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Abstract 

The aim of this work is to develop novel shape memory polymers (SMPs) and 

nanocomposites for potential biological applications. A kind of commercial SMP, shape 

memory polyurethane (SMPU), was used to prepare nanocomposites by incorporating 

nano-clay into the SMPU substrate. The mechanical behaviour, thermal property and 

shape memory efficiency were studied with various nanofiller loadings. Chemical 

synthesis methods were also employed to prepare the other designable SMP and its 

nanocomposites, i.e. the shape memory polystyrene co-polymer (SMPS). Multiple 

technologies were adopted to enhance the SMPS matrix such as modifying the chemical 

components, introducing various functional nanoparticles into the polymeric network 

and improving the dispersion of the nanoparticles. Different methods were used to 

characterize the overall performance of the obtained materials. Mechanical tests were 

performed at different dimensional scales with a varied degree of localisation. 

Nanoindentation was firstly applied to assess the micro-mechanical properties of shape 

memory polymer nanocomposites at scales down to particle size. The micro-mechanical 

analysis provided the fundamental information on the SMPs and their nanocomposites 

for bio-MEMS applications. Potential applications were also explored through 

manufacturing different type of device models and testing their shape recovery 

efficiencies. Finally, theoretical contributions were made in two areas. The first one was 

the theoretical analysis on the nanoparticles enhancement to the soft polymeric matrix. 

The other was in developing a constitutive model to describe the thermo-viscoelastic 

property and shape memory behaviour for SMP nanocomposites.  
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IMPORTANT NOMENCLATURE AND ABBREVIATIONS 

SMP                                         shape memory polymer  

SMPU                                      shape memory polyurethane      

SMPS                                       shape memory polystyrene 

RR                                            shape recovery ratio 

Rr                                              cyclic strain recovery ratio  

T                                               temperature  

Ttrans                                          transition temperature  

Tg                                              glass transition temperature  

Tm                                             melting temperature  

DMTA                                     dynamic mechanical thermal analysis 

DSC                                         differential scanning calorimetry 

TGA                                         thermalgravimetry analysis 

AFM                                        atom force microscopy 

OM                                          optical microsocy 

DE                                           dissipation energy 

E                                              elastic modulus 

H                                              hardness  

tan δ                                         phase angle, Tan (delta) 

φ                                              volume fraction 

Ξ                                              conductivity       

Ø                                              complex permittivity           

tan Э                                        dielectric loss 

l/d                                             aspect ratio       

ε                                               stress       

δ                                               strain       
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Chapter 1 

INTRODUCTION 

The aim of the work presented in this thesis is to investigate aspects of the fabrication 

and properties of new functional materials, namely shape memory polymers (SMPs) and 

their associated nanocomposites, made by reinforcing the polymer with nanoparticles. 

The main objectives of this research are to reveal the effects of nanoparticle 

reinforcement on mechanical, thermal and thermo-mechanical properties and also on the 

shape memory effect, and to design and test devices based on these shape memory 

materials as an exploration of potential application areas.   

 

1.1  Background of shape memory polymer and nanocomposites                                                            

 

Polymeric materials are capable of a shape memory effect, although the mechanisms 

responsible differ dramatically from those of shape memory alloys (SMAs). Current 

opinion is that SMPs achieve temporary strain fixing and recovery through a variety of 

physical means, with the underlying very large extensibility being derived from the 

intrinsic elasticity of polymeric networks. Earlier studies of SMPs were mainly into the 

shape memory phenomenon itself and the main focus was preparation of these new 

materials for various applications. More recent work has focused on particular aspects, 

for example by Lendlein et al.[1-5] (synthesis, functionalizing and biological application), 

Gall et al. [6-9] (functionalizing and shape memory mechanism), Tobushi et al. [10-15] 

(SMP structure-property relationships), Hu et al. [16-23] (SMP synthesis and smart textile 

fibers), Huang et al. [24-29] (SMP and nanocomposite physical properties), Leng et al. [30-

38] (functionalizing and SMP physical properties), Wilson et al. [39-47] (structure-property 

relationships and bio-medical applications), and Nguyen et al. [48-50] (modelling and 

mechanisms). It is widely acknowledged that the particular properties of SMPs can 

fulfil important roles in many applications, and new techniques are continually sought 

to modify their properties according to new conditions. Developments on theories and 

mechanisms have revealed the internal changes during the shape recovery, which offer a 

better understanding and open up the possibility of modelling shape memory behaviour 

for different polymeric materials.  
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Although much work has already been done on SMPs as outlined above, several critical 

issues remain unsolved as far as we know. For example, there are no detailed studies on 

the enhancing mechanisms of nano-particles for either mechanical or electrical 

properties which should be supported by clear structure-property explanations.  There is 

also, as yet, no constitutive model to predict the shape memory behaviour of the 

nanocomposite system.    

1.2  Objectives                                                                                            

 

The overall aim of the work is to find a class of SMPs or nanocomposites with stable 

chemical and physical properties, which meet the requirements for potential biological 

applications. The work involves the application of a range of advanced chemical, 

physical and mechanical testing techniques, since the related materials synthesis 

through the chemical reactions and the characterizations demand extensive physical 

structure-properties knowledge.  

 

The approach was to use commercial SMPs as a reference for the mechanical, thermal 

and shape memory properties, and then systematically to design SMPs and 

nanocomposites using appropriate fabrication technology. Specific consideration was 

given to the control of the chemical synthesis, especially on the dispersion treatment for 

the nanocomposites. The chosen SMPs and nanocomposites were characterised at the 

macroscopic and microscopic scales and their overall performance were assessed.  

 

Mechanical properties were evaluated using a combination of uniaxial tensile testing, 

Vickers micro-indentation and nanoindentation. Tensile testing gives the bulk 

mechanical property, whereas microhardness offered a degree of localisation and was 

also used to obtain microhardness-transition temperature relations. Nanoindentation was 

used to provide further information for structure-property relations allowing 

measurement down to particle level. Other tests, such as thermal analysis and electron 

microscopy were used to provide microstructural information directly or indirectly to 

support the development of structure-property relationships.    

 

Shape memory behaviour was assessed using a range of triggering conditions. Some 

ancillary measurements, such as conductivity and dielectric tests were also carried out 

to assess the material modification efficiency as well as to obtain the setting factors for 
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shape memory tests. Various demonstrations were carried out and a thermal-mechanical 

tensile test was used to quantify the shape memory effect. Finally, dynamical thermal 

mechanical analysis (DMTA) was also used to provide thermo-mechanical information 

for the specimen materials. 

 

It was anticipated that novel SMPs or SMP-based nanocomposites would be identified 

in this research, alongside the establishment of a method for the evaluation of shape 

memory efficiency for this type of SMP. Analysis of the data was expected to result in 

the recognition of structure-property relationships in these polymeric systems, as well as 

a general understanding of shape memory behaviour in SMPs. Advances in the 

biological applications were also expected with proper design and demonstration with 

the specific materials.  

 

The objectives of this thesis are listed as follows:  

a. To understand mechanical/thermal behaviours of soft polymeric systems and the 

relationship between inorganic and organic phases after introducing the nano 

inorganic particles into a soft polymeric matrix; 

b. To synthesise and characterize SMPs and nanocomposites with designed 

properties by incorporating nanoparticles, mainly focusing on mechanical 

properties and shape memory performance; 

c. To explore the different triggering methodologies by functionalising the matrix 

with selected nano-particles and validate the shape memory effects;  

d. To analyse theoretically the structure-property relationships and the shape 

memory mechanism.  

 

1.3  Outline of thesis                                                                                               

 

Chapter 1: Introduction. A description of how the present work was inspired and its 

contributions to the development of SMPs and its nanocomposites will be given. 

 

Chapter 2: Literature review. The origins of the shape memory phenomenon and the 

history of SMPs are introduced. Classifications and recent developments of SMPs are 

explained in detail. The shape memory nanocomposite concept is provided, with a brief 
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introduction on the different fabrication technologies for nanocomposites. The potential 

applications and related published work is highlighted.    
 

Chapter 3: Materials and experimental methodology. This chapter describes the 

experimental apparatus, materials and fabrication / characterization techniques used for 

this research.  

 

Chapter 4: Nanoclay reinforced polyurethane shape memory nanocomposites. This 

chapter compares the experimental results for shape memory polyurethane (SMPU) and 

nanoclay/SMPU nanocmposites. 

 

Chapter 5: Thermal triggering in polystyrene based shape memory nanocomposites 

reinforced by different nanofillers. This chapter provided an overall description on the 

experimental results covering the important aspects related to the shape memory 

polystyrene copolymer (SMPS) and its nanocomposites. 

 

Chapter 6: Spherical carbon nanoparticle/polystyrene electro-active nanocomposites. 

This chapter systematically studies the properties of SMPS nanocomposites with 

conductive spherical carbon nano-particles, focusing more on the electrical properties. 

Other characterization results on mechanical, thermal and shape memory properties are 

also presented. 

 

Chapter 7: Carbon nano fibre / carbon nanotube based polystyrene shape memory 

nanocomposites. Further investigations on SMPS nanocomposites containing carbon 

nano fibres and nanotubes are discussed here. Measurements at the micro/sub-micron 

scales are used to reveal the structure-property relationship. The shape recovery 

efficiency evaluation which design different stents on various materials are provided to 

forecast the potential applications in biological area.  

 

Chapter 8: Discussion. The structure-property relationship for SMP nanocomposites is 

discussed including the particle size effect and geometrical aspect ratio effect. 

Constitutive models describing the thermo-viscoelastic behaviour and shape memory 

effect are proposed and the modelling results are compared with the experimental ones. 
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Chapter 9: Conclusions. Major conclusions from this research work are summarized in 

this section. 

 

Chapter 10: Future work. Potential future work is outlined here.   

 

Contribution to knowledge: 

 

The author claims two contributions in this thesis. The first contribution is the 

clarification of the particle enhancing effects for SMPs by fully analysing the tested data 

of shape memory nanocomposites with different types of nanoparticle. The second 

contribution is to create a constitutive model for shape memory nanocomposites, which 

predicts the thermal-mechanical behaviour and shape memory behaviour.   
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Chapter 2 

LITERATURE REVIEW  

A comprehensive literature survey is presented in this chapter, covering the shape 

memory phenomenon, SMP nanocomposites, simulation/modelling of shape memory 

nanocomposites and, finally, applications of SMPs and their nanocomposites.  

 

2.1  Shape memory polymer: phenomenon and effects                                       

 

Shape memory materials (SMMs) are particular types of materials that can "remember" 

their geometry, i.e. after a sample of SMM has been deformed from its original shape, it 

recovers toward its original geometry by itself under an external stimulus, such as light, 

temperature, or moisture, (often called shape memory effect, SME), or simply during 

unloading (superelasticity). 

 

The SME was first reported in 1932 for a gold-cadmium alloy [51]. However, it was not 

until 1951 that the phenomenon was explained crystallographically [52]. In the late of 

1950s, two viable engineering materials, CuZnAl [53] and CuAlNi [54] alloys, were found 

to exhibit SME. In 1962, Buehler et al. at the Naval Ordnance Laboratory discovered 

that the nickel-titanium system (NiTi, also called Nitinol) shows the shape memory 

effect [55]. The martensitic transformation of NiTi was described fully in 1965, when the 

term ‘memory’ was firstly used to describe the shape recovery behaviour [56], so that 

NiTi became the archetypal shape memory alloy (SMA). Shape memory effects have 

been already found in many materials, such as metals, ceramics, and polymers. Among 

all these materials, NiTi based alloys have been extensively studied and have found 

many commercial applications, due to their distinct properties of shape memory effect, 

super-elasticity, biocompatibility, corrosion resistance and high damping capacity [57-61].  

 

The SMPs have drawn increasing attention since the middle of the 1980s because of 

their scientific and technological significance [2, 4, 62]. They have extraordinary properties 

such as high degree of deformation, good biocompatibility, non-toxicity, 

biodegradability, wide ranges of mechanical properties, low-cost, light weight and easy 

processability [63-65]. Compared with SMAs, the advantages of SMPs are high elastic 

deformation and high recoverable strain (up to 400%), low cost for fabrication and 



 

processing, low density, excellent chemical properties, biocompatibility and potential 

biodegradability [57, 66

including heat (direct heating, Joule heating, infrared/radiation heating, laser heating

etc), moisture or water, and light. 

potential applications

They also have a broad range of application temperatures and stiffness, which can be 

tailored through the molecular structure. The shape recovery theory for

from the principle of phase/structure movements controlled by an energy threshold and 

frozen energy barrier. For instance, 

polymers can be readily changed above the shape memory transition tem

or Ts) and the deformation can be fixed below this temperature. As a result, when they 

are heated above Ttrans

can be either a glass transition temperature (

polymer (Tm), which is required to remian the activation energy for recovery. 

process is shown schematically in 

presented specifically 

 

There are a lot of polymer materials which show the shape memory effect, for example, 

epoxy [9,69,70], EVA (Ethylene

copolymer [72-74] and 

 

Figure 2.1 Schematic of Shape memory effect triggered by temperature

 

Mitsubishi Heavy Industries (MHI) 

1980s, and have successfully

The Tg values of the 

temperature range from 

7 

density, excellent chemical properties, biocompatibility and potential 
57, 66-68].  A variety of different stimulating methods can be applied, 

including heat (direct heating, Joule heating, infrared/radiation heating, laser heating

etc), moisture or water, and light. Such flexibility on triggering metho

applications in making actuation, sensing and control devices 

They also have a broad range of application temperatures and stiffness, which can be 

through the molecular structure. The shape recovery theory for

from the principle of phase/structure movements controlled by an energy threshold and 

frozen energy barrier. For instance, the shape of thermally responsive shape memory 

polymers can be readily changed above the shape memory transition tem

and the deformation can be fixed below this temperature. As a result, when they 

trans, their original shape can be recovered automatically. The 

can be either a glass transition temperature (Tg) or the meltin

, which is required to remian the activation energy for recovery. 

process is shown schematically in Figure 2.1, and detailed mechanisms will be 

presented specifically for different types of SMP in Section 2.1.1. 

There are a lot of polymer materials which show the shape memory effect, for example, 

, EVA (Ethylene-Vinyl Acetate copolymer) [16,71], poly

polytetra methylene oxide/poly (acrylic acid-

Schematic of Shape memory effect triggered by temperature

Mitsubishi Heavy Industries (MHI) have been engaged in research o

successfully developed polyurethane-based thermoplastic polymers 

the MHI shape memory polyurethane (SMPUs)

temperature range from –30 to 65 ºC. The shape memory of PU

Shear deformation 

density, excellent chemical properties, biocompatibility and potential 

.  A variety of different stimulating methods can be applied, 

including heat (direct heating, Joule heating, infrared/radiation heating, laser heating, 

triggering methods ensures great 

in making actuation, sensing and control devices with SMPs. 

They also have a broad range of application temperatures and stiffness, which can be 

through the molecular structure. The shape recovery theory for SMPs originates 

from the principle of phase/structure movements controlled by an energy threshold and 

the shape of thermally responsive shape memory 

polymers can be readily changed above the shape memory transition temperature (Ttrans 

and the deformation can be fixed below this temperature. As a result, when they 

, their original shape can be recovered automatically. The Ttrans 

melting temperature of the 

, which is required to remian the activation energy for recovery. The 

detailed mechanisms will be 

 

There are a lot of polymer materials which show the shape memory effect, for example, 

polyurethane (PU)/PU 

-co-acrylonitrile)  [75]. 

 
Schematic of Shape memory effect triggered by temperature 

research on SMPU since the 

based thermoplastic polymers [76].  

shape memory polyurethane (SMPUs) possess a broad 

The shape memory of PU has had an enormous 

Referencing  
sample 

Compress deformation 
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commercial effect, with successfully uses in such applications as kitchen tools, textiles 

and automotive engineering. A lot of research work has been established on SMPUs [71, 

77-79]. Baer et al investigated the thermomechanical properties of the Mitsubishi SMPs 

for potential application as medical devices, using thermal analysis methods [45]. Hu and 

co-workers in Hong Kong Polytechnic University have worked on the SMPUs and have 

fabricated shape memory composites based on the Mitsubishi SMPs. They also 

synthesized a SMPU resin, which mainly aims for textile applications [74, 80-82].  Huang 

et al. have studied intensively on the enhancement and triggering mechanisms of the 

SMP, etc. [24 26, 28, 83-85]. They also discovered some special triggering mechanisms, such 

as a water-induced shape recovery effect [24, 25, 85, 86]. The promising application fields of 

SMPs are biological applications, MEMS, and medical applications [16, 87-91], for 

example in minimally invasive surgery [6, 73, 92-95]. In some cases, another benefit of 

using SMPs is that there is a possibility to use degradable SMP if the biological device 

is not intended to be permanent [66, 67, 96, 97]. 

 

2.1.1 Mechanisms and classification in SMPs      

 

SMPs achieve temporary strain fixing and recovery through a variety of physical 

processes, the underlying extraordinary extensibility being derived from the intrinsic 

elasticity of polymeric structures. SMPs can be classified in a number of different 

categories. With their different thermal processing properties, they can be divided into 

thermoplastic and thermoset polymers. The SMPs can also be divided according to the 

different chemical compositions of the macromolecular matrix, such as shape memory 

alkenes, shape memory polyurethane and shape memory polyester. In the following 

sections, the SMPs will be discussed based on categorization according to the molecular 

chain structure, amorphous or covalently cross-linked. 

 

2.1.2 Amorphous shape memory polymers 

 

In the amorphous phase switching mechanism, crystalline or rigid amorphous domains 

in thermoplastics may serve as physical cross-linking points affording the elasticity 

required for shape memory to be developed, mainly in the form of phase-separated 

block copolymers. When the temperature exceeds the Tm or Tg (Thigh) of these discrete 

physical domains, the material can be reshaped. The continuous phase, having a lower 
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Tm or Tg (Tlow), often exists in a rubbery state at Tlow<T<Thigh and fixes a secondary 

shape on cooling to T<Tlow. As shown in some research work on block copolymers and 

polyurethanes, the soft domains show a sharp glass-transition which could be 

considered as a symbol for shape memory properties as the frozen internal energy 

releases [4, 62-64, 98]. In this system, the crystalline phase functions as physical cross-

linking joints (or hard segments), and the Tg of the amorphous region functions as Ttrans 

(the transition temperature). This kind of SMP includes some polymers with low 

crystallinity or semicrystalline homopolymers, melt-miscible polymer blends which are 

compatible in the molten and amorphous states, but have at least one semi-crystalline 

component [99]. For these miscible blends, the Tg of the amorphous phase during shape 

recovery can be easily changed by modifying the composition. 

 

In some block copolymers, the soft segments crystallize and the shape memory property 

are determined by the crystallization, Tm of the crystalline phase, which functions as 

Ttrans 
[100, 101]. Polycaprolactone (PCL) has been extensively used for synthesis of PU 

with a crystalline soft phase, which performs the typical crystallization switching 

recovery. The recovery temperature, at which fast recovery takes place, can vary from 

40°C to 60°C depending on the soft phase/hard phase composition and molecular 

weight of PCL [21, 102, 103]. The relation between the shape memory effect and molecular 

structure has been investigated and it was concluded that high crystallinity of the soft-

segment-region at room temperature was a necessary prerequisite for segmented PUs to 

demonstrate shape-memory behaviour [104]. The recent research focuses on such PU 

based SMPs are to achieve maximum crystallization and stable-hard segment domains. 

Many modifications have been made to achieve micro-phase separation, such as 

incorporation of new segments and new groups [66, 72, 92, 105, 106]. Zhu et al. [82] 

synthesised the SMPU cationomers composed of PCL, methylene diphenyl diisocyanate 

(MDI), 1,4-Butanediol (1,4-BDO), and N-methyl-D-aspartic acid (NMDA) or N,N-

bis(2-hydroxyethyl) isonicotinamide (BIN). The results showed that the stress at 100% 

elongation was reduced with increasing ionic group content. Shape recovery testing 

indicated that the NMDA series can be improved by the simultaneous insertion of 

cationic groups within hard segments, although not for the BIN series. Thermal analysis 

with DSC and DMA suggests that the crystallisability of soft segments in SMPU 

cationomers is enhanced by incorporation of ionic groups into hard segments, leading to 

a relatively high degree of soft segment crystallization. Compared with the 

corresponding nonionomers, incorporation of charged ionic groups within hard 
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segments can enhance the cohesion force among hard segments particularly at high 

ionic group content. This indicates that the content and category of cationic groups have 

a  significant influence on the shape memory properties of PU. Gouher et al. [107-109], 

fabricated a number of segmented copolymers with PCL of various Mn (2000, 3000 and 

4000 g/mol). Promising shape-memory properties were observed for two polymers that 

contained comparatively short, semicrystalline PCL soft segments of molecular weight 

3000 g/mol and either terephthalamide or 2,6-naphthalenedicarboxyamide hard 

segments. Loading could be conveniently achieved by cold-drawing at room 

temperature and strain recovery took place upon heating above the melting temperature 

of the soft segment (35°C). Film elasticity testing showed uniform deformation 

properties with strain recovery rates as high as 99% and strain fixity values of 78% after 

passing through only one or two training cycles.  

 

2.1.3 Cross-linked shape memory polymers      

 

Creep and the scale of irreversible deformation limit the application of physically cross-

linked shape memory polymers. Generation of some covalent forces between the long 

molecular chains can not only enhance the polymer, but also improve the shape memory 

property. Some research work based on polymers or blends such as polyethylene (PE) 

and PU/PVC has been reported [99, 110-112], and the results showed that the polymers have 

a shape memory property when they are cross-linked. Zhu et al. investigated the 

properties of cross-linked PCL with different molecular weight using γ-radiation [113]. 

The shape-memory testing results indicated that it can be stretched and deformed at 

about 60°C and, after cooling to room temperature, the deformation can be maintained 

effectively. The PCL based SMP was characterized by its low recovery temperature and 

large recovery deformation that results from the aliphatic polyester chain of PCL. 

 

There are also two kinds of covalently cross-linked shape memory polymer. One is the 

covalently cross-linked glassy thermoset polymer, the other is the covalently cross-

linked semi-crystalline SMP. The covalently cross-linked glassy polymer has a sharp Tg 

at the temperature of interest and rubbery elasticity above Tg derived from covalent 

cross-links. An example of this class is a chemically cross-linked vinylidene random 

copolymer consisting of two vinylidene monomers (methyl methacrylate and butyl 

methacrylate) whose homopolymers show two very different Tg  values of 110 °C and 
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20 °C, respectively [114]. The work capacity, dictated by the rubbery modulus, is 

precisely adjustable to accommodate each particular application by varying the extent of 

crosslinking. This is achieved by copolymerization with a tetraethylene glycol 

dimethacrylate. This thermoset polymer shows complete shape fixing and fast, complete 

shape recovery in hot water at the stress-free stage. Larock et al worked on 

copolymerization and chemical cross-linking of renewable natural oils, which have a 

high degree of unsaturation, with styrene and divinylbenzene (DVB) to obtain random 

copolymer networks [115]. These networks showed flexible glass transitions and rubbery 

properties upon varying the monomer ratio.  

 

The covalently cross-linked semi-crystalline SMPs can be employed to trigger shape 

recovery, typically giving a large recovery. Compared with glassy materials, this class 

of materials is generally more compliant below the critical temperature, with a stiffness 

that is sensitive to the degree of crystallinity, and thus indirectly to the extent of cross-

linking. Shape recovery speeds are faster for this first-order transition than the 

amorphous ones. The chemically cross-linked trans-polyisoprene (TIP), one typical 

material in this kind, has a melting point (Tm) of 67 °C and crystallinity degree around 

40%, giving a stiffness of about 100 MPa at room temperature [116]. Lendlein and co-

workers have developed biodegradable SMPs by synthesizing and copolymerizing a 

narrowly dispersed, oligomeric poly(ε-caprolactone) dimethacrylate with n-butyl 

acrylate under UV radiation to yield a multiblock structure [5]. The materials showed 

excellent shape-memory properties, with a total strain recovery rate between 92% and 

97% and average recovery ratio between 86% and 97% after five cycles. The materials 

were adjustable with respect to Ttrans from 30 to 50 °C via the molecular weight of the 

macro-dimethacrylates used in the synthesis, and the crystallization process could be 

controlled for new applications.  

 

2.1.4 Current research problems in SMPs                                           

     

As previously mentioned, the basic advantages of the SMPs over other shape memory 

materials, such as SMAs, are their inherently high recoverable strain of several hundred 

percents and much lower density. In addition, SMPs possess conveniently adjustable 

material properties and can be easily produced and shaped by conventional polymer 

processing techniques. However, in many cases, the mechanical strength of SMPs under 
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ambient conditions or thermo-mechanical service cannot fully meet application 

demands, which increases the uncertainty as to the response of devices because of the 

soft nature of these materials. For instance, SMPs have relatively low recovery stress, 

which is usually 1–3 MPa compared to 0.5–1 GPa for shape memory metal alloys [65]. 

The relatively low recovery stress becomes a limiting factor in many applications 

especially in cases where SMP devices need to overcome a large resisting load during 

shape recovery. 

 

Many attempts at enhancing the soft SMPs have been reported by either trimming the 

molecular structure internally or incorporating enhancers to the system externally, both 

of which have proven to be effective solutions, although the latter one has gained more 

academic concentration with lower operation risk and higher enhancement. Various 

fillers with dimensions in the nano/micrometer scale have been considered [99, 114, 117] in 

shape memory polymer composites in efforts to augment mechanical properties and to 

obtain multiple functionalities. It has been observed that there is a trade-off between 

enhancement of elastic modulus and reduction of recoverable strain ratio. Generally, 

fillers have a negative impact on recoverable strain due to their size, and substantially 

higher stiffness compared to the matrix polymer. In some cases, they even disturb the 

polymer networks responsible for shape memory functions, especially at high loading 

levels. As will be apparent below, research efforts to strike a balance between the 

recovery stress and the recovery strain with the use of fillers are still evolving. Gunes et 

al [118] have presented a systematic review of recent progress made on SMPs and their 

nanocomposites. Developments in allied fields were also presented in an effort to 

identify the current and future trends in this area. The physical mechanisms of shape 

memory actions, polymer-nanofiller interactions, and the resultant properties of SMP 

nanocomposites were discussed. Examples were presented to highlight the influence of 

processing conditions, filler geometry and filler surface characteristics, and the nature of 

matrix polymers on shape memory properties.  

 

Leaving aside the above-mentioned mechanical limitations arising from the recent 

appearance of SMPs to which solutions are gradually being found, there is one crucial 

issue that makes it impossible on many occasions to use these polymers to replace other 

active materials. As shape memory recovery is usually a thermally induced process, 

their triggering conditions or controlling method are not so practical since thermal 

triggering shape memory is not the best control method in most applications. Also, there 
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exist many uncertainties in the thermal triggering procedure such as stress relaxation, 

stress reduction with increasing temperature and critical application conditions [39, 42, 44]. 

These shortcomings on triggering conditions could possibly be changed by adding 

nanoparticles with different functionalizing mechanisms. 

 

2.2 Shape memory polymer nanocomposites 

2.2.1 Why shape memory polymer nanocomposites? 

 

The term “Composites” originally arose in engineering to describe the situation when 

two or more materials are combined in order to modify the shortcomings of a single 

specific component. Polymer nanocomposites are commonly defined as the combination 

of a polymer matrix and additives that have at least one dimension in the nanometre 

range. The additives can be one-dimensional (for example, nanotubes and fibres), two-

dimensional (such as layered minerals of clay), or three-dimensional (for example, 

spherical particles). Over the past decade, polymer nanocomposites have attracted 

considerable interests in both academia and industry, owing to their outstanding 

importance in mechanical properties such as elastic modulus and strength with only a 

small amount of the nanoscale additives. This is caused by the large surface area to 

volume ratio of nanoadditives when compared to the micro- and macro-additives. Other 

superior properties of polymer nanocomposite include barrier resistance, flame 

retardancy, scratch/wear resistance, as well as optical, magnetic and electrical properties. 

The incorporation of reinforcing fillers has been investigated in order to improve the 

mechanical properties, fulfill the practical triggering conditions and to diversify the 

applications of SMPs [30, 31, 39, 119-121].  

     

2.2.2 Nano particles and their enhancement in SMP 

 

These materials are characterized by at least one dimension in the nanometre range. 

Nanostructures constitute a bridge between molecules and bulk systems. Individual 

nanostructures include clusters, quantum dots, nano crystals, nanowires, and nanotubes, 

while multi-nanostructures involve arrays, assemblies, and super lattices of the 

individual nanostructures [122, 123]. The physical and chemical properties of 

nanomaterials can differ significantly from those of the atomic-molecular or the bulk 
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materials of the same composition. Size effects are important in nanomaterials, and this 

has two aspects: one is concerned with specific size effects (numbers of atoms in metal 

clusters, quantum mechanical effects at small sizes) and the other with size-scaling 

applicable to relatively larger nanostructures (surface and interface effects, volume 

effects) (Table 2.1 &  2.2).  

 

Shapes of nanoparticles also play an important role in determining properties, such as 

reactivity and electronic spectra. Since the discovery of carbon nanotubes (CNTs) by 

Iijima in 1991 [124], tremendous efforts have been expended to control their production 

and properties. Recent theoretical and experimental studies suggest that CNTs have 

remarkable mechanical and electrical properties [125-127].  The construction of ordered 

arrays of nanostructures by employing techniques of organic self-assembly provides 

alternative strategies for nanodevices. 2D and 3D arrays of nanocrystals of 

semiconductors, metals, and magnetic materials have been assembled by using suitable 

organic reagents. The rest of this section will review the recent developments in shape 

memory nanocomposites according to the effects of the nanofiller shape on 

enhancement of the matrix. 

 
Table 2.1 Relationship between nano-particles size and the amount of surface atoms 

Nano particles dimension 
(nm) 

Atom 
No. 

