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Qt, Qv, Qk total heat flux along the direction t,v and k respectively

s entropy

U specific free enthalpy (per unit volume)

V simulated volume with dimension L× L× L

W specific free energy (per unit volume)

Abbreviations & Acronyms

BEM Boundary Element Method

CMC Ceramic Matrix Composite

CTE Coefficient of Thermal Expansion

EHM Equivalent Homogeneous Material

FEA Finite Element Analysis

FEM Finite Element Method

MFH Mean-Field Homogenization
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General introduction

The design and realization of optimized technological systems are increasing through
the development and integration of different functions and combining elements of varied
nature. As the need and demand for extreme conditions resistant materials increases, es-
pecially to high and ultra-high temperature, research study and development of materials
are necessary. For several applications, brittle materials (ceramics, concrete, composites,
rocks, etc.) are faced with such kind of requirements.

Ceramics which fall between metallic and non-metallic compounds are a typical ex-
ample of these materials due to their refractory properties. They are known to have
relatively high stiffness and strength, some of them even higher than metals. They are
also well known for low electrical and thermal conductivities, sometimes showing higher
temperature resistance than metals. Heat management at higher temperatures is a key
for energy savings in power electronics and energetics. In most cases, the higher the en-
ergy efficiencies are, the higher the operating temperatures will be. So, high-temperature
heat exchangers based on ceramic materials have a wide range of applications. A special
kind of ceramics called ultra-high temperature ceramics (UHTC) has applications in the
field of aerospace. Most used UHTC’s are zirconium diboride (ZrB2) and hafnium di-
boride (HfB2) for making the leading edge of hypersonic vehicles (Fig. 1a) and tantalum
carbide (TaC) for making rocket nozzles. Not only in the field of space but also power
electronics or energetics, there are many ceramic parts linked by various processes (like
brazing, sintering, shrinking) to metallic/non-metallic elements of different physical, me-
chanical and thermal properties. When these assemblies are subjected to high levels of
thermo-mechanical loadings, microcracks induced by the manufacturing process can grow,
increasing the damage and by the same way the thermomechanical phenomena leading to
the failure of the system.

Brittle composite materials like Ceramic Matrix Composites (CMCs) are well known
for their high-temperature capability, reduced cooling requirements, low weight, and high
specific strength. This makes them an ideal candidate for making turbine blades (Fig.
1b), combustion chambers for jet engines and brake discs in automobiles. In the nuclear
industry, due to their ability to withstand high temperatures and high mechanical damage
tolerance and good chemical compatibility with coolants, CMCs are considered for the
construction of internal reactor structures.

Concretes are also one of the most studied brittle material due to their immense ap-
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(a) Falcon HTV-2 (b) Turbine blade (c) Fire damaged building

Figure 1: Brittle materials at high temperature.

plication in the field of civil and construction engineering. Concretes are known for their
high compressive strength (sometimes up to nearly ten times their tensile strength), low
thermal expansion and moderate thermal conductivity. The increasing need for High-
Performance concrete (HPC) in construction has seemingly compromised its fire resis-
tance. To be fire-resistant, walls should have the necessary load-bearing capacity, insula-
tion and integrity (no significant cracks). So the walls must carry the load for the duration
of the fire. Since all concretes are prone to microcracking to some extent, it is important
to know their influence in case of fire (Fig. 1c).

Rocks which are considered as porous materials (including pores, voids and cracks)
have applications in petroleum engineering and deep geological repository for radioactive
waste. Sedimentary rock with very low permeability, high mechanical strength acts as a
natural barrier for underground storage of nuclear wastes. These rocks can be subjected
to natural mechanical, thermal and/or chemical loadings. This phenomenon is referred to
as thermo-chemo-mechanical. So, investigating the effective properties, thermal or elastic
or thermoelastic, is equally important.

As these various examples have shown, the use of temperature resistant brittle ma-
terials is of great interest in the advanced industries but also in geotechnical and civil
domineering fields. Yet, all these materials initially exhibit some heterogeneities (for in-
stance inclusions, fibres, cracks or porosity) at their microscale, induced by their formation
or manufacturing process. Under high levels of thermomechanical loadings, these defects
induce significant over-stresses that can lead to microcracks growth and irreversible dam-
age in materials and structures. Though the influence of mechanical loading on cracks
is a widely explored topic, the impact of thermal and thermomechanical loading needs
further investigation. This thesis intends to focus on the effect of cracks on the brittle
materials and their interaction with thermal and thermomechanical behaviour. In the
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coming sections are presented some number of elements that will help to position the
work presented below.

Damage by microcracking

Mechanical properties of various solids are firmly based on their interior defects and
inhomogeneities. For different kind of materials, the defects might originate due to various
reasons and can come in different geometric shapes and sizes. Damage in ductile materials
such as aluminium, copper, titanium, etc., primarily involves nucleation and evolution of
micro-voids whereas in brittle materials like concrete, ceramics, rocks, CMC, etc., damage
is predominantly due to microcracking (Fig. 2).

(a) SEM image (b) Microcrack profile

Figure 2: Microcrack in ZTA ceramics (×50000 magnification) (Shiliang et al. 2015).

Microcracking can be generated during the formation (rocks) or manufacturing pro-
cess. For brittle materials such as ceramics, cooling from high sintering temperature
often creates sufficiently large stresses to cause internal spontaneous cracking (Buessem

(a) Alumina films (b) Sandstone

Figure 3: Influence of (a) mechanical load and film thickness (Jen et al. 2011), and (b)
temperature on cracks (Kim et al. 2020).
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and Lange 1966, Case et al. 1981). Also during service conditions, some solids show many
kinds of defects based on their exposure to various factors such as mechanical loads (Fig.
3a), temperature (Fig. 3b) or any environmental conditions.
The main consequence of microcracking in brittle materials are as follows:

• Stress-strain nonlinearity,

• Deterioration of properties,

• Induced anisotropy,

• Unilateral effect.

It is imperative to discuss the above-mentioned consequences in detail. The following
paragraphs analyze these different points, to better understand the different aspects of
damage by microcracking on the mechanical properties.

Stress-Strain nonlinearity

Fig. 4 shows the general non-linear behaviour of some ceramic materials under mechanical
loads.

(a) PZT ceramics (b) PMN-PT ceramics

Figure 4: Stress-strain non-linearity in ceramics (Cao and Evans 1993).

This non-linearity is mainly attributed to degradation of properties, unilateral effect
in some cases (both discussed later) and also for some materials irreversible strain (Fig.
4b). For instance, sometimes, the fragment of a damaged microcrack or an inclusion can
get stuck between crack lips and not allow the crack to close perfectly during unloading,
leading to an additional strain.

Even when we have a fixed damage (i.e. fixed damage density), nonlinearity is ob-
served. The material in such a case exhibits nonlinearity in terms of hysteresis loop during
loading – unloading cycles (Fig. 4a). This phenomenon is mainly due to the closure of
cracks and frictional sliding of the microcracks. So, based on the applied load, type of
load and microstructural phenomenon affecting them, this nonlinearity can therefore be
important.
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Deterioration of mechanical properties

Progressive and irreversible deterioration of material properties can be due to the forma-
tion of defects (voids, cracks, etc.) which characterizes the damage.

Due to the influence of microcracking, there can be a 10% to 30% loss in Young’s
modulus when compared with virgin (non-microcracked) material. Such degradation of
elastic properties can be seen through unloading phases of mechanical tests (Fig. 4a).
Wong et al. (1996) show that peak strength of marbles drops with increasing initial crack
density (Fig. 5a). Fig. 5b gives the modulus reduction as a function of crack density in
Calcium alumino silicate glass ceramic (CAS/SiC) composite.

(a) (b)

Figure 5: Deterioration of (a) Uniaxial Compressive Strength (UCS) in Yuen Long
marbles (Wong et al. 1996) and (b) Young’s modulus in a brittle matrix composite (Evans
and Zok 1994).

Induced anisotropy

The orientation of the microcracks depends on the loading path, their normals being
directed in the direction of maximum elongation. Let us consider an initially isotropic
material under mechanical loading. After some load level, microcracks start to appear
and they exhibit preferential orientation related to the load direction and nature (i.e. ten-
sion or compression). Due to this directional dependency, the initially isotropic material
becomes anisotropic, its resulting anisotropy being related with cracks orientation. Fig. 6
gives data obtained from analyses of crack orientation in ceramics under uniaxial tension.
We clearly observe in this figure that cracks do not always follow the preferential path
and they indeed have oriented nature.

Fig. 7 shows the distribution of the Young’s modulus of a ceramic composite that
is mainly degraded in some directions. Note that the resulting anisotropy is clearly a
function of the load direction but can be affected by initial anisotropy of the material (see
comparison between Figs. 7a and 7b done for two load directions). Results show that
microcracking affects not only axial properties but also transverse and shear properties.

Sharan Raj RANGASAMY MAHENDREN 5



GENERAL INTRODUCTION

Figure 6: Variation of incremental crack length and proportion of crack length as a
function of crack orientation (Tappin et al. 1978).

(a)

(b)

Figure 7: Young’s modulus E (m) associated with the unit vector direction m in the
plane (x2, x3) as a function of the tensile stress applied in the x3 direction for a CC-SiC
composite: (a) x3 corresponds to one of the fiber directions (0◦), (b) x3 forms an angle of
30◦ with one of the fiber directions, (Baste and Aristégui 1998).

Unilateral effect

Since cracks are surface decohesion defects, they might open or close according to the
local tension or compression mechanical load on their lips. According to their state (open
or closed), cracks have different influence on the macroscopic behavior of the material.
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This is known as unilateral effect. Specially, closure of cracks results in some recovery in
the materials properties compared to the open state (Fig. 8).

Figure 8: Schematic response of a material subjected to uniaxial compression after
being damaged in tension: Material damaged in tension (path OA) then unloaded (path
AO) and loaded in compression (path OB).

Another consequence of this behavior can be the dissymmetry between tension and
compression loads. There can be a huge contrast between the tension fracture stress (Fig.
9a) and compression fracture stress (Fig. 9b). The lower stiffness in tension is mainly
due to the fact that microcracks are opened whereas the higher stiffness in compression
can be attributed to microcracks closure. This shows that microcracks evolve differently
based on their status (open/closed) and has a varied influence on a macroscopic level.
Typically after unloading, several microcracks "disappear" (i.e. become closed). Fig. 10
clearly shows this cracks closure in rocks.

(a) (b)

Figure 9: Concrete under simple (a) tension (Terrien 1980) and (b) compression (Vu
2007).
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(a) (b)

Figure 10: SEM microphotographs of the crack distribution in slotted rock: (a) during
loading and (b) after unloading (Zhao et al. 1993).

Extension to thermal issues

As mentioned in the previous section, not only mechanical properties but also thermal
properties can be affected by microcracking. In retrospect, two specific aspects can be
identified as:

• influence of the thermal loads on microcracking,

• influence of microcracking on thermal properties.

This is important since the brittle materials which are the subject of the study, are
generally refractory which exacerbates the thermomechanical effects. In what follows, we
will discuss the importance of these aspects.

Influence of thermal loads on microcracking

Civil engineering provides the most studies on thermal response of brittle materials. Es-
pecially it is critical to study the behaviour of concrete during fire or thermal hazard
conditions. The performance of cement-based material under elevated temperatures are
very complicated and difficult to characterize.

Thermal loading results in both physical and chemical changes in the microstructure
affecting the mechanical behaviour. Researchers agree that there is a decrease in me-
chanical characteristics of brittle materials due to thermal induced microcracking. Their
influence on elastic properties (Fig. 11a), strength (Fig. 11b), stiffness (Nechnech et al.
2002, Griffiths et al. 2017) and compressive strength (Gardner et al. 2005, Vejmelková
et al. 2008) are well known.
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(a) ceramics (b) granite

Figure 11: Influence of microcracking on (a) Young’s modulus in ceramics during
thermal loading (Fertig and Nickerson 2015) and (b) UCS in granite as a function of
thermal stressing temperature (Griffiths et al. 2017).

Fig. 12 shows the effect of exposure to temperature on a sandstone subjected to
hydrostatic compression. According to temperature level, we can see at the early stages of
the mechanical load the decrease in compressibility modulus K. This can be attributed to
increasing damage, induced by exposure to increasing temperature. We could also note in
the figure that with increasing compression load the compressibility modulus is recovered
to its initial value K0. Such unilateral effect, related to closure of defects, confirms that
thermal-induced cracks are responsible for the deterioration process involved here.

Vejmelková et al. (2008) found up to 80% decrease in the compressive strength in
various concretes (Tab. 1). Such degradation of properties due to thermal loading is
not only seen in concrete but also into other brittle materials (in rocks Sibai et al. 2003,
Ghassemi Kakroudi 2007, Chen et al. 2012a, in granite Lin 2002, Chen et al. 2012b, in
quasi-brittle materials Tang and Tang 2015).

Figure 12: Hydrostatic compression of a thermally pre-cracked sandstone at different
temperature levels (Homand-Etienne et al. 1987).
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Table 1: Effects of thermally induced cracks in high performance concrete (Vejmelková
et al. 2008)

High Compressive Strength Thermal conductivity
Performance MPa λ [W· m−1·K−1]
Concretes without cracks with cracks without cracks with cracks

at 25 °C at 600 °C at 25 °C at 600 °C
BBI 63.57 21.49 4.16 2.90
BII 83.47 32.33 2.36 1.43
PI 119.06 29.86 0.637 0.510

So far the influence of thermal load on mechanical properties due to microcracking
was presented, now, it is imperative to investigate how thermal loading affects damage
evolution. Lin (2002) verified that higher the peak temperature load, higher is the micro-
crack density. The author also noted that the density of intragranular cracks accounts for
a major percentage of the overall crack density and grain boundary cracks contribute very
less. Damhof (2010) observed that thermal-induced damage linearly depends on temper-
ature (Fig. 13a). The author goes on to add that the damage originates purely from the
thermal expansion mismatch in the refractory material. This can be seen in Fig. 13a,
where damage occurs only after the start of thermal loading. Griffiths et al. (2017) note a
stable crack length but an increase in the number of cracks under thermal loading. This
increase in the number of cracks leads to an increase in the crack density (Fig. 13b). After
producing varied explanations for a near-constant density after 600 °C, they conclude that
it is probable that microcracks stop growing after this point, and rather open (increase
in aspect ratio). This could explain why strength decreases with temperature but crack
density remains constant after 600 °C (Figs. 11b and 13b). Kim et al. (2020) study sand-
stone specimens which have pre-existing cracks due to environment. They observe that at
low temperatures microcracks evolve slowly when compared to higher temperatures (Fig.
3b). The literature has a lot more investigation exploring how damage evolution takes

(a) (b)

Figure 13: Damage evolution in (a) refractory material (Damhof 2010) and (b) granite
(Griffiths et al. 2017), as a function of temperature.
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place during thermal loading. From these information, we can say that temperature plays
a major role in microcracking growth, both in thermal-induced cracks and pre-existing
cracks.

Influence of microcracking on thermal properties

Microcracks not only influence the mechanical properties (Fig. 5a) but also have effects
on the optical, electrical, magnetic and thermal properties as well. Experimental data
on the effect cracks have on thermal properties is very scarce. One such paper is from
Vejmelková et al. (2008), who shows up to a 40% drop in the thermal conductivity of
various concretes (Tab. 1). Kim et al. (2000) presents that transverse cracks in carbon-
epoxy composite affect and change the thermal expansion of the laminate (Fig. 14a).
From this, we can establish that thermal loading affects both mechanical response and
heat flow process.

(a) (b)

Figure 14: (a) Deterioration of the Coefficient of Thermal Expansion (CTE) in a
carbon-epoxy composite (Kim et al. 2000) (b) Thermal conductivity of sandstone as a
function of pressure at various temperatures (Abdulagatova et al. 2009).

Fig. 14b gives us the influence of temperature on thermal conductivity in sandstone
under pressure loading. Based on the increase in the temperature, we see decrease in the
conductivity. This is due to the evolution of damage during thermal loading. Interestingly,
the increase in conductivity for a given temperature can be explained by cracks closure.
Even then, at high pressure when all cracks are closed, further increase in pressure does
not have a big impact on the conductivity. From this, it is safe to say that thermal-induced
cracks are responsible for the loss in thermal conductivity.

It is imperative to understand that both the influence of thermal loads on cracks de-
velopment and the influence of cracks existence on thermal properties are closely linked.
Having said that, this thesis will focus on the latter, which will be the precursor in creating
a fully coupled thermomechanical damage model. Predicting or calculating the effective
properties of a heterogeneous media (with inclusion or cracks) for real configurations is
challenging due to their complex geometry, boundary conditions or loads and/or consti-
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tutive behaviours. In addition, the lack of experimental data makes it very relevant to
investigate the effects of microcracking through other means, such as homogenization and
numerical simulations.

Homogenization

Length scale separation

In continuum micromechanics, homogenization methods are used to find the effective re-
sponse of finite statistically homogeneous materials. Homogenization is typically build on
the principle of separation of scales (Zaoui 2002). The lowest scale described is microscale,
largest is macroscale and intermediate ones are called mesoscale. In a classic formulation,
the characteristic length of the studying inhomogeneity d, much be smaller than the size
` of the Representative Volume Element (RVE). This RVE should be representative of
the material to be studied irrespective of its location in the structure. Then, ` must be
smaller than the characteristic dimension L of the whole body and fluctuation length η
of the prescribed loading. To put all this together,

d0 � d� `� L, `� η (1)

where d0 is the lowest possible length of the inhomogeneity below which continuum me-
chanics cannot be used.

Methodology

Homogenization can be interpreted as describing the behaviour of a heterogeneous mate-
rial at lower length scale in terms of a fictitious Equivalent Homogeneous Material (EHM)
at higher length scale (Fig. 15). This process is done by means of homogenization applied
on the RVE. Accordingly, such volume should remain sufficiently small to contain all the
necessary information describing the behaviour of the heterogeneous material, and at the
same time, large enough to make itself a meaningful sample of the material.

Figure 15: Homogenization of a heterogeneous medium/material.
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One of the most commonly used homogenization technique is Mean-Field Homogeniza-
tion (MFH) and known for its computational efficiency. MFH is based on approximate
volume average quantities (stress, strain, flux, gradient, etc.) over each phase to derive
the overall behaviour of the heterogeneous material. The quantities are based on the ho-
mogenization schemes used, which are in turn based on the assumptions made about the
interaction between the matrix and the inclusions. Some of such well known schemes are
dilute, self-consistent, differential, Mori-Tanaka (MT), Ponte Castañeda-Willis (PCW),
etc.

Existing works

Homogenization techniques were first developed to study the effective properties of com-
posites. Over the years many, researchers have studied the effective elastic (Hill 1963,
Hashin 1983, François et al. 2012, Dvorak 2013), thermoelastic (Levin 1967, Laws 1973),
thermal (Torquato 2002, Pietrak and Wiśniewski 2015) and other properties of the com-
posites.

Most of the existing research on MFH is based on the pioneering works of Eshelby
(1957). Eshelby introduces a fourth order tensor depending on the matrix property and
the shape of the inclusion to find the effective elastic properties. Though Eshelby’s equiv-
alent inclusion method, also called eigenstrain method, was developed for an ellipsoidal
inclusion, other shapes like spheroidal, penny-shape, cylindrical can be considered as a
special case of an ellipsoid.

Later, the methods were extended to material inhomogeneities (fibres, inclusions,
voids, cracks, etc) emphasizing their shapes. Focusing on cracks, direct homogenization
methodology uses displacement jump between crack lips to derive the elastic properties
(Kachanov 1993, Nemat-Nasser and Hori 1993). If the cracks are considered as penny-
shaped inclusion (which is a limit case for an ellipsoid), then, we can use the above
mentioned Eshelby’s method (Eshelby 1957) to solve for the effective elastic and ther-
moelastic properties (Budiansky and O’Connell 1976, Mura 1987, Dormieux and Kondo
2016).

Due to the mathematically analogy between the elasticity and steady-state heat con-
duction (Bristow 1960), authors have extended modelling approaches to solve thermal
problem of a microcracked media. One such example is Sevostianov (2006), who uses
direct methodology to predict the effective conductivity by studying temperature jump
across the crack lips. Though many authors tried to extend equivalent inclusion method
to steady-state, Hatta and Taya (1986) were the first one to propose a general method to
solve the problem. They introduce a new tensor (later named as depolarization tensor)
which is similar to the Eshelby tensor in elasticity but only depends on the shape of the
inclusion. They give thermal conductivity of two and three phase composites as a function
of the depolarization tensor where the fibres are assumed be a cylindrical (another limit
case of ellipsoid). They also provide the components of depolarization tensor for various
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inclusion shapes. Fig. 16 shows the normalized thermal conductivity of an aligned short
SiC fibre/epoxy composite (Hatta and Taya 1986).

Figure 16: Thermal conductivity of two phase composite along the x3 axis (K33)
normalized by Km as a function of fibre volume fraction f for various aspect ratios (Hatta
and Taya 1986).

From this information, it is clear that the theoretical framework for finding the effective
elastic, thermoelastic and thermal properties of composite materials already exists. In the
present work, attention is paid to the special case of microcracks. The modelling of elas-
tic properties of microcracked media has been extensively investigated in the literature,
and methodologies are often considered to be easily extendable to thermal behaviours.
Yet, closed-form expression of thermal and thermoelastic properties are not provided in
existing works. Accordingly, this work intends to implement homogenization theories to
derive the thermomechanical response of microcracked media. Without existing exhaus-
tive experimental characterization of these issues, the homogenization approach can be
helpful for the study and optimization of brittle materials in view of previously-mentioned
industrial applications. Moreover, due to the specific feature of cracks defects, it seems
important to account for the interaction between their unilateral behaviour and the overall
thermal behaviour of materials.

Numerical simulations

In addition to the theoretical approach, we also propose to address these aspects through
numerical simulations. Several numerical methods can be used for the simulation of the
materials effective behaviour. One can cite for instance, Fast Fourier Transform (FFT),
Boundary Element Method (BEM), Finite Difference Method (FDM), Finite Element
Method (FEM), etc. There are few numerical studies done on the effective thermal prop-
erties of microcracked media, many of them are based on FEM.

For example, Lu and Hutchinson (1995) suggests a FEM (in ABAQUS) to find the
overall conductivity of a matrix-cracked composite. The discretization is done for a quar-
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ter of the model with quadratic axisymmetric elements. They simulate the behaviour
of temperature gradient and heat flux field near the crack tip. Authors also show good
agreement between the analytical and simulated solutions (Fig. 17). Finally, they state
that the numerical results are insensitive to the meshing when crack density is low but
very much sensitive when it is high.

Figure 17: Normalized longitudinal conductivity kz/k0
z as a function of normalized

crack density Rf/d for various fibre volume fraction ρ (Lu and Hutchinson 1995).

Carson et al. (2003) investigate the overall thermal conductivity of a porous material
with pores and inclusions with very low conductivity. They perform their analysis on a
2D Finite Element grid using PDEase2D™and study the influence of the inclusion size,
shape, and interactions. Fig. 18 shows that as volume fraction (in turn crack density)
increases, the effective conductivity decreases. Fig. 18a is given for three inclusion shapes
considered for the simulation. In Fig. 18b, the Maxwell structure refers to no interaction
between inclusions and intermediate structure to interaction between them.

(a) (b)

Figure 18: Normalized thermal conductivity of a porous material as a function of
inclusion volume fraction: (a) effect of inclusion shape, (b) interaction between inclusions
(Carson et al. 2003).

