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Assimilation de Données Satellitaires pour le Suivi et la Prévision des
Sécheresses Agricoles et des Ressources en Eau

Résumé
Le suivi et la prévision des sècheresses concernent divers porteurs d’enjeux. Le suivi de

l’étendue, de la gravité et de l’impact des sécheresses est nécessaire pour atténuer leurs ef-
fets. Les deux approches les plus utilisées pour le suivi des sécheresses sont la modélisation
numérique et l’utilisation de données satellitaires. Les modèles représentent les processus et
sont capables de simuler les échanges d’énergie et d’eau à la surface. Ils peuvent néanmoins
souffrir d’une représentation trop simpliste de ces processus, de conditions initiales incor-
rectes et de défauts du forçage atmosphérique. Les données satellitaires permettent d’accéder
à de nombreuses variables à l’échelle mondiale, de manière répétée dans le temps et à des
échelles spatiales de plus en plus précises. Elles peuvent cependant être discontinues dans le
temps et l’espace et toutes les variables des surfaces terrestres ne sont pas observables depuis
l’espace. De plus elles sont représentatives d’un instant précis, et contrairement aux mod-
èles numériques, n’offrent pas la possibilité de faire de la prévision. Afin d’améliorer le suivi
des sécheresses, il est possible de combiner les modèles numériques et les observations satelli-
taires en utilisant des techniques d’assimilation de données. L’assimilation permet d’obtenir
de meilleures conditions initiales et par conséquent de meilleures prévisions. Ce travail de
thèse a pour objectif d’étudier l’impact de conditions de surface améliorées par l’assimilation
d’observations satellitaires sur la prévisions des épisodes de sécheresses et leurs impacts sur
l’agriculture et les ressources en eau. Le système d’assimilation de données pour les surfaces
continentales (LDAS-Monde) développé au CNRM est utilisé. Des observations satellitaires
sont assimilées dans le modèle de surface ISBA dans une série d’expériences sur les USA ainsi
que sur plusieurs sous-domaines. La capacité du système à représenter et prévoir les variables
de surface liées à la végétation et aux sécheresses est évaluée. L’impact de l’assimilation de
trois variables différentes est analysé : l’indice de surface foliaire (« LAI »), l’humidité su-
perficielle du sol (« SSM ») et l’épaisseur optique de la végétation dans le domaine spectral
des micro-ondes (« VOD »). L’impact de l’assimilation est analysé grâce à l’utilisation de
données indépendantes d’évapotranspiration, de production primaire brute de la végétation et
d’humidité du sol. Sur l’état du Nebraska, le système LDAS-Monde permet de représenter la
variabilité interannuelle du LAI mais aussi des rendements agricoles du maïs, y compris lors
d’épisodes de sécheresse prolongés. LDAS-Monde a été amélioré et pourvu d’une capacité de
prévision à courte et moyenne échéance (15 jours) en utilisant les prévisions atmosphériques
du CEPMMT (ou « ECMWF »). La capacité du système à prévoir les variables de surfaces
jusqu’à 15 jours d’échéances a été montrée, sur une période de deux ans. L’importance des con-
ditions initiales sur la qualité des prévisions a été mise en évidence. Une série d’expériences
d’assimilation a été réalisée dans laquelle le VOD a été utilisé comme proxy du LAI. Cela
améliore beaucoup l’échantillonnage temporel car le VOD est disponible plus fréquemment
que le LAI. Après une comparaison approfondie des produits de LAI, différentes expériences
assimilant le LAI, le VOD et le SSM, de manière conjointe ou séparée ont été réalisées. Ces
expériences confirment l’apport de l’assimilation conjointe d’observations liées à la végétation
et de l’humidité superficielle du sol. L’amélioration des conditions initiales est ensuite utilisée
dans une étude de cas prospective sur la mise en place d’une fonction de transfert du système
actuel vers un système d’alerte précoce des sécheresses.





Assimilation of Satellite Data for the Monitoring and Prediction of
Agricultural Droughts and Water Resources

Abstract
The monitoring and prediction of droughts and its impacts is of utmost importance to stake-
holders around the world. Being able to closely track the extent, severity, and impacts of
drought events leads to better response and mitigation, while reducing the effects. The two
most widespread approaches to do this are using numerical simulations with land surface mod-
els (LSMs) and using satellite Earth observations (EOs). Both of these approaches allow for the
tracking of drought extent and severity, but both also have drawbacks. While LSMs are able
to simulate consistent spatial and temporal fluxes of the land surface, they may suffer from im-
perfect model physics, poor initial conditions, and from the quality of the atmospheric forcing
used as input. EOs are able to monitor variables globally and provide observational data at an
unrivaled scale, but they can suffer from temporal gaps in coverage and a limited range of ob-
served variables, as well as not having the ability to forecast. To facilitate better tracking and
to allow the prediction of droughts, LSMs can be combined with satellite observations through
a data assimilation process, improving their accuracy and providing better initial conditions
for forecasts. This thesis uses the land data assimilation system LDAS-Monde developed by
CNRM, the research department of the French Meteorological service (Météo-France), to in-
vestigate the impact of improving land surface conditions through data assimilation on the
potential to forecast drought events and impacts to agriculture and water resources. EOs are
assimilated into the ISBA (Interactions between Soil, Biosphere, and Atmosphere) LSM for a
number of experiments over the contiguous United States and various sub-domains to analyze
the system’s capability to represent and forecast land surface variables connected to vegetation
and drought. This thesis explores the assimilation of three satellite observation datasets: leaf
area index (LAI), surface soil moisture (SSM), and vegetation optical depth (VOD). Results
are assessed against independent datasets of evapotranspiration, gross primary production,
and soil moisture. Over the U.S. state of Nebraska, it is found that LDAS-Monde is able to
represent the inter-annual variability of LAI and corn yield, including the impact of significant
drought years, providing a good basis for the system’s potential. Using ECMWF fifteen day
atmospheric forecasts, LDAS-Monde has been strengthened with forecast capacity. The system
proved skillful over the two year experimental period, providing potentially useful forecasts of
land surface variables up to two weeks in advance. The use of LDAS-Monde in forecast mode
also showed that the initial conditions are critical to accurate surface forecasts. The use of LAI
in LDAS-Monde led to strongest impact. Therefore, to test and define improvements to initial
conditions with data assimilation, a series of new experiments were made. Assessed among
them was the use of VOD as an LAI proxy, which constrains the model far more frequently.
Comparisons of the LAI and VOD satellite products over different sub-domains and vegetation
types were first performed. Additional experiments with the separate and joint assimilation
of vegetation and soil moisture are also of note. These different assimilation scenarios lend
proof that when following certain land surface variables, the joint assimilation of vegetation
and soil moisture provides more accurate results. Improvements to the initial conditions are
then taken into consideration, and a prospective case study is introduced to transition into a
drought early warning system.
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Introduction Générale
A mesure que le climat évolue vers un état plus chaud et plus instable (GIEC,
2014), il devient d’autant plus important d’améliorer notre compréhension des
événements climatiques extrêmes et de leurs impacts sur les variables des sur-
faces terrestres. Les événements extrêmes tels que les sécheresses, vagues de
chaleur, inondations et feux de végétation devraient augmenter en fréquence
et/ou en intensité en raison des changements causés par le réchauffement cli-
matique d’origine humaine (GIEC, 2014; GIEC, 2018; Ionita et al., 2017). Les
épisodes de sécheresses en particulier font partie des aléas les plus préjudicia-
bles et les plus complexes (Bruce, 1994; Obasi, 1994; Cook et al., 2007; Hagman
et al., 1984), avec de forts impacts sur l’agriculture et la sécurité alimentaire, à
cause de la baisse du rendement des cultures.

Par conséquent, avoir un système de surveillance précis des sécheresses revêt
une importance capitale afin de pouvoir apporter la meilleure réponse possible à
leurs impacts. Le suivi des sécheresses inclut leur déclenchement, leur étendue et
leur intensité. En plus d’une meilleure atténuation et planification, un meilleur
suivi des sécheresses peut permettre de réduire les pertes liées aux ressources
agricoles et en eau, et de minimiser les dommages causés aux filières agricoles
et à la société (Wilhite, Hayes, and Svoboda, 2000).

L’importance grandissante du suivi des épisodes de sécheresse et de leurs
impacts nécessite l’utilisation de toutes les ressources disponibles. Parmi elles,
l’utilisation des modèles numérique des surfaces terrestres (LSM en anglais pour
Land Surface Model) et des satellites d’observations de la Terre (EOs en anglais
pour Earth Observations) est de plus en plus courante. Ces modèles numériques
permettent de simuler les échanges complexes d’énergie et d’eau dans le con-
tinuum sol-végétation-atmosphère. Ils permettent également le suivi en temps
quasi réel de l’évolution de la végétation et des ressources en eau à l’échelle mon-
diale, à des résolutions temporelles et spatiales cohérentes avec leur représenta-
tion des processus. Ces modèles peuvent également prévoir ces évolutions. Ils
peuvent cependant souffrir d’une représentation trop simplifiée des processus,
d’un forçage atmosphérique imparfait et de mauvaises conditions initiales.

Les données d’observations de la Terre depuis l’espace sont disponibles à
l’échelle mondiale, souvent sur le long terme et de manière répétée dans le temps.
Elles fournissent de nombreuses variables liées aux cycles de l’eau et du carbone,
à la végétation, et au bilan d’énergie. Elles sont représentatives d’un instant
précis dans le temps. Toutes les variables ne sont cependant pas observables
depuis l’espace. Il est possible de combiner les modèles et les observations de
la Terre depuis l’espace pour obtenir un résultat maximisant les avantages et
minimisant les inconvénients de chacun. Cela s’opère au travers des systèmes
d’assimilation de données pour les surfaces terrestres (LDAS en anglais pour
Land Data Assimilation System) qui permettent d’assimiler ces observations
dans les modèles de manière séquentielle, mettant à jour au fil de l’eau les
variables d’états et incrémentant leur trajectoire.

Le Centre National de Recherche Météorologique (CNRM, UMR-3589,
Météo-France/CNRS) a mis en place un tel système pour améliorer les sorties
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du modèle ISBA (Interactions entre le Sol, la Biosphère et l’Atmosphère) au
travers de l’assimilation d’observations satellitaire d’indice de surface foliaire
et d’humidité superficielle du sol. Ce système global, LDAS-Monde (Albergel
et al., 2017; Albergel et al., 2020), a la capacité de piloter l’humidité du sol
grâce à l’assimilation de l’indice de surface foliaire, et inversement. De plus,
il a été utilisé et validé dans diverses régions du monde. Il a été montré que
LDAS-Monde peut identifier les sécheresses et suivre leurs impacts sur les
variables des surfaces terrestres à différentes échelles spatiales.

L’objectif principal de ce travail de thèse est de mettre en place la prévi-
sion à court et moyen terme des variables terrestres dans LDAS-Monde. Pour
cela, le forçage de LDAS-Monde par des prévisions de variables atmosphériques
doit être mis en oeuvre. La qualité de l’estimation des variables terrestres qui
caractérisent les sécheresses aux différentes échéances temporelles de la prévi-
sion est primordiale. Elle doit être évaluée dans la perspective d’un suivi pré-
coce et d’une prévision des sécheresses. Cette nouvelle capacité de prévision
dépend aussi de la qualité des prévisions atmosphériques. In fine, l’objectif est
d’exploiter l’information provenant des prévisions des variables terrestres dans
le but de détecter les épisodes de sécheresse avant qu’ils ne se développent,
ce qui permet une meilleure anticipation et une meilleure atténuation de leurs
effets.

Ce travail de thèse contribue à l’effort en cours pour développer l’utilisation
de LDAS-Monde et de l’assimilation de données satellitaires afin de mettre en
place un système d’alerte précoce des sécheresses. Les différents objectifs de
cette thèse sont détaillés ci-dessous :

• Evaluer les performances du système LDAS-Monde, combinant des obser-
vations satellitaires et un LSM, pour une application dans le suivi et la
caractérisation des sécheresses agricoles

• Faire passer LDAS-Monde d’un mode de suivi à un mode de prévision des
variables terrestres

• Analyser l’impact des conditions initiales sur la qualité des prévisions

• Identifier de nouvelles observations permettant d’améliorer les conditions
initiales dans LDAS-Monde

• Tirer profit des améliorations apportées au système LDAS-Monde pour
mettre en place un système d’alerte des sécheresses fondé sur des variables
terrestres utilisées comme indicateurs de sécheresse.

La Figure 1 illustre les questions scientifiques, ainsi que la logique et le
contenu du travail réalisé pendant cette thèse.

Est d’abord présenté, dans le Chapitre 1, le contexte scientifique du travail et
une revue de la littérature scientifique liée aux sécheresses, à la modélisation des
surfaces terrestres et à l’observation de la Terre depuis l’espace. La méthodolo-
gie, y compris une description des données et des outils utilisés, les analyses
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statistiques et les domaines analysés sont décrits dans le Chapitre 2. Les pre-
mières expériences avec LDAS-Monde pour la surveillance des sécheresses et
la transition d’un système de suivi à un système de prévision sont présentées
dans le Chapitre 3. Ce Chapitre comprend un article publié (Mucia et al.,
2020). Le Chapitre 4 analyse les expériences conçues pour améliorer les con-
ditions initiales du système LDAS-Monde grâce à l’assimilation de l’épaisseur
optique de la végétation dans le domaine des micro-ondes (VOD). L’utilisation
du VOD en tant que proxy de l’indice de surface foliaire est évaluée. Plusieurs
expériences d’assimilation sont mises en œuvre afin de comparer l’assimilation
séparée et conjointe de variables de la végétation et de l’humidité superficielle
du sol. Enfin, le Chapitre 5 décrit une étude de cas utilisant un système d’alerte
des sécheresses utilisant LDAS-Monde pour prévoir leurs impacts sur les vari-
ables des surfaces terrestres jusqu’à deux semaines d’échéance. Les premières
étapes permettant d’aller vers la mise en œuvre de la méthodologie proposée
sont appliquées aux expériences précédentes.
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 Questions scientifiques
1) L’intégration de données d’observation de la Terre (EOs) dans les modèles des surfaces 

terrestres (LSMs) permet-elle de mieux representer les sécheresses agricoles ?
2) Un système d’assimilation de données pour le suivi des variables terrestres (LSVs) peut-il être 

adapté pour réaliser une prévision de ces variables ?
● Quels sont les effets des conditions initiales sur la prévision des LSVs ? 
● Quelles données satellitaires innovantes utiliser pour améliorer les conditions initiales ?

3) Comment mettre en oeuvre des fonctions de transfert entre les LSVs et les seuils d’alerte des 
sécheresses ?

Representation des 
 sécheresses 

agricoles

LDAS-Monde est mis en 
oeuvre sur le Nebraska, un 
Etat agricole des USA :

● Forçages atmosphériques 
et bases de données 
d’occupation des terres 
sont-ils de qualité 
suffisante ? 

● La variabilité interannuelle 
des sécheresses est-elle 
bien représentée ? 

● Le LAI observé et simulé 
est-il cohérent avec les 
anomalies anuelles de 
rendement du maïs ?

● La caractérisation des 
sécheresses peut-elle 
être améliorée par 
l’assimilation 
d’observations de LAI et 
de l’humidité superficielle 
du sol ?

LDAS-Monde et la 
prévision des 

LSVs :
Une étude de cas 

sur les USA

Assimilation d’observations 
de LAI et de l’humidité 
superficielle du sol pour 
améliorer les conditions 
initiales des prévisions des 
LSVs :

● L’évaluation avec des 
données indépendantes 
d’évapotranspiration 
d’humidité du sol est-elle 
possible ?

● Quelle est l'influence des 
conditions initiales sur la 
qualité des prévisions ?

● Peut-on améliorer les 
prévisions avec des 
conditions initiales plus 
précises ? Jusqu’à quelle 
échéance ?

Mieux contraindre 
les conditions 

initiales : 
Assimilation du 

VOD 

Etude de cas sur les USA 
utilisant un proxy plus 
fréquent du LAI grâce aux 
observations de VOD :

● L’assimilation plus 
fréquente du VOD 
améliore-elle la 
représentation des 
LSVs ?

● L’assimilation 
d’observations de la 
végétation (LAI ou VOD) 
a-t-elle plus ou moins 
d’impact que celle de 
l’humidité superficielle du 
sol ?

● Valeur ajoutée de 
l’assimilation conjointe de 
plusieurs variables ?

Etude prospective d’un système d’alerte des sécheresses
● Tirer les enseignements des expériences précédentes pour proposer un système d’alerte 

des sécheresses ; l’appliquer à une étude de cas aux USA

● Evaluer les prévisions des LSVs produites par LDAS-Monde à l’aide des indicateurs de 
sécheresse publiés par le US Drought Monitor

Figure 1: Un schéma de la motivation et du travail réalisé dans cette thèse.
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General Introduction
As the climate changes towards a warmer and more volatile state (IPCC, 2014),
the importance of understanding extreme climatic events, and their impacts on
land surface variables (LSVs), mounts. These extreme events, such as droughts,
heatwaves, floods, and fires, are projected to increase in frequency and/or mag-
nitude from changes caused by anthropogenic warming (IPCC, 2014; IPCC,
2018; Ionita et al., 2017). Drought events in particular are among the most
detrimental and complex hazards (Bruce, 1994; Obasi, 1994; Cook et al., 2007;
Hagman et al., 1984), with impacts ranging from damaged crops to famine and
human mortality.

Drought monitoring is then of great importance to track the timing, ex-
tent, and severity of ongoing drought events in order to better respond to their
impacts. In addition to proper mitigation and planning, better drought moni-
toring can decrease agricultural and water resource losses and minimize damage
to infrastructure and society (Wilhite, Hayes, and Svoboda, 2000).

With increased focus on monitoring drought events and their impacts, it is
important to use all the available resources at our disposal. Included among
those, and becoming ever more abundant, are land surface models (LSMs) and
satellite Earth observations (EOs). LSMs are numerical models able to simulate
components and fluxes of the surface vegetation, water, soils, and atmosphere
through complex interactions and exchanges. These models allow for the near
real-time tracking of the evolution of vegetation and water resources, globally
and at consistent temporal and spatial resolutions. Moreover, LSMs have the
ability to forecast LSVs. However, LSMs suffer from imperfect model physics
and poor initial conditions.

Satellite EOs provide unparalleled, often global and long term, observations
of many important variables, but also suffer from the inability to observe all
LSVs, are representative of only an instant in time, and lack the capacity to
forecast. However, through the combination of LSMs and EOs, a resulting prod-
uct can be obtained maximizing the advantages, and minimizing the drawbacks
of each by themselves. Land Data Assimilation Systems (LDAS) perform this
task of sequentially assimilating and integrating observations into LSMs, and
update the state variables to increment the model trajectory.

The French National Centre for Meteorological Research (CNRM) has imple-
mented an LDAS in order to sequentially drive the ISBA (Interactions between
Soil-Biosphere-Atmosphere) LSM through the assimilation of satellite-derived
leaf area index (LAI) and surface soil moisture (SSM). This global LDAS-Monde
(Albergel et al., 2017; Albergel et al., 2020) has the ability to drive soil moisture
processes through the assimilation of LAI, and vice-versa. Additionally, it has
been tested and analyzed over various regions and has been able to identify and
monitor drought impacts on the land surface at various scales.

In this work, LDAS-Monde is enhanced with the capability to ingest medium
range atmospheric forecasts hence producing daily forecasts of the land surface.
The responses and quality of surface variables to different forecast time frames
is critical for the monitoring and forecasting of drought impacts. With this new
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forecast capability, and appropriate atmospheric forecasts, it is possible to ana-
lyze land surface forecasts with the intent to detect drought events before they
fully develop, allowing for better preparation and mitigation of the disaster’s
effects.

This thesis works towards the ultimate goal of using LDAS-Monde, and the
data assimilation therein, to create an objective drought alert system. The
various objectives of this thesis are as follows:

• Assess the performance of the LDAS-Monde system, combining satellite
Earth Observations (EOs) and Land Surface Models (LSMs), for the use
of monitoring and representing agricultural droughts

• Transition LDAS-Monde from a purely monitoring mode to a forecast
mode, enabling the prediction of Land Surface Variables (LSVs)

• Analyze the effects of system’s initial conditions on the forecasts of LSVs

• Identify new observations of variables that can improve the initial condi-
tions in LDAS-Monde

• Compile the combined improvements and knowledge of the LDAS to im-
plement a drought alert and warning system based on selected LSVs as
drought indicators

Figure 2 presents a diagram of the scientific questions, rationale, and work
paths completed in this thesis.

This thesis first covers the scientific context for the work and a review of
the scientific literature related to droughts, land surface modelling, and satellite
Earth observations in Chapter 1. The methodology of this work, including a
description of the data and tools used, the statistical analyses, and the domains
analyzed are provided in Chapter 2. The initial experiments with LDAS-Monde
for drought monitoring, and the transition from a monitoring to forecast sys-
tem are shown in Chapter 3, including a published article (Mucia et al., 2020).
Chapter 4 analyzes experiments designed to improve the initial conditions of
LDAS-Monde through the assimilation of vegetation optical depth (VOD) as
an LAI-proxy, and analyzes differences from the separate and joint assimila-
tion of LAI or VOD and SSM. Finally, Chapter 5 proposes a drought warning
case study using LDAS-Monde to predict drought impacts on LSVs. The first
steps towards implementing the proposed drought alert methodology were also
applied to previous experiments to provide a proof of concept.
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Scientific Questions
1) Can a combination of satellite Earth Observations (EOs) and Land Surface Models (LSMs) 

represent agricultural droughts?
2) Can Land Surface Data Assimilation systems transition from monitoring to forecasting Land 

Surface Variables (LSVs)?
● What are the effects of the initial conditions on the forecast of LSVs? 
● How to bring in new satellite EOs to further improve initial conditions?

3) How can we implement transfer functions between the system variables and warning 
indicators for drought?