Surface atom 
percentage(%) 

10 3×104 20 
4 4×103 40 
2 2.5×102 80 
1 30 96 

 

Table 2.2 Nanostructures and classifications 

Nanostructure Dimension  Material 
Clusters, quantum 
dots 

Radius,1-10nm 
Insulators, semiconductors, metals, 
magnetical materials 

Nano particles Radius,1-100nm Ceramic oxide 
Nano tubes Diameter, 1-100nm Carbon, BN, GaN  

Nano wires Diameter, 1-100nm 
semiconductors, metals, oxides,  sulfides, 
nitrides 

Nano rods Diameter, 5 nm DNA 
Two dimensional 
nano particles  

Nano scale to 
micron scale 

semiconductors, metals, magneti materials 

Thin films Thickness,1-100nm Insulators, semiconductors, metals, DNA 
Three dimensional 
nano particles 

Nano scale in three 
dimensions 

semiconductors, metals, magnetical 
materials 
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2.2.2.1 Spherical inorganic nanofillers  

 

Silica as a widely used spherical inorganic nano-particle, as has been  claimed as a  

reinforcing agent in SMPs. Studies have shown that the constrained bending recovery 

force of SMPs can be dramatical with the addition of silica as low as 2 wt.% [117, 128]. In 

another study, PU block copolymer was synthesized, followed by a sol–gel reaction 

with tetraethoxysilane (TEOS) to prepare high performance PU–silica hybrids with 

shape memory function. An improvement in the mechanical properties and shape 

recovery force of PU was achieved without any deterioration in shape recovery effect 

by silica hybridization [129]. Similar enhancements have also been reported for other 

spherical nanofillers [130-132]. 

 

2.2.2.2 Rod like inorganic nanofillers  

 

Rod like nanofillers, normally include two different classifications, carbon fibre/tubes 

and the other inorganic nano-rods or fibres. The carbon series will be dealt with in 

Section 2.2.3. As reported by ref.[84], attapulgite (playgorskite), a kind of nanosized 

fibrous clay mineral, may provide a simple and cheap alternative of some existing 

expensive rod nanofillers such like carbon fibre/tubes, to improve the stiffness and 

actuation stress of SMPs. The Tg of a SMPU reinforced with treated/non-treated 

attapulgite was monitored in both of wet and dry conditions, and the results revealed 

that non-treated clay significantly reduces Tg of the composites, while the influence of 

treated clay on Tg is limited [84]. Organic fibre has also been used to enhance the 

mechanical and shape memory properties of a SMP matrix. Auad et al. [133] prepared 

composites by casting stable nanocellulose/segmented polyurethane suspensions. These 

composites showed higher tensile modulus and strength than unfilled films (53 % 

modulus increase at 1 wt.% nanocellulose), with higher elongation at break.  And creep 

deformation decreased as the cellulose concentration increased (36 % decreasing in 60-

minute creep by addition of 1 wt.% nanocellulose). The nanocomposites displayed 

shape memory properties equivalent to those of the neat polyurethane, with recoveries 

of the order of 95 % (referred to second and further cycles). 
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2.2.2.3 Platelets or layer type nanofillers  

 

Layered clay, i.e. sodium montmorillonite (MMT), is the most common particle used in 

reinforcing polymers. Cao and Jana [134] reported that clay particles exfoliated well in 

the polymer, decreased the crystallinity of the soft segment phase, and promoted phase 

mixing between the hard and soft segment phases. Nevertheless, the soft segment 

crystallinity was enough and, in some cases, increased due to stretching to exhibit 

excellent shape fixity and shape recovery ratio. A 20 % increment in the magnitude of 

shape recovery stress was obtained with the addition of 1 wt% nanoclay. Tensile tests 

indicated that the strength was highly dependent on the competing influences of reduced 

soft segment crystallinity and the clay content. However, the tensile modulus measured 

at temperatures above the melting point of the soft segment crystals showed continued 

increases with clay content. A different macromolecular system containing a 

poly(ethylene glycol) (PEG) segment was studied by Kim et al. [135] through introducing 

Na-MMT into matrix. The X-ray diffraction pattern and the morphology observed with 

a transmission electron microscope showed that Na-MMT intercalated with a PEG 

segment was heterogeneously dispersed in the polymer matrix [135]. Thus Na-MMT 

intercalated with a PEG segment effectively enhanced the mechanical properties of 

PEMA. Shape memory behaviour and rheological properties showed that Na-MMT 

intercalated with a PEG segment performed its role as a physical crosslinker effectively 

even with 1.2 wt% of Na-MMT [135]. 

 

Despite the fact that clay is physically incorporated into polymer systems, Rezanejad 

and Kokabi [136] illustrated the effect of adding clay in chemically cross-linking 

composite system. The resulting nanocomposite showed higher modulus/strength at 

small clay loading levels (0–10 wt.%), and also demonstrated higher recovery force, 

which is required to if it is act as an actuator. The effect of modified MMT on 

mechanical and shape memory properties as well as the force generation of a shape 

memory cross-linked low density polyethylene were also investigated. The results 

showed that the modulus of elasticity, the recovery temperature, the recovery force and 

force recovery rate increase with increasing organic treated clay content in 

nanocomposites, but the final recovery strain decreases slightly.  
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2.2.3  Electro-active SMP nanocomposites  

                           

Carbon fillers have been extensively applied to transform the organic matrix from 

electrical insulation into conductor. In this section, recent developments in applying 

different types carbon filler in SMPs will be listed with respect to the different geometry 

effects. 

 

2.2.3.1 Spherical carbon nanoparticles filled SMP nanocomposites  

 

Li et al. [137] reported the strain recovery of spherical nanoparticles filled SMPs. These 

PU composites with conducting carbon nanoparticles (CNP) were prepared by a 

solution-precipitation process, which was followed by melt compression molding. It 

was found that the CNP filler exists in the form of aggregates. The percolation threshold 

was reached at a CNP concentration of 20 wt %. The presence of CNP fillers decreased 

the degree of crystallinity of soft PCL segments of the polyurethane. However, the 

composites still have enough soft-segmented PU crystals to fulfil the necessary 

condition for shape memory properties. Dynamic mechanical data showed that CNP is a 

kind of effective filler for the reinforcement of the PU matrix without deteriorating the 

stable physical cross-linking structure of the polyurethane, which is necessary to store 

the elastic energy. The addition of CNP reinforcement to PU influenced the strain 

recovery properties, especially for those samples with CNP concentrations above the 

percolation threshold. The response temperature of the shape memory effect was not 

affected too much. The final recovery rates and strain recovery speeds of the shape 

memory measurements, however, decreased obviously. This was expected and was 

ascribed to the increased bulk viscosity as well as the impeding effect of the inter-

connective structure of CNP fillers in the polymer. 

 

Leng et al. [38, 138, 139] demonstrated multiple progress in conductive SMPs with added 

CNPs. They provided approaches to reduce significantly the electrical resistivity in a 

SMPU filled with randomly distributed CNP and an additional small amount of 

randomly distributed Ni microparticles (0.5 vol.%) in the SMP/CNP composite. The 

electrical resistivity was only reduced slightly. However, if these Ni particles were 

aligned into chains (by applying a low straight magnetic field to the SMP/CNP/Ni 

solution before curing), the significant drop in the electrical resistivity was detected. 

The related electro-triggering efficiency was also reported [138, 139].  
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2.2.3.2 Carbon nano-fiber (CNF) filled SMP nanocomposites 

                       

Gunes et al. [71] fabricated CNF/SMPU composites by melt mixing after the chain 

extension of a Tm (melting transition temperature as the switch temperature) type SMPU. 

CNFs with a diameter of 60–200 nm and length of 30–100 mm were introduced into the 

SMPU synthesized from MDI, 1,4-BDO, and PCL diols. The composites were prepared 

by melt mixing of extended chain PU with the nano-fillers. Results showed that the 

CNFs diminished the shape memory function of SMPUs which was ascribed to the 

interference of CNFs on the crystallization of the soft segment. Koerner et al. [140] 

fabricated CNF/SMPU composites by solution mixing in a polar solvent, and slow 

evaporation of the solvent. The CNFs had an average diameter of 100 nm and length 

above 10 micron. Shape recovery ratio was improved due to the enhanced strain-

induced crystallization. In comparison with pure SMPs, shape memory composites with 

a uniform dispersion of 1– 5 vol.% CNFs produced up to 50% more recovery stress.  

Lan et al. [141] investigated the shape recovery behaviour of thermoset styrene-based 

shape-memory polymer composites (SMPCs) reinforced by carbon fiber, and 

demonstrated the feasibility of using an SMPC hinge as a deployable structure.  Results 

revealed that the SMPC exhibits a higher storage modulus than that of a pure SMP. 

At/above Tg, the shape recovery ratio of the SMPC upon bending was above 90%. The 

shape recovery properties of the SMPC become relatively stable after some 

packaging/deployment cycles. Additionally, fibre microbuckling was the primary 

mechanism for obtaining a large strain in the bending of the SMPC. Moreover, an 

SMPC hinge was fabricated, and a prototype of a solar array actuated by the SMPC 

hinge was successfully deployed [141]. 

 

2.2.3.3 CNTs filled SMP nanocomposites 

 

Miaudet et al. [142] reported on the properties of composite nanotube fibres that exhibit 

the particular feature of aspect ratio. It was observed that these composites can generate 

a stress upon shape recovery up to two orders of magnitude greater than that generated 

by conventional polymers. In addition, the nanoparticles induced a broadening of the 

glass transition and a temperature memory with a peak of recovery stress at the 

temperature of their initial deformation. Meng et al. [19] studied a multi-walled carbon 

nanotube (MWNT) filled SMPU system prepared with in situ polymerization and melt 
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spinning. It was found that in the SMPU matrix, the MWNTs were preferentially 

aligned in the fiber axial direction. The shape recovery ratio and recovery force were 

distinctly improved by the aligned MWNTs. The results suggest that aligned MWNTs 

could help storing and releasing the internal elastic energy during stretching and 

relaxation. Besides, it was found that the self-aligned MWNT fibers caused the shape 

recovering of composite to original length quicker [19].  

 

Park et al. [90] developed conducting shape memory polyurethane (CSMPU) actuators 

with better electrical characteristics, fabricated using in situ polymerization. The 

electrical resistance and specific resistance were almost constant up to the transition 

temperature. The electrical resistance increased by about 100% as the elongation 

increased up to 100%. This initial elongation force could be stabilized after a time, 

which was a kind of ‘break-in procedure’. The actuation displacement decreased 

linearly as the actuation force increased. Cho et al. [143] synthesized electro-active shape-

memory composites using conducting PU and MWNTs. Surface modification of the 

MWNTs (by acid treatment) improved the mechanical properties of the composites. The 

modulus and stress at 100% elongation increased with increasing surface-modified 

MWNT content, while elongation at break decreased. MWNT surface modification also 

resulted in a decrease in the electrical conductivity of the composites. However, as the 

surface modified MWNT content increased, the conductivity increased. Electro-active 

shape recovery was observed for the surface-modified MWNT composites with an 

energy conversion efficiency of 10.4%.  

 

2.2.3.4 Graphene filled SMP nanocomposites 

 

Graphene was discovered in 2004 by Geim et al., which has been suggested as a “next 

generation material”. Its remarkable optical, electronic, and thermal properties, 

chemical and mechanical stability, and extraordinary physical surface feature have been 

widely studied, potential applications fields such as transistors, sensors, polymer 

nanocomposites and energy devices have also been proposed [144-146]. So far, few 

publications have found on SMP/graphene nanocomposites, but it can be expected that 

their extraordinary physical properties will benefit SMPs and offer more advantages 

according to the applications than the existing nanoparticles. 

 



20 
 

2.2.4 SMP nanocomposite fabrication methods 

 

From the fabrication side, shape memory polymer nanocomposites is similar to the 

other nanocomposites. According to the different ways of incorporating nanoparticles, 

different kinds of methods can be classified: mechanical melting processing using 

specifically designed equipment, the wet chemical solution method, molecular level 

mixing technique with chemical reaction, and in situ polymerization. 

 

2.2.4.1 Mechanical melting processing method 

 

Most nanocomposites based on SMPU from MHI are fabricated using this technique.  

Investigations by Tobushi et al [13-15, 147] on SMPs composites were based on fabricating 

composites with melt SMPU and nano-filler. Many important phenomena were found 

and several models on the shape recovery mechanism were proposed and validated in 

practical experiments.   

 

Yang et al. [28, 148] produced electrically conductive polymers by filling the polymeric 

matrix with conductive powders and investigated the effects of moisture on the glass 

transition temperature of a SMPU filled with nano-carbon powders. It was found that 

the SMP composites before immersion in water have a slightly lower Tg, and the 

moisture fraction at the saturation point upon immersion is also lower. Another 

interesting point was that the moisture can significantly reduce the Tg of the composites, 

which also led to the idea that the water actuating recovery of SMP composites [28, 148].  

 

2.2.4.2 Wet chemical processing solution  

 

Wet chemical processing usually performed by pre-scattering nanoparticles in a solvent, 

and adding surfactant to reduce the high surface energy of nanofillers, to modify the 

surface to improve the compatibility and protect the nanostructure from the outer 

environment. Ultrasonic processing techniques had also been used to achieve the lowest 

level aggregation of particles. Lu et al. [88] fabricated SMP composites by incorporating 

various nanofillers into a styrene-based SMP with sensing and actuating capabilities. 

Static mechanical results of the SMP composites containing various filler concentrations 

of hybrid filler reinforcement were studied and confirmed that the mechanical properties 

were significantly improved by adding chopped short carbon fibers (SCF). The 
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excellent electrical outcomes and sensing data of SMP composites filled with 5 wt.% 

CNP and 2 wt.% SCF proved that temperature or mechanical loads could be 

significantly affected. The actuating capability of SMP composites was also validated 

and demonstrated. Dynamic mechanical analysis revealed that the output strength of 

SMP composites is improved by an increase in SCF content.  

 

Gunes et al. [149] used this method as the second step to achieve nanocomposites by 

mixing nanofillers and synthesized SMPU. A reduction in soft segment crystallinity was 

observed in the presence of CNP, CNF and treated CNF; the reduction was smaller in 

the case of treated CNF. Only the composites with CNP showed pronounced positive 

temperature coefficient (PTC) effects. The observed PTC effects exhibited a close 

relationship with non-linear thermal expansion during heating. Composites of CNF and 

treated CNF did not show PTC effects due to low levels of soft segment crystallinity. 

The resistivity of composites with CNP significantly increased by several orders of 

magnitude after imposing a tensile strain while composites of CNF and treated CNF 

showed weak dependence on strain.        

 

2.2.4.3 Molecular level mixing 

 

Molecular level mixing can be achieved via either a melting process or wet chemical 

mixing. The critical issue is the technique controls and composition design, as it needs 

the assistance from other chemicals. Physical adsorption helps the polymer molecular 

chain or monomer attached the particles and the polymerization causes the particles to 

be embedded. Armes et al. [150, 151] reported surfactant-free synthesis of colloidal 

dispersions of vinyl polymer−silica nanocomposite particles in aqueous media using a 

batch emulsion polymerization protocol using 4-vinylpyridine as an auxiliary in the 

synthesis. The strong interaction of this basic monomer with the acidic surface of the 

silica particles is essential for successful nanocomposite particle formation. Depending 

on the synthesis conditions, the mean particle diameter of the hybrid particles varied 

from 100 to 300 nm. Cho et al. [129, 143] synthesized SMPU based composites using silica 

and MWNTs through this method. As well as the improved mechanical properties, the 

conductivity was also dramatically elevated by adding MWNTs. 

 

 



22 
 

2.2.4.4 In situ polymerization 

 

This is the most common method to obtain SMPs and their nanocomposites. The major 

advantage is that the modifications can be made both from organic molecular trimming 

or composition design and adding the nanoparticles with proper pre-treatment. The 

disadvantage is that in-situ polymerization needs a stable system with precise 

composition control. Nanoparticles are generally functionalized first and then added as a 

monomer in synthesis to obtain the hybrid composites. Sahoo et al. [152] obtained 

electroactive SMPU based nanocomposites through in situ polymerization with different 

components, MWNTs, polypyrrole (PPy) and PPy-coated MWNTs. A clear 

enhancement of mechanical properties was observed. When this composite was slightly 

coated with PPy (2.5 wt.%), its conductivity was higher than the other composites. This 

composite also showed good electroactive shape recovery properties when an electrical 

voltage was applied. Metal oxide nanoparticles clusters have attracted more and more 

attention recently. Behl et al. [2] reviewed different concepts for the creation of 

multifunctionality derived from the various polymer network architectures of thermally-

induced SMP and summarized the in situ polymerization classifications as well as the 

multifunction for each nanocomposites.  

 

Rana et al. [153] synthesised hyperbranched polyurethane (HBPU) nanocomposites with 

MWNTs by in situ polymerization on the basis of poly(ε-caprolactone)diol as the soft 

segment, 4,4'-methylene bis(phenylisocyanate) as the hard segment, and castor oil as the 

multifunctional group for the hyperbranched structure. A marked improvement in the 

dispersion of MWNTs in the HBPU matrix was found, and good solubility of HBPU–

MWNT nanocomposites in organic solvents was shown. Due to the well-dispersed 

MWNTs, the nanocomposites resulted in excellent shape memory properties as well as 

enhanced mechanical properties compared to pure HBPU. 

 

2.2.5 Other functional SMP nanocompsoites 

      

There have been many different types of SMP nanocomposites. Some recent 

developments of these nanocomposites will be introduced here according to the 

different triggering methods.  Lendlein et al.[5] reported  that polymers containing 

cinnamic groups can be deformed and fixed into pre-determined shapes, such as (but not 
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exclusively) elongated films and tubes, arches or spirals, by ultraviolet light 

illumination. These new shapes were stable for long time periods, even when heated to 

50 °C, and they can recover their original shape at ambient temperatures when exposed 

to ultraviolet light of a different wavelength. Leng et al. [30, 31] announced the successful 

actuation of shape memory behaviour by infrared light, though the direct triggering 

factor was a thermal stimulus, their attempts demonstrating the possibility of  remote 

control. Vialle et al. [121] studied the remote activation of nanocomposites using remote 

induction of magnetic particles dispersed in the thermoset foam matrix. Material 

properties and foam performance were characterized and compared over a range of 

fillers, induction parameters, and packaging configurations. This investigation indicated 

an improvement in heating performance for increased weight percentage of filler 

without sacrifice in foam thermo-mechanical properties up to 10 wt% filler. Detailed 

analysis of the results implied that the primary factor in improving heating performance 

was heat transfer between the filler nanoparticles and the bulk foam.Another type of 

functional SMP composites, magnetically sensitive SMP composites, can be obtained 

by embedding ferromagnetic fillers. Schmidt et al. [154], Buckley et al. [93], Hosoda et al. 
[155] and Small et al. [39] explored this area with success although the theoretical model 

was not attempted. A typical magnetically induced SME of the composite is 

demonstrated in Figure 2.2, in which a shape change from a corkscrew-like spiral 

temporary shape to a plane permanent shape is shown. Indirect magnetic actuation has 

also been realized by the incorporation of Ni–Zn ferrite particles into thermoset 

polyurethane by Buckley et al. [93].           

 

 
 
Figure 2.2 The magnetically responsive shape-memory effect of SMPU composite with 

10 wt.% particle content [39]. 
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2.3 Simulation and modelling of shape memory nanocomposites 

              

This section introduces two aspects of the recent development of shape memory 

nanocomposites theories,   particle enhancing theory in polymer nanocomposite system, 

and constitutive modelling of the shape memory system. The particle enhancing theory 

includes a particle size effect and a geometry effect. 

 

2.3.1 Theoretical model in nanoparticles enhancement  

 

Generally, when nanofillers with high modulus are added into a much lower-modulus 

polymer matrix, the modulus and strength of the nanocomposites will be enhanced 

through an improved load transfer from the matrix to the filler. Figure 2.3 illustrates the 

microstructure of nanofillers with different geometries in a polymer matrix. When the 

aspect ratio of the particles equals unity (spherical nanoparticles), the composite 

modulus is dependent on a number of particle characteristics such as modulus, density, 

the particle geometry factors such as size and aspect ratio, the volume fraction and the 

nature of the interface between organic and inorganic phase.  

 
(a)                                                                 (b) 

 
Figure 2.3  3-D schematic of nanocomposite systems: (a) with spherical fillers (such as 

Al 2O3, SiO2, CNP), (b) with rod-like fillers (such as clay, CNF, CNTs) 

 

Successive attempts have been made in the past decades to develop theoretical 

frameworks to predict mechanical properties of composite materials based on the 
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physical/chemical properties of the polymer matrix, additives and the composites 

microstructure [156]. Suprapakorn et al. [157] investigated nanoparticle size effect on the 

enhancement, and described that there exists a critical value for a given particle, below 

which the particulate composite modulus increases with decreasing of nanoparticle size  

and above which it was relatively increases. Cho et al. [158] investigated the effect of the 

particle size on the mechanical properties of polymeric composites reinforced with 

spherical particles. The size of particles varied from macro (500 µm) to nano (15 nm) 

scale. It was found that particle sizes at the micron scale have little influence on the 

Young’s modulus of the composite and that Young’s modulus increases as the size of 

particles decreases at the nano-scale. It was also observed that the tensile strength of the 

composite is strongly dependent on particle size. At a nanoparticle loading of 1 vol.%, 

the tensile strength increased as the particle size decreased. However, the trend for a 

composite with alumina nanoparticles of 3 % volume fraction was found to be the 

opposite [158]. Finite element analyses has been employed to understand the effect of the 

particle size at the micron scale on the failure process, and the results have shown that 

total strain energy release rate for particle/matrix debonding growth decreases as 

particle size decreases and that the sliding fracture mode becomes dominant during the 

growth of debonding [158].  

 

Unlike the limited attempts on particle size effects, many empirical or semi-empirical 

equations have been proposed to predict the modulus of composites considering that 

most of the fillers are irregular in geometry and varied in specific aspect ratio. A simple 

equation was generated based on Einstein’s equation [159] to predict the Young’s 

modulus of composites reinforced with rigid particles [160]. 

                                                        f
mE

E φ5.21c +=                                              (2.1) 

where Ec and Em are the modulus of composite and matrix, respectively, and fφ  is the 

volume fraction of filler. Equation (2.1) is applicable only at low concentrations of 

filler and assumes perfect interface contact between filler and matrix, as well as a 

uniform dispersion of individual filler particles [161]. A number of attempts have been 

made to incorporate interactions between neighboring particles to allow for predictions 

also at higher volume fractions. Most of these models add one or more terms to a 

polynomial series expansion of the amplification factor. One of the most cited models of 

this class is the Guth model [162, 163].  
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)1.145.21 2
c ffmEE φφ ++= （

                                          (2.2)
 

In addition to these simple models specifically developed for filled polymers, a number 

of general composite theory models can be used. For example, the traditional Voigt 

upper bound [164] for a linear elastic isotropic material is given by 

)1(c fmff EEE φφ −+=
                                                (2.3)

 

where Ef  is the filler modulus. 

 

The elastic theories, which are most widely used to discuss nanoparticle enhancement, 

are based on two major models. The first was proposed by Halpin and Tsai [165, 166] with 

a similar analytical equation, which has been adapted for a variety of reinforcement 

geometries, including discontinuous filler reinforcement. Halpin and Kardos [166] 

modified the Halpin and Tsai model by introducing the shape parameter based on aspect 

ratio, which was considered to be dependent on the filler geometry. This change made 

this model more effective in some conditions. 

 

The other model is the Mori and Tanaka model [167, 168] which considered the effect of 

an volume fraction of inclusions in an aligned short-fibre composite. Tandon and Weng 
[168] have derived comprehensive analytical expressions for the elastic modulus of an 

isotropic matrix filled with spheroidal and unidirectionally aligned non-spherical 

inclusions. The longitudinal (along the inclusion alignment direction) and transverse 

elastic modulus can be generated through examining the influence of aspect ratio, from 

zero to infinity, on the load transfer in a transversely isotropic composite [168]. The 

evolved Mori and Tanaka model accounts of the effect of filler shape, for example, rod-

like, plate-like, or disc-like. Given that nanofillers are rarely aligned, Fornes and Paul 
[169] suggested equations for random orientation in all three orthogonal directions, with 

focus on rod filler and disc filled composites. Generally, the elastic theory concentrates 

on filler geometry effects, especially on the high aspect ratio, and the evolved equations 

treat disc fillers as rods with  consideration of all three orthogonal directions. The 

Halpin & Tsai model and the Mori & Tanaka model will be applied here to analyze the 

composite properties with different fillers, and the detailed equations will be presented 

in the discussion part. 
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2.3.2 Constitutive models for thermo-mechanical behaviour and shape memory 

recovery  

     

As constitutive models for shape memory recovery vary with triggering conditions, the 

models will mainly involve thermal triggering recovery in amorphous systems, which is 

the most common type. It is considered that in addition to heat transfer, the important 

molecular mechanisms determining the time-dependence of the shape memory response 

of amorphous SMPs are structural relaxation in the glass transition region, and stress 

relaxation in the form of viscoelasticity in the high temperature (rubbery) and glass 

transition regions and viscoplasticity in the low temperature (glassy) region. Structural 

relaxation describes the time-dependent response to temperature and pressure changes, 

while stress relaxation describes the time-dependent response to a change in the 

mechanical, particularly deviatoric, loading. Combining the structural and stress 

relaxation mechanisms, constitutive models are normally developed for the finite-

deformation, time-dependent thermo-mechanical behaviour of thermally active 

amorphous SMPs that include structural relaxation in the glass transition region, 

viscoelasticity in the rubbery and transition regions and viscoplasticity in the glassy 

region. 

 

Tobushi et al. [12, 170-175] made significant contributions to constitutive modelling of the 

amorphous SMPU system. Detailed experimental results on various thermo-mechanical 

conditions provided an essential guideline on how to collect the fundamental data and 

how to divide the modelling regimes for amorphous systems, Tobushi also proposed a 

one-dimensional constitutive model for amorphous SMPU and simulated the thermo-

mechanical behaviour at small strains, which was expanded and applied to larger strains 

by Liu et al. [176] and Diani et al. [177]. The work of Diani assumed a thermoviscoelastic 

approach that applied a phenomenological temperature dependence of the viscosity, 

which extended the work of Liu et al. [176]  

 

A three dimensional finite-deformation model was developed by Qi et al. [48]. This 

model applied a phenomenological, first-order, phase transition approach that models 

the SMP as a continuum mixture of a glassy and rubbery phase. Constitutive relations 

were proposed for the temperature evolution of the volume fractions. The main 

disadvantage of this approach was that it was not representative of the physical 

processes of the glass transition and thus results in nonphysical parameters, such as the 
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volume fractions of the glassy and rubbery phases. Nguyen et al. [49, 50] summarized 

earlier constitutive model and viscoelastic properties by a thermo-mechanical 

investigation, linked with more kinematic relations and proposed a complicated model 

with three stages, and successfully simulated the shape recovery of amorphous SMPs.   

 

So far, the constitutive models that have been developed are all on pure amorphous 

SMPs, and a constitutive model on SMP nanocomposites was not explored. 

 

2.4 Applications of SMPs and their nanocomposites 

  

Conventional applications of SMPs include the widespread areas of the packaging 

industry and construction industry, which can be simply accessed by a hot hair dryer 
[112].  Also many applications in memory storage, sensors and actuators have been 

explored for SMPs [178-181]. Hu et al. introduced SMPs into the textile industry using 

three main kinds of materials: linear polymer-polynorbornene, segmented polyurethane 

and graft copolymer–polyethylene/nylon-6 [23]. The applications of SMPs in textiles 

include breathable textiles and surgical protection, etc.  

 

Currently, SMP applications in biotechnology and medicine have received much 

attention. For example, recent approaches for implanting medical devices often require 

complex surgery followed by device implantation, and, with the development of 

minimally invasive surgery, it is possible to place small devices inside the body. These 

types of surgical advances may create new opportunities to enable a micro-device to be 

implanted into the human body. Relevant research studies mainly focus on two areas: 

the first is the application of industrial polymers, such as the biodegradable properties of 

materials, polymer drug delivery systems and polymer biological construction. Lendlein 

and Langer [65] manufactured a group of degradable thermoplastic polymers for 

biomedicine, which are able to change their shape after an increase in temperature (see 

Figure 2.4). Their shape-memory capability enables bulky implants to be placed in the 

body through small incisions or to perform complex mechanical deformations 

automatically. An impressive force of 1.6 N could be generated upon shape recovery as 

the sample stretched to 200%. The second area is functional materials based on 

biomaterials, such as proteins. 
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Figure 2.4 A fiber of a thermoplastic SMP was stretched and formed a loose knot, both 
ends of the suture were fixed. The photos shows how the knot tightened in 20 s when 

heated to 40°C [65]. 

 
Rodríguez-Cabello et al. explored the protein-based polymers [182], which display many 

different properties including smart behaviour (sensitivity to certain stimuli), self-

assembly and biocompatibility, as well as two main applications such as drug delivery 

systems and tissue engineering.  

 

 
 

Figure 2.5 Recovery of a 20 wt.% crosslinked SMP stent with Tg=52 °C delivered via an 
18 Fr. catheter into a 22 mm ID glass tube containing body temperature water at 37 °C. 

Black rings were drawn to facilitate deployment visualization [186]. 

 

SMPs also offer advantages in MEMS applications in rising to the challenge of creating 

transduction at small scales. The advantage of shape-memory polymer-based 

microactuators (pumps and valves) is that they can be integrated into the soft-

lithography fabrication methodology with minimal process modification [183]. This 

alternative to traditional microactuators may be particularly useful for disposable on-
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chip microfluidic laboratories. Polymer based microfluidic applications represent a 

rapidly evolving technology for chemical and biological processing and sensing [184, 185]. 

