38 research outputs found

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019

    Besoin en eau et rendements des céréales en Méditerranée du Sud : observation, prévision saisonnière et impact du changement climatique

    Get PDF
    Le secteur agricole est l'un des piliers de l'économie marocaine. En plus de contribuer à 15% au Produit Intérieur Brut (PIB) et de fournir 35% des opportunités d'emploi, il a un impact sur les taux de croissance. Ces dernières sont affectées négativement ou positivement par les conditions climatiques et la pluviométrie en particulier. Lors des années de sécheresse, caractérisées par une baisse de la production agricole, en particulier celle des céréales, la croissance de l'économie marocaine a été sévèrement affectée et les importations alimentaires du royaume ont augmenté de manière significative. Dans ce contexte, il est important d'évaluer l'impact de la sécheresse agricole sur les rendements céréaliers et de développer des modèles de prévision précoce des rendements, ainsi que de déterminer l'impact futur du changement climatique sur le rendement du blé et leurs besoins en eau. Le but de ce travail est, premièrement, d'approfondir la compréhension de la relation entre le rendement des céréales et la sécheresse agricole au Maroc. Afin de détecter la sécheresse, nous avons utilisé des indices de sécheresse agricole provenant de différentes données satellitaires. En outre, nous avons utilisé les sorties du système d'assimilation des données terrestres (LDAS). Deuxièmement, nous avons développé des modèles empiriques de la prévision précoce des rendements des céréales à l'échelle provinciale. Pour atteindre cet objectif, nous avons construit des modèles de prévision en utilisant des données multi-sources comme prédicteurs, y compris des indices basés sur la télédétection, des données météorologiques et des indices climatiques régionaux. Pour construire ces modèles, nous nous sommes appuyés sur des algorithmes de machine learning tels que : Multiple Linear Regression (MLR), Support Vector Machine (SVM), Random Forest (RF) et eXtreme Gradient Boost (XGBoost). Enfin, nous avons évalué l'impact du changement climatique sur le rendement du blé et ses besoins en eau. Pour ce faire, nous nous sommes appuyés sur cinq modèles climatiques régionaux disponibles dans la base de données Med-CORDEX sous deux scénarios RCP4.5 et RCP8.5, ainsi que sur le modèle AquaCrop et nous nous sommes basés sur trois périodes, la période de référence 1991-2010, la deuxième période 2041-2060 et la troisième période 2081-2100. Les résultats ont montré qu'il y a une corrélation étroite entre le rendement des céréales et les indices de sécheresse liés à l'état de végétation pendant le stade d'épiaison (mars et avril) et qui sont liés à la température de surface pendant le stade de développement en janvier-février, et qui sont liés à l'humidité du sol pendant le stade d'émergence en novembre-décembre. Les résultats ont également montré que les sorties du LDAS sont capables de suivre avec précision la sécheresse agricole. En ce qui concerne la prévision du rendement, les résultats ont montré que la combinaison des données provenant de sources multiples a donné des meilleurs résultats que les modèles basés sur une seule source. Dans ce contexte, le modèle XGBoost a été capable de prévoir le rendement des céréales dès le mois de janvier (environ quatre mois avant la récolte) avec des métriques statistiques satisfaisants (R² = 0.88 et RMSE = 0.22 t. ha^-1). En ce qui concerne l'impact du changement climatique sur le rendement et les besoins en eau du blé, les résultats ont montré que l'augmentation de la température de l'air entraînera un raccourcissement du cycle de croissance du blé d'environ 50 jours. Les résultats ont également montré une diminution du rendement du blé jusqu'à 30% si l'augmentation du CO2 n'est pas prise en compte. Cependant, l'effet de la fertilisation au CO2 peut compenser les pertes du rendement, et ce dernier peut augmenter jusqu'à 27%. Finalement, les besoins en eau devraient diminuer de 13 à 42%, et cette diminution est associée à une modification de calendrier d'irrigation, le pic des besoins arrivant deux mois plus tôt que dans les conditions actuelles.The agricultural sector is one of the pillars of the Moroccan economy. In addition to contributing 15% in GDP and providing 35% of employment opportunities, it has an impact on growth rates that are negatively or positively affected by climatic conditions and rainfall in particular. During drought years characterized by a decline in agricultural production and in particular cereal production, the growth of the Moroccan economy was severely affected and the kingdom's food imports increased significantly. In this context, it's important to assess the impact of agricultural drought on cereal yields and to develop early yield prediction models, as well as to determine the future impact of climate change on wheat yield and water requirements. The aim of this work is, firstly to further understand the linkage between cereal yield and agricultural drought in Morocco. In order to identify this drought, we used agricultural drought indices from remotely sensed satellite data. In addition, we used the outputs of Land Data Assimilation System (LDAS). Secondly, to develop empirical models for early prediction of cereal yields at provincial scale. To achieve this goal, we built forecasting models using multi-source data as predictors, including remote sensing-based indices, weather data and regional climate indices. And to build these models, we relied on machine learning algorithms such as Multiple Linear Regression (MLR), Support Vector Machine (SVM), Random Forest (RF) and eXtreme Gradient Boost (XGBoost). Finally, to evaluate the impact of climate change on the wheat yield its water requirements. To do this, we relied on five regional climate models available in the Med-CORDEX database under two scenarios RCP4.5 and RCP8.5, as well as the AquaCrop model and we based on three periods, the reference period 1991-2010, the second period 2041-2060 and the third period 2081-2100. The results showed that there is a close correlation between cereals yield and drought indices related to canopy condition during the heading stage (March and April) and which are related to surface temperature during the development stage in January -February, and which are related to soil moisture during the emergence stage in November -December. The results also showed that the outputs of LDAS are able to accurately monitor agricultural drought. Concerning, cereal yield forecasting, the results showed that combining data from multiple sources outperformed models based on one data set only. In this context, the XGBoost was able to predict cereal yield as early as January (about four months before harvest) with satisfactory statistical metrics (R² = 0.88 and RMSE = 0.22 t. ha^-1). Regarding the impact of climate change on wheat yield and water requirements, the results showed that the increase in air temperature will result in a shortening of the wheat growth cycle by about 50 days. The results also showed a decrease in wheat yield up to 30% if the rising in CO2 was not taken into account. The effect of fertilizing of CO2 can offset the yield losses, and yield can increase up to 27 %. Finally, water requirements are expected to decrease by 13 to 42%, and this decrease is associated with a change in temporal patterns, with the requirement peak coming two months earlier than under current conditions