Sharan Raj RANGASAMY MAHENDREN 15



GENERAL INTRODUCTION

Tang et al. (2012) also propose a Finite Element model to find the effective conductivity
of concrete with conductive aggregates. They conclude that effective thermal conductivity
very strongly depends on the degree of heterogeneity, i.e. it is greatly influenced by the
difference between the mortar and aggregate individual conductivities. Fig. 19 shows the
influence of the homogeneity index m on the effective property. The heat flux vector of
a heterogeneous concrete (m = 1.2) is more disordered than that of a homogeneous one
(m = 30). This suggests that low conductivity elements (cracks, pores, inclusions) in the
concrete form a thermal barrier preventing heat flow through the matrix. Wu andWriggers
(2014) numerically studied the debonding of hardened cement paste (HCP) and aggregates
at interfacial transition zone (ITZ) of a concrete. During the study they observed that,
under uniaxial tensile load at constant temperature there is a temperature jump across the
crack interface (lips) which creates thermal resistance and leads to reduction of thermal
flux in the concrete. They conclude saying this reduction of thermal flux contributes to
the degradation of the overall conductivity of the concrete. Shen et al. (2015) give us a
Finite Element model to predict the effective conductivity of a concrete. They note that,
due to the occurrence of tensile microcrack, there is a drastic decrease in the effective
thermal conductivity. They also observe that, even though the RVE is initially isotropic,
the effective conductivity is anisotropic after crack formation. Fig. 20 shows the thermal
conductivity of a concrete specimen subjected to tensile displacement. The aggregate
and mortar start to separate from each other and microcracks are formed. When air
flows into the cracks, it forms an interfacial thermal resistance, which reduces the matrix
conductivity and in turn the effective conductivity.

m = 1.2

m = 30m = 10

m = 6

Figure 19: Deviation between the effective conductivity and mortar conductivity vs
homogeneity index, and corresponding heat flux vectors (Tang et al. 2012).

Nguyen et al. (2017) suggests a pattern-based method (PBM) with FEM to deter-
mine the overall properties of heterogeneous materials. The PBM uses morphologically
representative pattern (MRP) instead of the unit cell or entire RVE. This method allows
one to simulate a single crack instead of a family of cracks, thus saving a lot of com-
putational time. The procedure to determine the effective properties of a heterogeneous
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Figure 20: Thermal conductivity of cracked concrete specimen (Shen et al. 2015).

(or microcracked) media described by an MRP is similar to the Eshelby approach. This
involves embedding the MRP inside an infinite medium and applying uniform bound-
ary condition at infinity to find the local properties and inturn the average macroscopic
quantities. Though the MRP contains only one crack, the boundary condition can be
changed to account for the interaction. Nguyen et al. studies the effective conductivity
of microcraked media for various crack density, spatial distribution and conductive/non
conductive cracks. Fig. 21a shows the effect of crack conductivity on the temperature
jump across the crack radius whereas Fig. 21b gives the numerical effective conductivity
for various crack distribution.

  

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized crack radius

D
im

en
si

on
le

ss
 t

em
pe

ra
tu

re
 ju

m
p

c
c
/c

s
=0

c
c
/c

s
=0.01

c
c
/c

s
=0.1

(a)

  

0 0.25 0.5 0.75 1 1.25 1.5
0

0.25

0.5

0.75

1

Crack density

N
or

m
al

iz
ed

 e
ff

ec
tiv

e 
co

nd
uc

tiv
ity

X
d
=0.05

X
d
=0.10

(b)

Figure 21: (a) Temperature jump across the crack (b) Numerical effective conductivity
from PBM, (Nguyen et al. 2017).

Tran et al. (2018) presents an alternate semi-analytical method to find the effective
conductivity of cracked media. They propose an adaptive model which is obtained by
combining the analytical (or theoretical) and numerical (Boundary Element Method)
solutions. Fig. 22 shows how the temperature distribution is influenced by the presence
of cracks.
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Figure 22: Temperature distribution in a 2D microcracked medium (Tran et al. 2018).

In the same manner as theory, numerical simulation comes thus in handy and may
help to estimate the effective behaviour of materials. In this thesis, the numerical part will
include FEM simulations performed within a framework consistent with the theoretical
approach. In this way, numerical results can be compared to analytical ones.

Thesis plan

Considering all this previous information into account, the present thesis concentrates
on investigating the effective thermomechanical properties of a brittle material both the-
oretically and numerically. The work starts with the analytical study of the thermal
conductivity and resistivity of a brittle microcracked media in steady-state followed by
numerical simulation. Once these results are presented, the work moved forward onto the
modelling of the thermoelastic properties of the said media. And finally, results are com-
pared and conclusions are drawn. The thesis is organized with each chapter corresponding
to a published or submitted research paper.

• Chapter 1 [C. R. Mecanique; 347: 944–952 (2019)] provides the effective ther-
mal properties of a 3D microcracked media under the steady-state condition. The
medium considered is initially isotropic and has families of randomly oriented cracks.
The main focus will be on the unilateral effect. Influenced by Deudé et al. (2002)
the closed cracks are considered to be a fictitious isotropic material. Using classical
Eshelby-like approach, closed-form expressions for various schemes (interacting and
non-interacting cracks) are given.

• Chapter 2 [Mechanics & Industry; 21: 519 (2020)] gives the effective thermal con-
ductivity for a 2D microcracked media. The medium is assumed to be initially
isotopic and weakened by a single-family of parallel cracks. The theoretical method
uses various estimates to provide closed-form expressions. The numerical method in-
volves FE simulations performed in ABAQUS to compare with the micromechanical
results.
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• Chapter 3 [Euro. J. Mech. A/Solids; (2020); submitted] presents the effective
thermoelastic properties of a 3D microcracked media. Using classical strain and
stress based boundary conditions, the overall thermal stress and strain tensors and
specific heat capacities at constant strain and stress are found. Special attention is
paid to crack induced anisotropy and unilateral effect.

• Chapter 4 holds the collection of the simulations performed. This includes 3D
FE simulations of conductivity, resistivity and thermoelasticity. The simulations
investigate the influence of crack orientation, size, and crack status (open/closed).
Thus obtained results are compared to the theory.

Finally, conclusions are drawn summarizing the main observations from the theoretical
and numerical approaches. Future perspectives of this work and its relevancy in creating
a new damage model are discussed.

The appendices have exhaustive details on the theoretical developments performed
during the duration of the thesis.
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Chapter 1

Homogenized thermal conduction
properties in 3D

Abstract

This chapter intends to provide effective thermal properties related to the
conduction problem in 3D taking into account the unilateral effect (open-
ing/closure of cracks). This analysis considers steady-state heat trans-
fer within an initially isotropic media weakened by randomly oriented
crack families. Eshelby’s equivalent inclusion method in steady-state
discussed earlier is implemented. According to boundary conditions, es-
timates and bounds based on Eshelby-like formalism are developed to
derive closed-form expressions for effective thermal conductivity and re-
sistivity at fixed microcracking state. The open cracks are considered
non-conductive whereas, the closed cracks are fictitious isotropic con-
ductive material. The effective properties are determined for dilute and
Mori-Tanaka schemes, and Ponte Castañeda-Willis bound. Influence of
crack orientation and variation of crack density are also explored.

Present chapter is based to the published research paper (Rangasamy Ma-
hendren et al. 2019) [C. R. Mecanique; 347: 944–952 (2019)].
Some elements have been added to provide a more complete overview to
the theoretical background.
A self-consistent notation is adopted.
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CHAPTER 1. HOMOGENIZED THERMAL CONDUCTION PROPERTIES IN 3D

1.1 Introduction

Homogenization is a useful tool for the modelling and analysis of the behaviour of hetero-
geneous materials. One of its main objectives is to estimate their overall properties from
their microstructural features (phase properties, inclusions distribution and geometry, ...).
This topic is even more interesting when there is a lack of experimental data. Several
studies have been dedicated to the micromechanical analysis of microcracked media, es-
pecially to address their elastic behaviour (for instance Kachanov 1993, Nemat-Nasser
and Hori 1993, Ponte Castañeda and Willis 1995 for initially isotropic materials). Still,
many practical applications require proper modelling of other properties such as thermal,
transport and piezoelectric properties which are not investigated much (Dormieux et al.
2006, Sevostianov and Kachanov 2019, Su et al. 2008, Wang and Jiang 2003, Giraud et al.
2007).

Taking into account the unilateral effect (opening and closure of cracks) makes the
estimation of said effective properties challenging, and this even more as microcracks are
oriented defects. Some authors have investigated the elastic problem taking into account
both the induced anisotropy and recovery phenomenon due to cracks closure, through
averaging up-scaling methods (Kachanov 1993, Andrieux et al. 1986, Deudé et al. 2002,
Dormieux and Kondo 2009). Such modelling strategy has never been applied before for
a steady state heat conduction problem. So, in this work, we intend to address this issue
through Eshelby-like approach and derive effective thermal properties of microcracked
media focusing mainly on the unilateral effect.

1.2 Theoretical Framework of the thermal conduction

problem

Since a lot of studies have presented the homogenization of elastic behaviour, the the-
sis would like to recall the conduction behaviour. Assuming length scale separation,
this study deals with continuum micromechanics. Homogenization process providing
microstructure-properties relationships is conducted through the mean-field theory. Present
developments for effective thermal properties are inspired by the mathematical analogy
between elasticity and steady-state heat conduction problems (Hashin 1983, Torquato
2002):

stress σ ⇐⇒ heat flux q

strain ε ⇐⇒ temperature gradient g

stiffness C ⇐⇒ thermal conductivity λ

compliance S ⇐⇒ thermal resistivity ρ

Hooke’s law ⇐⇒ Fourier’s law
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Let consider Ω the volume of the RVE of a heterogeneous material, ∂Ω the external
surface and u the outward unit normal to ∂Ω. The macroscopic thermal gradient G can
be defined as mean temperature on the external surface ∂Ω:

G =
1

|Ω|

∫
∂Ω

T (x) u(x) dΩ and Q =
1

|Ω|

∫
∂Ω

q(x) · u(x) x dΩ (1.1)

with T (x) and q(x) the local temperature and local heat density at any point x of Ω

respectively. Using divergence theorem, under stationary thermal conditions, the macro-
scopic quantities correspond to the average of its respective microscopic quantities (Valès
et al. 2016):

G =
1

|Ω|

∫
Ω

g(x) dΩ = 〈g〉 and Q =
1

|Ω|

∫
Ω

q(x) dΩ = 〈q〉 (1.2)

with g(x) the local temperature gradient at any point x at Ω.

Let say the RVE has two phases (r = {m, i}), matrix (m) and inclusion (i) and their
volume fractions are given as fm and fi respectively. Such a media exhibits a matrix-
inclusion typology in which each phase are supposed to exhibit a homogeneous behaviour
and follows the Fourier’s law:

q(x) = −λ(x) · g(x) and g(x) = −ρ(x) · q(x) ∀ x ∈ Ω (1.3)

with

λ(x) =

λm, ∀ x ∈ Ωm

λi, ∀ x ∈ Ωi

ρ(x) =

ρm, ∀ x ∈ Ωm

ρi, ∀ x ∈ Ωi

, Ωm∪Ωi = Ω, Ωm∩Ωi = ∅ (1.4)

where λm and ρm = λ−1
m denote the matrix thermal conductivity and resistivity with

volume Ωm, λi and ρi = λ−1
i denote the inclusion thermal conductivity and resistivity

with volume Ωi. Two different boundary conditions can be imposed at the outer boundary
δΩ of the RVE, i.e. either uniform macroscopic temperature gradient (G imposed at δΩ)

or uniform macroscopic heat flux (Q imposed at δΩ). Assuming an initial natural state,
the microscopic and macroscopic quantities can be linked linearly as (Hill 1963):

g(x) = A(x) ·G and q(x) = B(x) ·Q ∀ x ∈ Ω (1.5)

where A (resp. B) is the second order gradient localization (resp. flux concentration)
tensor such that 〈A〉 = 〈B〉 = I (I being the second order identity tensor). Average
temperature gradient G and heat flux Q of the heterogeneous media as obtained by Eq.
(1.2) can thus be related by effective thermal tensors:

Q = 〈q〉 = −〈λ · g〉 = −〈λ ·A ·G〉 = −〈λ ·A〉 ·G = −λhom ·G (1.6)
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G = 〈g〉 = −〈ρ · q〉 = −〈ρ ·B ·Q〉 = −〈ρ ·B〉 ·Q = −ρhom ·Q (1.7)

where λhom and ρhom are the effective thermal conductivity and resistivity tensors respec-
tively. Since each phase is considered homogeneous, the effective tensors can be simplified
as:

λhom = 〈λ ·A〉 =
∑
r

fr λr · 〈A〉r with 〈A〉 =
∑
r

fr 〈A〉r = I (1.8)

ρhom = 〈ρ ·B〉 =
∑
r

fr ρr · 〈B〉r with 〈B〉 =
∑
r

fr 〈B〉r = I (1.9)

where operator 〈·〉r = 1
|Ωr|

∫
Ωr
· dΩ is the average value over the volume of the phase r.

Further development of the above equations give:

λhom = λm + fi (λi − λm) · 〈A〉i and ρhom = ρm + fi (ρi − ρm) · 〈B〉i (1.10)

The mean localization tensors help us establish the link between the mean temperature
gradient per phase and the macroscopic quantity:

〈g〉r = 〈A〉r ·G and 〈q〉r = 〈B〉r ·Q (1.11)

From these expressions, knowing the localization tensor 〈A〉r and concentration tensor
〈B〉r is enough to solve for the effective conductivity and resistivity respectively. But for
this, we need to find the local heat flux q, temperature gradient g and temperature T
fields to solve the following problem on the RVE, either (Torquato 2002):

q(x) = −λ(x) · g(x), ∀ x ∈ Ω

div q = 0

g(x) = grad T (x)

T (x) = G · x, ∀ x ∈ ∂Ω

or



g(x) = −ρ(x) · q(x), ∀ x ∈ Ω

div q = 0

g(x) = grad T (x)

q(x) = Q, ∀ x ∈ ∂Ω

(1.12)
Left part of Eq. (1.12) corresponds to uniform temperature gradient (G) boundary condi-
tions whereas right part is related to uniform flux (Q) conditions. The solution for (q, g)

is neither unique nor easy due to the lack of thermal and geometric description of the
heterogeneous materials. To address this difficulty, two approaches are possible: (1) to
explore and find a range of possible solutions (bound methods like Voigt and Reuss), (2) to
make additional assumptions on the microstructure of the RVE to deduce expressions for
q and g (estimation methods). Works on the single-inhomogeneity problem, initiated by
Eshelby (1957) in elasticity and extended to thermoelasticity (Berryman 1997, Torquato
2002) and to steady-state (Hatta and Taya 1986, see detailed explanation in Appendix
A.1), provides some solutions for such issue if the inclusions are ellipsoidal. Indeed, the
temperature gradient and heat flux local fields in the crack can be approximated by the
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uniform respective local fields obtained in an ellipsoid embedded in an infinite matrix
subjected to uniform boundary conditions denoted as G∞ and Q∞. Assuming perfect in-
terfaces, several representations can be developed according to remote conditions, matrix
properties, phases volume fractions, and geometry and properties of the inhomogeneity.

Now in line with the thesis, consider a 3D RVE with N number of crack families. Let
denote λc,j and ρc,j = λ−1

c,j the conductivity and resistivity of the jth (j = 1...N) family
of parallel cracks and fc,j their volume fraction. Eq. (1.10) for this microcracked media
becomes:

λhom = λm +
N∑
j=1

fc,j (λc,j − λm) · 〈A〉c,j (1.13)

ρhom = ρm +
N∑
j=1

fc,j (ρc,j − ρm) · 〈B〉c,j (1.14)

where phase r for r = {m, cj}. At this point, effective tensors λhom (directly derived from
uniform gradient-based boundary conditions) and ρhom (naturally obtained from uniform
flux-based boundary conditions) strictly describe the same equivalent homogeneous media,
so that these tensors are inverse of each other, i.e. λhom = ρ−1

hom.

(a) (b)

Figure 1.1: (a) RVE with arbitrarily oriented microcracks, (b) penny-shaped crack
geometry.

For the present case, the RVE is composed of an initially isotropic homogeneous me-
dia, considered as the matrix. Its thermal conductivity and resistivity tensors are given
by λm = λm I and ρm = ρm I (λm and ρm are the scalar thermal conductivity and re-
sistivity, with λm = ρ−1

m ) respectively. This matrix is weakened by randomly distributed
microcracks with arbitrary orientations (Fig. 1.1a). A convenient way to represent such
kind of defect is in the form of a flat oblate ellipsoid (mean semi-axes a and c, Fig. 1.1b).
For the jth family of parallel microcracks, nj denotes their unit vector, ωj = cj/aj their
mean aspect ratio and dj = Nj a3

j their scalar crack density parameter (Nj is the num-
ber of cracks in the jth family per unit volume, Budiansky and O’Connell 1976). Crack
volume fraction comes thus to fc,j = 4

3
πdjωj (Appendix A.2). Under these assumptions,

estimated solutions for localization and concentration tensors 〈A〉estc,j and 〈B〉estc,j depend on
the following depolarization tensor SEj (similar to the Eshelby tensor of elastic problems)
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(Hatta and Taya 1986, see Appendix A.3):

SEj =
(

1− π

2
ωj

)
nj ⊗ nj +

π

4
ωj (I− nj ⊗ nj) (1.15)

Last important points for the considered problem deal with the geometry and properties of
the cracks. Regarding the former, the configuration of penny-shaped cracks corresponds
to the limit case ωj → 0 that must be introduced at the very end of mathematical
developments. Moreover, the fact that microcracks can be either open or closed according
to compressive loads is introduced through the latter point. In both cases, cracks are
assumed to be isotropic (λc,j = λc,j I and ρc,j = ρc,j I) but they behave differently
depending upon the state of the microcrack:

• for the open case, λc,j = 0 and ρc,j →∞, which corresponds to adiabatic conditions
on the cracks lips,

• following the works of Deudé et al. (2002), closed cracks are represented by a ficti-
tious isotropic material with scalar conductivity λc,j = λ∗ and resistivity ρc,j = ρ∗,
which accounts for some heat transfer continuity at the closure of cracks (friction-less
contact). Taking λ∗ = λm and ρ∗ = ρm may seem natural, but we will nevertheless
continue the development for a general case where λ∗ and ρ∗ are scalars with a
condition λ∗ 6= 0 and ρ∗ 6→ ∞.

1.3 Gradient-based formulation

By gradient-based formulation, we mean to impose a uniform macroscopic temperature
gradient G at the outer boundary δΩ of the RVE. Such a situation corresponds to the
classical strain-based condition of the Eshelby’s problem. Let us consider three different
approaches to derive the effective properties.

1.3.1 Dilute scheme

In a first approach, we are going to estimate the homogenized properties assuming a dilute
density of cracks, which is to consider no interaction between defects. Remote conditions
on the Eshelby problem come in that case to the macroscopic gradient (G∞ = G, Fig.
1.2a). Hence, the gradient localization tensor is given by:

〈A〉dilc,j =
[
I + PE

j ·
(
λc,j − λm

)]−1

(1.16)

where PE
j = SEj · ρm is the symmetric second order interaction tensor (equivalent to the

first Hill tensor in elasticity). Eq. (1.16) can be simplified as:

〈A〉dilc,j =
[
I−

(
1− ξj

)
SEj

]−1

with ξj =
λc,j
λm

(1.17)
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(a) (b)

Figure 1.2: Phase properties and boundary conditions at infinity: (a) imposed tem-
perature gradient G∞, (b) imposed heat flux Q∞.

Eq. (1.13) thus comes to:

λdilhom = λm

[
I− 4

3
π

N∑
j=1

dj ωj
(
1− ξj

)
〈A〉dilc,j

]
(1.18)

We can see that the λdilhom depends on the aspect ratio ωj in our case. However, we show
that the quantity ωj

(
1− ξj

)
〈A〉dilc,i tends to a limit Tj when ωj → 0, so:

λdilhom = λm ·

[
I− 4

3
π

N∑
j=1

dj Tj

]
with Tj = lim

ωj→ 0
ωj
(
1−ξj

)[
I−SE,j

(
1−ξj

)]−1

(1.19)

Such expansion includes both crack configurations, i.e. for open cracks λc,j = 0, so ξj = 0

while for closed cracks λc,j = λ∗ 6= 0, so ξj 6= 0. Taking this into account, tensor Tj for
the jth family of cracks is given by:

Tj =


2

π
nj ⊗ nj , if cracks are open

0 , if cracks are closed
(1.20)

Accordingly, Eq. (1.19) can be simplified in:

λdilhom = λm ·

[
I− 8

3

∑
j/open

dj nj ⊗ nj

]
(1.21)

in which only open cracks contribute in an additive manner. As an example, the effective
thermal conductivity of a media weakened by a single family of parallel microcracks with
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unit normal n and density d takes the form:

λdilhom =

λm −
8

3
d λm n⊗ n , if cracks are open

λm , if cracks are closed
(1.22)

Detailed development for a single family of crack in dilute case can be found in Appendix
A.5.1.