Yakacki et al. synthesized SMP networks via photopolymerization of tert-butyl acrylate 

and poly(ethylene glycol) dimethacrylate to provide precise control over the 

thermomechanical response of the system [186]. As shown in Figure 2.5, this polymer 

system exhibits a wide range of shape-memory and thermomechanical responses to 

meet the specific needs of minimally invasive cardiovascular devices. 

 

2.5 Summary 

   

SMPs and their nanocomposites have received extensive attention in recent years.  The 

shape recovery behaviour of the SMPs have been shown to be an important 

phenomenon with wide potential application, particularly when the SMPs can act as 

instrumental parts in bio-MEMS devices. Meanwhile, the limitations such as low 

strength and lack of effective controlling methods for the pure SMPs have been 

identified. Nanoparticles are known to be effective enhancers and functionalizing agents 

in soft polymeric matrices. Various attempts at introducing nanoparticles into the 

polymeric matrix have been made but the theory of property enhancement has not yet 

been systematically explored.      
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Chapter 3 

MATERIALS AND EXPERIMENTAL METHODOLOGY  

This chapter describes the selection of the raw materials, the material synthesis and the 

characterization methods which were used in this research work.    

 

3.1 Materials selection 

 

In this project, two different shape memory polymers were chosen for investigation. 

One was SMPU, and the other was a shape memory polystyrene (SMPS) based 

copolymer. The specific features of the SMPU, all components for the SMPS and some 

relative auxiliary chemical reagents are listed in Table 3.1.  

 

Table 3.1 Chemicals as received 

Name Formula Type Supplier 
Technical 
specifics usage Ref. 

Polyurethane N/A MM5520 
MHI, 
Japan 

See ref Matrix 187-189 

Styrene based 
precursor 

N/A 
Veriflex® 

part A 
CRG ,US See ref Matrix 190-193 

Curing agent N/A 
Veriflex® 

part B 
CRG,US See ref Catalyst 190-193 

Toluene C7H8 N/A 
SIGMA, 

UK 
anhydrous, 

99.8% 
Solvent 194 

Sodium 
dodecylbenze
nesulfonate 

C18H29N
aO3S 

N/A 
SIGMA, 

UK 

Technical 
grade  

 

Surface 
treatment 

194 

Benzoyl 
peroxide 

C14H10O4 
Luperox 
ATC50 

SIGMA, 
UK 

50 wt. % in 
tricresylpho

sphate 
Catalyst 190-193 

divinyl 
benzene 

C6H4(CH
=CH2)2 

80% 
(Aldrich) 

SIGMA, 
UK 

Technical 
grade  

 

Cross-
linker 

190-193 

Acetone C3H6O  
Fisher, 

UK 

ACS 
reagent, 
≥99.5% 

Solvent 194 

 

The SMPU used in this study is a thermoplastic resin in pellet form (MM5520, 

DiAPLEX Ltd, MHI), reported to be a segmented PU with a nominal glass transition 

temperature of 55 °C [1-3]. The MM5520 has an ether-based soft segment, whose 
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composition can be approximately inferred from the literature [187-189, 195]. Specifically, 

this SMPU should consist of the soft segments including adipic acid/polytetramethylene 

glycol (main part), bisphenol, ethylene or propylene oxide, and bis (2-hydroxyethyl) 

hydroquinone, as well as MDI dominated hard segments. The detailed segment 

distribution and molecule chain structure of the thermalplastic SMPU have been studied 

in the literature [196, 197] as illustrated in Figure 3.1. 

 

 

 
Figure 3.1 Molecular structure schematic for thermalplastic linear SMPU with 

functional segments classification 

 

Unlike the commercial SMPU, the SMPS in this study was obtained through 

polymerization via thermal curing the prepolymer/precursor and catalyst (curing agent). 

For the Veriflex® precursor (96 wt.%) , although the precise composition was not 

provided by the manufacturer, the patent literature [190, 193] suggested that the 2-

component precursor consists of a mixture of polystyrene (PS, 30 wt.%), styrene (St, 

55.2 wt.%), divinyl benzene (DVB, 0.8 wt.%) and vinyl neodecanoate (10 wt.%). The 

curing agent (4 wt.%) include benzoyl peroxide (BPO, 2 wt.%) and ester plasticizers (2 
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wt.%). Hereafter, all the composition ratios are expressed as weight percentage by the 

final polymer mass otherwise indicated [190, 193]. 

 

                                                                                    

         Styrene (molecular structure)                                         polystyrene  

                                                                                

     Styrene (Ball-stick model)                                                polystyrene  

                               

     Vinyl neodecanoate (molecular structure)                       Divinyl benzene  

                                        

      Vinyl neodecanoate (Ball-stick model)                         Divinyl benzene 

                                                                                            

Benzoyl peroxide (molecular structure)                  Benzoyl peroxide (Ball-stick model) 

 
Figure 3.2 Formulation and ball-stick structure illustrations for the chemicals used 

 

Various types of nanoparticles were used to prepare the polymer nanocomposites. The 

specific features for the selected nanoparticles and the related references describing the 

application of these nano fillers are listed in Table 3.2. 
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Table 3.2 Nanoparticles features as received 

    
Name Type Supplier Technical specifics Ref. 
Attapulgite clay N/A Denoted Non-treated Fibre, D=20 nm , 

l=3 µm; treated bundled 
platelets  Thickness =20 nm , 
l=3 µm; 

84 

Al 2O3 N/A Denoted D=30~100 nm 198, 199 
SiO2 AEROSIL 

200 
Evonik-
Degussa 

D=7~50 nm 200 

Carbon nanoparticles 
(CNP) 

VXC72R Cabot D=15~60 nm 201, 202 

Carbon nanofibre 
(CNF) 

PR-19-XT-
LHT-OX 

Pyrograf D × L 70-200 × 10-200 µm 203-205 

Multi-wall carbon 
nanotube (MWCNT) 

Product No. 
659258 

SIGMA,UK 
90% carbon, D × L 70-170 × 
5-9 µm  

119, 149, 

206 
Single-wall carbon 
nanotube (SWNT) 

Product No. 
6 98695 

SIGMA,UK 
40-60 wt. % carbon basis, D 
× L 2-20 nm × 1-5 µm 

99, 152, 

207 
 

3.2 Shape memory nanocomposite fabrication and synthesis   

3.2.1 Melting processing for PU/clay composites 

 

Attapulgite clay, with chemical composition (Mg,Al)2Si4O10(OH).4(H2O), was heat-

treated in an oven (in air) at 850 ºC for 2 hours, then both the treated clay and non-heat 

treated clay powders were put in an oven at 120 ºC. PU/clay nanocomposites were 

fabricated by melting and mixing the commercial SMPU pallets with treated or non-

treated clay powders. A Haake Rheocord 90 Torque Mixer was used for the melting 

fabrication procedure at 200 ºC, and, subsequently, the SMP nanocomposite sample 

sheets (thickness of ~1 mm) were prepared via a hot press method. The composite 

samples were stored in a standard air-conditioned room with controlled atmosphere, 

where the ambient temperature was 20 ºC and the relative humidity was 50% [208]. All 

samples in this study were kept in this same storage condition. 

3.2.2 Thermo curing SMPS and its composites 

 

3.2.2.1 Thermal curing fabrication of pure SMPS  

 

Styrene based prepolymer (28.8 g) was mixed with curing agent (1.2 g), i.e. with a fixed 

weight ratio (prepolymers/cure agent= 24/1). The mechanical stirring was operated for 

45 min at a constant rotation speed of 1000 rpm. The experimental set-up is illustrated 
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in Figure 3.3 with a sum of experimental parts. Samples were prepared by casting the 

mixture into PTFE moulds and baked in an oven at 75 °C for 36 hours.  

 
Parts specifications: 

 

 
Figure 3.3 Mixing equipment set-up illustration 

 

3.2.2.2 Non-aqueous solution dispersing techniques of nanoparticles 

 

Considering that the main composition of the precursors is styrene and polystyrene, 

toluene was selected as solvent for the solution dispersing techniques, because of its 

wide applications in polystyrene or styrene based co-polymer synthesis [209,210,211]. A 

surfactant, sodium dodecyl benzosulfonate (SDBS) [212], was employed in the dispersing 

system. The structure of SDBS is shown in Figure 3.4. The nonpolar tails (lipophilic 

group) became attached to the non polar phases, such as the solvent, while the polar or 

ionic ends (hydrophilic group) attach to the nanoparticle surfaces with ionic gathering or 

hydro bonds. Surfactants with concentration above the critical micelle concentration 

formed micelles around the individual nanoparticles or small bundles when the 

aggregated nanoparticle bundles were disunited by the combined effects of the high 

speed mechanical stirring and ultrasonic energy. 

 

1. Overhead high 

speed stirrer 

 

4.    Glass condenser 

with cold water inlet 

(red pipe) and water 

out (green pipe)  

 
 

2. Hotplate with 

thermal thermocouple 

control 

 

3. Three neck round 

bottom glass flask 

acted as mixing 

container 

1. Equipment and parts specifications: 
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Figure 3.4 Molecular structure of SDBS 

 

All the nanofillers were dried in an oven at 120 °C for at least 48 hours to remove the 

moisture. Toluene (90 ml), nano particles (0.1~1 g) and SDBS (0.01~0.5 g) were 

precisely weighed and put in a four neck round bottom flask. The amount of each 

chemical was suggested in reference [212]. The mixture was stirred ultrasonically at a 

speed of 1000-1200 rpm for 6 hours. 

 

3.2.2.3 Synthesis of nanocomposites  

 

Styrene-based precursor (Veriflex® part A) was added to the particle dispersing solution 

and the mixture was agitated ultrasonically for 3 hours at a rotational speed of 

1000 rpm [213]. Benzoyl peroxide based curing agent was added and the mixture was 

stirred ultrasonically at 1000 rpm for another one hour. Film samples of SMP and 

nanocomposites with a thickness of 0.1-0.3 mm were cast into PTFE moulds and baked 

at 75-78 °C for 36 hours. Sample concentrations and conversion from weight percentage 

to volume fraction are presented in Table 3.2.  

 
Table 3.2 Nanocomposites fabrication recipe and filler concentrations 

Nano fillers 
      wt.% 
vol.% 

0.5 
wt.% 

1 wt.% 2 wt.% 3 wt.% 4 wt.% 

Attapulgite clay 0.74 1.26 2.54 3.97 5.34 
Al 2O3 0.58 1.16 2.33 3.48 4.64 
SiO2 0.39 0.78 1.56 2.35      3.14 
CNP 5.01 9.59 17.65 24.51 30.44 
CNF 1.73 3.42 6.67 9.77 13.34 

MWCNT 2.34 4.6 8.87 12.86 17.02 
SWNT 3.34 6.6 12.5 17.78 -------- 

 

Hydrophobic group 

Hydrophilic group 
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3.3 Characterizations 

 

Different techniques have been used to characterize the SMP and nanocomposites 

which will be introduced in this section.  

 

3.3.1 Microstructure and morphology studies 

 

3.3.1.1 Fourier transform infrared spectrum (FTIR) 

 

FTIR was used to identify the chemical group information as a check for the chemical 

structure [214,215]. A Fourier transform infrared spectrometer (Satellite FTIR 

Spectrometer, Mattson) was used to detect the absorption peaks of untreated and 

thermally treated attapulgite powders. The clay samples were prepared using a KBr 

pellet technique and scanned in the range of 400-4000 cm-1.  

 

An optical microscope (OM, Nikon, with N50 monochrome camera) with various 

magnifications was employed to examine the surface structure, indentation marks, and 

shape recovery of samples. Its resolution reaches as low as 5 µm. The computer assisted 

OM system is shown in Figure 3.5. 

 

 

 
Figure 3.5 Computer assisted OM system (a), magnification of the observation stage (b), 

where polymer sample was placed on the Pieter device under the lens. 

 
Electron microscopy is able to characterize the distribution of nanofillers inside the 

composite samples, as well as showing the microstructure of the materials. Scanning 

electron microscopy (SEM, Tescan Lyra FIB/SEM-FEG) and high resolution 
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transmission electron microscopy (HR-TEM, JEOL 2010F operating at 200 kV) were 

used to study the microstructure of the samples. The powder samples were dispersed in 

isopropanol in an ultrasonic bath for 10 min before SEM and TEM observations. 

Selected area electron diffraction patterns were also obtained to reveal the 

nanocrystalline nature of the nanofillers. The fracture surface morphology of the 

nanocomposites was studied using SEM by breaking the nanocomposites after 

immersing them in liquid N2 for 2 minutes.  

 

3.3.1.2 Metrological measurement of surface structure: Profilometer and Atomic 

Force Microscopy (AFM) 

 

The profilometer operates by lightly dragging a sharp stylus over the surface of the 

substrate and recording the vertical profile of the surface. This can be used to measure 

the height or width of a feature of the sample surface. For this work, a profilometer 

(DEKTAK 3) was used to record the shape recovery of Vickers indentation marks on 

the sample surface. Samples were put on a Peltier heating device which was connected 

to a DC power supply. Multiple profiles scanned on the indents were carried out during 

shape recovery, so that the morphology changes could be recorded in situ.   

 

Atomic force microscopy (AFM) with its unique ‘contact’ probe can provide the surface 

morphology of samples using point to point data acquisitions. 3D images and statistical 

profiling are also achievable through data processing.  In this research, an AFM was 

employed to measure the surface morphology of the nanoindentation area, providing the 

surface topology and the deformation of the indentation marks. The AFM system was 

integrated with the TriboIndenter® (Triboscope, Hysitron Inc., Minneapolis, USA) 

hardware system. Two basic operating modes are available, Contact Mode and Wave 

Mode. The Contact Mode was selected in this study to reveal the real surface 

morphology. Series scans were performed with a scanning rate of 1 Hz as soon as the 

nanoindentation finished.   

 

3.3.2 Thermal analysis techniques 

 

Thermal analysis comprises a group of techniques used to investigate the physical 

behaviour of a substance as a function of temperature, while the substance is subjected 
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to a controlled temperature cycle. Three thermal analysis techniques were applied in this 

project, thermogravimetry (TGA), differential scanning calorimetry (DSC) and dynamic 

mechanical thermal analysis (DMTA).  

 

TGA is commonly used to characterize the decomposition and thermal stability of 

materials during a variety of applied conditions and to detect the physicochemical 

processes occurring in specimens by measuring the weight changes as a function of 

temperature. In this project, TGA was used to investigate the mass change of attapulgite 

powder during controlled temperature ramping, in order to evaluate the clay structure 

condition by comparing the TGA results of non-treated and treated samples. TGA 

characterization was carried out using a TA Instrument TGA 2950, and a 5 mg sample 

was heated in an alumina crucible with a heating rate of 10 °C /min from room 

temperature to 900 °C under N2 atmosphere.  

          

DSC, as a comman thermal testing method for macromolecular systems, was used to 

characterize the glass transition temperature (Tg), melting temperature and crystallinity, 

and it can reveal the mobility of molecular chains by specific thermal energy variation. 

DSC was used in this project to identify the Tg of each sample, which indicates material 

structural modification at a molecular level. The DSC test was performed with a 

Thermal Advantage DSC 2010 (heat flux DSC) at a heating rate of 10 °C / min under a 

constant nitrogen flow. 

 

 
 

Figure 3.6 Images of DSC 1010 with highlighting functional parts, (a) overview, (b) 
side view, (c) core part with referencing/target sample positions 
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The thermal-mechanical behaviour was investigated by differential mechanical thermal 

analysis (DMTA), and specimens were subject to a sinusoidal tensile stress of frequency 

(ω) while the programmed temperature ramp, load and displacement were measured. 

Three parameters from DMTA which were used in this study:  

Storage modulus: δ
ε
σ

cos'
0

0=E
                                     

(3.1)
 

Loss modulus: δ
ε
σ

sin"
0

0=E
                                        

(3.2)
 

The phase angle:
'

"

E

E
an =δt

                                         
(3.3)

 

where σ0 is the maximum stress amplitude and the stress precedes the strain by a phase 

angle δ, ε0 is the maximum strain amplitude.  For a viscoelastic polymer, E' characterizes 

the ability of the polymer to store energy (elastic behaviour), while E" reveals the 

tendency of the material to dissipate energy (viscous behaviour). DMTA is also a 

sensitive method to measure Tg of polymers. In this project, DMTA tests were carried 

out in tensile mode with a TA Instruments DMA 2980 (Figure 3.7) at a frequency of 1 

Hz, a heating rate of 2 °C/min and a temperature range from 25 to 120°C. Constant 

nitrogen flow was provided to ensure atmospheric protection. Thermal expansion 

coefficients were also obtained using DMTA [48, 49].  The length, width, and thickness of 

the test samples was 10 mm, 6 mm and 0.2 mm respectively. The length/thickness ratio 

was bigger than 10 in order to eliminate the size dependence on the Poisson’s ratio of 

the materials.  

 

 

 
Figure 3.7 Images of DMTA 2980 with highlighting functional parts, (a) overview, (b) 

core parts, (c) tension mode images from TA Co’Ltd. 
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3.3.3 Mechanical properties 

 

Various techniques were used to characterize the mechanical properties on the SMP and 

nanocomposites, including tensile tests, Vickers indentation and nano-indentation tests. 

 

3.3.3.1 Uniaxial tensile test 

 

A conventional macroscopic tensile test was used to obtain the mechanical strength of 

the materials. Tensile samples were cut into strips with length 50 mm × 6 mm, and 

thickness 0.1 to 0.2 mm. Tensile tests were carried out using an Instron universal test 

machine (Instron 5567), at a constant crosshead speed of 5 mm/min at room temperature 

(~20 °C). The experimental set-up and dimensions of the specimens followed the 

British Standards [216-219]. At least 5 specimens were tested for each sample, and a 

statistical average was made based on the batch results.     

 

3.3.3.2 Vickers micro-indentation  

 

The Vickers indentation test measures micro-hardness by pushing a square (equilateral) 

pyramid indenter into the sample with a fixed load and then measuring the size of the 

indent using a microscope, as shown in Figure 3.8.  

 

 
 

Figure 3.8 Schematic of measurement theory (a), indentation mark and experimental 
set-up image (b). 
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Various loads are achievable from 10 g to 1000 g. Since the fabricated sample normally 

has a fine surface, for a better comparison with the macroscale hardness values, only 

those samples with rough surface were polished. The experimental settings followed the 

standards [220, 221]. The Vickers microhardness tests were performed using a calibrated 

Mitutoyo, MVK-H1 machine. The averaged hardness was generated from at least five 

indentations. The indentation load was fixed at 245 mN (or 250 g), and a holding time 

of 20 s was set for each test. Hardness (HV) was calculated from:  

   A

F
HV 854.1=

                                   (3.4) 

where F is the applied load in N, A is the indenter area in mm2. 

 

3.3.3.3 Nanoindentation test  

 

Instrumented nanoindentation is employed to analyze the micro-mechanics of soft 

materials, such as static strength and visco-elastic behaviour. Nanoindentation was 

carried out using a TI 900 Triboindenter system (Triboscope, Hysitron Inc., 

Minneapolis, USA) with a Berkovich tip, i.e. a three-sided flat pyramidal diamond flat 

tip with an angle of 104.3o. Integrated system is illustrated in Figure 3.9. 

 

 

 
Figure 3.9 Illustration of Hysitron TI 900 TriboIndenter system, (a) overview, (b) 

function distribution and parts descriptions. 
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The measurement was taken at room temperature (~20 oC). An acoustic enclosure was 

adopted to prevent acoustic interference from the environment. The indentation 

procedure followed with three stages (see Figure 3.10). Here, hmax is the maximum 

penetration depth, Pmax is the maximum indentation force; the stiffness of unloading 

curve S is the slope of a linear fit to the initial points of the unloading stage; hp 

represents the permanent depth; hc is the contact depth, and the inlet shows the surface 

mechanical deformation with possible pile-up effect at each stage.  

 

 

 
Figure 3.10  Schematic of typical load-displacement curve for nanoindentation on shape 

memory polymer. The elastic-plastic energy distributions are also labelled. 

 
The first stage is to increase the load to a maximum value with a fixed loading rate, 

followed by a holding stage at the maximum load. The third stage is to retract the 

indenter tip from the sample with a fixed unloading rate. Two 2×2 arrays of indents 

were performed on each sample. Various peak loads were applied. The fixed load 
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holding segment was applied to minimize the effects of material creep on the estimated 

values of modulus and hardness [222]. A typical load (P) vs penetration depth (h) curve is 

shown in Figure 3.10, as well as typical material deformation after indentation 

[223,224].According to Oliver and Pharr [223,224,225], the various parameters from 

nanoindentation with a Berkovich tip are obtained from: 

                     Contact depth, S

P
hhc

max
max 75.0−=

                                          (3.5) 

                     Hardness, A

P
H max=

                                                                     (3.6) 

                     Stiffness of unloading curve, dh

dP
S =

                                         (3.7) 

                     Contact Area, 
25.24 chA =                                                             (3.8) 

                     Reduced modulus, A

S
Er

2

π=
                                                    (3.9) 

                     indentor

indentor

sample

sample

r EEE

22
111 υυ −

+
−

=
                                                   (3.10) 

where hmax is the maximum penetrating depth, Pmax the max indentation force, hc  the 

contact depth, A the contact area, Er the residual modulus. Stiffness S is the slope of a 

linear fit to the initial points at the unloading stage.  As indicated by the Triboindenter® 

User Manual (Hysitron Inc., Minneapolis, USA), the elastic modulus Eindenter is 1140 

GPa and Poisson’s ratio υindenter is 0.07. For the nanocomposites used in this study, 

υsample was fallen to be 0.31. According to equation 3.10, the elastic modulus of sample 

can be derived from: 

                         Elastic modulus,
 91.0

r
sample

E
E =                                           (3.11)

 

The dissipation energy (DE) is defined as the enclosed area of load-displacement curve 
[226] which represents the energy absorbed by the material, and the elastic energy is the 

area beneath the unloading curve which represents the recoverable energy. The 

dissipation energy and elastic-plastic energy distributions were calculated from the load-

depth curves of samples using MATLAB software.   

 

For hardness measurements, various loads were applied from 100 µN to 5000 µN, with 

a contact loading/unloading rate of 200 µN/s, and a holding time of 5 s. Dynamic elastic 



45 
 

behaviour or the viscoelastic properties of the sample were characterized by changing 

the loading/unloading rate and holding time, statistical analysis was carried out on the 

batch data to evaluate the sample response to different loading conditions.  

 

3.3.4 Electrical properties 

 

Hybrid composites obtained by embedding conductive inorganic nanoparticles into 

polymers have huge potential applications in microactuation and microsurgery applications. 

The electrical characterizations used in this project included conductivity, dielectric and 

electro-thermal tests. Electrical conductivity and electric thermal effects were tested with 

a specifically designed experimental set-up, and the dielectric property was obtained 

using a dielectric testing machine. 

                  

3.3.4.1 Resistivity/conductivity test 

 

The resistivity was measured by a simple I-V test set-up consisting of a power supply, a 

multi-meter, and a digital thermometer. Square sample films were trimmed to 2 cm × 2 

cm, and the thickness was 0.1 to 0.2 mm. The set-up was shown in Figure 3.11. 

 

 
 

Figure 3.11 Illustration of resistivity/conductivity testing equipments 

 

The tests were performed in a controlled atmosphere with a constant ambient 

temperature of 20 oC and humidity of 50 %. The conductivity was calculated from the 

measured resistance using the following equation: 

)/(TWRLΞ =                                                          (3.12) 
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where Ξ  is the conductivity, sample dimension length (L), thickness (T) and width (W) 

are pre-measured in cm, and R is the measured resistance of the specimen in ohms.    

  

3.3.4.2 Dielectric test  

 

The dielectric properties of SMPs and nanocomposites are important parameters for 

MEMS/ bio-device application. In this project, dielectric properties of square samples of 

2 cm × 2 cm × 0.1 to 0.2 mm were measured. The dielectric measurements of the 

composites were performed in a frequency range from 10-2 to 106 Hz using a 

Schlumberger Solartron 1250 Frequency Response Analyser. Testing was programmed 

from room temperature to 100 °C in ambient air. 

        

3.3.5 Shape memory recovery characterization 

  

3.3.5.1 Thermo-active shape recovery observation 

 

Various patterns were designed to show shape recovery performance of the materials. 

Micro-patterns were ablated with a high power laser system (512 nm, 90 mW) [227].  An 

optical microscope and a digital camera (Canon A510) were used to record the real-time 

response to the thermal or electrical stimulus of obtained device. 

 

3.3.5.2 Cycling thermal tensile test  

 

Figure 3.12a show the thermo-mechanical cycling test set-up. Cycling tests (shown 

schematically in Figure 3.12b and c) were used to investigate the shape recovery ratio 

of the SMP and nanocomposites under certain conditions. There are four steps in each 

cycle: (1) stretching to εm at Thigh; (2) cooling to Tlow with holding strain; (3) Unloading 

and keeping shape at Tlow; (4) heating up to Thigh; then start of next cycle. These tests 

consisted of loading the specimen to a strain (εm) at a constant crosshead speed of 5 

mm/min at a temperature Thigh (stage 1), and then cooling down to the temperature Tlow 

while holding the same strain (εm (stage 2)). After 5 min at the temperature Tlow, the 

specimen was unloaded (stage 3) and reached a strain εe. The unloaded specimen was 

immediately heated from Tlow to Thigh in 5 min (stage 4), which left a permanent strain 

εp. This four-stage thermo-mechanical cycle was repeated to a total of 4 cycles. The 
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fixed conditions of the cyclic test were: εm=100%; Thigh=60 °C, Tlow=20 °C, and εe (the 

strain after unloading) and εp (the permanent strain) were both recorded for each 

specimen. 

 

 

 
Figure 3.12 Thermal cycling tensile experimental set-up: (a) photography of set-up, (b) 

2-D and (c) 3-D schematic drawings of cyclic tensile testing.  

 

3.3.5.3 Electro-active shape recovery test 

 

Microcantilevers made from the conductive nanocomposite (with dimensions shown in 

Figure 3.13a) for electrical actuating shape recovery testing were fabricated through 

laser cutting. The electro-active recovery set-up is shown in Figure 3.13c.  
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Figure 3.13 Schematic of (a) sample dimension, (b) recovery stages with marked angle 

and (c) the electro-active set-up 

 

Recovery tests were performed using different electrical powers, and the sample 

temperatures were measured using an IR thermometer. The shape memory recovery 

rates (RR) were calculated based on the following equation: 

                           RR = %100
)(

1

21 ×−
θ

θθ
                                                      (3.13) 

where θ1 is the initial bending angle of the cantilever and θ2 the residual bending angle 

after shape recovery, as shown in Figure 3.13b. Lager samples with a similar shape in 

Figure 3.13a were also tested as shown in Figure 3.14a, the recovery was evaluated by 

pre-deforming the cantilever (Figure 3.14b). The shape memory recovery rates (RR) 

were calculated based on the following equation: 
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                           RR = %100
)(

1

m1 ×−
‘

‘

θ
θθ

                                          (3.14)          

In particularize, the ‘1θ  was be very close to 360o
.                                    

 

 
  

Figure 3.14 (a) Millimetre scale cantilever sample dimension and (b) recovery 
demonstration with each state as well as the marked angle 

Original state 
 

Recovering state 
state 

Deformed state 
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Chapter 4 

NANOCLAY REINFORCED POLYURETHANE SHAPE MEMORY 

NANOCOMPOSITES 

As mentioned in Chapter 2, one major disadvantage of SMPs is their low stiffness and 

strength compared to shape-memory alloys or ceramics, which dramatically limits the 

application of the SMPs. Accordingly, a great deal of current work focuses on searching 

for nano-size fillers to enhance the mechanical and shape-memory recovery properties 

of the SMPs [118,71,136,134,128]. In this chapter, attapulgite clay is studied with the purpose 

to enhance the mechanical properties of SMPU. The SMPU was chosen because of its 

availability and linear amorphous structure which allow correlating with available 

theoretical analyse [228,18, 149]. Nanocomposites based on the attapulgite clay and SMPU 

were fabricated through mechanical melting/mixing techniques. The main objectives 

were to examine how the clay enhances the strength of the polymer matrix, and 

understand the changes of physical/chemical properties during conditioned shape 

conversion.  

 

4.1 Nano-clay powder characterization 

 

Figure 4.1 shows an SEM image of the commercial attapulgite clay powder revealing a 

loose fibre bundle structure. The length of each fibre varies from sub-micrometre to a 

few micrometres and the diameter is in the order tens of nanometres. The TEM images 

in Figure 4.2a show that the commercial attapulgite particles are highly dispersed 

individual rods, without much aggregation. Selected area electron diffraction (SAED, 

not shown) reveals its amorphous nature, confirmed by the HR-TEM images in Figure 

4.2b and c. The diameter of individual fibres is about 20–50 nm, whereas the average 

length is a few microns. The mean value of the aspect ratios of the fibres (l/d) is in the 

range of 40–100. 

 

After heat treatment at 850 ºC for 2 hours, the attapulgite fibres reconstruct and combine 

together to form a bundled structure (see Figure 4.3a), which could no longer be broken 

even by ultrasonication for an extended time. 
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Figure 4.1 SEM observation of the commercial clay revealing a loose fibre bundle 

structure, with the length of fibres varying from submicrometre to few micrometers and 
the diameter about tens of nanometres. 

 

 
 
Figure 4.2 TEM observation of non-treated clay powder: (a) overview, (b) and (c) HR-

TEM micrographs taken at the end and body of the clay fibre indicated in the inset. 
 
The ring-like scattered diffraction spots reveal the nanocrystalline feature as shown by 

the inset SAED pattern of Figure 4.3a. The corresponding HR-TEM images in Figure 
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4.3b and 4.3c confirm this new feature. Individual crystallites are embedded in the 

amorphous matrix with a separation of around 5 nm.  

 

 
 

Figure 4.3 TEM observation of heat-treated clay powder: (a) overview and electron 
diffraction pattern, (b) and (c) HR-TEM micrographs taken at the indicated position of a 

clay cluster. 
 