Representation of
Agricultural 

Droughts

LDAS-Monde land surface 
data assimilation system is 
run over Nebraska, USA, a 
state with heavy agriculture 
and irrigation

● Are atmospheric forcing 
and land use databases 
of sufficient quality?

● Is the inter-annual 
variability of droughts 
well represented?

● Are modeled and 
observed LAI well 
correlated to annual 
corn yield anomalies?

● Can the representation 
of Drought be further 
enhanced by the 
assimilation of LAI and 
SSM observations?

LDAS-Monde & 
LSVs Forecast:

Forecast case study 
over the Continental 

US (CONUS)

Assimilation of LAI and SSM 
improve representation of 
LSVs in LDAS-Monde, thus 
improving initial conditions 
for better land surface 
forecasts

● Are independent 
evaluation with 
evapotranspiration and 
in-situ SM observations 
possible?

● What is the impact of the 
initial conditions on the 
accuracy of the 
forecasts?

● Can more accurate initial 
conditions lead to more 
accurate forecasts for 
longer forecast periods?

Constraining the 
Initial Conditions: 

Assimilating 
Vegetation Optical 

Depth (VOD)

Case study over CONUS 
using more frequent 
observations of VOD 
transformed to an LAI proxy

● Does the more frequent 
assimilation of VOD 
improve representation 
of LSVs?

● Does the assimilation of 
vegetation LSVs (LAI or 
VOD) have a stronger 
impact than soil 
moisture? 

● What is the added value 
of jointly assimilating 
vegetation LSVs (LAI or 
VOD) and SSM?

Prospective Drought Warning System Case Study
● Take lessons learned from previous experiments and apply them to plan a drought 

warning/alert case study

● Determine how accurately LDAS-Monde LSV forecasts are compared to U.S. Drought 
Monitor and other drought indices

Figure 2: A diagram of the motivation and work completed in this thesis.
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Chapter 1

Scientific Context

This chapter introduces the scientific context and motivation for the thesis. The
importance of drought monitoring and forecasting is discussed, and a review of
current drought monitoring efforts and the different definitions of drought is
provided. Then, the significance of land-atmosphere interactions is detailed,
focusing on the energy, water, and biogeochemical cycles. An overview of land
surface modeling, its history and future directions is then presented. Satellite
Earth observations are then examined, leading into the merging of Earth ob-
servations and land surface models. Finally, this chapter provides an overview
of further chapters, and the work and objectives therein.
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1.1 Importance of Monitoring and Forecasting
Drought

Drought events have been found to be among the most detrimental natural
hazards in existence in today’s society (Bruce, 1994; Obasi, 1994; Cook et al.,
2007). Billions of dollars are spent every year in the United States (Wilhite, 2000
citing FEMA, 1995) and the European Union (EC, 2007a; EC, 2007b) in effort
to address drought damages and impacts. Drought is also the most complex
natural hazard, leading to it being the least understood, and its effects reach
more people than any other natural hazard (Hagman et al., 1984). In addition
to the massive economic cost of damages, droughts can transcend monetary
losses and cause famines and human mortality.

Agricultural regions everywhere can be especially vulnerable to drought
based on their natural dependence on water resources. Impacts to agricul-
ture can be felt from the relatively early stages of drought and can continue
to ripple through communities long after the drought event itself has finished
(Wilhite, 2000). Initial crop damage can lead to economic losses from low
crop production, resulting in strained financial institutions and unemployment
(Western Governors Policy Office, 1977). Some regions may face even more
challenges associated with droughts, with impacts also damaging food security
(FAO, 2003; Haile, 2005; Devereux, 2007).

While far from fully understood, advancing knowledge of how climate change
affects drought brings additional worries. Extreme meteorological and climatic
events are likely to increase in frequency and/or magnitude due to anthropogenic
climate change (IPCC, 2014; Ionita et al., 2017). Specifically, droughts are
projected to increase in the Southern Europe and Southern Africa as global
surface temperatures approach 2°C above the pre-industrial average (IPCC,
2018). Projected changes to other regions of the globe are determined to have
"Low Confidence" due to the high variability and longer duration of drought
events. Because droughts tend to be longer lasting than other meteorological
phenomenon, their frequency is low, and thus climate projections have less
samples to analyze and any conclusions drawn are done so with less certainty
(Vasiliades, Loukas, and Patsonas, 2009).

So-called flash droughts are an increasingly studied phenomenon in recent
years. Defined as "a subset of all droughts that are distinguished from more
conventional slowly developing droughts by their unusually rapid rate of inten-
sification" (Otkin et al., 2018). Precipitation deficits alone are unlikely to lead
to flash drought events. However, when those deficits occur in tandem with
other anomalies such as high temperatures, strong winds, low humidity, and
clear, sunny skies, the increased evaporative demand can quickly plunge vege-
tation into stress, depleting soil moisture reserves and striking the beginning of
a flash drought event (Hunt et al., 2009; Hunt et al., 2014; Mozny et al., 2012;
Otkin et al., 2013; Anderson et al., 2013; Ford et al., 2015; Ford and Labosier,
2017). With far more confident projections of surface temperature increases
globally (IPCC, 2018), a warming planet provides a generally higher potential
for rapid intensification and the appearance of flash droughts.
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With looming impacts to agriculture, water resources, and food security, it
is of the utmost importance to minimize loss of resources, infrastructure, and
even life by preparing for, monitoring, and predicting drought events. Effective
monitoring of droughts leads to reduced vulnerability and impacts (Wilhite,
2000). Drought monitoring is only a single part of a far larger strategy needed to
manage the crisis and risk of drought, but it plays a key role. Providing timely,
critical information regarding onset and severity of drought events to decision
makers at all levels, enables local and national officials to enact responsive and
mitigating measures (Wilhite, Hayes, and Svoboda, 2000), preventing more
severe agricultural, hydrologic, and socio-economic losses.

Drought monitoring, defined as, "tracking the severity and location of
drought" (Hayes et al., 2012), started out focusing specifically on precipita-
tion and precipitation deficits (Heim, 2002). Various indicators (observed
parameters such as temperature, precipitation, water levels, etc) and indices
(computed numerical values representing drought magnitude or severity
using indicators) (Hayes et al., 2012) were developed in order to attempt to
track drought severity on a large scale. Popular and still commonly used
examples include the Palmer Drought Severity Index (PDSI) (Palmer, 1965)
and Standardized Precipitation Index (SPI) (McKee, 1995), among countless
others. The SPI has since been adopted as the worldwide standard by the
World Meteorological Organization used to track meteorological drought. And
while these indices are simple, easy to calculate ways to measure aspects of
drought, they are limited to meteorological assessments, can often have poor
spatial representation due to limited observational coverage, and can also fail
to adequately identify duration of events (Vasiliades and Loukas, 2009).

For current drought monitoring, it is well recognized that no single indicator
or index fully describes the complex impacts of drought. It has therefore been
a goal to merge indicators and indices into single products. These so-called
hybrid approaches classify drought in simplistic systems for easy use by decision
makers and the public (Hayes et al., 2012). Among these hybrid approaches,
the United States Drought Monitor (USDM) (Svoboda et al., 2002), and North
American Drought Monitor (NADM) (Lawrimore et al., 2002) are considered
the current state-of-the-art drought monitoring tools. They take in a wide range
of information into consideration, including local expertise, standard drought
indicators, climatology, fire indices, satellite-based vegetation assessments, and
hydrologic data. The USDM in particular then uses experts to synthesize all
the available information from these sources, and ground truths this information
with local observers across the country. The Drought Monitor works as a weekly
summary and assessment of drought conditions and impacts, and has no forecast
component. The severity of droughts is determined by a percentile ranking as
seen in Figure 1.1. Analysis material and other objective drought indices have
moved towards this same approach of percentile rank in order to better aid and
compare to the USDM.

Other countries and regions have taken similar methodology and applied
it to their region (such as The German Drought Monitor (Zink et al., 2016)),
and others have created hybrid approaches with different metrics (Southeast
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Figure 1.1: Categories of drought magnitude use in the Drought Monitor. Each
category is associated with its percentile chance of happening in any given year out of

100. (Source: Svoboda et al., 2002)

Asia Drought Monitor (IWMI, 2015), European Drought Observatory (Vogt
et al., 2011), and African Drought Monitor (Sheffield et al., 2014) for example).
Following advances in international and intergovernmental coordination, and
solving scientific and technical issues, a Global Drought Monitor Portal has also
been created, amassing a wide range of current drought indicators and impacts,
as well as setting the stage for a Global Drought Early Warning System (Heim
and Brewer, 2012).

While monitoring drought impacts and events provides necessary informa-
tion to stakeholders regarding retroactive actions to take, it is also necessary
to couple monitoring with early warning. A Drought Early Warning System
(DEWS) is a tool designed to predict the occurrence and impact of a drought
event as well as elicit a response (Buchanan Smith and Davies, 1995). Sev-
eral shortcomings of DEWS have been noted (Wilhite, Sivakumar, and Wood,
2000), and specifically include the need to invest in research and increase the
reliability of seasonal forecasts. Additionally, Hayes et al. (2011) identifies that
successful DEWS may contain numerical models and Land Data Assimilation
Systems (LDAS). With these tools, accurate numerical forecasts of land surface
variables (LSVs) linked to drought are made possible.

1.1.1 Definitions of Drought
An event slow to develop and often identified in retrospect, drought has been
called a creeping phenomenon (Gillette, 1950). While the definition of drought
must be viewed from the perspective of each discipline (Wilhite and Glantz,
1985; Wilhite, 2000), the most general definition relates to a deficit or delay
of precipitation over a region for some period of time. Clearly more specific
definitions are required to better compartmentalize and eventually respond to
drought events. This thesis uses the disciplinary views of drought from Wilhite
and Glantz (1985). Droughts are separated into meteorological, hydrologic,
agricultural, and socio-economic droughts. And they are defined as follows:
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1. Meteorological Droughts are characterized by periods of prolonged and
abnormal moisture deficiency, primarily measured by lack of solid or liquid
precipitation (Palmer, 1965)

2. Hydrologic Droughts are characterized by deficiency in water supply on
Earth’s surface or deficiency in precipitation, runoff, or accumulated water
in various storage capacities (Yevjevich, 1969)

3. Agricultural Droughts are characterized by deficiency in soil moisture that
leads to hindrance of plant growth and a significant decline in crop yield
(Boken, Cracknell, and Heathcote, 2005)

4. Socio-economic Droughts are characterized by conditions where water de-
mand is greater than supply, leading to societal and economic impacts
(Dinar and Mendelsohn, 2011)

Figure 1.2: Relationship between various types of drought and duration of drought
events. (Source: Wilhite, 2000)

Figure 1.2 displays the interconnected nature of the different types of
drought, as well as characterizes them by duration. Meteorological, hydrologic,
and agricultural droughts are more heavily dependant on various statistical
indices to diagnose the onset, severity, and duration of drought events.
Drought’s impacts on agriculture are the most direct, devastating, and costly
of the four types listed above (Drought.gov, 2021). Regional crop damage and
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loss permeates globally, sharply increasing food prices, and hurting economies,
particularly fledgling economies (Sternberg, 2011).

1.2 Land-Atmosphere Interactions
The weather and climate of the planet Earth are the results of a number of
enormously complex, interconnected planetary systems. The main compo-
nents of the Earth system are the atmosphere, the hydrosphere (including the
cryosphere), pedosphere (soils), and the biosphere, (Bonan, 2016). The coupling
of the biosphere and hydrosphere on the surface to the atmosphere are found
to play a pivotal role in a better understanding of the Earth system (Bonan,
1995). Additionally, it has been found that land-atmosphere feedbacks, specif-
ically soil-moisture-temperature and soil-moisture-precipitation feedbacks, are
an important source variability when modelling future climates (Seneviratne
et al., 2006).

Energy, water, and biogeophysical cycles link the aforementioned Earth sys-
tems. These cycles interact between the atmosphere, biosphere, pedosphere,
and hydrosphere, driving changes and feedbacks, accentuating or mitigating
changes to the greater Earth system (Bonan, 2016). Improving our understand-
ing of the interconnections between vegetation and the atmosphere enables us to
better describe, monitor, and predict the direct and indirect impacts of drought
events.

1.2.1 Energy Balance
The sun is the driving force for the entire planet. The inbound energy drives
the atmospheric and hydraulic circulations and most importantly, provides the
energy for vegetation to grow. This vegetation base provides habitats and
nutritional energy for a large array of animal life, as well as provides humans
with fossil fuels, food, and materials such as wood.

Conservation of energy, described by the first law of thermodynamics, re-
quires that a closed system may allow energy to change forms, but the total
amount of energy must be conserved. We primarily talk about four types of
energy in the global energy budget: shortwave solar radiation, longwave radi-
ation, the turbulent surface fluxes of latent and sensible heat, and the ground
heat flux (Kiehl and Trenberth, 1997; Trenberth, Fasullo, and Kiehl, 2009).
Shortwave radiation from the sun enters Earth’s atmosphere and is either ab-
sorbed or scattered (including scattering back out to space). In the context of
this research, the energy balance of the surface is of the highest interest. When
this incoming energy reaches the surface, its interactions with vegetation drive
photosynthesis, as well as the latent and sensible heat fluxes that are critical to
the coupling of the vegetation and the lower atmosphere. The most simplistic
description of the surface energy balance can be stated as follows:

Rn = G+H + F + LE (1.1)
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Where Rn is the net radiation, G is the ground heat flux, H is sensible heat
flux, F is energy absorbed in photosynthesis, and LE is the latent heat flux.
Energy fluxes are expressed in Wm−2. A transformation of the latent heat flux
can often be useful when focused on this variable.

Rn = G+H + F + λET (1.2)

Where λ is the latent heat of vaporization for water, and ET is the rate of
evapotranspiration (Garratt, 1992). Sensible heat flux is the movement of long-
wave radiation through conduction or convection into and from the lower at-
mosphere. Latent heat flux is the transformation of energy into and out of
water through the processes of evaporation and condensation. The monitor-
ing of LSVs, specifically regarding drought, are especially focused on this latent
heat flux. Increased surface temperatures and low humidity can rapidly increase
the rate of evapotranspiration, exhausting the soil water reserves and crippling
vegetation.

1.2.2 The Water Cycle
Water dominates the surface of planet Earth. Seventy-one percent of the surface
is covered by water, with oceans holding 96.5% of the world’s supply. Freshwater
only accounts for 2.5%, with nearly 70% of that trapped in glaciers and ice
caps. Groundwater holds most of the remaining nearly 30% (Shiklomanov,
1993). This vast amount of water is continuously cycled between the surface,
subsurface, and atmosphere, and it is the transition from one area and form to
another that is of great concern to scientists. Figure 1.3 gives a simplified view
of the water cycle (USGS, 2019).

In essence, the water cycle is a balance between water moving towards the
surface by precipitation and deposition, and water moving towards the atmo-
sphere via evapotranspiration and sublimation. Over the oceans, evaporation is
greater than precipitation, resulting in a deficit of water. However, precipitation
exceeds evaporation over land, with the surplus water flowing into the oceans
and replenishes the net loss of water (Bonan, 2016). Water exists in three forms
on the planet, and a significant amount of energy is required to change its state.
In fact, over 50% of the net radiation at the surface is used to evaporate water
(Trenberth, Fasullo, and Kiehl, 2009). This latent heat of vaporization is a key
element in both the global energy and water cycles.

Water is the basis for all life on Earth, and therefore it is important to mon-
itor this precious resource. With respect to drought, one of the most important
sources of water is soil moisture. While only containing 0.05% of all freshwa-
ter (Shiklomanov, 1993), soil moisture controls a large number of interactions
between the biosphere and atmosphere. Plant roots directly access this reser-
voir of water for photosynthesis, and lack of available soil moisture can lead to
wilting and plant death.

The management of water resources is an ever growing field, and its impor-
tance has been highlighted in recent decades. Sustainability of water resources
is also crucial, defined as ... systems designed and managed to fully contribute
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Figure 1.3: A simplified view of the global water cycle. (Source: USGS, 2019)

to the objectives of society, now and in the future, while maintaining their eco-
logical, environmental, and hydrological integrity (ASCE, 1998). The delicate
balance of sustainability makes water resource monitoring, as well as monitoring
the impacts of divergence from water norms, a very important task.

1.2.3 Biogeochemical Cycles
Another major cycle describing land-atmosphere interactions is the biogeochem-
ical cycle. This cycle includes the transition movement of major gases, namely
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Each one
of these are greenhouse gases, with significant perturbations in their relative
amounts directly impacted by human behavior. This also makes the variability
of sources and sinks of these gases less well understood, which poses a significant
hurdle in projecting future changes.

Comprising a major portion of the biogeochemical cycle is the carbon cycle,
illustrated in Figure 1.4. Comprised mainly of two domains in terms of the
timeline of cycling, a fast flux reservoir, and slow flux reservoir. The fast do-
main consists of carbon rapidly exchanging between the atmosphere, the ocean,
vegetation, and soils (IPCC, 2013). These transitions happen on the scale of
years to millennia. On the other hand, the slowly fluxing domain consists of
stored carbon in sediments and rocks, which are weathered or eroded on the
scale of 10,000 years or more.
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Figure 1.4: A simplified view of the global carbon cycle. (Source: Friedlingstein
et al., 2020)

Of most immediate concern for this study is the carbon exchanges between
the soils, atmosphere, and vegetation. At the canopy level and below, the
process of carbon fixation and respiration is well understood (Schulze, 1970;
Black, 1973; Poorter, Remkes, and Lambers, 1990). Carbon is fixed to plants
from the atmosphere, and is cycled through the plants and soil through carbon
respiration (Beer et al., 2010). Photosynthesis is the process by which plants
absorb light energy to transform the carbon from the atmosphere into carbo-
hydrates. This process occurs at the cellular level of leaves, and is given by the
Equation 1.3:

nCO2 + 2nH2O
Light−−−→ (CH2O)n + nO2 + nH2O (1.3)

With n being the number of molecules of CO2 combining with water to
form (CH2O)n and releasing n number of molecules of oxygen (Bonan, 2016).
(CH2O)n represents all carbohydrates, which contain many forms of sugars,
starches, and other compounds of hydrogen, oxygen, and carbon.

Plants can maximize photosynthesis through several ways, namely reducing
resistance to CO2 diffusion by having many large and open stomata and/or
increasing fixation rates by having higher concentrations of photosynthetic en-
zymes. However, these processes are not without drawbacks. Decreasing resis-
tance to CO2 diffusion also allows water to escape the plant through transpira-
tion, and photosynthetic enzymes require the often limited resource of nitrogen.
While the general photosynthetic reaction in Equation 1.3 is applicable to most
plants, there are wildly differing pathways of exactly how plants efficiently fix
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carbon, while minimizing water loss and conserving resources such as nitro-
gen. Primarily resulting from distinct environmental conditions, the C3, C4,
and CAM photosynthetic pathways are important to understand for vegetation
monitoring and modelling. The brief description of these pathways below are
derived from Forseth (2010).

The C3 pathway is one by which the initial products of photosynthesis are
3-carbon compounds known as phosphoglyceric acid or PGA. Carbon is fixed
via Equation 1.4:

RuBP +CO2 → 2PGA (1.4)

Where RuBP is a 5 carbon sugar, ribulose bisphosphate. This reaction is
catalyzed by the rubisco enzyme (ribulose bisphosphate carboxylase-oxygenase),
which also facilitates a secondary reaction with O2 given in Equation 1.5.

RuBP +O2 → PGA+ PG (1.5)

With PG being 2-phosphoglycolate, which is later used in the photorespi-
ration cycle (where CO2 is released). This process of photorespiration acts to
counter photosynthesis due to the rubisco being sought after by both CO2 and
O2, as well as directly releasing CO2 during the cycle. Often, warm and dry
regions attain higher photorespiration after stomatal closure, reducing net pho-
tosynthesis up to 50% Forseth (2010). This detriment to the plant is generally
thought of as the primary driver of the alternative C4 and CAM pathways. The
C3 pathway is both the oldest evolutionarily, and the most environmentally and
taxonomically diverse.

The C4 pathway has different initial enzymes and initial products. To fix
carbon, phosphoenolpyruvate or PEP is used at the outer stage. PEP prefers
CO2 more than rubisco, and does not have an oxygenase reaction. The CO2 and
PEP combine to form a 4-carbon acid. This new PEP reaction is used by the
plant on the outer layers, while also having mostly separated C3 biochemistry in
the inner layers. The C4 acid is moved inwards where photorespiration occurs,
and CO2 is released directly next to rubisco enzymes, thus providing a far higher
advantage of CO2 over O2. This C4 process becomes more efficient than C3
when there is lower stomatal conductance (typically due to high temperatures
and/or low humidity).

Lastly, CAM, or Crassulacean Acid Metabolism, is a pathway of photosyn-
thesis that combines the PEP enzymes of the C4 pathway with a rigid diurnal
cycle. Stomata are open at night allowing the absorption and fixation of CO2
via PEP, which is stored in malate. During the daytime, this malate undergoes
photorespiration, and the released CO2 is used in the C3 pathway. Plants us-
ing the CAM pathway are generally succulents, although there are a number
of species that have the ability to switch between C3 and CAM pathways un-
der stressful conditions, and even seen as a response to climate change (Lande,
2009; Nicotra et al., 2010).

In the context of this research, these differences in photosynthetic pathways
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are important due to the often very different responses of LSVs and EOs. En-
vironmental temperatures, humidity, soil composition, and even altitude play a
large role determining the carbon fixation pathways, and are important aspects
to consider during drought events. Additionally, many modern LSMs (includ-
ing the ISBA model used in this thesis) explicitly model canopy carbon flux,
intimately tied to the vegetation pathway type. Knowing these differences can
help us understand different observed and modelled plant responses with and
without drought. We can also analyze LSVs and EOs over regions primarily
comprised of C3 or C4 plant types, which can be used as a way to check theory
and analysis.