1.3.2 Mori-Tanaka scheme

In line with Eshelby-like approach, the Mori-Tanaka (MT) scheme (Mori and Tanaka
1973) considers cracks embedded in an infinite media (with matrix properties) that is
subjected to the average temperature gradient over the matrix phase (G∞ = 〈g〉m, Fig.
1.2a). Introducing inhomogeneities inside a thermally-stressed matrix in this way amounts
to account for some interactions between cracks. Averaging rule Eq. (1.2) leads to the
following localization tensor:

〈A〉MT
c,j = 〈A〉dilc,j ·

[
fm I +

N∑
k=1

fc,k 〈A〉dilc,k

]−1

(1.23)

Now Eq. (1.13) can be written as:

λMT
hom = λm ·

[
I +

4

3
π

N∑
j=1

dj Tj

]−1

= λm ·

[
I +

8

3

∑
j/open

dj nj ⊗ nj

]−1

(1.24)

since lim
ωj→ 0

ωj

[
I − SE,j

(
1 − ξj

)]−1

= Tj also. Accordingly, the specific conduction

behaviour for the simple case of a single family of parallel microcracks according to their
status described is as follows (see Appendix A.5.2):

λMT
hom =


λm −

8

3
d λm

1

1 + 8d
3

n⊗ n , if cracks are open

λm , if cracks are closed
(1.25)

1.3.3 Ponte Castañeda–Willis upper bound

Based on the Hashin-Shtrikman bounds (Hashin and Shtrikman 1963), Ponte Castañeda
andWillis (PCW) derived explicit strain-based bounds for the effective stiffness of compos-
ite materials with ellipsoidal inclusions (Ponte Castañeda and Willis 1995).Their estimate
corresponds to a rigorous upper bound for the class of cracked media in which the matrix
is the stiffest phase. The PCW formulation separately accounts for the inclusion shape
and spatial distribution respectively through fourth order interaction PEj and spatial crack
distribution Pdc tensors. Using a similar approach for the thermal problem with a second
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order spatial distribution tensor Pd
c , the effective conductivity can be given by:

λPCWhom = λm +

(
I −

N∑
i=1

fc,j

[(
λc,j − λm

)−1
+ PE

j

]−1

·Pd
c

)−1

·

(
N∑
j=1

fc,j

[(
λc,j − λm

)−1
+ PE

j

]−1
)

(1.26)

It is also convenient to observe that:

λPCWhom = λm ·

(
I +

N∑
j=1

fc,j Mc,j · λm ·Pd
c · λm

)−1

·

(
I−

N∑
j=1

fc,i Mc,j ·Qd
c

)
(1.27)

where Mc,j =
[(
ρc,j−ρm

)−1
+QE

j

]−1

, QE
j = λm ·

(
I−PE

j ·λm
)
(equivalent to the second

Hill tensor in elasticity) and Qd
c = λm ·

(
I− Pd

c · λm
)
. For simplicity, a spherical spatial

distribution is adopted in this study, for which Pd
c reads:

Pd
c =

1

3
ρm (1.28)

Even though, the PCW formulation is derived from the energy approach, Eq. (1.26) can
be interpreted in the form of Eq. (1.13) through the following localization tensor:

〈A〉PCWc,j = 〈A〉dilc,j ·

(
fm I +

N∑
k=1

fc,k

[
I +

(
PE
k −Pd

c

)
·
(
λc,k − λm

)]
· 〈A〉dilc,k

)−1

(1.29)

As already emphasized by Ponte Castañeda and Willis, it can be observed that when
Pd
c = PE

j , the PCW scheme corresponds to the Mori-Tanaka estimate (Eq. (1.29) comes
to Eq. (1.23)) while the case Pd

c = 0 leads to the dilute approximation (Eq. (1.29) reduces
to Eq. (1.16)).
Taking into account Eqs. (1.26) and (1.27), or equivalently Eqs. (1.29) and (1.13), the
corresponding effective conductivity reads:

λPCWhom = λm ·

[
I−

(
4

3
π

N∑
j=1

di Tj

)
·

(
I +

4

9
π

N∑
j=1

di Tj

)−1]
(1.30)

Keeping in mind Eq. (1.20), one gets (refer to Appendix A.5.3):

λPCWhom = λm ·

[
I−

(
8

3

∑
j/open

dj nj ⊗ nj

)
·

(
I +

8

9

∑
j/open

dj nj ⊗ nj

)−1]
(1.31)

Sharan Raj RANGASAMY MAHENDREN 29



CHAPTER 1. HOMOGENIZED THERMAL CONDUCTION PROPERTIES IN 3D

which reduces to:

λPCWhom =


λm −

8

3
d λm

1

1 + 8d
9

n⊗ n , if cracks are open

λm , if cracks are closed
(1.32)

for a single family of parallel microcracks. Note that MT (Eq. (1.25)) and PCW (Eq.
(1.32)) tend to dilute prediction (Eq. (1.22)) when d→ 0.

1.4 Flux-based formulation

This section considers uniform macroscopic heat flux Q at δΩ. Estimates and bound are
based on the local fields of cracks embedded inside a matrix subjected to uniform heat
flux at infinity (Q∞). Accordingly, the temperature gradient g(x) tends to ρm ·Q∞ when
|x| → ∞ . This, therefore, amounts to the gradient boundary conditions of the Eshelby-
like problem that provide the average temperature gradient 〈g〉c over the cracks volume.
From the average heat flux in this phase 〈q〉c = λc · 〈g〉c, estimates of tensor B can be
derived.

1.4.1 Dilute Scheme

For the dilute scheme, conditions at infinity correspond to the macroscopic heat flux
(Q∞ = Q, Fig. 1.2b). So that:

〈B〉dilc,j = λc,j · 〈A〉dilc,j · ρm =
[
I + QE

j ·
(
ρc,j − ρm

)]−1

(1.33)

Appendix A.6.1 has information regarding this development. Substituting Eq. (1.33) into
Eq. (1.14), we get:

ρdilhom = ρm ·

[
I +

4

3
π

N∑
j=1

dj Tj

]
(1.34)

As previously mentioned, Eq. (1.34) accounts for the cracks state. For open cracks,
ρc,j → ∞, so again ξj = 0, while for closed cracks ρc,j = ρ∗ 6→ ∞, so ξj 6= 0 with related
expression of the Tj tensors provided in Eq. (1.20). Now,

ρdilhom = ρm ·

[
I +

8

3

∑
j/open

dj nj ⊗ nj

]
(1.35)

Taking this into account, the expression of the effective resistivity tensor for a single
family of cracks comes to:

ρdilhom =

ρm +
8

3
d ρm n⊗ n , if cracks are open

ρm , if cracks are closed
(1.36)
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It should be noted that, according to the boundary condition, dilute approximation leads
to different representation of the thermal behaviour in the open state of cracks, λdilhom 6=
(ρdilhom)−1. A similar result is obtained in elasticity as well. Yet, effective conductivity
and resistivity are obviously inverse of each other for the closed state of cracks, λdilhom =

(ρdilhom)−1, while in this case strain-based or stress-based formulations of elasticity still
remain different (Dormieux and Kondo 2009, Zhu 2006).

1.4.2 Mori-Tanaka scheme

In this case, the remote conditions correspond to the average heat flux over the matrix
phase (Q∞ = 〈q〉m, Fig. 1.2b) and again, using the average rule, the flux concentration
tensor is given by:

〈B〉MT
c,j = 〈B〉dilc,j ·

[
fm I +

N∑
k=1

fc,k 〈B〉dilc,k

]−1

(1.37)

Introducing Eq. (1.37) in Eq. (1.14) finally gives:

ρMT
hom = ρdilhom (1.38)

From Eqs. (1.24), (1.35) and (1.38), it is clear that the Mori-Tanaka approach leads to
the same predictions under gradient or flux conditions (see also Appendix A.6.2), both
for open and closed microcracks, i.e. λMT

hom = (ρMT
hom)−1. The same conclusion has been

drawn for elastic properties too (Dormieux and Kondo 2009, Zhu 2006).

1.4.3 Ponte Castañeda–Willis lower bound

As inspired by Ponte Castañeda and Willis (1995), Dormieux and Kondo (2009) derived a
variational stress-based lower bound for the effective compliance using an energy approach.
Similar to this work, the thermal resistivity can thus be given as:

ρPCWhom =

(
I−

N∑
j=1

fc,j Mc,j ·Qd
c

)−1

·

(
I +

N∑
j=1

fc,j Mc,j · λm ·Pd
c · λm

)
· ρm (1.39)

From Eqs. (1.27) and (1.39), we can observe the equivalence between the upper and lower
PCW bounds, since λPCWhom = (ρPCWhom )−1. As for the gradient-based bound, the above
estimate can be interpreted through the following concentration tensor:

〈B〉PCWc,j = 〈B〉dilc,j ·

(
fm I +

N∑
k=1

fc,k

[
I +

(
QE
k −Qd

c

)
·
(
ρc,k − ρm

)]
· 〈B〉dilc,k

)−1

(1.40)

Sharan Raj RANGASAMY MAHENDREN 31



CHAPTER 1. HOMOGENIZED THERMAL CONDUCTION PROPERTIES IN 3D

Taking into account the spatial distribution adopted in Eq. (1.28), the flux-based PCW
bound leads to the following effective thermal resistivity (Appendix A.6.3):

ρPCWhom =

[
I +

(
4

3
π

N∑
j=1

dj Tj

)
·

(
I− 8

9
π

N∑
j=1

dj Tj

)−1]
· ρm (1.41)

After introducing Eq. (1.20), we get:

ρPCWhom =

[
I +

(
8

3

∑
j/open

dj nj ⊗ nj

)
·

(
I− 16

9

∑
j/open

dj nj ⊗ nj

)−1]
· ρm (1.42)

For a single family example considered throughout the study, the above equation comes
to:

ρPCWhom =


ρm +

8

3
d ρm

1

1− 16d
9

n⊗ n , if cracks are open

ρm , if cracks are closed
(1.43)

which again tends to dilute case (Eq. (1.36)) for d → 0. Potential equivalences and
between the schemes and their results can be seen in Appendix A.7.

1.5 Discussion

We propose to highlight the consequences of microcracks on thermal properties through
the case of a matrix with a single family of parallel cracks, for which closed-form expres-
sions of dilute and Mori-Tanaka estimates and variational bounds have been provided in
the text.

For the open cracks, we note that the material exhibits a damage-induced anisotropy,
irrespective of the scheme or boundary conditions. To be precise, the effective thermal
properties are transversely isotropic around axis n of cracks (see Eqs. (1.22), (1.25)
and (1.32) and Eqs. (1.36), (1.38) and (1.43)). Especially, conductivity (respectively
resistivity) is mostly degraded (resp. enhanced) along the direction orthogonal to the
cracks surface, which is consistent with adiabatic conditions on the cracks lips. As an
illustration, Fig. 1.3 presents the rose diagrams of the generalized scalar conductivity
λ(v) and resistivity ρ(v) in the direction of unit vector v respectively defined by:

λ(v) =
v ·Q
v ·G

and ρ(v) =
v ·G
v ·Q

(1.44)

when the material is subjected to uniform temperature gradient G = Gvv and to uniform
flux Q = Qvv respectively. Introducing overall conductivity and resistivity tensors thus
gives:

λ(v) = v · λhom · v and ρ(v) = v · ρhom · v (1.45)

On the contrary, we note that closed cracks do not contribute to the degradation or en-
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Open cracks – Dilute

Unit circle / Closed cracks – Dilute, MT 
& PCW

Open cracks – MT

Open cracks - PCW

(a)
λ(v)

λm

Unit circle / Closed cracks – Dilute, 
MT & PCW

Open cracks – Dilute & MT
Open cracks – PCW

(b)
ρ(v)

ρm

Figure 1.3: Generalized thermal conductivity λ(v) and resistivity ρ(v) normalized by
their initial values for a material weakened by a single family of parallel microcracks of
unit normal n (cracks density d = 0.1).

hancement of thermal conduction properties. This result is true regardless of the scheme,
boundary conditions, fictitious properties (λ∗, ρ∗) or considered direction v. Indeed, in
all cases, effective conductivity and resistivity in any direction recover their initial value
(of the virgin material) at the closure of microcracks, i.e.:

λ(v) = λm and ρ(v) = ρm , ∀ v, if cracks are closed (1.46)

This means that the continuity of heat transfer is fully ensured when microcracks are
closed, with a conduction response equal to that inside the homogeneous isotropic (virgin)
matrix. Such a conclusion clearly differs from the results micromechanically established
for elastic properties. Indeed, under frictionless conditions, closure of cracks leads to a
partial recovery of mechanical properties. Considering for instance the Young modulus
E(v) = [v ⊗ v : S : v ⊗ v]−1 (resp. the elongation modulus L(v) = [v ⊗ v : C : v ⊗ v])
with S the compliance tensor (resp. C the stiffness tensor) for a stress-based formulation
(resp. for a strain-based formulation), it has been demonstrated that closed cracks do not
influence the Young modulus E(n) (resp. the elongation modulus L(n)) in the direction n

normal to the cracks but still remain active for others directions (Welemane and Cormery
2002, Goidescu et al. 2013). The complete damage deactivation for heat conduction
properties can be attributed to the lesser complexity of the problem itself and also to
the simple definition of the depolarization tensor. Compared to elastic case, Eshelby-like

Sharan Raj RANGASAMY MAHENDREN 33



CHAPTER 1. HOMOGENIZED THERMAL CONDUCTION PROPERTIES IN 3D

tensor SE for conduction behaviour (Eq. (1.15)) contains only basic information, as it is
of the second order, symmetric and depends only on the aspect ratio ω and orientation n

of the crack (no dependency on the matrix properties like the Eshelby tensor does in the
elastic case for instance).

At last, it seems relevant to compare the homogenization estimates according to the
microcrack density parameter. Conclusions for the closed state of microcracks are obvious
since in all cases thermal properties are not affected by the defects. On the other hand, the
open state shows some significant differences between dilute and Mori-Tanaka estimates
and PCW variational bounds of conductivity, especially as crack density increases (Fig.
1.4a). Yet, similarly to compliance in elasticity, the Mori-Tanaka formulation coincides
with the dilute case for resistivity (Eq. (1.38)). This is due to the combination of both
the spatial crack distribution considered by MT (corresponding to Eshelby distribution)
and the specific thermal resistivity of open crack (ρc → ∞). Such point is confirmed by
the evolution of the lower bound established in Dormieux and Kondo (2009) which clearly
differs from both previous schemes. Fig. 1.4b illustrates the significant role of interactions
in the resistivity prediction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Dilute Mori-Tanaka Ponte Castañeda-Willis

(a)
λ(n)

λm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

3

6

9

Dilute & Mori-Tanaka Ponte Castañeda-Willis

(b)
ρ(n)

ρm

Figure 1.4: Predictions of homogenization estimates and bounds for the generalized
thermal conductivity λ(n) and resistivity ρ(n) for a material weakened by a single family
of open parallel microcracks of unit normal n.

1.6 Conclusion

In this chapter, the effective conduction properties were analyzed by three different ho-
mogenization techniques. Open cracks do have varied influence based on the technique
but the properties are always anisotropic (transversely isotropic for a single family of
cracks). We also see that the spatial distribution of cracks plays an important role in
predicting the behaviour of the microcracked media. Regarding the unilateral behaviour,
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results show that the closure of cracks leads to a total deactivation of their effects on
the thermal conductivity and resistivity of the material, irrespective of homogenization
methods (taking into account or not interactions between microcracks) or boundary con-
ditions. Without experimental data, the choice has been made to compare theoretical
results to numerical simulations. This comparison is discussed in the following chapter.
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Chapter 2

Thermal conductivity in 2D: theoretical
and numerical approaches

Abstract

The objective of this chapter is to compare the effective conductivity of a
microcracked media either derived from theoretical or numerical results.
For simplicity, the 2D case is considered here. The theoretical approach
uses the same Eshelby’s equivalent inclusion method used in Chapter 1.
Applying a uniform temperature gradient allows for finding the overall
conductivity of an isotropic media containing a single family of parallel
microcracks. The numerical work uses FEM in ABAQUS to evaluate the
same configuration as the theoretical one and allow us to compare with
the micromechanical results. Both approaches consider non-conductive
open cracks and conductive closed cracks.

Present chapter corresponds to the published research paper (Rangasamy Ma-
hendren et al. 2020a) [Mechanics & Industry; 21: 519 (2020)].
A self-consistent notation is adopted.
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CHAPTER 2. THERMAL CONDUCTIVITY IN 2D: THEORETICAL AND NUMERICAL
APPROACHES

2.1 Introduction

Defects have an influence on the macroscopic behaviour of a material, each on a different
scale. The overall behaviour of the material can be characterized by its microstructure.
This transition from micro-to-macro can be modelled using averaging techniques (homog-
enization) in order to derive the effective properties of a material.

Homogenization studies often concentrate on the elastic behaviour of a micro-cracked
material. In so-called direct methodology, cracks are represented as material discontinu-
ities with parallel faces. The displacement jumps induced by the cracks allow deriving their
contribution to the overall response. For instance, Kachanov (1993) and Nemat-Nasser
and Hori (1993) have provided effective stiffness expressions for arbitrarily oriented micro-
cracks. Eshelby’s equivalent inclusion method (Eshelby 1957) also offers relevant solutions
when considering cracks as flat ellipses (in 2D) or ellipsoids (in 3D). For instance, Mura
(1987) has studied various ellipsoidal limit cases and Mori and Tanaka (1973) have en-
hanced the representation to the case of multiple interacting inhomogeneities. Note that
energy-based bounds developed by Ponte Castañeda and Willis (1995) allow accounting
for different spatial cracks distribution.

Based on the physical analogy with elasticity (as in pioneering works of Bristow 1960,
see also Torquato 2002), some authors have extended these modelling approaches to ther-
mal, electrical and permeability properties of cracked media (Wang and Jiang 2003, Sævik
et al. 2013, Sevostianov and Kachanov 2019). For steady-state heat conduction, Sevos-
tianov (2006) and others (Vu et al. 2015, Tran et al. 2018) apply the direct methodol-
ogy based on temperature jump across insulating crack lips. For Hoenig (1983), Hatta
and Taya (1986), Benveniste and Miloh (1989) and more recently Shafiro and Kachanov
(2000), the equivalent inclusion method appears again as a key issue. While several stud-
ies account for the arbitrary value of matrix/inclusion conductivity and arbitrary crack’s
orientation or shape, most of the existing papers generally provide thermal conductivity
of microcracked media in the non-interacting case. Nguyen et al. (2017) give closed-form
expression for different schemes but consider only one orientation of the crack. Never-
theless, that is not the only challenge. Opening or closing of microcrack (also known as
unilateral effect) can have a different influence on the material, in turn on the overall
properties. Consequences of both induced anisotropy and unilateral effect on the elastic
problem have been studied by few authors (Kachanov 1993, Deudé et al. 2002), but the
same cannot be said for the heat conduction problem.

The modelling of the steady-state behaviour within microcracked media can also be
achieved through numerical simulation. Carson et al. (2003) apply Finite Element Method
(FEM) to find the conductivity of non-insulated porous of various shapes and sizes, while
Tang et al. (2012) propose a similar modelling for concrete with conductive heterogeneities.
Shen et al. (2015) use a plastic damage model to create cracks under tensile load and then
consider steady-state conduction to find the conductivity of the microcracked concrete
with high aggregate volume. One can cite also works of Tran et al. (2018) based on
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an adaptive scheme Boundary Element Method (BEM) to find conductivity of a domain
containing several cracks. Once again, we note that the crack orientation and unilateral
effect are not given enough attention.

The present work intends to propose an Eshelby-like modelling approach for the
steady-state heat transfer in a 2D microcracked medium. The effective thermal con-
ductivity is derived based on the geometry of cracks considered as thin aspect ratio inclu-
sions, and on the relevant choice of cracks properties according to their status (open or
closed). The theoretical basis of the 2D linear thermal problem is stated in Section 2.2.
As a demonstration, for different estimations (dilute and Mori-Tanaka schemes and Ponte
Castañeda-Willis bound), closed-form expressions for a single-family of parallel cracks are
presented in Section 2.3. In addition to the analytical solution, we also propose a numer-
ical analysis of the thermal problem by means of finite element simulations. Modelling
and description of the simulated area are given in Section 2.4. The results obtained from
micromechanics and numerical simulation are finally compared and discussed in Section
2.5.

2.2 Theoretical Framework

We use the same framework used in Chapter 1 but for a 2D RVE (Fig. 2.1a). The cracks
are modelled as a flat oblate ellipse (mean semi-axes a and c with c� a; Fig. 2.1b) with
unit normal n and 2D volume fraction fc = π d ω (see Appendix B.1). Here d = Na2 is
the scalar crack density (N is the number of cracks per unit area) as defined by Budiansky
and O’Connell (1976) and ω = c/a� 1 is their mean aspect ratio.

The depolarization tensor SE and its factors are given in Torquato 2002 (also see
Appendix B.2). In our case, the said tensor for a flat oblate ellipse can be given as:

SE (ω) =
1

1 + ω
n⊗ n +

ω

1 + ω
(I− n⊗ n), ∀ ω � 1 (2.1)

(a) (b)

Figure 2.1: (a) RVE with single family of parallel microcracks, (b) crack geometry.
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2.3 Calculation of the effective thermal conductivity

We impose a uniform macroscopic thermal gradient G at the outer boundary δΩ of the
RVE. This is similar to the classical strain-based formulation in elasticity. As a first,
we will estimate the effective conductivity through different schemes and bounds. For a
single family of cracks, Eq. (1.13) can be rewritten as

λhom = λm + fc (λc − λm) · 〈A〉c (2.2)

When there is a dilute concentration of cracks (small d), it is considered that there is no
interaction between them. The remote condition in this case can be given by G∞ = G.
Hence, the localization tensor can be given by:

〈A〉dilc =
[
I−

(
1− ξ

)
SE

]−1

with ξ =
λc
λm

(2.3)

Substituting (2.3) in (2.2), we get the general expression:

λdilhom = λm ·
[
I− π d R

]
(2.4)

where tensor R is defined as:

R (ω, ξ) = ω
(
1− ξ

) [
I− SE

(
1− ξ

)]−1

, ∀ ω � 1,∀ ξ (2.5)

The above equation is valid for all the mean aspect ratio ω � 1 and all the ratio ξ of
scalar conductivity between defects and matrix. The present study focuses on the case of
flat ellipse-shaped microcracks (c� a) for which aspect ratio tends to zero. Besides, we
intend to account for different crack status:

• open cracks: one has λc = 0, so ξ = 0 and R (ω → 0, ξ = 0) = n⊗ n,

• closed crack : one has λc = λ∗ 6= 0, so ξ 6= 0 and R (ω → 0, ξ 6= 0) = 0.

Accordingly (2.4) can be simplified into:

λdilhom =

λm ·
[
I− π d n⊗ n

]
, if cracks are open

λm , if cracks are closed
(2.6)

When we are to consider some interactions between cracks, the Mori-Tanaka scheme
may provide an interesting solution (Mori and Tanaka 1973). The boundary condition
here is given by G∞ = 〈g〉m and the localization tensor reads:

〈A〉MT
c = 〈A〉dilc ·

[
(1− fc) I + fc 〈A〉dilc

]−1

(2.7)
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This leads to:
λMT
hom = λm ·

[
I + π dR

]−1

(2.8)

As before, the specific behaviour of flat cracks according to their status gives the following:

λMT
hom =

λm ·
[
I− π d 1

1 + π d
n⊗ n

]
, if cracks are open

λm , if cracks are closed
(2.9)

Ponte Castañeda-Willis developed an energy-based upper bound to find effective
stiffness (Ponte Castañeda and Willis 1995). This bound takes into account the shape of
the inclusion (through SE) and also the spatial distribution of cracks through an additional
tensor Sd. The simplified localization tensor can be given by:

〈A〉PCWc = 〈A〉dilc ·
(

I + fc
(
1− ξ

)
Sd · 〈A〉dilc

)−1

(2.10)

For simplicity, a circular spatial distribution is adopted, for which Sd =
1

2
I. Now Eq.

(2.2) can be written as:

λPCWhom = λm ·

[
I− π dR ·

(
I +

π d

2
R

)−1
]

(2.11)

Based on the state of the flat defects, one gets:

λPCWhom =


λm ·

[
I− π d 1

1 + π d
2

n⊗ n

]
, if cracks are open

λm , if cracks are closed
(2.12)

Note that PCW bound will provide the same result as dilute and MT schemes when no
spatial distribution is considered for the former and elliptical distribution for the latter.
Similar developments for effective thermal resistivity can be found in Appendix B.3.

Some main comments can be made regarding these theoretical developments. First,
the three modelling approaches show crack induced anisotropy for open cracks. Yet, Eqs.
(2.6), (2.9) and (2.12) provide different expressions of the effective conductivity tensor
through the tensorial term n⊗ n. We also observe that as d→ 0, all estimations lead to
the same result which corresponds to the matrix conductivity

(
λdilhom,λ

MT
hom,λ

PCW
hom → λm

)
.

On the other hand, we observe a complete deactivation of microcracking when the defects
are closed

(
λdilhom = λMT

hom = λPCWhom = λm
)
. Fig. B.1a in Appendix B.3 shows the prediction

of the effective thermal properties for increasing crack density.
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2.4 Numerical simulations

In the following, numerical simulations are performed using finite element software
ABAQUS. (t,v) denotes an orthonormal coordinate system. The simulated area A is
a square (size L = 1 m) that follows steady-state heat conduction. The matrix is de-
signed as an unit 2D shell with its own scalar conductivity λm. Assuming there are

N = 10 cracks in the area, the radius of the crack can be given by a = 2

√
d

N
. In what

follows, the range of considered density is less than 0.1, therefore, the maximum value of
crack radius is 0.1 m.