Figure 4.4 shows the FTIR results of the commercial and heat treated attapulgite 

powders. There are two types of molecules containing hydroxyl groups associated with 

the natural attapulgite. The peak at 3430 cm-1 corresponds to the hydroxyl stretching 

vibrations of the absorbed moisture [229]. The absorbance peak at 3552 cm-1 can be 

attributed to the anti-symmetric stretching modes of molecular water coordinated with 

the magnesium at the edges of the channel [230]. The peak at 1654 cm-1 is associated with 

the hydroxyl deformation mode of zeolitic water, and the peak at 984 cm-1 is the 

bending vibration of the OH groups [231].  

 

In comparison with the spectrum of the commercial attapulgite powder, the FTIR 

spectrum of the heat-treated clay revealed a broadening of the peak at 3436 cm–1 

whereas the 1654 cm–1 mode was lost. This suggests that heat treatment had removed 

most inter-fibrillar water, and reduced most of the –OH group content in the attapulgite. 



53 
 

4000 3500 3000 2500 2000 1500 1000 500

3436 1708

1074

800

3552

1654

1388

984

 untreated clay
 treated clay

 

T
ra

ns
m

itt
an

ce
 

Wavelength (cm-1)

3430

 
 

Figure 4.4 FTIR results for the commercial and heat-treated clay powders. 
 

As shown in Figure 4.4, the decrease in –OH group content led to absorbance peaks at 

1074 cm-1 and 984 cm-1  which can be attributed to the symmetric and anti-symmetric 

Si-O-Si stretching vibrations [232,233]. The peak at 800 cm-1 indicates the presence of Si-

O-Al and O-Al bonds [233]. It should be pointed out that the peak at 3436 cm-1 is still 

pronounced but shifted from 3430 cm-1 after the heat treatment. This is due to the O-H 

bond being stretched after removing the interfibrillar water [234]. 

 

The TGA result of the commercial powder is shown in Figure 4.5 and reveals a three-

stage change during heating. The first stage, at a temperature of about 100°C, 

corresponds to the loss of moisture which may exist in attapulgite powder as free water. 

The second stage occurs at about 200°C when the zeolitic tube is destroyed, coinciding 

with the loss of hygroscopic water and zeolitic water [235].  The third stage, beyond 450 

°C, is when the hydroxyl group is gradually reduced. The total weight loss is close to 

15.84% for the untreated clay, whereas the heat treated clay did not show a significant 

drop in weight (see Figure 4.5) and re-absorption of water molecules after heat 

treatment was negligible. 

 

In summary, thermal treatment removes water and most hydroxyl groups for the natural 

clay powders based on the thermal analysis and IR results. The treated clay powders 

become crystallized and exhibit a bundled structure as revealed by TEM.  
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Figure 4.5 TGA analysis of clay powders showing the weight loss during heating for 
both the commercial and heat-treated clay powders. 

 

4.2 Vickers microindentation and instrumented nanoindentation  

 

Hardness measurements were carried out to samples using Vickers indentation and 

nanoindentation. Figure 4.6 presents the microhardness data of the pure PU, treated and 

untreated clay reinforced composites as a function of applied normal load. Hardness of 

the PU-based shape memory materials decreases as a function of indentation load, 

especially at small loads. For ductile materials such as metals, hardness normally 

decreases with increasing indentation load, which is commonly called the indentation 

size effect (ISE) [236].  

 

Several explanations have been offered for the origin of the ISE, including limitations in 

experimental conditions (low resolution of the objective lens, work hardening or 

softening generated during the surface preparation), intrinsic structural factors of the 

material such as work hardening during indentation, indentation elastic recovery, and 

grain size effect [236,237,238]. The pure PU sample shows the most significant decrease in 

hardness as a function of normal load (see Figure 4.6). This might be explained by the 

apparent elastic recovery of PU, which could “artificially” enhance the microhardness 

value at a low load due to shrinkage of the indentations. At a higher load, this artificial 

enhancing effect is not significant as the indention is quite large. 
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Figure 4.6 Hardness of pure PU and PU-based shape memory composites reinforced 
with (a) treated and (b) untreated clay powders. 

 

Figure 4.7 summarizes the averaged hardness of the PU-based shape memory 

composites as a function of the content of heat-treated and untreated clay, measured at 

different indentation loads as indicated in Figure 4.6. Both Figure 4.6 and 4.7 clearly 

show that, with addition of the heat-treated clay powder, the hardness of the composites 

significantly increases with the clay content. At 30 wt.% treated clay, the microhardness 

reaches a maximum value of about 160 MPa, which is nearly a 60% improvement over 
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the pure PU. On the contrary, adding untreated clay powder results in a tremendous 

decrease in hardness of the nanocomposites of up to nearly 85% at 30 wt.% clay. 
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Figure 4.7 Averaged hardness of PU-based shape memory composites as a function of 
the content of untreated and treated clay powders. 

 

Figure 4.8 generalizes the nanoindentation outcomes with AFM images. Typical 

loading–unloading curves for the nanoindentation of PU and its nanocomposites with 

treated clay are shown in Figure 4.8a. The indentation depth under a fixed load (400 

mN) gradually decreases with increasing clay content, indicating an increase in the 

resistance to plastic deformation. A reduction of the strain recovery during unloading 

with the addition of nanofiller is also observed, because incorporating the nanofillers in 

the microstructure hampers the movement of molecular chains during deformation. 

Figure 4.8b illustrates the hardness profiles for the PU sample and its nanocomposites 

with treated clay as a function of indentation depth. With a shallow indentation depth, 

the hardness seems very high because of the indentation size effect (ISE), and this effect 

fades continuously with the penetration depth. The averaged hardness value increases 

by about 90 %, from 89 MPa to 166 MPa when the filler content is increased from 0 to 

30 wt.%. The nanoindentation results also show a slight increase in improvement in 

yield stress with increasing filler content. Figure 4.8c-d show the surface morphology 

of indentation marks for the pure PU and nanocomposite (with 30 wt.% clay) from the 

nanoindentation test. For the pure PU, a pile-up of material can be observed indicating 

its soft nature, whereas, for the 30 wt.% nanoclay composite, the pile-up is severely 

restricted because of the increase in the mechanical strength of the nanocomposites. 

 



57 
 

0 5000 10000 15000
0

100

200

300

400

30 wt.% clay/PU

10 wt.% clay/PU
Pure PS

a

 

Lo
ad

 (
m

N
)

Displacement (nm)
0 5000 10000 15000

50

100

150

200

Pure PS

30 wt.% clay/PU

10 wt.% clay/PU

b

H
ar

dn
es

s 
(M

P
a)

Displacement (nm)

Average 
Hardness

 

           
 
 

Figure 4.8 (a) Typical nanoindentation results of samples; (b) hardness versus 
indentation depth derived from nanoindentation tests; (c) AFM images for pile-up of 
materials for the pure PU sample; (d) AFM images of indentation mark on 30 wt.% 

treated clay/PU. 
 

A comparison of hardness values from the nanoindentation and Vicker’s 

microindentation is presented in Figure 4.9.  
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Figure 4.9 Comparison of hardness results from nanoindentation and Vickers micro-
indentation tests. 
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The two measurements are comparable and indicate very similar trends in the 

relationship between the hardness and the content of clay fibers in the nanocomposites. 

Meanwhile, the results from nanoindentation are higher than vicker’s indentation for the 

composites samples, because of the different testing theory and characterization location. 

This result is useful for industrial applications as it implies that the Vickers micro-

indentation test can be used with equal effect to nanoindentation in evaluating polymer 

composites. 

 

4.3 Thermal analysis and Microhardness-Tg relations 

 

The DSC traces of the pure PU and the PU-based nanocomposites are listed in Figure 

4.10. The glass transition temperature (Tg) is evident as a step in the DSC curves. The Tg 

of the nanocomposites decreases on addition of the untreated clay powder, but not when 

the heat-treated clay is incorporated. This decrease in Tg is attributed to the presence of 

moisture and excessive hydroxyl and other organic groups which exist in the non-

treated clay powders and make it harder to obtain good interfacial bonding between 

polymer and nano-filler. Moisture also acts as plasticizer for the PU polymer causing a 

decrease in both the Tg and the strength of the polymer [28,85]. Because the Tg of the 

nanocomposites with the non-treated clay powder decreases below room temperature, 

the material becomes very soft during testing.  
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Figure 4.10 DSC analysis results of PU-based shape memory composites with the 
glassing temperature indicated for each composite. 
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In contrast, addition of the heat-treated nano-clay leads to an increase in the Tg of the 

nanocomposites by 5 °C compared to the pure PU. In the absence of a plasticizer, the 

addition of the nanofiller leads to restricted segmental motion of the polymer chains 

which raises the Tg 
[239,240]. 

 

Figure 4.11 shows the hardness results for PU and treated clay nanocomposites as a 

function of temperature. Here the logarithm of microhardness, ln Hv, is plotted against 

the temperature T to show the changes more conservatively. The hardness was found to 

decrease with temperature in the hybrid composite following a published exponential 

law [241,242], for the semi-crystalline or amorphous polymers:  

( )T
vo

H
v

H β−×= exp                                                                (4.1) 

where Hν0 is the hardness of the material at 0 K and β is the coefficient of thermal 

softening. Equation (4.1) can be changed into: 

T
vo

H
v

H β−= lnln                       (4.2)          

Statistical analysis on the relation between microhardness and Tg was performed and 

the results are described in Figure 4.11, i.e. ln(Hv) decreases linearly with temperature 

for all the samples.  
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Figure 4.11 Microhardness of PU-based shape memory composites versus temperature. 
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However, there is an apparent discontinuity in the thermal expansion coefficient around 

Tg, although it becomes less apparent with increasing clay content. This implies that 

microhardness tests at different temperatures can be used as a tool to determine the Tg of 

the polymer and its nanocomposites. A continuous increase in Tg with filler content is 

also evident from Figure 4.11, which supports the DSC results in Figure 4.10. 

 

Figure 4.12a shows the storage modulus (E´) from the DMTA tests for the composites 

with different clay contents.  
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Figure 4.12 DMTA characterization on Tg of nanoclay based SMP composites (a) 
Storage modulus versus temperature curves; (b) Tan δ versus temperature results. 
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The storage modulus has a maximum value for the SMP nanocomposite with 30 wt.% 

clay, indicating that the stiffness of 30 wt.% clay/PS nanocomposite is the highest 

among all the tested samples. A sharp drop in modulus is observed above Tg within a 

narrow temperature range due to the softening effect of the polymer nanocomposite, 

which has already been reported [243].The tan δ curves shown in Figure 4.12b reveal 

that the transition temperatures of the nanocomposites increase with clay content. The 

nanocomposite with 30 wt.% clay also shows the highest tan δ value, which reveals its 

best energy absorption capacity among these samples [244]. It has been reported that the 

damping effect of the polymer depends strongly on the hard segment content, 

crystallization of the soft segment and cross-linking rate [245,246]. In this study, the best 

damping effect was achieved for the nanocomposites with 30 wt.% clay, because of the 

significant increase in the content of hard segments.  

 

In brief, improvement in the thermal properties with the addition of nano-clay has been 

proved based on the Tg results based on the DSC tests and modulus results from the 

DMTA tests. 

 

4.4 Shape recovery demonstration and thermal-mechanical cycling tests   

 

Shape recovery speeds were measured by recording the recovery of an indentation mark 

using a Peltier heater with a maximum temperature of around 50°C. Figure 4.13 and 

Figure 4.14 show the fading of the indentations after temperature increase for the pure 

PU and PU nanocomposites containing 20 wt.% treated clay, respectively. The 

indentations gradually disappear upon heating, indicating a good self-healing 

performance. Figure 4.13e and 4.14e also show the surface profiles of the indentations 

of these two samples. Prior to heating, pile-up around the indentations can be clearly 

observed, indicating the significant plastic deformation of the SMP and nanocomposites 
[247]. The real-time images indicate that the full recovery of pure PU took about 120 

seconds while the same level of recovery in the composites sample took about 240 

seconds. The nanocomposite samples are found to have a slower recovery speed than 

those of the PU at the same temperature, which is probably due to the increasing energy 

consumption in overcoming the clay barriers. 
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Figure 4.13 OM micrographs showing the evolution of the indentation on pure PU 
during heating at 50 °C for different time: (a) 0s, (b) 60s, (c) 90s and (d) 120s. (e) 
Profile evolution of the indentation heated for different duration times indicated. 
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Figure 4.14 OM micrographs showing the evolution of the indentation on 20% treated 
clay/PU composite during heating at 50 °C for different time: (a) 0s, (b) 60s, (c) 120s 

and (d) 240s. (e) Profile evolution of the indentation heated for different times 
indicated. 

 

In order to compare directly the shape memory efficiency of PU and clay/PU 

composites, two thin beams of the pure PU and 30 wt.% clay/PU composites, with a 

cross section area of 2 × 2 mm2, were bent after heating to 80 °C, and the shape was 

fixed while cooling to room temperature (20 °C). The shape recovery was demonstrated 

on a hotplate with a surface temperature of 80 °C, which was designed to illustrate 
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remote recovery at a higher triggering temperature. The pure PU sample exhibited a 

prompt response, recovering its original shape within 30 s (see Figure 4.15c). The 

nanocomposite beam with the 30 wt.% clay showed a full shape memory recovery after 

60 s (see Figure 4.15d).  

 

 
 

Figure 4.15 Recoveries of shape memory samples heated on a hotplate with a surface 
temperature of 80 °C. 

 

 
 

Figure 4.16 Typical thermal cyclic tensile results of 30 wt.% clay SMP nanocomposite. 

 

The slow recovery of the nanocomposite sample is attributed to the incorporation of 

nano-fillers that hamper the movement of molecular chains, so that the shape memory 

effect is slightly delayed. Figure 4.16 presents the thermal-mechanical cycling test of 
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the 30 wt.% clay composite. A good shape recovery was observed: the shape recovery 

rate is 99.2% in the first tensile cycle and 97% in the second. The maximum stress 

decreased by 8%, probably because some defects were generated and creep occurred 

during continuous loading at an air temperature of 60 °C. 

 

4.5 Summary  

 

Mechanical properties of the attapulgite clay reinforced polyurethane shape memory 

nanocomposites are strongly dependent on the pre-treatment of the nanopowders. The 

untreated commercial attapulgite clay resulted in a significant decrease in glass 

transition temperature and hardness of the nanocomposite due to the presence of 

moisture as well as the clay's amorphous structure and surface hydroxyl groups. The 

Vickers hardness of the nanocomposites composed of the heat treated clay powder was 

dramatically increased as a function of clay content, which is attributed to the 

homogeneous dispersion of the nano-fillers in the polymer matrix and strong filler–

polymer interactions. Following heat treatment of the nano-powders, the loss of 

moisture and surface hydroxyl groups provided a crystallized and bundled structure.  

 

Nanoindentation results showed that the average hardness value increased by about 90 

%, from 89 MPa to 166 MPa when the content of nanoclay filler reached 30 wt.%. 

Improved interfacial bonding between the polymer and filler interface enhanced the 

mechanical properties of the nanocomposites. In comparison, untreated PU-clay 

nanocomposites showed a decrease in both the Tg and the strength of the 

nanocomposites. DMTA also showed an improvement in the thermo-mechanical 

properties of the nanocomposites by adding the nano clay fillers. Good shape memory 

effect was observed in the nano-composites: nearly 97 % recovery was obtained after 

two cyclic tensile tests. PU-based composites containing 30 wt.% treated clay 

nanoparticles exhibited the same capability of shape recovery as pure PU although 

recovery speed was slightly slower.Although a significant mechanical enhancement was 

observed in the composites examined in this chapter, it must be pointed out that the 

filler content is up to 30 wt.%. The concentration of the fillers is so high that there 

inevitably exist particle aggregations inside the composites. In the following chapter, a 

polystyrene based shape memory polymer with a range of low concentrations of 

nanofillers was used to study the effects of nanoparticles in matrix for the reinforcement 

of the mechanical properties and shape memory effect.   
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Chapter 5 

THERMAL TRIGGERING OF POLYSTYRENE BASED SHAPE 

MEMORY NANOCOMPOSITES REINFORCED BY DIFFERENT 

NANOFILLERS 

Apart from PU, Polystyrene (PS) based copolymers are the most commonly used for 

designing nanocomposites for good different purposes, because of their lower cost 

compared to the other polymers such as PMMA, PU and polycarbonate. Some studies 

have been carried out on the shape memory properties of PS-based SMPs [191,248,249,250], 

but the underpinning physical and mechanical enhancement mechanisms of the PS-

based shape memory nanocomposites have not yet been evaluated. The chemical 

composition and molecular structure of the PS based copolymer used in this work are 

illustrated in Figure 5.1.  

 

 
 

Figure 5.1 Schematic of chemical composition and molecular chain structure for shape 
memory PS-copolymer, (a) hard segment (crosslinking) network with addressed 
functional groups, (b) The ball-stick model on crosslinking molecular structure 

 

Investigations of the thermal triggering of PS-based shape memory nanocomposites 

were performed using various nanofillers such as silica, Al2O3 and clay. The aims were 

to compare and study the factors which influence the nanopaticle enhancement 

efficiency on the matrix, as well as to examine the dispersion status of the particles.  
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5.1 Nanoparticle characterization 

 

The geometries and dimensions of the nanofillers were studied in detail using TEM 

observation. Figure 5.2 shows spherical Al2O3 particles of diameters ranging from 25 

nm to 120 nm. According to supplier’s information (also assessed in TEM) [200], the 

Al 2O3  particles used in this study had a small diameter  of 15 nm or less. The silica 

particles  tend to aggregate due to their high surface energy (smaller average particle 

size) and surface hydroxyl groups, according to the supplier [200]. 

  

 
 

Figure 5.2 TEM micrograph showing the morphology of Al2O3 nanoparticles. 
 

By noting the agglomeration states of the above two spherical inorganic nanoparticles, it 

was concluded that specific dispersing techniques would needed to ensure the 

separation of the nanoparticles clusters, especially for the silica. Figure 5.3 presents 

TEM images of the as-received and heat treated clay powder. The nano-clay powder 

exhibits a fibre-like amorphous structure in the as-received state and becomes a 3-D 

bundled rod-structure after heat treatment at 850 °C for 2 hours [251]. The diffraction 

spots of selected area electron diffraction pattern reveal the nanocrystalline nature of the 

heat-treated clay as shown by the inset in Figure 5.3b. 
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Figure 5.3 TEM images of (a) as-received, and (b) heat-treated clay powders, with 

selected area diffraction pattern shown in the inset. 
 

Nano-particle identification by TEM offers a visual comparison between the different 

nanofillers which were employed in this work. Besides the direct geometry and 

dimension evaluation, the ‘internal’ state of the particles were also revealed, which 

could lead to a better understanding of the effects of the fillers on the mechanical 

properties of composites.  

 

5.2 Macroscopic mechanical properties  

 

Three kinds of nano-particles, as previously identified, were selected to fabricate the 

nanocomposites at different concentrations. Vickers indentation and uniaxial tensile 

testing were used to characterize the macroscopic mechanical properties. Figure 5.4 

shows the Vickers hardness readings for the three nanocomposites as a function of 

nano-filler content. A significant increase in hardness can be attributed to the addition of 

the nanoparticles. With the addition of 4 wt% of the nanoclay powder, the 

microhardness reaches a maximum value of about 75 MPa, which is nearly a 400% 

improvement over the pure PS. The Al2O3 nanoparticles show a similar hardness 

enhancement to that displayed in the nano-clay filled composites. The SiO2 

nanoparticles demonstrate the weakest enhancement effect: the hardness is only doubled 

when the SiO2 content reaches 4 wt.%. It is also apparent that the hardening effect is 

much more pronounced with the first 0.5 wt.% addition and the improvement is less for 

all three reinforcement materials thereafter.  
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Figure 5.4 Vicker’s hardness results for SMP nanocomposite operated with 25 g load 

and 20 s loading time. 
 

The composites with 1 wt% of each of the nanofiller were selected for uniaxial tensile 

tests to compare their stress-strain behaviour at room temperature (~20 °C), with the 

typical stress-strain curves shown in Figure 5.5b. From the results of the maximum 

stress and strain shown in Figure 5.5c, the SiO2/PS composites show a nearly 16% 

increase in the maximum strength, and the Al2O3/PS and clay/PS composites present 

much better enhancements of 100 % and 120 %, respectively. The Young’s modulus 

values (shown in Figure 5.5b) measured from the tensile tests confirm that the clay/PS 

composites show the best enhancement, nearly 3 times of that of the pure PS.  

 

Figure 5.6 shows the stress-strain relationships for the clay/PS nanocomposite as a 

function of clay content at room temperature. The tensile stress increases significantly 

with increasing clay content up to 1 wt.%, and then decreases dramatically upon further 

addition of nano-clay. For example, incorporation of only 1 wt.% clay results in a 

modulus that is almost three times that of the pure PS. 
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Figure 5.5 Uniaxial tensile results for SMP nanocomposite at room temperature: (a) 

Stress-strain curves; (b) typical Young’s modulus from tensile test; (c) breaking strain 
and maximum stress. 

 

Considering the geometry and dimensions indicated in the TEM images, such obvious 

enhancement could be attributed to the higher aspect ratio of rod fillers. This has been 
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explained by the effective load transfer along the fibre rod [252,253].  The decrease in this 

enhancement after adding more than 1 wt.% clay is likely to be due to an imperfect 

organic-inorganic interface and agglomeration of nanoparticles [254,243]. The current 

dispersion technique using ultrasonic stirring has limited efficiency for nanoparticle 

scattering inside the matrix when the concentration of the nanofiller is higher than 1 

wt.%.  

 

 

                                

Figure 5.6 Tensile results for nanocomposites of clay/PS: (a) typical stress-strain curve; 
(b) breaking strain and maximum stress; (c) Young’s modulus as a function of clay 

content. 
 

Nanofillers dispersed in the polymer matrix reinforce the soft matrix through effective 

load capacity and transferability. When the aspect ratio of the particles equals unity 

(spherical nanoparticles), the composite modulus is dependent on a number of particle 

characteristics such as their modulus, density, the particle size and shape, the volume 

fraction and the nature of the interface. As the modulus and density of Al2O3 is larger 

than that of SiO2, the enhancement effect for the Al2O3/PS sample is more significant as 

shown in Figure 5.4 and Figure 5.5. The rod-like nanofillers may bridge more polymer 
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chains and afford more effective load transfer, leading to an improvement in strength. 

Upon adding a critical volume fraction of nano-rods (such as nano-clay), the nano-rods 

stretch and perturb the polymer matrix, and the polymer blend confines the nanorods, 

generating elongated domains that are reinforced by these fillers [255]. Nanofillers with 

rod-like structures, as compared with spherical nanoparticles, have been predicted to be 

better in homopolymer systems because the stress concentration is reduced and the load 

is transferred with more efficiency by the high aspect ratio and specific geometry of the 

fillers [256,257]. 

 

5.3 Thermal properties  

 

The DSC results shown in Figure 5.7 reveal that, with the addition of nanoparticles 

from 1 wt.% to 3 wt.%, the glass transition temperatures decrease slightly (less than 3 

°C) for all specimens, which is acceptable given the improvement in mechanical 

strength.  
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Figure 5.7 DSC monitoring on Tg of SMP nanocomposites  
 

The ideal nanocomposite system assumes that the thermal property should be improved 

significantly with minor loading of nanoparticles, but passive influences such as filler 

aggregation, chain transfer, exceptional termination of chain growth, would result into a 

decrease in Tg. Similar explanations have been reported that a homogenous dispersion 

of nanoparticles in the polymer matrix is difficult to achieve without additional method 
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such as pre-dispersing solutions or surface treatment of the fillers by surfactant [258,20,259]. 

Aggregation of the nanofillers in the nanocomposites has been reported as a major 

factor leading to a decrease in the transition temperature [260]. The clay/PS composites 

show the smallest decrease in the transition temperature of the nanocomposites studied, 

which could indicate that the clay/PS composite system achieves the most uniform 

disperson of nanofiller. The DMTA results for this clay/PS nanocomposites (Figure 

5.8a) show the storage modulus (E´) to have a maximum value at 1 wt.% clay, with the 

stiffness of 1 wt.% clay/PS nanocomposite being the highest of all the samples tested. A 

sharp drop in modulus is observed above Tg over a narrow temperature range, which has 

been frequently reported [243,261,262]. 

 

The tan δ curves in Figure 5.8b reveal that the transition temperatures of the 

nanocomposites increase slightly with addition of clay content, which matches what was 

observed in the DSC analysis. The nanocomposite with 1 wt.% clay also shows the 

highest tan δ value, which gives it the best energy absorption capacity among these 

samples [244]. The best damping effect was achieved with 1 wt.% clay, as the 

incorporation of nanofillers maximizes the hard segment content and creates numerous 

physical cross-linking points, which directly leads to higher energy consumption 

because molecular chain movement needs to overcome those obstructing effects. 

However, with 2 wt.% clay, probably due to the poor dispersion of nanofillers, the 

energy absorption during deformation is reduced, thus leading to a reduction in the 

damping effect. However, there are usually multiple factors which influence the 

mechanical properties and constitutive models of the polymer and its nanocomposites, 

which will be discussed in Chapter 8. 

 

5.4 Thermal-mechanical cycling measurements 

 

Cyclic tensile measurement was used quantify the shape memory effect for the clay/PS 

specimens, and the results are shown in Figure 5.9. When an external stress is applied 

to the SMP, soft/flexible segments will be preferentially extended in the stress direction 

compared with the hard/fixed segments. Both the cross-linking of the PS and nanofiller 

particles will act as hard/fixed segments. 
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Figure 5.8 DMTA investigation on nanoclay based SMP composites (a) storage 
modulus versus temperature curves; (b) Tan δ versus temperature results. 

 

As shown in Figure 5.9, the maximum stress of the pure PS (1.45 MPa) at 60 °C is 

about half of that at room temperature (Figure 5.5a). Similar behaviour was also 

repeatedly observed in all the nanocomposites. This is because the chains of shape 

memory polymers become flexible above the transition temperature, which results in a 

reduction of the maximum stress. The maximum stress of the 1 wt.% clay/PS 

nanocomposite is the highest among all samples, showing a good enhancement even at 

temperatures above Ttrans. As the cyclic tensile fast proceeds, the residual strain εp 

increases (see Figure 5.9), which could be attributed to such possibilities as: (1) random 
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breaking of covalent cross-link bonds, (2) energy storage by the fillers [263], or (3) a 

blocking effect by incorporated nanofillers [254]. 

 

 

 

 

Figure 5.9 Thermal mechanical cyclic testing results: (a) pure PS; (b) 0.5 wt.% clay/PS 
composites; (c) 1 wt.% clay/PS composites; (d) 2 wt.% clay/PS composites. 

 

The shape memory effect can be quantified using the strain recovery ratio as a function 

of cycle number N, defined by Equation (5.1) [259]:  
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where Rr(N) is the strain recovery ratio in the cycle number N, εe(N) is the unloading 

strain at Tlow in the cycle number N, and εp(N) and εp(N–1) are residual strains at cycle 

number N and N–1, respectively. All information can be directly obtained from the 

results of the cyclic tensile testing at a fixed temperature. Thigh is identified with the Tg 

of the polymer, and Tlow normally is room temperature (~20 °C).   
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Figure 5.10 summarizes the recovery ratio of the clay/PS composite SMPs from the 

thermal cycling tests. It has been found that the recovery rates of all the samples are 

above 85%, which represents good retention of shape recovery.  
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Figure 5.10   Recovery rate versus cycle number of pure PS and clay/PS samples 
 

The recovery ratio for the 2 wt.% clay nanocomposite is nearly 15% lower than that of 

the pure PS, and this can be attributed to many factors such as increased energy 

consumption, the  agglomeration of nanofillers in the polymer, and random breaking of 

the covalent cross-link bonds. There seems to be a slight decrease in the recovery rate 

with cycle number, but then a slight increase after two or three cycles, which is a typical 

"learning phase" seen in many SMPs [4,5]. After the first tensile cycle, some of the cross-

link points will be broken in the SMP and composites, which could freeze the free 

movement of the molecular chains, thus causing reduction in the recovery rate in next 

cycle. Then the recovery strain becomes stable as more molecular chains function as 

flexible soft segments once they have been heated above Tg, thus gradually leading to an 

increase in the reversible recovery rate.   

 

5.5 Shape recovery property 

 

The PS and nanocomposite samples with a thickness of 0.6 mm and width of 10 mm 

were rolled after being heated to 90 °C, and the shape kept fixed during cooling to room 
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temperature (20 °C). The shape recovery test was carried out in hot water at 60 °C. The 

pure PS sample (see Figure 5.11) exhibited a prompt response in hot water and reached 

almost 90 % recovery within 20 s.  

 

                                
 

                          
Figure 5.11 Recovery of a pure SMPS sheet in 60 °C hot water. 

 

The 0.5 wt% clay/PS nanocomposites (in Figure 5.12) also showed good shape 

memory recovery but with a faster recovery speed (recovering within 16 s) than that of 

the pure PS. The reason could be that the Ttrans of the nanocomposite SMPs decreases 

with addition of nanoclay filler. On the other hand, the 1 wt.% clay/PS sample (in 

Figure 5.13) shows a full recovery within 25 s, which is faster than that of the pure PS.  

 

 
 

Figure 5.12 Recovery of 0.5 wt% clay/PS sheet in 60 °C hot water. 
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Figure 5.13 Recovery of 1 wt% clay/PS sheet in 60 °C hot water. 
 

In Figure 5.14, demonstration of the shape recovery of the dyed PS nanocomposites 

with “h w u” characters was made on a hotplate at 80 °C. A full recovery was achieved 

in 2 min for the various degrees of deformation. 