    Assimilation de données satellitaires pour le suivi et la prévision des sécheresses agricoles et des ressources en eau

    Get PDF
    Le suivi et la prévision des sècheresses concernent divers porteurs d’enjeux. Le suivi del’étendue, de la gravité et de l’impact des sécheresses est nécessaire pour atténuer leurs effets.Les deux approches les plus utilisées pour le suivi des sécheresses sont la modélisation numérique et l’utilisation de données satellitaires. Les modèles représentent les processus et sont capables de simuler les échanges d’énergie et d’eau à la surface. Ils peuvent néanmoins souffrird’une représentation trop simpliste de ces processus, de conditions initiales incorrectes et dedéfauts du forçage atmosphérique. Les données satellitaires permettent d’accéder à denombreuses variables à l’échelle mondiale, de manière répétée dans le temps et à des échellesspatiales de plus en plus précises. Elles peuvent cependant être discontinues dans le temps etl’espace et toutes les variables des surfaces terrestres ne sont pas observables depuis l’espace.De plus elles sont représentatives d’un instant précis, et contrairement aux modèles numériques,n’offrent pas la possibilité de faire de la prévision. Afin d’améliorer le suivi des sécheresses, il estpossible de combiner les modèles numériques et les observations satellitaires en utilisant destechniques d’assimilation de données. L’assimilation permet d’obtenir de meilleures conditionsinitiales et par conséquent de meilleures prévisions. Ce travail de thèse a pour objectif d’étudierl’impact de conditions de surface améliorées par l’assimilation d’observations satellitaires sur laprévisions des épisodes de sécheresses et leurs impacts sur l’agriculture et les ressources eneau. Le système d’assimilation de données pour les surfaces continentales (LDAS-Monde)développé au CNRM est utilisé. Des observations satellitaires sont assimilées dans le modèle desurface ISBA dans une série d’expériences sur les USA ainsi que sur plusieurs sous-domaines.La capacité du système à représenter et prévoir les variables de surface liées à la végétation etaux sécheresses est évaluée. L’impact de l’assimilation de trois variables différentes est analysé :l’indice de surface foliaire (« LAI »), l’humidité superficielle du sol (« SSM ») et l’épaisseur optiquede la végétation dans le domaine spectral des micro-ondes (« VOD »). L’impact de l’assimilationest analysé grâce à l’utilisation de données indépendantes d’évapotranspiration, de productionprimaire brute de la végétation et d’humidité du sol. Sur l’état du Nebraska, le système LDASMonde permet de représenter la variabilité interannuelle du LAI mais aussi des rendementsagricoles du maïs, y compris lors d’épisodes de sécheresse prolongés. LDAS-Monde a étéamélioré et pourvu d’une capacité de prévision à courte et moyenne échéance (15 jours) enutilisant les prévisions atmosphériques du CEPMMT (ou « ECMWF »). La capacité du système àprévoir les variables de surfaces jusqu’à 15 jours d’échéances a été montrée, sur une période dedeux ans. L’importance des conditions initiales sur la qualité des prévisions a été mise enévidence. Une série d’expériences d’assimilation a été réalisée dans laquelle le VOD a été utilisécomme proxy du LAI. Cela améliore beaucoup l’échantillonnage temporel car le VOD estdisponible plus fréquemment que le LAI. Après une comparaison approfondie des produits de LAI,différentes expériences assimilant le LAI, le VOD et le SSM, de manière conjointe ou séparée ontété réalisées. Ces expériences confirment l’apport de l’assimilation conjointe d’observations liéesà la végétation et de l’humidité superficielle du sol. L’amélioration des conditions initiales estensuite utilisée dans une étude de cas prospective sur la mise en place d’une fonction de transfertdu système actuel vers un système d’alerte précoce des sécheresses