Cracks are usually represented as seams for the open state (duplicated nodes). Yet,
this cannot account for the heat transfer during crack closure. So, the crack is modelled
here as an elliptical inclusion (created as a partition on the 2D shell) with normal n

and scalar conductivity λc. Since creating a crack with zero aspect ratio is not possible
(Ωc = 0), the cracks are designed with an aspect ratio 0 6= ω � 1 (so fc � 1). For a given
fc, the value of the scalar conductivity λc determines if the cracks are open (λc = 0) or
closed (λc = λ∗ 6= 0). Such a description of the crack geometry and the unilateral effect
is in line with the theoretical framework used in Section 2.2. The cracks are positioned
inside the simulated area using circular spatial distribution (in agreement with spatial
distribution assumed for PCW bound). Since we want to study the influence of the
crack’s orientation on conductivity, further simulations are done by rotating the whole
group of cracks which maintains a constant distance between them for all orientations. To
be precise, the so-called Reference Configuration (RC) corresponds to the distribution of
cracks rather grouped near the centre of A to reduce edge effects (Fig. 2.2). While keeping
the circular spatial distribution, other configurations are also studied in the following to
show the influence of cracks location.

The generalized scalar conductivity of a material λ(v) related to the direction of unit
vector v is given in the left part of Eq. (1.44) when the material is subjected to uniform

(a) (n,v) = 0◦ (b) (n,v) = 45◦

Figure 2.2: Simulated area showing spatial distribution of cracks for the Reference
Configuration (RC).
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temperature gradient G = Gv v. For the numerical model, zero flux condition is imposed
on the left and right edges (with outer normals ± t) of area A. At the same time,
temperatures T1 and T2 (∆Tv = T1 − T2 > 0) are applied respectively on the top and
bottom edges (with outer normals± v) of the cell; the temperature on each side is uniform.

Such latter boundary condition, namely temperature gradientG = Gv v =
∆Tv
L

v, creates
an overall heat flux Q (= Qt t +Qv v) inside the simulated area. On a global point of
view, the two edges with zero flux act as adiabatic walls, allowing the heat flux Q to
be mainly oriented along the v direction. From definition (1.44), the numerical effective
conductivity in direction v is then provided by:

λnum(v) =
Qv

Gv

(2.13)

where Qv is the average heat flux along the v direction. It can be calculated as

Qv =
1

L

∫ L

0

HFL2 dt with HFL2 being the heat flux density in v direction along the

path on the top/bottom edge. Alternatively, Qv can be found using Reaction Flux RFLi
calculated on each node i on the top/bottom edge when considering unit dimension in

the transverse direction, i.e. Qv =
1

L

n∑
i=1

RFLi.

The finite element type used for both the matrix and crack is quadratic triangular
DC2D6 (see Fig. 2.3 for RC; (n,v) = 45◦). Fixing 100 elements inside each crack, the in-
fluence of the size of the matrix elements on the heat flux has been studied
(Tab. 2.1). We have used a very fine mesh to prevent improper scattering of the flux
around the crack tips. In that case, the model has approximately 73500 elements and
148000 nodes including 201 nodes on the outer edges. Note that the computation time

(a) Global mesh (b) Magnification around a crack tip

Figure 2.3: Simulated area mesh (RC; (n,v) = 45◦).
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Table 2.1: Influence of matrix element size on the average heat flux Qv

(RC; (n,v) = 0◦)

Size of the matrix elements 0.1 0.05 0.025 0.01
Total no of elements 13804 42950 52976 73466
Heat flux Qv, W.m−2 10484.4 10468.1 10468.0 10468.4

remains acceptable (less than a minute). Moreover, estimations of λnum(v) obtained for
different cracks distributions have been compared for the most critical case, i.e. (n,v) = 0◦

(Fig 2.4). From Tables 2.2 and 2.3, it is observed that cracks distribution and number
of cracks (refer to Fig. 2.5 for configurations with different number of cracks) have no
major influence on the resulting conductivity. Accordingly, the RC with 10 cracks will be
considered for all further simulations done in the study.

(a) Reference Configuration (b) Configuration 1 (c) Configuration 2

Figure 2.4: Influence of cracks position for (n,v) = 0◦.

Table 2.2: Influence of cracks distributions ((n,v) = 0◦)

Configuration λnum/λm Deviation w.r. RC
Reference configuration (RC) 0.727 -
Configuration 1 0.730 0.47 %
Configuration 2 0.732 0.66 %

Table 2.3: Influence of number of cracks ((n,v) = 0◦)

No. of cracks Qv, W.m−2 Deviation w.r. 10 cracks
1 10423.9 2.63 %
2 10885.9 1.73 %
5 10553.6 1.36 %
10 10697.6 -
15 10790.4 0.86 %
20 10677.1 0.29 %
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(a) 1 crack (b) 2 cracks (c) 5 cracks

(d) 10 cracks (e) 15 cracks (f) 20 cracks

Figure 2.5: Configurations with different number of cracks ((n,v) = 0◦)

As first illustration, Fig. 2.6 shows the heat flux vector at integration points for
density d = 0.1 (RC; (n,v) = 45◦). For the open case (λc = 0,Fig. 2.6a), the cracks act
as a thermal barrier according to the adiabatic behavior on their lips, whereas, for the
closed case (λc = 50% λm,Fig. 2.6b), heat transfer exhibits continuity.

(a) Open crack (b) Closed crack (λ∗ = 50% λm)

Figure 2.6: Heat flux vectors at integration points inside the simulated area (RC;
(n,v) = 45◦; d = 0.1; a = 0.1 m;ω = 0.001).
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2.5 Results and discussion

This section intends to compare theoretical developments and FE numerical simulations.
From (1.44) and (1.6), the theoretical scalar conductivity λ(v) comes to:

λth(v) = v · λhom · v (2.14)

This can be estimated for different schemes (th = {dil,MT, PCW}) and compared to
λnum(v).

Recalling previous results from Section 2.3, open cracks contribute to the degradation
of the thermal conductivity, mainly along the direction n normal to the crack surface.
This case is true for the simulations as well (Fig. 2.7). Both the theoretical and simulated
results show us damage-induced anisotropy irrespective of the scheme or crack density. As
pointed out earlier, for the theoretical models, we see that as d→ 0, λdilhom ≈ λMT

hom ≈ λPCWhom

(d = 0.1 in Fig. 2.7a, d = 0.05 in Fig. 2.7b). This can be attributed to the fact that as
d decreases, the size of the crack decreases (respectively from a = 0.1 m to a = 0.07 m),
making the interaction between the cracks less influential and, at one point, there is no
interaction between the cracks essentially leading to a dilute configuration. We also see
that as the crack becomes smaller, so does its influence on the conductivity (λ(n) ≈ 0.73
λm for a = 0.1 m whereas λ(n) ≈ 0.86 λm for a = 0.07 m). Fig. 2.7 also illustrates
the consistency between the theoretical and simulated results. It is interesting to observe
that for lesser angles (n,v) < 45◦, simulated results tend towards PCW and for higher
angles, they approach the dilute case. Indeed, interactions are greater when the cracks
are mostly orthogonal to the heat flux. But, if cracks tend to be aligned with the direction
of the temperature gradient then the influence of cracks decreases and heat flux is less
disturbed, tending to the dilute case (Fig. 2.8).
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(b) d = 0.05 (a = 0.07 m)

Figure 2.7: Generalized thermal conductivity λ(v) in 2D normalized by its initial value
for a material weakened by a single array of parallel open microcracks of unit normal n.
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(a) (n,v) = 0◦ (b) (n,v) = 30◦

(c) (n,v) = 60◦ (d) (n,v) = 90◦

Figure 2.8: Heat flux vectors at integration points for various orientations of open
cracks (RC; d = 0.1; a = 0.1 m;ω = 0.001).

On the other hand, dilute, Mori-Tanaka and PCW approaches show that closed cracks
do not contribute to the degradation of conductivity (see Eqs. (2.6), (2.9) and (2.12)),
i.e. the effective conductivity in any direction is recovered to its initial value at the cracks
closure. So the generalized scalar conductivity in unit direction v for closed cracks can
be given as: λ(v) = λm, ∀ v. Just like the open crack, simulated and theoretical results
are consistent for the closed crack (Fig. 2.9). We also see that the former has only a
negligible amount of degradation of thermal conductivity (less than 0.035% for d = 0.1

and less than 0.02% for d = 0.05 when considering λ∗ = 50% λm).
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Figure 2.9: Generalized thermal conductivity λ(v) in 2D normalized by its initial value
for a material weakened by a single array of parallel closed microcracks of unit normal n
(RC;λ∗ = 50% λm).
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Figure 2.10: Normal thermal conductivity λ(n) in 2D normalized by its initial value
for various aspect ratios (d = 0.1; a = 0.1 m); points represent simulation results (RC);
log10 scale is used for abscissa.

From Eqs. (2.6), (2.9) and (2.12), we know that the theoretical results are not a func-
tion of the aspect ratio ω since they all correspond to the limit case ω → 0

(
λdilhom,λ

MT
hom

and λPCWhom only depend on λm, d and n
)
. But as discussed earlier, it is not possible to

simulate an ellipse with zero aspect ratio. So it seems natural to study the influence of
the aspect ratio on the simulated results. Since the maximum degradation is along the
direction n normal to the crack, we intend to focus only on λ(n). Fig. 2.10a corresponds
to open crack and Fig. 2.10b corresponds to closed crack with fixed values of dilute, MT
and PCW denoted as reference. In both cases, the simulated results are really sensitive
to the aspect ratio ω and get closer to the PCW bound when ω → 0. Especially in
the closed case, the simulations tend to the full recovery of λ(n), same as the theoret-
ical models. Note that all the simulations linked to varying aspect ratio are performed
by varying the crack thickness c and keeping the crack density d and radius a as constants.
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Figure 2.11: Influence of scalar conductivity λ∗ on the normal thermal conductivity
λ(n) in 2D normalized by its initial value (RC; d = 0.1; a = 0.1 m); log10 scale is used for
abscissa.

Also, the theoretical results for the closed case do not depend on the fictitious scalar
conductivity λ∗. This may not be true for the simulations. So, a series of simulations were
performed with varying λ∗ and for different aspect ratios (d and a are still constants).
The values for λ∗ are given as a proportion of λm such that λ∗ = α λm with α = {1,
5, 10, 25, 50, 80, 100}[%]. Fig. 2.11 shows that there is a clear influence of the scalar
conductivity λ∗ on the numerical thermal conductivity. For α ≤ 10%, we see a drastic
decrease in the conductivity, this is due to the fact that we are slowly approaching the
open case (α = 0). We also observe that as ω → 0 the influence of λ∗ diminishes and
representation of closed cracks by means of an ellipse with fictitious scalar conductivity
λ∗ becomes independent of the λ∗ value, just like the theoretical results.

2.6 Conclusion and perspectives

The consistency of theoretical and numerical results have been demonstrated through the
following points. For open cracks, we observe that the microcracked medium exhibits an
induced anisotropy with the major degradation of the conductivity in the direction normal
to the cracks. Also, the increase in cracks density accentuates the differences between the
estimates (Fig. B.1a). We note that the simulations results are close to PCW results. On
the other hand, cracks closure leads to the deactivation of their related effects on thermal
properties. Finally, the sensitivity of numerical results based on the aspect ratio of defects
and scalar conductivity of closed defects has been shown.
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Chapter 3

Thermoelastic properties in 3D

Abstract

Chapters 1 and 2 were focused on the pure thermal problem. In order to
completely account for the thermomechanical issues, it is imperative to
study thermoelasticity as well. Homogenization of microcracked media is
largely dedicated to the determination of the effective elastic properties.
Accounting for thermomechanical cases, extension of such approach to
thermoelastic behaviour is not investigated much. Within the classical
homogenization framework, this chapter aims at implementing several
micromechanical techniques to establish the closed-form expressions of
effective thermoelastic properties of a microcracked medium (thermal
tensors and specific heat capacities). These expressions have not been
explicitly provided before in the literature and may provide some rele-
vant elements for the experimental or numerical study of the thermome-
chanical behaviour of brittle materials. This work considers randomly
distributed microcracks and specially accounts for the influence of the
unilateral effect (opening and closure of cracks) on the said properties.
The theoretical representations are obtained using the dilute and Mori-
Tanaka schemes and Ponte Castañeda-Willis bounds, either using strain
or stress boundary conditions.

Present chapter corresponds to the submitted research paper (Rangasamy Ma-
hendren et al. 2020b) [Euro. J. Mech. A/Solids; submitted].
A self-consistent notation is adopted.
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3.1 Introduction

Most of brittle materials initially exhibit several microcracks at the microstructural level
due to their manufacturing process. For instance, shrinkage in cement-based materials
or cooling phase for high-temperature sintered or brazed ceramics are typical causes for
such degradation. Exposure to thermomechanical loads or any environmental service
conditions may also either create or increase the amount of these defects. In all cases, the
presence of microcracks have a significant influence on the materials overall properties and
more generally on the structures behaviour. Investigation of the effective properties of
microcracked media thus appears as really important for several industrial applications.

Estimations of random microcracked media elastic properties by means of homoge-
nization models abound in the literature Mura (1987), Nemat-Nasser and Hori (1993),
Dormieux and Kondo (2016). Mean field theories provide the average strains (resp.
stresses) in each phase, and in turn the relationship between micro and macroscopic quan-
tities and effective stiffness (resp. compliance) (Hill 1963 1965). Precisely, the eigenstrain
method (also called Eshelby’s equivalent inclusion method) offers a relevant framework to
account for the structural morphology of heterogeneous media. Solutions rely on the in-
clusion and inhomogeneity problems as reported by Eshelby (1957). Cracks are treated as
flat ellipsoidal cavities embedded in an infinite matrix subjected to uniform macroscopic
boundary conditions. The most widely used model is undoubtely the dilute scheme, de-
veloped for low levels of microcracking density (Nemat-Nasser and Hori 1993, Kachanov
1993). When considering interactions between cracks, one can briefly mention several
approximate schemes : self-consistent (Budiansky and O’Connell 1976, Horii and Nemat-
Nasser 1983), differential (Hashin 1988, Zimmerman 1985), Mori-Tanaka (MT) (Mori and
Tanaka 1973, Benveniste 1987) and effective fields methods (Kanaun 1980) or models
based on Maxwell’s theory (Sevostianov and Giraud 2013). Upper and lower bounds
of overall elastic properties have also been derived using variational energy approaches
(Ponte Castañeda and Willis 1995, Dormieux and Kondo 2009). It is worth noting that
the effective properties not only depend on the matrix properties and the damage density
but also on the shape and spatial distribution of the cracks. Above-mentioned methods
take into account spatial distribution differently. For example, the MT scheme assumes
a distribution identical to the shape of the inclusion whereas the Ponte Castañeda-Willis
(PCW) bound allows one to choose the spatial distribution (ellipsoidal, spherical, etc.)

Another challenge in finding the effective properties is the microcracks unilateral ef-
fect. Depending on whether they are open or closed (due to tension or compression local
loads), the microcracks contribution to the materials behaviour differ, leading in particu-
lar to a recovery (partial or total) of the effective properties at the closure of microcracks
(Reinhardt 1984, Morvan and Baste 1998). The simultaneous account of such specific
feature with arbitrarily orientation of defects and related induced anisotropy is even a
more complex task (Chaboche 1992, Cormery and Welemane 2002). As many practical
issues require the proper modelling of these phenomena, homogenization appears again
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as an essential tool for predicting the resulting anisotropic multilinear elasticity of micro-
craked media. In direct approaches, microcracks are considered as discontinuous plane
surfaces. Then special recourse is made to solutions from classical fracture mechanics
(so-called Griffith crack problem) to determine displacement jumps between their lips
(Kachanov 1993, Andrieux et al. 1986, Pensée and Kondo 2001, Goidescu et al. 2013).
Although opening and closing of cracks are naturally treated through the modification of
displacement discontinuities, such modelling option is most often limited to the case of
non-interacting defects. This motivates the application of the eigen strain method and
the representation of cracks as the limit case of thin ellipsoidal inclusions with aspect ratio
tending to zero. In that case, while the open status of cracks can naturally be accounted
as an inclusion with zero elasticity, some questions arise for the closed state. Deudé et al.
(2002) suggest to design the latter case as a fictitious isotropic material with same bulk
modulus as the matrix and zero shear modulus. This reflects the ability of frictionless
cracks to transfer only normal stresses at their closure. As said before, the main interest
of such Eshelby approach stands in the possible extension to the case of interacting cracks
by means of aforementioned estimation schemes and variational bounds (Dormieux and
Kondo 2009).

From this, it can be said that linear elasticity has been studied extensively both
for composite materials and microcracked media. Yet, cracks are known to affect also
thermo-elastic, electric, magnetic, diffusive and conductive properties as well. Existing
homogenization framework can be applied to derive the said properties (Wang and Jiang
2003, Dormieux et al. 2006, Su et al. 2008, Sevostianov and Kachanov 2019, Chapter 1)
The case of thermoelasticity, and specially thermostatics (systems at uniform tempera-
ture), is closely linked to elasticity. Hence, thermoelastic effective properties of composite
materials have long been established in the spirit of Hill’s theory (Hill 1963 1965). Since
pioneering works of Levin (1967), Rosen and Hashin (1970), Laws (1973), extensive re-
search has been done on this topic (see references books of Torquato 2002, Buryachenko
2007, François et al. 2012) and both approximations of effective properties and energetic
bounds have been derived and compared (Karch 2014, Böhm 2019). For the special case
of two-phase composites, the so-called Levin’s theorem (Levin 1967) (see also Rosen and
Hashin 1970, Laws 1973) even allows the calculation of thermoelastic effective properties
directly in terms of effective elastic ones.

Considering microcracks as a special case of thin inclusions, it is known that expres-
sions of the overall thermal properties for brittle materials can be computed by the same
methodologies as for the composites. Moreover, the important research on elasticity for
these materials has often been considered sufficient to cover the thermoelastic behaviour
simultaneously. This explains why studies are very scarce when it comes to effective
thermoelastic properties of materials with crack-like inclusions. However, homogenized
expressions, that have not been explicitly given before in the literature, may be useful for
the study of the thermomechanical behaviour of brittle materials by allowing comparisons
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with experimental or numerical studies.

This work thus intends to implement homogenization techniques for 3D microcracked
media and derive closed-form expressions of their effective thermoelastic properties for sev-
eral classical models. Considering both strain and stress-based formulations, this study
accounts for the case of an isotropic matrix weakened by arbitrarily oriented microcracks.
Attention is also paid to the open or closed status of cracks and their different influence
on the overall properties. Such representation of the specific unilateral behaviour of crack
defects is an important contribution of the work. After a short recall of the theoretical
framework (Section 3.2), this paper provides analytical expressions of effective thermoe-
lastic strain-based (Sections 3.3, 3.4 and 3.5) and stress-based (Section 3.6) properties for
several estimation approaches based on eigenstrain homogenization method. The different
models implemented take into account (Mori-Tanaka scheme and Ponte Castañeda-Willis
bound) or not (dilute scheme) some interactions between microcracks.

3.2 Theoretical Framework

3.2.1 Homogenenization of heterogeneous media

The present work deals with infinitesimal thermoelastic transformations. Considering the
strain tensor ε and absolute temperature T as observable variables and assuming an initial
(ε0 = 0, T0) natural state, the specific free energy (per unit volume) of the medium can
be expressed as (Germain et al. 1983, Maitournam 2017):

W (ε, T ) =
1

2
ε : C : ε− κ : ε ∆T − 1

2

cε
T0

∆T 2 (3.1)

with C the fourth order stiffness tensor, ∆T = T − T0 the temperature difference, κ
the second order thermal stress tensor and cε the scalar specific heat capacity (per unit
volume) at constant strain. Similarly, it is possible to introduce the complementary
formalism based on the specific free enthalpy (per unit volume):

U(σ, T ) =
1

2
σ : S : σ +α : σ ∆T +

1

2

cσ
T0

∆T 2 (3.2)

where σ denotes the stress tensor, S the fourth order compliance tensor, α the second
order thermal strain tensor (also called dilatation tensor) and cσ the scalar specific heat
capacity (per unit volume) at constant stress. Elastic tensors are inverse of each other,
C : S = I = I ⊗ I (with I and I being the fourth and second order symmetric identity
tensors respectively), while thermal tensors are linked by κ = C : α and cσ = cε+T0 α : κ.
From (3.1) and (3.2), constitutive relations for the thermoelastic medium come to (s the
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entropy and ρ the material density) :

σ = C : ε− κ∆T and s =
1

ρ

(
κ : ε+

cε
T0

∆T

)
(3.3)

and
ε = S : σ +α∆T and s =

1

ρ

(
α : σ +

cσ
T0

∆T

)
(3.4)

Let us consider a 3D Representative Volume Element (RVE, of volume Ω) of a micro-
cracked medium composed of an isotropic matrix material weakened by several families of
microcracks. Boundary conditions applied to the outer boundary δΩ of the RVE are either
uniform macroscopic strain (E imposed at δΩ) or uniform macroscopic stress (Σ imposed
at δΩ), and uniform temperature T 6= T0. Under equilibrium conditions, the macro-
scopic stress Σ (respectively macroscopic strain E) corresponds to the average value of
its microscopic quantity σ (resp. ε) (François et al. 2012, Böhm 2019, Zaoui 2002):

Σ =
1

Ω

∫
Ω

σ dΩ = 〈σ〉 and E = 〈ε〉 (3.5)

and the temperature change ∆T is uniform throughout the RVE. In the present linear
framework, microscopic fields are simply related to boundary data (Hill 1963):

ε(x) = A(x) : E + a∆T or σ(x) = B(x) : Σ + b∆T ∀ x ∈ Ω (3.6)

where A and B (respectively a and b) are the symmetric fourth (resp. second) order
strain localization and stress concentration (resp. thermal strain localization and stress
concentration) tensors, such that

〈A〉 = 〈B〉 = I and 〈a〉 = 〈b〉 = 0 (3.7)

Combination of constitutive laws Eqs. (3.3) and (3.4) with average relations (3.5)
leads to the overall behaviour of the RVE:

Σ = Chom : E− κhom ∆T and 〈s〉 =
1

ρ

(
κhom : E +

cε,hom
T0

∆T

)
(3.8)

and

E = Shom : Σ +αhom ∆T and 〈s〉 =
1

ρ

(
αhom : Σ +

cσ,hom
T0

∆T

)
(3.9)

where Chom (resp. Shom) the effective stiffness (resp. compliance) tensor, κhom (resp.
αhom) the effective thermal stress (resp. thermal strain) tensor and cε,hom (resp. cσ,hom)
the effective specific heat capacity at constant strain (resp. stress). Lets denote Cm,
Sm, κm, αm, cε,m and cσ,m as the stiffness, compliance, thermal stress and thermal strain
tensors and specific heat capacities at constant strain and stress of the matrix respectively,
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and Cc,i, Sc,i, κc,i, αc,i, cε,c,i and cσ,c,i as the stiffness, compliance, thermal stress and
thermal strain tensors and specific heat capacities at constant strain and stress of the ith

(i =1...N) family of parallel cracks respectively. Assuming phase-wise uniform properties,
the effective behaviour of the microcracked RVE can be approximated by means of phase
averages (Zaoui 2002, Ponte Castañeda 2002, Willis 2002, Böhm 2019):

• for elasticity tensors:

Chom = 〈C : A〉 = Cm +
N∑
i=1

fc,i
(
Cc,i − Cm

)
: 〈A〉c,i (3.10)

and

Shom = 〈S : B〉 = Sm +
N∑
i=1

fc,i
(
Sc,i − Sm

)
: 〈B〉c,i (3.11)

• for thermal dilatometric tensors:

κhom = 〈κ− C : a〉 = 〈κ : A〉 = κm +
N∑
i=1

fc,i
(
κc,i − κm

)
: 〈A〉c,i (3.12)

and

αhom = 〈α+ S : b〉 = 〈α : B〉 = αm +
N∑
i=1

fc,i
(
αc,i −αm

)
: 〈B〉c,i (3.13)

• for specific heat capacities:

cε,hom = 〈cε +T0 κ : a〉 = cε,m +
N∑
i=1

fc,i
(
cε,c,i− cε,m +T0 (κc,i−κm) : 〈a〉c,i

)
(3.14)

and

cσ,hom = 〈cσ+T0 α : b〉 = cσ,m+
N∑
i=1

fc,i
(
cσ,c,i−cσ,m+T0 (αc,i−αm) : 〈b〉c,i

)
(3.15)

In Eqs. (3.10)-(3.15), fc,i is the cracks volume fraction of the ith family, 〈·〉r = 1
Ωr

∫
Ωr
· dΩ

denotes the mean value over the volume of the phase r = {m, c} (m for matrix and c for
cracks) and conditions Cr : Sr = I, κr = Cr : αr and cσ,r = cε,r + T0 αr : κr hold for
each phase r. At that point, effective tensors Chom, κhom and cε,hom (derived from strain-
based boundary condition with uniform ∆T ) and Shom, αhom and cσ,hom (derived from
stress-based boundary condition with uniform ∆T ) strictly describe the same equivalent
homogeneous media, so that these tensors follow the relations Chom : Shom = I, κhom =

Chom : αhom and cσ,hom = cε,hom + T0 αhom : κhom.
As demonstrated through Eqs. (3.10)-(3.13), elastic and thermoelastic problems are

closely connected. Within the mean-field framework, the knowledge of elastic cracks local-
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ization 〈A〉c,i and concentration 〈B〉c,i tensors required for the determination of elasticity
tensors Chom and Shom are sufficient for describing the dilatometric tensors κhom and
αhom. Some simplifications arise for two-phase materials. Using Levin’s formulae, one
can express thermal strain localization and stress concentration tensors as functions of
elasticity tensors. The derivation of all thermal quantities (κhom, αhom, cε,hom and cσ,hom)
reduces then to the determination of a purely mechanical problem (Levin 1967, Rosen
and Hashin 1970, Laws 1973, Benveniste and Dvorak 1990, Böhm 2019). When consider-
ing several families of cracks, one has to use thermal strain localization 〈a〉c,i and stress
concentration 〈b〉c,i tensors to evaluate the specific heat capacities at constant strain or
stress respectively (Laws 1973).

