in Figures 4.13 
to 4.15. As  can  be  seen  from Figure 4.13,  the  classical  volume fraction profile 
through the radial and axial directions are presented as special case of the 2-D power-
law distribution, Eq. (4.12), by setting 0r z    and 4r z   . In Figure 4.13, 

for the 2-D power-law distribution, Eq. (4.12), the ceramic volume fraction decreases 
through the thickness from 1 at 0.5r    to 0.3 at 0.5r  .  

 
 

 
Figure 4.14. Variations of the volume fraction profile through the radial and axial directions 

( 3, 1, 2 , 0 )r z r r z          

 

 

Likewise, the ceramic volume fraction decreases through the axial direction from 1 at 
0.5z    to 0 at 0.5z  . With another choice of the parameters , ,r r z   and 

z , it is possible to obtain symmetric volume fraction profiles through the radial and 

axial directions as shown in Figure 4.14. Classical and symmetric profiles through 
the radial and axial directions are obtained by setting 0, 1r z    and 2z   in  
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Figure 4.15. Variations of the symmetric volume fraction profiles through the radial and axial 

directions ( 1, 2 , 3)r z r z r z            

 
 

Eq. (4.12). Figure 4.14 shows classic profile versus r  and symmetric profile versus 

z  . As observed the ceramic volume fraction on the lower edge is the same as that 

on the upper edge. Figure 4.15 illustrates symmetric profiles through the radial and 
axial directions obtained by setting 1, 1r z    and 2, 2r z   .Now we 

introduce a new-brand of 2-D power-law distribution, which allows to study the 
impact of the various kinds of two directional material profiles including sigmoidal 
radial variation as well as symmetrical or classical variation. This model permits 
volume fraction of conventional 1-D FGM to have a sigmoidal radial variation, as a 
special case of 2-D power-law distribution, and the volume fraction of the ceramic 
phase approaches a discretely laminated composite with a sharp transition in 
contained quantity of ceramic at the midsurface by increasing sigmoid exponent. For 
the cylindrical panel shown in Figure 3.7, it is propounded that the volume fraction 
of the ceramic phase follows 2-D power-law distribution: 
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               (4.13) 

where the sigmoid exponent s, radial volume fraction index z , the parameters 

,x x   and axial volume fraction index x  govern the material variation profile 

through  the  radial  and  axial   directions,  respectively.  By  considering  Eq. (4.13),  
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Figure 4.16. Sigmoidal radial variation of ceramic volume fraction for 1-D FGM 

corresponding to different sigmoid exponents ( 1, )0z x    

 

when the axial volume fraction index x  is set equal to zero, 1-D FGM with 

sigmoidal radial variation is obtained as a special case of 2-D power-law distribution. 
The radial variation of the ceramic volume fraction is shown in Figure 4.16 for four 
different sigmoid exponents s=1, 5, 10 and 50. The volume fraction of the ceramic 
phase has an almost linear variation from 1 to 0.3 in radial direction when s=1. As 
the sigmoid exponent s increases, the ceramic volume fraction approaches a discrete 
[1/0.3] laminate with a sharp transition in ceramic volume fraction from 1 to 0.3 at 
the midsurface. With appropriate choice of the parameters x  and x , it is possible 

to obtain classical and symmetrical volume fraction profiles through the axial 
direction while ceramic volume fraction has a sigmoidal variation through the radial 
direction as shown in Figures. 4.17a and 4.17b. Classical and symmetrical profiles 
through the axial directions are obtained by setting 0x   and 1, 2x x    in 

Eq. (4.13), respectively. In Figure 4.17a, the ceramic volume fraction decreases 
through the thickness from 1 at 0.5z    to 0.3 at 0.5z   with a sigmoid 

variation. Similarly, the ceramic volume fraction decreases through the axial 
direction from 1 at 0.5x    to 0 at 0.5x  . As can be seen from Figure 4.17b, 

the ceramic volume fraction profile is symmetric with respect to the reference surface 
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0x   of the shell. Furthermore, this distribution is characterized by the fact that 

volume fraction varies gradually according to the sigmoidal variation through the 
radial direction. 
  
 
 
 

 

 

 

Figure 4.17. Variations of the ceramic volume fraction profile through the radial and axial 
directions ( 1, 5, )2z xs     (Fig. (a): 0x  , Fig. (b): 1, 2x x   )  
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4.3  Effective material properties 
Conventional composite materials generally consist of a suspension of discrete 
reinforcements distributed in a continuous matrix with a more or less constant 
volume fraction. FG composite structures often possess large variations in 
constituent material volume fractions through the structure. Several homogenization 
methods have been developed over the years to infer the effective properties of FG 
composite materials. The principal difference in the results available from various 
micromechanical models is related to the degree of those methods, which account for 
the interactions of adjacent inclusions. After modelling the variation of volume 
fractions within the FG composite in sections 4.1 and 4.2, herein various 
homogenization methods for determining effective material properties of the FG 
composite are summarized. 
 
4.3.1  Rule of Mixture 
A general from of rule of mixtures is a weighted mean used to predict various 
properties of a composite material. In isotropic material, the effective material 
properties fP  of the FG composite, like Young’s modulus and thermal expansion 

coefficient, can then be expressed as [154] 

1
f j j

j
P PV                                                                                                           (4.14) 

where jP  and jV  are the material properties and volume fraction of the constituent 

material j, and the sum of the volume fractions of all the constituent materials makes 
1, i.e., 

1
1



 j
j

V                                                                                                                 (4.15) 

In orthotropic material, the effective mechanical properties of the fiber-reinforced 
composites is obtained based on a new form of rule of mixture as follows [166, 167]: 

11 11 11               f m
f mE V E V E                                                                          (4.16)                                             

2 2 21 m f f m f m
f f ii ii m ii iim

f mf m f m
ii ii ii f ii m ii

V v E E v E E v vV
V V

E E E V E V E

 
  


    ( 2,3i  )             (4.17) 

1 f m
f m

ij ij ij

V V
G G G

                    ( ij 12,13  and 23 )                                             (4.18) 

f m
ij f mv V v V v              ( ij 12,13  and 23 )                                             (4.19) 
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f m
f mV V                                                                                                 (4.20) 

Where f
iiE , 

ij

fG   ، fv  and f  are elasticity modulus, shear modulus, Poisson's ratio 

and density, respectively, of the fiber, and m
iiE , 

ij

mG   ، mv  and m  are corresponding 

properties for the matrix. fV  and mV  are the fiber and matrix volume fractions and 

are related by 1f mV V  . 

 
4.3.2  Mori-Tanaka method 
The Mori-Tanaka scheme [168,169] for estimating the effective moduli is applicable 
to regions of the graded microstructure, which have a well-defined continuous matrix 
and a discontinuous particulate phase. It takes into account the interaction of the 
elastic fields among neighbouring inclusions. It is assumed that the matrix phase, 
denoted by the subscript m, is reinforced by spherical particles of a particulate phase, 
denoted by the subscript c. In this notation, mK  and mG  are the bulk modulus and 

the shear modulus, respectively, and mV  is the volume fraction of the matrix phase. 

cK , cG  and cV  are the corresponding material properties and the volume fraction of 

the particulate phase. Note that 1m cV V  , that the Lame constant   is related to 

the bulk and the shear moduli by 2 3K G   , and that the stress-temperature 
modulus is related to the coefficient of thermal expansion by 

(3 2 ) 3G K      . The following estimates for the effective local bulk 
modulus K and shear modulus G are useful for a random distribution of isotropic 
particles in an isotropic matrix: 

1 (1 ) ( ) ( (4 3) )
m c

c m c c m m m

K K V
K K V K K K K




    
                                       (4.21)                                              

1 (1 ) ( ) ( )
m c

c m c c m m m

G G V
G G V G G G f




    
                                                   (4.22)                                                                                             

where (9 8 ) 6( 2 )m m m m m mf G K G K G   . The effective values of Young’s 

modulus, E , and Poisson’s ratio, v , are found from: 

9
3

KG
E

K G



,               

3 2
2(3 )

K G
v

K G





                                                             (4.23)                                                                                                            
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The effective thermal conductivity k  is given by: 

1 (1 ) ( ) 3
m c

c m c c m m

k k V
k k V k k k



   

                                                         (4.24) 

and the coefficient of thermal expansion   is determined from the correspondence 
relation: 

1 1
1 1

m m

c m c m

K K
K K

 
 
 


 

                                                                                     (4.25) 

 
4.3.3  Extended rule of mixture 
To determine the effective material properties of CNT-reinforced composites, the 
rule of mixtures is the simplest and most intuitive approach. But direct application of 
rule of mixture to CNT-reinforced composites leads us to overestimate results 
comparing with results of long embedded CNT [170]. The load transfer between the 
CNT and polymeric phases is less than perfect (e.g. the surface effects, strain 
gradients effects, intermolecular coupled stress effects, etc.) [171,172]. Hence, Shen 
[141] introduced the CNT efficiency parameter i  (i = 1, 2, 3) in the classic form of 

the rule of mixtures to consider the small scale effect and other effects on the 
material properties of CNT-reinforced composites. The values of i  were 

determined later by matching the elastic moduli of CNT-reinforced composites 
predicted by molecular dynamics (MD) simulations with the prediction of the 
extended rule of mixture. 
According to the extended rule of mixture, the effective Young’s modulus and shear 
modulus of FG composites reinforced by aligned CNTs are expressed by the 
following relations [141]: 

11 1 11
f m

f mE V E V E                                                                                        (4.26)   

2

22 22

f m
f m

V V
E E E


                                   (4.27)   

3

12 12

f m
f m

V V
G G G


                                                                                                 (4.28)        

where 11
fE  , 22

fE  and 12
fG are the Young’s and shear moduli of the CNTs, mE  and 

mG  are the corresponding properties for the  matrix, and the i  (i =1,2,3) are the 
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CNT efficiency parameters, respectively. fV  and mV are the fiber and matrix volume 

fractions, respectively, and for FG CNT-reinforced composites, fV  and mV  vary 

through the thickness according to Eqs. (4.3) to (4.6). It is worth noting that in most 
available studies on the FG CNT-reinforced composites, the material properties are 
assumed to be graded in the thickness direction, and are estimated through the 
extended rule of mixture. However, the extended rule of mixture is not applicable 
when CNTs aggregates in the matrix or are dispersed in the matrix as randomly 
oriented dispersion. 
 
4.3.4 Eshelby-Mori-Tanaka approach 
The Eshelby-Mori-Tanaka approach, based on the equivalent elastic inclusion idea of 
Eshelby [173] and the concept of average stress in the matrix due to Mori and 
Tanaka [168], is also known as the equivalent inclusion-average stress method. The 
equivalent continuum model based on the Eshelby-Mori-Tanaka approach has been 
widely used in literature to predict effective material properties of CNT-reinforced 
composites [174-176]. In this thesis, Eshelby-Mori-Tanaka approach is also used to 
determine the effective material properties of CNT-reinforced composites. According 
to types of CNTs dispersion within the matrix phase, the following discussion is 
categorized as aligned CNTs, randomly oriented CNTs, and agglomerated CNTs. 
 
4.3.4.1  Aligned carbon nanotubes 
We consider first a polymer composite reinforced with aligned CNTs. The matrix is 
assumed to be elastic and isotropic, with Young’s modulus mE  and Poisson’s ratio 

mv  . Each straight CNT is modeled as a long fiber with transversely isotropic elastic 
properties [147]. Therefore, the composite is also transversely isotropic, and its 
constitutive relation can be expressed as: 
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                                                    (4.29)   

where k, l, m, n, and p are Hill’s elastic moduli [177]. Using the Eshelby-Mori-
Tanaka, the Hill’s elastic moduli are found to be [174]: 
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(4.30) 
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Where kr , lr , mr , nr , and pr are the Hill’s elastic moduli for the reinforcing phase 
(CNTs). fV  and mV  are the fiber and matrix volume fractions, respectively. The 

elastic moduli parallel and normal to CNTs are related to Hill’s elastic moduli by: 

 22

2

4
,

m kn llE n E
k kn l mn


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                                                                      
(4.35) 

 
4.3.4.2  Randomly oriented carbon nanotubes 
The orientation distribution of CNT in the nanocomposite is characterized by a 
probability density function for randomly oriented CNT, in which case the composite 
is isotropic. Shi et al. [174] derived expressions for the bulk modulus K and shear 
modulus G of a composite reinforced with randomly oriented CNTs using Eshelby-
Mori-Tanaka approach, which are given as: 
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where 
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(4.41) 
where mK  and mG  are the bulk and shear moduli of the matrix, 

respectively, , ,r r rk m n and rl  are the Hill’s elastic moduli for the reinforcing 

phase. The effective Young’s modulus E  and Poisson’s ratio v  of the material are 
given by: 
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4.3.4.3  Agglomerated carbon nanotubes 
In this section, we aim to compute effective material properties of the composite 
reinforced by agglomerated CNTs making use of a two-parameter micromechanics 
model. Considering the micromechanics model, we use the stepping scheme [178] to 
analyze the effective properties of the composites. The stepping scheme predicts the 
effective properties of composites with high inclusion volume fraction and/or several 
kinds of inclusions. The method is relatively simple and the obtained results agree 
well with experimental data [178].  

The regions with concentrated CNTs are assumed to be spherical in shape and are 
considered as inclusions with different elastic properties from the surrounding 
material, as shown in Figure 4.18. The volume fractions of CNTs inside the cluster 
are different from that in the matrix. The stepping scheme implies that there are two 
kinds of inclusion, CNTs and clusters, in the matrix. Thus, the stepping scheme can 
be implemented to analyze the effective properties. The procedure is as follows: 
Firstly, the cluster is homogenized to obtain an equivalent inclusion, and the same 
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homogenization for the medium containing CNTs outside the clusters forms an 
equivalent matrix. Secondly, based on by Eshelby-Mori-Tanaka approach, the 
effective properties of the composite can be calculated using these equivalent media 
of the matrix and inclusions. The total volume rV  of the CNTs in the representative 

volume element (RVE) can be divided into the following two parts [174]: 

inclusion m
r r rV V V                                                                                       (4.43) 

where inclusion
rV  and m

rV  denote the volumes of CNTs dispersed in the inclusions 

(concentrated regions) and in the matrix, respectively.  Agglomeration  of  the  CNTs  

 

 

 

Figure 4.18. Representative Volume Element (RVE) with model of CNTs agglomeration. 