 

 
 

Figure 5.14 Demonstration of shape recovery with “h w u” characters designs on a 
hotplate surface of 80 °C 

 

As a further assessment of the capacity of the materials, a micro-gripper based on the 

pure PS was manufactured using laser micromachining as shown in Figure 5.15. A 

good shape recovery of the gripper at 80 °C was demonstrated. The edge of pence coin 

is used as an indicator of scale showing its potential for biomedical or micro-assembly 

applications. 
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Figure 5.15 Shape recovery of a micro-gripper based on a pure PS copolymer (the edge 
of a five pence coin is also shown for comparison) 

 

5.6 Summary 

 

Shape memory nanocomposites were fabricated using chemically cross-linked PS 

copolymer as a matrix and different nanofillers (including alumina, silica and clay) as 

the reinforcing agents. Their mechanical and thermal properties and shape memory 

effects have been characterized. Nanofillers exhibit an effective enhancement in the 

strength and modulus of composite SMPs. Among the three types of nanofiller, the 

heat-treated nanoclay achieved the best improvement in strength. DMTA results 

indicated that the 1 wt% clay composites had the highest storage modulus and the best 

energy absorption capacity. Thermal cycling tests indicated that the recovery rates of all 

nanocomposite SMPs were above 85%, and good shape recovery ability was achieved. 

Shape recovery was demonstrated using different samples and designs. In brief, 

nanofillers provide significant reinforcement to the PS, and the nanocomposites exhibit 

better thermal and mechanical properties, including shape memory properties, than the 

unreinforced PS. Clay/PS composites showed a better performance than the other fillers. 

However, the shape memory was triggered here by thermal stimulus, which would be 

difficult to do in many biological applications such as bio-medical devices because the 

temperature of human body could trigger the recovery. Therefore, the following 

chapters will explore new methods of triggering the shape memory effect with high 

efficiency, enhancing the strength, and realizing uniform dispersion of nanoparticles.  
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Chapter 6 

SPHERICAL CARBON NANOPARTICLE /POLYSTYRENE 

ELECTRO-ACTIVE NANOCOMPOSITES 

Recently, various electrically actuated composites (EAPs) using addition of CNPs, 

CNFs, or CNTs into the polymer matrix have received great attention because these 

nanofillers improve both the mechanical and electrical properties [264,265]. SMP-based 

EAPs [264,266] with good dielectric permittivity could be appropriate materials for 

actuation in bio-robots [267], mini-pumps [268], and/or orthotic prosthetic assistance 

utilities [269,270] as they can change their shape in response to an electrical stimulus 
[271,272,273]. The SMP-based EAPs have many advantages such as low cost, light weight, 

high actuation strain (up to 200%) and controllable recovery time [251]. For current SMP 

systems, two methods are generally used to improve mechanical and shape recovery 

properties: i) trimming polystyrene molecular chains [248,250] with functional groups or ii) 

incorporating rigid micro- or nano-fillers into a polymer matrix [213]. Leng et al. [32] and 

Koerner et al. [140] investigated the electro-triggering shape memory effect for shape 

memory nanocomposites with carbon nano-fillers. So far, systematic studies on the 

dielectric permittivity and thermo-electrical property of PS-based SMP composites have 

rarely been reported, although results are crucial for MEMS applications such as 

actuators and sensors [272,274,275,276]. Therefore, this chapter will focus on the macro-

/micro-mechanical properties, the dielectric and thermo-electric properties of CNP/PS 

nanocomposites, as well as the electro-active shape memory effects.  

 

6.1 Microstructure and thermal properties  

 

Figure 6.1 shows the fracture surface morphologies of composites with different CNP 

concentrations. The average size of individual CNPs below 100 nm, and the CNPs are 

uniformly distributed throughout the SMP matrix in all samples. The vein-type fracture 

patterns of the polymer matrix indicate a certain degree of plasticity in the matrix when 

fractured at the temperature of liquid nitrogen. Nanosized shallow dimples or voids are 

frequently observed between the vein-type features, where the CNPs are more exposed. 

Accordingly, it is considered that the CNPs serve as the source of nanovoid/dimple 

nucleation. The uniform dispersion of the nanosized CNPs in the styrene-based polymer 
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matrix was achieved via mechanical stirring in an ultrasonic bath, which forms a basis 

for better enhancement of mechanical properties of the composites. 

 

 
 
Figure 6.1 SEM images of the shape memory nanocomposites revealing the distribution 

of CNPs inside the PS matrix: (a) 1 wt.% CNP/PS,(b)  2 wt.% CNP/PS,(c) 3.5 wt.% 
CNP/PS, (d) 5.5 wt.% CNP/PS. 

 

Thermo-mechanical properties of the CNP/PS nanocomposites were characterized by 

DMTA. The storage modulus-temperature plots for samples with different nanofiller 

concentrations are shown in Figure 6.2. The storage modulus of the composites at room 

temperature increases continuously as more CNPs are incorporated into the PS matrix. 

However, in every case, the storage modulus drops above 50 °C which is close to the 

glass transition temperature, Tg, of the shape memory composites [243]. The measured 

glass transition temperatures of the composites are between 60 and 75 °C.  The tan δ 

curves presented in Figure 6.2b reveal that the glass transition temperatures of the 

composites increase substantially upon addition of CNP. The composite with 3.5 wt.% 

CNP has the highest tan δ value, which is the best energy absorption capacity or 

damping effect among all these samples. The damping effect is strongly dependent on 

the hard segments content, crystallization of soft segments, cross-linking rate and 

interface between fillers and matrix [244,245,277]. The damping effect of the composites 
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with 3.5 wt.% CNP content is more obvious than those with lower CNP contents. This 

can be explained by the significant enhancing effect of the CNP, and significant 

increase in interfacial boundaries over other polymer composites. Further increase in the 

CNP content might result in the particle agglomeration, which would reduce the energy 

absorption and damping.  

 

 
 

Figure 6.2  Plots of (a) the storage modulus and (b) tan δ as a function of temperature 
for all the nanocomposites. 

 

6.2 Macro/nano-scale mechanical properties 

 

Uniaxial tensile tests were performed to evaluate the macroscopic mechanical properties. 

Figure 6.3a presents the typical stress-strain curves for CNP/PS composites.  
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Figure 6.3 Uniaxial tension results for CNP/PS: (a) stress-strain curves, (b) Young’s 
modulus and (c) max stress/breaking strain as a function of CNP concentrations 

An increase in maximum stress and rapid decrease of the maximum strain can directly 

be seen associated with the addition of CNP. Moreover, the curves show an obvious 

drop after the peak stress while increase as the filler concentration increases, indicating 

more internal failure. Analysis of the stress-strain curve provides the Young’s modulus 

(Figure 6.3b), maximum stress and strain as a function of CNP concentration. The 

results show that Young’s modulus continues to increase as more CNPs are 

incorporated into matrix and the composites with 5.5 wt.% CNP achieve the highest 

Young’s modulus, at nearly 8 times of that of pure PS. Detailed analysis results from 

stress-strain curves is presented in Figure 6.3c. As the CNP concentration increases to 

5.5 wt.%, a significant improvement in the maximum stress is obtained and the value at 

5.5 wt% CNP/PS is 4 times that of pure PS. Meanwhile, the breaking strain shows a 

continuous decrease from 300% to 30%. 

Comparing with the tensile results in Chapter 5 for various nanoparticles (at 1 wt.%), 

the Young’s modulus and maximum stress of all the nanoparticles studied can be ranked 
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according to the following sequence: Clay/PS> Alumina/PS> CNP/PS> Silica/PS, 

whereas the breaking strains show a similar value of around 250 %. The maximum 

stress of the 1 wt.% clay/PS all show is the same as that of the 2 wt.% CNP/PS. The 

Young’s modulus of the 1 wt.% clay/PS is same as that of the 4.5 wt.% CNP/PS. 

Considering the geometry differences between the clay and CNP, it can be concluded, 

that although the spherical CNPs achieved reinforce to the soft matrix because of its 

higher modulus and uniform dispersion, the enhancement is not as significant as that 

from the clay due to its lower capacity and load transfer. A detailed discussion is 

included in Chapter 8.   

Typical force (P)-displacement (h) curves of the CNP/PS nanocomposites from the 

nanoindentation tests are presented in Figure 6.4a. A larger slope of dP/dh in the 

loading stages and a lower maximum penetration depth displacement is clearly obtained 

with the addition of carbon nano-particles. Figure 6.4b shows that the elastic modulus 

and hardness values derived from nanoindentation increase with CNP concentration. 

The nanocomposite of 5.5 wt.% CNP/PS showed a 3-fold increase in hardness and a 4-

fold increase in modulus compared over those of the pure PS. Although the 

enhancement is evident, the values of elastic modulus from nanoindentaiton (1-6 GPa) 

are dramatically different from those obtained from the tensile tests (100-600 MPa). 

This could be explained by the different geometries of the two test methods. The tensile 

tests examine the uniaxial tensile deformation (Young’s modulus) of the bulk material, 

whereas the nanoindentation is an approach to obtain the residual elastic modulus on a 

nano/micro meter scale under compressive loading. Generally, a material of this type 

will appear much harder in compression than in a tension. 

The dissipation energy (DE) and dissipation energy ratio reveal the distribution of 

elastic-plastic regions in composites, and can be employed to study the dynamic 

response in composites. In this chapter, the values of DE and DE ratio were used to 

investigate the nanoparticle effect on elastic (soft)-viscos (hard) regions. Figure 6.5 

summarizes the calculated values of DE and DE ratio for the CNP/PS samples under 

various experimental conditions. As illustrated in Figure 6.5a, the DE value gradually 

increases with increasing load. It actually decreases up to 2 wt.% of CNPs, but increases 

dramatically up to 3 wt.%,  which indicates that there is a marked increase in energy 

consumption at 3 wt.% CNP. As a reduction of DE is usually considered to be due to a 

reduction in plastic regions, it can be concluded that the incorporation of the CNPs 
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enhances the elastic regions and reduces the plastic region up to a concentration of 2 

wt.%, i.e. that the material becomes brittle. The opposite situation was observed when 

the CNP concentration reaches 3 wt.%, which matches the enhancement analysis 

(Figure 6.4) for the change in elastic modulus. 

 
 

Figure 6.4 Nanoindentation results of PS and CNP/PS nancomposites as a function of 
CNP concentrations: (a) load-displacement curves and (b) hardness and elastic modulus 
 

The results in Figure 6.5b indicate that the DE ratio tends to beome constant value 

when the applied load is above 1 mN. Figure 6.5c-f show the results for specimens 

tested with different holding times and loading rates at the max load of 1 mN. As seen 

in Figure 6.5c and 6.5d, both DE and DE ratios increase when the holding time 

increases, however, the composites show smaller values of DE than those of the pure PS, 

indicating their better energy capacity with adding CNP. These phenomena can be 

understood as the longer the time, the more energy is dissipated in the composite system. 
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Figure 6.5 Energy analysis of the nanoindentation of CNP/PS composites with varied operational conditions: (a) Dissipation energy and (b) Dissipation 

energy ratio as a function of applied load; (c) Dissipation energy and (d) Dissipation energy ratio as a function of holding time on max load; (e) 
Dissipation energy and (f) Dissipation energy ratio as a function of loading rates. 



87 
 

Multiple molecular-level processes take place during this period, including debonding 

of the inorganic-organic interface, polymer relaxation, and creep. It should be noted that 

the 2 wt.%  CNP/PS sample shows the lowest DE and DE ratio, which imply the best 

load/energy capacity of all samples. Figure 6.5e and 6.5f show the values of DE and 

DE ratio as a function of loading rate. The pure PS has a gradually ascending trend with 

the loading rates, although the loading rate has little effect on the DE and DE ratio for 

the composites at loading rates above 10 µN/s. It must be pointed out that extremely 

low values for both DE and DE ratio were obtained at the loading rate of 1 µN/s, for 

each curve. The reason for this could be that, the elastic regions absorb and store the 

greater part of the input energy at loading rates as low as 1 µN/s with conformational 

changes of the flexible molecular chains in elastic region [278], and so release all (or most 

of)  this reversible energy during the retrieving of the indentor. This result reveals the 

visco-elastic properties and energy capacity of elastic regions in thesis materials.  

 

In summary, the nanoindentation results provide a mechanical assessment at the nano-

/micro- scale. The modulus values for the composites are much larger than those of pure 

PS. Further analysis on the DE and DE ratio illustrate the dynamic energy 

absorption/conversion of the materials and their viscoelastic properties. 

 

6.3 Conductivity and dielectric properties  

 

Figure 6.6 displays the measured conductivity versus CNP concentration at room 

temperature. As the CNP content (φCNP) increases from 1 wt.% to ~3.5 wt.%, the 

measured conductivity dramatically increases from 1×10–8 to 10–2 S/cm, and then the 

rate of increase drops as the CNP concentration exceeds 3.5 wt.%. The conductivity at 

φCNP > 3.5 wt.% is large enough for electrical conduction for general microactuator 

usage.The observed conducting behaviour can be explained by the percolation which 

treats a polymer-based inorganic (Ξ1)–organic (Ξ2, Ξ2<< Ξ1) conducting system as a 

random mixture of resistors and capacitors, or conductors and insulators [279,280]. At a 

low concentration of conductive (CNP) phase, conduction is dominated by hopping 

conduction among the nanofillers with an electrical conductivity closer to that of an 

insulator [279,281]. The SMP composite becomes more conductive as the filler 

concentration is increased up to a critical value, the percolation threshold (φc), which 

depends on the filler and its dispersion in the matrix [282]. 
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Figure 6.6 Conductivity of PS and nanocomposites as a function of CNP content; the 
insets show a 3-D illustration of the composites and the linear curve fitting needed for 

determining the threshold value. 
 

Figure 6.6 clearly shows two regimes with different slopes, corresponding to 

“insulating behaviour” at φCNP < 3.5 wt.% and “conductive behaviour” at φCNP > 3.5 

wt.%. To determine the threshold value φc of the SMP composites, the experimental 

conductivity σ was fitted based on the following power laws [279,283]: 

sφφφ -
CBcCB )-(∝)(Ξ  for  φCNP< φc                                                              (6.1) 

 
tφφφ ) -(∝)( cCBCBΞ  for  φCNP> φc                                   (6.2) 

Where t and s are the critical exponents in the conducting and insulating regions, 

respectively. Linear curve-fitting using the above equations gave φc = 3.5, t = 1.75, and 

s = 2.70 (see the inset charts in Figure 6.6). Previous work [284,285] were reported that a 

higher critical value of t > 2 for polymer/CNP systems and was explained by CNP 

aggregation and cluster-cluster structure causing less conductive efficiency. A better 

conductive efficiency was achieved in this work with the t value of 1.75, which is 

probably due to the better mixing of nanoparticles as a result of the additional ultrasonic 

agitation. Another explanation could be due to CNP aggregation at the interfaces 

between hard and soft segments [286]. The formation of aggregates and irregular 

dispersion of CNPs in the two-phase polymer system decreases the conductivity.   
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Figure 6.7 DC conductivity of CNP/PS nanocomposites as functions of temperature and 
CNP concentrations 

 

Composites with different CNP contents were chosen for AC electrical testing, and the 

AC conductivity results are presented in Figure 6.7 as a function of temperature. With 

increase in temperature, the measured conductivity gradually increases because the 

thermal energy increases the hopping conductivity in the composites [287]. As shown in 

Figure 6.7, the conductivity of the sample with 2 wt.% CNP approaches the percolation 

limit of an insulator-dominated state, and a further increase in temperature significantly 

increases the conductivity through enhanced hopping. When the CNP content is above 

φc, the CNP particles or clusters are almost linked with each other to a certain degree, 

forming a continuously distributed CNP network in the matrix.  

 

6.4 Dielectric properties 

 

The complex permittivity Ø represents the ability of the system to store charge at the 

interface under an applied electric field. Insulating polymers do not have an interface for 

charge storage and their dielectric constant is therefore small. With the addition of 

conductive particles, the interface between the polymers and conductive particles 

increases dramatically, leading to a higher dielectric constant for the composites. The 

dielectric permittivity and real part of the complex permittivity (Ø′) as a function of 

frequency for different CNP contents at room temperature are displayed in Figure 6.8. 

The dielectric constant increases from a value of around 2.75 for the pure PS [288] to 
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nearly 106 for the 3.5 wt.% CNP composite. The dielectric constants ε and ε′ increase as 

the CNP concentration changes from 2 wt.% to 3.5 wt.%, and then decreases as the 

CNP concentration further increases to 5.5 wt.%. With such a high content of CNPs 

(>3.5 wt.%), the composite becomes a “metallic” type conductor which effectively loses 

its ability to store charge at the interfaces between the CNP particles and polymer.  
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Figure 6.8 (a) Complex permittivity Ø and (b) real part of complex permittivity Ø′ for 
CNP/PS nanocomposites as a function of frequency at room temperature. 

 

At CNP concentrations below φc, the relatively large distance between the conductive 

particles/clusters makes the composite behave as an insulator at low frequencies. The 

complex permittivity ε of the composite with 3.5 wt.% CNPs varies from 1 × 106 to 

around 3 as the frequency is increased to 100 kHz.  Similarly, the composites with 2 and 

3.5 wt.% CNPs showed a similar decrease in Ø with increasing frequency up to  around 

100 Hz. As the frequency increases further, the value of Ø gradually approaches a 
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constant value of 2.75, the dielectric constant of the pure polystyrene. Since the charges 

on the interfaces are unable to follow the changes of electrical field, the polymer matrix 

acts as a pure insulator. On the other hand, for the composites with 5.5 wt.% CNP, the 

CNP concentration is beyond the percolation threshold, and they are conductive due to 

an efficiency continuous electric path. The increase in frequency does not change the 

dielectric constant significantly with values of Ø< 1 and Ø′ nearly equal 0 efficiently, 

i.e. not much capability to store charge but a typical metallic conductor. The results 

show that the dielectric properties of these composites change significantly with the 

operational frequency, and this information is useful for microactuators which may be 

manipulated with various frequencies.    

 

The temperature-dependence of the complex permittivity of PS/CNP composites is 

shown in Figure 6.9a at a fixed frequency of 1 kHz.  
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Figure 6.9 (a) Complex permittivity Ø and (b) dielectric loss, tan Э, of the CNP/PS 
nanocomposites as a function of temperature (with a fixed frequency of 1 kHz) 
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The increase in complex permittivity ε of the composites with 2 wt.% and 3.5 wt.% 

CNP contents with temperature is attributed to the increased hopping effect at high 

temperatures. In contrast, the complex permittivity of the composite with 5.5 wt.% CNP 

remains almost constant. The dielectric loss, tan Э (tan Э = Ø″/Ø′, where the Ø″ is 

imaginary part of the complex permittivity) is related to the material conductivity, in 

that a material with a high value of tan Э is more conductive with less resistive loss. 

Therefore, the SMP with 5.5wt.% CNP, above the percolation threshold value, shows a 

higher tan Э than that with 2 wt.% (as shown in Figure 6.9b). On the other hand, as the 

temperature increases, both the content of conducting regimes (through the hopping 

effect) and the conductivity of the composites increase as shown in Figure 6.9b.  At the 

same time, the electron tunnelling effect becomes significant [289], and also the tan Э 

value increases with temperature. 

 

6.5 Electro-active recovery  

 

In this section, the shape recovery and actuation of the CNP/PS nanocomposites will be 

examined. The composite with 3.5 wt.% CNP was selected to investigate the electro-

active shape memory property using laser-cut cantilevers. Figure 6.10 shows a typical 

recovery of a micro-cantilever at an applied voltage of 30 V, where the deformed 

cantilever showed a full recovery within 40 seconds.   

 

Figure 6.11 compares the shape recovery ratio under various applied voltages using the 

method discussed in Section 3.3.5.3. With increasing voltage, time for full recovery of 

the deformed cantilever was reduced significantly, due to the higher input energy. The 

time for 95% recovery at 40 V is around 12 seconds, whereas 86 seconds are needed at 

25 V for a similar recovery. Additionally, the maximum amount of recovery of the 

cantilever at 20 V is only 90%, indicating that this voltage of 20 V generated in 

sufficient power to achieve full recovery. In this work, the high electrical recovery 

efficiency was achieved when the voltage was equal to or above 25 V. Moreover, 

electrically triggering recovery seems to be more controllable because there is a good 

relationship between recovery time and recovery ratio when the voltage is 25 V or 30 V. 

For the higher voltages of 35 V and 40 V, the recovery is too fast to be controllable. 
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Figure 6.10 Electro-active shape recovery for a cantilever made of 3.5 wt.% CNP/PS 
nanocomposite applied with a voltage of 30 V, (a) pre-deformed shape, (b) after 50% 

recovery shape, (c) after 90% recovery, and (d) after full recovery. 
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Figure 6.11 Electro-active shape recovery time as a function of voltage applied for the 
composites with 3.5 wt.% CNP. 

 

Figure 6.12a presents results of the measured surface temperature (T) versus time (t) at 

different applied voltages, exhibiting a typical three-stage change. The first stage 

corresponds to the onset of the temperature increase, and the lower the power, the 

longer the time required for this onset. In the second stage, the temperature increases 

significantly with voltage, due to Joule heating. With further increase in holding time at 
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different voltages, there is a point of inflection in the curve and the gradient decreases, 

which can be attributed to the change of Columbic forces in the percolation conductive 

path across the polymer matrix [290] and thermal fluctuations due to the nonlinearity in 

Joule heating [291]. For the relationship of the current versus time as shown in Figure 

6.12b, the electrical current does not show a large variation with changes in the applied 

voltage. However, the current increases significantly between 20 and 30 V, which is due 

to the decrease in sample resistivity caused by the Joule heating.  
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Figure 6.12 Electro-active shape recovery of microcantilever at different applied 
voltages: (a) temperature and (b) current of the samples as a function of time 

 

Energy conversion during the electro-active recovery can be split into two parts, 

expressed in the following equation: 

      tQEE rece +=
                                                    (6.3) 

where Ee is the applied electrical power during testing, and Erec and Qt are the recovery 

energy and heat generation, respectively. In a static charging process (i.e. the cantilever 
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is not bent, and no shape recovery occurs during the electrical charging process), there 

is no recovery energy consumption, so the Ee is equal to that of Qt. Due to the recovery 

of the deformed cantilever during the “shape recovery” process, part of the electrical 

energy will be consumed for shape recovery, also the heat generation effect will not be 

as significant as in the static charging process. Figure 6.13 shows the measured sample 

temperature as a function of the applied electrical power. In the situation of static 

charging, the sample temperature increases significantly as a function of power, due to 

the Joule heating at the applied electrical power. The increase in thermal energy causes 

changes into paths through the conductive network by Columbic forces and the polymer 

network structure density in the matrix [291, 292], so leading to a nonlinear heat transfer 

between the matrix and surroundings.  For the electro-recovery test, the surface 

temperatures of the cantilever vary with electrical power but are much lower than the 

static ones, clearly indicating that part of the input energy has been consumed in 

actuation. 
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Figure 6.13 Temperature versus electrical power during static charging process (the 
cantilever was not deformed, and thus no shape recovery taken place during the 

charging process) and shape recovery charging process (the cantilever was bent and 
there was shape recovery of the structure during the charging process). 
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6.6 Summary  

 

In conclusion, ultrasonic mechanical stirring was used in nanocomposite fabrication, 

and electro-active PS-based nanocomposites were successfully synthesised through 

incorporation of CNPs into the PS matrix. The mechanical and thermo-mechanical 

enhancements have been verified with the results from the tensile test, nanoindentation 

and DMTA tests, respectively. The electrical tests indicated that a two-phase conductive 

system was formed with a percolation threshold value of 3.5 wt%. The conductivity and 

dielectric constants changed dramatically as a function of frequency, temperature and 

CNP concentration. Measurement of dielectric constant and dielectric loss as a function 

of temperature and frequency manifested a stable thermal electrical performance from 

room temperature to 100 °C. Shape recovery results indicated that these smart 

nanocomposites could be potentially useful for microactuation applications. However, 

the enhancement to the SMP matrix using the CNPs was not as expected compared with 

the other nanoparticle filled composites investigated in Chapter 5. In the next chapter, 

the use of rod-type nanofillers, i.e. CNFs and CNTs, to improve both electrical and 

mechanical properties will be discussed. 
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Chapter 7 

CARBON NANO FIBER/CARBON NANOTUBE - POLYSTYRENE 

SHAPE MEMORY NANOCOMPOSITES 

Incorporating CNFs or CNTs into an SMP matrix has received great attention in the last 

few decades as it can effectively improve both the mechanical and functional properties 

of the polymer matrix. For example, Leng et al. [32] reported the novel infrared 

activating ability of shape memory nanocomposites with various carbon nano-fillers. Ni 

et al. [259] investigated the macroscopic mechanical enhancement and shape recovery 

ability for the CNF/CNT SMPU system by tensile testing. Gunes et al. [149]  synthesized 

the SMPU based nanocomposites with CNP and CNF, and studied their electrical 

properties and electrical-active recovery. Detailed studies of the phenomenology and 

theory of remote triggering shape recovery in CNT/CNP-filled thermoplastic elastomer 

have been made by Koerner et al. [140].  

 

Nanoindentation, as an adveanced surface micro/nano mechanical characterization 

technique, has been applied on SMPs for different research aims. For example, 

Wornyo et al. [226] used nanoindentation to investigate the deformation behaviour of 

diethylene glycol dimethacrylate and polyethylene glycol dimethacrylate shape memory 

copolymer  networks with various organic components. Fulcher et al. [293] provided a 

detailed approach to the thermo-mechanical characterization on a thermosetting epoxy 

based SMPs using nanoindentation at different temperatures. Nelson et al. [294] reported 

the temperature-dependent nano-scale recovery of thermoset epoxy based SMPs  using 

the tip of an AFM. So far, a lot of effort has been into the nanomechanics of polymer 

based nanocomposites, but few studies are available for SMP nanocomposites.  In this 

chapter, PS based nanocomposites with well-dispersed CNFs and CNTs were prepared, 

and their nanomechanics and thermomechanics were studied using nanoindentation and 

cyclic thermo-mechanical tests.  

 

7.1 Microstructure and thermal properties  

 

SEM was used to study the distribution of the fillers inside the matrix. Figure 7.1 shows 

the morphologies of the nanocomposites with 2 wt.% of carbon nano-fillers.  
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Figure 7.1 SEM images of the shape memory nanocomposites revealing the distribution of 
carbon nanofillers in the matrix (a) irregular distribution of 2 wt.% CNF/PS,(b) CNF knots 
and interlocks in a selected area,(c) Uniform scattering of MWCNT in 2 wt.% MWNT/PS, 
(d) Magnified image of selected area of fig.4c, (e) Uniform scattering of curly SWNT in 2 

wt.% SWNT/PS, (f) SWNTs bridging a micro crack. 
 

CNF rods with high values of l/d (above 100) are observed as irregular bundles (in 

Figure 7.1b) in the composites. Generally, rod like nanofillers tend to bundle together 

and cannot be easily separated due to surface polar groups and non-uniform growth as 

reported [295]. Such bundling of the CNF in the polymer matrix could dramatically 

reduce its effect by lowing the effective scattering volume of the nanofillers, leading to 

defect in microstructure (non-uniform organic-inorganic phase) and improving the load 

transfer efficiency. The SEM images of the MWNT/PS composites reveal a 

homogeneous dispersion of the MWNTs in the PS matrix (Figure 7.1c). Most CNTs are 

presented as separate single tubes. In Figure 7.1d, the MWNT rods can be seen to have 
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smaller diameters than the CNFs, and are randomly and uniformly distributed inside the 

polymer substrate. The good dispersion ensures a uniform composite structure with an 

effective load transfer. For the SWNT/PS composites, the SEM image of 

nanocomposite sample surface in Figure 7.1e indicate that the SWNTs exist as random 

curly wires in the matrix, with much smaller dimensions but scattering volume 

percentage compared with the CNFs and MWNTs. The SWNTs are distributed 

uniformly inside the matrix and they tend to form a continuous pattern as most of the 

SWNTs attach to each other. The magnified image from the fracture surface (Figure 

7.1f) reveals clearly the bridging of several SWNTs inside a micro-crack, indicating a 

better stress distribution in the PS matrix, enhancing the load transfer from the matrix to 

the SWNTs during fracture, and limiting the propagation of micro-crack.  

 

The DMTA results for all the samples are summarised in Figure 7.2, which shows the 

variation of storage modulus and tan δ as functions of nanofiller loading and 

temperature. The storage modulus E´ of the nanocomposites at room temperature 

increases with nano-filler concentration, and a maximum storage modulus of 1.2 GPa is 

obtained for the 3 wt.% SWNT/PS  nanocomposites. However, the storage modulus 

decreases rapidly over the glass transition temperature Tg due to the softening effect of 

the polymer [243].  The curves also show an increasing trend of Tg with nano-filler 

content, and the peak value of tan δ and the highest Tg are achieved at the composites 

with 2 wt% CNF/PS (Figure 7.2b) and 2 wt% SWNT/PS (Figure 7.2f), whereas for the 

MWNT/PS (Figure 7.2d), these best values are at 3 wt.% of the nanofillers. The 

measured glass transition temperatures of all the nanocomposites are between 60 and 75 
oC, higher than that for the pure PS, which shows the improvement of thermal properties 

using nanofillers. For the CNF/PS and SWNT/PS nanocomposites, the transition 

temperature decreases with increase in the filler content up to 3 wt.%. As indicated from 

the SEM observations, more irregular dispersion or agglomeration of the CNF will 

cause more defects in the microstructure, thus deteriorating load transfer and restricting 

of the mobility of macromolecule chains in the system. The decrease of Tg in 3 wt% 

SWNT/PS can be attributed to the fact that the filler begins to aggregate as the volume 

concentration reaches the dispersion threshold with the currently used dispersion 

techniques.  
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Figure 7.2 DMTA results for the nanocomposites with CNF and CNTs: (a) storage 
modulus for CNF/PS composites, (b) tan δ results for CNF/PS composites (c) storage 
modulus for MWNT/PS composites, (d) tan δ results for MWNT/PS composites (e) 

storage modulus for SWNT/PS composites, (f) tan δ results for SWNT/PS composites 
 

Figures 7.2b, d and f reveal that the transition temperatures of the nanocomposites 

increase substantially with addition of the nanofillers. For the CNF/PS and SWNT/PS, 

both the Tg and tan δ values of the nanocomposites keep increasing up to 2 wt.%. This 

can be attributed to the increased physical cross linking points out filler-polymer 

interfaces and increased dissipation energy in the system at a higher filler concentration. 