3.2.2 Application to the case of microcracks

In the present study, the RVE is made of an initially isotropic homogeneous matrix with
stiffness and compliance given by Cm = 3km J + 2µm K and Sm = 1

3km
J + 1

2µm
K where

km and µm are the bulk and shear modulus of the matrix respectively. Its thermal strain
and thermal stress are given by αm = αm I and κm = κm I (αm is the Coefficient of
Thermal Expansion (CTE), κm = 3kmαm) respectively. Such matrix is weakened by
randomly distributed families of microcracks with random orientation (Fig. 1.1a). Such
defect can be represented as a flat oblate ellipsoid (mean semi-axes a and c, Fig. 1.1b).
For the ith family of parallel microcracks, ni denotes their unit vector normal to the
crack’s plane, ωi = ci/ai as their mean aspect ratio, di = Ni a3

i as the scalar crack density
(Ni is the number of cracks in the ith family per unit volume, Budiansky and O’Connell
1976). Moreover, penny-shaped crack configuration corresponds to the limit case of thin
inclusions, so that the overall behaviour of the microcracked RVE will be established when
considering ωi → 0.

As detailed previously, closed-form expressions of thermoelastic properties can be ob-
tained once localization and concentration tensors (i.e. 〈A〉c,i and 〈B〉c,i resp.) are esti-
mated. Works of Eshelby (1957) on the single inhomogeneity problem developed for an
ellipsoidal inclusion give solution to this problem. Unlike the strain and stress fields, the
temperature is assumed to be uniform on the entire RVE. Also, the displacement and
temperature are assumed to be continuous at the interface (i.e. crack boundary). Indeed,
the strain and stress local fields in the crack can be approximated by their respective
uniform local fields obtained by embedding an ellipsoidal inclusion in an infinite matrix
subjected to uniform macroscopic boundary conditions denoted as E∞ and Σ∞. Taking
all this into account, the estimated solution for finding the localization and concentra-
tion tensors 〈A〉estc,i and 〈B〉estc,i depends on the Eshelby tensor SEi . Using Walpole base for
transversely isotropic fourth order tensors (described in Appendix C.1, Walpole 1981),
the Eshelby tensor for a penny-shaped microcrack with unit normal ni and aspect ratio
ωi embedded in an isotropic matrix (νm its Poisson’s ratio) comes to (Mura 1987, Hill
1963):
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SEi =

[
3

8(1− νm)
πωi, 1− 1− 2νm

4(1− νm)
πωi,

7− 8νm
16(1− νm)

πωi, 1− 2− νm
4(1− νm)

πωi,

νm
1− νm

− 1 + 4νm
8(1− νm)

πωi, −
1− 2νm

8(1− νm)
πωi

] (3.16)

The final step is to account for the cracks’ unilateral behaviour, i.e. their ability to be
either open or closed depending on the load. For both status, the cracks are considered
to be isotropic (Cc,i = 3kc,i J+ 2µc,iK, Sc,i = 1

3kc,i
J+ 1

2µc,i
K, αc,i = αc,i I and κc,i = κc,i I)

but they behave differently based on the state of the crack:

• for the open case, we naturally consider that there is no elasticity i.e. Cc,i = O
(kc,i = 0, µc,i = 0) and no thermal strain i.e. αc,i = 0 (αc,i = 0), so κc,i = 0

(κc,i = 0) neither specific heat capacities at constant strain cε,c,i = 0 and constant
stress cσ,c,i = 0;

• following the works of Deudé et al. (2002), closed cracks are modelled as a fictitious
isotropic material with bulk modulus kc,i = km, shear modulus µc,i = 0 (i.e. Cc,i =

3km J); such assumption is extended here to the thermal behaviour, that is αc,i = α∗,
so κc,i = 3kmα

∗ = κ∗, and cε,c,i = c∗ε and cσ,c,i = c∗σ. Developments are made for the
general case where κ∗, α∗, c∗ε and c∗σ are scalars with the conditions κ∗ 6= 0, α∗ 6= 0,
c∗ε 6= 0 and c∗σ 6= 0. This is to ensure some level of continuity during crack closure
(frictionless contact).

In what follows, the focus will be on the thermal issues, namely dilatometric tensors (Eqs.
(3.12) and (3.13)) and specific heat capacities (Eqs. (3.14) and (3.15)) for microcracked
media with unilateral effects. Three different homogenization approaches are derived, ei-
ther for strain or stress-based framework. Related estimations of compliance and stiffness
tensors (Eqs. (3.10) and (3.11)), already given in the literature, are simply recalled in
Appendix C.2.

3.3 Strain-based formulation with uniform ∆T - Dilute

scheme

By strain-based formulation, we mean to impose a uniform macroscopic strain E at the
outer boundary δΩ and in addition the temperature difference ∆T is uniform inside the
entire RVE.

We begin the calculation assuming a dilute crack density, which is to consider no
interaction between cracks. Remote conditions on the Eshelby problem come in that case
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to the macroscopic strain (E∞ = E). Hence, strain localization tensor is given by:

〈A〉dilc,i =
[
I + PEi :

(
Cc,i − Cm

)]−1

(3.17)

where PEi = SEi : Sm is the first Hill tensor.

When the cracks are open, Eq. (3.17) becomes:

〈A〉dil/openc,i =
[
I− SEi

]−1

(3.18)

when it comes to as follows for the closed case:

〈A〉dil/closedc,i =
[
I− SEi : K

]−1

(3.19)

Denoting ψi =
κc,i
κm

=
αc,i
αm

and separating open (κc,i = 0, so ψc,i = 0) and closed (κc,i = κ∗

for which ψc,i 6= 0) families of cracks, Eq. (3.12) thus comes to:

κdilhom = κm

I− 4

3
π
∑
i/open

di I : ωi 〈A〉dil/openc,i − 4

3
π
∑

i/closed

(1− ψi) di I : ωi 〈A〉dil/openc,i


(3.20)

since crack volume fraction appearing in Eqs. (3.10)-(3.15) is equal to fc,i = 4
3
π di ωi. We

can see that κdilhom depends on the aspect ratio ωi. In our case, cracks corresponds to the
limit case of very thin inclusions. Denoting,

Ti = lim
ωi→0

ωi 〈A〉dil/openc,i (3.21)

and
T′i = lim

ωi→0
ωi 〈A〉dil/closedc,i (3.22)

one has :

κdilhom = κm

I− 4

3
π
∑
i/open

di I : Ti −
4

3
π
∑

i/closed

(1− ψi) di I : T′i

 (3.23)

Tensors Ti and T′i are transversely isotropic tensors around the unit normal ni of the
ith family of cracks. Given the related Walpole base (refer to Appendix C.1), relevant
calculations provide:

Ti =
4(1− νm)

π

[
0,

1− νm
1− 2νm

, 0,
1

2− νm
,

νm
1− 2νm

, 0

]
(3.24)

and
T′i =

4(1− νm)

π

[
0, 0, 0,

1

2− νm
, 0, 0

]
(3.25)
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Since
I : Ti =

4

π

(
1− νm
1− 2νm

)
[(1− νm) ni ⊗ ni + νm (I− ni ⊗ ni)] (3.26)

I : T′i = 0 (3.27)

above expression can be simplified as:

κdilhom = κm

[
I− a1

adil2

∑
i/open

di [(1− νm) ni ⊗ ni + νm (I− ni ⊗ ni)]

]
(3.28)

where a1 =
16

3

(
1− νm
1− 2νm

)
and adil2 = 1. The simple case of a single system of parallel

microcracks is thus straightforward:

κdilhom =


κm − κm

a1

adil2

d
[(

1− νm
)
n⊗ n + νm

(
I− n⊗ n

)]
, if cracks are open

κm , if cracks are closed
(3.29)

Regarding the effective specific heat, expression of thermal strain localization 〈a〉c,i
tensor for multiphase medium has been established by Benveniste et al. (1991) from
a decomposition procedure of thermal and mechanical loads (see also Benveniste and
Dvorak 1990). For the dilute case, one has:

〈a〉dilc,i =
(
I− 〈A〉dilc,i

)
: (Cc,i − Cm)−1 : (κc,i − κm) (3.30)

Since Cc,i − Cm = −Cm (respectively Cc,i − Cm = −Cm : K = −2µmK) for open (resp.
closed) state of microcracks, Eq. (3.14) can thus be written on the form for thin inclusions:

cdilε,hom = cε,m −
4

3
π T0 κ

2
m

∑
i/open

diXi +
∑

i/closed

di(1− ψi)2X ′i

 (3.31)

where

Xi = lim
ωi→0

ωi I :
(
I− 〈A〉dil/openc,i

)
: C−1

m : I = −I : Ti : C−1
m : I = − 4

π

αm
κm

1− ν2
m

1− 2νm
(3.32)

and

X ′i = lim
ωi→0

ωi I :
(
I− 〈A〉dil/closedc,i

)
: (−2µmK)−1 : I = −I : T′i : (2µmK)−1 : I (3.33)

Though the calculation of Xi remains simple, a problem arises for the case of X ′i since
(2µmK)−1 is not defined. As suggested by Dormieux and Kondo (2009), the idea to get
around this is to introduce a function F(b) = (bJ + 2µmK)−1, not defined in b = 0, but
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such that F(b)→ (2µmK)−1 when b→ 0. Since,

T′i : F(b) =
2(1− νm)

µm π

[
0, 0, 0,

1

2− νm
, 0, 0

]
(3.34)

does not depend on b 6= 0, we can thus show that:

T′i : F(b) : I = 0 (3.35)

and X ′i = 0. Overall specific heat at constant strain is finally provided by:

cdilε,hom = cε,m + a1(1 + νm) T0 αm κm
∑
i/open

di (3.36)

In the special case of one family (see Appendix C.3.1), one gets easily:

cdilε,hom =


cε,m + T0 αm κm

a1

adil2

d (1 + νm) , if cracks are open

cε,m , if cracks are closed
(3.37)

3.4 Strain-based formulation with uniform ∆T - Mori-

Tanaka scheme

As interpreted by Benveniste (1987), the Mori-Tanaka (MT) scheme (Mori and Tanaka
1973) accounts for some interactions between cracks by considering the defects embedded
in an infinite media (with matrix properties) that is subjected to the average strain over
the matrix phase (E∞ = 〈ε〉m). Averaging rule (3.5) leads to the following localization
tensor:

〈A〉MT
c,i = 〈A〉dilc,i :

[
fm I +

N∑
j=1

fc,j 〈A〉dilc,j

]−1

= 〈A〉dilc,i : G (3.38)

From Eq. (3.12), it comes:

κMT
hom = κmI :

G−1 − 4

3
π
∑
i/open

diTi −
4

3
π
∑

i/closed

di(1− ψi)T′i

 : G = κmI : X : G (3.39)

where
X = I +

4

3
π
∑

i/closed

diψiT′i (3.40)

Due to condition (3.27), I : X = I. Moreover, G comes to:

G =

I +
4

3
π
∑
i/open

di Ti +
4

3
π
∑

i/closed

di T′i

−1

(3.41)
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At last, the effective thermal strain tensor for the Mori-Tanaka scheme writes:

κMT
hom = κm :

I +
4

3
π
∑
i/open

di Ti +
4

3
π
∑

i/closed

di T′i

−1

(3.42)

One could note that for a single family of cracks, Eq. (3.42) becomes:

κMT
hom =


κm − κm

a1

aMT
2

d
[(

1− νm
)
n⊗ n + νm

(
I− n⊗ n

)]
, if cracks are open

κm , if cracks are closed
(3.43)

where aMT
2 = 1 + (1− νm) a1 d.

Again, the heat capacity estimation requires the expression of the thermal strain lo-
calization tensor. For the Mori-Tanaka model, expression of 〈a〉c,i is also provided by
Benveniste et al. (1991) for several inclusions :

〈a〉MT
c,i = 〈a〉dilc,i − 〈A〉MT

c,i :

(
N∑
j=1

fc,j 〈a〉dilc,j

)
= 〈a〉dilc,i − 〈A〉MT

c,i : M (3.44)

Combining such tensor with expression (3.14) of the overall specific heat capacity and
considering the limit case ωi → 0 associated with condition (3.27), we can show that :

cMT
ε,hom = cdilε,hom +

4

3
π T0 κm

∑
i/open

di I : Ti : G : M (3.45)

with tensor G given in Eq. (3.41). In line with dilute solution, a similar methodology
based on function F(b) for closed case and condition (3.35) lead to following simplied form
of second order tensor M :

M = −a1(1 + νm) αm
∑
j/open

dj nj ⊗ nj (3.46)

It comes finally:

cMT
ε,hom = cdilε,hom − a2

1 T0 (1 + νm)αm κm×∑
i/open

di

[
(1− νm)ni ⊗ ni + νm(I− ni ⊗ ni)

]
: G :

∑
j/open

dj nj ⊗ nj

(3.47)

When considering a single cracks family (see Appendix C.3.2), Eq. (3.47) writes:

cMT
ε,hom =


cε,m + T0 αm κm

a1

aMT
2

d (1 + νm) , if cracks are open

cε,m , if cracks are closed
(3.48)
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It should be noted that results given in Eqs. (3.29) and (3.37) for dilute scheme and
(3.43) and (3.48) for Mori-Tanaka scheme in the particular case of a single system of
cracks (corresponding to binary composite) can also be obtained through the application
of Levin’s approach.

3.5 Strain-based formulation with uniform ∆T - Ponte

Castañeda-Willis upper bound

Ponte Castañeda and Willis (PCW) have applied Hashin-Shtrikman variational princi-
ples for composite materials with ellipsoidal inclusions. From this, they provided an
explicit strain-based upper bound for the effective stiffness (Ponte Castañeda and Willis
1995). Their formulation also accounts for the inclusion shape and spatial distribution
independently by means of fourth order interaction PEj and spatial crack distribution Sdc(
= Pdc : Cm

)
tensors respectively. In this estimate, the strain localization tensor can be

written as:

〈A〉PCWc,i = 〈A〉dilc,i :

(
fm I +

N∑
j=1

fc,j

[
I +

(
PEj − Pdc

)
:
(
Cc,j − Cm

)]
: 〈A〉dilc,j

)−1

= 〈A〉dilc,i : H

(3.49)
We assume the spatial distribution to be spherical and for such case the fourth order
isotropic tensor Pdc can be expressed as:

Pdc =
β1

3km
J +

β2

2µm
K with β1 =

1

3

(
1 + νm
1− νm

)
and β2 =

2

15

(
4− 5νm
1− νm

)
(3.50)

From expression of 〈A〉dilc,i , tensor H is as follows:

H−1 = I−
N∑
j=1

fc,j Pdc : (Cc,j − Cm) : 〈A〉dilc,j (3.51)

Since Pdc = Sdc : C−1
m and Sdc : K = β2 K, Eq. (3.51) can be simplified in:

H−1 = I +
4

3
π
∑
j/open

dj Sdc : Tj +
4

3
π
∑

j/closed

β2 dj T′j (3.52)

where it should be noted that:

T′i = lim
ωi→0

ωi 〈A〉dil/closedc,i = lim
ωi→0

ωiK : 〈A〉dil/closedc,i (3.53)
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In that case and always under condition (3.27), the effective thermal strain tensor of Eq.
(3.12) is given by:

κPCWhom = κm :

I− 4

3
π

∑
i/open

di Ti

 :

I +
4

3
π
∑
j/open

dj Sdc : Tj +
4

3
π
∑

j/closed

β2 dj T′j

−1
(3.54)

Eq. (3.54) for a single family of cracks can be simplified as:

κPCWhom =


κm − κm

a1

aPCW2

d
[(

1− νm
)
n⊗ n + νm

(
I− n⊗ n

)]
, if cracks are open

κm , if cracks are closed
(3.55)

where aPCW2 = 1 +
a1 d

15 (1− νm)
[7 (1− 2νm) + 15ν2

m].

The determination of the thermal strain localization tensor 〈a〉PCWc,i in the case of
multiphase media is a complex issue. It requires the extension to the case of thermoe-
lasticity of the variational structure of Hashin-Shtrikman in the form of Willis (1977)
which is based on energy minimization. Recent works of Fernández and Böhlke (2018),
Valdiviezo-Mijangos et al. (2020) may help in this sense to explicitly develop Eq. (3.14)
for the PCW estimate. In the present paper, the calculation will be limited to the case
of a single family of cracks. For such a case of two-phase composite, combining first part
of Eq. (3.12) with consistency conditions (3.7) allows to express the localisation tensor
(Ponte Castañeda 2002, Willis 2002):

〈a〉PCWc = − (Cc − Cm)−1 :
(
〈A〉PCWc − I

)T
: (κc − κm) (3.56)

where T denotes the transpose. When such a tensor is implemented inside Eq. (3.14),
the open case can simply derived. However, contribution due to closed cracks depends
linearly on I : (2µmK)−1 : (T′ : H)T : I which is not defined. Using the function F(b)

again solves the problem. It can be shown that F(b) : (T′ : H)T does not depend on b 6= 0

and moreover that
F(b) : (T′ : H)T : I = 0 (3.57)

From this, one gets (see Appendix C.3.3):

cPCWε,hom =


cε,m + T0 αm κm

a1

aPCW2

d (1 + νm) , if cracks are open

cε,m , if cracks are closed
(3.58)

Note that the model of Mori-Tanaka (Eqs. (3.43) and (3.48)) and the bound of Ponte
Castañeda-Willis (Eqs. (3.55) and (3.58)) tend to the dilute prediction (Eqs. (3.29) and
(3.37) respectively) when d → 0. As the microcracks density increases, the influence of
defect interactions leads to greater differences between models. As an illustration, Fig.
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3.1 shows the evolution of the quantity
a1

a2

d which characterizes the dependency of κhom
and cε,hom with microcracks density in the different models.

0
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7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dilute Mori-Tanaka Ponte Castañeda-Willis

Figure 3.1: Influence of the crack density d on the ratio
a1

a2

d for various models for a

single family of cracks.

Some comments arise from the results obtained by means of strain-based formulation.
Even though there are differences between the models, the dependency of thermoelastic
properties upon the cracks orientation and unilateral behaviour were observed through
all modeling approches. First, it is to note that the microcracked medium exhibits some
induced anisotropy in its effective thermoelastic response. Such behaviour is highlighted
through the second order thermal strain tensor and can be attributed to open cracks
orientation for dilute case (Eq. (3.29)) and to both open and closed cracks orientations
for MT (Eq. (3.43)) and PCW bound (Eq. (3.55)). The case of a single family of
cracks leads for instance to a transverse isotropy around the normal n of defects. For
all estimates, only open cracks influence the specific heat at constant strain, obviously in
a scalar form. Moreover, the account of the unilateral effect allows to show that cracks
closure tends to some recovery of the initial properties, both on thermal strain and specific
heat. Unlike the pure elastic properties (Welemane and Cormery 2002), closed cracks do
not affect the effective thermoelastic properties. This leads for instance to a total recovery
of these properties in the particular case of a single system of parallel microcracks, with a
thermoelastic response equal to that of the virgin matrix. Although it is strongly related
to elasticity, the problem of thermoelastic properties has a strong analogy with that of
steady-state heat conduction (Chapter 1). Like the latter, the degree of complexity (κ
and α of second order, cε and cσ scalar) is less than that of the elastic problem (C and
S of fourth order). Unlike the Eshelby-like tensor (depolarization tensor) which depends
only on the crack shape (Eqs. (1.15) and (2.1)), the Eshelby tensor used for thermoelastic
problem (also for elastic problem) depends on both crack shape and matrix properties (Eq.
(3.16)). Yet, we lose information due to the contraction between second and fourth order
tensors. This explains in particular the cancellation of the effects of closed microcracks.
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3.6 Stress-based formulation with uniform ∆T

This section is dedicated to the derivation of thermoelastic effective quantities when con-
siderind stress-based boundary conditions at δΩ. Estimates and bound will now be based
on the local fields induced by cracks embedded inside the matrix with uniform stress
at infinity (Σ∞) and uniform ∆T inside the RVE. Accordingly, the strain ε(x) tends to
Sm : Σ∞ when |x| → ∞ . This makes the connection with strain boundary conditions con-
sidered in the Eshelby approach. From the average stress in this phase 〈σ〉c = Cc : 〈ε〉c,
estimates of concentration tensor B defined in Eq. (3.6) can be derived.