 

 

within the matrix material causes the elastic properties to degrade as compared to a 
CNT reinforcement which is uniformly distributed. This aspect of the 
nanocomposites can be investigated qualitatively by using the agglomeration 
constants   and   are defined as [174]: 

,
inclusionV
V

    
inclusion

r

r

V
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                                                                                   (4.44) 
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where inclusionV  is the volume of the sphere inclusions in the RVE. The parameter   
denotes the volume fraction of inclusions with respect to the total volume V of the 
RVE. When 1 , CNTs are uniformly dispersed in the matrix, and with the 

decrease of  , the agglomeration degree of CNTs is more severe. The parameter   
denotes the volume ratio of CNTs that are dispersed in inclusions to the total volume 
of the nanotubes. When 1  , all the CNTs are concentrated in the inclusions with 

the concentration of CNTs in the inclusions decreasing with decreasing  . When 

  , the CNTs are uniformly distributed within the matrix and   must be greater 
than   for agglomeration to be present. The effective elastic moduli of the hybrid 
inclusions and the matrix can be calculated by different micromechanics methods. 
We assume the CNTs are transversely isotropic. Furthermore, it is assumed that the 
CNTs are randomly oriented in the inclusions, and, therefore, the inclusions are 
isotropic. The effective bulk moduli inK  and outK  and the effective shear moduli 

inG  and outG  of the inclusions and the matrix are respectively given by [174]: 
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 
    

                                                         (4.48) 

Finally, the effective bulk modulus K and the effective shear modulus G of the 
composite are derived from the Eshelby-Mori-Tanaka method as: 

1
1

1 (1 ) 1

m

out
out

m

out

K
K

K K
K
K



 



 

  

  
  
  

  
   

  

                                            (4.49) 
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                                                         (4.50) 

with 

1
3(1 )

out

out

v
v







                                                                                                        (4.51) 
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where 

3( )
3( )

m m r r
r

m r

K G k l
G k


  




                                                                       (4.54) 
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                                                                 (4.57)                 

The effective Young’s modulus E  and Poisson’s ratio v  of the nanocomposite are 
derived by Eqs. (4.41) and (4.42). 
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4.4  Summary and conclusions 
This chapter has devoted particulate attention to mathematical modeling of FGMs. 
For modelisation of volume fraction and fiber orientation, firstly, the classic form of 
power-law distribution was introduced. Furthermore, various profiles for volume 
fractions of CNT in FG CNT-reinforced composites based on classic form of power-
law distribution were presented. Lack of available versatile power-law distribution 
motivated us to introduce a band-new generalized power-law distribution for 
defining variation of volume fraction or fiber orientation in FGMs composites. By 
using generalized power-law distribution, it was possible to study the effect of the 
different kinds of material profiles including symmetric, asymmetric and classic on 
mechanical behavior of a FGM structures. Another advantage of generalized power-
law distribution was to have a desirable volume fraction of the material on the inner 
or outer surface while there was a smooth gradation of volume fraction through the 
required direction.  
To compute effective material properties in FG composites and nanocomposites, 
commonly used homogenization methods were presented. In case of FG composites, 
rule of mixture and Mori-Tanaka method have been explained. Owing to 
shortcoming of rule of mixture in direct application into CNT-reinforced composites, 
the extended rule of mixture for nanocomposites reinforced by aligned CNTs has 
been explained. Besides, to study other form of CNTs dispersion, Eshelby-Mori-
Tanaka approach was introduced for determining effective material properties of 
nanocomposites reinforced by either aligned, randomly oriented, or agglomerated 
CNTs. 
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5.1 Overview 
This chapter is devoted to solution procedure for solving coupled governing 
differential equations with variable coefficients derived in the chapter 3. In the 
present methodology, generalized differential quadrature method (GDQM) as a semi-
analytical approach is adopted to solve the governing equations. This chapter starts 
with an introduction to GDQM and a definition of the method will be presented. 
Afterwards, weighting coefficients for first order derivative and then extension to the 
two-dimensional case is discussed. Since the imperative point for successful 
application of GDQM is how to distribute the grid points in specified domain, grid 
point distribution in GDQM is explained. Eventfully, section 5.3 presents the 
application of GDQM in thermal, vibration, and static analyses of FGMs.  
 
5.2  Differential quadrature method 
Most engineering problems are governed by a set of partial differential equations 
(PDEs) with related boundary conditions. Generally, it is very difficult to gain the 
closed-form solution of these equations. On the other hand, the solution of these 
PDEs is always demanded owing to practical interests. In most cases, the 
approximate solution is constituted by functional values at certain discrete points 
(grid points or mesh points). At this stage, one may ask the relation between the 
derivatives in the partial differential equation and the functional values at the grid 
points. It sounds that there exists a bridge which links them. The numerical 
discretization technique is such a bridge, and the corresponding approximate solution 
is named the numerical solution. Currently there are many available numerical 
discretization techniques. Among all of them, the finite difference (FD), finite 
element (FE), and finite volume (FV) methods fall under the category of low order 
methods [42]. The FD method is based on the Taylor series expansion or the 
polynomial approximation while the FE method is based on variational principle or 
the principle of weighted residuals. The FV method applies the physical conservation 
law directly to a finite cell. Most numerical simulations of engineering problems can 
be carried out by the low order FD, FE, and FV methods using a large number of grid 
points. In some practical applications, nonetheless, the numerical solutions of PDEs 
are required at only a few specified points in the physical domains. To accomplish an 
acceptable degree of accuracy, low order methods still require the use of a large 
number of grid points to obtain accurate solutions at these specified points. An 
example can be found in the vibration analysis. Upon numerical discretization of the 
governing PDEs, the eigenvalues of the resultant algebraic equation system provide 
the vibrational frequencies of the problem. Usually, the number of interior grid points 
is equal to the dimension of the resultant algebraic equation system, thus giving the 
same number of eigenfrequencies. Among all the computed eigenfrequencies, only 
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the low frequencies are of practical interest. However, inasmuch as the computed 
eigenfrequencies have the same order of accuracy, a large number of grid points are 
still necessary in order to gain such low frequencies accurately. Accordingly, a lot of 
virtual storage and computational effort are needed. This drawback is much more 
profound when due to non-linear variation of material properties in FGMs, more 
computational effort is required. Thus, to accomplish the same order of accuracy, the 
mesh spacing used by high order methods can be much larger than that used by low 
order methods. Accordingly, high order methods are capable of yielding accurate 
numerical solutions using very few grid points.  
In seeking an efficient discretization technique to obtain accurate numerical solution 
using a considerably small number of grid points, Bellman et al. [179,180] 
introduced the differential quadrature method (DQM), where a partial derivative of a 
function with respect to a coordinate direction is expressed as a linear weighted sum 
of all functional values at all mesh points along that direction. The DQM was 
initiated from the idea of integral quadrature. Its weighting coefficients are not 
related to any special problem and only depend on the grid points and the derivative 
order. The most imperative part of DQM is to determine the weighting coefficients 
for discretization of any order partial derivative. There exist some major drawbacks 
to the original differential quadrature method that restrict its wide applications. These 
drawbacks are related to the determination of the weighting coefficients for the 
partial derivative approximation. There are two methods in use, which were proposed 
by Bellman et al. [180] to obtain the weighting coefficients. The first method may 
encounter an ill-conditioning problem when the number of grid points becomes large. 
The second method imposes restriction on the choice of the grid points. This leads to 
a major restriction on this method to problems in structural analysis, since all sorts of 
boundary conditions could appear and different mesh grids may be needed for 
different boundary conditions and structure geometry. In order to overcome these 
drawbacks, Shu [181] presented generalized differential quadrature method 
(GDQM), in which the weighting coefficients of the first-order derivative were 
determined by a simple algebraic formulation without any restriction on choice of 
grid points, and the weighting coefficients of the second- and higher-order 
derivatives are determined by a recurrence relationship.  
 
5.2.1 Definition 
As shown in Figure 5.1, we consider a one-dimensional problem. It is assumed that a 
function ( )f x  is sufficiently smooth over the whole domain. Following the main 

idea of DQM introduced by Bellman, the first order derivative of  the  function ( )f x   
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Figure 5.1. A one-dimensional problem. 
 
 
 
with respect to x at a grid point ix , is approximated by a linear sum of all the 
functional values in the whole domain, that is [42,43]: 

1
( ) ( ), 1, 2,...,

i

N

x i ij j
jx

dff x a f x for i N
dx 

                                               (5.1) 

where ija  represent the weighting coefficients, and N is the number of grid points in 

the whole domain. It should be noted that weighting coefficients ija  are different at 

different locations of ix .  
 
5.2.2  Weighting coefficients for first order derivative 
Consider the one-dimensional problem over a closed interval [ , ]a b as shown in 
Figure 5.1. It is supposed that there are N grid points with coordinates as 

1 2, , ..., Nx x x , which 1a x  and Nb x . Bellman et al. [180] assumed that a function  

( )f x  is sufficiently smooth over the interval [ , ]a b  so that its first order derivative 
(1) ( )f x  at any grid point can be approximated by Eq. (5.1). In the following, we 

shall show that weighting coefficients can be computed by employing some explicit 
formulations. 
 
5.2.2.1 Bellman’s Approach 
Bellman et al. [180] proposed two approaches to compute the weighting coefficients 
in Eq. (5.1). The two approaches are based on the use of two different test functions. 
 
5.2.2.1.1 Bellman’s first approach 
In this approach, the test functions are chosen as [42]:  

( ) , 0,1... 1k
kg x x k N                                             (5.2) 

Obviously, Eq. (5.2) gives N test functions. For the weighting coefficients in Eq. 
(5.1), i and j are taken from 1 to N. Thus, the total number of weighting coefficients 
is N N . To obtain these N N  weighting coefficients, the N test functions should 
be applied to N grid points 1 2, ,.., Nx x x . As a consequence, the following N N  

algebraic equations for ija  are obtained: 
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                                                               (5.3) 

for  1,2,...,i N  
Eq. (5.3) has a unique solution because its matrix is of Vandemonde form. 
Unfortunately, when N is large, the matrix is ill-conditioned. In practical application 
of this approach, N is usually chosen to be less than 13. 
 
5.2.2.1.2 Bellman’s second approach 
This approach is similar to the first approach, but with different test functions 

(1)

( )
( ) , 1, 2,....,

( ) ( )
N

N
k

k k

L x
g x k N

x x L x
 


                                         (5.4) 

where ( )NL x  is the Legendre polynomial of degree N and (1) ( )
N

L x  is the first order 

derivative of ( )NL x . By choosing kx  to be the roots of the shifted Legendre 

polynomial and applying Eq. (5.4) at N grid points 1 2, ,.., Nx x x . Belman et al. [180] 

presented a simple algebraic formulation to compute ija : 
(1)

(1)

( )
,

( ) ( )
N

N

i
ij

i j j

L x
a for j i

x x L x
 


                                            (5.5a) 

1 2
2 ( 1)

i
ii

i i

x
a

x x





                                                                                                     (5.5b) 

Using Eq. (5.5), the computation of the weighting coefficients is a simple task. 
However, this approach is not flexible as the first approach because the coordinates 
of the grid points in this approach cannot be chosen arbitrarily. Instead, they should 
be chosen as the roots of the Legendre polynomial of degree N. So, Eq. (5.5) only 
reflects a special case. Due to the inflexibility associated with the second approach in 
selecting the grid points, the first approach is usually adopted in practical 
applications. 
 
5.2.2.2  Shu’s Approach 
Shu’s general approach [181] was inspired from Bellman’s approaches. In order to 
find a simple algebraic expression for calculating the weighting coefficients without 
restricting the choice of grid meshes, Shu chose Lagrange interpolated polynomials 
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as the set of tests functions ( )g x  instead of using power polynomials or Legendre 
polynomials: 

(1)

( )( ) , 1, 2,...., ,
( ) ( )i

k k

M xg x k N
x x M x

 


                                      (5.6) 

here 

1

( ) ( )
N

i j
j

M x x x


                                                   (5.7) 

(1) ( )M x is the first derivative of ( )M x , 

(1)

1,

( ) ( )
N

i i j
j j i

M x x x
 

                                                   (5.8) 

and N is the number of grid points. 
When Eq. (5.1) is satisfied for all the test functions ( )ig x , a simple algebraic 
expression can be obtained to determine the weighting coefficients 

(1)
(1)

(1)

( )
,

( ) ( )
i

ij
i j j

M x
c for i j

x x M x
 


                                              (5.9a) 

(2)
(1)

(1)

( )
, , 1, 2,...,

2 ( )
i

ij
i

M x
c i j N

M x
                                                   (5.9b) 

Eq. (5.9) provides simple expressions for computing (1)
ijc  without any restriction in 

choice of the co-ordinates of the grid points ix  .It is obvious that once the grid points 

ix  are given, (1) ( )M x  is very easily obtained from Eq. (5.8). Hence, (1)
ijc  can be 

easily calculated for i j . The calculation of (1)
ijc  is based on the calculation of the 

second derivative of ( )M x  which is more difficult to obtain. Instead of using Eq. 

(5.9), a more convenient relationship can be obtained and used for calculating (1)
ijc . It 

can be shown by using a Taylor series expansion that the following relationship 
exists for (1)

ijc : 

(1)

1
0 1,2,...,

N

ij
j

c for i N


                                                                            (5.10) 

Thus, from Eq. (5.10) the coefficient (1)
ijc  can be calculated from (1) ( )ijc i j ; that is: 

(1) (1)

1,
1,2,...,

N

ii ij
j j i

c c for i N
 

                                                                   (5.11) 

The weighting coefficients for second and higher order derivatives can be similarly 
obtained. A recurrence relationship has been found for the mth order weighting 
coefficients ( )m

ijc : 
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( 1)
( ) ( 1) (1) , 2,3,..., 1, , 1, 2,...

m
ijm m

ij ii ij
i j

c
c m c c for i j n N i j N

x x




 
        

   (5.12) 

Thus the ( )m
ijc can be derived from the ( 1)m  th order weighting coefficients ( 1)m

ijc  . 

The ( )m
ijc can be obtained from a relationship similar to Eq. (5.11): 

( ) ( )

1,
1,2,...,

N
m m

ii ij
j j i

c c for i N
 

                                                                  (5.13) 

Thus, Eqs. (5.12) and (5.13) together with Eqs. (5.9) and (5.11) give a convenient 
and general form for determining the weighting coefficients for the derivatives of 
orders one through 1N  . 
 
5.2.3 Extension to the two-dimensional case 
In practice, most problems are two-dimensional or three-dimensional. Thus, it is 
necessary to extend the GDQ approximation from the one-dimensional case to the 
multi-dimensional cases. In the following, we will only demonstrate the extension of 
the one-dimensional case to the two-dimensional case. Extension to the three-
dimensional case can be carried out in the same manner as the extension to the two-
dimensional case. 
As shown by Shu [42], the one-dimensional GDQM can be directly extended to the 
multi-dimensional case if the discretization domain is regular. The regular domain 
could be a rectangle or other regular shapes such as a circle. Here, for simplicity, we 

 
 

 
Figure 5.2. Rectangular domain and grid distribution. 
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only consider a rectangular domain for demonstration. Consider a two-dimensional 
function ( , )f x y  defined on a rectangular domain, as depicted in Figure 5.2. It is 
clearly seen from the figure that along each horizontal line, the x interval is the same, 
and along each vertical line, the y interval is the same. Thus, we can use the same x 
coordinate distribution for each horizontal line and the same y coordinate distribution 
for each vertical line. The partial derivative at any grid point in a two-dimensional 
domain is approximated by a linear weighted sum of all the functional values in the 
whole two-dimensional domain. Let n nf x   and m mf y  be the nth and mth 

order derivatives of a function ( , )f x y  with respect to x and y, respectively. At any 
grid point, the approximation gives: 

,

1
1,2,...,

xNn
x n
ij i xn

ii

f c f for i N
x 


 

                                                            (5.14a) 

,

1
1,2,...,

yNm
y m
ij j ym

ji

f c f for i N
x 


 

                                                          (5.14b) 

where ,x n
ijc  and ,y m

ijc  are the weighting coefficients related to n nf x   and 
m mf y  , and xN  and yN  are the number of grid points in x and y directions, 

respectively. It should be noted that the index i in Eq. (5.14) denotes the one-
dimensional indexing of the two-dimensional grid points. So, before Eq. (5.14) is 
applied, one has to convert the two-dimensional grid point distribution into a one-
dimensional array. 
 
5.2.4  Grid point distribution 
Another important point for successful application of the GDQM is how to distribute 
the grid points. In fact, the accuracy of this method is usually sensitive to the grid 
point distribution. The optimal grid point distribution depends on the order of 
derivatives in the boundary condition and the number of grid points used. The grid 
point distribution also plays a crucial role in determining the convergence speed and 
stability of the GDQM. The natural and simplest choice of the grid points through the 
computational domain is the one having equally spaced points in the coordinate 
direction of the computational domain. However, it is demonstrated that non-uniform 
grid distribution usually yields better results than equally spaced distribution. Quan 
and Chang [182] compared numerically the performances of the often-used non-
uniform meshes and concluded that the grid points originating from the Chebyshev 
polynomials of the first kind are optimum in all the cases examined there. Bert and 
Malik [183] indicated that the preferred type of grid points changes with problems of 
interest and recommended the use of Chebyshev-Gauss-Lobatto grid for the 
structural mechanics computation. With Lagrange interpolating polynomials, it has 
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been proven that Chebysheve-Gausse-Lobatto sampling points rule guarantees 
convergence and efficiency to the GDQM [184]. Tornabene and Viola [44,185] 
compared the natural frequencies of non-FGM and FGM panels obtained by the 
GDQM with those by FEM commercial programs including Abaqus, Ansys, Straus, 
Femap/Nastran and Pro/Mechanica. It was found that the computational effort in 
terms of time and number of grid points was smaller and, at the same time, the 
accuracy is better for the GDQM results than for the FEM. In addition, the 
Chebyshev-Gauss-Lobatto grid performed the best among the other non-uniform 
typical grid distributions for all cases. 
The Chebyshev-Gauss-Lobatto points for the two-dimensional domain are given by 
[184]: 

( 1)1 cos , 1,2,...,
2 1i x

x

a ix i N
N

  
       

                                      (5.15a) 

( 1)1 cos , 1,2,...,
2 1i y

y

b jy j N
N

  
        

                                      (5.15b) 

 
 
5.3  Application of GDQM 
In this section, GDQM is applied to discretize the governing equations and the 
boundary conditions of various problems in mechanical response of FGM. Firstly we 
apply GDQ solution to solve the governing equations in free vibration and static 
problems of FGMs. Later on, GDQM is employed in thermal stress analysis of 
FGMs. 
 