1.3 Land Surface Models
The energy balance, water cycle, and biogeochemical cycles play key roles in
controlling land surface processes. Land surface models (LSMs) are numerical
models that attempt to describe and represent these processes on both small
and large scales. LSMs provide consistent temporal and spatial outputs of vari-
ables of interest called land surface variables (LSVs). These LSMs also provide
the land surface component of global climate models (GCMs), thus directly in-
fluencing projections of future climate (McGuffie and Henderson-Sellers, 2001).

Land surface modelling first began with Manabe (1969) depicting soil-
vegetation-atmosphere transfer of water with a simple bucket scheme. While
becoming a major step forward for the representation of land surface processes,
the simple bucket scheme was not able to well represent longer term hydro-
logical variation, nor plant physiology. Various other simple transfer schemes
emerged through a second generation of models including a soil heat and
moisture flux scheme (Deardorff, 1978) and a general biosphere-atmosphere
transfer scheme (BATS) (Dickinson, 1986). Soon after, Sellers et al. (1986)
became the first model to explicitly model plant physiology simple biosphere
transfers coupled to a GCM with the Simple Biosphere Model (SiB). Another
model, Interactions between Soil, Biosphere, and Atmosphere (ISBA) was
developed and incrementally improved, with the addition of high accuracy
calibration of coefficients by other models and experimental data (Noilhan
and Planton, 1989; Noilhan and Mahfouf, 1996). ISBA was also explicitly
designed to be included in and coupled with meteorological models, which has
been shown to improve boundary layer accuracy (Viterbo et al., 1999) and
precipitation forecasts (Betts et al., 1996).

For use in climate models, Pitman (2003) postulates LSMs must accurately
represent the surface energy budget, the surface water balance, surface carbon
exchanges, and the climatic effect of snow. Third generation LSMs are moving
to fulfil these requirements, and more. The focus of most of the improvements
of third generation models focus on the carbon balance and representation of
leaf stomatal conductance. Models continued to evolve, with several complex
processes incorporated such as net photosynthetic rates, stomatal conductance
(Sellers et al., 1992), and the exchange of CO2 and H2O gas at the leaf level
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(Collatz et al., 1991). Advances to the ISBA model were also made by adding
stomatal resistance and photosynthesis at the leaf level (Calvet et al., 1998).

According to (Blyth et al., 2021), modern LSMs contain seven basic compo-
nents, as shown in Figure 1.5. These components include surface and canopy
processes, snow and soil physics, water bodies, vegetation physiology and pho-
tosynthesis, soil biogeochemistry, vegetation dynamics, and land and water
use. Figure 1.5 also describes the pre-2000 developments, recent advances,
and future directions of each component. Figure 1.6 shows the same layout,
taken from Blyth et al. (2021), but for LSM exchanges instead of the individ-
ual components. The exchanges include land-atmosphere, surface-subsurface,
physics-biogeochemistry, vegetation-soil, vegetation-landscape, land-catchment,
and water-humans.

Figure 1.5: Land Surface Model Component development for pre 2000, recent ad-
vances and future directions. (Source: Blyth et al., 2021)

As models include more and more processes, their complexity increases sig-
nificantly. Current generation models face the delicate balancing act of attaining
the most accurate modeling and forecasting, while keeping the model itself suffi-
ciently simple to be understood and to be coupled with atmospheric and climate
models. Figure 1.7 shows the rough timeline of parameters and processes added
to LSMs (Fisher and Koven, 2020)

These modern LSMs play an important role in the monitoring of agricul-
ture, particularly for extreme events. LSMs allow the selection of individual
and collective LSVs to easily monitor through uniform temporal progression,
and the inclusion of crop and crop types allows for a more dynamic approach
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Figure 1.6: Land Surface Model exchanges, basic description, and development for
pre 2000, recent advances and future directions. (Source: Blyth et al., 2021)

to monitoring droughts. Additionally, the coupling of LSMs to GCMs highlight
the importance of land-atmosphere interactions, and contribute to the more
accurate prediction of future climate conditions through more realistic photo-
synthesis and conduction schemes better representing the energy, water, and
carbon fluxes.

While LSMs can have explicit or implicit crop schemes, they are different
compared to traditional crop models. LSMs describe interactions and exchanges
between the atmosphere, surface canopy processes, vegetation physiology and
dynamics, land use, water use, soil chemistry, and water bodies. They are a
broad look at all (or most) surface processes, able to represent land-atmosphere
exchanges of heat and mass at fine temporal resolutions, and simulate the im-
pact of the diurnal cycle. Crop models on the other hand, generally operate
at a daily time step, focus specifically on predefined plant systems and the
interactions between those crops and the environment, and simulate crop de-
velopment, growth, nutrient and water uptake, and yield (Asseng et al., 2014;
Nassiri Mahallati, 2020). Both crop models and LSMs have their uses in agri-
cultural sciences, but this thesis focuses on the broader characterizations and
applications of LSMs.
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Figure 1.7: A schematic representing the approximate timing of new model compo-
nents commonly employed in land surface models. (Source: Fisher and Koven, 2020)

1.4 Earth Observations
The launches of Sputnik 1 for the Soviet Union in 1957 and Explorer 1 for
the United States in 1958 brought about the space age and soon after, ushered
in a technological revolution for Earth sciences. TIROS-1 (Television Infrared
Observation Satellite), launched in 1960 by the United States, became the first
successful meteorological satellite, sending back the first images of the planet
Earth, many of them used for meteorological analysis. But satellite remote
sensing really took off in the early 1970s, with the launch of ERTS-1 (Earth
Resources Technology Satellite), later renamed Landsat 1. This launch com-
menced the historic Landsat program which continues to this day.

The images and data observed by these early satellites began to grab the
attention of more and more Earth scientists. With the scale and (more or
less) consistent overpass rates, these satellite observations could provide de-
tailed information on land use, water resources and hydrology, geology, soils,
vegetation, forestry, and natural resource exploration (NASA Landsat, 2020;
Lo, 1986). This technology offers the means to effectively study large areas in
contrast to more traditional methods such as field surveys (Langley, Cheshire,
and Humes, 2001). In fact, the importance of satellite Earth observations (EOs)
have been so critical in Earth sciences that there have been calls to consider
them "critical societal infrastructure" (Onoda, 2017).

Earth observations can be broadly separated into two types of remote sensing
by the electromagnetic spectrum, optical (consisting of visible light, shortwave
and intermediate infrared wavelengths), and microwave (consisting of microwave
and radio wavelengths) (Onoda, 2017). The general tendency of reflectance of
land, water, and vegetation in short wavelengths of the electromagnetic (EM)
spectrum are seen in Figure 1.8.

Among the variables sensed in optical and infrared wavelengths are many
observations of vegetation such as the Normalized Difference Vegetation Index
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Figure 1.8: Reflectance of electromagnetic radiation by land, water, and vegetation
as a function of wavelength. (Source: JAXA, 2016)

(NDVI) (Rouse et al., 1974; Tucker, 1979) or Leaf Area Index (LAI) (Wat-
son, 1947; Price, 1993), ground cover such as land cover and land cover change
(Lambin and Strahlers, 1994), and atmospheric phenomena such as clouds and
water vapor (Fritz and Wexler, 1960; Inoue, 1985; Dalu, 1986). These wave-
lengths may be imaged with multispectral or hyperspectral sensors. Multispec-
tral sensors only observe a handful of broad bands of the EM spectrum, while
hyperspectral sensors observe up to hundreds of very narrow bands. Hyper-
spectral data can provide very useful information pertaining to vegetation and
the atmosphere because of this high spectral resolution, but it can also be an
overwhelming amount of data, and is not yet widely available at global scales.

Microwave sensors can be either active or passive. Active sensors emit mi-
crowave radiation themselves and receive the reflections (Dobson and Ulaby,
1986), while passive sensors only measure radiation emitted by the Earth’s sur-
face (Njoku and Entekhabi, 1996). Microwave remote sensing typically moni-
tors parameters such as soil moisture, vegetation, and geography (altitude and
land uplift/subsidence). Among the active sensors is Synthetic Aperture Radar
(SAR) (Curlander and McDonough, 1991), which uses the motion of the satellite
to construct an aperture far larger than its physical antenna, and thus increas-
ing the spatial resolution of the system. Long microwave wavelengths of satellite
sensors are used to provide important information on soil moisture properties,
and even measure some subsurface moisture. By contrast, short wavelengths
are easily scattered by vegetation, and are often used to gain valuable infor-
mation about vegetation extent and health, as well as the soil moisture at the
very top layers of soil (Onoda, 2017). While longer wavelengths of microwave
radiation allow penetration and observations through vegetation, the signal is
still attenuated. This attenuation by the vegetation is referred to as vegetation
optical depth (VOD) (Jackson and Schmugge, 1991), and can be correlated to
biomass as well as optical vegetation indices (Li et al., 2021). Many wavelengths
of microwave observations also have a distinct advantage over optical indices:
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all weather retrievals. High microwave frequencies become sensitive to atmo-
spheric moisture, starting around the Ku-band. Lower microwave frequencies
measured from space are not strongly impacted by clouds and precipitation.

Since the emergence of satellite remote sensing, these observations have been
used to monitor drought conditions, typically through assessments of vegetation
health. The first major application of this was with NDVI (Rouse et al., 1974;
Tucker, 1979) applied to the AVHRR instruments (Tucker and Sellers, 1986;
Gutman, 1990; Kogan, 1990; Hutchinson, 1991). The consistent and relatively
high temporal resolution (compared to in situ monitoring stations with 10 day
cumulative records) proved to be instrumental in monitoring droughts over the
Sahel (Tucker et al., 1991), the United States (Burgan and Hartford, 1993),
and Southern Africa (Unganai and Kogan, 1998) for just a few examples among
many others. Several additional vegetation indices were created and widely used
to monitor drought conditions such as the Vegetation Condition Index (VCI)
(Liu and Kogan, 1996) which is based on NDVI, and the Temperature Condition
Index (TCI) (Kogan, 1995) based on thermal vegetation and soil conditions.
However, even with a wide range of observations and indices, it became well
understood that no single index can sufficiently represent the complexity of
drought (Hayes et al., 2005). Still, the continuous, high quality, large scale
observations from satellites provide the ability to close the "information gap"
and to improve drought monitoring capabilities (Hayes et al., 2012).

Future satellite missions promise to provide continuous observations in sim-
ilar ways to the past decades. Mission continuations and follow-ons mean that
the individual spectral bands will build long term databases, which can be used
to study both short and long term environmental trends. Research also contin-
ues on how to best used these bands. Ever increasing spatial resolutions, both
through scientific agency missions and private endeavors, are bringing subjects
such as precision agriculture to the forefront.

1.5 Use of Earth Observations in Land Surface
Models

Land surface models and Earth observations are good tools on their own to
monitor LSVs. But it is also clear that both have weaknesses. LSMs pro-
vide the capacity of giving consistent, sub-daily output of dozens of important
LSVs. These models help improve understanding of land surface interactions
and feedbacks with the climate system. LSMs have gone beyond one of their
initial purposes of providing land surface conditions for weather and climate
models, and now can serve to monitor and forecast land surface conditions on
their own rite (Balsamo et al., 2015; Schellekens et al., 2017) However, the bi-
ological and hydrological processes coded within the model are never perfect,
and their accuracy can suffer from errors and uncertainties in model physics
and parameterization, poor initialization, or errors in model forcing.

On the other hand, EOs provide high quality observations, often globally,
of many important environmental parameters. But these observations too have
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errors (calibration or otherwise), and are unable to observe all domains at all
times. Autonomous satellite data analysis is constantly improving, yet there
remains times when it is unclear exactly what the observations are of (fog vs
low clouds, dew drops on vegetation vs soil moisture for example). They also
are physically unable to directly observe some phenomena such as root zone soil
moisture.

Through data assimilation (DA), we can integrate specific EOs into LSMs
and are able to take full advantage of the major strengths of both, while reducing
errors and uncertainties. Numerous studies have confirmed that DA results in
better accuracy than either the model or observations alone (Reichle et al.,
2007; Lahoz and De Lannoy, 2014; Albergel et al., 2017). Satellite observation
products of soil moisture (Reichle, 2005; Barbu et al., 2011), snow cover (Rodell
et al., 2004; Clark et al., 2006; Zhang et al., 2014), snow depth(De Lannoy
et al., 2012; Liu et al., 2013), terrestrial water storage (Zaitchik, Rodell, and
Reichle, 2008), land surface temperature (Reichle et al., 2010), and leaf area
index (Demarty et al., 2007; Barbu et al., 2011; Kumar et al., 2019) have all been
successfully assimilated using various assimilation schemes into various LSMs.
The use of satellite DA has also proven to provide better initial conditions
for numerical weather forecasting (Drusch and Viterbo, 2007; Mahfouf, 2010;
Carrera et al., 2019), better monitoring of vegetation and crops (Albergel et
al., 2010; Barbu et al., 2014; Sawada and Koike, 2016; McNally et al., 2017),
floods (Kussul et al., 2008; Yucel et al., 2015; Chen et al., 2013), and droughts
(Albergel et al., 2018b).

Integrating EOs into LSMs in an effective and consistent way can be a
difficult task. The general overview of data assimilation provided in Lahoz and
De Lannoy (2014) is summarized here. One way to approach data assimilation
methodologies is to divide them into variational and sequential. Both can be
associated to ensembles of model simulations. Many of the same statistical
derivations apply throughout all data assimilation, and it is even possible to
rewrite variational approaches as sequential as well as the inverse. Variational
data assimilation is a way to minimize differences between the model and the
background, as well as between predicted observations and real observations.
An observation operator, H, is calculated to be able to merge the different
spatial and temporal resolutions of the model and observations. Under linear
conditions, the penalty function J, Equation 1.6, is sought to be minimized.

J =
1
2(x−xb)T B−1(x−xb) +

1
2(y−H(x))T R−1(y−H(x)) (1.6)

Where x is the model state vector, xb is the prior estimate of x (also called
background), B is the background error covariance matrix, and R is the obser-
vation error covariance matrix.

For sequential data assimilation, the Kalman filter algorithm is used. This
is computed by striving to find the best linear unbiased estimator, with the
Equation 1.7.
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xa = xb + K(y−H(xb)) (1.7)

Where K is the Kalman Gain Matrix defined in Equation 1.8, xa is the
result of the analysis, and y is the observation vector.

K = BHT (HBHT + R)−1 (1.8)

This Kalman Gain Matrix can be applied to nonlinear observation operators
resulting in an Extended Kalman Filter (EKF) or a Simplified Extended Kalman
Filter (SEKF), which is used in this thesis. The details of the SEKF data
assimilation scheme used in this thesis are described in detail in Chapter 2.

Finally, both variational and sequential data assimilation can be used with
an ensemble approach. Ensemble data assimilation casts a slew of short range
forecasts, with increasing ensemble sizes increasing accuracy. One can do this
with Monte Carlo simulations using the Kalman Gain Matrix, resulting in an
Ensemble Kalman Filter (EnKF), or by using a particle filter (PF).

1.6 Objectives of this Thesis and Work Plan
This work tests the application of LDAS-Monde, through the SURFEX mod-
elling platform over the Contiguous United States (CONUS), and several sub-
domains of interest. Various techniques were applied to the system and the
assimilated observations to achieve the best potential for monitoring and fore-
casting drought. Statistical analyses compare the results of our simulations
against independent observations and we examine applications where our anal-
ysis showed potential utility. This document is comprised of the consolidated
results of all the work, to date, on the thesis titled "Assimilation of Satellite
Data for the Monitoring and Prediction of Agricultural Droughts and Water
Resources", and this work is presented in the following chapters.

Chapter 2 - Methodology
This chapter describes all the materials and methodologies employed throughout
this thesis. The SURFEX modelling platform, along with all of its relevant
components are described in detail. The parameters and settings of all of the
experiments that were performed are also laid out. Then, a description of the
data used to assess how the experiments performed is provided. Included in this
data are also the observations that were assimilated in the experiments. Finally,
a section is dedicated to describing the process of analysis and assessment, giving
important details about the statistics and filtering used throughout many of the
experiments.
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Chapter 3 - Importance of Initial Conditions in Forecast-
ing Land Surface Variables
Chapter 3 is the first section dedicated to results of the experiments and anal-
yses. The forecast configuration of the system is described as well as discussion
surrounding the different ways to use it. Next, the published article "From Mon-
itoring to Forecasting Land Surface Conditions Using a Land Data Assimilation
System: Application over the Contiguous United States", is attached, with ex-
panded introduction and conclusion sections to fully encapsulate the work done
on the forecast LDAS. Finally, a section is dedicated to several experiments
over a particular state of the U.S., Nebraska, which is a good test bed for some
analysis due to its heavy agriculture and significant amount of irrigation. These
experiments also aided in the understanding of the model, data assimilation,
land use database, and potential applications at higher resolutions.

Chapter 4 - Improving Initial Conditions of the LDAS
Chapter 4 builds on several of the conclusions of Mucia et al. (2020) in Chapter
3. Initial conditions of the system were found to be of great importance for
forecast applications. Therefore, the use of assimilating VOD as a proxy to LAI
was investigated to potentially improve initial conditions. Before the actual
assimilation was performed, significant analysis was done comparing LAI, VOD,
and VOD after linear re-scaling. These comparisons show the similarities of
these two observation types over different domains and vegetation types. Several
experiments were then performed with a wide range of assimilated observations.
Analysis was done comparing the performance of assimilating matched VOD
and LAI, as well as several variations of the matched VOD observations. The
last section of the chapter analyses experiments dealing with the separate and
joint assimilation of vegetation and soil moisture observations.

Chapter 5 - Towards Forecasting Impacts of Extreme
Events on Land Surface Variables with LDAS-Monde
Chapter 5 applies the information learned in Chapter 3 and Chapter 4 to a
potential real world application as a drought early warning system. A case study
over CONUS is laid out for future work where the improvements seen through
Chapter 3 and Chapter 4 are applied to LDAS-Monde. Several techniques for
the analysis are also given as a way to assess the performance in this case
study. Additionally, the methodology proposed for the case study is tested over
a non-forecast experiment, with LSVs successfully converted to percentiles and
drought levels, proving the utility of the method for future studies.

Chapters 6 and 7 - Conclusion and Prospects
Chapters 6 and 7 sum up the work done in this thesis (in French and English
respectively) and provide concluding remarks. Prospects of future work with
LDAS-Monde are also noted.
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Chapter 2

Methodology

This chapter describes the methodology for the experiments and analyses per-
formed throughout the chapters to follow. Details regarding the SURFEX mod-
elling platform and its components are laid out, with specific emphasis on the
descriptions of the ISBA LSM, the atmospheric data used as model forcing,
and the ECOCLIMAP land use databases. Then, LDAS-Monde is presented,
describing the Simplified Extended Kalman Filter data assimilation scheme,
as well as a detailed definition and description of all the assimilated LSV ob-
servations. Vegetation optical depth in particular, along with the relationship
between VOD and other vegetation LSVs is further explored.

As this thesis is concerned with the forecasting of LSVs, the transition of
LDAS-Monde from a monitoring configuration to a forecasting configuration is
presented. The data used in the assessment of the LDAS’s performance are then
detailed, including the USCRN in situ soil moisture observations, ALEXI evap-
otranspiration, and FLUXCOM gross primary production. Finally, the setups
of the experiments performed in the thesis are outlined, as well as describing the
statistical analyses used to measure and assess the performance of the system.
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2.1 SURFEX Modelling Platform
The SURFEX (SURFace EXternalisée) modelling platform (Le Moigne et al.,
2009; Le Moigne et al., 2012; Le Moigne et al., 2018) is a complete surface
modelling package including the ISBA (Interactions between Soil, Biosphere,
and Atmosphere) land surface model (Noilhan and Planton, 1989; Mahfouf et
al., 1995; Noilhan and Mahfouf, 1996; Boone, Calvet, and Noilhan, 1999) for
natural surfaces, the TEB (Town energy balance) model for urban surfaces
(Masson, 2000), and a land use database, ECOCLIMAP (Champeaux, Masson,
and Chauvin, 2005; Faroux et al., 2013), for use in defining tile surfaces. Lake
surfaces can be treated in a simple way by SURFEX, or by the separate FLake
model (Mironov, 2008). Likewise, sea and oceans are able to be simulated
simply or by a more complex separate model. Aerosol emission and deposition
can also be simulated. Alongside these models and inter-coupling, SURFEX
provides the framework for data assimilation. In general, each tile type, nature,
urban surfaces, ocean, and lakes, is modeled separately then the total flux for
each grid cell is given by weighing each surface type’s fraction of the overall tile
area. A diagram of the SURFEX platform’s interactions is shown in Figure 2.1.
This thesis uses latest version of SURFEX, V8.1 (Le Moigne et al., 2018).

Figure 2.1: A diagram representing the components and interactions of the SURFEX
modelling platform (Source: CNRM, 2020)

2.1.1 ISBA LSM
For nature tiles, the ISBA LSM simulates heat, water, carbon, and other sur-
face fluxes. Included within ISBA are several components separately simulating
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snow, hydrology, soil, and vegetation in the land surface system. The version
of ISBA in this work uses the 12 layer snow parameterization scheme (Boone
and Etchevers, 2001; Decharme et al., 2016), which better represents snow
compaction, soil temperature, and surface albedo than previous snow schemes.
Hydrologically, ISBA can also be coupled to the CNRM version of the Total
Runoff Integrating Pathways (CTRIP) river-routing model (Oki and Sud, 1998;
Decharme and Douville, 2007; Decharme et al., 2016), globally improving sim-
ulated discharge. Without this coupling enabled, ISBA simulates a simplified
runoff routine, and this work contains experiments with and without CTRIP
coupling.