    The use of machine learning algorithms to assess the impacts of droughts on commercial forests in KwaZulu-Natal, South Africa.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.Droughts are a non-selective natural disaster in that their occurrence can be in both high and low precipitation areas. However, this study acknowledged that droughts are more recurrent and a regular feature in arid and semi-arid climates such as that of Southern Africa. Some of these countries rely strongly on commercial forests for their gross domestic product (GDP), especially South Africa and Mozambique which means droughts pose a significant threat to their economy and the society that depends on this economy. The risks associated with droughts have consequently created an increased demand for an efficient method of analysing and investigating droughts and the impacts they impose on forest vegetation. Therefore, this study aimed to examine the effects of droughts on all commercial forests within the province of KwaZulu-Natal (KZN) at a catchment and provincial scale by employing Kernel Support Vector Machine (Kernel –SVM), Rotation Forests (RTF) and Extreme Gradient Boosting (XGBoost) algorithms. These were based on Landsat and MODIS derived vegetation and conditional drought indices. The main aim of this study was achieved by the following objectives: (i) to improve methods for classifying droughts; (ii) to achieve medium spatial resolution drought analysis using Landsat sensors; (iii) to determine the accuracy of machine learning algorithms (MLAs) when employed on remote sensing data and (iv) to improve the usability of conditional drought indices and vegetation indices. The results obtained there-after demonstrated that the objectives of this study were met. With the MLAs performing better when using conditional drought indices compared to vegetation indices, therefore, highlighting drawbacks already associated with vegetation indices. Where at the catchment scale, Kernel – support vector machine (SVM) produced an overall accuracy (OA) of 94.44% when based on conditional drought indices compared to 81.48% when based on vegetation indices. On the same scale, Rotation forests (RTF) produced 96.30% and 81.84% when using conditional drought indices and vegetation indices, respectively. At a provincial scale, RTF produced an OA of 76.6% and 70.7% when using conditional drought indices and vegetation indices respectively. This was compared to extreme gradient boosting (XGBoost) which produced an OA of 81.9% and 69.3% when using conditional drought indices and vegetation indices respectively. These results also indicate that it is possible to analyse droughts at provincial and catchment scale. Although the results presented in this study were promising, more research is still required to improve the applicability of MLAs in drought analysis.Dedication is listed on page iii

    SATELLITE-BASED CHARACTERIZATION OF CROP TYPE AND PRODUCTIVITY OF AGROECOSYSTEMS: CASE STUDIES IN NORTHEAST CHINA, SOUTHERN AFRICA, AND CONTERMINOUS USA