5.3.1  Free vibration problems 
Since in all cases defined in section 3.2.1 the methodology of the application of 
GDQM for discretization of governing eqations is the same, herein, we just apply 

GDQM to a 2-D domain ( , )
i j

r z  with 1, 2, ...,i N  and 1, 2, ...,j M .  For a 

cylindrical panel with graded volume fractions of fibers, the 3-D governing equations 
were determined in Eqs. (3-2) to (3-4). In order to transfer the 3-D problem to the 2-
D one, trigonometric functions expansion through the radial direction is used. For the 
cylindrical panel simply supported at one pair of opposite edges, the displacement 
components can be expanded in terms of trigonometric functions in the direction 
normal to these edges. In this work, it is assumed that the edges 0   and     
are simply supported. Hence, 
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1

( , , , ) ( , ) sin( ) ,i t
r r m

m

u r z t U r z e   




                                                           (5.16) 

1

( , , , ) ( , ) cos( ) ,i t
m

m

u r z t U r z e 
   





                                                          (5.17) 

1

( , , , ) ( , ) sin( ) ,i t
z z m

m

u r z t U r z e   




                                                          (5.18) 

, ( 1, 2,...)m m m     

Where m and   are circumferential wave number and the natural frequency of the 
vibration, respectively. It should be noted that for the case of closed cylindrical 
shells, m  is assumed to be equal m. Upon substituting Eqs. (5.16) to (5.18) into the 

governing Eqs. (3.2) to (3.4), the coupled partial differential equations reduce to a set 
of coupled differential equations as follows: 

1 1 1

2

2 2 2

3 3 3

,
r z r r

r z

r z z z

A A A U U

A A A U U

A A A U U



  



 

    
                

                 (5.19) 

At this stage, the GDQM, Eq. (5.14), can be applied to discretize the Eq. (5.19). As a 
result, the discretized equations take the following forms: 
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
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   223
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
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    
1 2 1 2

1 2

13 55
1 1

N M

ik jk zk kij ij
k k

C C c d U
 

    

     255
44 23

1 1

1
,

N N

ik zkj m ik kj ij rijij ij
k kij

C
c U C C c U U

z r   
 


    


 
 
 

       (5.20)                                                            

  (2)66
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k ij
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
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


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  

    (2)44
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C
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r r 



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

   
   
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    6644
22 44
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ij ij
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 
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 

    
    

    
 

    (2)
66 12

1

1 M

m jk jk zikij ij
k

C d C d U
r




   

   2
22 442 2

1 1
m ijij ij

C U C U
r r   

 
 

                            

     2
23 44

1

1
,

N

m ik rkj ij ijij ij
k

C C c U U
r   



                                                (5.21) 
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 

 

    
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C C
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    
1 2 1 2

1 2

2
55 13

1 1

,
N M

ik jk rk k ij zijij ij
k k

C C c d U U 
 

                                         (5.22) 

where ijc , ijd  and (2)
ijc , (2)

ijd are the first and second order GDQM weighting 

coefficients in the r- and z-directions of the panel, respectively. In a similar manner 
the boundary conditions can be discretized. For this purpose, using Eq. (5.14) and 

GDQM discretization rule for special derivatives, the boundary conditions at ir r  

and or r , as stated in Eq. (3.6), become: 

13 23 23 33
1 1

1 1
0

M N

jk zik rij m ij ik rkj
k k

C d U C U C U C c U
r r 

 

                                   

44 44 44
1

1 1
0

N

ij ik kj m rij
k

C U C c U C U
r r  



                        

55 55
1 1

0
N M

ik zkj jk rik
k k

C c U C d U
 

                                                                (5.23)         

where 1i   at ir r  and i N  at or r , and 1,2,...,j M . The boundary 

conditions at 0x   and L  stated in Eq. (3.8) become: 
Simply supported (S): 

0, 0,rij ijU U   

11 12 12 13
1 1

1 1
0,

M N

jk zik rij m ij ik rkj
k k

C d U C U C U C c U
z z 

 

                   

for 1,j M  and 1,2,...,i N                                                           (5.24) 

 

Clamped (C): 

0, 0 , 0 ,rij ij zijU U U             

for 1,j M  and 1,2,...,i N                                                                        (5.25) 

 

Free (F): 
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11 12 12 13
1 1

1 1
0,

M N

jk zik rij m ij ik rkj
k k

C d U C U C U C c U
r r 

 

      

66 66
1

1
0,

M

jk ik m zij
k

C d U C U
r 



   

55 55
1 1

0,
N M

ik zkj jk rik
k k

C c U C d U
 

         for 1,j M  and 1,2,...,i N        (5.26) 

To perform the eigenvalue system of equations, the degrees of freedom are separated 
into the domain and the boundary degrees of freedom as: 

 
r

d

z domain

U
U U

U


 
   
 
 

,  
r

b

z boundary

U
U U

U


 
   
 
 

                                                     (5.27)   

Using Eq. (5.27), the discretized form of the equations of motion in the matrix form 
can be rearranged as: 

        2
db ddb d dS S MU U U                                                         (5.28)                                   

where  dbS  and  ddS  are stiffness matrices and  M  is the mass matrix. In a 

similar manner, the discretized form of the boundary conditions becomes: 

      0bb bdb dS SU U                                                                                (5.29)                                                                                                                             

where  bbS  and  bdS  are the stiffness matrices. In the above equations, the 

elements of stiffness matrices are obtained based on the definition of vectors of 
domain and boundary degrees of freedom from the generalized differential 
quadrature discretized form of the equations of motion and the boundary conditions. 
Using Eq. (5.29) to eliminate the boundary degrees of freedom b  from Eq. (5.28), 
one obtains: 

     2
d dS MU U                                                                                 (5.30)                               

where 

        1

dd db bb bdS S S S S


                                                                           (5.31) 
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The natural frequencies of the FGM cylindrical panel can be determined by solving 
the standard eigenvalue problem using MATLAB software.  
It is worth noting that in case of FGSW panel described in section 3.2.1.2, a set of 
coupled equations of motion governs each layer while the whole equations of motion 
( 3 3  equations) should be solved together for the whole panel. To link equations of 
each layer to each other, the continuity conditions, stated in Eq. (3.10), are enforced 
at any arbitrary interior kth interface. By applying GDQM to the equations of motion 
in each layer, the discretized form of the equations of motion in the matrix form is 
arranged as: 

          2
6 1 3(3 6) 1 3(3 6) 13(3 6) 6 3(3 6) 3(3 6)db b dd d dN NN N N

A U A U M U
        
  

 
(5.31) 

 where  dbA  and  ddA  are stiffness matrices and  M is the mass matrix. In a 

similar manner, the discretized form of the continuity conditions at the first and 
second interfaces becomes: 

             
3 1 3 13 3 3 2(3 6) 3 3

1 1 1 1

2 (3 6)
0

N
b b bd d kk kN

A U A U A U
     
              (5.32) 

             
3 1 3 13 3 3 2*(3 6) 3 3

2 2 2 2

2*(3 6)
0

N
b b bd d kk kN

A U A U A U
    
              (5.33) 

where  bA ,  bdA , and  kkA  are the stiffness matrices.  i
kU  is the ith interface 

degrees of freedom vector. The discretized form of the boundary conditions Eq. 
(5.23) becomes: 

         6 1 3(3 6)6 6 6 3(3 6) 0bb b bd d NNA U A U
   
                                       (5.34)   

where  bbA  and  bdA  are the stiffness matrices. Analogous to method explained 

earlier, boundary degrees of freedom are eliminated and one finds: 

     2[ ] 0dA M U                                                                                 (5.35)                                                                                                  

where                                                                                                                                            

        1

dd db bb bdA A A A A
                                                                         (5.36)                                                                  

The above eigenvalue equation can be solved to obtain the natural frequencies of 
FGSW panels. 
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5.3.2  Static problems 
For the static analysis of FGM cylindrical panel, it is assumed that 0   in Eqs. 
(5.20) to (5.22). The discretized forms of the boundary conditions on the inner and 
outer surfaces of the cylindrical panel, mentioned in Eqs. (3.7) to (3.8), can be 
expressed as follows.  

On the inner surface ( r a ): 

13 23 23 33
1 1

1 1
0

M N

jk zik rij m ij ik rkj
k k

C d U C U C U C c U
r r 

 

                                   

44 44 44
1

1 1
0

N

ij ik kj m rij
k

C U C c U C U
r r  



                        

55 55
1 1

0
N M

ik zkj jk rik
k k

C c U C d U
 

                                                                    (5.37)          

On the outer surface ( r b ): 

13 23 23 33
1 1

1 1M N

jk zik rij m ij ik rkj
k k

C d U C U C U C c U q
r r 

 

                                   

44 44 44
1

1 1
0

N

ij ik kj m rij
k

C U C c U C U
r r  



                        

55 55
1 1

0
N M

ik zkj jk rik
k k

C c U C d U
 

                                                                    (5.38) 

In the case of static analysis, and the global assembling leads to the following set of 
linear algebraic equations: 

   
   

 
 

 
0

b

d

bb bd

db dd

U
U

S S q
S S


     

    
   

                                                                    (5.39)                                                                                                

where  q  is mechanical load vector. Finally, displacement components are 

obtained from the following relation: 

       1

db bbdS S S qU 
                                                                        (5.40)  

where  

        1

db bb bd ddS S S S S


                                                                         (5.41) 
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The system of Eq. (5.40) can be solved by using MATLAB to find the displacement 
fields of the FGM cylindrical panel under mechanical load.  
 
5.3.3 Thermal stress problems 
In this section, we aim to use GDQ procedure to derive temperature distribution and 
thermal displacements of FGMs described in two different thermal problems based 
on elasticity theory (section 3.2.2) and TSDT (section 3.3.2.1).  
The first case, explained in section 3.2.2, describes thermo-elastic analysis of 1-D 
FGM cylindrical panel based on 3-D elasticity theory. In this case, the Fourier 
expansion form of the temperature field in the  - and z -direction can be 
represented as: 

1 1

( , , ) ( ) sin( ) sin( )m
m n

n
T r z r z

L


  

 

 

                                                           (5.42)                                                                                 

, ( 1, 2,...)m m m      

The above assumed form of the temperature field identically satisfies the 
homogeneous boundary conditions (3.37) to (3.40) for the temperature at the edges. 
In addition, the following solutions that satisfy the boundary conditions at the simply 
supported edges ( 0,z L ) is assumed: 

1 1

( , , ) ( ) sin( ) sin( )r r m
m n

n
u r z U r z

L


  
 

 

 ,                                                (5.43)                                                                                 

1 1

( , , ) ( ) cos( ) sin( )m
m n

n
u r z U r z

L 


  

 

 

 ,                                               (5.44)                                                                                 

1 1

( , , ) ( ) sin( ) cos( )z z m
m n

n
u r z U r z

L


  
 

 

                                              (5.45)                                                           

Upon substituting Eqs. (5.43) to (5.45) into the governing Eq. (3.23), the coupled 
partial differential equations are reduced to a set of 1-D ordinary differential 
equations (ODE) as follows 

 

1 1 1 1

2 2 2 2

3 3 3 3

4

0

0 0 0

r z T r

r z T

r z T z

T

J J J J U
J J J J U
J J J J U

J



 







   
               

                                                       (5.46)                                                                                        
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At this stage, by applying Eq. (5.1) to Eq. (5.46), and also boundary conditions on 
the inner and outer surfaces Eqs. (3.39) and (3.40), governing equations including 
heat conduction equation and related boundary conditions are discritized. Similar to 
the procedure explained in section 5.3.2, domain and boundary degrees of freedom 
are separated and in vector forms they are denoted as (d) and (b), respectively. Based 
on this definition, the matrix form of the equilibrium equations and the related 
boundary conditions take the following form: 

   
   

 
 

 
 

ˆ

0
bb bd b

db dd d

TA A U
A A U


      

    
     

                                                                    (5.47)                                                                                        

where  T̂ is thermal load vector and   dU  ,   bU  are as follows: 

          , , , T

d rd d zd dU U U U                                                               (5.48)                                                                                      

          , , , T

b rb b zb bU U U U                                                                (5.49)                                                                                         

Displacement components and temperature are obtained from the following relations: 

       1 ˆ
d db bbA U A A T

                                                                          (5.50)                                                                                         

where 

        1

db bb bd ddA A A A A
                                                                        (5.51)                                                                                                                          

By solving Eq. (5.50) displacement and temperature fields of the FGM cylindrical 
panel are determined. 
Now, we turn our attention to the second case introduced in section 3.3.2.1, which is 
related to thermal stress analysis of 2-D FGM cylindrical panel based on TSDT. In 
order to determine displacements and thermal stresses, the temperature distribution in 
the 2-D FGM should be obtained firstly. The 2-D FGM panel shown in Figure 3.7 is 
assumed to be exposed to ambient air T  with a heat-transfer coefficient ah  at lower 

and upper edges. The inner surface of the panel experiences a high heat flux while 
the outer surface is subjected to temperature load. The thermal boundary conditions 
are as follow: 
Heat flux at the inner radius 2z h  : 0q q                                                  (5.52) 
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Heat convection at the lower edge 0x  : ( ) 0a

T
k h T T

x 


  


              (5.53) 

Heat convection at the upper edge x L : ( ) 0a

T
k h T T

x 


  


              (5.54) 

Temperature at the outer radius 2z h : 0T T                              (5.55) 

The assumed form of the temperature field which satisfies the boundary conditions 
mentioned in Eq. (3.80) and Eqs. (5.52) to (5.55) for the temperature at the edges is 
considered by assuming the following form: 

1

( , , ) ( , ) sin( ),m
m

T x z x z  




                      (5.56)                                                                                                            

where  m m   , ( 1, 2, ...)m     

Upon substituting Eq. (5.56) into the equation of steady-state heat transfer (3.81), the 
partial differential equations reduce to an ordinary differential relation as follows: 

22 2
2

2 2

1
0m

m
m m

Zk k
k k k k

z Z z z z Z z x x x


       
      

       

   
   
   

    (5.57)                                                

At this stage, the GDQM, Eq. (5.1), can be applied to discretize the 1-D equation of 
steady-state heat transfer (5.57) and the boundary conditions stated in Eqs. (5.52) to 

(5.55). As a result, at each domain grid point ( iz , jx ) with 12, ...,
zi Nz   and 

2, ..., 1j xx N  , the discretized equation takes the following forms: 

2

(2) 2

1 1 1

1 xz z

ik

NN N
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ik kj kj m ij jk ik
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k c k c k d
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  

 
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   

   
   
   

    

(2)

1

0
x

jk

N

ik
k

k d


                                                                                        (5.58)                                               

where ijc , ijd  and (2)
ijc , (2)

ijd  are the first and second order GDQM weighting 

coefficients in the z- and x-directions, respectively. After employing the 
aforementioned solution procedure, one obtains the discretized form of the equation 
of heat transfer and the related boundary conditions which in matrix form can be 
written as, 
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                                                                   (5.59) 

where subscripts ‘d’ and ‘b’ refer to domain and boundary, respectively.  convf is 

convection vector related to heat convection boundary conditions at upper and lower 
edges. Then temperature field is obtained from the following relations 

      1 1

d db bb convB A A f 
                                                                         (5.60) 

where 

        1

db bb bd ddB A A A A
                                                            (5.61) 

Due to temperature-dependent thermal conductivity, i.e. ( , , )k z x T , a nonlinear 
ordinary differential equation (ODE) of the form (5-58) is obtained for the 
temperature field. Therefore, an iterative method should be used to solve the system 
of nonlinear equation (5-58). To begin the iterations, the spatially varying thermal 
conductivity is evaluated at a constant reference temperature refT  and the GDQM 

solution for the temperature field is obtained by solving a linear ODE with prescribed 
thermal conductivity. In the next iteration, the thermal conductivity is updated based 
on the temperature field from the previous iteration and the heat conduction problem 
solved again to obtain an updated temperature field. This process is repeated until the 
change in peak temperature between two consecutive iterations falls below an 
absolute tolerance. The description of the procedure is well understood through the 
flow chart shown in Figure 5.3. 
In the mechanical analysis, the temperature field obtained from the thermal analysis 
is entered into the governing equations of the 2-D FGM as a thermal loading. The 
Fourier expansion form of the displacement components in the  -direction can be 
represented as: 

1
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Figure 5.3. Flow chart for computation of temperature distribution based on temperature-
dependent material properties. 
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where  m m   , ( 1, 2, ...)m  .   