The work in this thesis focuses on the evolution of vegetation, specifically
in drought events. Therefore, ISBA is also required to accurately simulate
vegetation and soil moisture dynamics. To that end, this thesis uses ISBA-A-gs
(Calvet et al., 1998; Calvet, 2000; Calvet et al., 2004) which introduces the
simulation of vegetation photosynthesis and stomatal conductance, as well as
allowing for the calculation of CO2 fluxes from photorespiration. Additionally,
the NIT option is employed (Calvet and Soussana, 2001; Gibelin et al., 2006),
which allows the modelling of above ground biomass, both leaf and structural, as
well as transition the variable of LAI from being prescribed to diagnostic, based
on the leaf biomass. ISBA also specifies minimum LAI thresholds, as modelled
LAI that falls too low (notably in winter months) is unable to increase again
in spring and summer. For evergreen forests, this threshold is 1 m2 m−2, and
for all other types of vegetation the threshold is 0.3 m2 m−2. Gibelin et al.
(2006) and Delire et al. (2020) have evolved the ISBA carbon cycle scheme
introducing the NCB and NCB + CNT options. NCB is effectively the NIT
option, but with conservation of carbon by using four discrete carbon reservoirs
in grasses (leaves, stems, and fine roots) as well as six carbon reservoirs in trees
(leaves, stems, wood, fine roots, and woody roots). Finally, NCB + CNT is
the same as NCB but calculates fluxes of dead carbon in vegetation litter and
soil carbon. While the NIT option is used in this thesis, NCB or NCB + CNT
are clear advances which can be implemented in future evolutions of drought
experiments.

The soil component of ISBA is ISBA-Diffusion (Boone et al., 2000), which
uses a 14 layer grid with depths down to 12m, (0.01m, 0.04m, 0.1m, 0.2m, 0.4m,
0.6m, 0.8m, 1.0m, 1.5m, 2.0m, 3.0m, 5.0m, 8.0m, 12.0m). A mixed form of the
Richards equation is used to describe water fluxes in the entire root zone. This
multi-layer scheme also provides overall improved surface flux and temperature
predictions, primarily due to better parameterization of latent heat from soil
freezes. This Diffusion option is used as it represents the most layers of soil and
has the most up to date soil physics of all the soil component options.

Atmospheric Forcing

ISBA has the capability to be coupled to atmospheric models and thus process
atmospheric feedbacks (also known as "online"), but this thesis runs ISBA as



32 Chapter 2. Methodology

without this coupling or feedbacks enabled (also known as "offline"). There-
fore, it is typically forced by static atmospheric reanalyses. The model re-
quires the atmospheric variables at 2m above the surface of air temperature,
wind speed, air specific humidity, atmospheric pressure, shortwave and longwave
downwelling radiation, and liquid and solid precipitation that are ingested into
ISBA, driving land surface processes. Through recent updates, LDAS-Monde
now has the ability to run in forecast mode (Albergel et al., 2019; Albergel
et al., 2020; Mucia et al., 2020) that is used in this thesis, where ISBA can
accept daily forecasts and produce individual outputs for each of the forecast
time steps.

When in the standard monitoring configuration, the system ingests atmo-
spheric reanalyses from ECMWF’s ERA5 (ERA5, 2018). ERA5 provides hourly
data, globally over a 0.25◦ x 0.25◦ grid. This reanalysis is itself a product of
data assimilation, combining model data and observations around the world
to create this consistent dataset from 1950-present. ERA5 assimilates atmo-
spheric observations every 12 hours, which updates to a new, more accurate
forecast. Its uncertainty is measured by sampling a 10 member ensemble every
3 hours, and the mean and spread of the ensemble is pre-computed and provided
to users. While not a real-time product, preliminary ERA5 data is available
with an approximate 5 day delay, with a higher quality controlled release after
2-3 months. With this relatively low latency, ERA5 suits the needs of multi-
annual or even multi-decadal monitoring studies very well. Before ERA5 was
released, ERA-Interim provided similar products via the same data assimila-
tion approach. Albergel et al. (2018a) compared ERA5 against ERA-Interim
when driving ISBA, and found that ERA5 provided consistent improvement
for nearly all land surface variables, specifically for variables linked to the ter-
restrial hydrological cycle. This also underscores the necessity of high quality
atmospheric forcing for LSMs.

The forecast configuration requires the same atmospheric variables, and
treats all the land processes the same. However, the atmospheric forcing is at-
mospheric forecasts instead of reanalyses. Twice daily, ECMWF runs a global
15-day ensemble forecast at 0.20◦ x 0.20◦ spatial resolution (ECMWF, 2018).
This 51-member ensemble consists of a single control run (CTRL or ENS CTRL)
as an unperturbed forecast, and 50 perturbed members. These perturbed mem-
bers begin with the slightly perturbed initial conditions and model physics com-
pared to the control member. These perturbations allow an exploration of the
model uncertainty. These ensemble forecasts are also commonly used to investi-
gate extreme weather such as tropical cyclones and heavy precipitation events,
as well as being simple probability guides, often indicating warmer or colder
than average temperatures or precipitation thresholds. This product has vary-
ing time-steps, with hourly data out to day 3, three-hourly out to day 6, and
six-hourly out to day 15.

In addition to the 15-day ensemble forecast produced by ECMWF, a high
resolution (HRES) 10-day forecast is produced at 0.10◦ x 0.10◦ spatial resolution
using a single prediction model run instead of ensemble (ECMWF, 2018). This
HRES product provides a more detailed description of future weather compared
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to any individual ENS member, but contains the same physical and dynamic
atmospheric representation. This HRES forcing was used over the domain of
the U.S. state of Nebraska to test the higher resolution capabilities of LDAS-
Monde. A comparison of the different forcings and forecasts used in this thesis
are given in Table 2.1.

Table 2.1: Details of atmospheric forcing datasets used in this
thesis

Forcing Spatial Resolution Temporal Availability Forecast Length
ERA5 0.25◦ x 0.25◦ 1950-present None
HRES 0.1◦ x 0.1◦ April 2016- Present 10-Day

ENS CTRL 0.2◦ x 0.2◦ April 2016- Present 15-Day

Land Use: ECOCLIMAP II & ECOCLIMAP SG

As previously mentioned, SURFEX uses the ECOCLIMAP land use database.
Throughout several of the experiments in this thesis, two different versions
of ECOCLIMAP are provided to the model, ECOCLIMAP-II (Faroux et al.,
2013) and ECOCLIMAP Second Generation (SG) (CNRM, 2018; Calvet and
Champeaux, 2020). Both versions of ECOCLIMAP include the 12 land surface
types that are required for the version of ISBA used. These land surface types
are divided into 9 predefined functional plant types (deciduous broadleaf forests,
evergreen broadleaf trees, needleleaf forests, C3 crops, C4 crops, irrigated crops,
C3 grasslands, C4 grasslands, and wetlands), as well as including bare soil, rock,
and permanent snow and ice surfaces. For cases where the urban model TEB
is not enabled, SURFEX converts urban areas defined by ECOCLIMAP into
rock for use in ISBA.

ECOCLIMAP-II is a 1km resolution global scale database departing from
previous land cover products by creating more classes which should ideally
better represent regional environments. This database consists of a synthesis
of existing land cover maps such as Corine Land Cover Map 2000 (CLC, 2000)
and Global Land Cover 2000 (GLC, 2000), NDVI observations from SPOT VGT
(Maisongrande, Duchemin, and Dedieu, 2004), LAI observations from MODIS
(Yang et al., 2006), and CYCLOPES (Baret et al., 2007), and climatic datasets
of the Koeppe classifications (Koeppe and De Long, 1958) and FIRS (Folving,
Kennedy, and Megier, 1995). The merging of satellite sensor data strengthens
the reliability of the product by making it less sensor dependant. ECOCLIMAP-
II provides tiles or grid points that represent fractions of the four main surface
types (nature, inland water, sea, or urban), and inside the nature tile fraction,
are fractions of each plant functional type.

ECOCLIMAP-SG is an evolution of ECOCLIMAP-II, with an improved
300m resolution. At this native resolution, ECOCLIMAP-SG also abandons
the notion of fractional vegetation cover, instead simplifying each grid point to
represent a single functional vegetation type. The changes from ECOCLIMAP-
II to ECOCLIMAP-SG do cause visible differences in dominant land cover over
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the United States. Figure 2.2 demonstrates some of these differences. This
figure shows the category of a patch where a single vegetation type is greater
than 50%.

These differences are most visible over the Midwest and Southwest United
States, as well as nearly all of Mexico seen in this domain. In the Midwest,
strong changes between ECOCLIMAP-II and ECOCLIMAP-SG are seen re-
ducing the land dominated by C4 crops which are primarily replace by areas
dominated by C3 grasslands. In the US Southwest, much of the area domi-
nated by bare soil or with no dominant vegetation in ECOCLIMAP-II are now
dominated by deciduous forests in ECOCLIMAP-SG. Similarly, much of Mex-
ico is dominated by bare soil, C4 grasslands, or has no dominant vegetation in
ECOCLIMAP-II, but is almost entirely transformed to deciduous and conifer-
ous forests in ECOCLIMAP-SG. Further analysis into the differences between
these two products are possible, such as analyses comparing the fraction of all
plant function types instead of simply visualizing differences where there is a
single vegetation type covering more than 50% of the patch. However, these
deeper analyses and further validation are outside the scope of this thesis.

2.1.2 LDAS-Monde
The land data assimilation system LDAS-Monde (Albergel et al., 2017) enables
the integration of satellite observational products into the ISBA LSM. As its
name suggests, LDAS-Monde is a global scale system. It can assimilate observa-
tions to directly update 8 control variables comprised of LAI and 7 soil moisture
layers from 1cm-100cm depth. Additional variables are indirectly modified by
the assimilation through their biophysical feedbacks. Because each observation
directly updates LAI and soil moisture layers, even the assimilation of LAI by
itself allows for an analysis of the root zone soil moisture (0-100cm), which
is a unique capability of LDAS-Monde. Table 2.2 provides details about the
LDAS-Monde parameters.

LDAS-Monde uses a Simplified Extended Kalman Filter (SEKF) as the de-
fault data assimilation scheme (described in the section below), but experiments
have also allowed for an Ensemble Kalman Filter (EnKF) and an Ensemble
Square Root Filter (EnSRF) (Bonan et al., 2020) schemes.

Table 2.2: Details of LDAS-Monde Assimilation Parameters

Model
Assimilated
Observations

Model Equivalents
of Observations

Control
Variables

ISBA-A-gs,
NIT,

Diffusion

LAI (CGLS),
VOD (VODCA),

SSM (CGLS, ESA-CCI)

LAI (for LAI and VOD)
Soil Layer WG2 (1-4cm)

LAI,
Soil Layers

WG2-WG8 (1-100cm)
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Figure 2.2: Map of dominant vegetation types (>50% single vegetation) according
to a) ECOCLIMAP-II, and b) ECOCLIMAP-SG. White areas over land indicate no

single vegetation type covers more than 50% of the tile.

Simplified Extended Kalman Filter

The Extended Kalman Filter (EKF) is computed using the H and HT terms
from Equation 1.8 which are the linearized version of the observation operator,
also called the Jacobian matrix. Each element of this matrix is approximated
via finite differences by perturbing each component (xj) of the control vector
(x) by the amount (δxj), as shown in Equation 2.1. The result is a column of
the Jacobian matrix for each m integrations.

Hmj =
δym

δxj
≈ ym(x + δxj)− ym

δxj
(2.1)

Prognostic equations representing the physical processes of the LSM then
evolve the control vector to the end of the 24 hour assimilation window. Obser-
vations from the previous 24 hours are then assimilated forming the analyzed
initial state of the next 24 hour period. Instead of calculating background error
variances and covariances at the beginning of each cycle, fixed estimates are
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used. This is the step that differentiates an EKF and SEKF. In LDAS-Monde,
error values are fixed as 20% of observed LAI values and at a constant 0.05
m3/m3 for SSM. This simplification is continuing with previous studies (Mah-
fouf et al., 2009; Albergel et al., 2010; Barbu et al., 2011; Fairbairn et al., 2017)
and Draper, Mahfouf, and Walker (2009) shows that the SEKF’s 24hr assimila-
tion window generates flow dependence and that the background error cycling
of the EKF gave no significant additional benefit.

2.1.3 Assimilated Observations
LDAS-Monde can jointly assimilate observations as both LAI and SSM into
the ISBA LSM. These observations are put into a simple text file format, with
each file representing observations that day over every gridpoint in the domain.
Observations sources are not limited by the model, but only by the workflow
and acquisition of the data. The following sections describe the observational
data that are assimilated in this thesis.

Surface Soil Moisture

Surface soil moisture (SSM) is a measure of the relative water content contained
within the top few centimeters of soil (CGLS, 2020). The exact depth at which
soil moisture ceases to be "Surface" soil moisture is dependant on discipline
and domain. SSM is typically presented in terms of percent saturation or as a
volumetric measure m3/m3.

The assimilation of surface soil moisture requires that the observations are
re-scaled to fit consistently with the model climatology (Reichle and Koster,
2004; Drusch, Wood, and Gao, 2005). Otherwise, observation signals exhibit
considerably different mean values as well as biased variability. This transition
to the model-equivalent, volumetric SSM also addresses potential parameters
such as porosity, field capacity and wilting point, but cannot account for errors
in model physics or observation retrieval methods (Entin et al., 1999; Dirmeyer,
Guo, and Gao, 2004). For LDAS-Monde, a linear re-scaling approach is used,
as originally prescribed by (Scipal, Drusch, and Wagner, 2008), which simpli-
fies a transformation by cumulative distribution function (CDF) matching as
described in Equations 2.2 2.3 and 2.4. This simplification leads to removing
differences in the first and second moments, the mean and variance respectively.
Higher order moments produce stronger differences in dryer climates, and these
differences are assimilated directly as uncorrected bias. Scipal, Drusch, and
Wagner (2008) estimates these differences are still small and should scarcely
reach values larger than 0.02 m3 m−3.

SSMr = a+ b · SSMo (2.2)

a = SSMm − b · SSMo (2.3)

b =
σm

σo
(2.4)
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SSMr is the re-scaled SSM, SSMo is the un-transformed observed SSM,
and SSMm is the model SSM. SSMm, SSMo, σm, and σo are the model and
observation means and standard deviations respectively. The linear re-scaling
parameters a and b are calculated monthly over a 3-month moving window for
the period of each respective experiment, filtering out ice and altitudes over
1500m as well as pixels with urban surfaces exceeding 15% of the land cover
fraction.

This thesis uses two separate sources of satellite observed SSM products.
The first is from the Copernicus Global Land Services (CGLS) (Copernicus,
2021) derived from the Advanced Scatterometer (ASCAT) microwave instru-
ment aboard the MetOp A and B polar orbiting satellites (Wagner, Lemoine,
and Rott, 1999; Bartalis et al., 2007). The SSM product synthesizes both
sensor’s data daily, producing information based on the radar backscatter ob-
servations from 2007-present. These observations are then transformed into
an estimated soil wetness index (SWI) by applying an exponential filter (Wag-
ner, Lemoine, and Rott, 1999; Albergel et al., 2008) on a timescale parameter,
T, varying between 1 and 100 days. This transformation is done over the T
timescale to account for physical parameters such as soil type, thickness, tex-
ture, and density, as well as evaporation and runoff. Experiments in this study
using this SWI product set the T value to 1 day. This T=1 is selected as it
is the shortest time period, which effectively represents the most shallow layer
of soil moisture assuming soil diffusivity is constant (Marschallinger, Paulik,
and Jacobs, 2019). SWI is expressed as a saturation percentage, with 0 being
completely dry and 100 as completely saturated. This CGLS SWI product is
available globally at 0.1◦ x 0.1◦ spatial resolution.

The second source of SSM observations comes from the European Space
Agency’s (ESA) Climate Change Initiative (CCI) SM product (Dorigo et al.,
2015; Gruber et al., 2017; Gruber et al., 2019). Version v04.5 of the COM-
BINED product is used, that merges active and passive microwave observations
into a single product (Dorigo et al., 2017). Instruments merged in this prod-
uct include four scatterometers (ERS-1/2 AMI, ERS-2 AMI, and MetOp-A &
B ASCAT) and seven radiometers (SSMR, SSM/I, TMI, WindSat, AMSR-E,
AMSR-2, and SMOS). Elevations greater than 1500m are filtered out of this
product for assimilation, as soil moisture retrievals are difficult in complex ter-
rain such as slopes, ridges, and valleys in close proximity often found at high el-
evations (Mätzler and Standley, 2000). Together, this product provides globally
continuous coverage from November 1978-present, daily, at a spatial resolution
of 0.25◦ x 0.25◦.

Leaf Area Index

Leaf area index, or LAI, is the sum of the one-sided area of a leaf’s surface per
unit area of land (Watson, 1947). This index is a very useful metric, allowing
for the comparison of natural vegetation and crops despite potentially different
plant spacing. LAI has proven to be a key parameter when dealing with plant
physiology (Breda, 2003), as well as being strongly linked to vegetation biomass
(Friedl et al., 1994; Gitelson et al., 2003).
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Assimilated LAI observations in this thesis come from the CGLS LAI V2
product (CGLS, 2019). The observations come from the SPOT/VGT and
PROBA-V sensors. The top-of-canopy (TOC) reflectance is input into a neural
network for instantaneous LAI estimates. The V2 algorithm then applies fil-
tering, smoothing, gap filling, and temporal compositional techniques to derive
consistent LAI estimates every 10 days (Verger, Baret, and Weiss, 2014). The
product is also compared with various datasets following the CEOS Land Prod-
uct Validation Group’s guidelines to ensure consistency with other LAI datasets.
The quality of the final product is highly dependant on the retrieval algorithm.
As neural networks were trained using SPOT/VGT inputs, the application to
PROBA-V data assumes sensor consistency between the two satellites. Addi-
tionally, pixels that are incorrectly categorized or oversimplified may produce
incoherent or biased values, or potentially not capture seasonal cycles of vege-
tation. Some of these errors can be limited due to the higher spatial resolution
of the product. It is important to note these errors, especially in the context
of data assimilation, where it is assumed that neither the model nor the obser-
vations perfectly represent reality, but the acknowledgement and quantification
of these errors is still necessary to successfully merge the two methods of mon-
itoring LSVs. CGLS LAI V2 is available at 1km x 1km spatial resolution and
from 1999-present.

Vegetation Optical Depth

What is Vegetation Optical Depth?
Up to this point, the assimilation of LAI has been of direct estimations of LAI
from optical observations. For the testing of improving initial conditions of the
model in Chapter 4, vegetation optical depth is used and transformed into an
LAI-proxy. Kumar et al. (2020) has already shown that VOD assimilation as
an LAI proxy is possible, with the linear re-scaling and assimilation into the
Noah-MP LSM.

Vegetation optical depth, or VOD, is the measure of attenuation of mi-
crowave radiation passing through a vegetation canopy (Jackson and Schmugge,
1991). This attenuation is a function of microwave frequency, and can also be di-
rectly linked to vegetation water content (Jackson, Schmugge, and Wang, 1982;
Wigneron et al., 1993; Owe, De Jeu, and Walker, 2001). Being the product of
microwave radiation, VOD is a nearly all-weather parameter, passing through
cloud cover almost unaffected. This allows for far more frequent VOD obser-
vations compared to LAI observations, which is demonstrated in Figure 2.3.
For the same 2003-2018 period, LAI observations from CGLS are vastly out-
numbered by VOD observations from VODCA by approximately a factor of
6.

VOD is comprised of attenuation from several sources, primarily standing
vegetation (which itself is composed of green leaf biomass, non-green structural
biomass such as stems, and wood), necromass (namely litter), and intercepted
water from rain or dew. Recently, VOD has been more closely examined in
regards to interacting effects of vegetation dynamics. A deeper look into L-
band VOD by Konings et al. (2016) revealed that it is proportional to total
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Figure 2.3: Maps showing the cumulative number of observations provided for A)
CGLS LAI and B) VODCA VODX over CONUS between 2003-2018. The colorbar is

on a log scale in order to show the vast differences between the two datasets.

vegetation water content and tweaks their retrieval algorithm to more accurately
account for vegetation effects on soil moisture observations. Figure 2.4 shows
an extreme example of the effect of the different components of VOD over a
SMOSREX (Surface Monitoring of the Soil Reservoir EXperiment) site near
Toulouse, France from Saleh et al. (2006). This is shown in order to visualized
the individual impact of these components, namely the green vegetation (solid
black line), ground litter (black dots), and leaf water interception (grey line).

Relationship between vegetation, VOD, and LAI
Momen et al. (2017) found that X-band VOD produced temporal dynam-
ics closely resembling a new conception relationship between VOD and total
biomass. This new framework provided significantly increased correlations be-
tween VOD, biomass, and leaf water potential. Then, Teubner et al. (2018)
linked VOD and gross primary production (GPP), noting an similar strength or
stronger relationship than between VOD and solar induced fluorescence (SIF).
Teubner et al. (2021) also shows that X-band VOD provides improved average
correlation coefficients to GPP estimates from in situ FLUXNET observations
than L-band VOD, shown in Figure 2.5.

Additionally, Wigneron (2002) found the timing of peak vegetation water
content and LAI can differ. When leaf biomass is the dominant signal from
VOD, we assume:

V OD = B × V2 = B ×LAI (2.5)

Where the B is a constant from the calculations of VOD based on land cover
classification. V2 is simply a factor representing a vegetation descriptor (Ulaby
et al., 1984), which we choose to be approximated by LAI, as in Shamambo
(2020). The Specific Leaf Area (SLA) is defined as the ratio of LAI/VOD, and
is an indication of how much leaf area a plant makes for a given amount of leaf
biomass. This also allows for:
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Figure 2.4: A time series of estimated VOD, with the solid black line representing
green vegetation, black dots representing where there is no standing vegetation (i.e.
litter effect), and light grey line representing estimates including immediately after

rainfall events (Source: Saleh et al., 2006).

LAI/V OD = 1/B (2.6)

Which shows an inverse relationship between SLA and B. In LSMs, SLA
is a key parameter, and generally assumed to be constant. But this may not
hold true, as Zakharova et al. (2012) found that the B parameter changes quite
significantly between areas of low and high vegetation.