For the dilute scheme, conditions at infinity correspond to the macroscopic heat flux
(Σ∞ = Σ). So that:

〈B〉dilc,i = Cc,i : 〈A〉dilc,i : Sm (3.59)

In the model of Mori-Tanaka, the remote conditions correspond to the average stress over
the matrix phase (Σ∞ = 〈σ〉m) and again, using the average rule, the stress concentration
tensor is given by:

〈B〉MT
c,i = 〈B〉dilc,i :

[
fm I +

N∑
j=1

fc,j 〈B〉dilc,j

]−1

= 〈B〉dilc,i : G′ (3.60)

As inspired by Ponte Castañeda and Willis (1995), Dormieux and Kondo (2009) derived a
variational stress-based lower bound for the effective compliance using an energy approach.
The stress concentration tensor for this case can be given by:

〈B〉PCWc,i = 〈B〉dilc,i :

(
fm I +

N∑
j=1

fc,j

[
I +

(
QE
j −Qd

c

)
:
(
Sc,j − Sm

)]
: 〈B〉dilc,j

)−1

= 〈B〉dilc,i : H′

(3.61)
where QE

i = Cm−Cm : PEi : Cm is the second Hill tensor and Qd
c = Cm−Cm : Pdc : Cm. In

the particular case of thin inclusions (ωi → 0), it can be demonstrated that G′ = H′ = I
and:

〈B〉dil/openc,i = O and 〈B〉dil/closedc,i = J (3.62)

Accordingly, this leads to strong simplifications for the thermal stress tensor, namely:

αdilhom = αMT
hom = αPCWhom = αm (3.63)

In a complete analogous way, thermal stress concentration tensors required for the
derivation of specific heat at constant stress may be defined (Laws 1973, Benveniste and
Dvorak 1990, Benveniste et al. 1991):

〈b〉dilc,i = −
(
I− 〈B〉dilc,i

)
: (Sc,i − Sm)−1 : (αc,i −αm) (3.64)
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〈b〉MT
c,i = 〈b〉dilc,i − 〈B〉MT

c,i :

(
N∑
j=1

fc,j 〈b〉dilc,j

)
(3.65)

Moreover, for the case of a single family, we find from (3.7) and (3.13) the PCW formu-
lation:

〈b〉PCWc = (Sc − Sm)−1 :
(
〈B〉PCWc − I

)T
: (αc −αm) (3.66)

From (3.62), we thus get:

〈b〉dilc,i = 〈b〉MT
c,i = 〈b〉PCWc = 0 (3.67)

whether the microcracks are open or closed, and then for the effective specific heat:

cdilσ,hom = cMT
σ,hom = cPCWσ,hom = cσ,m (3.68)

It is thus shown that microcracks does not affect thermoelastic properties established by
means of stress-based formulation, i.e. both dilatation and specific heat at constant stress,
for the three considered estimates.

3.7 Conclusion

Given the classical mean-field framework, homogenization techniques have been used to
calculate closed-form expressions of thermoelastic properties of microcracked media. Spe-
cially, strain and stress-based thermal tensors and heat capacities have been implemented
for dilute and Mori-Tanaka schemes and for Ponte Castañeda-Willis bound.

For strain-based formulation, the specific features of microcracks influence the ma-
terial thermoelastic response, both regarding their orientation (induced anisotropy) and
their unilateral effect (recovery phenomena at the closure of microcracks). These tenden-
cies were obtained for the three modelling approaches. On the other hand, stress-based
boundary conditions lead to estimates of effective properties equal to those of the virgin
material, showing no influence of microcracking.

The explicit derivation of these quantities in the specific case of cracks-like inclusion,
either open or closed, thus provides a theoretical basis that can be compared either to
experimental or numerical characterizations.
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Chapter 4

Numerical simulation of thermal and
thermoelastic properties

Abstract

This chapter will have collection of simulations based on Finite Element
Modelling in 3D, on the thermal and thermoelastic properties. Current
chapter is the numerical counterpart of the homogenization estimates of
the Chapters 1 and 3. Following boundary conditions used in said chap-
ters, the homogenized properties are predicted. To be consistent with
theoretical approach similar assumptions are made here. The results are
given for a RVE with a single family of parallel microcracks. The influ-
ence of the density of cracks, size, orientation and unilateral effect are all
discussed. Finally, the results are compared with the theoretical expres-
sions.

A self-consistent notation is adopted.
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PROPERTIES

4.1 Introduction

This chapter intends to propose a comparison of previous theoretical results with numer-
ical modelling. As discussed in the General introduction, much of the work on numerical
homogenization of microcracking issues is based on FEM. It is productive for the cases
of thermal and elastic problems which is the interest of this work. On the other hand,
the software used (ABAQUS) allows efficient management of the construction of complex
geometries, their meshing, their interaction between different volumes/parts of the model
and their userfriendly interface. Visualizations produced by the software also make it
easier to interpret the results.

4.2 Numerical framework

The simulated volume V is a cube with size 1 m3 (V = 1 m ×1 m ×1 m). Let (t,v,k)
be their coordinate system, which corresponds to (X,Y,Z) of ABAQUS. The matrix is
a 3D solid with its own properties. If there are N cracks in the RVE, then the crack
radius a can be found by a = 3

√
d/N , d being the scalar density of cracks. They are

modelled as a thin oblate penny-shaped inclusions with normal n (Fig. 4.1a). Their
aspect ratio ω = c/a is small, such that ω � 1. The properties of the inclusions define if
the cracks are open or closed. The open cracks are defined as non-conductive and with
zero stiffness, while the closed cracks are considered having fictitious scalar properties for
both the thermal and elastic properties. This assumption of the crack geometry and the
unilateral effect is in line with the theoretical framework.

(a) (b)

Figure 4.1: Crack (a) geometry, (b) structured meshing in ABAQUS, with ω = 0.1.

The cracks are randomly positioned inside the RVE in way they are not close to the
edges (to prevent edge effects) and not too close to each other. Since the cracks are
bigger, it is not possible to respect the spherical distribution like in 2D (Fig. 2.2), so
elliptical distribution corresponding to MT is used. For the study, 10 cracks of equal
shape and size are considered (Fig. 4.2). The RVE is obtained by combining the matrix
and crack parts together. Due to their very thin shape, meshing the ellipsoidal inclusion
is challenging. To facilitate smooth meshing, the inclusion is partitioned to provide a
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(a) (b) (c)

Figure 4.2: Different views showing the distribution of cracks in the simulated RVE
for crack orientation (n,v) = 30◦ with aspect ratio ω = 0.001.

structured mesh (Fig. 4.1b). The partitions allow one to have the same mesh in all cracks
and to have the same mesh distribution for different values of the aspect ratio. The finite
element type used for the cracks is quadratic hexahedral while quadratic tetrahedral is
used for the matrix (Fig. 4.3). Indeed, the number and arrangement of the cracks inside
the matrix make it a complex volume that it is not possible to mesh otherwise than
using a free meshing method associated to tetrahedral elements. The models have meshes
upto 800000 elements and 1200000 nodes including 1681 (referred as N) nodes in each
outer face. It should be noted that hexahedral (used for cracks) and tetrahedral (used
for matrix) element shapes are incompatible, i.e. some nodes of neighbouring elements
do not match. So, to ensure the continuity of the material (mesh), additional coupling
equations must be created increasing the problem size. Simulations tests were performed
to ensure that this method does not influence the results.

(a) Global mesh (b) Magnification around a crack tip

Figure 4.3: Mid cut section view of the simulated RVE showing the mesh, with ω =
0.1 and (n,v) = 0◦.
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Same model (part) is used for all following analyzes with changes in boundary con-
ditions, materials properties and output requests based on ones requirements. Unless
specifically mentioned, the closed cracks are assumed to have 50% of the matrix property
and all cracks are modelled with aspect ratio ω = 10−3 and density d = 0.1 (corresponding
to fc = 0.04%). All simulations are performed in a predefined initial temperature field,
T0 = 293 K. Calculations were carried out with different multiprocessing servers with 24
to 32 cores having 64 to 128 GB of RAM. With 4 cores, the time duration of the thermal
calculations are between 300 and 700 s, whereas the thermoelastic simulations with 12
cores take 890 to 4000 s.

More than 150 simulations were run to analyze the following influence cracks have on
the effective properties:

• crack orientation (n,v) = {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}
− as in Chapter 2, cracks were rotated as a group and centred (the rotation of the
cracks has only been studied in one plane, i.e. (t,v));

• influence of the density of cracks d = {0.05, 0.1}
− cracks with different radius a = 0.171 m (for d = 0.05), a = 0.215 m (for d = 0.1);

• influence of the aspect ratio of cracks ω = {0.001, 0.005, 0.01, 0.1, 0.2}
− cracks with different minor radius c = ω a, and a = 0.215 m, same crack element
size considered for all aspect ratios used, analyzed only for the most critical angle
(n,v) = 0◦;

• influence of crack status : open or closed cracks
− achieved through changing the crack property;

• influence of scalar closed crack properties
− different closed crack property from {1, 5, 10, 25, 50, 80, 100}[%] of the matrix
property, analyzed only for the most critical angle (n,v) = 0◦.

Note that graphs in this chapter are given for 3 theoretical models (Dilute, MT, PCW)
and simulations performed. Furthermore, since 3D simulations respect ellipsoidal crack
distribution, the numerical results thus obtained can only be compared to dilute and MT.

4.3 Thermal conductivity

In the thermal problem, the finite element type used for the matrix and cracks are dif-
fusive heat transfer second order elements namely DC3D10 and DC3D20 respectively.
Let the scalar conductivity of the matrix be λm = 180 W/m/K. The open cracks are
non-conductive, i.e. the scalar conductivity λc = 0. The closed cracks are conductive
with conductivity λc = λ∗ 6= 0. Just like Section 1.3 of the theoretical framework,
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Figure 4.4: Simulated RVE showing (a) the gradient boundary condition, (b) outer
face nodes used for extracting results.

uniform temperature gradient G
(
= Gv v = ∆Tv

L
v
)
is imposed to find the effective con-

ductivity of the RVE. This boundary condition can be realized by applying temperatures
T2 = 373 K and T1 = 293 K (∆Tv = T2 − T1 = 80 K > 0) respectively on the top and
bottom faces (with outward normals ±v) of the RVE (Fig. 4.4a). This difference in tem-
perature creates a heat flux Q(= Qt t+Qv v+Qk k) inside the RVE. Due to the adiabatic
condition on the 4 lateral faces, the flux is mostly oriented in v direction. Recalling the
numerical effective conductivity in the direction v:

λnum(v) =
Qv

Gv

(4.1)

(a) Open crack (b) Closed crack (λ∗ = 50% λm)

Figure 4.5: Heat flux vectors at integration points in the mid cut section of the
simulated RVE for (n,v) = 0◦; d = 0.1 m; a = 0.215 m; ω = 0.1.
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where Qv is the average heat flux on the face (+v or −v) along v direction. This quantity
can be found using the Reaction flux RFLi calculated on each node i on the top (Fig.

4.4b) or bottom face (with area A), Qv =
1

A

N∑
i=1

RFLi.

Fig. 4.5 shows the heat flux through the cut section of the RVE. Just like in 2D case
(Fig. 2.6a), here also the non-conductive cracks act as a thermal barrier significantly
disrupting the flux (Fig. 4.5a). On the other hand in Fig. 4.5b, for the conductive closed
cracks, heat flux vectors are not deviated by the cracks (Fig. 2.6b for 2D).

Results

Understanding the 3D results is not too complex as it follows same tendency as 2D (see
Section 2.5). For information, PCW bound is shown on the following graphs, but it is not
meant to be compared with simulations results. The main observations can be listed as:

• crack-induced anisotropy, namely transverse isotropy with maximum degradation
in the direction n normal to the crack (Fig. 4.6),

• numerical results are closer to MT in 3D (due to ellipsoidal distribution, Fig. 4.6)
where in 2D results to PCW (due to spherical distribution, Fig. 2.7),

• closed crack does not contribute to the degradation of conductivity (Fig. 4.7),

• simulated results are sensitive to aspect ratio ω (Fig. 4.8),

• scalar conductivity λ∗ of closed cracks affects the effective conductivity (Fig. 4.9).
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Figure 4.6: Generalized thermal conductivity λ(v) in 3D, normalized by its initial
value for a material weakened by a single array of parallel open microcracks of unit
normal n.
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Figure 4.7: Generalized thermal conductivity λ(v) in 3D, normalized by its initial
value for a material weakened by a single array of parallel closed microcracks of unit
normal n (λ∗ = 50% λm).
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Figure 4.8: Normal thermal conductivity λ(n) in 3D, normalized by its initial value
for various aspect ratios (d = 0.1); log10 scale is used for abscissa.
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Figure 4.9: Influence of scalar conductivity λ∗ = αλm on the normal thermal con-
ductivity λ(n) in 3D, normalized by its initial value (d = 0.1); log10 scale is used for
abscissa.
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4.4 Thermal resistivity

In this part, lets keep the properties used in the previous section, changing only the
boundary condition. To be consistent with theory, uniform heat flux Q (= Qv v) is im-
posed. This condition can be achieved by applying a heat flux density (also known as
surface heat flux) Qv = 14400 W/m2 on the top face and a temperature T1 = 293 K on
the bottom face. The four lateral faces of the RVE are adiabatic (Fig. 4.10). Similar to
Eq. 2.13, the numerical effective resistivity in the direction v:

ρnum(v) =
Gv

Qv

(4.2)

where Gv is the average temperature gradient along v direction. This temperature gradi-

ent can be given by Gv =
T2 − T1

L
in which T2 =

1

A

N∑
i=1

NT11i, where NT11i is the Nodal

Temperature on each node i on the top face.

Q

4 lateral adiabatic
faces 

Bottom face 
fixed temperature 
T

1

Figure 4.10: Simulated RVE showing the boundary condition and the prescribed load.

Results

Dilute and MT estimates in Section 1.4 are compared to numerical results here. PCW
is again provided as an element of comparison for theoretical approaches. Numerical
resistivity also shows crack-induced anisotropy. Just like theoretical approach, simulations
show increase in resistivity as the density of cracks d increases (Fig. 4.11). From Fig.
4.12, one can see that closed cracks have only a very small influence on the resistivity (less
than 0.025% for d = 0.05 and less than 0.045% for d = 0.1). Resistivity shows sensitivity
to aspect ratio in both open and closed cases (Fig. 4.13). Scalar conductivity λ∗ and its
influence on thermal resistivity is studied for various aspect ratios. Fig. 4.14 shows this
influence and also indicates that as ω → 0, closed crack property λ∗ becomes irrelevant to
predicting the effective resistivity. Finally, the simulated resistivity in 3D shows results
close to MT. Note that, Figs. 4.13 and 4.14 only describe simulations since theoretical
results do not depend on aspect ratio ω or scalar conductivity λ∗.
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Figure 4.11: Generalized thermal resistivity ρ(v) in 3D, normalized by its initial value
for a material weakened by a single array of parallel open microcracks of unit normal n.
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Figure 4.12: Generalized thermal resistivity ρ(v) in 3D, normalized by its initial value
for a material weakened by a single array of parallel closed microcracks of unit normal n
(λ∗ = 50% λm).
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Figure 4.13: Normal thermal resistivity ρ(n) in 3D, normalized by its initial value for
various aspect ratios (d = 0.1); log10 scale is used for abscissa.
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Figure 4.14: Influence of scalar conductivity λ∗ = αλm on the normal thermal resis-
tivity ρ(n) in 3D, normalized by its initial value (d = 0.1); log10 scale is used for abscissa.

4.5 Thermoelasticity

To account for the material thermoelastic behaviour, the finite element type used for the
matrix and cracks are C3D10 and C3D20R respectively. Roller boundary condition is
introduced on all the RVE faces (Fig. 4.15), along with an uniform initial temperature
defined all over the RVE (Tinitial). During the calculated step, another uniform tempera-
ture load (Tfinal) is applied allowing to have ∆T = Tfinal − Tinitial = 80 K over the entire
RVE. The numerical thermal stress in any direction m is:

κnum(m) = −m · Σ ·m
∆T

(4.3)

Z

Y

X

Y

Z

X

(a)

Z

Y

X

Y

Z

X
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Figure 4.15: Roller boundary condition used for the thermoelastic problem (a)
ABAQUS symbols, (b) normalized scheme.
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where Σ is the macroscopic stress tensor along direction m. And the stresses in each

principal axis are given by Σtt =
1

A

N∑
i=1

RF1i; Σvv =
1

A

N∑
i=1

RF2i; Σkk =
1

A

N∑
i=1

RF3i and

RFi is the Reaction Force on each node i on the respective face.
The scalar properties of the matrix are representative of the SiC bulk cermaic, with

Young’s modulus Em = 420 GPa, Poisson’s ratio νm = 0.16 and CTE αm = 2.2 ppm/K.
Open cracks have zero elastic and thermal expansion properties, i.e. Eopen

c = 0, µopenc = 0

and αopenc = 0. For closed cracks, inclusion properties are those of a fictitious material.
Similar to the theoretical work, it is assumed that the closed cracks transmit only normal
stress and not shear stress. In fact, using Cclosed

c = 3km J for the closed cracks suggested
by Deudé et al. (2002) cannot be implemented directly since J is not invertible. While
encountering such difficulty, the consistency with theoretical representation can be main-
tained by defining engineering constants (typically used for composites) for the cracks.
This allows one to define the Young’s modulus E∗, Poisson’s ratio ν∗ and shear mod-
ulus µ∗ separately, as if they are an orthotropic material with EX = EY = EZ = E∗,
νX = νY = νZ = ν∗ and µX = µY = µZ = µ∗.

Results

The first challenge of the study stands in the definition of adequate fictitious properties
for closed microcracks, namely the Young’s modulus E∗ and Poisson’s ratio ν∗, µ∗ = 0

being considered to cancel shear stresses. At the same time, the scalar thermal stress
should be as κ∗ = 3 k∗α∗ with k∗ = km (Deudé et al. 2002). So, to find the influence of
the closed cracks on the overall thermal stress κ(v), one can keep ν∗ = νm = cte and vary
both E∗ and α∗. Considering the large number of combinations to be evaluated and the
resulting calculation time, the choice was made to use a method that would allow one to
evaluate behavioural trends while minimizing the experiments (numerical calculations) to
be done. To do this, we use the 2-level factorial design method. This method, although
practical and efficient, is based on a multilinear model of the studied system. Simulations
were performed for the combinations of extreme value of E∗ and α∗ given in Tab. 4.1.
Results of these simulations for various aspect ratios are presented in Tab. 4.2. Thus,
from the 2-level factorial design method, the closed case model can be written as:

κ(n)

κm
= r0 + r1 Et + r2 αt + r12 Et αt (4.4)

Table 4.1: Simulation problem domain

low level: -1 high level: +1
Young modulus E∗ 1% Em 100% Em
CTE: α∗ 1% αm 100% αm
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Table 4.2: Simulation and response matrix for factors and interactions (v = n)

Simulations Avg Et αt Etαt κ(n)/κm
No. ω = 0.001 ω = 0.005 ω = 0.1
1 +1 -1 -1 +1 0.9634 0.8764 0.8232
2 +1 +1 -1 -1 0.9995 0.9978 0.9958
3 +1 -1 +1 -1 0.9637 0.8776 0.8249
4 +1 +1 +1 +1 1 1 1

Table 4.3: Coefficients of the factorial design method (v = n)

ω r0 r1 r2 r12

0.001 0.98165 0.0181 0.0002 5·10−5

0.005 0.93795 0.06095 0.00085 0.00025
0.01 0.910975 0.086925 0.001475 0.000625

In Tab. 4.3, we see that r1 � r2, which means that the Young’s modulus has much
stronger influence than CTE. Since r12 is very small, one can say their interaction effect
is negligible. Therefore, Eq. (4.4) becomes:

κ(n)

κm
= r0 + r1 Et + r2 αt (4.5)

with Et =
E∗ − 50.5% Em

49.5% Em
and αt =

α∗ − 50.5% αm
49.5% αm

provided the domain in Table 4.1 is

respected, i.e. E∗ ∈ [1, 100]% Em and α∗ ∈ [1, 100]% αm. Fig. 4.16 introduces the scalar

η =
E∗

Em
=

α∗

αm
= {1...100} [%], for which the influence of the aspect ratio on the overall

thermal stress is presented. One can notice, as ω → 0, the influence of η becomes less
consequential.
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Figure 4.16: Influence of the ratio η = E∗/Em = α∗/αm on the normal thermal stress
κ(n) normalized by its initial value (d = 0.1); log10 scale is used for abscissa.
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Figure 4.17: Generalized thermal stress κ(v) normalized by its initial value for a
material weakened by a single array of parallel open microcracks of unit normal n.

In what follows, numerical results will be compared to dilute and MT theoretical results
from Chapter 3. Once again, crack-induced anisotropy can be seen here. To be precise,
the thermal stress tensor is transversely isotropic around the axis n. Unlike steady-state
heat conduction problem, in thermoelasticity, cracks oriented at (n,v) = 90◦ contribute
to degradation of overall property (Fig. 4.17). We see that, as the cracks become smaller,
their influence on the thermal stress is also reduced (κ(n) ≈ 0.68 κm for a = 0.215 m but
κ(n) ≈ 0.80 κm for a = 0.171 m).
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Figure 4.18: Generalized thermal stress κ(v) normalized by its initial value for a
material weakened by a single array of parallel closed microcracks of unit normal n
(E∗ = 50% Em;α∗ = 50% αm).

Fig. 4.18 shows that closed cracks amount for negligible degradation of thermal stress
(less than 0.04% for d = 0.05 and less than 0.07% for d = 0.1). Fig. 4.19a shows that
thermal stress is not sensitive to aspect ratio of open cracks. This point will be discussed
later. However, closed cracks are sensitive to aspect ratio (Fig. 4.19b). As ω → 0, the
numerical result for closed case tends to theoretical result.
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Figure 4.19: Normal thermal stress κ(n) normalized by its initial value for various
aspect ratios (d = 0.1); log10 scale is used for abscissa.

4.6 Complexities and limitations

FEM may be the one of the commonly used numerical methods but as any other numerical
method, it is not without limitations. For the 2D simulation of the thermal conductivity,
a mesh study was done to understand its influence on the results (Tab. 2.1). 3D meshing
was built using the same strategy as the 2D case. It is always the balance between
accuracy and time in the FEA. One of the first challenge is to position the cracks inside
the RVE. Due to their size, need for rotation and preventing edge effects, this can prove
difficult. During the earlier stages of the thesis, we found that if the position of cracks
is agreeable for one orientation (45◦ in Fig. 4.20a) then it may not be agreeable for
another (0◦ in Fig. 4.20b). So, finding the right coordinates for the crack position is
really important. Lejeunes and Bourgeois (2011) have developed a homogenization tool
which allows generating an RVE with randomly distributed Voronoi cells or spherical
inclusions. But this tool is for a 2D RVE since the distribution of inclusions in a 3D RVE
can be complex and challenging.

(a) (v,n) = 45◦ (b) (v,n) = 0◦

Figure 4.20: Crack position for two orientations.
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(a) Global crack mesh (b) Magnification towards the crack centre

Figure 4.21: Meshing of the crack showing critical area (quarter section removed) for
aspect ratio ω = 0.005.