In contrast, the values of tan δ decrease for the 3 wt.% CNF/PS and SWNT/PS 

nanocomposites, accompanied by a decrease in Tg, which is reflected in the values of 

storage modulus. The damping effect in the MWNT/PS is lower than that in the 

CNF/PS or SWNT/PS. This can be explained by the more significant effect of MWNTs 
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than CNF at lower volume fractions (Chapter 3) of MWNTs than that of SWNT, both 

of which could lead to the less internal interface defects and decreased values of tan δ.  

 

The storage modulus in the rubbery state is an indication of interfacial strength between 

the organic phase and nanofillers. The interaction forces among the macromolecular 

chains become weak with increased temperature as the molecular chains have been 

thermo-activated and the strength of the polymer/nanofiller interface dominates the 

mechanical properties at a high temperature. According to rubber elasticity theory, the  

storage modulus in the rubbery state can be described as [226]: 

                                                 
ckTvE 3R =                                                               (7.1) 

where k is Boltzmann’s constant, T is the temperature corresponding to the DMA 

rubbery modulus, and vc is the crosslink density. As shown in Figures 7.2a, c and e, the 

incorporation of the nano-fillers increases the modulus of the nanocomposites. For 

instance, the storage modulus is 1.2 MPa for the 3 wt.% CNF/PS, 1.9 MPa for the 3 wt.% 

MWNT/PS and 3.4 MPa for the 3 wt.% SWNT/PS. The SWNT/PS nanocomposite 

exhibits a larger ER, 180% higher than that of the CNF/PS at the same weight 

percentage. Calculations of values of the vc of all the nanocomposites were made and 

the results are plotted in Figure 7.3 as a function of filler concentration. 

 

The value of vc consists of two parts,  one due to chemical cross-linking (known as 

covalent bond) and one due to the physical cross-linking [226]. Since the chemical cross-

linking points contributed by the curing agent are more or less the same for all the 

samples, the physical cross linking points are probably the dominant factor in changes 

to the storage modulus in the composites series. Physical cross-linking points can be 

generated by macromolecular chain knots, interfacial polar effects and hydro-bond. 

Normally, the physical cross linking points are considered weaker than covalent cross 

linking bond. However, in the nanocomposites, the larger areas of inorganic–organic 

interface offer many more positions for physical cross-linking points, which affects the 

material properties significantly [226]. The cross-linking rate in a macromolecular-

nanofiller system is related to concentrations and surface properties of the nanofiller and 

degree of dispersion [226]. 
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Figure 7.3 indicates that the values of vc gradually increases with adding more fillers, 

and the SWNT/PS nanocomposite exhibits the highest values and rates of increase of 

the three concentrations, whereas vc for the MWNT/PS nanocomposite shows a 

relatively linear increase with filler content. For the SWNT/PS samples, the smallest 

size and hence highest volume fraction (given the same weight fraction, as indicated in 

Chapter 3) increase the contact interfacial area between the nanofillers and the polymer 

matrix dramatically. The limited performance of the CNF/SMPS composites shown in 

Figure 7.3, is attributed to the aggregation of the CNFs dramatically reducing the 

effective dispersion volume [296] and load capacity [297], which significantly limit the 

inorganic-organic contact area and directly leads to the lowest values of vc.     

 

 

 
Figure 7.3 The calculation results of vc as function of fillers concentration 

 

7.2  Tensile testing results 

 

Figures 7.4a-c present the typical stress-strain curves for all composites. The derived 

values of Young’s modulus, maximum stress and strain of the specimens with different 

filler concentrations are shown in Figures 7.4d-f. The results indicate that the peak 

stress increases significantly with increasing nanofiller content, whereas the maximum 

strain decreases significantly. The SWNT/PS nanocomposites show the best 

improvement in modulus and maximum strength, and Young’s modulus reaching nearly 

800 MPa and the peak stress reaching 15 MPa when the SWNT concentration is 3 wt.%. 

However, the SWNT/PS nanocomposites also show the most rapid decrease in the 



103 
 

maximum strain, and the maximum strain is less than 20 % when the filler fraction is 2 

wt.%. This shows that the toughness of the SWNT/PS is relatively poor. Compared with 

the SWNT/PS, the CNF and MWNT filled composites show moderate improvement of 

Young’s modulus and the peak stress. As to the maximum strain, the MWNT/PS 

maintains a reasonable maximum strain of 50 % with increase in the filler fraction up to 

3 wt.%. 

 

 
 

Figure 7.4 Uniaxial tensile results for CNF and CNTs filled composites: stress-strain 
curves for (a) CNF/PS composites, (b) MWNT/PS, (c) SWNT/PS; derived results as a 
function of filler concentration (d) Young’s modulus, (e) peak stress and (f) maximum 

strain.  
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The cross section of samples after tensile testing was examined using SEM and images 

were shown in Figure 7.5. All the samples are very close to breaking, but not yet 

completely breaking. The PS fracture images in Figure 7.5a display a typical 

viscoelastic failure with polymer threads bridging a micro gap [298].            

 

 
 

Figure 7.5 SEM images of cross-section for specimens almost broken revealing the 
material failure and filler effects, (a) Pure PS,(b) 2 wt.% CNF/PS,(c) 2 wt.% 

MWNT/PS, (d) The magnified image of selected area in (c), (e) 2 wt.% SWNT/PS, (f) 
stretched SWNTs bridging the nano-scale crack. 
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For the CNF/PS nanocomposites shown in Figure 7.5b, some threads can be seen in 

cracks, and CNF rods can be traced clearly. At this deformation strain (close to the 

breaking point), the CNFs don’t contribute much on preventing fracture, as most of 

them are still embedded inside polymer which has limited load bearing capacity. For the 

MWNT/PS nanocomposite, an indication of brittle/rigid breaking of polymer can be 

observed on its surface (Figure 7.5c), indicating that it has already fractured. MWNTs 

pulled out from the polymeric matrices are visible and it can be assumed that most parts 

of the MWNT effectively contribute to the load transfer from matrix when cracks form. 

This assumption is confirmed by the higher magnification image shown in Figure 7.5c, 

which shows that two MWNTs bridging the micro-crack. For the SWNT/PS sample, the 

SEM images shown in Figures 7.5e-f reveal that the SWNT coil are fully extended to 

straight rods (Figures 7.1e-f). This clearly indicates that the stretching SWNTs strongly 

enhance the fracture resistance of the polymer. Moreover, the stretched SWNT rods are 

oriented along the best direction to prevent the crack growth. In Figure 7.5f, the inset 

image shows the end of a pulled-out SWNT. Clearly the SWNT was well bonded to the 

polymer, and has been pulled out from the polymer matrix, showing an effective 

contribution of the SWNTs in preventing the fracture failure of the polymer. 

 

Many articles have reported the prediction and measurement of rod like fibre 

enhancement of polymeric substrates during tensile testing [299-301]. The flexibility and 

higher modulus of SWNTs will ensure that they have better performance on enhancing 

and toughening the polymers. The enhancement has been verified with partly of the 

stretching of coiled SWNTs. 

 

7.3 Nano-indentation results 

 

Figure 7.6 shows typical load-displacement curves of the pure PS and nanocomposites 

with 1 wt.% CNFs and CNTs obtained from the nanoindentation tests. Considering the 

radius of curvature of about 150 nm for the Berkovich tip, relatively smooth curves 

were obtained which would indicate there is no significant porosity or filler aggregation 

in the sample area tested [302]. The load-displacement curves for the CNT/PS sample 

show higher slopes (dP/dh) in the loading regime and lower hmax than those for the PS 

and CNF/PS, which indicates that the CNTs offer better mechanical enhancement of the 

soft polymer matrix than the CNFs do. The curve from the SWNT/PS displays the best 
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micro-mechanical enhancement as the smallest penetration depth was obtained with 

equivalent operational conditions. This could be explained by the fact that the SWNT 

has a much smaller diameter, larger surface area and volume fraction, offering superior 

load transfer and an effective enhancement in mechanical properties. From Figure 7.6, 

the dissipation energy can be calculated, and a simple comparison shows that the area 

beneath the CNT/PS curve is less than those of the pure PS and the CNF/PS.  
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Figure 7.6 Representative load-displacement curves of samples with a peak load of 1 
mN 

 

Figures 7.7 and 7.8 summarise the calculated elastic modulus and hardness values for 

all the composites with the different concentrations of carbon filler as functions of load 

and holding time. The results shown in Figure 7.7 indicate that the composites show 

improved micromechanical properties, either as elastic modulus or hardness. The 

indentation size effect is also clearly visible as both the hardness and modulus values 

decrease with increasing indentation load (or indentation depth), before reaching a 

plateau value. In order to avoid this ISE effect on modulus and hardness values, the data 

at the plateau stage were used for comparing. The nanoindentation results demonstrate 

that the enhancement is significantly dependent on nanofiller content as well as the 

specific filler type. As shown in Figure 7.7, the peak values for the CNF/PS and 

SWNT/PS samples were at about 2 wt.%. Meanwhile, the MWNT/PS sample achieve a 

maximum value at 1 wt.%, then shows a decrease in both the elastic modulus and 

hardness values. The sample with 2 wt.% SWNT/PS has a modulus of 4 GPa and 

hardness of 280 MPa, exhibiting the maximum reinforcement of all the specimens. 
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Figure 7.7 Elastic modulus and hardness results from nanoindentation tests as a function 
of maximum load: (a) elastic modulus and (b) hardness of PS and CNF/PS; (c) elastic 

modulus and (d) hardness of MWNT/PS; (e) elastic modulus and (f) hardness of 
SWNT/PS.  

 

The 2 wt.% SWNT/PS sample was the most consistent strength as the modulus remains 

at 2.5 GPa even at the filler concentrations up to 3 wt.%, which is more than four times 

of that of pure PS. The values were scattered as the  filler concentration is varied, as 

shown in the error bars. It should be noted that there is a sharp decrease in the modulus 

when the filler content increases from 2% to 3 wt.%, the value at 3 wt% being even 

lower than 1 wt.% with a large error range. This can be explained by the non-uniformity 

of the material and significant loss of efficiency by the aggregation of fibres as indicated 

in the SEM image shown in Figure 7.1. As explained before, the elastic modulus 

measured from the nanoindentation tests is much higher than that from the tensile tests. 
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This is because the testing methods are different, i.e. tension VS compression. Tensile 

tests should be more meaningful in comparing the mechanical properties, as most 

applications of composites involve tensile loading. The nanoindentation modulus are 

normally higher than those from the tensile tests, as these materials appear stronger in 

compression than that in tension since the interfacial peeling force are less prominent. 

Meanwhile, for most applications in MEMS and biomedical fields, there is a need to 

study functional properties of thin-films or structures in one dimension or at sub-

micrometre scale. In those cases, nanoindentation was a role in measuring mechanical 

properties.   

 

 
 

Figure 7.8 Elastic modulus and hardness results from nanoindentation tests as function 
of holding time: (a) elastic modulus and (b) hardness of PS and CNF/PS; (c) elastic 

modulus and (d) hardness of MWNT/PS composites; (e) elastic modulus and (f) 
hardness of SWNT/PS composites 
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The creep resistance of the nanocomposites was assessed by increasing the holding time 

at the maximum load during indentation, and the results are summarized in Figure 7.8. 

For the pure PS, both the modulus and hardness values gradually decrease, which is due 

to the creep of the soft molecular chains.  For the composites, a decreasing trend can be 

observed in Figure 7.8, which is highly dependent on the nanocomposite composition 

and interface conditions. The significant decrease in modulus at higher loads for the 

composites can be explained by complete or partial breaking of the physical cross-link 

points between the inorganic-organic interfaces at very large applied forces. As shown 

in Figures 7.8a, b, e and f, the curves with larger variations in the modulus/hardness are 

those with higher values of strength. The most significant change occurs for the 2 wt.% 

SWNT/PS nancomposite, which has the highest values of hardness and modulus. In 

principle, the CNF should have large variation, as the indenter might be located on, or 

partly on, a CNF fibre due to its large size. The data for the MWNT/PS composites 

shown in Figures 7.8c and d display a similar pattern to that of the pure PS, and show 

more stable values than those of the CNF/PS. This could be explained by a better 

distribution of MWNT inside the PS substrate than that of the CNF. The SWNT/PS 

composites in Figures 7.8e and f show very large variation which can be explained as 

illustrated in Figure 7.9.  

 

 

 

Figure 7.9 Schematic of SWNT behaviours in tension and indentation. The SWNT 
cords carry the load directly as the cracks reach them in the tensile test, while they can 

change the conformation with the first touch of the indenter tip leading to a load transfer.   
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The coiled CNTs in the PS matrix show a complicated performance under indentation, 

and its deformation can be accommodated by the polymer although the load might not 

be easily transferred to the individual CNTs. This is quite different to the situation in 

tensile testing when cracking has started, where the CNTs can provide bridging effect at 

the fracture surface as shown in Figure 7.9. Figure 7.10 shows the calculated values of 

the dissipation energy (DE) and dissipation energy ratio (dissipation energy/total energy) 

for all the samples at different loads. The DE of the pure PS shows the highest value in 

all the DE charts as a function of load, which is due to the soft nature of the polymer.  

 

 
 

Figure 7.10 Energy analysis on the nanoindentation process as a function of maximum 
applied load: (a) Dissipation energy and (b) Dissipation energy ratio of PS and CNF/PS; 

(c) Dissipation energy and (d) Dissipation energy ratio of MWNT/PS composites; (e) 
Dissipation energy and (f) Dissipation energy ratio of SWNT/PS composites 
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For all the samples, as load increases, the DE results achieve to increase as the 

displacement increases. Meanwhile, the DE trends indicate some relationship to the 

elastic modulus as the DE decreases (corresponding to an increase in modulus). This 

can easily be understood because the material becomes stronger to resist the external 

force. The higher DE values in the lower load region might be caused by ISE as the 

calculation of DE ratio needs to consider the residual depth, which was not considered 

in the analysis. The DE ratio shows a decrease in the initial loading (< 1 mN) and then 

reaches a plateau when the applied load is above 1 mN, as shown in Figures 7.10b, d 

and f. Concerning the average value above 1 mN in those charts, the changes of the DE 

ratio show similar trends with modulus and hardness to those in Figure 7.7. Compared 

with the other two composites, the SWNT/PS presents stable and low DE values and 

DE ratios even when the filler concentration is as high as 3 wt.%, where the DE and DE 

ratios of CNF/PS and MWNT/PS are lower than those at 2 wt%.  The results show that 

the SWNT/PS has the largest effect in strengthing the polymer.  

 

The validation of the DE value and DE ratio as a function of holding time is shown in 

Figure 7.11. Both the DE and DE ratio increase with holding time. The composites 

show smaller values of DE than those of the pure PS, indicating a better performance of 

the nanocomposite to resist external forces. There are two different slopes for modulus 

against holding time for the pure PS as illustrated in Figure 7.11a, and the knee is at 

around 5 s. Pure PS has hard segments and soft segments, and theoretically, when the 

holding time is short, the load or stress is mainly applied to the soft segments which is 

manifest as a low DE. As the holding time increases, the molecular chains and 

structures extend under the applied force. Moreover, temporary alignment of 

nanoparticles, small area aggregation and partial breaking of the physical cross linking 

points in the composite system could lead to a significant increase in the DE and DE 

ratio. 

 

The DE ratios in Figures 7.11b, d and f reveal a similarly ascending trend with holding 

time to those of the DE results. The DE ratios reach a stable region when the holding 

time is longer than 10 seconds for all the samples. The trend of changing DE ratio with 

holding time is similar to those for hardness/modulus in Figure 7.8, which implies that 

the DE ratio is related to the enhancement effect, which might need more work to verify. 

The SWNT/PS also exhibits the most stable and low DE/DE ratio of all samples as 

indicated in Figures 7.8e-f.  
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Figure 7.11 Energy analysis of the nanoindentation process as a function of holding 
time at maximum load: (a) Dissipation energy and (b) Dissipation energy ratio of PS 
and CNF/PS; (c) Dissipation energy and (d) Dissipation energy ratio of MWNT/PS 
composites; (e) Dissipation energy and (f) Dissipation energy ratio of SWNT/PS 

composites 

 

The results for the DE and DE ratio with holding time are useful as they reveal the 

viscoelastic properties of the material as influenced by the hard segment (plastic) to soft 

segment (elastic) composition. Analysis on the DE and DE ratio with changing holding 

time can reveal the dynamic energy absorption of materials under external applied force. 



113 
 

Results for the DE as a function of loading rate are shown in Figure 7.12. The DE 

values for the pure PS have been discussed in Chapter 6.  

 

 

Figure 7.12 Energy analysis of the nanoindentation process as a function of loading rate: 
(a) Dissipation energy and (b) Dissipation energy ratio of PS and CNF/PS; (c) 

Dissipation energy and (d) Dissipation energy ratio of MWNT/PS composites; (e) 
Dissipation energy and (f) Dissipation energy ratio of SWNT/PS composites 

 
For the composites, a similar trend can be seen, in that the DE values increase with 

loading rate, for example, an increase of 200%-350% for the CNF/PS with increase of 

the loading rates is shown in Figure 7.12a. For the MWNT/PS and SWNT/PS, its 

loading rate was a minor influence on the DE and DE ratio, and the increase of the DE 

is as little as 100%, however, for the SWNT/PS. The SWNT/PS samples behave more 
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stably with loading rate, and also show the lowest DE values compared with the other 

nanofillers.  For the DE ratios shown in Figures 7.12b, d and f, the results indicate a 

similar trend when the loading rate is higher than 10 µN/s. A narrow range of 0.7-0.8 

for the DE values was obtained for all the samples. However, the DE ratios at the lowest 

loading rate did vary which suggests the differences in the viscoelastic properties and 

energy capacity of elastic regions.  

 

In summary, the analysis of the DE and DE ratio provide detailed information of the 

sample responses to the external forces under the imposed conditions. The DE values 

are affected dramatically by the applied load which increases the energy input. The 

addition of nanoparticles made the materials more able to resist the external force, and 

the relationship follows the same trend as that of the elastic modulus. The DE ratio 

reaches a plateau when the applied load is above 1 mN, in a similar way to the hardness 

value. The dependency of DE/DE ratio on the holding time/loading rates reveal the 

viscoelastic behaviour of the materials. The DE values indicate the viscous component 

of the matrix, and DE ratios fall in the range of 0.7-0.9, which is considered as an 

indication of the viscous/elastic ratio.   

 

7.4. AFM profiling  

 

The AFM was employed to identify the morphologies of the nano-indentations and 

deformed surfaces of the samples. Figure 7.13 shows AFM images of the pure PS and 

nanocomposites with 1 wt.% carbon nanofillers after nanoindentation. A smaller 

indentation mark was observed for the nanocomposite samples compared with that of 

the pure PS, and the SWNT/PS nanocomposite presents the smallest permanent depth of 

all three samples. 3-D AFM images are also shown in Figure 7.13, which clearly reveal 

the pile-up at the edges of the indentation mark on the nanocomposite surfaces, whereas 

pile up was not observed on the pure PS sample. For indentation deformation of elastic–

plastic materials, there are two typical phenomena, pile-up and sink-in, both of which 

can affect the indentation results dramatically. 
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Figure 7.13 2D and 3D AFM surface deformation morphologies with nanoindentation 
marks: (a) pure PS, (b) 1 wt.% CNF/PS,(c) 1 wt.% MWNT/PS,(d) 1 wt.% SWNT/PS 

 

The effect normally depends on the mechanical properties, namely the elastic modulus, 

yield stress and strain-hardening exponent of the materials [303,304]. The strain-hardening 
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exponent or the plastic ratio of the pure polymer is normally too small to show an 

apparent pile-up. Similar experimental work has been previously carried out based on 

the nanoindentaion of polymer substrates [305,306,307]. Two key parameters derived from 

the nanoindentation results are normally used to discuss the pile-up or sink-in effects on 

indentation modulus and hardness [305,306]. The first one is the threshold value of E/σY = 

90 [305] which determines the material deformation [306,307]. The materials will pile-up 

after indentation if the E/σY ratio is greater than this critical value, otherwise, materials 

will show ‘sink-in’ after indentation.  Above the critical E/σY ratio, the pile-up effect is 

dependent on the strain-hardening exponent and the significance of pile-up is 

considered to increase as E/σY increases [224,306]. For nanoindentation of polymer based 

composites with a Berkovich tip, corrected equations for the yield strength σY  and pile-

up effect  are [224,308,309 ]:  

2
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 phhh −= maxe                                                           (7.4)                                      

where c is the plastic zone size as seen in Figure 7.14b, a and b are constants related to 

the strain-hardening exponent, and he is the elastic recovery depth.  

 

A second widely used parameter is the hp/hmax ratio, which is a convenient and 

experimentally measurable quantity for identifying the expected indentation behaviour 

of a given material [306]. The hp/hmax ratio is related to the work-hardening during 

nanoindentation by a Berkovich tip. Oliver and Pharr [224] showed that significant pile-

up was detected when hp/hmax is close to 1, and also suggested that pile-up is not 

significant if the hp/hmax ratio is below 0.7 which is expected to be a constant regardless 

of penetration depth. They also suggested that it is impossible to predict if work-

hardening of a material is based solely on the load–displacement data from an 

experimental point of view [224]. Therefore, in an indentation experiment, care must be 

taken when hp/hmax > 0.7, as the use of hp/hmax can lead to large errors in the contact area. 

On the other hand, when the pile-up is small (i.e. hp/hmax < 0.7), as suggested by other 

researcher [224], the contact area given by the method (hp/hmax) matches very well with 

the true contact area obtained from finite element analyses, independent of the work-

hardening characteristics. 
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Figure 7.14  (a) AFM topographical image of a 2 × 2 array of indents created on a 
SMPS surface at a load of 2 mN, (b) Surface profile of two indents along the line drawn 
in the topographical image shown in (a) with the plastic deformation zone on one of the 

indents. 
 

Figure 7.15a statistically summarises the calculated E/σY values under different 

indentation loads for all the samples. A highly uniform distribution of E/σY results is 

observed and only a few data points are out of the threshold range. The points beyond 

the range are the 2 wt.% CNF/PS composites under 100 µN, and 3 wt.% CNF/PS under 

5 mN. Meanwhile, the hp/hmax ratio results (in Figure 7.15b) showed that the pile-up 

effect does not affect most of the nanoindentation results, because the calculated results 

are in the range below 0.7  [224]. The hp/hmax of 3 wt.% CNF/PS composites at all loads 

are close to or beyound the boundary (hp/hmax=0.7), as are the 2 wt.% CNF/PS 

composites under 100 µN. Similar results are seen in Figures 7.16a and c, where the 

analysis was carried out on the E/σY values with variation both of the holding time and 

loading rate.  Investigation of the hp/hmax  values versus hc indicates a similarity of the 

calculated data as all of these data fall in range of 0.5, which implies that the pile-up 
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effect would not affect validation of the modulus and hardness in nanoindentation 

measurement [224].    

 

 
Figure 7.15 Statistical diagrams of the calculated results distribution with various 

maximum loads: (a) E/σy versus load, (b) hp/hmax as a function of hc 

 

In summary, the analysis of the values of E/σY and hp/hmax from both the 

nanoindentation and AFM results show that nearly all of the results fall within the 

reference region (marked in Figures 7.15 and 7.16). Considering the microstructural 

analysis results from SEM and DMTA, the high hp/hmax ratio for the 3 wt.% CNF/PS 

can be explained by the increase in local CNF alignment as indicated in Section 7.1, 

which could act as work hardening components and the failure of the knots during 

nanoindentation when higher content of CNF filler was used. The anomalous results for 

2 wt.% CNF/PS composites could be due to tip self-similarity under low load [303].    
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Figure 7.16 Statistical analysis of the calculated result distribution of: (a) E/σy versus load under controlling of holding time, (b) hp/hmax as a function of 
hc under controlling of holding time, (c) E/σy versus load with different loading rates, (d) hp/hmax as a function of hc with different loading rates.
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7.5 Conductivity and the percolation threshold 

 

Figure 7.17 displays the measured conductivity versus concentration for the nano-

carbon fillers at room temperature. Reasonable improvements in conductivity are 

exhibited by all the samples, and the conductivity dramatically increases from 1×10–10 

to 10–2 S/cm when the filler content is increased from 0.5 wt.% to around 5 wt.%.  
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Figure 7.17 Conductivity results for nanocomposites as a function of nano-carbon filler 
concentration; the linear curve fitting determines the percolation threshold values for the 

composite samples. 
 

The dependent of a percolation network is observed for each curve as discussed in 

Chapter 6. The results indicate that the ranking for the increase in conductivity is as 

follows: SWNT/PS>MWNT/PS>CNF/PS, which is very similar to the ranking for the 

mechanical enhancement. As previously addressed in Chapter 6, the two regions with 

different slopes in Figure 7.17 correspond to an “insulating region” and a “conductive 

region”. Linear fitting of the data in Figure 7.17 reveals common threshold value for all 

composites, i.e. φCNF is 2.9 wt.%,  φMWNT is 1.95 wt.% and φSWNT is 1.05 wt.%.  This 

means that the SWNT shows the highest conductive enhancing capability with the 

lowest threshold value. One possible reason for this could be the good dispersion and 

higher volume fraction for the SWNT with the same weight concentration as seen in the 

SEM images, which facilitates for formation of conducting networks.    
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7.6 Thermal-mechanical properties  

 

Figures 7.18a-d summarize the cyclic tensile curves for the pure PS, and the 

nanocomposites with 1 wt.% of CNF, MWNT, and SWNT, respectively. The values of 

yield/peak stresses decrease dramatically compared with those at room temperature 

which is due to the activation of molecular chains by the thermal stimulus. The initial 

strain for each curve increases with tensile cycle number (Figures 7.18a-d). This can be 

explained by: (1) random breaking of covalent cross linking bonds, (2) energy storage 

by the fillers [21], (3) a blocking effect by incorporated nanofillers [254].  

 

Figures 7.18a-d also indicate that the pure polymer achieves the best repeatability of 

the stress-strain curves, whereas the nanocomposites have much larger variation in the 

yield/peak strength and strain. This can be explained by the physical cross linking points 

in the inorganic-organic interfaces breaking down as the composites are stretched. 

Those physical cross linking points [310,137], which are formed during fabrication, 

provide an enhancement of the matrix to supplement chemical cross-linking. There are 

various physical forces involved in this process, such as Van de Waals forces, hydrogen 

bonds, and electrostatic forces. However, these forces are weaker than the covalent 

chemical ones, and can be destroyed easily and never be restored during the tensile tests. 

 

The recovery ratios for all the samples tested are summarized in Figure 7.19. The 

recovery rates of the pure PS are above 95% for all the cyclic tests. The CNF 

composites exhibit a rapid decrease in the recovery ratio as the nanofiller loading 

increases, with only 55% strain recovered in the 3 wt.% CNF/PS. This is probably due 

to microstructural failure, brought about by the brittle nature of the CNFs, as the 

interlocking bundled structure breaks down during cycling tensile loading leading to 

unrecovered strain and permanent defects in the microstructure. The MWNT 

nanocomposites perform better than the CNF ones, as their recovery rates are above 90% 

for concentrations of 1 wt.% and 2 wt.%, and at 3 wt.%, a recovery rate above 80% is 

maintained. The cyclic tensile tests identify that the MWNT/PS composites have better 

shape recovery than the CNF ones due to their better load transfer. Similar results, with 

high recovery rates, are exhibited by the SWNT/PS composites in Figure 7.19c. Rates 

above 80% were achieved after 4 cycles with good repeatability at different filler 

concentrations.
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Figure 7.18 Thermal mechanical cyclic testing results: (a) PS; (b) 1 wt.% CNF/PS composites; (c) 1 wt.% MWNT/PS composites; (c) 1 wt.% 
SWNT/PS composites; (e) peak strength in each thermal tensile cycle 
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Moreover, the SWNT/PS composites show a typical ‘learning’ behaviour as explained 

previously. This seems to start at a low recovery rate, but then slightly increase after 

two or three cycles which is very common in shape-memory polymers [4,5].  It turns out 

that the SWMT/PS composites have stable recovery rates during cyclic testing.   
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Figure 7.19  Recovery rate dependence with tensile cycle number for (a) Pure PS and 
CNF/PS composites, (b) MWNT/PS composites, (c) SWNT/PS composites 
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7.7 Shape recovery demonstration 

 

In this section, demonstration of the shape recovery of the nano-carbon filled 

composites will be designed under thermal and electrical triggering. Specimens of 

thickness 0.2 mm, width 10 mm and length 50 mm were rolled after heating to 90 °C, 

and their shapes were kept fixed during cooling to room temperature (20 °C). The shape 

recovery test was carried out on a hot plate with a surface temperature of 80 °C. The 

composites tested had 2 wt.% and 3 wt.% filler concentrations, as the conductivity 

results indicated that the percolation threshold was in this region, making it a practical 

range for shape recovery comparison or application design. The shape recovery during 

heating is shown in Figures 7.20 and 7.21.  

 

The 2 wt.% SWNT exhibited a prompt response on the hotplate surface and almost 

reached 100% recovery within 20 s, which is half the time for the CNF/PS. The 2 wt% 

MWNT/PS nanocomposites also showed good shape recovery with a faster recovery 

speed (recovering within 26 s). Meanwhile, further additions of the nanofiller up to 3 wt% 

reduced the shape recovery efficiency as indicated in Figure 7.21. All the 3 wt% 

samples presented slower recovery speeds than the samples with 2 wt.% filler, but the 3 

wt.% SWNT/PS nanocomposite still behaved best as it achieves the fastest full recovery 

speed. Several reasons could be responsible for the acceleration of recovery time by 

adding nanofillers. Firstly, it could be that the addition of the nanofillers improves the 

thermal conductivity and leads to a faster thermal transfer in composites, which 

effectively accelerates the recovery especially at high volume fractions of the SWNT. 