Figure 2.6 shows the time series response of CGLS LAI (green, solid),
VODCA VODX (red, dashed), and VODCA VODC (blue, dotted) over Lin-
coln, Nebraska from 2003-2018. This pixel is composed primarily of C3 and
C4 crops. LAI observations have a far more predictable and seasonal pattern.
X-band VOD also is a stronger signal compared to C-band. The peaks are
relatively close in timing in this case, but as discussed above, can also be offset
due to the difference in peak vegetation water content.

This patch near Lincoln, Nebraska represents a mix between C3 and C4
crops, and does not include significant areas of irrigation. Shamambo et al.
(2019) found over sites in France, that LAI observations from CGLS GEOV2
had two seasonal peaks, one in spring and one later in summer (Figure 10). The
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Figure 2.5: Correlations of VOD-L from SMOS and VOD-X from AMSRE to
FLUXNET in situ observations of GPP. a) represents the stations where both VOD
datasets were available, while b) represents only forest landcover. (Source: Adapted

from Teubner et al., 2021).

Figure 2.6: A time series showing the response of CGLS LAI (green, solid), VODCA
VODX (red, dashed), and VODCA VODC (blue, dotted) over Lincoln Nebraska from

2003-2018.

later second peak was strongest in the area with more C4 crops. As Figure 2.6
shows, no such double peak can be seen over Nebraska. Similarly, in a study over
a heavily irrigated patch of agriculture in Nebraska, Druel et al. (2021) found
no such double peak from Observed LAI. These differences in results can simply
be attributed to significantly different agricultural practices between Nebraska
and France such as planting time, harvesting time, and crop rotations, as well
a strongly different regional climates.

VODCA: Long-term VOD dataset
This work uses the X-Band of the newly created Vegetation Optical Depth
Climate Archive (VODCA) (Moesinger et al., 2020) dataset. VODCA is a
synthesis of various satellite sensors since 1987. It uses the Land Parameter
Retrieval Model (LPRM) V6, which simultaneously retrieves and calculates
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soil moisture and VOD from horizontally and vertically polarized microwave
observations (Mo et al., 1982; Meesters, DeJeu, and Owe, 2005; Owe, Jeu, and
Holmes, 2008; Schalie et al., 2017). The dataset is comprised from AMSR-
E, AMSR-2, SSM/I, TMI, and WindSat sensors, and includes C, X, and Ku-
Band VOD retrievals. The TMI sensor aboard the Tropical Rainfall Measuring
Mission (TRMM) satellite is a notable exception in that its orbit is at a 35◦

inclination, and thus does not encompass the entirety of the domains in this
thesis. For the X-Band of VODCA, TMI is the only sensor between 1998 and
late 2002.

Each VODCA sensor source is first processed by removing locations influ-
enced by radio frequency interference (RFI), removing observations where land
surface temperature (LST) is below freezing (as the VOD cannot be accurately
retrieved in frozen conditions due to the changing di-electric properties of water
and ice), and removing negative values of VOD, which are data artifacts and
not physically possible. Because daytime retrievals were found to have higher
errors than their nighttime counterparts, only nighttime retrievals are used in
VODCA. The sensor datasets are then individually matched based on the VOD
band by using an improved CDF matching scheme to correct for systematic dif-
ferences between the sensors (details of the improvements found in Moesinger
et al. (2020)). The bands are then finally merged via arithmetic mean when
multiple observations are available. This product provides a spatially continu-
ous dataset, that is user ready. However, it is important to note that not only
do errors exist in the observations themselves (such as those from the mischar-
acterization of the surface, interference, the retrieval model, or direct sensor
errors), but these errors can be merged and blurred through the merging and
combination of data (such as the mixing of observation times, incidence angles,
and spatial resolutions). The evaluation of datasets such as this is non-trivial as
independent and high quality datasets for comparison are rare or non-existent
(Moesinger et al., 2020). As more products become available for comparison,
independent evaluation products such as VODCA also can be performed.

This VODCA dataset is globally available at 0.25◦ x 0.25◦ spatial resolution.
Because of the different number of sensors depending on each VOD band, and
the timing of their overpasses, the merged product provides observations for at
least 40% of all days with at least one sensor, and upwards of 70% with two or
more. Figure 2.7 illustrates the temporal coverage for each microwave band in
VODCA.
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Figure 2.7: Time periods for each of the microwave sensors used in VODCA, for the
C, X, and Ku Bands of VOD (Source: Moesinger et al., 2020)

Linear Re-scaling VOD to match LAI
As was done in Kumar et al. (2020), VOD observations are linearly re-scaled
to match LAI observations over the same time period. A linear monthly re-
scaling was performed using a 3-month moving window period to best match
the two datasets over seasonal timescales. Over an entire year, this re-scaling is
represented by 12 monthly equations each taking into account the climatologies
of the months preceding and succeeding it. This re-scaling is applied because
the ISBA LSM does not simulate VOD, and thus we cannot assimilate VOD
data directly. As demonstrated in Albergel et al. (2018a) and as will be shown in
Chapter 4, LAI and VOD observations are correlated. This assumption enables
us to match the VOD to LAI observations and assimilate the resulting product
in the place of LAI in the model. After re-scaling is performed, a 30-day rolling
average is applied to act as a smoothing term, allowing for better performance
of the assimilated data.

This method of re-scaling logically increases the match between LAI and the
re-scaled VOD observations. It is a relatively simple method allow us to test
the more frequent assimilation of satellite-derived observations in LDAS-Monde.
However, weakness to this method exist, primarily in the merging of errors
associated with both LAI and VOD observations (each briefly mentioned in the
data descriptions), as well as errors stemming from the 3-month moving window
and monthly re-scaling period. The re-scaling period could introduce errors
due to the potential time lag between LAI and VOD peaks, as discussed above.
Future experimentation and analysis could be performed using a daily re-scaling
instead of monthly in order to better capture faster changes in seasonality.

Assimilating Level 1 Data
Recently, there has been a tendency towards directly assimilating lower level
satellite observation data (level 1) in order to better preserve the contained in-
formation, whereas processing the data to level 2 or level 3 products introduces
errors through cross correlations to required auxiliary information and removes
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potentially valuable information related to vegetation and the surface (De Lan-
noy et al., 2012; Han et al., 2014; Lievens et al., 2015; Lievens et al., 2017).
One such example of a level 1 product is radar backscatter observations, σ◦.
Directly assimilating such observations would require a coupling of the LSM to
a radiative transfer model, predicting the σ◦. Such work has been performed
with the ISBA LSM in Shamambo et al. (2019) and Shamambo (2020), and
shows neutral to moderate improvements, which can be strengthened by find-
ing an optimal observation error covariance matrix. VOD and σ◦ are directly
intertwined, and thus future work in the assimilation of VOD observations could
be potentially improved by more direct assimilation into the LSM.

2.1.4 LDAS-Monde in Forecast Configuration
LDAS-Monde now has the ability to produce land surface forecasts when ingest-
ing atmospheric forecasts as forcings. Uncoupled forecasts of LSVs and their
agricultural impacts have been previously studied, as in Sawada et al. (2020).
However, land surface forecasts using LDAS-Monde’s capabilities to jointly as-
similate LAI and SSM observations, and to analyze RZSM by use of assimilating
LAI, are yet unparalleled. Sawada et al. (2020) finds that initial conditions, im-
proved by the assimilation of brightness temperatures, improve the seasonal
prediction of LAI. Using the new forecast configuration of LDAS-Monde, this
thesis builds upon that idea and investigates joint assimilation of vegetation
and soil moisture parameters towards improving the initial conditions.

The physical parameterization within the model works identically to that
of a "normal" experiment using atmospheric reanalyses as forcings. The output
variables are also identical. Figure 2.8 shows the different components of LDAS-
Monde in both non-forecast and forecast modes. A typical configuration of
LDAS-Monde produces three or four sets of daily netCDF files describing the
output. These files include separated diagnostic and prognostic variables. In a
forecast configuration, each day of the experimental time period creates those
same files, instead 15 times, starting with the initial day, and moving to 15 days
of forecast. Due to the timing mismatch between the data assimilation process
occurring at 0900UTC, and the forecast data starting at 0000UTC, this allows
for only 14 full days of forecast.
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Figure 2.8: LDAS-Monde components in A) "normal", non-forecast configuration,
and B) forecast configuration

As a data assimilation system, LDAS-Monde ingests observations into its
SEKF scheme at the time of observations. In forecast mode, those observations
are only assimilated at day 1, and are forced throughout the remaining forecast
period exclusively by atmospheric forecasts. In this way, comparisons between
the Open-Loop (OL), that is the model run by itself with no data assimilation,
and SEKF runs at forecast days greater than 1 are, in fact, comparing how the
OL and SEKF initial conditions perform at that forecast length.
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2.2 Assessment Observations
This thesis uses various datasets of observations to quantify and assess the
performance of the model and data assimilation. While there is no perfect
reference data for any variable, the datasets listed below provide useful insights
into the behavior of the model and of the assimilation. Satellite observations
and satellite derived data are predominately used as they offer the best spatial
coverage of the domains. In situ observations are also used, and are generally
considered higher quality, but they only represent small points within a model
grid cell.

2.2.1 Assimilated Observations
The first data that is compared to the model and analysis are generally the data
that itself was assimilated. This comparison is a heavily biased and dependant
one, but can give insights as to the effect of the assimilation. If the assimila-
tion process is performing as expected, the assimilated values should strongly
tend towards the observations and statistical scores compared to the observa-
tions should increase. Figure 2.9 shows the average values of the assimilated
observations (VOD shown before linear re-scaling) over CONUS.

Figure 2.9: Map illustrating the average values of each of the assimilated observations
datasets between 2003 and 2018. A) LAI V2 from CGLS B) X-Band VOD (before re-

scaling) from VODCA C) SSM from ESA CCI v04.5 COMBINED
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2.2.2 United States Climate Reference Network
The United States Climate Reference Network (USCRN) is a sustained net-
work of climate monitoring stations maintained by the National Oceanic and
Atmospheric Administration (NOAA) National Centers for Environmental In-
formation (NCEI) (Diamond et al., 2013; Bell et al., 2013). The network con-
tains 114 stations in the contiguous U.S. and provides high quality, long-term
temperature, precipitation, solar radiation, wind speed, humidity, soil moisture,
and soil temperature observations. This study uses the soil temperature and
soil moisture observations, which are provided sub-hourly.

At each site, USCRN places three plots of probe units at five different depths,
5, 10, 20, 50, and 100cm. The soil moisture probe measures the dielectric per-
mittivity of the soil by observing reflected EM waves at 50MHz, which is then
converted to volumetic soil moisture (m3 m−3) via a calibration equation. Sen-
sor calibration is also performed annually. A thermistor is also placed alongside
the soil moisture sensor at all plots and depths. An average at each depth
is calculated from the three plots every 5 minutes and output data is typically
publicly available within an hour of the reading. Figure 2.10 shows the locations
of the USCRN in situ observations.

This thesis compares USCRN data to LDAS-Monde soil moisture between
the years of 2011 and 2018. While the network was operational as early as
2005, 2011 was selected as the start of the comparison in order to maximize
the number of stations, and homogenize the results of comparisons between
stations.

2.2.3 ALEXI Evapotranspiration
Evapotranspiration (ET) is a broad term including many individual components
and sources of evaporation and transpiration. These components include leaf
transpiration, bare-soil evaporation, interception loss, surface water evapora-
tion, and sublimation. ET is also strongly coupled with ecosystem production
(Law et al., 2002), which in turn is driven by water availability (Noy-Meir,
1973). Therefore, measuring and predicting ET can be a valuable asset in
terms of monitoring and predicting agricultural droughts.

The Atmosphere-Land Exchange Inverse (ALEXI) is a surface energy bal-
ance model, which calculates evapotranspiration (ET) from a two-source land
surface representation of the energy budget (Anderson et al., 1997; Anderson
et al., 2007a; Anderson et al., 2007b; Anderson et al., 2011). The land surface
is treated as a combination of soil and vegetation in the model, with each hav-
ing unique temperatures, fluxes, and coupling with the atmosphere. Thermal
infrared (TIR) bands from the Geostationary Operational Environmental Satel-
lite (GOES) sensors estimate land surface temperature (LST) and provide the
driving force for ALEXI over the United States, with Meteosat Second Gener-
ation (MSG) providing data over Europe and Africa. Global products use the
Geoland2 land cover database (Lacaze et al., 2010) to estimate LST. Regional
vegetation cover is estimated from MODIS-derived LAI products. Aerodynamic
and atmospheric boundary layer conditions are derived from North American
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Regional Reanalysis (NARR) (Mesinger et al., 2006), Weather Research and
Forecasting model (WRF) (Skamarock et al., 2005), and the Modern-era Ret-
rospective Analysis for Research and Applications (MERRA) (Bosilovich et al.,
2006; Gelaro et al., 2017) for the US, European/African, and Global domains re-
spectively. Finally, the University of Maryland’s global landcover classification
(Hansen et al., 2000) is used to define surface characteristics over all domains.
The ALEXI ET product is available at a spatial resolution of 0.05◦ x 0.05◦

globally, and at 0.04◦ x 0.04◦ over CONUS.
While there are several other datasets that estimate ET, including GLEAM

and FLUXCOM, ALEXI was chosen as in these studies as previous comparisons
of ET estimations over CONUS showed it to be among the most consistent,
especially over croplands (Kumar et al., 2019). Further analyses could very
well compare results to other ET datasets such as GLEAM and FLUXCOM.

2.2.4 FLUXCOM Gross Primary Production
Gross primary production (GPP) is a measure of CO2 assimilated into vegeta-
tion by photosynthesis. This sequestration of carbon plays an important role in
the global carbon budget (Figure 1.4). GPP is indicative of vegetation health
and photosynthetic activity, and is highly coupled to water, light, and soil nu-
trient availability. However, direct, global measures of GPP are not currently
possible (Anav et al., 2015) and instead must be estimated by measurements of
carbon exchange between the land surface and the atmosphere.

The global FLUXNET network is a vast organization of eddy covariance
towers used to measure trace gas fluxes between the biosphere and atmosphere
(Jung, Reichstein, and Bondeau, 2009; Pastorello et al., 2020). Machine learn-
ing algorithms are then applied to the energy and gas fluxes, as well as meteoro-
logical variables, to estimate fluxes in GPP and Terrestrial Ecosystem Respira-
tion (TER) (Reichstein et al., 2005; Baldocchi, 2008; Lasslop et al., 2010). This
network of in situ measurements are then taken and combined with MODIS im-
agery for quality control and feature selection, then put through several machine
learning approaches, and finally combining with seasonal gridded satellite and
meteorological observations to generate global carbon and energy flux prod-
ucts, FLUXCOM (Tramontana et al., 2016; Jung et al., 2019). This study
uses the global GPP product from FLUXCOM to evaluate the performance of
vegetation parameters independent from the LAI assimilated by LDAS-Monde.
FLUXCOM GPP is available globally at 0.5◦ x 0.5◦ resolution, and from 1980
to present, however this study thesis only uses data up to 2013 due to lack of
data access.

FLLUXCOM GPP was selected as an assessment dataset as it one of the
few projects providing carbon fixation and photosynthesis, especially at a global
scale. Furthermore, FLUXCOM GPP data was readily available for comparison
in the LDAS-Monde ecosystem.
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2.3 Experimental Setups
This thesis examines the results of three major experiments set over and within
the contiguous United States, as shown in Table 2.3. The first is a long term (19-
year) study over the U.S. State of Nebraska, using various spatial resolutions of
LDAS-Monde as well experimenting with differences between ECOCLIMAP-II
and ECOCLIMAP-SG. The purpose of this experiment is to link model variables
to agricultural statistics and drought in an inter-annual comparison. The next
experiment is the application of the LDAS-Monde forecast mode over CONUS.
Using information and experience gathered from running the Nebraska exper-
iments, this experiment uses 15-day deterministic forecasts from ECMWF to
force 1-through-14 day land surface forecasts over 2017-2018. The reason a
15-day forecast produces only up to 14 days of land surface forecasts is due
to LDAS-Monde using an assimilation window of 0900UTC to 0900UTC the
next day, while the atmospheric forecasts start at 0000UTC. Thus only 14 full
days of forecast data are produced. The 0900UTC assimilation window was
initially implemented as that was the morning overpass time for ASCAT over
France (Draper et al., 2011), and there was some evidence that morning ob-
servations were more accurate than evening ones (Wagner, Lemoine, and Rott,
1999; Albergel et al., 2009). Finally, another study was performed over the
same CONUS domain using various assimilated observations in different com-
binations to study their effects. Each of these experiments used a 20 year spinup
of their starting year to generate realistic initial conditions and for the model
to reach equilibrium.

Table 2.3: Details and parameters of experiments used in this
thesis

Domain Time
Period

Spatial
Resolution

Atmo-
spheric
Forcing

Assimilated
Observations

CTRIP
Coupling

ECO-
CLIMAP
Version

Nebraska
(39.5-
43.5◦N

105-95◦W)

Jan
2000-

Aug 2018

0.25◦,
0.10◦,
0.01◦

ERA5 SSM (CGLS),
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Figure 2.10 illustrates the main CONUS domain, with the blue box showing
the domain of Nebraska. The four additional boxes indicate separate subdo-
mains that are investigated more closely in Chapter 4. Finally, the red dots
indicate the location of USCRN observation stations. CONUS was chosen as
the primary domain of interest for several reason, notably the fact that it rep-
resents a varied geography and climate to test the model and analysis, as well
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as the large availability of data and previous studies over this region. Nebraska
was selected and analyzed as a subdomain as it is a large agricultural state,
and agricultural yields can be linked to drought events. The four other subdo-
mains, California, Midwest, Northeast, and Southern Plains, were selected from
a larger global list of potential hotspots for droughts and heatwaves (Albergel
et al., 2020). This also allows us to provide a more regional scale analyses of
LDAS-Monde results. The analysis of these four subdomains are presented in
the Appendices.

Figure 2.10: Map illustrating the CONUS domain, with boxes around selected sub-
domains of interest. The blue box represents the Nebraska domain. Red dots represent

the locations of the USCRN SM stations.

2.4 Experiment Analysis and Assessment
The primary statistical scores used in this thesis are the Pearson’s correlation
coefficient (R) and root mean squared difference (RMSD). These two scores
enable a quick assessment of improvement or degradation, and are consistent
with previous studies of LSMs and LSVs. In addition to the correlation and
RMSD, a normalized information contribution (NIC) is calculated for each as
shown in Equations 2.7 and 2.8.

NICR =
RAnalysis −RModel

1−RModel
X100 (2.7)

NICRMSD =
RMSDAnalysis −RMSDModel

RMSDModel
X100 (2.8)

The NIC in this context, as first shown in Kumar et al. (2009), provides
a better quantitative metric for the improvement or degradation due to data
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assimilation. The terms RModel (RMSDModel) are the correlation (RMSD) be-
tween the model OL and the observations, while RAnalysis (RMSDAnalysis) are
the correlation (RMSD) between a SEKF data assimilated run and the obser-
vations. For NICR, positive values indicate improvement from assimilation,
while for NICRMSD negative values indicate improvement.

The next statistical approach used is bootstrapping. This approach is used
to calculate confidence intervals and thus determine statistical significance be-
tween model and analysis. Essentially, bootstrapping is the repeated removal of
random points in the dataset, and recalculation of the desired score or variable.
This thesis uses a constant 10,000 repeats to calculate the confidence intervals
in order to generate a sufficiently large number of samples.

For several analyses, probability distribution functions (PDFs) are estimated
from the distribution of correlation scores of individual gridcells. These PDFs
are derived using a Gaussian kernel density estimation, with Scott’s Rule cal-
culating the appropriate smoothing bandwidth. Scott’s Rule minimizes the in-
tegrated mean squared error in each bin, and is a typically used approximation
of optimal smoothing for PDFs (Scott, 1992). These PDFs give a far smoother
and readable estimation of correlations when compared to simple histograms.

When analyzing the statistical scores of the USCRN, several conditions are
applied. First, frozen soil conditions are avoided by only calculating scores
based from observations when temperature measurements are above 4◦C. As
ISBA separately calculates frozen and liquid soil moisture, when conditions are
close to freezing, there can be significant errors. Second, only stations with
more than 100 observations (at the respective depths) are considered for a
sufficient number of data points. Finally, p-values are calculated alongside the
correlations, and stations without p-values of significance, where p-values <
0.05, are screened out.

Additional processing steps were required for the ECMWF atmospheric fore-
cast forcings. These forecasts are provided hourly up to day three, three-hourly
up to day six, and six-hourly up to day fifteen. In order to match the 0900UTC
assimilation window of LDAS-Monde, the three timesteps were transformed to
three-hourly via linear interpolation. If the varying timesteps were left in their
original formats, it would make a significant impact on the shape and ampli-
tude of the diurnal cycle of incoming shortwave radiation. This impact is most
evident on ET, due to the ISBA LSM directly changing stomatal properties
based on shortwave radiation. With a consistent timestep, these problems do
not appear to be found. Additionally, to better estimate hourly and sub-hourly
shortwave radiation (in addition to the linear rescaling), the forecast experi-
ment over CONUS uses a downward shortwave interpolation scheme in ISBA,
which better captures peak hours of solar radiation after a calculation of the
solar zenith angle based on global location and season (SURFEX).

2.5 Summary of Chapter 2
This chapter detailed the materials and methodologies used to perform experi-
ments throughout this thesis.
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• The SURFEX modelling platform was described in detail, along with its
components including the land surface model ISBA-A-gs, the data assim-
ilation system LDAS-Monde, as well as the assimilated observations of
SSM, LAI, and VOD. VOD was described in depth, as well as a signif-
icant background given about the different bands and their interactions
with vegetation. Included in the description of ISBA was the descrip-
tion of the atmospheric forcing and forecasts used to drive the model, as
well as a description and discussion regarding the ECOCLIMAP land use
database, and its different versions. The LDAS-Monde workflow was also
outlined, highlighting the differences between a normal configuration and
a forecast configuration.