After substituting Eqs. (5.62) to (5.66) into Eq. (3.77), the partial differential 
equations in terms of the variables x  and   reduce to ordinary differential equations 
in terms of the variable x  and by application GDQ discretization rules for spatial 
derivatives, the discretized form of the differential equations of motion are obtained. 
Rearranging the GDQ analogs of field equations and boundary conditions within the 
framework of a generalized problem yields: 

   
   
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db dd Tdd
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    
    
    

                                                         (5.67) 

in which the subscripts b and d refer to the boundary and domain grid points, 
respectively.  TbF  and  TdF  are thermal vectors related to thermal boundary 

conditions and temperature field obtained from the thermal analysis, respectively. 
The displacement vectors d  and b  are defined by: 
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and 
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                (5.69)                                            

Finally thermal displacement components of the 2-D FGM cylindrical panel are 
obtained from the following relations: 
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          1 1
d Td db bb TbL F A A F                                                           (5.70) 

where 

        1
dd db bb bdL A A A A                                                           (5.71) 

 

5.4  Summary and conclusions 
In this chapter, GDQM has been adopted for solving coupled governing differential 
equations with variable coefficients derived in chapter 3. Starting with an 
introduction on GDQM, weighting coefficients for first order derivative and then 
extension to the two-dimensional case have been discussed. The Chebyshev-Gauss-
Lobatto points, which performed the best among the other non-uniform typical grid 
distributions as reported in literature, was selected for distribution of grid points. 

Eventually, GDQM was applied to discretize the governing equations and boundary 
conditions of various problems in free vibration, static, thermal analyses of structures 
composed of FGMs. In this case, the solution procedure for free vibration analysis of 
cylindrical panels has been explained in detail. Afterwards, discussion has been 
focused on the application of GDQM in static analysis. At the end, GDQM has been 
employed to derive temperature distribution and thermal displacements of FGMs 
described in two different thermal problems based on elasticity theory and then 
TSDT. It can be inferred that GDQM was a simple and powerful numerical technique 
for various structural analysis of FGMs. In the next chapter, efficiency and accuracy 
of GDQM in several FGM problems will be examined and fast rate of convergence 
of the method will be shown. 
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6.1 Overview 
This chapter deals with numerical results and discussion for various analyses of 
FGMs categorized into three sections namely 1-D FG fiber-reinforced composites, 2-
D FGM composites, and FG CNT-reinforced composites. Section 6.2 allocated to 1-
D FG fiber-reinforced composites is divided into two subsections named as “free 
vibration and static analyses” and “thermal stress analysis”. In section 6.2.1, firstly, 
numerical results for free vibration and static analyses of cylindrical panels with 
graded fiber orientation and also graded fiber volume fractions are presented. Then, 
in section 6.2.2 new and interesting results for FG Sandwich (FGSW) panel are 
elaborated and discussed. After that in the next section, a parametric study for 
rectangular plate resting on elastic foundation with graded fiber volume fraction is 
carried out. Regarding thermal stress analysis, section 6.2.2.1 compares results of 
thermal behavior of FG fiber-reinforced cylindrical panels with discretely laminated 
ones. On the other hand, in section 6.2.2.2 novel results for the thermal stress 
analysis of a closed cylindrical resting on elastic foundations are presented. Section 
6.2 is allocated to 2-D FGM composites. Firstly, new results for free vibration and 
static analyses of 2-D FGM cylindrical panel is presented followed by a comparison 
study with classic 1-D FGMs. Then, results of thermal behavior of 2-D FGM 
cylindrical panel with temperature-dependent materials are studied and interesting 
results are elaborated. In the following, brand-new results for FG CNT-reinforced 
composites are given in section 6.4. Firstly a parametric study for free vibration of 
annular sectorial plates resting on elastic foundation reinforced by graded 
agglomerated CNTs is presented in section 6.4.1. Afterwards, free vibration 
characteristics of rectangular plate reinforced by graded aligned CNTs are studied. 
Eventually, in section 6.4.2 new and interesting results for mechanical buckling of 
FG CNT-reinforced rectangular plates reinforced by CNTs subjected to uniaxial and 
biaxial in-plane loadings are presented and discussed.  
 
 
6.2 1-D FG fiber-reinforced composites  
In this section, new and interesting numerical results specialized in 1-D FG fiber-
reinforced composites are presented. According to different types of analysis, this 
section is separated into “free vibration and static analyses” and “thermal stress 
analysis”. In each section, detailed parametric studies are carried out to highlight the 
influences of different parameters encompassing material profiles and geometrical 
parameters on the mechanical behavior of plates and shells composed of 1-D FG 
fiber-reinforced composites. Furthermore, the fast rate of convergence of the semi-
analytical method, GDQM, is demonstrated and comparison studies are carried out to 
establish its very high accuracy and versatility. The effective mechanical properties 
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of the fiber-reinforced composites are obtained based on a micromechanical model as 
mentioned in section 4.3.1. 
 
6.2.1  Free vibration and static analyses  
In this section we will focus on useful results of free vibration and static problems. 
Depending on the geometry of the structure, this section is divided into three 
subsections. Section 6.2.1.1 discusses cylindrical panels, Section 6.2.1.2 discusses 
Sandwich panels, and Section 6.2.1.3 discusses rectangular plates. It should be noted 
that each subsection deals with distinct FGM mathematical modeling and material 
properties. 
 
6.2.1.1  Cylindrical panels 
Herein free vibration and static analyses of cylindrical panels with graded fiber 
orientation and also graded fiber volume fractions are presented. In order to validate 
the analysis, results for an FGM isotropic cylindrical shell ( 2  ) are compared 
with Shakeri et al. [186], as shown in Table 6.1. The mechanical properties are as 
follows: 

ir =0.25 m.,  or  =0.5 m.,  

on inner surface E c = 380 Gpa, c =3800 kg/m 3 ,  

on outer surface E m =70 Gpa., m =2707 kg/m 3 , 
The comparison shows that the present results agree well with those reported in the 
literature. 
 
 

Table 6.1. Comparison of first natural frequency for various p. 

 
 
 

Further validation of the present results for isotropic FGM cylindrical panel are 
shown in Table 6.2. In this Table, comparison is made for different L/R and L/h 
ratios and as it is observed there is good agreement between the results.   
Now, we characterize the response of orthotropic cylindrical panel with graded fiber 
volume fractions or fiber orientation through the thickness of the panel. The 
orthotropic panel  consists  of  continuous tungsten reinforcement fibers  in  a  copper  
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Table 6.2. Comparison of the normalized natural frequency for various L/R and L/h ratios 

 
 
 
matrix (W/Cu). These material combinations have found widespread use in high 
performance application [187]. The relevant material properties for the constituent 
materials are listed in Table 6.3. The equations of motion of the panel were derived 
in section 3.2.1.1, and solved by using GDQM explained in section 5.3.1. 
Mathematical modeling of the FG fiber-reinforced panel is according to classic 
power-law distribution (section 4.2.1). In other words, fiber volume fraction follows 
classic power-law distribution, Eq. (4.1), and fiber orientation  with respect to the 

z-axis in the z   surface varies through the thickness by Eq. (4.2). 
At this stage, a convergence study of the non-dimensional natural frequency 

i T
r E    is shown in Figure 6.1 for a graded panel with a linear variation of 

fiber orientation from 00i   to 090o  , as shown in Figure 4.3. As noticed, fast 

rate of convergence of the method is evident at different S R h  ratios and it is 
found that only seven GDQ grid in the thickness direction can yield accurate results. 
It can also be seen for the considered system the formulation is stable while 
increasing the number of points and that the use of 50 points guarantees convergence 
of the procedure. 
Now we compare a graded panel  with a  linear variation  of  fiber  orientation  from  
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Table 6.3. Mechanical properties of the orthotropic material. 

 
 

 
 

00i    to   090o    with   2-layer   0 0/ 90 ][0 ,   3-layer  0 0 0/ 45 / 90 ][0   and  4-layer 
0 0 0 0/ 30 / 60 / 90 ][0  discrete laminates. 

The effect of S ratio on the normalized natural frequency is shown in Figure 6.2. As 
observed the non-dimensional natural frequency decreases sharply with increasing 
the S ratio for thick panels and remains almost unaltered for thin ones (S>150). As 
can be seen from this figure the normalized natural frequency of a graded fiber 
orientation is lower than that of a similar discrete laminated and closer to 4-layer 
laminated one. Similar results can be obtained from Figure 6.3. In this figure, 
comparison is made between graded fiber volume fractions and discrete laminated 
panels for various values of circumferential wave numbers. 
 
 
 

 
           Figure 6.1. Convergency of the non-dimensional natural frequency of the panel 

( / 6, 1, 1p m    ) 
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Figure 6.2. Effect of S ratio on the non-dimensional natural frequency for FGM, 2-layer, 3-

layer and 4-layer ( / 6, 1, 1p m    ) 

 
 
 

 
Figure 6.3. Variation of the non-dimensional natural frequency versus circumferential wave m 

( / 6, 1, 100p S    ) 
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Herein, we assume that the FG panel has a linear variation of fiber volume fraction 
according to Eq. (4.1) starting at V i =1 (0% Tungsten, 100% Copper) on the inner 

surface of the shell to V o = 0.25 (75% Tungsten, 25% Copper) on the outer surface. 

For this case, fibers are oriented at 0  , with respect to the axial direction of the 

panel shell. The normalized natural frequency is, 
2

i i

ir E    ( 2,i iE  are 

mechanical properties of copper). The effect of S ratio on the normalized natural 
frequency of panel with graded fiber volume fractions is shown in Figure 6.4. As it is 
observed that unlike the FG fiber orientation panel, normalized natural frequency of 
graded fiber volume fractions is larger than that of a discrete laminated and close to 
that of the 2-layer. Similar observations can be seen from Figure 6.5. Also according 
to Figure 6.5 the non-dimensional natural frequency increases with the increase of 
the circumferential wave number. 
 
 
 

 
Figure 6.4. Effect of S ratio on the normalized natural frequency for graded fiber volume 

fractions,  FGM, 2-layer, 3-layer, 4-layer ( / 6, 1, 1p m    ) 
 
 
In Figure 6.6, effect of various volume fraction profiles on the non-dimensional 
natural frequency of FG fiber-reinforced panel is studied. To this end, fiber volume 
fraction follows a smooth variation according to 1-D generalized power-law 
distribution indicated in  Eq. (4.9). As  demonstrated  in  Figure 4.5,  by  setting  a=1,  
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Figure 6.5. Variation of the normalized natural frequency against m ( / 6  , S=100) 

 
 

 
Figure 6.6. Variation of the first non-dimensional natural frequency vs. circumferential wave 

numbers for three different fiber orientation profiles 
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b=1, and c=2 in Eq. (4.9) symmetric volume fraction is obtained. Also, asymmetric 
profiles is derived by setting a=1, b=1 and c=4. As observed in Figure 6.6 the 
maximum non-dimensional natural frequency can be obtained through using 
symmetric fiber orientation profile. This interesting result can be used as a strategy 
for the design of FG fiber orientation cylindrical panels.  
Now we turn our attention to static analysis of cylindrical panels with graded fiber 
volume fractions. To validate the static analysis, the present results are obtained for 
one- layer orthotropic cylindrical shell under internal static load and compared with 
similar results by Varadan [188]. The non- dimensional parameters are: 

2

10( , )
( , ) ,z r

z rqS q




  
    , 

10 r
r qS





                                                       (6.1) 

As it is observed from Table 6.3 there is good agreement between the results. 

The displacement and stress components are non-dimensionalized as follows: 

4 4

( , ) 100
( , ) , , ,z i rr

z r r

E U
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qS q qhS




  
     rz

rz qS


                                       (6.2) 

where iE  is Young’s modulus of 100% copper (inner surface).  

 
 

Table 6.3. Comparison of the maximum stresses for one-layer orthotropic cylindrical shell 
(N=13, L/R=4) 
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Figure 6.7. Convergency of the non-dimensional circumferential stress through the thickness 

panel with continuous grading reinforcement (p=1, S=10, L/R=1, a=1, b=1, c=2) 

 
 

The cylindrical panel has geometrical parameters as: 2m, 0.5mL R  . A 
convergence study of the non-dimensional circumferential stress through the 
thickness are shown in Figure 6.7, by considering a=1,  b=1,  c=2  in  Eq. (4.9). As  it  
 

 
Figure 6.8. Through-the-thickness variation of the non-dimensional transverse shear for 

different values of parameter p (S=10, L/R=1, a=1, b=1, c=2) 
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Figure 6.9. Through-the-thickness variation of the circumferential stress for different values of 

parameter p (S=10, L/R=1, a=1, b=1, c=2) 

 

 

can be seen that fast rate of convergence of the method is evident and for the 
considered system, the formulation is stable while increasing the number of points. 

The influence of the parameter index p on the non-dimensional transverse shear and 
circumferential stresses along the thickness of cylindrical panel are presented in 
Figures 6.8 and 6.9, by considering  a=1, b=1, c=2 in  Eq. (4.9). The circumferential 
stress is linear for 0p  . Figure 6.8 shows the peak of transverse shear stress 
increases by increasing copper matrix phase (with increasing parameter p). It is 
worth noting that Figure 6.8 shows distribution of transverse shear stress in 
cylindrical shell in contrast with the orthotropic (p=0) cylindrical panel is not 
symmetric with respect to the mid-surface. In Figure 6.9, it is seen that the non-
dimensionalized circumferential stress on the inner and outer surfaces increases with 
increasing the volume fraction of matrix phase. 

Now we compare static behaviour of the FGM orthotropic cylindrical panel with 
discretely laminated 2-layer, 3-layer shell containing [1/0.25], [1/0.625/0.25] volume 
fractions of matrix phase, respectively. Figure 6.10 demonstrates how the non-
dimensional axial and transverse shear stress components benefit from a gradual 
change in volume fraction from the shell's inner surface to its outer surface. 
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Figure 6.10. Through-the-thickness variation of the mechanical entities for FGM orthotropic, 

discretely laminated 2-layer and 3-layer cylindrical shells (S=10, L/R=1) 

 

 

6.2.1.2 Sandwich Panel 

In this section, the free vibration of FGSW panels with graded fiber orientation and 
fiber volume fraction is considered. The composite material consists of unidirectional 
silicon-carbide fibers in a titanium matrix. The fiber orientation of each layer follows 
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generalized power-law distribution according to Eq. (4.10). Also, the fiber volume 
fraction of FGSW panel is assumed to have a variation through the thickness of the 
panel, as defined in Eq. (4-11). The material properties of titanium and silicon 
carbide are listed in Table 6.4. The faces have variation of the fiber orientation, while 
the core has variation of fiber volume fraction. The non-dimensional natural 

frequencies are defined as: 2 2(1 )m m i i ih v E     where ,i iE and iv  are 

mechanical properties of fiber phase. 
 

 

Table 6.4. Mechanical properties of titanium and silicon carbide. 