    Get PDF
    Agroecosystem, or agricultural ecosystems, is the important anthropogenic ecosystem to meet the human demand for food, fiber, and feed, and it covers approximately 40-50% of the earth’s land surface. Accurate estimates of agricultural land use and land cover and Gross Primary Production (GPP) are indispensable for global food security and understanding variations in the terrestrial carbon budgets. This dissertation aimed to strengthen the capacities of remote sensing to produce the high-quality products of crop type maps and primary productivity on large regional scales. In chapter 2, we designed simple algorithms to identify paddy rice of two different phenological phases (flooding/transplanting and ripening) at regional scales using 30-m multi-temporal Landsat images. Sixteen Landsat images from 2010 - 2012 were used to generate the paddy rice map in the Sanjiang Plain, northeast China - one of the intensive paddy rice cultivation regions in Northern Asia. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively, and was an improvement over the paddy rice dataset derived through visual interpretation and digitalization on the fine-resolution satellite images and traditional agricultural census data. Chapter 3 evaluated the capacities of the temporal MODIS vegetation indices and the satellite-based Vegetation Photosynthesis Model (VPM) to describe phenology and model the seasonal dynamics of GPP for savanna woodlands in Southern Africa on the site level. The results showed that the VPM-based GPP estimates tracked the seasonal dynamics and interannual variation of GPP estimated from eddy covariance measurements at flux tower sites. This study suggests that the VPM is a valuable tool for estimating GPP of semi-arid and semi-humid savanna woodland ecosystems in Southern Africa. Chapter 4 assessed the accuracies of air temperature and downward shortwave radiation of the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP), and evaluated impacts of the accuracies of regional climate inputs on the VPM-based GPP estimates for U.S. Midwest cropland. The results implied that the bias of NARR downward shortwave radiation introduced significant uncertainties into the VPM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales. Chapter 5 presented independent and complementary analyses of the impact of 2012 flash drought on productivity in the U.S. Midwest using multiple sources of evidences, i.e., in-situ AmeriFlux CO2 data, satellite observations of vegetation indices and solar-induced chlorophyll fluorescence (SIF), and scaled ecosystem modeling. The results showed that phenological activities of all biomes advanced 1-2 weeks earlier in 2012 compared to other years of 2010-2014, and the drought threatened the U.S. Midwest agroecosystems. The growth of grassland/prairie and cropland was suppressed from June and it didn’t recover until the end of the growing season. As the frequency and severity of droughts have been predicted to increase in future, this study provides better insights into the impacts of flash droughts on vegetation productivity and carbon cycling of major biomes in the U.S. Midwest

    SPATIAL PATTERNS AND POTENTIAL MECHANISMS OF LAND DEGRADATION IN THE SAHEL

    Get PDF
    There is a great deal of debate on the extent, causes and even the reality of land degradation in the Sahel. On one hand, extrapolations from field-scale studies suggest widespread and serious reductions in biological productivity threatening the livelihoods of many communities. On the other hand, coarse resolution remote sensing studies consistently reveal a net increase in vegetation production exceeding that expected from the recovery of rainfall following the extreme droughts of the 1970s and 1980s, thus challenging the notion of widespread, subcontinental-scale degradation. Yet, the spatial variations in the rates of vegetation recovery are not fully explained by rainfall trends which suggest additional causative factors. In this dissertation, it is hypothesized that in addition to rainfall other climatic variables and anthropogenic uses of the land have had measurable impacts on vegetation production. It was found that over most of the Sahel, the interannual variability in growing season sum NDVI (used as a proxy of vegetation productivity) was strongly related to rainfall, humidity and temperature while the relationship with rainfall alone was generally weaker. The climate- sum NDVI relationships were used to predict potential NDVI; that is the NDVI expected in response to climate variability alone excluding any human-induced changes in productivity. The differences between predicted and observed NDVI were regressed against time to detect any long term (positive or negative) trends in vegetation productivity. It was found that over most of the Sahel the trends either exceeded or did not significantly depart from what is expected from the trends in climate. However, substantial and spatially contiguous areas (~8% of the total area of the Sahel) were characterized by significant negative trends. To test whether the negative trends were in fact human-induced, they were compared with the available data on population density, land use pressures and land biophysical properties that determine the susceptibility of land to degradation. It was found that the spatial variations in the trends of the residuals were not only well explained by the multiplicity of land use pressures but also by the geography of soil properties and percentage tree cover

    Earth observation for water resource management in Africa

    Get PDF

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing
    corecore