• Additional observations are described that are used to assess the perfor-
mance of the model and assimilation. This assessment data is comprised
of the assimilated observations themselves, USCRN in situ soil moisture
observations, ALEXI ET estimations, and FLUXCOM GPP estimations.

• The details and parameters of the experiments included in this thesis are
also displayed, summarized in Table 2.3. This includes the domains, time
periods, spatial resolutions, assimilated observations, and other important
parameters. A map of the domains and certain subdomains of interest is
presented.

• Finally, a description of the analysis itself is given, providing definitions
of statistics used, as well as calculation conditions. Some necessary infor-
mation about the processing of experiments is also provided.
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Chapter 3

Importance of Initial Conditions
in Forecasting Land Surface
Variables

This chapter explores the work transitioning LDAS-Monde into a forecast con-
figuration, and details the experiment using this configuration over the US. This
work identifies having accurate initial conditions as being vital to providing ac-
curate forecasts of LSVs. The experiment results and discussions are provided
in a published article, Mucia et al. (2020). Supplementary work then briefly
explores a way to potentially improve initial condition accuracy by using veg-
etation optical depth (VOD) observations in lieu of LAI. This introduction to
VOD links the results of the land surface forecast system to results in Chapter 4.
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3.1 Model Initial Conditions
Physical models, especially those representing nonlinear processes, are funda-
mentally limited in accuracy by their driving parameters and initial conditions
(Rodell et al., 2005). The driving parameters of LSMs are primarily atmo-
spheric forcings, as well as computed and assigned physical parameters. Initial
conditions of models (LSMs, numerical weather prediction models, and other
physical models) are an instantaneous representation of the physical states of
the model variables at the time the simulation is started. For LSMs, these states
include, but are not limited to, the surface and ground water levels, vegetation
and canopy vegetation water content, snow cover and depth, and soil moisture
and temperature at each prescribed layer. If a model run in a nonlinear sys-
tem is started with faulty initial conditions, state variables can quickly diverge
from realistic possibilities and can cause chaotic behavior in the system. Initial
conditions can also depend on the specific model, as the climatology and land
surface parameters, often necessary to compute relative values such as SWI,
are determined by the model variables and physics (Koster and Milly, 1997).
Improved land surface condition estimates are known to improve forecasts of
weather patterns, temperature and precipitation at sub-seasonal scale, seasonal
streamflow, agricultural productivity, droughts, floods, as well as carbon cycle
fluxes (Bamzai and Shukla, 1999; Bierkens and Beek, 2009; Koster et al., 2010;
Bauer, Thorpe, and Brunet, 2015; Massari et al., 2018)

Numerical weather prediction (NWP) models have much the same problems.
During forecasts, any initial errors or inaccuracies in the initial conditions of the
atmosphere can be amplified, resulting in lower accuracy forecasts. Areas with
higher uncertainties in initial conditions, such as cloud-affected areas, also pro-
duce significant forecast error growth (McNally, 2002). NWP has then moved
to use modern data assimilation techniques, with the ever increasing amount
of satellite-based data, to correct poor initial conditions (Bauer et al., 2011).
The same idea is steadily being worked on in LSMs, that is to say using the
surface observations at our disposal to continuously correct known model biases
and insufficient model physics when running the system over a longer historical
period, as well as to create the most accurate initial conditions possible when
focusing on immediate forecasts.

As this thesis works to transition to and enact the forecast configuration
of LDAS-Monde, the data assimilation and thus the corrections to the initial
conditions, become of utmost importance.
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3.2 From Monitoring to Forecasting Land Sur-
face Conditions Using a Land Data Assim-
ilation System: Application over the Con-
tiguous United States (Mucia et al., 2020)

3.2.1 Article Introduction and Context
Previous experiments with LDAS-Monde (Albergel et al., 2018b; Albergel et
al., 2019) show that it can successfully monitor vegetation conditions, and that
those indicators can be linked to droughts. These experiments also used the as-
similation of satellite observed LAI and SSM which improves this ability. Work
in this thesis is then performed to transition from the monitoring of conditions
and experiment on the forecasting of them. With ERA5 reanalyses, only near-
real time monitoring is possible, with delays on the order of a few days. Analysis
in this mode provides useful information, but can rarely be a tool used to aide
stakeholders in decision making. On the other hand, two week forecasts may
prove useful for certain applications such as the timing of planting, irrigation,
and harvests. Several weeks forecast of land surface conditions may also aide
decision makers in domains such as agriculture, municipal water suppliers, wild-
fire managers, public health mangers, hydropower utilities, tourism, and local
or regional resource management. Early warning in these domains can improve
response quality and speed in order best mitigate the impact of drought events.
The decisions themselves can range from dam operators deciding when to re-
leasing water and how much to release, municipal water providers regulating
or restricting water use, or even simply the scheduling of local tourism workers
to account for changes in tourist and visitor influx. These land surface fore-
casts may also work towards providing a rough estimate of annual crop yields
(although that would be an extension of this current work).
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Abstract: LDAS-Monde is a global land data assimilation system (LDAS) developed by Centre
National de Recherches Météorologiques (CNRM) to monitor land surface variables (LSV) at various
scales, from regional to global. With LDAS-Monde, it is possible to jointly assimilate satellite-derived
observations of surface soil moisture (SSM) and leaf area index (LAI) into the interactions between
soil biosphere and atmosphere (ISBA) land surface model (LSM) in order to analyze the soil moisture
profile together with vegetation biomass. In this study, we investigate LDAS-Monde’s ability to predict
LSV states up to two weeks in the future using atmospheric forecasts. In particular, the impact of the
initialization, and the evolution of the forecasted variables in the LSM are addressed. LDAS-Monde is
an offline system normally driven by atmospheric reanalysis, but in this study is forced by atmospheric
forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the 2017–2018
period over the contiguous United States (CONUS) at a 0.2◦ × 0.2◦ spatial resolution. These LSV
forecasts are initialized either by the model alone (LDAS-Monde open-loop, without assimilation)
or by the analysis (assimilation of SSM and LAI). These two forecasts are then evaluated using
satellite-derived observations of SSM and LAI, evapotranspiration (ET) estimates, as well as in situ
measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate
that for the three evaluation variables (SSM, LAI, and ET), LDAS-Monde provides reasonably accurate
and consistent predictions two weeks in advance. Additionally, the initial conditions after assimilation
are shown to make a positive impact with respect to LAI and ET. This impact persists in time for
these two vegetation-related variables. Many model variables, such as SSM, root zone soil moisture
(RZSM), LAI, ET, and drainage, remain relatively consistent as the forecast lead time increases, while
runoff is highly variable.

Keywords: ASCAT; data assimilation; soil moisture; leaf area index; evapotranspiration

1. Introduction

Extreme meteorological and climatic events, such as heatwaves and droughts, are predicted to
increase in frequency and magnitude in future decades [1,2]. These events have significant ramifications
on society, leading to environmental, economic, and societal damages. In particular, droughts have
been found to be a detrimental and costly natural hazard [3–7], accounting for around 20% of all
natural hazard damages [8] and costing society billions of dollars every year [7]. Due to this large
impact, it is critical to monitor and predict the land surface variables (LSV) that link drought and
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society [9]. The monitoring, prediction, and therefore warning of droughts, floods, famine, and other
extreme events can be accomplished with land surface models (LSM) [10,11] that can simulate the LSV
responses to these extreme events. These events and their responses also pose a significant scientific
challenge for the adaptation to climate change [1]. Good knowledge of both land and lower atmosphere
conditions is necessary to accurately monitor and predict LSV values. This understanding is also critical
for the monitoring and prediction of drought. Specifically, modeling of surface soil moisture (SSM),
leaf area index (LAI), and evapotranspiration (ET) is of high importance for agricultural producers in
drought-prone areas [12–14]. While LSM simulations provide temporally and spatially continuous
information about LSV, they are by no means perfect, and often lack complex interactions and physics
that result in predictions differing from reality.

The availability of global LSV observations from satellite instruments enables the constraining
of LSM simulations using data assimilation (DA) techniques. A number of DA systems are able
to sequentially combine model variables and observations at regular and consistent intervals,
as demonstrated by [15–20], among others. Many land data assimilation systems (LDAS) already
exist, including the Global Land Data Assimilation System (GLDAS) [21], North American Land
Data Assimilation System (NLDAS) [22,23], Coupled Land and Vegetation Data Assimilation System
(CLVDAS) [24], the Famine Early Warming Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS) [25], and the National Climate Assessment – Land Data Assimilation System
(NCA-LDAS) [26–28]. Barbu et al. [18] developed an offline regional LDAS over France in the research
department of Météo-France (CNRM, Centre National de Recherches Météorologiques). This LDAS
was able to sequentially assimilate LAI and SSM at the same time into the ISBA (interactions between
soil biosphere and atmosphere) LSM [29–32]. The LDAS-Monde tool [33–35] is an upgraded version
of this LDAS. LDAS-Monde is able to combine Earth observation data and LSM simulations at a
global scale and over specific areas. It can be used for the monitoring, and possibly the prediction,
of LSV conditions.

LDAS-Monde is forced by atmospheric variables and the sequential assimilation of satellite-derived
LAI and SSM data produces an analysis of land surface conditions. The assimilation permits the
analysis of the vegetation biomass and of the soil moisture profile. Albergel et al. [33] showed that
the root zone soil moisture (RZSM) analysis benefits from the assimilation of SSM and also from the
assimilation of LAI, especially in dry conditions. LDAS-Monde has been successful at representing
LSV such as SSM, RZSM, LAI, gross primary production, and ET, by using atmospheric reanalysis data,
such as those produced by the European Centre for Medium-Range Weather Forecast fifth generation
reanalysis, ERA5. LDAS-Monde outputs result in good correlations when compared to satellite and/or
in situ observations of land surface states [34–37]. So far, forecasting LSV conditions with LDAS-Monde
is at a preliminary stage.

The objectives of this study are to assess to what extent (1) LSV conditions can be forecasted
using an LSM, (2) LSV initial conditions influence the forecasts, (3) data assimilation can improve the
accuracy of initial conditions of LSV forecasts, and (4) LSV forecasts can benefit to crop monitoring.

This study makes use of LDAS-Monde, towards the goal of moving from monitoring to predicting
LSV conditions. Atmospheric forecasts are used to force the ISBA LSM to assess the forecast of
LSV conditions. In situations when it is possible to predict atmospheric variables with reasonable
accuracy days up to two weeks in advance, those same atmospheric predictions can be used to predict
the vegetation and soil moisture variables used to characterize drought. The rationale underlying
this study is that an LSM that can successfully monitor vegetation conditions forced by accurate
atmospheric reanalyses would logically be able to forecast land surface conditions provided that
accurate atmospheric forecasts are available. Running the LSV forecasts with atmospheric forecasts
also underlines the importance of accurate initial conditions. Improving the accuracy of LSV initial
conditions using data assimilation is a key issue.
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The novel assessment in this study uses the LDAS-Monde data assimilation system with atmospheric
forcing variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 15-day
forecasts for the two-year 2017–2018 period over the contiguous United States (CONUS).

In both monitoring and forecasting modes, LDAS-Monde results are compared to several
independent datasets for analyzing the accuracy of the LSV modeling and the impact of initial
conditions (i.e., the impact of the data assimilation). To assess root zone and surface soil moisture
simulations, an independent dataset of soil moisture measurements from the U.S. Climate Reference
Network (USCRN) [38] across CONUS is used. The simulations of ET are compared to the satellite
driven estimates of the Atmosphere-Land Exchange Inverse (ALEXI) [39] surface energy balance model.
The LAI and SSM LDAS-Monde outputs are also compared to the matching satellite-derived products
as a way to assess the correct behavior of the data assimilation impact.

Section 2 describes the materials and methods used in this study, including assimilated and
verification datasets. Section 3 describes the results of the monitoring and forecast experiments by the
comparison to verification datasets. Section 4 interprets and discusses these results in the context of
known geographic and biophysical patterns. Finally, Section 5 summarizes and concludes this article.

2. Materials and Methods

2.1. Atmospheric Forcing

LDAS-Monde has recently been updated with the ability to also ingest forecasted atmospheric
data to drive the ISBA model [35,36]. Twice daily, ECMWF runs global, 15-day, 51-member ensemble
forecasts at a spatial resolution of 0.2◦ × 0.2◦. This configuration consists of a control run (CTRL),
which is an unperturbed forecast run, and 50 perturbed members. The perturbed members are similar
to the control run, but with initial states and model physics slightly perturbed to explore the range
of uncertainty in the model. The ensemble forecasts are commonly used as probability guides (e.g.,
warmer or colder than average, probability of more than a precipitation threshold, etc.) and to
investigate extreme weather events (e.g., tropical cyclones, heavy precipitation). This study makes
uses of the CTRL forecast with a 15-day lead time. The atmospheric forecast has an hourly timestep up
to day three, a three-hourly timestep up to day six, and then a six-hourly timestep up to day fifteen.
For our LSV forecast experiment, we only used the six-hourly timestep up to day 15 which we linearly
interpolated to every three hours in order to match the 09:00 UTC hour start of the assimilation window.

The atmospheric variables required to force the ISBA LSM are air temperature, wind speed,
air specific humidity, atmospheric pressure, shortwave and longwave downwelling radiation, and
liquid and solid precipitation. All these variables are given by the ECMWF simulations, except
for air specific humidity, which we calculated from air temperature and air dewpoint temperature.
The unmodified atmospheric forcings were ingested into the ISBA LSM.

The different ECMWF atmospheric forcing datasets and temporal resolutions can impact the
shape and amplitude of the diurnal cycle of shortwave solar radiation. These differences in solar
radiation can have a large effect on ET, with stomatal changes responding directly to shortwave
radiation in the ISBA LSM. To counteract these problems, the experiments were run using a downward
shortwave interpolation scheme, which is intended to better capture the peak hours of solar radiation
by using a calculation of the solar zenith angle at each latitude and longitude based on the time of year
(http://www.umr-cnrm.fr/surfex/spip.php?article428, last accessed 12 May 2020).

2.2. Assimilated Satellite Observations

Figure 1 illustrates the domain as well as the assimilated land surface observations averaged
over 2017–2018. The SSM and LAI satellite observations assimilated in this study are products of
the Copernicus Global Land Service (CGLS) [40]. The SSM product is derived from the Advanced
Scatterometer (ASCAT) microwave sensor aboard the polar orbiting MetOp A and B satellites [41,42].
This product is available from 2007 to present and is produced as a daily synthesis from both sensors.



Remote Sens. 2020, 12, 2020 4 of 23

The soil moisture information is based on radar backscatter observations. An exponential filter [43] is
then applied to this product to estimate the soil wetness index (SWI) using a timescale parameter, T,
that varies between 1 and 100 days. With this T parameter, SWI accounts for other physical parameters
such as soil thickness and type, soil texture and density, evaporation, and runoff. This experiment
uses the smallest possible T value, T = 1 day, to best estimate the surface soil moisture (SSM), which is
expressed as a percentage of saturation between 0 (completely dry) and 100 (completely saturated) of
the topsoil layer. This product is global at a 0.1◦ × 0.1◦ resolution, which is interpolated to an ISBA
model grid of 0.2◦ × 0.2◦.
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The SSM product that is assimilated must be rescaled to match the model climatology in units
of m3 m-3 in order to address a possible misclassification of land surface parameters such as soil
porosity, wilting point, and field capacity [44,45]. The ASCAT SWI product is transformed into the
model-equivalent SSM with the linear rescaling method as described in [46], where the observations’
mean and variance are matched to the modeled surface soil moisture mean and variance. The second
layer of soil in the ISBA model (WG2, 1–4 cm depth) is used to represent the topsoil properties.
This rescaling gives, in practice, very similar results to cumulative distribution function (CDF)
matching. The linear rescaling is performed on a seasonal basis (with a three-month moving window)
as suggested by [16–18]. The rescaling parameters were derived monthly and screened for the presence
of ice and urban surfaces. Average observed SWI over CONUS for 2017–2018 is displayed in Figure 1.
The SSM observational dataset is filtered to exclude pixels whose average altitude is above 1500 m
above sea level and pixels whose land cover fraction exceeds 15% of urban surfaces.

Over the considered period, 2017–2018, the assimilated LAI observations are derived from the
PROBA-V (2014–present) mission. This study uses the GEOV2 dataset, which applies the observations
to a 1 × 1 km spatial resolution with data steps every 10 days [47]. These observations are then also
interpolated to the 0.20◦ ×0.2◦ model grid. Averaged LAI observations for 2017–2018 are displayed
in Figure 1.

2.3. Independent Evaluation Datasets

USCRN is a National Oceanic and Atmospheric Administration (NOAA) network of
climate-monitoring stations. USCRN contains 114 sites with hourly soil moisture and temperature
measurements at 5, 10, 20, 50, and 100 cm depths, relatively well spread over CONUS. In order
to effectively evaluate LDAS-Monde’s ability to predict surface variables, the SSM simulations are
compared to observed data at all sites with continuous quality-controlled data for all of 2018 in the
USCRN over CONUS. The number of these sites differs based on the individual layer of soil moisture.
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This study uses two layers of measurement from USCRN, the 5 and 20 cm observations. The 5 cm
layer is compared to ISBA soil layer 3 (WG3) representing 4–10 cm depth, while the 20 cm observation
is compared to an average of ISBA layers 4 and 5 (WG4 and WG5) representing 10–20 and 20–40 cm,
respectively, weighted by each layer’s respective thickness.

ALEXI [39,48–50] is a surface energy balance model calculating ET based on a two-source land
surface representation of the energy budget. The model treats the land surface as a combination of soil
and vegetation with unique fluxes, temperatures, and coupling with the atmosphere. This single model
formulation can be applied to wide ranging moisture and vegetation conditions, including partially
vegetated surfaces. ALEXI is produced at both the global scale and over CONUS at 0.05◦ × 0.05◦
and 0.04◦ × 0.04◦ spatial resolution, respectively. This independent dataset is used to evaluate
LDAS-Monde’s parameterization of ET processes.

2.4. LDAS-Monde

Within the SURFEX (Surface Externalisée Version 8.1) modeling system [51] developed by CNRM
(http://www.umr-cnrm.fr/surfex), a package allows the assimilation of satellite-derived products into
the ISBA land surface model using the LDAS-Monde data assimilation system. LDAS-Monde is
a global scale LDAS, with options to couple to hydrological models. LDAS-Monde also provides
statistics that can be used to monitor the impact of the assimilation of satellite observations. The specific
components of the system are detailed below.

The LSM used in this study is the CO2-responsive [30–32], multi-layer soil [52,53] version of the
ISBA model. This version of the model allows the representation of vegetation biomass and LAI,
in addition to exchanges in CO2, energy, and water fluxes between the surface and the atmosphere.
In our configuration, ISBA uses 12 predefined land surface patch types including nine functional
plant types (needle leaf trees, evergreen broadleaf trees, deciduous broadleaf trees, C3 crops, C4
crops, C4 irrigated crops, herbaceous, tropical herbaceous, and wetlands) as well as bare soil, rocks,
and permanent snow and ice surfaces. These patches are extracted from ECOCLIMAP Second
Generation [54], an evolution of ECOCLIMAP-II [55]. Urban surfaces defined in ECOCLIMAP-SG
are converted to bare rock when running ISBA alone. Atmospheric, climatic, and land use conditions
create the evolution in the vegetation biomass through processes of plant growth and mortality. During
growth phases, increased photosynthesis results in CO2 assimilation, creating vegetation growth and
increasing LAI from the minimum threshold (which is 1 m2 m−2 for evergreen forests and 0.3 m2 m−2

for all other types of vegetation). The experiments presented in this paper use a 14 layer, 12m depth
soil diffusion scheme, with layers at 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 5, 8, and 12 m depths [56].

In the LDAS-Monde system [33], observed satellite LAI and SSM data are assimilated into the
ISBA LSM using a simplified extended Kalman filter (SEKF) DA technique [57]. The SEKF technique
uses finite differences to compute the flow dependency between the assimilated observations, SSM
and LAI, and the control variables (soil moisture from layer of soil 2 to 8 (1 cm to 100 cm) and LAI).
The eight control variables are directly updated by the observed variables according to their sensitivity
as given by the SEKF Jacobian matrices [19,33,58]. Other model variables are updated indirectly
through feedbacks and other biophysical processes as related to the control variables. The SEKF
technique used in this study is the most mature data assimilation scheme currently implemented in
LDAS-Monde. Bonan et al. [59] recently implemented and validated an ensemble-based Kalman filter.

2.5. Experimental Setup

In this study, the LDAS-Monde offline system is used in a forecast mode, forced by ECMWF
atmospheric forecasts over the CONUS domain. It produces one- through 14-day LSV forecasts for each
day in the 2017–2018 period. The maximum 14-day lead time corresponds to potential changes in LSVs’
conditions impacting agricultural decisions such as the timing of irrigation, planting, and harvesting.
The LSV forecasts are initialized by either the open-loop (OL) and by the analysis resulting from the DA
experiment based on the sequential use of the SEKF to assimilate SSM and LAI. The OL corresponds to
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model-only simulations, without data assimilation. The OL- and SEKF-based forecast runs differ by
changing their initialized conditions, with SEKF having what should be a more accurate initial state
due to the assimilation of observations. The CONUS domain is defined as longitude 130◦ W to 60◦ W
and latitude 55◦ N to 20◦ N. Table 1 presents the characteristics of the DA experiment. LDAS-Monde
uses a 24 h assimilation window from 09:00 UTC to 09:00 UTC next day. The atmospheric forecast
forcings begin at 00:00 UTC while ISBA begins running at 09:00 UTC. This discrepancy causes the
15-day atmospheric forecast to produce only 14 full days of data. For this forecast experiment to reach
an equilibrium able to generate physically realistic initial conditions, the first year (2017) was spun up
20 times using the earliest time period of the CTRL member of the ECMWF ensemble forecast (FC1,
corresponding to the first day of forecast) as atmospheric forcing.