 
 

 

To show the accuracy of the analysis, two examples are presented. As a first 
example, a comparative study for evaluation of non-dimensional frequency 
parameter  between  the  present  semi-analytical  solution technique  and   the  exact  
 

 
 
Table 6.5. Comparison studies of non-dimensional frequency parameter with those of Messina 

and Soldatos [189] for the three-layered orthotropic plate with different lamination angle           
(pattern [ / / ]     ). 

 
 
 

elasticity solution published by Messina et al. [189] is carried  out in Table 6.5  for  a 
three-layer orthotropic infinite plate with different lamination angle. It can be 
observed from Table 6.5 that there is a very good agreement between the results 
confirming the accuracy of the current approach. In the second example, the results 
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of a FG 2/Al ZrO  thick plate with simply supported edges for different values of 

circumferential mode shape parameter m are compared with those of Vel [73] in 
Table 6.6. The volume fraction of the zirconia varies linearly  through  the  thickness  
 

 
 

Table 6.6. Comparison of the non-dimensional natural frequencies for a FG 
2

/Al ZrO flat 

plate with different values of circumferential mode shape m ( 1)p  . 

 
 
 
 

of the plate going from aluminum on the bottom surface to zirconia on the top 

surface. For this material the fibers are oriented at 0o  , with respect to the axial 
direction of the panel. In Table 6.6, the accuracy of the presented formulations and 
the method of solution are compared with those of exact elasticity solution, by 
setting the mid-surface radius R  , and as observed there is excellent agreement 
between the results. 
The effects of the different distributions of the fiber orientation through the thickness 
are studied by considering the fundamental normalized frequencies of different types 
of FGSW panels. Fiber orientation profiles along the thickness of the different types 
of FGSW panels are illustrated in Figures 4.8 to 4.10. Figure 6.11 shows, influence 
of the power-law index p on the fundamental normalized frequencies of the different 
types of FGSW panels with 0.1fh h  and S=100. It can be noted that in Figure 

6.11 the natural frequencies of classic  profile  exhibits a fast  descending  behaviour  
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Figure 6.11. Influence of the power-law index p on the fundamental normalized frequencies of 
the different types of FGSW panels ( 0.1fh h  , 2  , S=100, q=1)  

 
 

Table 6.7. Influence of the parameter c on the fundamental normalized frequencies of FGSW 
panel for different values of S ratio and 

f
h h  ratio ( 2  , a=1, b=1, p=1, q=1, m=1). 
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from the FGSW panels with orthotropic faces ( 0p  ), varying the power-law index 
from 0p   to 1p  , while for values of p greater than unity frequencies increase by 
increasing the power-law exponent p and tend to the FGSW panels with orthotropic 
faces ( p   ). It is shown that with increasing parameter c, the minimum value of 
natural frequency of FGSW panel increases and is close to that of classic fiber 
orientation profile. In Table 6.7, the fiber orientation profile of faces through the 
radial direction becomes asymmetric with increasing parameter c (c > 2), also fiber 

orientation on the inner and outer surfaces of faces is the same ( 00  ). Table 6.7 
shows the influence of the parameter c on the fundamental normalized frequencies 
for different values of S ratio and fh h  ratio. As parameters c and S ratio increase, 

the fundamental normalized frequency decreases. 

The fundamental normalized frequencies of FGSW panel are tabulated in Table 6.8 
for different values of the fiber volume fraction on the outer surfaces of core, fh h  

ratio and S ratio. It is interesting to note that frequencies increase with the increase of 
volume fraction of silicon carbide fibers due to the fact that titanium has a much 
smaller Young’s modulus than silicon carbide. 

 

Table 6.8. The fundamental normalized frequencies of FGSW panel for different values of the 
fiber volume fraction on the outer surfaces of core, 

f
h h  ratio and S ratio ( 2  , a=1, 

b=0, p=1, q=1, m=1). 
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6.2.1.3  Rectangular plates 
 In this section, the new results for three-dimensional natural frequencies of FG fiber-
reinforced rectangular plates resting on two-parameter elastic foundation are 
presented. The orthotropic plate consists of continuous tungsten reinforcement fibers 
in a copper matrix (W/Cu), as listed in Table 6.3. The foundation is described by the 
Pasternak or two-parameter model. The equations of motion of the plate and related 
boundary conditions for elastic foundations were derived in section 3.2.1.3. The FG 
plate is assumed to have an arbitrary variation of fiber volume fraction in the 
thickness direction according to classic power-law distribution, Eq. (4.1).  

First of all, convergence and validation study of the normalized natural frequency is 
considered for an isotropic plate on elastic foundation in Table 6.9. The comparison 
shows that the present results agreed well with those in the literature.  
Figure 6.12 shows the effect of Winkler elastic coefficient on the first three non-
dimensional   natural   frequencies   for  different  values  of   shearing  layer  elastic  

 
Table 6.9. Comparison of the first three normalized natural frequency of an isotropic on the 

elastic foundation (N=13, 10gK  ) 
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Figure 6.12. Variation of the first non-dimensional natural frequency vs. Winkler elastic 

coefficient for different shearing layer elastic coefficients (h/b=0.5, a/b=1) 
 
 
 

 
Figure 6.13.Variation of the first non-dimensional natural frequency vs. shearing layer 

elastic coefficients for different Winkler elastic coefficient (h/b=0.5, a/b=1) 
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coefficients. The most effective range of Winkler foundation stiffness in increasing 
the non-dimensional natural frequencies is from 210  to 410 . It is also observed for 
the large values of Winkler elastic coefficient, the shearing layer elastic coefficient 
has less effect and the results become independent of it, in other words, the non-
dimensional natural frequencies converge with increasing Winkler foundation 
stiffness.  
The influence of shearing layer elastic coefficient on the first non-dimensional 
natural frequency is shown in Figure 6.13. It can be seen that the variations of 
Winkler elastic coefficient has little effect on the non-dimensional natural 
frequencies at different values of shearing layer elastic coefficient. 

 
 

Table 6.10.  the first three non-dimensional natural frequencies of a fiber reinforced square 
plate on the elastic foundation (a/b=1) 

 

 

 
In Table 6.10 the effects of the elastic foundation coefficients and plate's thickness 
on the first three-non-dimensional natural frequencies of an orthotropic FG square 
plates is shown. It is observed that both Winkler and shearing layer elastic 
coefficients have significant effects on the non-dimensional natural frequency. The 
non-dimensional frequency increases for thin plates. It is also observed for lower 
ratio of thickness to length (h/b = 0.01), Winkler and shearing layer elastic 
coefficients do not have any effect on the non-dimensional natural frequencies. 
However, for larger values of h/b ratio, both Winkler and shearing layer elastic 
coefficients have significant effects on the non-dimensional natural frequencies. 
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6.2.2  Thermal stress analysis 
In order to draw a distinction between results of thermal stress analysis provided 
here, this section is separated into two subsections; section 6.2.2.1 deals with novel 
results for thermal behavior of 1-D FG fiber-reinforced cylindrical panels compared 
with discretely laminated ones, and section 6.2.2.2 discusses new results for the 
thermal stress analysis of a 1-D FG fiber-reinforced closed cylindrical shells resting 
on elastic foundations. 

 

6.2.2.1  Cylindrical panels 
Steady-state response of a FG fiber reinforced cylindrical panel is studied and new 
results are presented in this section. The material properties of the panel vary 
continuously and smoothly in the radial direction of the panel according to classic 
power-law distribution, Eq. (4.1). Here, we assume that the FG shell has a 
continuous variation starting at 0% Tungsten and 100% Copper on the inner surface 
of the shell to 75% Tungsten and 25% Copper on the outer surface. Figure 6.14 
shows distribution of the non-dimensional radial stress through the thickness at 
different S ratios. It is noticed that the peak of the non-dimensionalized radial stress 
decreases with increasing the S ratio. As  expected,  the  radial  stress  is  on  zero  the  

 

 

 

Figure 6.14. Variation of the non-dimensional radial stress through the thickness at different S 
ratios 
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inner and outer surfaces and its direction changes from tension to compression.  The 
through-the-thickness plot of the non-dimensional circumferential stress is presented 
in Figure 6.15 at different S ratios. The maximum value of the circumferential stress 
is on the outer surface. This stress is of tension on the inner and outer surfaces. 
 

 

Figure 6.15. Variation of the non-dimensional circumferential stress through the thickness at 
different S ratios. 

 

 
Figure 6.16.The temperature distribution across the thickness for orthotropic FGM, 2-layer and 

3-layer. 



146                                                                          6. Numerical results and discussion 

 

The temperature distribution is studied across the thickness of the orthotropic FGM, 
two-layer and three-layer panel, as shown in Figure 6.16. It is noticed that contrary to 
two- and three-layer, the heat flux for FGM is continuous. It is interesting to note that 
the temperature distribution of the orthotropic FGM is close to that of the two-layer 
panel and the temperature distribution of the three-layer is completely different. This  

 
 

 
Figure 6.17. Comparison of the non-dimensional radial stress between orthotropic FGM, 2-

layer and 3-layer. 

 

 

is due to the lower conductivity (higher temperature gradient) of continuous fiber-
reinforced compared to that of 2 and 3 layers. Because unlike 2 and 3 layers 
cylindrical panel where the 1st-layer consists of 100% copper with high thermal 
conductivity, for FG volume fraction, the amount of copper (higher thermal 
conductivity constituent) decreases from inner surface towards outer surface and at 
the same time the amount of tungsten (lower thermal conductivity constituent)  
increases. Moreover, because of higher thermal resistance of 2 layers, arising from 
thicker layers, in comparison with 3 layers, the temperature gradient for 2 layers will 
be higher than 3 layers. Therefore the temperature gradient increases from 3 layers to 
2 layers and then FG fiber reinforced respectively. It is also observed that the 
temperature distribution is almost constant along the entire 1st-layer for three-layer 
model. It is because the 1st-layer consists of 100% copper which has high thermal 
conductivity, besides 1st-layer for three-layer model is thinner than 1st-layer of two-
layer one. Therefore thermal resistance in 1st-layer of three-layer is smaller than 1st 
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layer of two-layer one. The same distinct behavior is seen for the stress field 
distributions in Figures 6.17 to 6.19. According to these figures the stress field 
distributions of the FG fiber reinforced panel is closer to that of the two-layer one. 
These figures also demonstrate how the non-dimensional radial, circumferential, 
axial and transverse shear stress components benefit from a gradual change in 
volume fraction from the shell’s inner surface to its outer surface. 
 

 

 
Figure 6.18. Comparison of the non-dimensional circumferential stress between orthotropic 

FGM, 2-layer and 3-layer. 
 

 
Figure 6.19. Comparison of the non-dimensional axial stress between orthotropic FGM, 2-

layer and 3-layer. 
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6.2.2.2  Closed cylindrical shells 
In this section, a parametric study is presented for 1-D FG fiber-reinforced closed 
cylindrical shells resting on elastic foundation with respect to different foundation 
stiffnesses and parameters of generalized power-law distribution. The elastic 
foundation is embedded into inner surface ( ir r ). The orthotropic cylindrical shell 
consists of continuous tungsten reinforcement fibers in a copper matrix (W/Cu).  

Non-dimensional temperature, displacements and stresses are defined as follows: 

10
, ,

i i i

o o o

U
U

E




 


   

  
                                                                           (6.3)                                                                                                          

Where i  and iE  are material properties of matrix phase. The non-dimensional 

forms of the elastic foundation coefficients are defined as 2[ (1 )]i i

w wK k E H R v   

and (1 )i i

g gK k E H v   in which iv  is the Poisson’s ratio of matrix phase. The 

cylindrical shell has geometrical parameters as:  2m, 0.5mL R  . 
Distribution of non-dimensional radial stress and temperature field through the 
thickness of FG fiber-reinforced cylindrical shell resting on elastic foundation for 
various parameter c (1 11)c   are presented in Figures 6.20 and 6.21, by setting 
a=1, b=1, p=1 in Eq. (4.9). For c=1, the cylindrical shell is composed of 25% copper  

 

 
Figure 6.20.Through-the-thickness variation of radial stress along the thickness for various 

values of the parameter c (p=1, a=1, b=1, S=10, 1 2wK e , 1 1gK e  ) 
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and 75% tungsten and for c=2, the shape of the profile volume fraction of matrix 
phase along radial direction is symmetric. The matrix phase volume fraction profile 
along radial direction becomes asymmetric with increasing parameter c ( 2)c  . 
Also, matrix phase volume fraction on the inner and outer surface of cylindrical shell  

 

 

 
Figure 6.21.Through-the-thickness variation of temperature field along the thickness for 

various values of the parameter c (p=1, a=1, b=1, S=10, 1 2wK e , 1 1gK e  ) 

 

for the different values of parameter c is the same ( 0.25)mV  . The distribution of the 

temperature field is almost linear for 1c   and becomes nonlinear with increasing 
parameter c. As shown in Figure 6.20, the peak of the non-dimensional radial stress 
for symmetric profile is larger than for asymmetric profile. Also, the peaks of the 
non-dimensional radial stress decrease and tend to the inner surface with increasing 
parameter c.  

Distribution of the radial, axial and transverse shear stresses through the thickness of 
FG fiber-reinforced cylindrical shell for different Winkler elastic coefficient are 
presented in Figures 6.22 to 6.24, by setting a=1, b=1, c=2 (symmetric profile). 
Figures  6.22  and 6.23 show  that  the non-dimensional  radial  and  transverse  shear  

 



150                                                                          6. Numerical results and discussion 

 

 
Figure 6.22. Distribution of the non-dimensional radial stress through the thickness of FG 

fiber-reinforced cylindrical shell with respect to different Winkler elastic coefficients (p=1, 
a=1, b=1, c=2, S=10, 1 2gK e  ) 

 

 

 

 

 

 
Figure 6.23. Distribution of the non-dimensional axial stress through the thickness with 

respect to different Winkler elastic coefficients (p=1, a=1, b=1, c=2, S=10, 1 2gK e  ) 
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stresses increase with increasing Winkler elastic coefficient. On the contrary, the 
axial stress through the thickness decreases with increasing Winkler elastic 
coefficient. As observed in Figures 6.22-6.24, the mechanical entities of FGM fiber-
reinforced cylindrical shell converge with increasing Winkler foundation stiffness. 

 

 

 
Figure 6.24. Distribution of the non-dimensional transverse shear stress through the 

thickness with respect to different Winkler elastic coefficients (p=1, a=1, b=1, c=2, S=10, 
1 2gK e  ) 

 

 

6.3  2-D FGM composites 

One of the main contributions of this thesis is to provide novel results for mechanical 
responses of 2-D FGM composites. To this end, section 6.3.1 is allocated to 
presenting new results for free vibration and static analyses of 2-D FGM cylindrical 
panels followed by a comparison study with classic 1-D FGMs. After that, thermal 
behaviour of 2-D FGM cylindrical panels with temperature-dependent materials is 
studied and interesting results is elaborated in section 6.3.2. In this section, Mori-
Tanaka method introduced in section 4.3.2 is used to determine the effective 
mechanical properties of 2-D FGM composites. 
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6.3.1  Free vibration and static analyses 

Taking variation of material properties in two directions into account, the natural 
frequencies and mode shapes of radial, axial and circumferential displacement 
components of a cylindrical panel are determined in this section. The equations of 
motion of the cylindrical panel were derived in section 3.2.1.1, and solved by using 
2-D GDQM. The panel is made of continuous silicon-carbide reinforcement fibers in 
a titanium matrix, listed in Table 6.4. For all results presented here, the vibration 
frequency is expressed in terms of a non-dimensional frequency parameter 

2
m s m s T Th E     ( ,T TE are mechanical properties of Titanium (Ti-6Al-

4V)). In this section, C-C, C-S, S-S, F-C, S-F and F-F denote clamped–clamped, 
clamped–simply supported, simply supported–simply supported, free–clamped, 
simply supported–free and free–free conditions at circumferential edges and simply 
supported axial pair of edges. In the following, we compared the several different 
volume fraction profiles of conventional 1-D and 2-D FGM with appropriate choice 
of the radial and axial parameters of the 2-D six-parameter power-law distribution 
defined in Eq. (4.12), as shown in Table 6.11. It should be noted that for 2-D FGM 
notation Classical-Symmetric indicates that 2-D FGM panel has classical and 
symmetric volume fraction profiles through the radial and axial directions, 
respectively. 

