51,463 research outputs found

    Monitoring meaningful activities using small low-cost devices in a smart home

    Get PDF
    A challenge associated with an ageing population is increased demand on health and social care, creating a greater need to enable persons to live independently in their own homes. Ambient assistant living technology aims to address this by monitoring occupants’ ‘activities of daily living’ using smart home sensors to alert caregivers to abnormalities in routine tasks and deteriorations in a person’s ability to care for themselves. However, there has been less focus on using sensing technology to monitor a broader scope of so-called ‘meaningful activities’, which promote a person’s emotional, creative, intellectual, and spiritual needs. In this paper, we describe the development of a toolkit comprised of off-the-shelf, affordable sensors to allow persons with dementia and Parkinson’s disease to monitor meaningful activities as well as activities of daily living in order to self-manage their life and well-being. We describe two evaluations of the toolkit, firstly a lab-based study to test the installation of the system including the acuity and placement of sensors and secondly, an in-the-wild study where subjects who were not target users of the toolkit, but who identified as technology enthusiasts evaluated the feasibility of the toolkit to monitor activities in and around real homes. Subjects from the in-the-wild study reported minimal obstructions to installation and were able to carry out and enjoy activities without obstruction from the sensors, revealing that meaningful activities may be monitored remotely using affordable, passive sensors. We propose that our toolkit may enhance assistive living systems by monitoring a wider range of activities than activities of daily living

    Identifying the time profile of everyday activities in the home using smart meter data

    Get PDF
    Activities are a descriptive term for the common ways households spend their time. Examples include cooking, doing laundry, or socialising. Smart meter data can be used to generate time profiles of activities that are meaningful to households’ own lived experience. Activities are therefore a lens through which energy feedback to households can be made salient and understandable. This paper demonstrates a multi-step methodology for inferring hourly time profiles of ten household activities using smart meter data, supplemented by individual appliance plug monitors and environmental sensors. First, household interviews, video ethnography, and technology surveys are used to identify appliances and devices in the home, and their roles in specific activities. Second, ‘ontologies’ are developed to map out the relationships between activities and technologies in the home. One or more technologies may indicate the occurrence of certain activities. Third, data from smart meters, plug monitors and sensor data are collected. Smart meter data measuring aggregate electricity use are disaggregated and processed together with the plug monitor and sensor data to identify when and for how long different activities are occurring. Sensor data are particularly useful for activities that are not always associated with an energy-using device. Fourth, the ontologies are applied to the disaggregated data to make inferences on hourly time profiles of ten everyday activities. These include washing, doing laundry, watching TV (reliably inferred), and cleaning, socialising, working (inferred with uncertainties). Fifth, activity time diaries and structured interviews are used to validate both the ontologies and the inferred activity time profiles. Two case study homes are used to illustrate the methodology using data collected as part of a UK trial of smart home technologies. The methodology is demonstrated to produce reliable time profiles of a range of domestic activities that are meaningful to households. The methodology also emphasises the value of integrating coded interview and video ethnography data into both the development of the activity inference process

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.AgĂȘncia financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a CiĂȘncia e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Green multimedia: informing people of their carbon footprint through two simple sensors

    Get PDF
    In this work we discuss a new, but highly relevant, topic to the multimedia community; systems to inform individuals of their carbon footprint, which could ultimately effect change in community carbon footprint-related activities. The reduction of carbon emissions is now an important policy driver of many governments, and one of the major areas of focus is in reducing the energy demand from the consumers i.e. all of us individually. In terms of CO2 generated from energy consumption, there are three predominant factors, namely electricity usage, thermal related costs, and transport usage. Standard home electricity and heating sensors can be used to measure the former two aspects, and in this paper we evaluate a novel technique to estimate an individual's transport-related carbon emissions through the use of a simple wearable accelerometer. We investigate how providing this novel estimation of transport-related carbon emissions through an interactive web site and mobile phone app engages a set of users in becoming more aware of their carbon emissions. Our evaluations involve a group of 6 users collecting 25 million accelerometer readings and 12.5 million power readings vs. a control group of 16 users collecting 29.7 million power readings

    The Internet-of-Things Meets Business Process Management: Mutual Benefits and Challenges

    Get PDF
    The Internet of Things (IoT) refers to a network of connected devices collecting and exchanging data over the Internet. These things can be artificial or natural, and interact as autonomous agents forming a complex system. In turn, Business Process Management (BPM) was established to analyze, discover, design, implement, execute, monitor and evolve collaborative business processes within and across organizations. While the IoT and BPM have been regarded as separate topics in research and practice, we strongly believe that the management of IoT applications will strongly benefit from BPM concepts, methods and technologies on the one hand; on the other one, the IoT poses challenges that will require enhancements and extensions of the current state-of-the-art in the BPM field. In this paper, we question to what extent these two paradigms can be combined and we discuss the emerging challenges
    • 

    corecore