Table 1. Description of the LDAS-Monde data assimilation (DA) experiment used in this study.

Model Domain
Time Scale
and Model
Resolution

Atmospheric
Forcing

Deterministic
Atmospheric

Forecast

Assimilated
Observations

Model
Equivalent of
Observations

Control
Variables

ISBA
Multi-layer

soil
Plant growth

(“NIT” option
in SURFEX)

CONUS
(20N–55N,
130W–60W)

2017–2018,
0.20◦ × 0.20◦

CTRL first
24 h

(3–hourly)
Up to 15 days

SSM
(ASCAT)

LAI
(GEOV2)

Rescaled WG2
(1–4 cm)

LAI

Layers 2 to 8
(1–100 cm)

LAI

Since previous studies [33–37] have demonstrated that LDAS-Monde analyses can accurately
represent LSVs, this study uses a novel approach regarding the assessment of the forecasted variables.
The SEKF at FC1 is used as a reference. If the variables do not change greatly between later forecast
periods and FC1, it can be said that forecast variables are persistent. This persistence is important
to find as highly different values should encourage more scrutiny for that variable, whereas highly
similar values can be treated like the reanalysis (i.e., no forecast).

2.6. Assessment

Two scores are considered in this study: the Pearson’s correlation coefficient (R) and the root
mean squared difference (RMSD).

For surface soil moisture, score values between in situ observations and modeled soil moisture
are only calculated when soil temperatures (as given by USCRN measurements) are above 4 ◦C to
avoid frozen conditions. The ISBA LSM separates liquid and solid soil moisture, and the simulated
SSM variability can be affected by soil freezing when the modeled soil temperature is close to the
freezing level. Correlations are only calculated when there are more than 100 days of soil moisture
measurements in the 2017–2018 timeframe above this 4 ◦C threshold. Correlations are only retained
when the p-value is less than 0.05 (i.e., scores are significant at P values < 0.05).

The normalized information contribution (NIC) is defined by Equations (1) and (2) as in [60].
The NIC provides a metric to quantify the improvement or degradation from the analysis compared
to the model. It is computed for the correlations, and for RMSD (Equations (1) and (2), respectively):
RAnalysis (RMSDAnalysis) is the correlation coefficient (RMSD) between the SEKF experiment and
observations, while RModel (RMSDModel) is the correlation coefficient (RMSD) between the OL experiment
and observations. While the average NICR and NICRMSD values over all the stations are simple and
good indications of overall trends, the effect of the assimilation on individual stations can be highly
variable. This is important to note if work is done at a more local or regional level as the CONUS
average may not represent each individual station. These normalized scores are used in assessments
using satellite observations of LAI, SSM, and ET. For NICR, positive values indicate improvement
from the assimilation, while negative values indicate degradation. For NICRMSD, this pattern is
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reversed, with negative values denoting improvement from the assimilation, and positive values
denoting deterioration.

NICR =
RAnalysis −RModel

1−RModel
× 100 (1)

NICRMSD =
RMSDAnalysis −RMSDModel

RMSDModel
× 100 (2)

Finally, the bootstrapping statistical approach is used in order to calculate 99% confidence intervals
and to determine statistically significant differences between the model and analysis with regards to
forecast time period. The bootstrapping method can be summarized by the repeated random removal
of points and recalculation of the desired variable. In this analysis, this removal process is repeated
10,000 times in order to generate a sufficiently large number of samples in order to find 99% confidence
intervals. Bootstrapping was applied to the correlation values of all evaluation datasets (CGLS SSM,
CGLS LAI, ALEXI ET, and USCRN in situ soil moisture) versus matching OL and SEKF variables.

3. Results

3.1. Impact of the Analysis

Analysis increments, given in Figure 2, are the amount of daily mean change in each variable from
the assimilation of observations. These demonstrate the effect that the assimilation of LAI and SSM has
on five of the control variables (LAI, WG2–WG5 representing soil moisture layers 1–40 cm). Specifically,
it gives the average LAI (m2 m−2) or volumetric soil moisture (m3 m−3) added or removed from the
model run due to the assimilation over the considered 2017–2018 period. LAI experiences the strongest
effect, with negative LAI increment values being observed over most of the domain, most strongly
in the Great Plains, Midwest, and Eastern U.S. One distinct pattern is the Mississippi River valley,
where LAI is more markedly decreased. The coastal Pacific Northwest is the main region with the
opposite reaction, instead adding to the LAI. The model-equivalent of SSM, at 1–4 cm depth (WG2),
has a more diverse reaction to the assimilation, with significant areas where water is added, mostly in
the southwest and southern Texas, and where it is removed, predominantly in the Washington, Oregon,
Idaho, and Nevada areas. Much of the domain also has a weak or neutral change. Increments at 10 cm
(WG3) (Figure 2c) are generally still removing soil moisture, with some areas strongly removing, and
scattered, weaker areas of adding soil moisture. Soil layers at the 20 and 40 cm depths (WG4 and WG5,
respectively) have increments (Figure 2d–e) in a more uniform pattern, with nearly all regions having
soil moisture removed.
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Figure 2. LDAS-Monde daily mean analysis increments for (a) LAI (m2 m−2), (b) WG2 (1–4 cm)
(m3 m−3), (c) WG3 (4–10 cm) (m3 m−3), (d) WG4 (10–20 cm) (m3 m−3), and (e) WG5 (20–40 cm) (m3 m−3).
These increments represent if the assimilation of observations increases or decreases the amount of leaf
area or water for each individual pixel.
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3.2. Persistence: Forecast Versus Initial Conditions

In this section, all SEKF-initialized forecast lead times are compared to the initial condition of the
analysis produced by the assimilation (i.e., the SEKF) in order to assess each variable’s persistence in
time. Understanding this persistence was done as an initial step towards understanding the persistence
of the system as in a forecast mode. This analysis provides a standardized comparison to determine the
persistence of each variable in the LSM. Calculations of average correlation and RMSD for five LSVs
(LAI, WG2, RZSM, Runoff, Drainage, and ET) are given in Figure 3. As these correlations and RMSD
are compared to the initial conditions at FC1, the statistics would be in perfect agreement at that time
step (comparing FC1 against itself). Due to this, RMSD in Figure 3 is shown as a percentage change
from the FC1 initial condition. The individual RMSD for the LSVs follow the same general pattern.
The LAI, RZSM, WG2, and drainage variables all remain within 20% of the initial condition at FC14.
Unlike correlation, ET quickly increases RMSD and at FC14 is ~88% higher than its initial condition.
Finally, runoff changes the quickest and finishes at over 210% changed from the initial condition.
All correlations decrease as the forecast period increases, but at different rates per variable. For instance,
the LAI and RZSM correlations are nearly identical in their decrease, barely having diminished at
the fourteen-day forecast time. Drainage decreases in correlation slightly more with values dropping
0.1 by forecast day 14. The WG2 and ET correlations diminish more rapidly, both decreasing by
approximately 0.2 over the fourteen days of lead time. Finally, the runoff correlation quickly falls,
of about 0.3, between forecast day 11 and day 14.
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Figure 3. Comparison of forecasted LAI, root zone soil moisture (RZSM), WG2, runoff, drainage,
and evapotranspiration (ET) variables initialized by the simplified extended Kalman filter (SEKF),
with their values on the first day of forecast. The (a) correlation and (b) root mean squared difference
(RMSD) relative changes with respect to FC1 score values are presented. These comparisons show the
persistence of each variable with the use of atmospheric forecasts in the LDAS-Monde system over the
contiguous United States (CONUS) for the 2017–2018 time period.

3.3. Evaluation Using Satellite-Derived Products

LDAS-Monde has the ability to ingest atmospheric forecasts in order to output forecasts of land
surface conditions. Presented here are the results of comparing LDAS-Monde-forecasted SSM, LAI, and
ET to the satellite-derived evaluation datasets of the same variables. This analysis is not only focused on
how the forecasts perform in a general sense (i.e., how accurate are these predictions 14 days in advance),
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but also focuses on the impact of the initialization, that is, if the forecast is initialized by the OL or SEKF.
The correlations and RSMD values for SSM, LAI, and ET are summarized in Table 2. The bootstrapped
99% confidence intervals of correlation (not shown) range from ± 0.001 to ± 0.003 for SSM (either OL or
SEKF), ± 0.003 to ± 0.004 for LAI (either OL or SEKF), and ± 0.002 to ± 0.003 for ET (either OL or SEKF).
The temporal correlations of SSM, LAI, and ET to the satellite-derived observations for FC1 are given
in Figure 4 together with NICR, with red colors representing improvement from assimilation, and blue
representing degradation. The RMSD score and NICRMSD are given in Figure 5 with blue colors for
NICRMSD representing improvement from the assimilation, and red representing degradation. Results
for SSM, LAI, and ET are further described in Section 3.3.1, Section 3.3.2, and Section 3.3.3, respectively.

Table 2. Impact of forecast lead time and initialization on the prediction of surface soil moisture (SSM),
LAI, and ET by LDAS-Monde over the CONUS, during the 2017–2018 time period. Only even values of
forecast lead times are indicated, from 2 to 14 days (FC2 and FC14, respectively). The R values smaller
than 0.5 and the SSM RSMD values larger than 0.05 m3 m−3 are in bold.

LSV Initialization Score
Forecast Lead Time

FC2 FC4 FC6 FC8 FC10 FC12 FC14

SSM

OL R
RMSD (m3 m−3)

0.62
0.044

0.58
0.046

0.52
0.050

0.46
0.053

0.41
0.056

0.36
0.059

0.35
0.060

SEKF R
RMSD (m3 m−3)

0.64
0.042

0.59
0.046

0.53
0.049

0.46
0.053

0.41
0.056

0.36
0.059

0.34
0.060

LAI

OL R
RMSD (m2 m−2)

0.56
1.02

0.55
1.02

0.55
1.01

0.57
1.01

0.56
1.01

0.56
1.01

0.55
1.01

SEKF R
RMSD (m2 m−2)

0.69
0.73

0.69
0.73

0.69
0.73

0.71
0.73

0.71
0.73

0.65
0.82

0.64
0.82

ET

OL R
RMSD (mm day−1)

0.57
1.37

0.57
1.37

0.57
1.37

0.56
1.39

0.55
1.40

0.54
1.40

0.54
1.42

SEKF R
RMSD (mm day−1)

0.58
1.35

0.58
1.35

0.58
1.36

0.57
1.38

0.56
1.39

0.55
1.39

0.55
1.40
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Figure 4. Upper row maps (a–c) are of average temporal correlation between LDAS-Monde open-loop
(OL) and satellite-derived products for SSM (a), LAI (b), and ET (c) at forecast day 1. Bottom row maps
are average normalized information contribution (NIC) correlation impact from the SEKF assimilation
for the same variables ((d–f), respectively).
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Figure 5. As in Figure 4, except for RMSD. Upper row maps (a–c) are of average temporal correlation
between LDAS-Monde open-loop (OL) and satellite-derived products for SSM (a), LAI (b), and ET (c)
at forecast day 1. Bottom row maps are average normalized information contribution (NIC) correlation
impact from the SEKF assimilation for the same variables ((d–f), respectively).

3.3.1. Surface Soil Moisture

Figure 4 shows that SSM temporal correlations are generally very high across much of the
continent, with some particularly dry areas, specifically in the U.S. Southwest and southern Texas,
having far lower values. The NICR values show the visible improvement of correlation values by
the assimilation in much of the domain, including the entire Western U.S., much of the central Great
Plains, and a large portion of the Midwest. Few, if any, parts of the domain show any degradation
after assimilation. The RMSD values of SSM are shown in Figure 5. There are some regions of locally
higher RMSD, specifically in the Midwest and eastern Great Plains including some southern states, and
additional pockets of high error in portions of the Pacific Northwest, some of the Rocky Mountains,
and much of Canada. The data assimilation lowers this error in much of the Southwest, Pacific coast,
and Montana, with a more moderate reduction in the Midwest. The lower Mississippi River valley is
also outlined by a reduction in error. Scattered patterns of higher RMSD can be seen in some of the
mountainous Northwest and Wyoming areas. The average correlation and RMSD for SSM for each
forecast period using both model (OL) and analysis (SEKF) initializations are given in Table 2 and
in Figure 6. Both OL- and SEKF-initialized correlations experience a consistent drop as the forecast
period increases, with correlations at forecast day 14 around 50% lower than the first day of forecast.
At the FC1 lead time, the OL correlations start at 0.63 (± 0.003), while SEKF correlations begin at 0.66
(± 0.0025) and are significantly higher than OL until FC5, where the analysis and model are nearly
identical. From FC6 to FC14, the two initializations have similar values, with correlations of both
ending at FC14 of about 0.35 (± 0.003). Likewise, the RMSD shows a consistent increase (degradation)
as the forecast moves forward, with the model having either a slightly higher value or exactly the
same error, as far as the output precision allows. As with correlation, the first few days of forecast
see RMSD values that have a larger difference between the OL- and SEKF-initialized states compared
with the mid length and later forecast days. From FC8 to FC14, the mean SSM R (RMSD) values are
smaller (larger) than 0.5 (0.05 m3m−3). The OL and SEKF initialization modes give very similar R
and RMSD values from FC8 to FC14. The 99% confidence intervals determine that the OL and SEKF
initializations from FC1 to FC4 are significantly different, whereas the rest of the forecast period do not
see statistically different values based on the initializations. These results denote a poor predictability
of SSM beyond less than a week forecast lead time.
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Figure 6. Correlations (solid lines, circles) and RMSD (dashed lines, squares) given for the variables of
(a) SSM, (b) LAI, and (c) ET. Both statistics are presented for both OL (blue) and SEKF (red) initializations,
and for each day of forecast lead time.

In order to see the geographic patterns of the SEKF and OL initialization differences, maps of
NICR and NICRMSD are presented for FC2, FC8, and FC14 in Figure 7. The SSM NICR shows how
over much of the US, the early forecast lead times see strong improvement (positive, red) across the
domain, with strongest improvements in the dry Southwest as well as in the northern Great Plains.
As the forecast lead time increases, some areas still show strong improvement, with the Southwest
remaining strongly influenced by the initialization out to FC14. Additionally, after the eight-day lead
time, there is a small pocket of reduced correlation found at the Washington–Oregon state border,
which is not present in earlier lead times, becoming more negative at FC14. Over the entire domain,
the magnitude of improvement markedly decreases with the forecast lead time, reducing it to almost
equally low positive and negative impact at 14 days. Further shown in Figure 7 is the NICRMSD for
SSM presenting a similar pattern of improvement (negative, blue) and degradation (positive, red).
The Washington–Oregon border shows degradation at earlier lead times than for correlation, while
much of the other domain indicates the analysis initialization improves error. The Southwest patch
also stands out with particularly strong and lasting improvements. As the lead time increases, these
effects are reduced in magnitude, but even at 14–days lead time, those two patches are distinguishable.
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As with correlation, a general reduction in error over the domain is most prominent only in the two-day
lead time, and after it is reduced to near equal improvement and degradation.
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3.3.2. Leaf Area Index

Temporal correlation maps for LAI at the FC1 lead time are given in Figure 4 with impacts from
the assimilation given in Figure 5. Correlations are generally very positive over much of the central
East Coast, Midwest, and Great Plains. In the mountainous and Western U.S., the correlations are
more sporadic, highly variable between very high and low correlations. The impact of the assimilation
is overall positive, increasing the correlation significantly in most areas, except for degradation that
occurs strongly in the Southwest, and in some mountainous areas of Colorado and Utah. Figure 5
shows that RMSD has particularly high values around the lower Mississippi River, much of Appalachia,
New England, and Florida. Unlike correlation, impacts on the RMSD from the assimilation are almost
entirely improvements. The biggest changes occur in the Great Plains, mountainous Pacific Northwest,
Florida, and again the lower Mississippi River. Smaller improvements are made in more error-prone
areas such as Appalachia and New England. It is important to note the scale on the LAI improvements
in correlation and RMSD from the assimilation is far larger than both SSM and ET due to the larger
differences. The maximum error is also large, reaching up to 2.4 m2 m−2. Importantly, the Midwest
and Great Plains, strongly agricultural regions, show very strong improvement from the assimilation,
particularly in correlation, along with a distinct patch of the lower Mississippi River.

Spatially averaged LAI correlations and RMSD are given in Table 2 and Figure 6. The SEKF
statistics are significantly improved compared with the OL-initialized states at all forecast steps. The OL
correlations stay more or less constant at all forecast periods. The LAI RMSD values for the model
indicate a similar pattern of little change. The analysis correlations do experience a strong decrease
between forecast day 10 and day 11. The same pattern is seen in reverse with an analysis RMSD
increase during this same period. With regards to spatial statistics for different forecast lead times
(Figure 8), most of the domain experiences improvement, with NICR values often greater than 0.5 and
NICRMSD often less than -0.25. Particularly, the Northeast, Midwest, and Great Plains show consistent
and strong improvement at all forecast lead times. There is also weaker degradation in a belt across
Mississippi, Alabama, and Georgia that becomes stronger degradation as the lead time increases.
Generally, these impacts persist well through the forecast lead time, although like all other variables,
they do decrease intensity somewhat. Even at 14–days lead time, the initialization by the analysis
shows strong improvement in LAI correlations in much of the agricultural areas of the U.S. A similar
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trend is seen with NICRMSD. The strong improvement in the Mississippi River valley is still easy to
see. The degradation in correlation seen in the Southwest is closer to no change in NICRMSD. Finally,
the improvements in RMSD appear to fade quicker than NICR as the forecast lead time increases.
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NICRMSD values at the same forecast lead times. Note that red color for correlation is improvement
from assimilation, whereas blue is improvement for RMSD.

3.3.3. Evapotranspiration

Spatial correlations with ALEXI ET at FC1 (Figure 4) show strong agreement over the Midwest
and some of the Great Plains. Much of the East Coast and South also demonstrated relatively strong
agreement. Impacts from the assimilation indicate improvement over almost the entire Central U.S.,
with another area of strong improvement in the Kentucky and Tennessee regions. Some scattered
degradation is seen in the West, most notably at the California, Arizona, and Nevada border. The ET
RMSD and NICRMSD impacts are given in Figure 5. The error is largest in the South, Pacific Coast, and
New England, with most of the Midwest and Great Plains having a mild RMSD. A very low RMSD
occurs in the dry Southwest, areas where correlations are also very low. The NICRMSD demonstrates
that the impacts are not as widespread as they were with correlation. The strongest improvement is
in the Great Plains states of Kansas, Nebraska, South Dakota, and North Dakota. Degradation up to
NICRMSD = 0.15 is most notably seen in the Sierra Nevada and Cascade Mountains.

With the spatially averaged correlations and RMSD of ET (Table 2, Figure 6), both the OL- and
SEKF-initialized experiments show a consistent, but small, decrease in correlation as the forecast
lead time increases, beginning at 0.57 (± 0.003) and 0.58 (± 0.002), respectively, and ending at the
14–day lead time at 0.54 (± 0.0025) and 0.55 (± 0.002), respectively. The RMSD values of ET forecasts
initialized with OL and SEKF increase as the forecast period increases, beginning with 1.37 and
1.35 (mm day−1) and ending at the 14-day lead time with 1.42 and 1.40, respectively. At all forecast lead
times, SEKF-initialized runs always have significantly improved correlations and RMSD compared
with the OL-initialized runs.

Figure 9 shows that the geographic patterns in the forecast time periods show that impacts on ET
correlation from the assimilation are most persistent in the Central U.S. While the magnitude of these
improvements does decrease, they are still evident, and in the same pattern, at FC14. With NICRMSD,
most patterns are similar. The area of strongly improved RMSD in the central and northern Great
Plains can be said to persist through the forecast lead time, but diminishes far more at FC8 and FC14
compared with the improvements in correlation.
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ET. Spatial patterns of persistence of SEKF impact on simulated SSM as compared to CGLS SSM as
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3.4. Evaluation Using In Situ Soil Moisture Observations

At 5 cm, with 106 USCRN stations of data, the initialization makes little impact, with OL- and
SEKF-initialized correlations to in situ measurements showing no significant differences. Increasing
the forecast lead time logically decreases the correlation with in situ measurements, with the lowest
correlation at the longest lead time as shown in Figure 10. Correlations for both initializations begin
at approximately 0.74 and diminish as the forecast lead time increases, reaching a minimum below
0.50 at FC14. At the 20 cm depth, with 84 stations worth of data, the initializations do cause a visible
systematic difference at early lead times, with correlations of OL and SEKF at FC1 of 0.68 and 0.69,
respectively. There is also a trend of the OL- and SEKF-initialized correlations becoming closer as the
lead time increases (i.e., impact of the initialization decreases with the forecast lead time). These visual
differences, however, are not significant as determined by the bootstrap calculations. The 20 cm depth
begins with lower correlations than the 5 cm depth but also decreases slower as the lead time increases.
However, past FC8, the correlations at 20 cm are better than their 5 cm counterparts, ending at FC14
with R = 0.51 for the OL and SEKF initializations.
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Figure 10. Correlations of OL- (blue) and SEKF (red)-initialized forecasts of SSM to USCRN in situ
observations at 5 cm (circles) and 20 cm (squares). Due to the removal of freezing conditions and
removal stations with less than 100 days of observations, the 5 cm correlations are averaged over
106 stations, whereas the 20 cm correlations are averaged over 84 stations.
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4. Discussion

4.1. Can LSV Conditions Be Forecasted Using a LSM?

The correlations of evaluating the forecast periods against their initial SEKF reference conditions
suggest that most LSV (except for runoff) are rather persistent in time in the model. LAI and RZSM had
minimal changes from forecast lead time day 2 to 14 (FC2 to FC14), indicating that, working together,
the model and forecasts limit the variability of these variables. ET, WG2 (1–4 cm soil moisture), and
drainage have slightly more variability, but still had very similar results between the monitoring
mode and 14–day forecast. Runoff, on the other hand, varied greatly as the forecast period increased.
This behavior tends to demonstrate the variable’s high degree of coupling with precipitation [61],
which is a highly variable forecast variable.