 

 

Table 6.11. Various volume fraction profiles, different parameters and volume fraction indices 
of 2-D power-law distributions. 

 

 
To verify the presented formulation, in Table 6.12 the fundamental frequencies of the 
classical radially FGM cylindrical panel with four edges simply supported obtained 
by the present analysis are compared with those presented by Pradyumna and 
Bandyopadhyay [193], based on the higher order shear deformation theory. The 
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results of present analysis are obtained using 9 9  grid points. An excellent 
agreement of the two methods is obvious. 

The effect of different types of fiber volume fraction profiles on the frequency 
parameters of C-S 2-D FGM panels for different values of circumferential wave 
numbers m are compared in Figure 6.25. According to Figure 6.25, the lowest 
frequency  parameter  is  obtained  by   using  Classical-Classical  volume  fractions 
profile. On the contrary, 1-D FGM panel with Symmetric volume fraction profile has 
the maximum value of the frequency parameter. Therefore, graded fiber volume 
show that, with increasing values of the circumferential wave number m ( 2)m  , 
fraction in two directions has  high  capabilities  to  reduce  the  frequency  parameter  

 

 

Table 6.12. Comparison of the normalized natural frequency of classical radially FGM 

cylindrical panel with four edges simply supported for various  r  and R L  ratios. 
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than conventional 1-D FGM. Moreover in Figure 6.25, the interesting and new 
results frequency parameter of the Classical FGM cylindrical panel is close to that of 
a Symmetric-Symmetric. Therefore, it can be concluded that by using 2-D six-
parameter power-law distributions leads to a more flexible design so that maximum 
or minimum value of natural frequency can be obtained to a required manner. It is 
worth noting that the effect of the circumferential wave number m on the growth rate 
of the frequency parameter is more tangible for the Symmetric and Symmetric-
Symmetric volume fraction profiles. 

 

 
Figure 6.25. Variation of the frequency parameters verses circumferential wave numbers m 

with different volume fraction profiles for C-S cylindrical panel ( 10, 5, 2)L R S      

 

In Figure 6.26, the effects of variation of circumferential wave numbers m on the 

frequency parameters of 2-D FGM panel for different values of L R  ratios and 

various boundary conditions are demonstrated. According to Figures 6.26a to 6.26b, 
the general behavior of the frequency parameters of 2-D FGM panel for all boundary 
conditions is that the frequency parameters converge only in the range beyond that of 
the fundamental frequency parameters. This means that the effects of the boundary 
conditions are more prominent at low circumferential wave numbers, particularly 
those in the range before that of the fundamental frequency parameters, than at high 

circumferential wave numbers. It is also seen that when the L R  ratios become 
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smaller the discrepancies between the frequency parameters for the different 
boundary conditions become larger. To conclude these observations, it can be said 
that for all the five boundary conditions (C-C, C-F, S-S, S-F, C-S) the  effects  of  the  

 

 

 

 
Figure 6.26. Variation of circumferential wave numbers m on the frequency parameters of 2-D 
FGM for different values of L R  ratios and various boundary conditions ((a): 1L R  ; (b): 

2L R  ) ( 5, 3, 0 , , 1)r z r zS            
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boundary conditions are found to be prominent for small L R  ratios and for low 

circumferential wave numbers m. Figure 6.26 shows that the C-C 2-D FGM panel 
has the highest, whereas the  F-S  one  has  the  lowest  frequency  parameter  values,  

 
 

 

 
Figure 6.27. The influences of the various different of fiber volume fraction profiles on the 

mode shape of the axial displacement of C-C 2-D FGM corresponding to the first two 
vibrating modes ((a): (m,s)=(1,1), (b): (m,s)=(1,2)) ( 2 , 10, 10, 4)L R S        
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implying that an 2-D FGM cylindrical panel with greater supporting rigidity will 
have higher vibrating frequencies. The influences of the different fiber volume 
fraction profiles on the mode shape of the axial displacement of C-C 2-D FGM 
corresponding  to  the first  three  vibrating modes are shown in  Figure 6.27.  In  this 

 

 

 

 
Figure 6.28. The influence of the various ceramic volume fraction profiles on the mechanical 

entities of F-S 2-D FGM cylindrical panel ( 2 3, 3), 10,S      
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figure, the modal displacement ( )ju  of FGM panels in vibration is normalized by 

dividing its maximum absolute value, denoted by ju . As it is depicted, except for 

Classical-Classical profile, distributions of the axial displacement along the length of 
2-D FGM are symmetric with respect to the reference surface in axial direction due 
to symmetric volume fraction profile with respect to such direction. It can be 
observed from Figure 6.27 that the non-dimensional axial displacement of 2-D FGM 
panel with graded Classical-Classical profile are lower than that of the other profiles.  

In the following discussion, the benefit of gradation of material properties in two 
directions over classical one-dimensional FGM cylindrical panel subjected to static 
load on the outer surface, similar to the case in section 6.2.1.1, is illustrated. The 
effect of different types of ceramic volume fraction profiles on the mechanical 
entities of F-S 2-D FGM cylindrical panel is compared in Figure 6.28. In this figure, 
the stress components are non-dimensionalized as follows: 

,
, r r

r r q




 
                                                    (6.5) 

where q is the static load on the outer surface. According to Figure 6.28, the lowest 
magnitude of mechanical entities is obtained by using Classical-Classical volume 
fractions profile. On the contrary, 1-D FGM cylindrical panel with Classical volume 
fraction profile has the maximum magnitude of mechanical entities. Therefore, 
graded ceramic volume fraction in two directions has high capabilities to reduce the 
mechanical stresses than conventional 1-D FGM. Moreover, in Figure 6.28, it is 
interesting to note that distribution of the mechanical entities in FGM cylindrical 
panel with Symmetric and Symmetric-Symmetric profiles is symmetric with respect to 
the mid-surface of the cylindrical panel. It can be inferred from these figures that the 
2-D power-law distribution for ceramic volume fraction of 2-D FGM gives designers 
a powerful tool for flexible design of structures under multi-functional requirements. 

 

6.3.2  Thermal stress analysis 

In the subsequent discussion, for the first time, detailed parametric studies is done to 
study the influences of both various volume fraction profiles and variation of the 
material properties with temperature on temperature field and thermal stresses of 2-D 
FGM cylindrical panel. The governing equations based on TSDT and heat 
conduction equation were derived and presented in section 3.3.2.1. The material 
properties of 2-D FGM are assumed to be graded in radial and axial directions 
simultaneously according to a brand-new 2-D power-law distribution mentioned in 
Eq. (4.13). In order to take temperature-dependent properties into account, the 
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material properties are expressed as non-linear functions of environment temperature 
stated in Eq. (3.74). The solution procedure of the analysis was fully explained in 
section 5.3.3. 
Firstly, to validate our analysis, the accuracy and effectiveness of the present method 
for a one-dimensional FGM cylindrical shell under uniform thermal load were 
examined by comparison study given in Ref. [194]. Figure 6.29 shows the variation 
of the radial stress through the thickness at the middle length of the cylinder due to 
the uniform thermal loading. It is noticed that the present results agree well with the 
literature. 

After validation of the analysis, the new and interesting results are presented and 
discussed in the following. We compare the various volume fraction profiles of 
conventional 1-D and 2-D FGMs with appropriate choice of the sigmoidal and axial 
parameters of the 2-D power-law distribution, as shown in Table 6.13. It should be 
noted that the notation Sigmoidal–Symmetrical indicates that the 2-D FGM panel has 
sigmoidal and symmetrical volume fraction profiles in the radial and axial directions, 
respectively. Non-dimensional thernal stresses are as follows: 

i
i

oEq





                                                                                                             (6.4) 

 

 

 
Figure 6.29. Variation of circumferential stress through the thickness of FGM cylindrical shell 

under uniform thermal load. 
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where   and E  are mechanical properties of titanium and oq is heat flux at the 

inner surface. The panel has geometrical parameters as: 0.8m, 0.25mmL Z  . 

 
Table 6.13. Different ceramic volume fraction profiles, different parameters and volume 

fraction indices of 2-D power-law distributions. 

 
 

Since the thermal conductivity of 2-D FGM panel is a function of temperature, the 
nonlinear equation of heat transfer is solved using an iterative procedure until the 
change   in  peak  temperature  between two  consecutive  iterations  falls   below   an  
 

 

 

 
Figure 6.30. Convergence of temperature field for a Sigmoidal-Symetrical 2-D FGM with 
temperature-dependent material properties ( )10, 2 3, 2 , 6

m
Z h z L        
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absolute tolerance of 410 . The iterative procedure was explained in section 5.3.3. 
The procedure is illustrated for a 2-D FGM panel with Sigmoidal-Symetrical volume 
fraction profile, i.e. 1, 2, 1 1, 1,x x zx s        .  It  can  be  seen  that  the 

 

 

 

 
Figure 6.32. Through-thickness variation of temperature field and transverse shear stress of 

2-D FGM with temperature-dependent materials for various volume fraction profiles 
( )10, 3 4, 1

m zZ h       
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temperature field converges rapidly to the specified tolerance in 4 iterations. The 
variation of the temperature through radial direction is demonstrated in Figure 6.30 
corresponding to iterations 1 to 6. There is a noticeable decline in the temperature 
between iterations 1 and 2. Subsequent iterations serve to refine the temperature field 
until it has converged to the specified tolerance.  
 

 
Figure 6.31. Variation of temperature field and transverse shear stress of 2-D FGM through 
the thickness various volume fraction profiles with temperature-independent materials 

( )10, 3 4, 1
m zZ h       
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In order to show the importance of considering the variation of material properties 
with temperature, distribution of temperature field and transverse shear stress of 2-D 
FGM with C-C boundary conditions through the thickness for the case of 
temperature-independent and temperature-dependent material properties are 
presented in Figures 6.31 and 6.32, respectively. The material properties for the case 
temperature-independent are calculated at the reference temperature, 300K. The 
magnitude of the maximum thermal stresses shown in Figure 6.31 is found to be 
reduced by grading volume fractions in two directions, for the case where the 
material properties are assumed to be temperature-independent. Comparing Figures 
6.31 and 6.32, it can be observed that the temperature field for the case of 
temperature-independent is found to be greater than that computed with temperature-
dependent properties. The temperature-dependency of the material properties reduces 
peak of the non-dimensional transverse shear stress by 45 % for Sigmoidal- Classical 
profile. Thus, calculations and design based on temperature-independent properties 
yield conservative estimates. It can also be inferred from Figures 6.31 and 6.32 that 
the discrepancy between value of thermal stresses with different volume fractions for 
the case of temperature-dependent material properties is higher than that of 
temperature-independent properties.  

Impacts of considering temperature-dependent material properties on distribution of 
temperature field of 2-D FGM in two directions are shown in Figure 6.33. It can be 
inferred from Figure 6.33 that considering temperature-dependent material properties 
results in more gradual distribution of temperature in two directions than that of 
temperature-independent materials. In Figure 6.33, it is interesting to note that the 
peak of the temperature field for Sigmoidal-Classical profile with temperature-
dependent materials tends to the lower edge of the shell with higher amount of 
ceramic phase, while maximum values of the temperature field with temperature-
independent materials take place at position closer to the upper edge with higher 
amount of metal phase. 

In the following, we turn our attention to the effect of sigmoid exponent S on the 
variation of temperature field, axial, circumferential and out-of-plane transverse 
shear stresses through the thickness of 1-D panel with sigmoidal radial variation of 
volume fraction, as shown in Figure 6.34. In this figure, the temperature gradient at 
the inner surface is increased as the sigmoid exponent s  is increased. This trend is 
opposite to that observed at the outer surface. This is because as the sigmoid 
exponent is increased, the contained quantity of ceramic phase at the inner surface 
increases, and volume fraction of ceramic at the outer surface is reduced. By 
considering Eq. (4.13), when sigmoid exponent s  increases considerably, the 
thermal behavior of the panel with radial variation of volume  fraction  approaches  a  
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Figure 6.33. Temperature field for Sigmoidal- Symetrical 2-D FGM with C-C boundary 
conditions ( )10, 3 1,

m zZ h       a) temperature-dependent materials, b) 
temperature-independent materials. 

 

discrete [1/0.3] laminate with a sharp transition in ceramic volume fraction from the 
1 to 0.3 at the midsurface. It is found from Figure 6.34, there is a steep variation in 
temperature field and circumferential stress at the midsurface for significantly higher 
sigmoid exponent ( 50s  ) due to a sharp transition in contained quantity of 
ceramic. From Figure 6.34, it is observed that the impact of the sigmoid exponent on 
the circumferential stress at the inner surface is more pronounced than that at outer 
surface. It can be concluded from Figure 6.34 that 1-D cylindrical panel with 
sigmoidal radial variation of volume fraction exhibits smooth variations of the in-
plane stress, thereby minimizing the magnitude of thermal stresses and the likelihood 
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of premature failure at an interface between adjoining lamina as in the case of 
discretely laminated composite. 

 
 

 

 

 
Figure 6.34. The effect of sigmoid exponent s on the temperature field and circumferential 

stress through the thickness of FGM with S-S boundary conditions ( )10, 2 3
m

Z h     
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6.4  FG CNT-reinforced composites 
One of the primary objectives of the present thesis is to applying the concept of FGM 
into CNT-reinforced composites and presenting state-of-the-art and outstanding 
results for FG CNT-reinforced composites. In order to achieve the objective, this 
section presents and discusses effects of different CNTs distributions, various types 
of CNT dispersion within the matrix phase, geometrical parameters, and boundary 
conditions on the free vibration characteristics and mechanical buckling of FG CNT-
reinforced composites.  
 

6.4.1  Free vibration 
This section deals with new results for free vibration of FG CNT-reinforced 
composites. To better handle the discussion, the section is divided into two 
subsections based on type of the structure. In the first part, annular sectorial plates 
reinforced by graded agglomerated CNTs resting on elastic foundations is studied 
and numerical results are presented. Then, the attention will be paid to rectangular 
plates reinforced by graded aligned CNTs. 

 
6.4.1.1  Annular sectorial plates 
In this part, we aim to study impacts of CNT agglomeration, various graded CNTs 
volume fractions, elastic foundation stiffness parameters, and geometrical parameters 
on the vibration characteristics of the annular sectorial plates resting on Pasternak 
elastic foundation. The material properties of the plate are assumed to be graded in 
the thickness direction. It is assumed that CNTs agglomerates within the matrix 
phase. As explained in section 4.3.4.3, the effective material properties of CNT-
reinforced composite were estimated through an equivalent continuum model based 
on the Eshelby-Mori-Tanaka approach in which a two-parameter micromechanics 
model of agglomeration was employed. Different profiles of CNTs volume fraction 
through the thickness have been proposed in Eqs. (4.3)-(4.6).  
First of all, to demonstrate the convergence and accuracy of the solution, an 
illustrative example  is solved  and  the  results are compared with  the  existing 
available data in the literature. In Table 6.14, the results for the FGM annular plate 
with outer-inner radius ratio 2.5

o i
r r   for various circumferential wave numbers 

are compared with those obtained using the Chebyshev-Ritz by Dong [195]. It can be 
observed from Table 6.14 that there is a very good agreement between the results 
confirming the accuracy of the current approach. 

Note that for all results presented, the non-dimensional natural frequency parameter 
and the elastic foundation coefficients are defined as: 
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 22
m n m n m mo Dr h    ,  4

w w m oK k D r ,   2

S s m oK k D r                      (6.4) 

where 3 212(1 )m m mD E h v   is the flexural rigidity ( ,m mE and mv  are 

mechanical properties of matrix). The material properties of CNTs are selected from 
[196]. Also, the material properties of polymer matrix are assumed to be 

10mE GPa , 0.3mv   and  31.15m g cm  at T = 300 K [196]. 