Secondly, the introduction of nanofiller induces chain transfer and decreases the 

molecular weight. This could significantly reduce the activation energy for chain 

movement and so increase the recovery speed under the same thermal conditions.  
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Figure 7.20 Recovery of 2 wt.% nano-carbon based SMP composite sheet on a hotplate with surface temperature of 20 °C above specimen’s Tg. 

 

Figure 7.21 Recovery of 3 wt.% nano-carbon based SMP composite sheet on a hotplate with surface temperature of 20 °C above specimen’s Tg.
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To demonstrate electrically triggered recovery, the sample dimension was enlarged. A 

composite film of thickness 0.2 mm, width 10 mm and length 40 mm was trimmed into 

a ‘U’ shape. Pre-deformation of the sample was performed by rolling it at 90 °C and 

then keeping the shape fixed during cooling down to room temperature (20 °C). The 

shape recovery test was performed using a DC power supply at voltages up to 30 V.  

 

Two different pre-deformations, A and B (Figures 7.22a and b), were adopted to reveal 

the recovery efficiency under levels of deformation. The results are summarized in 

Figures 7.23 and 7.24. The 2 wt.% SWNT/PS sample  showed a full recovery in 25 s 

for the deformation A, whereas it took 35 seconds for full recovery of deformation B. 

As it is presented, the recovery speed did not change significantly as there were only 10-

second variations between deformation stages A and B. This is probably attributable to 

the differences in the length of the deformed part (highlighted in Figure 7.22). 

 

 

   
Figure 7.22  Schematic diagram of sample pre-deformation and shape recovery under 

electrical triggering. 

 

 
 

Figure 7.23 Electrically triggered recovery of 2 wt.% SWNT/PS with applied voltage of 
30 V for deformation A. 
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Figure 7.24 Electrically triggered recovery of 2 wt.% SWNT/PS with applied voltage of 
30 V for deformation B. 
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Figure 7.25  Calculated results of electrical triggering recovery ratio for 2 wt.% 
SWNT/PS with applied voltage of 30 V with different deformation levels 

 

For deformation A, the deformed part is only 1/4 of the whole specimen, whereas nearly 

the whole specimen contributes to the recovery for the deformation B. Using 

Equation (3.14), the calculated results of recovery ratio are plotted in Figure 7.25. 

Similar trends can be observed for deformation A and B, and the initial recovery of 

deformation B seems slower than that of deformation A. The reason is that a longer time 

is needed to accumulate enough electrical energy to recover from the larger deformation. 
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7.8 Demonstration of the shape recovery of a stent 

 

The previous results have significant ramifications toward the understanding of the 

recovery behaviour of SMPS and CNT/PS nanocomposites under electro-actuation and 

cycling tensile. Although a number of previous studies have examined the 

unconstrained strain recovery behaviour of SMPs as it has been explored in literature 

review chapter, many applications require recovery under stress or strain constraint due 

to external conditions. Moreover, the key points would depend more on the practical 

application condition and specific design. The results herein provide a foundation for 

understanding the recovery behaviour of SMPs and SMP nanocomposites as a function 

of constraint with a design of biological stent.  

The SMPS and 2 wt.% SWNT/PS were used to fabricate various designs of stent having 

different tube diameters with and without uniformly distributed holes of diameter 2 mm  

(Figures 7.26a-c). The fabricated stents were deformed as shown in Figure 7.26d, and 

were then put into hot water at a temperature of 80 °C to demonstrate the shape 

recovery effect.  The recovery records are shown in Figures 7.26e-g. The SMPS stent 

with the holes showed faster recovery and larger recovery rate than the solid one, and 

the stents made from the 2 wt.% SWNT/PS composites had the fastest recovery of all 

the three devices tested. It achieved nearly the same recovery ratio as the pure SMPS 

stent within 10 s. The reasons for the faster recovery speed of composites could be the 

introduction of inorganic fillers improves the thermal conductive of the substrate. This 

prelimary work has shown the potential applications of SMP nanocomposites in 

microsurgery applications, and future work will be focused on the effects of the 

diameter and wall thickness of the stent on its shape recovery expansion.  
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Figure 7.26 Design and recovery of stent in hot water at a temperature of 20 °C above the specimen’s Tg, (a) stent (diameter=10 mm) of pure SMPS 
without holes, (b) stents of SMPS and 2 wt.% SWNT/PS with perforations,(c) stent of 2 wt.% SWNT/PS without holes, (d) deformed shape of stent,(e) 
recovery of stent for SMPS without holes, (d) recovery of SMPS stent with perforations of diameter=1.5 mm, (e) recovery of 2 wt.% SWNT/PS with 

perforations of diameter=1.5 mm. 
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7.9 Summary 

 

Mechanical and thermal property enhancements have been verified from the DMTA 

tests, and the CNT/PS composites showed superior thermal properties. The SWNT/PS 

sample displayed the highest storage modulus and Tg. Elastic modulus and hardness 

results from the nanoindentation tests showed the enhancement of carbon nano-fillers, 

and the 2 wt.% SWNT/PS composites achieved the best nanomechanical properties 

among all the samples. The AFM images and surface profiles on nanoindentations 

showed the existing of pile-ups for some samples. The calculated E/σY and hp/hmax ratios 

showed that the pile-up effect would not significantly affect the nanoindentation results. 

Thermal cycling results indicated that the recovery rate was reduced by adding 

nanofillers to the polymer. The SWNT/PS nanocomposites exhibited the highest 

recovery rate and peak strength, which indicates that a better organic-inorganic interface 

and uniformity were achieved. The SWNT/PS sample presents the fastest recovery 

speed and a good recovery for different pre-deformation conditions. Stents were made 

using the SMPS and the nanocomposites to demonstrate a microsurgical application. 

The stent made from the 2 wt.% SWNT/PS composites showed a fast recovery speed 

and good recovery ratio.  
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Chapter 8 

DISCUSSION 

This chapter discusses the experimental results in two board areas. The first area is 

about the effect of nanoparticle on soft polymer matrices. A number of models are 

introduced and modified to fit the SMP nancomposite systems studied, indicating a 

consideration of size effects and geometry of the nanoparticles. The second area focuses 

on the shape memory mechanisms and constitutive models of the SMPs and SMP 

nanocomposites.  

 

8.1 Dimensional effects of nanofillers on mechanical enhancement  

8.1.1 Composite system and model selection  

8.1.1.1 Composite system validation 

 

As described in Chapters 5 and 6, the macroscopic tensile tests on the composites with 

the spherical nanofillers of Al2O3, SiO2 and CNP showed that the enhancement effect 

was dominated by the characteristics of the embedded particles, such as their modulus 

and density, as well as their mass fraction. The Nano-Al2O3/polymer gave a higher 

Young’s modulus than composites using the other spherical particles. 

 

For a given mass fraction, rod-like nanofillers can bridge more polymer chains and 

provide more effective load transfer, leading to an improved strength. Upon adding a 

critical volume fraction of the nano-rods (such as nano-clay, CNF or CNTs), the nano-

rods are stretched and thus perturb the polymer matrix, and the polymer blends confine 

the nanorods, generating elongated domains that are reinforced by these fillers [311]. 

Nanofillers with rod-like structures, have been predicted to be better than spherical 

nano-particles at reinforcing homopolymer systems because the stress concentrations 

are reduced and the stress is transferred by the high aspect ratio and specific geometry 

of the fillers [256]. For instance, there is a remarkable improvement in mechanical 

properties of SMPs reinforced with 1 wt.% clay as shown in Chapter 5, compared with 

the spherical fillers. In this work, no specific techniques was adopted to improve the 

interface between inorganic and organic phases, although only low particle 

concentrations were introduced into the polymeric matrix (less than 4 wt.%). In the 
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following, it is assumed that there is an ‘ideal contact’ at the interfaces between the 

polymer and nanoparticles.  

 

8.1.1.2 Model selection for size effect  

 

A refined Takayanagi two-phase model consideration of the interface was used to 

predict the particle size effect [312]. The equations in the Takayanagi model were 

modified to suit the different particle geometries such as spherical fillers [Equation 

(8.1)] and rod fillers [Equation (8.2)] [312]. 
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where Ec and Em represent the Young’s modulus of the composite and matrix, r is the 

radius for spherical and rod fillers, τ is the interface thickness, k is the interfacial 

constant (1< k< (Ef/Em)), and fφ  is the volume fraction of filler (vol%), which was 

calculated from: 

( ) ( )ffmm
f MM //1

1

ρρ
φ

×+
=

                                                  (8.3)
 

where mM and mρ  denote the mass and bulk density of matrix, fM  and fρ  represent the 

mass and density of fillers. 

 

For the current system, the value of τ was set at 6 nm and k=4 as indicated in the work 

of other researchers [312].The Takayanagi model has proved effective in predicting the 

particle size effect, especially for those fillers with regular geometry such as spherical 

and rod fillers [312]. 

 



133 
 

8.1.1.3 Elastic models for fibre aspect ratio effect  

  

Both the Halpin and Tsai model and the Mori and Tanaka model will be applied in this 

work. The modified Halpin and Tsai [165, 166]  model is expressed as:  
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where ζ  is a shape parameter, determined by filler geometry and loading direction, and 

η  is given [165, 166] by 
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where Ef is the Young’s modulus of the filler. Following the work from Halpin and 

Kardos [166], a shape parameter of ζ =2(l/d) will be used in this study, and l/d is aspect 

ratio.  

 

The Mori and Tanaka model refined by Tandon and Weng [167, 168] can be expressed as: 
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where E11 is the longitudinal modulus and E22 is the transverse modulus,0υ  is the 

Poisson’s ratio of the matrix,  A1, A2, A3, A4, A5, and A are functions of the Eshelby’s 

tensor, related to the properties of the filler and the matrix [161]. Equations (8.6)-(8.9) 

account for the effect of filler shape, for example, rod-like, plate-like or disc-like.  

 

The Mori and Tanaka model was modified by Fornes and Paul [169] who suggested 

equations for random orientation of fibres in all three orthogonal directions: 

                                        22113 816.0184.0 EEE fibers
Dran +=−                                    (8.8) 

                                        22113 51.049.0 EEEplateles
Dran +=−                                     (8.9) 

In the following section, the Halpin & Tsai model [Equations (8.4) ~ (8.5)] and Mori & 

Tanaka model [Equations (8.6) ~ (8.9)] will be applied to the composites modulus with 

different fillers.  
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8.1.2 Modelling inputs   

 

For the theoretical analysis in this section, the matrix and filler materials were assumed 

to be linear elastic and isotropic. Table 8.1 lists the physical details of all the 

nanoparticles, which will be used as the input data for the models. The values for the 

polystyrene modulus were taken from the experimental data listed in Chapter 5. Some 

of the input data in Table 8.1 are assumed as average values based on the technical 

information from the supplier, with consideration of the non-uniformity of particle 

dimensions and aggregation. 

 
Table 8.1  Polymer matrix and nanoparticles features for computational modelling 

Name Bulk 
density, 
g/cm3 

Poisson’s 
ratio 

Young’s 
modulus, 

GPa 

Average size, nm 

Polystyrene 1.05 0.35 0.09 N/A 
Al 2O3 0.9 0.2 300 ~80 
Silica 1.35 0.2 70 ~25 nm 
CNP 0.1 0.2 100 ~50 nm 
CNF 0.3 0.2 200 Φ=100 nm , l=5 µm 

MWCNT 0.22 0.2 400 Φ=80 nm , l=8 µm 
SWNT 0.15 0.16 600 Φ=10 nm , l=1 µm 

Attapulgite clay 0.65 0.2 150 Non-treated Fibre,Φ=20 nm , 
l=3 µm; treated platelets  

Thickness =20 nm , l=3 µm; 

 

8.1.3 Theoretical modelling   

 
8.1.3.1 Particle size effect  

 

Particle size effect was predicted by the modified multi-phase enhancement model 

[Equation (8.1)], considering the matrix properties, rigid filler properties, and the 

interface connection. Figure 8.1 displays the calculated values for the polymer/spherical 

filler composite. 
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Figure 8.1 Multi-phase modelling for polymer nanocomposites reinforced with spherical 

fillers, (a) particle size effect and (b) effect of filler modulus. 
 

The predicted modulus increases as the volume fraction increases for both the particle 

size effect (Figure 8.1a) and filler modulus effect (Figure 8.1b). As indicated in Figure 

8.1a, the smaller the filler particle, the higher the modulus increment for a given volume 

fraction, although, there is a turning point at r = 50 nm. A clear trend for the calculated 

modulus of composites can be observed with the particles size above 50 nm, which 

agrees with the data reported in references [157,313], and the particle size of 50 nm is the 

threshold value for this composite system.   
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Figure 8.2 Multi-phase modelling for polymer nanocomposites reinforced with rod fibre, 

(a) particle size effect and (b) effect of filler modulus. 
 

The effect of the filler’s modulus on enhancement is presented in Figure 8.1b, and there 

is no dramatic effect of filler modulus between 1 and 1000 GPa. Considering the rate of 

increase of composite modulus with volume fraction (Figure 8.1b), the filler modulus 

has a rather weaker effect. The same model was applied to the rod filler/PS system and 

the results are presented in Figure 8.2. A similar trend is observed for the effect of 

particle size, and the plot shows a lower increment of the modulus compared with the 

spherical filler for the same volume fraction below the percolation value. Figure 8.2b 

reveals the same phenomenon for the changes of modulus with filler content to that 

shown in Figure 8.2b.  
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8.1.3.2 Effect of aspect ratio on composite modulus 

 

The modelling results with the Halpin–Tsai and Mori–Tanaka theories are shown in 

Figure 8.3, which predicts the reinforcement on the soft polymer matrix as a function of 

volume fraction of filler. Using the input parameters listed in Figure 8.3, rod fillers are 

predicted to have a more significant enhancement than spherical ones, and the modulus 

is expected to increase with aspect ratio from the predictions of both the theories. 

However, the Haplin-Tsai model predicts a smaller increase of the modulus with the rod 

filler aspect ratio, especially at a high aspect ratio. The modelling Mori-Tanaka theory 

shows higher values of modulus than those from the Halpin-Tsai theory. This is because 

the Mori-Tanaka model considers the load transfer to be improved due to the aspect 

ratio of fillers [167, 168, 169].  
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Figure 8.3 Calculated modulus versus filler content for SMPS nanocomposites 
reinforced with spheres and rods, (a) Halpin– Tsai equations and (b) Mori–Tanaka 

theory. 
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The effects of filler modulus and aspect ratio on reinforcement are exhibited in 

Figures 8.4a-b. The combination of both high modulus and high aspect ratio leads to 

different levels of reinforcement. As expected, increasing the aspect ratio results in good 

reinforcement for a given filler modulus and concentration. Likewise, increasing the 

filler modulus also improves the reinforcement especially when the aspect ratios are 

larger than 20–30.  
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Figure 8.4 Modelling results from (a) Halpin– Tsai equations and (b) Mori–Tanaka 
theory as functions of aspect ratio and filler modulus. 

 

It is important to note that the Halpin–Tsai equations do not predict much on effect of 

filler geometry because Equations (8.5) and (8.6) do not reflect the aspect ratio 

particularly strongly. The Mori–Tanaka theory, on the other hand, gives different 

reinforcement trends, as shown in Figure 8.4b, and the predicted enhancements are 

much higher than those from the Halpin–Tsai equation at the same aspect ratio.  
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The theoretical modelling results suggest that, if the filler modulus is high, it will have a 

pronounced effect in improving the nanocomposite stiffness as demonstrated in Figure 

8.3. The Halpin–Tsai equation calculates less of an effect of aspect ratio whereas, the 

Mori–Tanaka theory seems to be more sensitive to filler geometry as indicated in 

Figures 8.3 and 8.4. For a given filler modulus and aspect ratio, the Mori–Tanaka 

model predicts considerably greater unidirectional reinforcement than does the Halpin–

Tsai equation. Each theory, however, conveys to the rule of mixtures for very high filler 

aspect ratios. Overall, the trends in Figure 8.3 and 8.4 demonstrate considerable 

potential for improvement in nanocomposite stiffness by increasing the aspect ratio of 

the fillers, whether from improvements in individual filler dispersion, or from adding 

high aspect ratio filler. 

 

8.1.4 Comparison of experimental and theoretical results  

 

In this section, a comparison is made between theoretical data and the experimental 

from the tensile tests shown in Chapters 5 to 7.  

 

8.1.4.1 Size effect of nanoparticles 

  

The particle size effect for the spherical fillers on Young’s modulus of the composites is 

shown in Figure 8.5, which compares the predictions of the multi-phase model with the 

experimental results. It is clearly that the experimental data exhibit a similar trend to the 

modelling results. The model predicts that all curves should have a similar rate increase 

as the particle size is in a range of 50 nm-80 nm for the three spherical fillers used. A 

slight change in the particle size would not to be expected to cause a marked variation 

on the composite modulus until the particle size is less than 25 nm, below which a 

dramatic influence is expected. Smaller particles have a larger total surface area for a 

given particle loading, so that the strength of the composite increases through more 

efficient load transfer. Although the experimental data matched the prediction in trend, 

most of the measured data are below the theoretical ones. The reason for this is that the 

theoretical analysis assumes ideal dispersion with perfect surface contact for the 

reinforcement, which is hard to achieve in practice. When the filler loading is above 0.1 

vol.%, the dispersion of filler cannot be considered to be perfect [314]. For most of the 

composites tested, the particles tend to aggregate due to their high surface energy. 
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Figure 8.5 Modelling and experimental results for composites with different spherical 
fillers, (a) Silica/SMPS composites, (b) Al2O3/SMPS composites and (c) CNP/SMPS 

composites. 

 

However, it is noting that, for the Al2O3 particles at, or below 3 vol.%, the composite 

modulus is comparable to the theoretical one. The CNPs were the highest surface 

energy because of their smaller size. When the volume fraction is increased above 15 

vol.%, the composite strength increases only slowly as the particles tend to agglomerate. 

 

Figure 8.6 summarizes the modelling and experimental results of the rod filler 

reinforced composites. The experimental data demonstrate higher values than predicted, 

contrary to what was found for spherical particle reinforcement. For the rod fillers with 

larger diameters, CNF and MWNT, there is no obvious correlation between the 

experimental data and the theoretical predictions. For the smaller sized rod fillers, 

SWNT and clay, the theoretical curves reveal a similar trend but the values are much 

smaller than the measured ones. This could be attributed to neglecting the rod filler 
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orientation in the multi-phase model, which effect plays a more important role in rod 

filler reinforcement in composites than the particle size or filler modulus. 

 

100

200

300

400

100

150

200

250

300

350

0 5 10 15 20

200

400

600

800

0 5 10 15 20
80

160

240

320

400

Experimental curve
 with MWNT

Modelling curve 
with MWNT

b

Experimental curve
 with CNF

 

 

Modelling curve with CNF

a

 

 

Y
oung's m

odulus(M
P

a) 

Experimental curve
 with SWNT

Modelling curve with SWNT

c

Volume fraction (Vol.%)

Y
ou

ng
's

 m
od

ul
us

(M
P

a)
 

 

 

Experimental curve
 with clay

Modelling curve with clay

d

 

 

 

Figure 8.6 Theoretical modelling and experimental results for composites with rod 
fillers, (a) CNF/PS composites, (b) MWNT/PS, (c) SWNT/PS and (d) Clay/PS. 

 

The modified multi-phase model was used to predict the particle effect on the composite 

modulus. For the spherical fillers, the modelling results clearly show that the particle 

size has a significant effect on the strength of particulate-filled polymer composites, 

which generally increases with decreasing size.  The size effect plays a more important 

role than the filler modulus in reinforcement. Meanwhile, the experimental results 

proved that the modified multi-phase model is ineffective when applied to predict the 

modulus if rod particle filled system, because it takes less account of on the filler aspect 

ratio.   
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8.1.4.2 Effect of filler aspect ratio  

 

Figure 8.7 compares the calculated and measured modulus for the SMP 

nanocomposites studied at 1 wt.% filler. Both the Halpin-Tsai and Mori-Tanaka models 

make a reasonable estimate of the nanoparticle reinforcement for all of the applied 

spherical fillers, except for silica. For the silica/PS system, the considerable difference 

between the calculated and measured Young’s modulus can be attributed to the 

agglomeration of the nanofiller caused by hydro-groups on the particle surface, and this 

effect has been reported by other researchers [315, 316].  
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Figure 8.7 Comparison of predicted Young’s modulus with experimentally measured 
data for 1 wt.% filler/SMPS nanocomposite.  

 

As to the rod filler/polymer composite system, the Mori-Tanaka model predicts the 

observed filler enhancements, but considerably over-estimates the modulus values. The 

Halpin-Tsai model mostly showed a significant under-estimate of the modulus. The 

better prediction of the Mori-Tanaka model is attributed to its consideration of the 

aspect ratio and the effect of volume fraction. For the MWNT filled composites, the 

experimental results are dramatically different from the prediction from the Mori-

Tanaka model, which could be due to the low effective volume fraction due to 

aggregation or impurity of the MWNTs. It is also interesting to compare experimental 

data to the model predictions based on particle aggregation morphology, since the actual 

composites contain a certain amount of aggregrated filler as a result of limitations of the 

dispersing technique and higher particle surface energy.  
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Figure 8.8 compares the modelling and experimental data for the modulus of the nano 

carbon filled composites at different concentrations, and reveals how effective the two 

theories are in predicting the effects of geometry, aspect ratio and modulus of the 

nanofillers.  
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Figure 8.8 Comparison of predicted Young’s modulus for composites with carbon 
nanofillers with experimentally measured data. 

 

The models predict the observed changes of the nanocomposite stiffness and 

demonstrate that significant reinforcement could be achieved by using fillers either with 

higher volume fractions, or with larger aspect ratio. However, the Halpin–Tsai equation 

slightly underestimates the measured data with less effect of aspect ratio. The Mori–

Tanaka theory matches the experimental values well at the filler contents less than 1 

wt.%, and then tends to over-estimates the modulus compared with experiment which 

could be attributed to the filler distribution, non-uniformity of geometry, or aggregation. 

Any of these could dramatically reduce the load transfer capability of the filler, and lead 

to internal defects (such as stress concentrations and crack) and decrease the 

macroscopic modulus. The SWNT/PS composites showed higher measured modulus 

than the other fillers for the same weight percentage and more stable increase of 
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modulus with filler content, which could be attributed to the high modulus of SWNT, 

higher aspect ratio (l/d ~ 100), and higher volume fraction (lower bulk density). The 

TEM observation of the treated clay (Figure 4.3) indicates that the rod-like clay form a 

plate-like structure after heat treatment. Accordingly, the modified Mori–Tanaka model 

suggested by Fornes and Paul [Equation (8.9)] was adopted to predict the 

reinforcement by the treated clay. Figure 8.9 shows the calculated results of the 

Young’s modulus of composites with different shapes of filler based on Equations (8.8) 

and (8.9) (Mori-Tanaka model).  
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Figure 8.9 Predicted of Young’s modulus of treated clay nanocomposite SMPs 

compared with experimental data 
 

Of the three forms considered, platelet filler with l/d=200 fit the initial increment of 

modulus best. These platelet filler show good  reinforcement because of their high 

aspect ratio and multi-directional load transfer [311, 317]. The deviation from the predicted 

curve at higher filler contents (beyond 1 wt.%) may be due to the increased 

agglomeration for their higher volume fractions. 

 

Using the Halpin–Tsai and Mori–Tanaka models, the calculated outputs shown in 

Figure 8.1–8.4 reveal that the composite modulus can be significantly affected by 

physical factors such as filler modulus, aspect ratio, geometry, and volume fraction of 

the filler. Those results also reflect how the size, geometry, stiffness, or dispersion of 

the particles influence the composite, modulus by load transfer from the matrix to filler. 

Rigid fillers are naturally resistant to strain due to their high modulus. When a relatively 
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softer macromolecular matrix is reinforced with these types of fillers, the polymer, 

particularly that adjacent to the filler particles, becomes highly restrained mechanically. 

This enables a significant proportion of an applied load to be carried by the filler, 

assuming that the contact between the two phases is adequate without any specific 

treatment. Logically, the higher the filler modulus is, the greater the restraint 

encountered by the matrix and, thus, the greater the stress transfer. However, some 

unavoidable phenomena often occur with passive influences such as filler aggregation 

and significant phase separation of the large contact interface. On the other hand, 

introducing fillers with high aspect ratio can reduce this effect by increasing the amount 

of stress transferred to the filler geometrically, which was shown by the theoretical 

results. Furthermore, the enhancement of a layered platelet shape was also confirmed 

from the results of the treated clay composites. The aspect ratio and geometry of the 

nanofillers play a more important role in reinforcing the polymer matrices than the 

particle size and stiffness of the individual particles.   

 

8.2 Thermally triggered shape memory mechanism and viscoelastic constitutive 

model 

 

The constitutive model presented in this section is the incorporation of the nonlinear 

Adam–Gibbs model of structural relaxation into a continuum finite-deformation thermal 

visco-elastic model [318, 319]. To convey this model simply, the effects of heat conduction 

and pressure on the structural relaxation and any inelastic behaviour of the material 

have been neglected. Descriptions and identifications of the current SMP system are 

presented in the first part of this section, and then the model and parameter 

determination are introduced in details. Thirdly, theoretical modelling of the viscoelastic 

and shape recovery behaviour of SMPS and nanocomposites is carried out. Finally, the 

simulation and experimental results are compared.  

 

8.2.1 SMP system identification and model approaches 

 

As scoped in the literature review (Chapter 2), the thermally activated shape recovery 

of amorphous SMPs is dramatically dependent on the chain mobility induced by the 

glass transition (i.e. Ttrans = Tg), which is considered to be the threshold factor for the 
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free movement of molecular chains. This chain mobility is the ability of the chain 

segments to rearrange locally to bring the macromolecular structure and stress response 

to equilibrium. Generally, most amorphous polymers demonstrate a certain degree of 

shape memory behaviour which can be explained by this segmental movement theory 
[261, 320, 321].  Cross-linking methods are adopted to achieve better mechanical properties, 

higher recoverability and more programmable shape conversion as described in 

Chapter 2. The defined cross-linking includes not only the chemical cross-linking 

network, but also physical crosslinking joints, and junction forces from macromolecular 

chain entanglements [228,118,322].  

 

Improving cross-linking leads to a higher strength but less flexibility as the large 

number of cross-linking points limits the molecular chain mobility permanently. In 

cross-linking SMP systems, the cross-linking density is strictly limited and the shape 

memory effect is caused by the transition of a cross-linking polymer from a state 

dominated by entropic energy (rubbery state) to a state dominated by internal energy 

(glassy state) as the temperature decreases [323-325]. At temperatures above the Tg, 

individual macromolecular chains undergo large random conformational changes, 

which are constrained by the cross-linking sites formed during material processing [324, 

325]. Deforming the material reduces the possible configurations and hence the 

configurational entropy of the macromolecular chains, leading to the well-known 

entropic behaviour of elastomers. After the removal of the external load at a temperature 

above Tg, the tendency of the material to increase its entropy will recover the 

undeformed (processed) shape defined by the spatial arrangement of crosslinking sites 
[326]. However, this shape recovery can be interrupted by lowering the temperature 

below Tg. Therefore, the mobility of macromolecular chains is significantly reduced by 

the reduction in free volume, and the conformational change of individual 

macromolecules becomes increasingly difficult. Instead, cooperative conformational 

change of neighboring chains becomes dominant, and deformation thus requires much 

higher energy [327, 328]. Therefore, the removal of the mechanical load at temperatures 

below Tg only induces a small amount of shape recovery, most parts of deformation 

incurred at the temperature above Tg is restored. The shape memory effect is invoked as 

the temperature increases above Tg, where the individual macromolecular chains 

become active again and the shape recovery mechanism described above is permitted. 

In this sense, shape memory effect is simply a temperature-delayed recovery [68, 329]. 
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Also, it is necessary to identify the polymer system before modelling as there is 

dramatic variation in the recovery mechanisms for different types of SMPs. 

 

In this project, the amorphous PS system consists of cross-linked network (hard 

segments) and amorphous long PS chains (soft segments) as explained in Chapter 5. 

Shape recovery mechanism with hard and soft segments is illustrated in Figure 8.10 

and 8.11. 

 

Figure 8.10 (a) 1-D viscoelastic model, (b) viscoelastic model with thermal component 
and mechanical component. 

 

 

 
Figure 8.11 Illustrations of SMP structures and theoretical models, (a) 3-D schematic of 

hard-soft segment movement during the shape recovery procedure, (b) cell of hard 
segment with cross-link point. 
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The function of each part is shown in 3D alongside typical 1-D multi-component 

models which were widely used to model amorphous SMPs [10330]. In contrast to the 

above theory on cross-linking SMPs as presented in Figure 8.11, the shape change of 

cross-linked PS is almost entirely achieved by the chain mobility of soft segments 

which changes more almost instantaneously with temperature. Below the Tg, the 

structure is changed by the elimination of the chain mobility and reduced thermal 

energy from relaxation to equilibrium. This effectively freezes the structure in a 

nonequilibrium configuration and allows the material to store a deformed shape [176,6]. 

Reheating to above Tg restores the mobility and allows the structure to relax again to an 

equilibrium configuration and the material to recover its permanent shape.  

 

A kinematic and constitutive model for pure amorphous SMP has been explored by 

Nguyen et al. [49, 50], generated from a constitutive model of the large strain time-

dependent behaviour of elastomers [318, 319]. The finite-deformation continuum 

constitutive model is proposed for the thermoviscoelastic behaviour of the current 

amorphous SMP system, incorporating the Adam–Gibbs theory of structural relaxation 

in the glass transition region, and is based on the several reported constitutive 

models [49,331]. 