This work encountered another issue when running simulations for various aspect ratio
ω in open case. From Fig. 4.19a, one can see a trend that is not consistent with expected
result. The figure shows that the effective property is not sensitive to aspect ratio, which
can be surprising considering the previous results (Figs. 2.10, 4.8, 4.13 and 4.19b). While
analyzing this point, it was discovered the issue lies with the meshing. So, a more in-
depth analysis of the mesh was done to understand such result. Attempts to increase the
number of elements only increase the radial and circumferential elements but not along
the thickness or at the edge (crack front), which are the most critical areas (Figs. 4.21 and
4.22). In the same way, it is not possible to increase mesh density around the inclusion
circumference. The heavily distorted elements at the cracks tip for small aspect ratios are
not easily solved. Due to these reasons, there is no influence of the aspect ratio on the
effective thermal stress in the direction v corresponding to the normal of the cracks even
with finer meshing. Nevertheless, there is a substantial influence on the radial directions
t and k (Fig. 4.23).

Figure 4.22: Meshing of the crack showing critical area (quarter section removed) for
aspect ratio ω = 0.2.
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Figure 4.23: Normal thermal stress κ(m) in any direction m for a single family of
open cracks, normalized by its initial value for various aspect ratios (d = 0.1); log10 scale
is used for abscissa.

4.7 Conclusion

This numerical part takes into account the geometry and property of the cracks same as in
the theory. The consistency of theoretical and numerical results have been demonstrated
through the following points. For open cracks, we observe that the microcracked RVE ex-
hibits an induced anisotrophy with main influence of conductivity, resistivity and thermal
stress on the direction normal to the crack. On the other hand, closure of cracks leads to
a complete deactivation of their influence on the microcracks. We also studied the effect
of aspect ratio and scalar closed crack properties on the effective properties. Finally, the
limitations pertaining to using FEM is presented. In the future, further simulations can
be performed by grouping the cracks closer to one another and study their interactions.
This would allow to compare the different estimates, specially MT scheme and PCW
bound, to the numerical modelling. Though this work studies thermal and thermoelastic
concepts separately, combined thermomechanical loading and their effect of the effective
properties might be interesting.
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The present work was indented to study the thermomechanical behaviour of the microc-
racked brittle materials. To this purpose, the theoretical approach is used and compared
to the numerical approach.

As a first, using the existing theoretical framework for composites, the thesis gives
closed-form expressions for effective thermal and thermoelastic properties for the case of
microcracks. Special attention is paid to the orientation of the cracks, distribution of the
cracks, unilateral effect and crack-induced anisotropy. The initially isotropic media of the
RVE is considered to be weakened by randomly distributed thin oblate-ellipsoidal cracks.
Open cracks are considered non-conductive and closed cracks are fictitious isotropic mate-
rial to amount for some heat transfer continuity in the spirit of Deudé et al. (2002). Using
Eshelby’s equivalent inclusion method extended by Hatta and Taya (1986) for steady-state
heat conduction, effective conductivity and resistivity are derived. The former is found
using uniform gradient boundary condition and the latter using uniform flux boundary
condition. Interactions between cracks are taken into account by means of Mori-Tanaka
scheme and Ponte Castañeda-Willis bound. The results show that each open family of
cracks acts as a thermal barrier and that the overall properties are transversely isotropic
around its normal axis. So, when there are more than one family of cracks, one has a com-
plex anisotropy which would be the summation of transverse isotropies around different
crack normals. For a given family of open cracks, the maximum degradation (in conduc-
tivity) or enhancement (in resistivity) is in the direction normal to cracks. It should also
be noted that different distributions of cracks (MT and PCW) lead to different expres-
sions of thermal properties. Additionally, a family of closed cracks do not contribute to
the degradation or enhancement of the conductivity or resistivity respectively, whatever
the considered estimation method. All these observations were true for the analyzed 2D
and 3D microcracked RVE.

Based on the same 3D microstructure, the next step is to determine the effective
thermoelastic properties. The thermoelastic properties considered for homogenization are
thermal strain and stress and specific heat capacities at constant strain and stress. The
derivation of effective thermal stress and strain directly comes from the elastic problem,
since only the knowledge of elastic strain localization and stress concentration tensors
is needed. The specific heat capacity determination requires the less common thermal
strain localization and stress concentration tensors. The open cracks are assumed to
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have zero stiffness, zero thermal expansion and zero heat capacity whereas closed cracks
are represented as before by a fictitious isotropic material to account for stress/strain
continuity. Once again, expressions are given for dilute and MT schemes and PCW
bound. The boundary conditions used are uniform strain with uniform temperature (to
find thermal stress and specific heat at constant strain) and uniform stress with uniform
temperature (to find thermal strain and specific heat at constant stress). Here also, one
can observe transverse isotropy in thermal stress for a single system of open cracks with
major degradation in the normal direction. As expected, different distributions of cracks
give different results. Despite the conclusions of the elastic problem, closed cracks have no
influence on the effective thermoelastic properties. Thermoelastic stress-based properties
are not affected by cracks, either open or closed.

As mentioned many times, due to the lack of experimental data, numerical simulation
was performed to get some comparison with the theoretical results. Framework similar to
micromechanics was adopted for the numerical analysis in the FEA software ABAQUS.
Open and closed cracks are designed as inclusion and their status is determined only
based on their material property. The numerical work started with a simple 2D analysis
of effective thermal conductivity, then extended to 3D to numerically find the effective
thermal conductivity, resistivity and stress of the microcracked RVE. More than 150
simulations were performed to study the said properties numerically. 2D analysis considers
a spherical distribution of cracks (equivalent to PCW bound) while 3D considers an
elliptical distribution (equivalent to MT scheme). So, 2D results are closer to the PCW
bound and 3D results are closer to MT scheme. Micromechanical results are not dependent
on the aspect ratio of the cracks nor on the fictitious property of the closed cracks. The
same is not true for numerical results. So, their influence was studied and presented in
detail. Simulation of the steady-state conduction problem is simple but the thermoelastic
problem remains much more complex (meshing issues, definition of fictitious properties of
closed cracks, for instance). Using the numerical approach, this work was able to obtain
tendencies consistent with the theoretical results.

Works in the thesis can be improved and present some interesting research perspec-
tives, both on the theoretical and numerical points of view.

First, the theoretical works can be applied to other estimations techniques like self-
consistent, differential, interaction direct derivative (IDD), etc. Though only linear be-
haviour is presented here, extension to a non-linear (viscosity, plasticity, etc.) matrix
could be interesting to study damage in other types of materials. The effective thermal
and thermoelastic properties provide also useful estimates for thermomechanical calcu-
lations of brittle materials. While the thesis explores fixed damage state, thermal loads
applied can generate more cracks and which in turn can affect the very thermal properties
studied and consequently heat transfer and thermoelastic behaviours. To that point, this
work gives relevant information for further works that can be dedicated in modelling a
fully coupled thermomechanical damage model with evolving damage. The framework
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used can be extended to finding the effective electrical conductivity and resistivity of a
microcracked media.

In the numerical works, the need for studying the interaction between cracks should be
addressed. This question will face the very challenging issue of cracks location in the 3D
cell. At the same time, it would be relevant to compare the inclusion-based representation
used in the thesis with the representation of cracks as seams, where definition of contact
can be set to evaluate closed cracks. Though the work deals with random microstructure,
using X-ray tomography, real structures can be mapped and their volume reconstructed
and simulations can be performed in FEA softwares. The simulations linked to this
work consider thermal and thermoelastic simulations separately, but combined thermo-
mechanical loading can aid in creating the damage model mentioned above. Lejeunes
and Bourgeois (2011) developed a homogenization toolbox for ABAQUS to determine the
homogenized elastic characteristics of heterogeneous materials. Similarly, a new graphical
interface toolbox can be developed to derive the homogenized thermal characteristics as
well. Since extracting results can be time consuming, toolbox powered by python script
will be very attractive.
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Appendix A

Supplement to Chapter I

A.1 Equivalent inclusion method in steady-state

This part intends to present the equivalent inclusion method developed to solve the prob-
lem described at Eq. (1.12).

Consider a problem of a homogeneous medium of thermal conductivity λ0 in the same
volume Ω, subjected to same conditions at the boundary ∂Ω, and surrounded by a eigen
temperature gradient ge (or an equivalent pre-flux q0 = λ0 · ge). The resulting heat flux
q∗, temperature T ∗ and temperature gradient g∗ of this fictitious problem must satisfy
the following equations:

q∗(x) = −λ0 · [g∗(x)− ge(x)] , ∀ x ∈ Ω

div q∗(x) = 0, ∀ x ∈ Ω

g∗(x) = grad T ∗(x), ∀ x ∈ Ω

T ∗(x) = G · x, ∀ x ∈ ∂Ω

(A.1)

The works of Eshelby (1957), in extension Hatta and Taya (1986), falls within the frame-
work defined by equation set (A.1) with certain specifies: the domain Ω is considered
infinite, the temperature tends to zero at infinity, the free temperature gradient ge (or
pre-flux q0) is zero outside the inclusion domain I of Ω and uniform within the domain I
(or q0 uniform equal to qI = λ0 · ge). The problem can be written as:

q∗(x) = −λ0 · [g∗(x)− ge(x)] = −λ0 · g∗(x) + qI , ∀ x ∈ Ω

q∗(x) = −λ0 · g∗(x), ∀ x ∈ (Ω− I)

div q∗(x) = 0, ∀ x ∈ Ω

g∗(x) = grad T ∗(x), ∀ x ∈ Ω

T ∗(x) → 0, ∀ x→∞

(A.2)

It is shown that this is equivalent to determining the temperature field equal to zero at
infinity in an infinite elastic homogeneous medium subjected on an inner surface ∂ΩI

corresponding to the boundary of the inclusion to surface flux density −q0 · u (u the
unit normal to ∂ΩI directed outside I). Green’s function in an infinite medium provides
solution to this problem. Accordingly, when the inclusion I is ellipsoidal, the resulting
temperature gradient gI is uniform, so:

g∗(x) = gI = SE · ge = SE · λ−1
0 · qI , ∀ x ∈ I (A.3)
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and the resultant uniform heat flux is:

q∗(x) = qI = −λ0 ·
[
gI − ge

]
=
[
I− λm · SE · λ−1

0

]
· qI , ∀ x ∈ I (A.4)

where the depolarization (Eshelby-like) tensor SE depends on the shape and orientation
of the inclusion.

Now consider the so-called problem of heterogeneity, were the infinite medium of
volume Ω and conductivity λ0 is subjected to a homogeneous temperature gradient G∞
at infinity. Additionally, a different medium of volume ΩH and conductivity λH occupies
a domain H within V with a condition of perfect interface. This problem can be defined
with following set of equations:

q∗(x) = −λH · g∗(x), ∀ x ∈ H
q∗(x) = −λ0 · g∗(x), ∀ x ∈ (Ω−H)

div q∗(x) = 0, ∀ x ∈ Ω

g∗(x) = grad T ∗(x), ∀ x ∈ Ω

T ∗(x) → G∞ · x, ∀ x→∞

(A.5)

Under the condition that H is an ellipsoid and by subjecting the volume Ω including I to
the same temperature gradient G∞ at infinity as Ω including H, it can be demonstrated
that there is equivalence between the inclusion problem and the heterogeneity problem if
qI is such that:

qI = (λH − λ0) · (gI +G∞) (A.6)

From Eqs. (A.3) and (A.6), we get:

gH = gI +G∞ =
[
I + SE · λ−1

0 · (λH − λ0)
]−1

·G∞ (A.7)

and
qH = −λH · gH (A.8)

In estimation methods, the solution for the heterogeneity problem is used to approxi-
mate the mean temperature gradient over the phases of the heterogeneous medium. Re-
turning to our microcracked media problem, a cracks family is modelled as an ellipsoidal
heterogeneity. Average temperature gradient 〈g〉c and heat flux 〈q〉c over the cracks phase
are assimilated to the uniform fields developing in an ellipsoidal heterogeneity with same
conductivity as the crack (λH = λc), with adequate shape and orientation (described
through tensor SE) and embedded in an infinite homogeneous reference medium (of con-
ductivity λ0) subjected to uniform gradient G∞. Eq. (A.7) becomes:

〈g〉c = gH =
[
I + SE · λ−1

0 · (λc − λ0)
]−1

·G∞ (A.9)

For homogenization schemes considered in the study, the matrix is considered as the
reference medium (λ0 = λm). Moreover, for a dilute concentration of cracks with no
interaction between cracks, the remote condition is G∞ = G, therefore:

〈g〉c =
[
I + SE · λ−1

m · (λc − λm)
]−1

·G (A.10)
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Comparing Eqs. (A.10) and (1.11), we can find the gradient localization tensor:

〈A〉dilc =
[
I + SE · λ−1

m · (λc − λm)
]−1

(A.11)

For the Mori−Tanka scheme, we consider some interaction between the cracks. We re-
tain the metholodly using in dilute case but we account the interaction between cracks by
modifying the temperature gradient or flux acting on each crack. For this case, the macro-
scopic temperature gradient at infinity G∞ is replaced by the phase average temperature
gradient of the matrix 〈g〉m, i.e. G∞ = 〈g〉m, and we know that:

G = 〈g〉 = fm〈g〉m + fc〈g〉c (A.12)

Based on the above mentioned assumption, one can say:

〈g〉c = 〈A〉dilc · 〈g〉m (A.13)

From the above two equations, G∞ can be given in terms of G as:

G∞ = 〈g〉m =
[
fmI + fc〈A〉dilc

]−1

·G (A.14)

Substituting Eq. (A.14) in Eq. (A.13),

〈g〉c = 〈A〉dilc ·
[
fmI + fc〈A〉dilc

]−1

·G (A.15)

one can compare Eqs. (A.15) and (1.11) to show that:

〈A〉MT
c = 〈A〉dilc ·

[
fmI + fc〈A〉dilc

]−1

(A.16)

As we see from Eqs. (A.11) and (A.16), the estimation are function of

• volume fractions,

• matrix and crack properties,

• shape of the crack (through Eshelby-like tensor).

Since the above points are already known, it is fairly easy to estimate the effective prop-
erties by combining Eq. (A.11) or (A.16) into Eq. (1.10).

Apart from these two methods, Ponte Castañeda and Willis introduced an energy
based bound which help us find the effective properties directly. They employ an addi-
tional tensor which takes into account the spatial distribution of the inclusions (or cracks).
From this method, both dilute and Mori-Tanaka results can be achieved by considering
different spatial distribution tensor. This makes them a special case of PCW.

Using the same methodology used for the conductivity problem, we can also find
the effective resistivity. Here instead of considering a uniform temperature gradient G
boundary condition, we will consider a uniform heat flux Q. Accordingly,

ρhom = ρm + fc (ρc − ρm) · 〈B〉i (A.17)

where B is the second-order flux concentration tensor. And it links the microscopic and
macroscopic heat flux of each phase linearly:

〈q〉r = 〈B〉r ·Q (A.18)
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For the crack phase, from Eqs. (1.3), (1.5), (1.6) and (A.18), and for dilute case (fc � 1),
〈λ ·A〉−1 ≈ λ−1

m = ρm, the flux concentration tensor becomes:

Bdil
c = λc ·Adil

c · 〈λ ·A〉−1 = λc ·Adil
c · ρm (A.19)

Similar to Eq. (A.16) with the remote condition Q∞ = 〈q〉m, the flux concentration tensor
in Mori−Tanaka can be given by:

〈B〉MT
c = 〈B〉dilc ·

[
fmI + fc〈B〉dilc

]−1

(A.20)

Many such schemes can be used to find the flux concentration and gradient localization
tensors, each with their own assumptions, advantages and shortcomings.

A.2 Volume fraction of cracks

When a cracks family is modeled as a penny-shaped ellipsoid (Fig. 1.1b), volume fraction
of N number of cracks per unit volume is defined by:

fc = N ∗ 4

3
πa2c =

4

3
πa3

( c
a

)
N =

4

3
πdω (A.21)

where (a, c) are the mean semi-axes of the cracks, ω = c/a the mean aspect ratio and
d = Na3 the crack density.

A.3 Depolarization tensor

The components of the depolarization tensor in 3D can be given by (Hatta and Taya
1986):

Sii =
a1a2a3

2

∫ ∞
0

ds

(a2
i + s)

√
(a2

1 + s)(a2
2 + s)(a2

3 + s)
(i = 1...3) (A.22)

and Sij = 0 for i 6= j. Eq. (A.22) is an elliptical integral but can be expressed for a simple
geometries of ellipsoids. Typically, for an ellipsoid such that a1 = a2 = a and a3 = c,
Therefore Eq. (A.22) becomes:

S11 = S22 =
a2c

2

∫ ∞
0

ds

(a2 + s)2
√

(c2 + s)
(A.23)

S33 =
a2c

2

∫ ∞
0

ds

(c2 + s)(a2 + s)
√

(c2 + s)
(A.24)

Solving Eqs. (A.23) and (A.24), and considering the special case of penny-shape, i.e.
a� c, one has:

S11 = S22 =
π

4
ω S33 = 1− π

2
ω (A.25)

For an orthogonal base (k, t,n), the tensorial form of Eq. (A.25) can be written as

SE = S11 k⊗ k + S22 t⊗ t + S33 n⊗ n = S11 (k⊗ k + t⊗ t) + S33 n⊗ n (A.26)
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Knowing that, I = k⊗ k + t⊗ t + n⊗ n, it can be simplified as:

SE = S11 (I− n⊗ n) + S33 n⊗ n =
π

4
ω (I− n⊗ n) +

(
1− π

2
ω
)

n⊗ n (A.27)

A.4 Tensorial inverse

Let the second order tensor A = w (I− n⊗ n) + z n⊗n, where w and z are scalars such

that w 6= 0 and z 6= 0. Now its inverse can given be as A−1 =
1

w
(I− n⊗ n) +

1

z
n⊗ n.

A.5 Detailed calculation of conductivity

For simplicity, the mathematical demonstration is detailed here for a single family of
crack. It can be extended to several families as provided in Chapter 1.

Lets recall the expression to find the effective conductivity from Eq. (1.10):

λhom = λm + fc (λc − λm) · 〈A〉c (A.28)

since we already know λm = λm I and λc = λc I, the equation above can rewritten as

λhom = λm + λm fc

(
λc
λm
− 1

)
〈A〉c = λm

[
I− fc (1− ξ) 〈A〉c

]
with ξ =

λc
λm

(A.29)

A.5.1 Dilute scheme

The gradient localization tensor for dilute case given by Eq. (A.11):

〈A〉dilc =
[
I + SE · λ−1

m · (λc − λm)
]−1

(A.30)

〈A〉dilc =

[
I +

(
λc
λm
− 1

)
SE

]−1

=
[
I− (1− ξ) SE

]−1

(A.31)

Substituting Eq. (A.27) in Eq. (A.31) one gets:

〈A〉dilc =
[
I− n⊗ n + n⊗ n

−
(π

4
ω (I− n⊗ n) +

(
1− π

2
ω
)

n⊗ n
)

(1− ξ)
]−1

(A.32)

〈A〉dilc =
[ (

1− π

4
ω (1− ξ)

)
(I− n⊗ n) +

[
1−

(
1− π

2
ω
)

(1− ξ)
]

n⊗ n
]−1

(A.33)

Using the tensorial inverse in Section A.4, Eq. (A.33) comes to:

〈A〉dilc =
1

1− π

4
ω (1− ξ)

(I− n⊗ n) +
1

1−
(

1− π

2
ω
)

(1− ξ)
n⊗ n (A.34)
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Further simplifying effective conductivity Eq. (A.29) can be:

λdilhom = λm

[
I− 4

3
πdω (1− ξ) 〈A〉dilc

]
= λm

[
I− 4

3
πdT

]
with T = lim

ω→0
ω (1− ξ) 〈A〉dilc (A.35)

T = lim
ω→0

ω(1− ξ)
1− π

4
ω (1− ξ)

(I− n⊗ n) +
ω(1− ξ)

1−
(

1− π

2
ω
)

(1− ξ)
n⊗ n (A.36)

For open case λc = 0 therefore ξ = 0, so:

T = lim
ω→0

4ω

4− πω
(I− n⊗ n) +

2

π
n⊗ n =

2

π
n⊗ n (A.37)

For closed case λc 6= 0 therefore for all ξ 6= 0:

T = lim
ω→0

ω(1− ξ)
1− π

4
ω (1− ξ)

(I− n⊗ n) +
ω(1− ξ)

ξ +
π

2
ω(1− ξ)

n⊗ n = 0 (A.38)

A.5.2 Mori-Tanaka scheme

The gradient localization tensor for Mori-Tanaka is presented in Eq. (A.16):

〈A〉MT
c = 〈A〉dilc ·

[
fm I + fc 〈A〉dilc

]−1

(A.39)

Therefore, Eq. (A.29) takes the form:

λMT
hom = λm

[
I− fc (1− ξ) 〈A〉dilc ·

[
fm I + fc 〈A〉dilc

]−1
]

(A.40)

Lets call
[
fm I + fc 〈A〉dilc

]−1

= G, so:

λMT
hom = λm

[
G−1 − fc (1− ξ) 〈A〉dilc

]
·G = λm

[
fm I + ξfc〈A〉dilc

]
·G = λm X ·G (A.41)

Considering thin inclusion (ω → 0), fm = 1− fc → 1. Moreover, since ξ = 0 in the open
case and ω〈A〉dilc = 0 in the closed case, we thus have X = I and λhom = λm G, so:

λMT
hom = λm

[
I +

4

3
πdω 〈A〉dilc

]−1

= λm

[
I +

4

3
πdT

]−1

(A.42)
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A.5.3 Ponte Castañeda-Willis bound

The gradient localization tensor for PCW is given in Eq. (1.29)

〈A〉PCWc = 〈A〉dilc ·
(
fm I + fc

[
I +

(
PE −Pd

)
·
(
λc − λm

)]
· 〈A〉dilc

)−1

= 〈A〉dilc ·
(
fm I + fc

[
I +

(
SE − Sd

)(
1− ξ

)]
· 〈A〉dilc

)−1

= 〈A〉dilc ·
(
fm I + fc

(
1− ξ

)
Sd · 〈A〉dilc

)−1

At the limit ω → 0 and for a spherical spatial distribution Sd =
1

3
I, one has:

〈A〉PCWc = 〈A〉dilc ·
(

I +
4

9
πdT

)−1

(A.43)

A.6 Detailed calculation of resistivity

The effective resistivity is given in Eq. (A.17).