In order to obtain accurate frequency parameters of FG CNT-reinforced annular 
sectorial plates resting on Pasternak elastic foundation, a set of calculations is first 
undertaken in Table 6.15 to determine the requisite number of grid points in the 
radial rN  and thickness zN  directions. The effect of the inner-to-outer radius ratio 

( )i or r  and the elastic foundation coefficients ( , )w SK K  on the convergence rate of 

the frequency parameters of FG CNT-reinforced annular sectorial plates is 
investigated in Table 6.15, respectively. It is seen from Table 6.15 that insignificant 
effect of the foundation stiffness parameters on the rate of convergence of frequency 
parameters for FG CNT-reinforced annular sectorial plate is found. It is evident from 
Table 6.15 that the present 2-D GDQM converges very  fast  as  the  number  of  grid 

 
 

Table 6.14. Comparison of frequency parameter of a clamped-clamped FGM annular plate for 
various circumferential wave numbers ( 2.5, 0.5

o i o
r r h r  ). 

 



168                                                                          6. Numerical results and discussion 

 

Table 6.15. Convergence test of fundamental frequency parameters of C-F annular sectorial 

plate resting on Pasternak elastic foundation 0( 0.5, 90 )
o

h r    . 

 
 

 

points r zN N  increases. It can also be concluded that using 13 13  grid points can 

produce accurate frequency parameters for FG CNT-reinforced composite annular 
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sectorial plates resting on Pasternak elastic foundation up to at least five significant 
digits. The variation of inner-outer radius ratio with the frequency parameters of C-C 
Profile X  annular sectorial plate resting on Pasternak elastic foundation for 

different values of oh r  ratios is shown in Figure 6.35. According to Figure 6.35, the 

general behavior of the frequency parameters of annular sectorial plate resting on 
Pasternak elastic foundation for all i or r  ratios is that the effects of the oh r  ratios 

are more prominent at high inner-to-outer radius ratios. As it is observed, the 
frequency parameter decreases rapidly with the decrease of the i or r  ratio and then 

remains almost unaltered for the 0.4i or r  . 

Figure 6.36 shows the variation of the frequency parameter of the C-C annular 
sectorial plate with different values of agglomeration parameter   and plate angle 
 . The frequency parameters of the annular sectorial plate resting on Pasternak 
elastic foundation decrease rapidly with the increase of the plate angle for various 
agglomeration parameter   and then approach a constant value for higher plate 

angle ( 090  ).  

 

 

 
Figure 6.35. Variation of inner-to-outer radius ratio with the frequency parameters of C-C  
annular sectorial plate resting on Pasternak elastic foundation with Profile V for different 

values of oh r ratios 0
( 120 , 200 100 ), , 1, 0.5w SK K        
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Figure 6.36. Effect of plate angle  on the frequency parameter of the C-C annular sectorial 

plate resting on elastic foundation with different values of agglomeration parameter   

( 1000 100 ), , 1, 0.2, 0.3w S o i oK K h r r r      

 

 

 

Figure 6.37. Variation of the frequency parameters versus agglomeration parameter   with 
different types of agglomerated CNTs distributions and agglomeration parameter    

( Profile V ,  Profile X ) 0
( 100 10 ), , 0.3, 0.5, 60w S o i oK K h r r r       
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Figure 6.37 shows variation of the frequency parameter of the Profile V  and 

Profile X  annular sectorial plates resting on Pasternak elastic foundation with 

agglomeration parameters   and  . It can also be inferred from Figure 6.37 that the 
fundamental frequency parameter decreases with increasing agglomeration parameter 
 . It should be noted at this point that this natural frequency behavior contrasts with 
the   natural  frequency   behavior   of   the   annular   sectorial  plate  with  increasing  

 
 

 

 

Figure 6.38. Variation of the frequency parameter versus Winkler and shearing layer elastic 
coefficients for various oh r  ratio (a: 0.5oh r  , b: 0.1oh r  ) 

0
)( 0.5, 1, 0.5 , 60i or r       
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agglomeration parameter  . Moreover, Figure 6.37 reveals that, with increasing 
values of agglomeration parameter  , the agglomerated CNTs with Profile V  has 
notably higher decreasing rate of frequency parameter than Profile X  profile. 

In Figures 6.38a and 6.38b, comparisons are made among the frequency parameters 
of annular sectorial plates resting on elastic foundation with various oh r  ratios. 

According to this figure, it is interesting to note that the range of variation of the 
frequency parameter with increasing Winkler and shearing layer elastic coefficients 
increases with the increase of the oh r  ratio. 

 

6.4.1.2  Rectangular plates  
In this section, numerical results for the free vibration analysis of rectangular 
nanocomposite plates reinforced by aligned CNTs are presented. The effective 
material properties at a point were estimated by either the Eshelby-Mori-Tanaka 
(section 4.3.4.1) approach or the extended rule of mixture (section 4.3.3.). Poly 
methyl methacrylate, referred to as PMMA, is selected for the matrix, and the 

material properties of which are assumed to be 31.15 g cmm  , 0.34mv  , 

2.5GPamE    at   room  temperature  (300 K)   [114].  The   (10,10)  SWCNTs   are  
 

 

 
Figure 6.39. Effect of thickness to length on the fundamental frequency parameter of the plate 

for different values of  b a  ratio. 
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selected as reinforcements. The key issue for successful application of the extended 

rule of mixture to CNTRCs is to determine the CNT efficiency  parameter i .  There 

are no experiments conducted to determine the value of i  for CNTRCs. Shen [114] 

determined the CNT efficiency parameters 1 , 2  and 3  by matching the Young’s 

moduli 11E  and 22E  and shear modulus 12G  of CNTRCs predicted from the 

extended rule of mixture to those from the MD simulations given by Han and Elliott 

[196]. For example, 1 0.137  , 2 1.022   and 3 0.715   for the case of 
* 0.12

CN
V   and 1 0.142  , 2 1.626   and 3 1.138   for the case of * 0.17

CN
V  and 

1 0.141  , 2 1.585   and 3 1.109   for the case of * 0.28
CN

V  .  These values will 

be used in all following examples, in which taking 
3 2

0.7 1    and 13 12G G  and 

23 12
1.2G G   [114].  Herein,   natural   frequencies   of   the   plate   are  obtained  and  

 

 
 

 

Figure 6.40. Variation of the 
11 11

FG UD   ratio versus width to length ratio with for various 

h a  ratio ( Profile X  to Profile UD  frequency parameter ratio,  Profile  to 
Profile UD  frequency parameter ratio). 
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considered to be dimensionless as m m

n l n l
h E    (called the frequency 

parameter).  
Figure 6.39 depicts the effect of thickness to length ratio on the fundamental 

frequency parameter of the plate for different values of  b a  ratio with * 0.12
C N

V  . 

The results in Figure 6.39 indicate that the fundamental frequency parameter 

increases with the increasing values of the h a  ratio. Fundamental frequency 

parameter ratio of the nanocomposite plate for various h a  and b a  ratio is 
calculated and plotted in Figure 6.40. It is worthy to mention that frequency  

parameter ratio decreases rapidly with the increase of the b a  ratio for different 

values of the h a  ratio and then approach a constant value for higher b a  ratio. It 

is interesting to note that the effect of the h a  ratio on the Profile  to 
Profile UD  frequency parameter ratio is more significant than that of the 
Profile X  to Profile UD  frequency parameter ratio 11 11( )FG UD  . Also it is seen 
that discrepancies between frequency parameters of the Profile X  and Profile UD  

 
 
 

 
Figure 6.41. Effect of CNTs volume fraction on the frequency parameter of the plate for 

various b a  ratio 0.1)(h a   
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are lower than those of Profile  and Profile UD . 

The effect of the CNTs volume fraction *

C N
V  on the frequency parameter of the plate  

for various b a  ratio is shown in Figure 6.41. It is found that the frequency 
parameter of the plate is increased with increase in CNTs volume fraction. It should 

be noted that the frequency parameter decreases rapidly with the increase of the b a  

ratio and then remains almost unaltered for 0.5b a  . 
In order to study the prediction methods of the mechanical properties of 
nanocomposites, the frequency parameters obtained from extended rule of mixture 
are compared in Table 6.16 with those of Eshelby-Mori-Tanaka method for various 

types of CNT volume fraction profiles and different values of h a  and b a  ratio. It 
can be concluded from Table 6.16 that prediction methods of effective material 
properties have an insignificant influence on the variation of the frequency 

parameters with  h a  and b a  ratio. It should be noted that the extended rule of 
mixture has higher frequency parameter than that of the Eshelby-Mori-Tanaka 
approach. It is worth mentioning that the same achievement has been recently 
determined again by Lei et al. [120] confirming our results.  
 
 
Table 6.16. Non-dimensional natural frequency parameters of nanocomposite square plate 
with prediction methods of the mechanical properties of nanocomposites. 
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6.4.2  Mechanical Buckling 
Novel results for mechanical buckling of FG CNT-reinforced rectangular plates 
reinforced by SWCNTs subjected to uniaxial and biaxial in-plane loadings are 
presented here. A numerical study is performed to study the influences of the 
different types of compressive in-plane loadings, CNTs volume fractions, various 
types of CNTs volume fraction profiles, geometrical parameters, and different types 
of estimation of effective material properties on the critical mechanical buckling load 
of FG nanocomposite plates. For more explanation we choose the loading of plate as 
follows: 
 Plane loading in the x direction. 
 Plane loading in the y direction. 
 Plane loading in the x and y directions. 
For uniaxially compressed nanocomposite plate (sections 6-1 and 6-2), the extended 
rule of mixture explained in section 4.3.3 is used for predicting the overall material 
properties and responses of the plate, while for the case of biaxial in-plane loadings 
(section 6-3), effective elastic moduli are computed by using Eshelby-Mori-Tanaka 
approach introduced in section 4.3.4.1. PMMA is selected for the matrix, and the 

material properties of which are assumed to be 0.34mv  , 2.5 GPamE   at room 
temperature (300 K) [116]. The (10,10)  SWCNTs are selected as reinforcements. 
 
 
 

 

 
Figure 6.42. Critical buckling load (Nx)cr nanocomposite rectangular plate for various values of 

a/b and CNTs volume fraction  (t/b =0.1, Ny=0). 
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All material properties and effective thickness of SWCNTs used for the present 
analysis are properly selected according to the MD simulation results of Shen [114]. 
It is noted that the effective wall thickness obtained for (10, 10)-tube is 0.067 nm, 
which satisfies the Vodenitcharova-Zhang criterion [197], and the wide used value of 
0.34 nm for tube wall thickness is thoroughly inappropriate for SWCNTs.  
 
6.4.2.1  Loading of plate only in x direction 
In this section, nanocomposite rectangular plate is subjected to a uniform 
compressive load on edges x=0 and x=a. Figure 6.42 shows the critical load versus 
the aspect ratio of a/b with different CNTs volume fractions and various types of 
CNTs volume fraction profiles. From Figure 6.42, it is concluded that the critical 
buckling load of various types of CNTs volume fraction profiles become larger when 
the CNTs volume fraction increases. Another important result in Figure 6.42 is that 
the influence of the CNTs volume fraction on the critical buckling load for different 
types of CNTs profiles is generally significant at high aspect ratio of a/b. To assess 
the effects of various types of volume fraction profiles and aspect ratio of t/b, critical 
load for different values of CNTs volume fraction are presented in Table 6.17. It is 

observed from Table 6.17 that nanocomposite plates with Profile X  and Profile  
have highest and lowest critical load, respectively. This means that the FG 
nanocomposite plates with symmetric profiles of the CNTs volume fraction can 
likely be designed according to the actual requirement and it is a potential alternative 
to the plates with uniformly distributed CNTs. 

 
 

 

Table 6.17. Comparison between critical buckling load versus a/b (Nx)cr (KN) in various types 
of CNTs volume fraction profiles (t/b =0.1). 
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Figure 6.43. Variation of the critical buckling in-plane load (Ny)cr  against the aspect ratio a/b 

(t/b=0.1, Nx=0). 

 
 

 
Figure 6.44. Critical load (Ny)cr against the aspect ratio t/b for various types of CNTs volume 

fraction profiles  (a/b=1, Nx=0, * 0.12
CN

V  ). 
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6.4.2.2  Loading of plate only in the y direction 
In this section for more attention to the effect of CNTs, we assume that loading of 

plate is only in the y direction. Variation of the critical buckling in-plane load cr
yN

 
against the aspect ratio t/b for Profile X  nanocomposite plate is plotted in Figure 
6.43. It can be inferred from Figure 6.43 that with increasing the CNTs volume 
fractions, influence of the aspect ratio a/b on the critical buckling loads is more 
significant. The variation of the critical buckling load versus the aspect ratio of t/b 
for various types of CNTs volume fraction profiles is shown in Figure 6.44 for 

* 0.12
CN

V  . The results in Figure 6.44 indicate that discrepancy among the various 

types of CNTs profiles increases with the increasing values of the aspect ratio of t/b. 
 
6.4.2.3 Loading of plate in x and y directions 
 In this section we consider two axial loading of plate (Nx and Ny) and their relation is 
Nx=γNy. Also, the material properties of the FGM nanocomposite plate are assumed 
to be graded in the thickness direction and estimated through the Eshelby-Mori-
Tanaka approach. Influence of different types of CNTs volume fraction profiles on 
critical biaxial buckling load against aspect ratio t/b is presented in Figure 6.45 for 

* 0.12
CN

V   .  It   is  worthy  of   mention  that  critical  biaxial  buckling  load  of  the  

 
 
 

 

 
Figure 6.45. Influence of different types of CNTs volume fraction profiles on critical buckling 

load against aspect ratio t/b (a/b =1, γ=1, * 0.12
CN

V  ) 
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Profile  nanocomposite plate is lower than that of one with Profile X  and close 
to that of the uniformly distributed CNTs. Moreover, it can be concluded that for 
various types of estimation of effective material properties (extended rule of mixture 
and Mori-Tanaka method) and different loading of plate, nanocomposite plates with 
Profile X and Profile  have highest and lowest critical load, respectively. In 
addition, it is found that the critical biaxial buckling load increases rapidly with 
increasing the aspect ratio t/b and then remains almost unaltered for 0.5t b  . 

 
6.5  Summary and conclusions 
In this chapter, numerical results and discussion for several problems of FGMs 
summarized into three parts comprising 1-D FG fiber-reinforced composites, 2-D 
FGM composites, and FG CNT-reinforced composites, have been presented. 
Firstly, interesting and new results for free vibration, static, and thermal analyses 1-D 
FG fiber-reinforced composites were elaborated. We compared structural responses 
of continuously graded fiber-reinforced composites with those of traditionally 
laminated ones. The new results have been revealed that natural frequency of the FG 
fiber orientation panels was smaller than that of a discrete laminated composite and 
close to that of a 4-layer one. In contrast, the normalized natural frequency of a FG 
fiber volume fractions was larger than that of a discrete laminated composite and 
close to that of a 2-layer. Furthermore, obtained results showed that FG orthotropic 
composites exhibited continuously variations of both the in-plane and transverse 
static and thermal stress components, thereby reducing the likelihood of failure at 
interfaces between adjoining lamina as in the case of discretely laminated 
composites.  
Secondly, results for free vibration and static analyses of 2-D FGM cylindrical panels 
followed by a comparison study with classic 1-D FGMs were presented. It has been 
shown that the lowest frequency parameter can be obtained by using Classical-
Classical volume fractions profile. On the contrary, 1-D FGM panels with Symmetric 
volume fraction profile leads to the maximum value of the frequency parameter. 
Therefore, graded volume fraction in two directions has high capabilities to reduce 
the frequency parameter than conventional 1-D FGM. Afterwards, thermal behaviour 
of 2-D FGM cylindrical panels with temperature-dependent materials was studied. It 
has been deduced that the discrepancy between values of thermal stresses with 
different volume fractions for the case of temperature-dependent material properties 
was higher than that of with temperature-independent properties. From obtained 
results, it was concluded that calculations and design based on temperature-
independent properties lead to conservative estimates. 
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Thirdly, numerical results for the cases of free vibration and mechanical buckling of 
FG CNT-reinforced composites have been presented and discussed. Influences of 
CNT agglomeration and various graded CNTs volume fractions on the free vibration 
characteristics of CNT-reinforced composites have been studied. The obtained results 
have revealed that the agglomeration parameters   and   have completely different 
effects on the natural frequency of the FG CNT-reinforced composites. By increasing 
agglomeration degree of CNTs (or in other words by decreasing parameter  ) 

natural frequency increased. While this trend was reversed for parameter  . In case 

of buckling analysis, results revealed that the critical buckling load for Profile V  

was lower than that of one with Profile X  and was close to that of the uniformly 
distributed CNTs. This was because the distribution pattern of CNTs can have an 
effect on the stiffness of the plate and it was thus expected that the desired stiffness 
can be achieved by adjusting the CNTs distribution through the thickness of plates. It 
was concluded that CNTs distributed close to top and bottom are more efficient than 
those distributed nearby the mid-plane of the plate.  
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7.1  Overview 
The main objective of the research presented in this thesis was to study mechanical 
responses of FGM composites. The study has been organized into seven parts so far: 
(1) In the first chapter, an introduction to FGMs was given and various objectives of 
the thesis have been explained in details. (2) The aim of chapter 2 was to provide a 
short description on some basic concepts, including composite materials and their 
macro-mechanical analysis, 3-D elasticity, and 2-D plate theories, followed by a 
critical overview on the state-of-the-art literature on FGMs. (3) In chapter 3, 
theoretical formulations of various problems in the mechanics of FGMs were 
presented. (4) Chapter 4 elaborated mathematical modelling of FGMs along with 
homogenization methods to compute effective material properties. (5) In chapter 5, 
the solution procedure, known as GDQM, for solving coupled governing differential 
equations with variable coefficients has been stated. (6) Finally, chapter 6 was 
dedicated to numerical results and discussion for various analyses of FGMs 
categorized into three sections including 1-D FG fiber-reinforced composites, 2-D 
FGM composites, and FG CNT-reinforced composites. In the final chapter, the 
methodologies used in the present thesis and main conclusions are presented. Then, 
the suggestions for further extension of this research are elaborated. 