8.2.2 Kinematic model 

 

The model in Figure 8.11c describes thermoviscoelastic behaviour in a polymeric 

system with finite deformation [49, 50]. The assumptions were made by a series of 

multiplicative decompositions of the deformation gradient, first into thermal and 

mechanical components, then into elastic and viscous mechanical components. The 

sequence of deformation maps produced by the successive decompositions of the 

deformation gradient is illustrated in Figure 8.12. 

 

The constitutive relations for the mechanical stress and thermal deformation were split 

into equilibrium and nonequilibrium parts. The analogous scheme in Figure 8.12 

describes the various components; Ω0 (the thermodynamic equilibrium configuration) 

with the assumption that it restricts the initial state of the material to be in the rubbery 

state (Ω’ T), where relaxation events occur nearly instantaneously. 
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Figure 8.12 An analogous decomposition scheme for the deformation gradient to define 

the heated, Ω’T, and the stress-free, Ω’M, intermediate configurations [49, 50]. 

 
The relevant definitions and mathematical derivatives are summarized as follows [49,50]: 

The deformation gradient tensor:   
X

x

∂
∂==  xGradF

                                            
  (8.10)

 

                                                         
TM FFF =

                                                            
 (8.11)

 

Where Grad x is a continuous one-to-one mapping of the reference position X to the 

deformed position in Equation (8.10). Equation (8.11) reflects the multiplicative split 

of the deformation gradient into thermal (FT) and mechanical (FM) components 
[332,333,334]. There is also an assumption that the thermal deformation is isotropic, which 

allows the thermal deformation gradient to be expressed as: 

                                                  
IF 3/1

TT Θ=
                                            

                 (8.12) 

where ΘT=det(FT) is the thermal volumetric deformation. To model the stress relaxation 

response, FM is split further multiplicatively into elastic (eMF ) and viscous ( v
MF ) 

components: 

                                                  

v
M

e
MM FFF =

                                   
                        (8.13) 

where v
MF  is a mapping from Ω’T to a stress-free intermediate configuration Ω’M. As 

explained [335], such nonequilibrium processes could consist of numerous states, and 

also  Equation (8.12) can be described practically as  

                                             

v
Mi

e
MiM FFF = , i=1,2,3,4...q                                           (8.14) 

Even so, it is considered helpful only to have one stress relaxation process to simplify 

the model. Since amorphous polymers exhibit extensive various volumetric and 
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deviatoric behaviour, FM is also multiplicatively decomposed into volumetric ΘM and 

deviatoric components MF  [336,337]. 

                                         
M

3/1
MM FF −= Θ

                                                        
     (8.15) 

where ΘM=det(FM)  is the mechanical component volumetric deformation. The total 

volumetric deformation is fallen as Θ= ΘTΘM.  There is an assumption that the stress 

relaxation response is purely deviatoric such that the volumetric response caused by 

mechanical deformation is time-independent [50]. This can be easily understood and a 

good approximation for most polymers can be achieved since these exhibit only small 

changes in the bulk modulus, usually about a factor of two, over a wide range of time 

and frequency. Meanwhile, the shear modulus can vary by orders of magnitudes over 

the same time and frequency range. This assumption fulfills the isochoric flow 

assumption results for  eMF  and v
MF   in the following relation [50]: 

                                     
1v

M =Θ , eΘΘ MM = , v
MMM FFF

e
=                                           (8.16) 

The left and right Cauchy-Green deformation tensors (CM and bM) are defined for the 

mechanical deformation and its components as [49,50]: 
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Combining Equations (8.15) and (8.17): 
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(8.18) 

Finally, the rate of the viscous deformation tensor v
MC  in Ω0 can be expressed as an 

objective rate in the spatial configuration [49]: 

T
M

1v
MM

e
Mv )F(CFb￡ −

•

=
                                           

 (8.19) 

where the operator v￡ (·) is the Lie time derivative. 

 

8.2.3 Constitutive relations 

 

The modelling of thermo-viscoelastic behaviour and temperature dependence of the 

stress relaxation response of SMPs are based on the rheological model in Figure 8.11c 

and the analogous decomposition illustration displayed in Figure 8.12. When the 

temperature is much larger than Tg, the viscosity is so small that the effects of visco-
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elasticity are negligible. Consequently, the rheological model can be reduced to the 

equilibrium spring in series with the temperature element. This situation corresponds to 

the mobile rubbery state, where stress relaxation can occur quickly to prevent the 

development of large non-equilibrium stresses [338]. As the temperature is lowered and 

the material begins to enter the glass transition region, the dashpot in the Maxwell 

element stiffens and the non-equilibrium spring becomes progressively engaged in the 

mechanical response [338], i.e. viscoelastic stress relaxation becomes dominant. 

Decreasing the temperature to below the Tg causes the dashpot to stiffen further and the 

material to build up more non-equilibrium stress. The ability to build up large non-

equilibrium stress allows the glassy material to exhibit a dramatically stiffer stress 

response than the rubbery material [174, 339, 340]. This process continues until the non-

equilibrium stress exceeds the yield strength of the non-equilibrium spring, then the 

resulting viscous flow causes the dashpot to soften [50]. In the following sections, 

detailed relations will be presented with each analogous decomposition part according 

to Figure 8.12.  

 

8.2.3.1 Thermal strains and structural relaxation (thermal spring part) 

 

An internal variable approach [49,50] was adopted to describe the non-equilibrium 

structure of the polymer in the formulation of the free energy density. The internal 

variable fictive temperature, Tf, was introduced as it is already used in modelling the 

annealing of glass, is such that the non-equilibrium structure at Tf is in equilibrium. In 

the current polymer system, Tf is Tg 
[341, 342], as illustrated in Figure 8.13. The evolution 

towards the equilibrium state consists of multiple non-equilibrium states, and can be 

described by the following nonlinear rate equation, inspired by the Kovacs-Aklonis-

Hutchinson-Ramos (KAHR) model for structural relaxation [343-345]:  
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                     (8.20) 

where neqδ is the stress in the non-equilibrium state, τRi is a temperature/structure 

dependent characteristic know as structural relaxation time, and ∆αi is a parameter 

characterizing the structural relaxation spectrum, αr and αg are the thermal expansion 

coefficients for the rubbery and glass states, respectively. To simplify the model, we 
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considered only one non-equilibrium state is considered. The fictive temperature Tf can 

be expressed as [346]:  

0

1
T

aa
T

gr
f +

−
= δ

 
                                                  (8.21) 

To describe the temperature and structure dependence of the characteristic structural 

relaxation time, the Hodge-Scherer nonlinear extension of the Adam-Gibbs model in 

terms of the equivalent Williams−Landel−Ferry (WLF)  constants was 

introduced.[49,347,348] 
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where ref
gT  is the Tg measured from coefficient of thermal expansion experiments with a 

specific cooling rate, 1C and 2C  are the WLF parameters obtained from DMTA tests. 

Similarly, only one of the non-equilibrium states is considered to simplify the model. 

 

 

Figure 8.13 Illustration of the volumetric deformation dependency with temperature 
from T0 to T1, Tg is determined by the intersection of the high temperature line, with 

slope αr, and low temperature line, with slope αg. The determination of fictive 
temperature (Tf) at T1  is also demonstrated, and the limiting value of Tf is Tg 

[341, 342]. 
 

8.2.3.2 Stress-strain relations for pure SMP (mechanical part) 

 

Constitutive relationships between the stress and strain for the equilibrium behaviour of 

elastomeric materials are often expressed in terms of strain energy density, U, which is 
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expressed as a function of deformation and material properties [318, 319, 349, 350]. As 

introduced in Section 8.1.2, the deformation gradient will now be considered and 

further developed using stretch invariant based strain energy density functions and the 

Mullins–Tobin concept of hard/soft domains will also be used [59]. The stretch invariants 

are given as [59, 60]:  
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        (8.23) 

Where the λi are the principal stretches. This investigation only considers I1 since it is 

the strongest [351]. The stress-strain relationship under uniaxial tension in the rubbery 

state of the SMP (T>Tg) can be represented by the Arruda and Boyce network model 

with Langevin chain statistics [319, 350, 352]: 
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This model is based on the statistics of the underlying macromolecular network where 

N is the number of “rigid links” between two crosslinking points (and/or strong physical 

entanglements), λ is the macroscopic axial stretch, σr is the true stress, λchain is the 

stretch on each chain in the eight chain network, µ is the modulus of the material, the 

function L-1 is the inverse Langevin function, constant relative to the energy of the 

undeformed chain. The effective chain stretch is given by [59, 60] 

                                     
1cothL −−= βββ）（                                       (8.25) 

For SMP composites, the stress-strain relationships vary considering the different aspect 

ratios of fillers and reinforcing theories as discussed in Chapter 2. The stress-strain 

equation can be expressed incorporating filler enhancement (i.e. Equations (8.4)-

(8.9)) [60, 61] as: 
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where the sφ  is the volume fraction of soft segments, Λ  is the applied stretch (the 

average stretch in the matrix), and X is a amplification factor which depends on filler 

volume fraction and distribution. The detailed definitions are given as [351]  
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  (8.27) 

The hard and soft segment domains within the polymeric material during the shape 

deformation/recovery cycle stretch the hard/soft domain configuration [318, 319, 351]. The 
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volume fraction of the soft domains sφ  is changed by adding the nanofillers, and the 

soft segment contact evolves with deformation as initially occluded regions of soft 

domains are gradually released. Equation (8.26) takes the filler effects into 

consideration with including the amplification factor and amplified stretch which 

involve the volume fraction.   

 

8.2.3.3 Viscoelastic relations (mechanical dashpot part) 

 

The molecular processes of viscoelastic flow for finite strain rates and temperatures 

below Tg in glassy polymers have been attributed to the local intermolecular resistance 

to segmental rotation and the network resistance to molecular alignment [353-356]. The 

Eyring relationship [321, 357, 358] has been used to describe the temperature-dependent and 

stress-activated nature of  the viscoelastic flow process.  
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where 
•
vγ represents the viscoelastic shear strain rate, 

•

0γ is a pre-exponential constant,Γ

is the equivalent shear stress, sy is the yield (activation) stress,  which represents the 

resistance to viscoplastic shear deformation in the material, and E0 is an activation 

energy. Further modifications to the equation were proposed, introducing a Taylor 

expansion, an Arrhenius temperature dependence and the Schere-Hodge relations 

(Equation (8.22)), so that, the viscoelastic flow for the glass transition and rubbery 

temperature regions can be expressed as [49] 
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To model the dashpot softening response, the phenomenological evolution equation 

used by the referencing model [359] was proposed for the yield strength, 
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Where ysss  is the steady-state yield strength,
 0ys is the initial yield strength, and ysss <

0ys . When the temperature is raised in the sample (initial stage of recovery), the 

viscoelastic stress is low and tends to resist the flow as the polymer sample responds to 
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the internal recovery stress to restore the sample towards its original shape. The stress-

strain response can be expressed as [49]: 

,0' =+= vr σσσ
                               

                        (8.31) 
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where η is the viscosity which can be expressed as [49]. 
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where ref
Sgη is the characteristic shear viscosity, s is the flow stress, and QS is an 

activation constants. Considering, Equation (8.29), then 

1

ref
f2

ref
ff21

0 sinh
)(

)()(

log
exp)(

−
••





































 Γ














−+
−+−

=
y

s

yg

g

y

sref
Sg

v

s

s

T

Q

sTTCT

TTTTC

e

C

s

s

T

Q
T ηγγη

    

(8.35) 

Then, the Equation (8.34) can be written:  
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For SMP nanocomposites   
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8.2.4 Model inputs 

 

All the relevant definitions and data sources are given in Table 8.2, along with 

references. are also attached. A complete list of the modelling input values is given in 
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Table 8.3. Some data entries have been simplified according to the references and 

sources in Table 8.2 to fit the often purpose constitutive model. 

 

Table 8.2  Parameters of the preliminary thermoviscoelastic constitutive model 

Parameters  Keynotes  Resources or references 
ref

gT  Referenced glass transition temperature DSC/DMTA 

ra  Thermal expansion coefficients of 
rubber state 

Fit result from DSC/DMTA data 

ga  Thermal expansion coefficients of 
glassy state 

Fit result from DSC/DMTA data 

C1 WLF parameters Fit result from DSC/DMTA data 
C2 WLF parameters Fit result from DSC/DMTA data 

sφ  Soft segment volume content Nanoindentation 

µ Shear modulus Calculation from experimental 
N Number of statistical link Calculation from experimental 

Γ  the equivalent shear stress, Γ =δ/ 3  Tensile 

Eg Glass state modulus Tensile/DMTA 
h0 Rubber state modulus Tensile/DMTA 

•

0γ  
Material constant  As indicated in Ref.[49,318] 

ref
Sgη  

Material constant  As indicated in Ref.[49] 

QS/ ys  Ratio of the activation constants and the 
yielding strength 

Calculation as indicated in Ref.[49] 

ysss / 0ys  The ratio of steady-state yielded and 
initial yielding strength of the material 

uniaxial and  thermal cyclic tensile  

 

8.2.5 Comparison of constitutive modelling and experimental results 

 

The constitutive relations were determined using the data listed in Table 8.3 and the 

algorithm described by Equations (8.20)-(8.37) in section 8.2.3, and then used to 

simulate the dynamic thermal-mechanical response of the nanocomposites (Equations 

(8.32) and (8.33)). The thermo-viscoelastic model was also used to reproduce the shape 

memory behaviour of the nanocomposites (Equations (8.36) and (8.37)) in a condition 

of isothermal recovery with a fixed pre-stretch strain and at a constant temperature.
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Table 8.3     Input values for the constitutive model for different samples 

Parameters Pure CNP CNF MWNT SWNT 

(Unit) SMP 1 wt.% 2 wt.% 3 wt.% 1 wt.% 2 wt.% 3 wt.% 1 wt.% 2 wt.% 3 wt.% 1 wt.% 2 wt.% 3 wt.% 

ref
gT

(°C) 53 59.5 61.5 63 65 72 70 69 68 72 67 72.5 70 

ra  (×10-4°C-1) 6.84 6.62 6.24 5.92 5.73 5.34 5.43 5.62 5.41 5.21 5.69 5.23 5.17 

ga
(×10-4°C-1) 2.92 2.98 3.12 3.2 3.35 3.76 3.61 3.43 3.71 3.89 3.25 3.92 4.01 

C1 12.7 10.6 10.2 10.1 9.7 9.6 9.7 9.7 9.6 9.3 9.7 9.8 7.6 

C2 (°C) 49.8 31.3 32.1 31.7 27.7 25.3 25.5 27.5 25.9 26.3 27.3 24.4 19.6 

N 13 26 34 36 14 21 26 19 24 30 27 32 40 

Γ  (MPa) 1.7 2.9 3.6 4.7 3.5 4.6 6.4 3.5 4.6 6.9 4.8 7.1 8.5 

Eg  (MPa) 3  5 6.2 8.1 6 8 11 6 8 12 8.4 12.3 14.7 

µ   (MPa) 330 330 330 330 330 330 330 330 330 330 330 330 330 

h0   (MPa) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
•

0γ (s-1) 1.7 14.1 33.6 97.6 30. 89.5 335.5 30.0 89.5 453.3 106.1 508.2 1044.0 
ref
Sgη (MPa/s) 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 

QS/ ys
 (K/MPa) 100 100 100 100 100 100 100 100 100 100 100 100 100 

ysss
/ 0ys

 0.6 0.4 0.34 0.35 0.31 0.29 0.22 0.33 0.26 0.2 0.44 0.34 0.29 
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8.2.5.1 Thermal visco-elastic properties 

 

Figure 8.14 plots the storage modulus obtained from both the experimental data and 

simulation results for the pure PS.  
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Figure 8.14 Storage modulus comparison for pure SMPS from simulation and 
experiment. 

 

The storage modulus (~300 MPa) measured by the DMTA is a value between the 

Young’s modulus (88 MPa from uniaxial tensile experiments) and nanoindentation 

elastic modulus (~1 GPa). These differences can be attributed to the different testing 

methods and their related theories. In this section, the glassy/rubbery storage moduli 

were used to compare with the theoretical analysis results, as they showed a consistent 

change with temperature, especially when the temperature is around Tg. The changes in 

modulus when the temperature crossing Tg obtained from experimental results are much 

lower than those from the theoretical analysis because the model considered an ideal 

system without internal defects and other imperfections. The practical system is much 

more complicated, and many possible factors could lead to a reduction of the modulus 

when the temperature increases, such as high distribution of molecular weight and non-

uniformity of cross-linking points.  

 

Theoretical analysis was also carried out for the nano-carbon filled composites, by inputting 

data for the composite materials into Equations (8.32)-(8.33), and the comparisons 

between the simulation and experiment are made in Figure 8.15. Apart from the similar 

phenomena in Figure 8.14 as explained before, it is also observed that the differences 

between simulation and experiment are not as significant for the CNT filled composites, 
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especially for the CNT/PS with filler concentration above 1 wt.%.  This is because the 

model considers the enhancement effect from the nanofillers as shown in Equations 

(8.6) and (8.9), and also the multiple effects of the filler aspect ratio and the filler 

volume fraction. From Figure 8.15, it can be seen that the theoretical results show good 

consistency with the experimental results for the composites with rod like nano-carbon 

fillers (b2, b3, c and d series), especially when the temperature is higher than Tg  

(viscoelastic state).      

 

8.2.5.2 Shape recovery behaviour  

 

The shape memory behaviour of the materials was simulated using Equations (8.36)-

(8.37), which describe the time-dependent thermoviscoelasticity of SMPs and 

nanocomposites. The analysis of shape recovery assumed the conditions of 100% pre-

deformation strain and a constant heating temperature of 80 °C. All relevant parameters 

are shown in Table 8.3, and some numerical conversions were processed through 

Equations (8.20)-(8.30). Figure 8.16 compares the theoretical and experimental strain 

recovery ratios of pure SMPS. From Figure 8.16, it is observed that about 97% of the 

pure polymer strain can be recovered within 22 seconds, while a complete recovery 

fallen as long as 26 sec. 

 

The curves of the recovery ratios vs. time exhibit similar patterns, showing a good 

match between the simulation results and the experimental ones. However, the 

experimental results show a consistently longer recovery time. The discrepancy may be 

due to stress relaxation of the sample during recovery which could slow down the 

recovery process [176], and this has not been considered in the theoretical analysis. It has 

been reported [360] that samples stretched at a higher temperature show a higher onset 

temperature for recovery, because the shape recovery is a complicated procedure 

containing different chain movements with different energy levels. 

 

The agreement between the theoretical and experimental results presented in Figure 

8.16 is qualitatively adequate for the pure SMP, but not sufficiently good to explain the 

recovery behaviour of the composites with different particles. The same assumption was 

made with the conditions of 100% pre-deformation strain under heating to a constant 

temperature of 80 °C. 
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Figure 8.15 Comparison of simulated and experimental storage modulus results for nano-carbon filled composites  
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Figure 8.16 Comparison of recovery results from experimental and simulation for pure 
SMPS. The pre-deformation ratio is 100 % and the test/simulation temperature is 80 °C. 

 

The theoretical simulation inputs were either obtained directly from Table 8.3, or 

numerically generated by Equations (8.20)-(8.30), and then imported into Equation 

(8.36). The selected samples were the composites with 2 wt.% CNP, CNF, MWNT and 

SWNT, respectively, and the results are shown in Figure 8.17. Figure 8.17 shows quite 

different information for different samples. Reasonable agreements between the 

theoretical and experimental results was obtained for the 2 wt.% CNP/PS and 

MWNT/PS samples. When the deformation occurs early, the composite needs absorb 

enough thermal energy to resist the recoverable elastic entropic force of the network 

elements. Afterwards, the recovery accelerates and rapidly relieves most strains. 

Towards the end of the process, recovery becomes quite slow as the internal stress has 

been completely released. In this case, the experimentally measured non-isothermal 

recovery and the values from the theoretical prediction are in good agreement. There are 

always some minor unrecoverable strains in the experimental results generated during 

the pre-deformation such as unrecoverable chain stretch, chain breaking and movement 

of hard segments.     

 

Theoretical predictions show that the higher the volume fraction of filler that the 

composite contains, the longer the time is needed for a full recovery. However, the 

experimental results showed a much faster recovery than the theory predicts for the 

2 wt.% CNP/PS, MWNT/PS, SWNT/PS composites. The reasons are unclear and need 

to be investigated in future work.  
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Figure 8.17 Comparison of recovery results from experiment and simulation for shape 
memory nanocomposites with 2 wt.% nanofillers, the pre-deformation ratio is 100 % 

and test/simulation temperature is 80 °C. 

 

8.3 Summary  

 

Theoretical analyses based on the experimental results were presented in this chapter. 

Size effect and geometry factors were considered as two dominant factors in predicting 

the efficiency of nanofiller enhancement. A modified Takayanagi two-phase model with 

taking in account the interface effect was modified to investigate the nanoparticle size 

effect. The elastic theories based on the Halpin–Tsai and Mori– Tanaka models were 

employed to understand better on the reinforcement brought about by the high aspect 

ratio nanoparticles. Theoretical modelling of the aspect ratio effect on the particle 

enhancement efficiency revealed a significant effect in improving the nanocomposite 

stiffness. The Halpin–Tsai equation proved less effective than the Mori–Tanaka one 

when calculating the reinforcement for fibres with various aspect ratios. With fixed 

modulus and aspect ratio of the nanofillers, the Mori–Tanaka model predicted that 

unidirectional reinforcement was considerably greater than that by the Halpin–Tsai 

model. Each theory, however, does converse to the same value for very high filler 

aspect ratios, corresponding to the rule of mixtures. Overall, both the theoretical and 
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experimental results demonstrate considerable potential for improvement in 

nanocomposite stiffness by increasing the aspect ratio of the nanofillers, whether from 

improvements in individual filler dispersion, or synthesis of higher aspect ratio fillers. 

The constitutive relationships of the amorphous SMPs and nanocomposites were 

derived based on the literature survey and detailed kinematic equations. A multi-

component model was adopted and modified to fit the SMPs studied and their 

nanocomposite systems. Moreover, elastic theory was embedded in the relationship to 

improve the modelling of thermoviscoelastic and shape recovery behaviour of the SMP 

nanocomposites. For both the SMP and its nanocomposites, the numerical simulation 

results for thermoviscoelastic behaviour agreed with the experimental ones. A 

significant decrease in modulus was indicated by the simulation results, due to its 

assumption of the transformation of the molecular chains. Thermally triggered shape 

recovery simulations were also performed by calculating the recovery time. A good 

match between the simulation results and the experimental ones was obtained. The 

experimental results showed longer recovery time due to relaxation as that was not 

taken into account in the theoretical equations. For nanocomposites, the simulation of 

shape recovery sometimes give contradictory results against the experimental results, 

which show faster recovery than the simulated ones. The reasons for this are unclear 

and need to be investigated in future work. 
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Chapter 9 

CONCLUSIONS  

Since the project contents cover a range of academic disciplines including polymer 

chemistry, mechanical engineering and chemical engineering, the main conclusions are 

classified into four categories.  

 

For smart shape memory polymer/nanocomposites fabrication: 

 

1.  SMPs and their nanocomposites were fabricated by polymerization, which offers a 

better chance to fulfil the best properties such as higher strength and conductivity, 

through adding functional nanoparticles into the matrix.  

 

2. The nanoparticles affect the material properties dramatically according to their 

physical properties such as modulus, particle shape, dimensional size, surface features. 

Moreover, the reinforcing effects of nanoparticles are highly dependent on the 

fabrication technique, as the dispersion state of nanoparticles will affect the particles 

enhancement of the matrix more than the particle physical properties. 

 

3.  The wet-chemical synthesis method was identified as an effective way of achieving 

the uniform distribution of nanofillers in the SMPS matrix. 

 

For the physical performance of the fabricated materials: 

 

1.   Mechanical and thermal properties of SMPU were strongly reinforced by the treated 

attapulgite clay. The hardness-temperature analysis showed that Vickers 

microindentation could be used to detect the Tg of SMPs or composites empirically. A 

good shape memory effect was observed in the nanocomposites. PU-based composites 

containing 30 wt.% treated clay nanoparticles exhibited the same capability of shape 

recovery as pure PU although the recovery speed was slightly slower. 

 

2. Improvements of mechanical and thermal properties and shape memory effects were 

observed by introducing three different nanofillers (alumina, silica and clay) into the 

SMPS matrix. The nanocomposites with heat-treated nanoclay achieved the best 
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improvement of all aspects tested. Thermal cycling tests indicated that the recovery 

rates of all nanocomposite SMPs were above 85%, and good shape recovery ability was 

achieved.  

 

3. The mechanical and thermo-mechanical results from the tensile, nanoindentation and 

DMTA tests revealed enhancements of electro-active PS-based nanocomposites with 

incorporation of CNPs into the PS matrix. The electrical tests indicated that a two-phase 

conductive system was formed with a percolation threshold value of 3.5 wt%. The 

conductivity and dielectric constants changed dramatically as a function of frequency, 

temperature and CNP concentration. Shape recovery results indicated that these smart 

nanocomposites had potential application in microactuation.  

 

4. The SWNT/PS sample displayed the highest storage modulus and Tg. Elastic 

modulus and hardness results from the nanoindentation tests proved the enhancement by 

carbon nano-fillers. The 2 wt.% SWNT/PS composites achieved the best mechanical 

properties among all the samples with nanometre localisation. Thermal cycling results 

indicated that the recovery rate of the polymer was reduced with the addition of 

nanofillers. Shape recovery demonstrations were performed under different triggering 

conditions, thermal stimulus and electro-active.  The SWNT/PS sample presented the 

fastest recovery speed and a good recovery at different pre-deformation conditions. 

Stent demonstrations were performed with specific designs on pure SMPS and 2 wt.% 

SWNT/PS samples, and all the devices exhibited recovery under the test conditions. The 

stents made from the composites gave the fastest recovery speed as well as the best 

recovery ratio, which implied the possibility of applying these materials in such designs 

for various purposes, with an effective expansion function.   

 

For the shape memory effect and demonstration of potential applications: 
 

1. Embedding nanoparticles could decrease the shape memory efficiency on the same 

time as bringing strong enhancement to the soft matrix. 

  

2.  The shape recovery demonstrations were carried out on various designs such as 

grippers, stents and cantilevers, showing the possibility of applying the shape memory 

nanocomposites in some fields. Biological stent models were manufactured with pure 
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SMPs and nanocomposites, and the expansion behaviours caused by the shape recovery 

action of the materials were demonstrated and evaluated. 

 

3.  Electrical triggering shape recovery was demonstrated with CNP/PS cantilevers, and 

successful electro-shape recovery was achieved.  

 

For the theoretical analysis: 

 

1.  A modified multi-phase model was used to predict the composite modulus as a 

function of particle size. The modelling results clearly showed that the particle size 

played a more important role than the filler modulus in reinforcement for the spherical 

particulate-filled polymer composites. For the composite system based on the rod 

particles, the modified multi-phase modelling results did not show consistency with the 

experimental results because of its limited expressing on the filler aspect ratio effect. 

Discussion of the aspect ratio effect on nanofiller enhancement was based on the 

Halpin–Tsai and Mori–Tanaka models. The calculated outcomes revealed that the 

composite modulus could be significantly affected by physical factors such as modulus, 

aspect ratio, geometry, and volume fraction of the filler. Both the modelling and 

experimental results showed that introducing fillers with high aspect ratio lead to more 

effective enhancement by increasing the amount of stress transferred to the filler. The 

enhancement from the layered platelet particles was also modelled and compared with 

results from the treated-clays to expand the discussion of geometrical effects 3-D. The 

aspect ratio and geometry of the nanofillers play a more important role in reinforcing 

the polymers than the particle size and stiffness of the individual particles.   

 

2.  Constitutive models for the thermo-viscoelastic behaviour and shape memory 

recovery were built for the nanocomposites based on a multi-component model and the 

composite elastic theory. The numerical simulations results for thermo-viscoelastic 

property agreed with the experimental ones. A significant decrease in modulus was seen 

from the simulation results, due to its assumption of ideal transformation of the 

molecular chains. Thermal triggering of the shape recovery was simulated through the 

calculation of the recovery time under the given conditions. The experimental results 

showed longer recovery time than the simulation. For the nanocomposites, the 

simulation of shape recovery time revealed confusing results compared with the 

experimental ones, a matter which needs to be investigated in future work. 
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Chapter 10 

FUTURE WORK 

This research work has shown that the SMP material properties can be modified through 

incorporating functional nanoparticles to meet the requirements of a specific application. 

Successful demonstrations of micro-devices and their fabrication under various external 

triggering conditions have been performed. However, there are some remaining 

questions: 

a. Two way recovery is still unavailable as triggering factors such as thermal could 

only start recovery in a one-way cycle. 

b. The precise control of multi step recovery needs to be improved as there was a 

poor relationship between the control input and the recovery level. 

c. The available current control methods (thermal or electrical) both have great 

limitations, especially in some critical applications such as in human body. 

Advanced remote triggering methods need be proposed and validated. 

 

For future work, the investigation of SMPs or its nanocomposites would be continued 

for application in the related areas of Bio-MEMS or bio-medical devices. Aiming to 

work out commercial application in the biological field, some further efforts needs to be 

made in the following directions: 

• Novel shape memory polymer systems should be developed using biocompatible 

polymers especially biocompatible SMPU or its copolymers.  

• New functional nanoparticles should be applied to introduce new triggering 

possibilities for the nanocomposites, for example magnetic nanofillers, UV 

sensitive fillers, fillers with chemical groups with responding to pH values.  

• Other application fields should be explored with new models and integrated 

systems, such as bio-robotic parts. 

• The constitutive model should be used and imported into the materials database 

of Finite Element Analysis (FEA) software and tested, as the properties of SMPs 

and their nanocomposites have not been developed for FEA yet.  
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