A.6.1 Dilute scheme

The flux concentration tensor is given in Eq. (A.19):

Bdil
c = λc ·Adil

c · ρm = λc ·
[
I + SE · λ−1

m · (λc − λm)
]−1

· ρm (A.44)

Bdil
c =

[
λm · ρc + λm · SE · λ−1

m · (λc − λm) · ρc
]−1

(A.45)

Lets call SE · λ−1
m = PE, which is similar to the Hill first tensor in elasticity, so:

Bdil
c =

[
λm · ρc + λm ·PE · λc · ρc − λm ·PE · λm · ρc

]−1

=
[
λm · ρc + λm ·PE · I− λm ·PE · λm · ρc

]−1

=
[
I + λm · ρc − I + λm ·PE · I− λm ·PE · λm · ρc

]−1

=
[
I + λm · ρc − λm · ρm + λm ·PE · λm · ρm − λm ·PE · λm · ρc

]−1

=
[
I + λm · (ρc − ρm)− λm ·PE · λm · (ρc − ρm)

]−1

=
[
I + (λm − λm ·PE · λm) · (ρc − ρm)

]−1

Therefore:
Bdil
c =

[
I + QE · (ρc − ρm)

]−1

(A.46)
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where QE = λm − λm · PE · λm is similar to the Hill second tensor of elasticity. Now,
substituting Eq. (A.46) into Eq. (A.17):

ρdilhom = ρm + fc

[
(ρc − ρm)−1 + QE

]−1

= ρm + fc

[(
ξ

1− ξ

)
ρ−1
m + QE

]−1

= ρm + fc

[(
ξ

1− ξ

)
I + I− SE

]−1

· ρm

= ρm + fc (1− ξ)
[
I− (1− ξ)SE

]−1

· ρm = ρm

[
I +

4

3
πdω (1− ξ) 〈A〉dilc

]
This leads to:

ρdilhom = ρm

[
I +

4

3
πdT

]
(A.47)

A.6.2 Mori-Tanaka scheme

For the MT model, the flux concentration tensor reads:

〈B〉MT
c = 〈B〉dilc ·

[
fm I + fc 〈B〉dilc

]−1

(A.48)

Accordindgly,

〈B〉MT
c =

[
(1− fc)

(
〈B〉dilc

)−1
+ fc I

]−1

=
[
(1− fc)

[
I + QE · (ρc − ρm)

]
+ fc I

]−1

=
[
I + (1− fc) QE · (ρc − ρm)

]−1

From Eq. (A.17), and using similar simplifications as for the dilute case, the effective
resistivity writes:

ρMT
hom = ρm + fc (1− ξ)

[
ξI + (1− ξ)(1− fc)I− (1− fc)2(1− ξ)SE

]−1

· ρm (A.49)

At the limit case (ω → 0), it comes thus :

ρMT
hom = ρdilhom (A.50)

A.6.3 Ponte Castañeda-Willis bound

The flux concentration tensor for PCW is presented in Eq. (3.61):

〈B〉PCWc = 〈B〉dilc ·
(
fm I + fc

[
I +

(
QE −Qd

)
·
(
ρc − ρm

)]
· 〈B〉dilc

)−1

= 〈B〉dilc ·
(
fm I + fc

[
I + QE ·

(
ρc − ρm

)
−Qd ·

(
ρc − ρm

)]
· 〈B〉dilc

)−1

= 〈B〉dilc ·
(

I− fc Qd ·
(
ρc − ρm

)
· 〈B〉dilc

)−1

= 〈B〉dilc ·
(

I− fc (1− ξ) Qd · ρm ·
[
I− SE (1− ξ)

]−1
)−1
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We already established Qd = λm − λm ·Pd · λm = λm · (I− Sd) =
2

3
λm, so:

〈B〉PCWc = 〈B〉dilc ·

(
I− 8

9
πdω (1− ξ) 〈A〉dilc

)−1

The concentration tensor finally reads:

〈B〉PCWc = 〈B〉dilc ·

(
I− 8

9
πdT

)−1

(A.51)

A.7 Scheme equivalence
According to these results, some equivalence between estimates of the overall thermal
properties can be highlighted (Fig. A.1).

Temperature Gradient 
based formulation

Heat Flux 
based formulation

[ ≠ ] -1

[ = ] -1

𝜆𝜆ℎ𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑

𝜆𝜆ℎ𝑜𝑜𝑜𝑜𝑀𝑀𝑀𝑀

𝜌𝜌ℎ𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑

𝜌𝜌ℎ𝑜𝑜𝑜𝑜𝑀𝑀𝑀𝑀

[ ≠ ] [ = ]

[ = ] -1
𝜆𝜆ℎ𝑜𝑜𝑜𝑜𝑃𝑃𝐶𝐶𝐶𝐶 𝜌𝜌ℎ𝑜𝑜𝑜𝑜𝑃𝑃𝐶𝐶𝐶𝐶

[ ≠ ] [ ≠ ]

𝜌𝜌ℎ𝑜𝑜𝑜𝑜𝑃𝑃𝐶𝐶𝐶𝐶
[ ≠ ] [ ≠ ] 𝜆𝜆ℎ𝑜𝑜𝑜𝑜𝑃𝑃𝐶𝐶𝐶𝐶

(a) Open cracks

Temperature Gradient 
based formulation

Heat Flux 
based formulation

[ = ] -1

[ = ] -1

𝜆𝜆ℎ𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑

𝜆𝜆ℎ𝑜𝑜𝑜𝑜𝑀𝑀𝑀𝑀

𝜌𝜌ℎ𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑

𝜌𝜌ℎ𝑜𝑜𝑜𝑜𝑀𝑀𝑀𝑀

[ = ] [ = ]

[ = ] -1
𝜆𝜆ℎ𝑜𝑜𝑜𝑜𝑃𝑃𝐶𝐶𝐶𝐶 𝜌𝜌ℎ𝑜𝑜𝑜𝑜𝑃𝑃𝐶𝐶𝐶𝐶

[ = ] [ = ]

(b) Closed cracks

Figure A.1: Equivalence relationships between micromechanical schemes according to
the microcracks status and boundary conditions.
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Appendix B

Supplement to Chapter II

B.1 2D Volume fraction of cracks

When a cracks family is modeled as a flat ellipse ellipsoid (Fig. 2.1b), volume fraction of
N number of cracks per unit area, is defined by:

fc = N ∗ πac = πa2
( c
a

)
N = πdω (B.1)

(a, c) are the mean semi-axes of the cracks, ω = c/a the mean aspect ratio and d = Na2

the crack density.

B.2 2D Depolarization tensor

The depolarization tensor in 2D is given by:

Sii =
a1a2

2

∫ ∞
0

ds

(a2
i + s)

√
(a2

1 + s)(a2
2 + s)

(i = 1, 2) (B.2)

and Sij = 0 for i 6= j. For an ellipse with a1 = a and a2 = c, Eq. (B.2) becomes:

S11 =
ac

2

∫ ∞
0

ds

(a2 + s)
√

(a2 + s)(c2 + s)
(B.3)

S22 =
ac

2

∫ ∞
0

ds

(c2 + s)
√

(a2 + s)(c2 + s)
(B.4)

Solving Eqs. (B.3) and (B.4), and considering the special case of flat-ellipse, i.e. a � c,
one has:

S1 =
ω

1 + ω
S2 =

1

1 + ω
(B.5)

For an orthogonal base (k,n), the tensorial form of Eq. (B.5) can be written as

SE = S1 k⊗ k + S2 n⊗ n (B.6)

Knowing that, I = k⊗ k + n⊗ n, it comes:

SE = S1 (I− n⊗ n) + S2 n⊗ n =
ω

1 + ω
(I− n⊗ n) +

1

1 + ω
n⊗ n (B.7)
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B.3 Calculation of the effective thermal resistivity
Using the same boundary condition used in Section 1.4, the following properties are
derived. Starting with Dilute scheme, the respective flux concentration tensor is given
in Eq. (1.33), therefore the effective tensor is given as:

ρdilhom =
[
I + πd R

]
(B.8)

Knowing and expanding R tensor (Section 2.3), we get:

ρdilhom =

{
ρm ·

[
I + πd n⊗ n

]
, if cracks are open

ρm , if cracks are closed
(B.9)

The above result for open case coincides with the one given by Sevostianov (2006), who
calculated this solution using heat flux intensity factor around the crack tip.

While considering elliptical spatial distribution to account for interaction, Mori-
Tanaka scheme is used. Its concentration tensor is given in Eq. (1.37). This leads
to:

ρMT
hom = ρdilhom (B.10)

Ponte Castañeda-Willis bound allows to take any spatial distribution of cracks.
Inline with previous works, we will consider a circular distribution. The simplified con-
centration tensor is (see Apprendix A.6.3):

〈B〉PCWc = 〈B〉dilc ·
(

I− fc Qd ·
(
ρc − ρm

)
· 〈B〉dilc

)−1

(B.11)

From the equation above, the thermal resistivity is:

ρPCWhom = ρm ·

[
I + π dR ·

(
I− π d

2
R

)−1
]

(B.12)

Substituting the limit tensor R and further simplification leads to:

ρPCWhom =

ρm ·
[
I + πd

1

1− πd
2

n⊗ n

]
, if cracks are open

ρm , if cracks are closed
(B.13)

Fig. B.1b presents the evolution of effective thermal resistivity for various schemes and
bounds.
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Figure B.1: Prediction of generalized thermal conductivity λ(n) and resistivity ρ(n)
for a material weakened by a single family of open microcrack with unit normal n.
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Appendix C

Supplement to Chapter III

C.1 Walpole base

The tensors J and K given by Walpole (1981)

J =
1

3
I⊗ I K = I− J (C.1)

satisfy following conditions :

J : J = J, K : K = K, J : K = K : J = O (C.2)

so that any fourth order isotropic tensor D = γ J+ δ K has an inverse D−1 =
1

γ
J+

1

δ
K.

Given a unit vector n, Walpole also introduce the following base :

E1 =
1

2
(I− n⊗ n)⊗ (I− n⊗ n), E2 = n⊗ n⊗ n⊗ n,

E3 = (I− n⊗ n)⊗ (I− n⊗ n) − 1

2
(I− n⊗ n)⊗ (I− n⊗ n),

E4 = n⊗ n⊗ (I− n⊗ n) + (I− n⊗ n)⊗ n⊗ n, E5 = n⊗ n⊗ (I− n⊗ n),

E6 = (I− n⊗ n)⊗ n⊗ n

(C.3)

Using Eq. (C.3), any fourth order transversely isotropic D can be decomposed as :

D = e1 E1 + e2 E2 + e3 E3 + e4 E4 + e5 E5 + e6 E6 (C.4)

which is simply expressed as

D = [e1, e2, e3, e4, e5, e6] (C.5)

In Walpole base, tensors I, J and K can be expressed as:

I = [1, 1, 1, 1, 0, 0] J =

[
2

3
,
1

3
, 0, 0,

1

3
,
1

3

]
K =

[
1

3
,
2

3
, 1, 1,−1

3
,−1

3

]
(C.6)

Note that, if e5 = e6 then tensor D is symmetric. Also,

I : D = [(e1 + e5) (I− n⊗ n) + (e2 + 2e6) n⊗ n] (C.7)
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where
D : I = [(e1 + e6) (I− n⊗ n) + (e2 + 2e5) n⊗ n] (C.8)

and for a symmetric D tensor Eqs. (C.7) and (C.8) yield to same result. If another fourth
order tensor D′ = [e′1, e

′
2, e
′
3, e
′
4, e
′
5, e
′
6] then their product D : D′ is:

D : D′ = [e1e
′
1 + 2e6e

′
5, e2e

′
2 + 2e5e

′
6, e3e

′
3, e4e

′
4, e5e

′
1 + e2e

′
5, e6e

′
2 + e1e

′
6] (C.9)

and finally the inverse of D can be given by:

D−1 =

[
e2

l
,
e1

l
,

1

e3

,
1

e4

,−e5

l
,−e6

l

]
(C.10)

with l = e1e2 − 2e5e6. Additionally, one has:

D : D′T = [e1e
′
1 + 2e6e

′
6, e2e

′
2 + 2e5e

′
5, e3e

′
3, e4e

′
4, e2e

′
6 + e5e

′
1, e1e

′
5 + e6e

′
2] (C.11)

with D′T the transpose of tensor D′.
One can thus provide expressions of some tensors in the base of Eq. (C.3) :

I = E1 + E2 + E3 + E4+ = [1, 1, 1, 1, 0, 0] (C.12)

J =
1

3

[
2 E1 + E2 + E5 + E6

]
=
[2

3
,

1

3
, 0, 0,

1

3
,

1

3

]
(C.13)

K =
[1

3
,

2

3
, 1, 1, −1

3
, −1

3

]
(C.14)

Besides, the matrix stiffness tensor Cm and compliance tensor Sm are on the form :

Cm =
Em

(1 + νm)(1− 2νm)
[1, 1− νm, 1− 2νm, 1− 2νm, νm, νm] (C.15)

Sm =
1

Em
[1− νm, 1, 1 + νm, 1 + νm,−νm,−νm] (C.16)

where Em and νm is the Young’s modulus and Poisson’s ratio respectively. Finally, the
spherical spatial distribution tensor Sdc (= Pdc : Cm = β1J + β2K) can be written as :

Sdc =
1

3
[ 2β1 + β2, β1 + 2β2, 3β2, 3β2, β1 − β2, β1 − β2] (C.17)

where β1 and β2 are given in Eq. (3.50).

C.2 Elasticity tensors for microcracked media

Following the same general framework of the study, several authors have derived elasticity
tensors for microcracked media, including unilateral effects (Deudé et al. 2002, Zhu 2006,
Dormieux and Kondo 2009).

• Dilute scheme :

Cdil
hom = Cm :

I− 4

3
π
∑
i/open

di Ti −
4

3
π
∑

i/closed

di T′i

 (C.18)
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Sdilhom =

I +
4

3
π
∑
i/open

di Ti +
4

3
π
∑

i/closed

di T′i

 : Sm (C.19)

• Mori-Tanaka scheme :

CMT
hom = Cm :

I +
4

3
π

∑
i/open

di Ti +
∑

i/closed

di T′i

−1

(C.20)

SMT
hom = Sdilhom (C.21)

• Ponte Castañeda-Willis bounds (upper bound for stiffness CPCW
hom and lower bound

for compliance SPCWhom , with spherical distribution) :

CPCW
hom = Cm :

[
I−

4

3
π
∑
i/open

di Ti +
4

3
π
∑

i/closed

di T′i

 :

I +
4

3
π
∑
i/open

di Sdc : Ti +
4

3
π
∑

i/closed

di β2 T′i

−1 ] (C.22)

SPCWhom =

[
I +

I− 4

3
π
∑
i/open

di Ti : Sm : Qd
c −

4

3
π
∑

i/closed

di T′i : Sm : Qd
c

−1

:

4

3
π
∑
i/open

di Ti +
4

3
π
∑

i/closed

di T′i

] : Sm

(C.23)

with Ti and T′i given in Eqs. (3.24) and (3.25) respectively.

C.3 Detailed calculation of specific heat

The specific heat capacity at constant strain for single family:

cε,hom = cε,m + fc
(
cε,c − cε,m + T0 (κc − κm) : 〈a〉c

)
(C.24)

C.3.1 Dilute scheme

The thermal strain localization tensor in dilute scheme is:

〈a〉dilc = (I−〈A〉dilc ) : (Cc − Cm)−1 : (κc − κm) with Cm = 3km J+ 2µmK (C.25)

Open case

Recalling Cc = O , κc = 0, cε,c = 0, Sm : κm = αm, Eq. (C.24) and Eq. (C.25) simplify
to:

cdilε,hom = fm cε,m − fc T0 κm : 〈a〉dil/openc = fm cε,m − fc T0 κm I : 〈a〉dil/openc (C.26)
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〈a〉dil/openc = (I− 〈A〉dil/openc ) : αm (C.27)

Substituting Eq. (C.27) in (C.26)

cdilε,hom = fm cε,m − fc T0 αm κm I : (I− 〈A〉dil/openc ) : I (C.28)

Considering limit case for the equation above,

cdilε,hom = cε,m −
4

3
πd T0 αm κmX with X = lim

ω→0
ω I : (I− 〈A〉dil/openc ) : I (C.29)

simplification of X gives:

X = lim
ω→0

ω (I− I : 〈A〉dil/openc ) : I = −I : T : I = − 4

π

(
1− ν2

m

1− 2νm

)
(C.30)

and:

cdilε,hom = cε,m + T0 αm κm
16

3

(
1− ν2

m

1− 2νm

)
d = cε,m + (1 + νm)T0 αm κm a1 d (C.31)

Closed case

For closed case,

〈a〉dil/closedc = (I− 〈A〉dil/closedc ) : (2µmK)−1 : κm (1− ψ) I (C.32)

cdilε,hom = cε,m + fc
(
cε,c − cε,m

)
− fc T0 κm (1− ψ) I : 〈a〉dil/closedc (C.33)

From these equations,

cdilε,hom = cε,m+fc
(
cε,c−cε,m

)
−fc T0 κ

2
m (1−ψ2) I : (I−〈A〉dil/closedc ) : (2µmK)−1 : I (C.34)

Tending to the limit case,

cdilε,hom = cε,m−
4

3
πd T0 κ

2
m (1−ψ2) X ′ with X ′ = lim

ω→0
ω I : (I−〈A〉dil/closedc ) : (2µmK)−1 : I

(C.35)
According to the development explained in Chapter 3, it comes to X ′ = 0 and:

cdilε,hom = cε,m (C.36)

C.3.2 Mori-Tanaka scheme

The thermal localization tensor for single family of cracks is given by:

〈a〉MT
c = 〈a〉dilc − 〈A〉MT

c : fc 〈a〉dilc and AMT
c = Adil

c : G (C.37)
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Open case

cMT
ε,hom = fm cε,m − fc T0 κm I : 〈a〉MT/open

c (C.38)

= fm cε,m − fc T0 κm I :
(
〈a〉dil/openc − 〈A〉MT/open

c : fc 〈a〉dil/openc

)
(C.39)

= c
dil/open
ε,hom + fc T0 κm I : 〈A〉MT/open

c : fc 〈a〉dil/openc (C.40)

= c
dil/open
ε,hom +

4

3
πdω T0 κm I : 〈A〉MT/open

c :
4

3
πdω 〈a〉dil/openc (C.41)

Applying limit case,

cMT
ε,hom = c

dil/open
ε,hom +

4

3
πd T0 κm I : T : Gopen : Mopen (C.42)

with

Gopen =

[
I +

4

3
πdT

]−1

and Mopen =
4

3
πd lim

ω→0
ω 〈a〉dil/openc (C.43)

Since,
Gopen : Mopen = − a1

aMT
2

(1 + νm)αm d n⊗ n (C.44)

Then
I : T : Gopen : Mopen = − 4

π

a1

aMT
2

(1− ν2
m)

(
1− νm
1− 2νm

)
αmd (C.45)

So, Eq. (C.42) comes to:

cMT
ε,hom = cdilε,hom − T0 αm κm

a2
1

aMT
d2 (1− ν2

m) (C.46)

cMT
ε,hom = cε,m + T0 αm κm a1 d (1 + νm)− T0 αm κm

a2
1

aMT
2

d2 (1− ν2
m) (C.47)

= cε,m + T0 αm κm a1 d (1 + νm)

[
1− a1

aMT
2

d (1− νm)

]
(C.48)

= cε,m + (1 + νm)T0 αm κm
a1

aMT
2

d (C.49)

Closed case

cMT
ε,hom = cε,m + fc

(
cε,c − cε,m

)
− fc T0 κm (1− ψ) I : 〈a〉MT/closed

c (C.50)

= cdil/closedε,m + fc T0 κm (1− ψ) I : 〈A〉MT/closed
c : fc 〈a〉dil/closedc (C.51)

= cdil/closedε,m +
4

3
πdω T0 κm (1− ψ) I : 〈A〉MT/closed

c :
4

3
πdω 〈a〉dil/closedc (C.52)

= cdil/closedε,m +
4

3
πd T0 κm (1− ψ) I : T′ : Gclosed : Mclosed (C.53)

with Gclosed =

[
I +

4

3
πdT′

]−1

and Mclosed =
4

3
πd lim

ω→0
ω 〈a〉dil/closedc .

Since:
Gclosed : Mclosed = 0 (C.54)
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Then:
cMT
ε,hom = cdil/closedε,m = cε,m (C.55)

C.3.3 Ponte Castañeda-Willis bound

The thermal localization tensor for single family of cracks is

〈a〉PCWc = − (Cc − Cm)−1 :
(
〈A〉PCWc − I

)T
: (κc − κm) (C.56)

Open case

In the open state, above thermal localization tensor reads:

〈a〉PCW/openc = −C−1
m : Zopen (C.57)

where
Zopen = −κmI :

(
〈A〉dil/openc : Hopen − I

)
(C.58)

and Hopen =

[
I +

4

3
πd Sdc : T

]−1

. For the limit case, one has:

cPCWε,hom = cε,m +
4

3
πd T0 κ

2
m I : C−1

m : (T : Hopen)T : I (C.59)

Since I : C−1
m = 1

3km
I and

(T : Hopen)T : I = I : T : Hopen =
4

π

1

aPCW2

(
1− νm
1− 2νm

)
[(1− νm) n⊗ n + νm(I− n⊗ n)]

(C.60)
it comes finally:

cPCWε,hom = cε,m + (1 + νm)T0 αm κm
a1

aPCW2

d (C.61)

Closed case

Introducing function F allows to express the thermal localization tensor as:

〈a〉PCW/closedc = − lim
b→0

F(b) : Zclosed (C.62)

where
Zclosed = −κm(1− ψ)I :

(
〈A〉dil/closedc : Hclosed − I

)
(C.63)

and Hclosed =

[
I +

4

3
πβ2d T′

]−1

. Considering again the limit case ω → 0, it comes:

cPCWε,hom = cε,m −
4

3
πd T0 (1− ψ)2κ2

m lim
b→0

I : F(b) :
(
T′ : Hclosed

)T
: I (C.64)

It can be shown that F(b) :
(
T′ : Hclosed

)T does not depend on b and that

F(b) :
(
T′ : Hclosed

)T
: I = 0 (C.65)

Accordingly,
cPCWε,hom = cε,m (C.66)
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Thermomechanical behaviour of multi-cracked brittle media taking
into account unilateral effects: theoretical and numerical approaches

Micromechanical and numerical methods are explored to predict the effective thermal
and thermoelastic properties of a microcracked media. The effective properties are given
in 2D and 3D. In this thesis, special attention is paid to the anisotropy, induced by the
orientation of the cracks and the unilateral effect related to the opening and closing of the
cracks.

The cracks are modelled as ellipsoidal inclusions. The open cracks are considered to have

no stiffness and to be thermally insulating, whereas the closed cracks are represented by a

fictitious isotropic material. The theoretical approach takes advantage of various homoge-

nization schemes and bounds to derive closed-form expressions of effective properties. The

numerical approach considers finite element modelling and is based on the same geometry

and properties of cracks as in the theory. Finally, results are compared to demonstrate the

consistency between the two approaches.

Keywords: thermomechanics, microcracked materials, homogenization, unilateral effect,

finite element modelling

Comportement thermomécanique des matériaux fragiles microfissurés
avec prise en compte des effets unilatéraux: approches théoriques et

numériques

Dans ces travaux de thèse, des approches micromécaniques et numériques sont utilisées
pour prédire les propriétés thermiques et thermoélastiques effectives d’un milieu microfissuré.
Les développements sont effectués pour les cas bidimensionnel et tridimensionnel. Une
attention particulière est portée à l’anisotropie induite par l’orientation des fissures et à
l’effet unilatéral associé à leur ouverture/fermeture.

Plus précisément, les fissures sont modélisées comme des inclusions ellipsoïdales, sans

rigidité et thermiquement isolantes dans le cas des fissures ouvertes et constituées d’un

matériau isotrope fictif dans le cas des fissures fermées. L’approche théorique tire profit de

différents schémas et bornes obtenues par homogénéisation pour déterminer les expressions

analytiques des propriétés effectives. Sur le plan numérique, le travail s’appuie sur la mod-

élisation par éléments finis et se base sur les mêmes géométrie et propriétés des fissures que

celles retenues pour la démarche micromécanique. La comparaison des résultats permet de

montrer la cohérence entre ces deux approches.

Mots clés: thermomécanique, matériaux microfissurés, homogénéisation, effet unilatéral,

modélisation par éléments finis
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