 

7.2  Methodology used in the thesis 

7.2.1  Theoretical formulations 

In this thesis, not only based on 3-D elasticity theory governing equations of free 
vibration, static, and thermal stress analyses of FGMs have been derived, but also 2-
D plate theories also have been used to formulate various problems. The basic 
approach in formulations based on 3-D elasticity theory was to derive Navier 
equations. In this case, first, 3-D elasticity equations of motion for cylindrical panels 
composed of FG monoclinic materials, in a general form, have been derived. Then, 
formulations for sandwich panels have been discussed. After that, the attention has 
been paid to formulations of FG rectangular plates and annular sectorial plates 
resting on elastic foundations based on 3-D elasticity theory. In the next part, thermo-
elastic governing equations for FG orthotropic cylindrical panels based on 3-D 
elasticity have been derived. In case of formulations based on 2-D theories, the 
displacements were expanded in terms of thickness and transverse displacement was 
independent of the transverse coordinate. Based on FSDT, theoretical formulations 
for free vibration and mechanical buckling of CNT-reinforced plates have been 
perfomed. In this thesis, for the first time, governing equations for a 2-D FGM panel 
based on TSDT of Reddy have been derived. 
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7.2.2  Mathematical modelling of FGMs 

For mathematical modelling of variation of volume fraction or fiber orientation, 
firstly, the classic form of power-law distribution was introduced. Furthermore, for 
modelling of gradation in volume fractions of CNT, various profiles for FG CNT-
reinforced composites were presented. As one of the contributions of the present 
thesis, 1-D and 2-D generalized power-law distribution were presented. To compute 
effective material properties of composites, rule of mixture and Mori-Tanaka method 
has been used. In case of nanocomposites, for the first time, Eshelby-Mori-Tanaka 
method has been employed to determine the effective material properties of 
nanocomposites reinforced by various type of CNTs dispersion. 

 

7.2.3  Solution procedure 

Due to the complexity of the governing equations caused by variable coefficients 
initiated from non-homogeneity, it was very difficult to obtain the exact solutions. 
Owing to non-linear variation of material properties, seeking a powerful numerical 
method was highly desirable.  In present thesis, GDQM as a semi-analytical 
approach was adopted to solve coupled governing differential equations. The 1-D 
and 2-D GDQM was applied in various problems consisting of thermal, vibration, 
and static analyses of FGMs. By solving free vibration, static, and thermal equations 
and by comparing the results with those of other methodologies, accuracy, 
convergency and efficiency of the methodology was asserted. In the present 
methodology, by using maximum 13 grid points, accurate and converged results for 
various FGM problems were obtained. Also, it was found that less computational 
efforts with respect to other available methods have been found. 
 
7.3 Main conclusions 
The significant findings of the work presented in this thesis can be summarized into 
three rudimentary categories as follows: 
 
7.3.1  1-D FG fiber-reinforced composites 

 For the first time, natural frequencies, static, and thermal stresses of FG 
fiber orientation and volume fraction fiber-reinforced composites panels 
have been compared with discretely laminated composites and new and 
interesting results have been presented. In case of free vibration analysis, 
the new results have been revealed that normalized natural frequency of the 
FG fiber orientation cylindrical panels was smaller than that of a discrete 
laminated composites and close to that of a 4-layer. In contrast, the 
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normalized natural frequency of a FG fiber volume fraction was larger than 
that of a discrete laminated composite and close to that of a 2-layer. On the 
other hand, in thermal analysis, it is interesting to note that the temperature 
distribution and thermal stress field distributions of a FG fiber-reinforced 
composite was closer to that of 2-layer one, and the 3-layer composite 
presented a set of results drastically distinct from the two other models. This 
was due to the lower conductivity (higher temperature gradient) of FG fiber-
reinforced composite compared to that of 2- and 3-layer ones. Besides, 
because of higher thermal resistance of 2-layer, arising from thicker layers 
in comparison with 3-layer, the temperature gradient for 2-layer was higher 
than that of 3layer. Therefore, the temperature gradient increased from the 
3-layer composite to the 2-layer one and then FG fiber-reinforced 
composite, respectively. Furthermore, obtained results showed that FG 
orthotropic panels exhibited continuously variations of both the in-plane and 
transverse static and thermal stress components, thereby reducing the 
likelihood of failure at interfaces between adjoining lamina as in the case of 
discretely laminated composites. This trend was much more appreciable in 
the thermal analysis. 

  It has been shown the normalized natural frequencies of the FG fiber-
reinforced panels decrease rapidly with the increase of the mid-radius to 
thickness S ratio and then approach a constant value for thin cylindrical 
panels. This behavior is the same as that of a discrete laminate composite 
panel. 

 In this thesis, as the first endeavor, brand-new generalized power-law 
distributions for defining variation of volume fraction or fiber orientation in 
1-D and 2-D FGMs composites have been intorduced. By using generalized 
power-law distribution, it was possible to study the effect of the different 
kinds of material profiles including symmetric, asymmetric, sigmoidal, and 
classic on mechanical behavior of a FGM structures. Furthermore, 
distribution and magnitude of thermal stresses/frequency characteristics or 
modal displacements can be reduced/increased to a required manner by 
selecting appropriate different parameters of power-law distribution and 
volume fractions profiles in the required direction(s). Another advantage of 
generalized power-law distribution was to have a desirable volume fraction 
of the material on the inner or outer surface, while there was a smooth 
gradation of volume fraction through the required direction. In case of FG 
fiber-reinforced composite, it was shown that maximum natural frequency 
of the can be obtained through using symmetric profile of fiber orientation. 

 In this research work, for the first time a detailed parametric study was 
carried out to highlight the influences of continuously grading fiber 
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orientation face sheets and different profile of fiber volume fraction and 
fiber orientation on the vibration characteristics of the FGSW panels. It has 
been found that the fundamental normalized frequencies increase with the 
increase of volume fraction of silicon carbide fibers on the outer surfaces of 
core. It was also shown that with increasing the thickness of face sheet-to-
panel ratio fh h , the fundamental normalized frequencies decrease. The 

results showed that for 1p  the fundamental normalized frequencies of 
classic profile is smaller than that of other types of FGSW panels. In 
contrast, for 10p  the fundamental normalized frequencies increase with 
increasing parameter c and close to that of classic fiber orientation profile. 

 As an interesting and new finding, it has been found that for the large values 
of Winkler elastic coefficient, the shearing layer elastic coefficient has less 
effect and the results become independent of it, in other words, the non-
dimensional natural frequencies converge with increasing Winkler 
foundation stiffness. Furthermore, it has resulted that the variations of 
Winkler elastic coefficient has little effect on the non-dimensional natural 
frequencies at different values of shearing layer elastic coefficient. In case 
of closed cylindrical shells resting on elastic foundations, the results 
revealed that non-dimensional radial and transverse shear stresses increase 
with increasing Winkler elastic coefficient. On the contrary, the axial stress 
through the thickness decreases with increasing Winkler elastic coefficient. 
The mechanical entities of FGM fiber-reinforced cylindrical shell converged 
with increasing Winkler foundation stiffness. 

 
7.3.2  2-D FGM composites 

 Based on the achieved results, it has been inferred that the 2-D generalized 
power-law distribution proposed for volume fractions of 2-D FGM 
composites gives designers a powerful tool for flexible design of structures 
under multi-functional requirements. Results indicated the advantages of 
using panels with graded volume fractions in two directions to a more 
flexible design than the conventional 1-D FGM.  

 It has been shown that the lowest frequency parameter can be obtained by 
using Classical-Classical volume fractions profile. On the contrary, 1-D 
FGM panels with Symmetric volume fraction profile leads to the maximum 
value of the frequency parameter. Therefore, graded volume fraction in two 
directions has high capabilities to reduce the frequency parameter than 
conventional 1-D FGM.  
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 The new results demonstrated that with increasing values of the 
circumferential wave number, frequency parameter of the Classical panel is 
close to that of Symmetric-Symmetric. Also, it was found that the effect of 
the circumferential wave number on the growth rate of the frequency 
parameter is more tangible for the Symmetric and Symmetric-Symmetric 
volume fraction profiles. 

 The general behavior of the frequency parameters of 2-D FGM panels for 
all boundary conditions was that the frequency parameters converged only 
in the range beyond that of the fundamental frequency parameters.   

 In this thesis, new theoretical formulations for 2-D FGM composites based 
on TSDT of Reddy have been formulated and governing equations for 
thermal analysis have been derived. For a realistic investigation of 2-D 
FGMs, temperature-dependent properties were taken into account. It has 
been deduced that the discrepancy between values of thermal stresses with 
different volume fractions for the case of temperature-dependent material 
properties was higher than that those of with temperature-independent 
properties. 

 It is found that calculations and design based on temperature-independent 
properties yield conservative estimates. 

 
7.3.3  FG CNT-reinforced composites 

 In the present thesis, for the first time, effects of CNT agglomeration and 
various graded CNTs volume fractions on the free vibration characteristics 
of CNT-reinforced composites have been studied. Results showed that the 
frequency parameters of the annular sectorial plate resting on Pasternak 
elastic foundation decrease rapidly with the increase of the plate angle and 
then approach a constant value for higher plate angle. The obtained results 
have revealed that the agglomeration parameters   and   have completely 
different effects on the natural frequency of the FG CNT-reinforced 
composites. By increasing agglomeration degree of CNTs or in other words 
by decreasing parameter  , natural frequency increased. While this trend 

was reversed for parameter  . The higher volume fraction of CNT in 
inclusions was, the higher natural frequency was. 

 The results showed that the prediction methods of effective material 
properties have an insignificant influence on the variation of the frequency 
parameters with the plate aspect ratio and the CNTs volume fraction. It 
should be noted that the extended rule of mixture has higher frequency 
parameter than that of the Eshelby-Mori-Tanaka approach. It is worth 
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mentioning that the same achievement has been recently determined again 
by Lei et al. [120] confirming our results. 

 In this thesis, a new numerical study was performed to investigate the 
influences of the different types of compressive in-plane loadings, different 
types of CNTs volume fraction profiles, and geometrical parameters on the 
critical mechanical buckling load of FG CNT-reinforced plates. The results 
showed that in the case of uniaxial loading, the impact of the CNTs volume 
fraction on the critical buckling load for different types of CNTs profiles 
was generally significant at high aspect ratio. Moreover, the critical 
buckling load for Profile V  was lower than that of one with Profile X  
and was close to that of the uniformly distributed CNTs. This was because 
the distribution pattern of CNTs can have an effect on the stiffness of the 
plate and it was thus expected that the desired stiffness can be achieved by 
adjusting the CNTs distribution through the thickness of plates. It was 
inferred that CNTs distributed close to top and bottom are more efficient 
than those distributed nearby the mid-plane of the plate. 

 
7.3  Suggestions for future works 
This work presented in this thesis opens new opportunities for further research. As a 
direct result of the work presented in this thesis the following suggestions can be 
made. 

 With astonishing advances in the development of material science and 
technology, FGMs have been employed in micro-electro-mechanical 
systems (MEMS) to nanoelectro-mechanical systems (NEMS) to reach the 
high sensitivity and desired performance [198-200]. It is highly important to 
consider the size effect initiating from the underling microstructures in the 
theoretic and experimental investigations of the microscale or nanoscale 
FGMs. Accordingly, future works can be considering size effects on the 
microscale or nanoscale FGMs for their potential application in MEMS and 
NEMS. To this end, nonlocal continuum mechanics modeling is required to 
be properly developed. Although classical or local continuum mechanics 
modeling is effective in studying large-scale FGM nanostructures, its 
applicability to capture the small-scale effect on nano-material mechanical 
behaviors is limited. The limited applicability is due to the fact that at small 
size the lattice spacing between individual atoms becomes increasingly 
important and the discrete structure of the material can no longer be 
homogenized into a continuum [201,202]. Therefore, cautious employment 
of classical continuum models has been proclaimed when directly applying 
to nanostructure analysis. In order to incorporate the small length scale 
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effect, continuum mechanics models need to be refined. This may be 
accomplished by using the nonlocal continuum theory. 

 In the design of FG fiber-reinforced plates and shells, it is of technical 
importance to study their resistance to buckling under loading conditions. 
For this purpose, the determination of the buckling load alone is not 
sufficient in general, but it is further needed to study the postbuckling 
behavior, that is, the behavior of the shell after passing through the buckling 
load. One of the reasons is to estimate the influence of practically 
unavoidable imperfections on the buckling load and the second is to 
evaluate the ultimate strength to exploit the load-carrying capacity of the FG 
fiber-reinforced plates and shells. Due to lack of study on the postbuckling 
behavior of FG fiber-reinforced plates and shells, the postbuckling analysis 
of 1-D and 2-D FGM composites will be also future extension of the current 
work. In addition, using generalized power law distribution the effect of the 
different kinds of material profiles including symmetric, asymmetric, and 
sigmoidal on postbuckling behaviour of a FGM structures can be studied. 

 The FGMs composites can be integrated with piezoelectric materials so as 
to improve their dynamical behaviours. The piezoelectric materials are well-
known for their sensing and actuating capabilities [203]. Such structures 
have the great ability to control the size, shape, vibration and stability of the 
structural components due to their direct and converse piezoelectric impacts. 
As an illustration, a piezoelectric sensor patch can monitor the deformation 
of a structure while a piezoelectric actuator patch can control the 
deformation of the structure through the converse piezoelectric effect. 
Therefore, the piezoelectric materials have been acquired many applications 
in vibration control and monitoring. Therefore, it is of great importance to 
analyze the behavior of FGMs composites integrated with piezoelectric 
materials. To sum up, the future extension of this thesis can be studying FG 
fiber-reinforced or 2-D FGM composites integrated with sensors and 
actuators. 

 In most conditions of severe environments, when plate deflection-to 
thickness ratio is greater than 0.4 [154], the nonlinearity is very important 
and the nonlinear dynamic equations of plates are needed to perform the 
analysis. As a result, other extension of the present work is to investigate 
non-linear vibration analysis of 2-D FGM plates by considering non-linear 
geometrical effects. It is interesting to note that GDQM along with a direct 
iterative method [204] can be used for solving the non-linear governing 
equations. 
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