From FC1, RMSD had a far greater relative change than correlation. The LAI, WG2, RZSM, and
drainage all have very small changes out to FC14. ET RMSD is at least 50% higher than the previous
variables at all forecast lead times. Further, like correlation, the runoff RMSD quickly decouples from
the SEKF initial condition. These results show that forecasted LAI, SSM, RZSM, as well as ET and
drainage can be considered rather similar to their non-forecast, SEKF, counterparts. However, run-off

differs greatly and its variability indicates that we should not treat the forecasted values the same as
their non-forecast counterparts.

4.2. Do LSV Initial Conditions Influence Their Forecasts?

The results of this experiment demonstrate that the influence of the initial condition on the LSV
forecast depends on exactly what the LSV in question is, as well as the evaluation dataset. For example,
the evaluation of SSM using USCRN in situ observations resulted in no discernible difference between
the OL and SEKF initial conditions at 5cm, and a small, but not significant difference at 20cm.

At 5 cm depth, averaged LDAS-Monde OL- and SEKF-initialized correlations to the in situ
observations did not significantly differ at 5 cm depth for any forecast period. Still, the correlations at
FC1 generally agree with other similar comparisons such as [34], with the main difference being that
this study only uses a two-year time period. This could be caused by a few different factors. First is the
relatively short time period. Due to the ensemble forecast data only being used from 2017 onward,
a longer period of study is not possible in this forecast capacity. The two-year analysis may not be
enough time for any statistical differences to appear. Another reason is the relatively small impact of
the assimilation of SSM, especially when compared with the impact of the LAI assimilation, which is
discussed in the next paragraph. Notably, at FC4, the forecast of SSM is still higher than 0.70, indicating
some persistence of model skill as the forecast lead time increases.

At the 20 cm layer, the initialization shows a visible, however not significant, difference. This can
be caused by the impact from the assimilation of LAI, which strongly affects deeper layers of soil
moisture (20 cm or deeper, ISBA equivalent WG4 and deeper) compared with SSM (1–10 cm, WG2
and WG3 ISBA equivalent) as demonstrated by [33,62]. The correlation at deeper layers is still less
than at the surface, which may be explained by the lower amount of variability in the observations,
leading to a lower correlation score. As seen in other instances of assimilating soil moisture [63], the
neutral impact of the assimilation of ASCAT data can be partially explained by the generally high
quality of LDAS-Monde OL soil moisture, compared with the quality of ASCAT. When compared
directly with the ASCAT-based SWI product, observations are far less correlated with the same in situ
observations (R = 0.56), while LDAS-Monde OL and SEKF initializations at FC1 show higher values
(R = 0.74 for both). More research is planned to investigate the individual effects of assimilating SSM
and LAI separately in order to quantify their added value independent of one another.

For forecasts in general, as the forecast period increases, the forecast skill of the LSM decreases.
With a fast-evolving variable such as SSM, the model decreases in skill in a similar manner as the
period increases. SSM is shown to be strongly sensitive to atmospheric conditions, and as the quality of
those forcings decreases (as lead time increases), the correlations with measurements decrease. Deeper
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layers of soil moisture are still strongly connected to precipitation, but have less variability, leading to
a slower decrease in correlation with the forecast period.

Using the CGLS SSM, differences were shown at early forecast periods, but this influence became
smaller and smaller until disappearing at longer time forecast periods. The other variables of LAI and
ET always resulted in differences corresponding to the initial conditions.

4.3. Can Data Assimilation Improve the Accuracy of Initial Conditions of LSV Forecasts?

Previous experiments using LDAS-Monde [33,34,62] showed that assimilated LAI and SSM
satellite-derived products increase their correlations and decrease RMSD with LDAS-Monde LAI
and SSM after data assimilation, averaged over the domain. This is a good check to be sure that the
data assimilation is working as intended. The response of ET to the data assimilation is of special
importance due to its independence from the assimilated datasets. Furthermore, the analysis of how
these statistics evolve as a function of forecast lead time is a question of interest (i.e., how long do these
variables provide useful, usable information). Several previous studies have looked at the impact of
initial conditions on LSVs. Wood and Lettenmaier [64] found that accurate initial conditions and future
atmospheric forcings are critical for good streamflow predictions. Shukla et al. [65] demonstrated
similar results linking better initial conditions to improved hydrologic forecasts. Sawada et al. [66]
have used CLVDAS, assimilated microwave brightness temperature and general circulation model
(GCM)-based seasonal meteorological forcings, to predict LAI and agricultural drought with up to
a three-month lead time. That study also found that initial conditions play an important role in the
prediction of LAI. This study with LDAS-Monde differentiates itself by operating on smaller temporal
scales, with operational 15–day meteorological forecasts to ensure the most accurate atmospheric
forecasts available. Shorter, but more accurate atmospheric forecasts may provide useful information to
stakeholders and influence their decision-making, notably for planting, irrigation, and harvest, which
may require higher certainty to take action. Even on the shorter timescales, the results corroborate
the idea that the initial conditions are improved after data assimilation, and that these better initial
conditions contribute to more accurate forecasts for LSVs. As in [66], the strongest improvement is
seen in LAI. In models coupled with the atmosphere, more accurate initial conditions through the use
of data assimilation of Earth observations can also feed-back and create better forecasts of atmospheric
weather patterns [67,68]. An application where LDAS-Monde would run coupled with an atmospheric
model would prove useful, in particular to assess the role of vegetation.

Some geographic patterns of NICR and NICRMSD for LAI and SSM at FC1 can also be seen in the
maps of analysis increments (Figure 2). Stronger improvements in correlation are generally associated
with stronger increments. For example, with SSM NICR and NICRMSD (Figure 7), we see degradation
in some areas of the Pacific Northwest that worsen with the forecast time. This same area is where
the analysis increments show that water is removed in the model-equivalent soil layer, WG2 (1-4 cm).
This may suggest that the removal of water from the assimilation may be an oversensitivity to the SSM
observations. This large change, which may result in slightly improved monitoring at FC1, cascades
to become less correlated and with more error at later forecast times. Additionally, average SSM
correlations and RMSD (Figure 6) worsen quickly with forecast time, demonstrating the fast-evolving
nature of this variable. As accurate atmospheric reanalyses are important to successfully monitor
LSVs, specifically those linked to the terrestrial water cycle such as SSM [34], the same reasoning can
be extended to include the importance of accurate atmospheric forecasts, in this case, up to 14–days
lead time. Finally, the SEKF assimilation does prove to provide significantly more accurate initial
conditions, and thus more accurate forecasts for at least some days before the OL- and SEKF-initialized
SSM converge.

Correlations and RMSD to the satellite-derived LAI product from the SEKF-initialized forecasts
are consistently and significantly better than the OL-initialized counterpart. This strong change
driven by the assimilation corrects for model biases in the seasonal timing of vegetation peak and
senescence, as well as accounting for known shortcomings such as not considering any human impacts



Remote Sens. 2020, 12, 2020 17 of 23

on vegetation, such as irrigation and harvests. As with SSM, LAI using the SEKF-initialized state proves
to be a more accurate initial condition. A notable behavior of the correlations and RMSD between SEKF
and the satellite-derived LAI is a strong change between the day 10 and day 11 forecasts (Figure 6).
This drop in correlation and rise in RMSD can be explained by examining the frequency of the LAI
observations, which are approximately every 10 days. The initial state, day 1, is the only result that has
directly changed due to the assimilation, and all forecast days following it only see the difference in
initial conditions. These first ten days are compared directly to the most recent satellite observation,
which is unchanging across those ten days. At day 11, another LAI observation is available, which is
then compared to the day 11 forecast for the purposes of correlation and RMSD, but the forecast results
have not seen this updated observation, which leads to a stronger disagreement. The plateau of steady
correlations and RMSD between the first and tenth day, and after the eleventh through fourteenth day
of forecasts, can be explained by the slow evolving nature of LAI. This shows that the 10–day sampling
time for the LAI estimates is a limitation of the data assimilation impact. Such a low sampling time
is used to mitigate the lack of data due to cloud coverage. Merging these data with more frequent
all-weather vegetation products derived from microwave observations could be a way to increase
the sampling time. Microwave vegetation optical depth (VOD) products have potential to improve
the analyses [69]. In particular, VOD estimates from ASCAT backscatter observations can present
very good (daily or better) sampling times at mid-latitudes [70]. Many works have addressed the
relationship between LAI and VOD. Following the work of [34], a comparison between the SEKF and
OL FC1 simulations and a VOD product is presented in Figure S1 (see the Supplementary).

As with LAI and the first several forecast days of SSM, ET forecasts initialized by the SEKF state
are significantly better than their OL-initialized counterparts, once again showing the utility of the
data assimilation to provide more accurate initial conditions. ET correlations and RMSD are very good
metrics that demonstrate the potential value in this new predictive capacity due to the completely
independent ALEXI evaluation dataset. Additionally, ET shows stronger persistence from the more
accurate SEKF initial conditions than SSM, which is likely due to the impact on ET of the relatively
slow LAI and root zone soil moisture dynamics. ET continues to have very good correlations even
with two–weeks lead time. This independent variable can give stakeholders an advanced look at how
much potential evaporation stress their crops may be exposed to in the near future and can provide
necessary information on the timing of irrigation.

Finally, biases in atmospheric forcing are inevitable, and can cause errors when monitoring
or predicting LSV conditions. No changes were made in this experiment to minimize those errors.
While this bias is inevitable, it provides even more reason to assimilate satellite observations, which can
work to correct the impact of these biases and move towards more accurate LSV conditions. While data
assimilation has been shown to give better initial conditions averaged over the domain, specific regions
may see poorer responses. The most notable examples are regions of decreased correlation in LAI
after assimilation (Figure 4) without forecasts and appearing in SSM RMSD, mostly notably at FC8
and FC14 (Figure 7). These areas where the initial conditions provide worse scores after assimilation
persist through the forecast time. While the exact cause of this degradation is not yet known, a possible
issue could be with the fraction of bare ground or vegetation cover, as a misrepresentation of these
parameters can affect the partitioning of water fluxes. Investigating these regions of declined statistical
scores after assimilation is also the subject of future work.

4.4. Can LSV Forecasts Benefit Crop Monitoring?

Previous work with LDAS-Monde compared grain yields over France with OL and SEKF
above-ground biomass [33,71], which, similarly to LAI, is a useful indicator of vegetation health and
development [72]. Those findings include significant added value from the data assimilation, and thus
improve the representation of agriculture and agricultural droughts on a global scale. Towards this
goal of analyzing and improving LDAS-Monde’s capacity to monitor agricultural droughts, CGLS LAI
observations were extracted from 2000–2018 over the U.S. state of Nebraska, which is a significant
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producer of maize. The United States Department of Agriculture (USDA) has yearly harvest yields for
many crops at the county and state level [73]. Annual satellite-observed LAI and annual corn yield
anomalies over Nebraska are illustrated in Figure 11. The correlation coefficient of these annual values
is 0.92.
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Figure 11. Inter-annual variability of CGLS LAI anomalies compared to USDA recorded corn yield
anomalies over the U.S. state of Nebraska. Correlation coefficient of the anomalies is 0.92.

This comparison provides an example of the ability to use LAI as a proxy for crop yield, which,
when coupled with the forecast capacity when integrated in LDAS-Monde, could be a useful tool for
decision-makers and stakeholders. Inter-annual variability is adequately displayed by the observed
LAI, and the two major drought events in this time span (2002 and 2012) are well captured.

5. Conclusions

LDAS-Monde has repeatedly proven to be a valuable tool for monitoring LSVs on the regional
and continental scale. The process of data assimilation has also previously been shown to increase
this value. This research advances these advantages by ingesting atmospheric forecasts allowing the
prediction of future land surface conditions up to two weeks in advance with reasonable accuracy,
particularly for LAI and ET. This study of only a two–year period did not show significant differences
in SSM between the OL- and SEKF-initialized states when compared with in situ observations, possibly
caused by the small time period. However, this difference is seen and is significant when comparing to
satellite-derived LAI, SSM, and ET. Just as numerical weather forecasts are dependent on their initial
conditions, forecasts of LSV are also strongly linked to their initial states. A consistent improvement of
these initializations will continue to improve forecast accuracy.

This new capability of forecasting LSVs can be used by agricultural stakeholders in certain
decision-making processes. One to two–week forecasts of SSM and ET can be a deciding factor
for planting, harvesting, and irrigation timing. LAI forecasts can be used to estimate crop yield as
demonstrated by the correlation of inter-annual variability between LAI and corn yield over Nebraska.
The limiting factor in the capacity to provide the most accurate results is the accuracy of atmospheric
forecasts themselves. Further work will investigate using longer range forecasts (at decreased spatial
resolution) to provide a longer forecast period. This longer outlook may be helpful for seasonal instead
of sub-seasonal trends and potentially a better prediction of annual crop yield. Additionally, future
experiments will test the potential improvement from the assimilation of the more frequent VOD
observations. These results will be the basis to build an agricultural drought monitoring and warning
system based on LDAS-Monde for the purpose of adequately warning agricultural producers and
decision-makers of the future states of the land surface.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/12/2020/s1,
Supplement – Microwave Vegetation Optical Depth. Figure S1: A) Correlation between LDAS-Monde SEKF
LAI at FC1 vs. X-Band VOD from VODCA B) NICR illustrating the improvement or degradation in correlation
between the VOD dataset and the SEKF and OL LAI C) Average monthly correlation scores between the VOD
dataset and the SEKF and OL LAI.
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ASCAT Advanced Scatterometer
CDF Cumulative distribution function
CNRM Centre National de Recherches Météorologiques
CGLS Copernicus Global Land Service
CONUS Contiguous United States
CTRL Control run of ECMWF atmospheric forecasts
DA Data Assimilation
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 ECMWF Reanalysis 5th generation
ET Evapotranspiration
FC Forecast
ISBA Interactions between Soil, Biosphere, and Atmosphere
LAI Leaf Area Index
LDAS Land Data Assimilation System
LSM Land Surface Model
LSV Land Surface Variable
NIC Normalized contribution index
NOAA National Oceanic and Atmospheric Administration
OL Open-loop (simulation without assimilation)
PROBA-V Project for On-Board Autonomy – Vegetation
RMSD Root-Mean-Square Deviation
RZSM Root-zone soil moisture
SEKF Simplified Extended Kalman Filter
SSM Surface Soil Moisture
SWI Soil Wetness Index
SURFEX Surface Externalisée (externalized surface models)
USCRN U.S. Climate Reference Network
VOD Vegetation Optical Depth
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3.2.2 Towards Assimilating VOD
As the conclusions of Mucia et al. (2020) discussed, more frequent assimilation
constraining vegetation in the model could improve LSV correlations. VOD,
being an all weather observation unaffected by clouds, provides far more fre-
quent observations than LAI. Therefore, supplementary and complementary
work to Mucia et al. (2020) explored the direct statistical relationship between
the LDAS-Monde LAI before and after data assimilation, and observed VOD
observations.

Using a similar LDAS-Monde system configuration over CONUS, Albergel
et al. (2018b) have compared modeled LAI and microwave-derived VOD from
radar backscatter measurements of ASCAT for 2010-2016. They found high
correlation values in large parts of the domain, with a median value of 0.57.
The northern part of the CONUS domain showed R values greater than 0.7,
while smaller R values (and even negative R values) were found in the southern
part of the domain. They suggested that over dry soils, sub-surface scattering
from the microwave signal may have affected the VOD estimates. They also
showed that the same VOD dataset had a higher median R value with the
observed CGLS LAI data, that is, 0.88. Consequently it was better correlated
with the analysis (median R value of 0.61) than with the model.

An additional analysis of the link between observed VOD and modeled LAI
was performed using VODCA VODX over the United States domain, showing
similar trends. Figure 3.1 demonstrates A) the spatial distribution of correla-
tions of SEKF day 1 forecasts of LDAS-Monde LAI versus VODX from VODCA,
B) the NICR showing the improvement or degradation in correlation between
the VOD dataset and the SEKF and OL LAI, and C) average monthly correla-
tions between VODX and the SEKF and OL LAI. Strong correlations are seen
in the East Coast, and Great Plains, while some Southern and Southwestern
regions see very low or negative correlations. As in Albergel et al. (2018b),
the SEKF gave stronger average correlations than the OL, as shown in most
of the domain in panel B and over most months in panel C. The improvement
in correlation by using the SEKF LAI over the OL LAI also indicates that the
assimilated LAI observations and VODX observations contain much of the same
vegetation-related information.

This direct correlation of VOD and LAI shows that these values are strongly
linked, and is worthy to be studied further. As previously stated, assimilating
vegetation-related information at the far higher frequency of VOD observa-
tions has the potential to improve the capability of LDAS-Monde to monitor
LSVs. This improvement directly translates to improved initial conditions of
the LDAS, which has just been demonstrated to be vitally important to accu-
rate land surface forecasts for many LSVs. Additionally, more comparisons can
be performed regarding the impact of the individual and joint assimilation of
these LAI, VOD, and/or SSM observations, which can reaffirm their respective
strengths and overall value. Chapter 4 explores and analyzes these ideas.
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Figure 3.1: A) Correlation between LDAS-Monde SEKF LAI at FC1 vs. X-Band
VOD from VODCA B) NIC R illustrating the improvement or degradation in cor-
relation between the VOD dataset and the SEKF and OL LAI C) Average monthly

correlation scores between the VOD dataset and the SEKF and OL LAI.

3.2.3 Mucia et al., 2020 Summary and Conclusions
This article successfully demonstrates the ability of LDAS-Monde to forecast
LSVs linked to drought and water resources over CONUS. In particular, LAI and
ET variables are shown to be reasonably accurate out to two weeks in advance.
While this configuration of the ISBA LSM does not simulate irrigation processes,
the assimilation of the satellite observations does drive corrections of the initial
conditions from these human impacts. The practicality of these forecasts for
stakeholders is also quickly addressed. Finally, this article states that these land
surface forecasts can and will be used as the basis for an agricultural drought
early warning system. The next steps are laid out, detailing the experimentation
with assimilating VOD to potentially improve the initial conditions, which as
proven in this article, greatly impact the performance of the forecasts.

The supplementary material also addresses this VOD assimilation, taking
the first step in the assessment of the VOD dataset. A direct correlation was
taken between VOD and LAI from LDAS-Monde SEKF on the first day of
forecast, showing variable correlations across CONUS, but generally high mean
and median scores. This material also describes the precise VOD data that
would be used in the assimilation, demonstrating that this specific VOD and
LAI are highly linked, justifying further assimilation studies.

3.3 Summary of Chapter 3
This chapter detailed the first experiments tested and run, initially over the
US state of Nebraska, then the major forecast experiment over CONUS, which
resulted in a published article. Information includes:

• Initial conditions of physical models are described, with an emphasis on
how they can be improved via data assimilation.

• An article on the LDAS-Monde transition from monitoring to forecasting
over CONUS was presented, with an expanded introduction and conclu-
sion. This article demonstrates that LDAS-Monde can transition to a
forecast mode, that the forecasts of LSVs can provide useful information
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up to two weeks in advance, and that the initial conditions of the model
play a large role in forecast accuracy.

– Supplementary material was also analyzed which looks at a basic
relationship between VOD and LAI, which serves as a link to future
work assimilating VOD to potentially improve initial conditions.
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Chapter 4

Improving Initial Conditions
Using the LDAS

This chapter explores the relationship between Vegetation Optical Depth
(VOD) and Leaf Area Index (LAI). Analysis is done examining the regressions
between both VODC and VODX against LAI observations (along with
LAI from the ISBA LSM OL) over the entire CONUS domain. Additional
analysis is performed over six dominant vegetation covers as defined by both
ECOCLIMAP-II and ECOCLIMAP-SG comparing first unmatched VODX
then matched VODX to LAI observations over those patches. A brief analysis
is also given on the general tendency of VOD anomalies compared to LAI and
corn yield anomalies seen previously in Chapter 3.

The remainder of the chapter describes and analyzes the effect of assimilating
matched VODX into LDAS-Monde as an LAI proxy. Various other assimila-
tion scenarios are also explored, including the assimilation of matched VODX
only when an LAI observation is present, as well as matching VODX to LAI
observations that have been interpolated to daily availability. The variables of
LAI, GPP, ET, and SSM are compared to satellite derived observations, and
probability distribution functions of the correlations are compared. Correlation
scores are also compared to in situ observations of soil moisture through the
USCRN. In addition to assessing the impact of assimilating matched VODX,
several comparisons are made describing the improvement seen by assimilating
joint vegetation (LAI or matched VODX) as well as SSM.
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4.1 Vegetation Optical Depth as an LAI Proxy
Chapter 2 has previously discussed VOD, its definition, uses, strengths, and
weaknesses. It has also touched on some key questions, such as the effects of
different VOD bands, and VOD responses over different vegetation types. This
section helps answer some of those questions.

Presented in this section are numerous comparisons between VOD and LAI
over different vegetation types. Both X-band and C-band VOD are compared
in several cases. This is because, while X-band was chosen for transformation
and assimilation, C-band is a perfectly fine alternative, and investigating the
properties and responses of two bands of VOD has the potential to provoke
discoveries regarding model and vegetation behavior.

4.1.1 Transforming VOD into an LAI Proxy
While VOD can work as a proxy to vegetation, and even be transformed into a
proxy for LAI, it is important to note that VOD is not LAI. This transformation
will produce some error, and the model treating the matched VOD as LAI in
its assimilation will produce additional errors.

As mentioned in Chapter 2, a simple linear re-scaling method was employed,
similar to CDF matching, to match the VOD observations to the LAI obser-
vations. A 3-month re-scaling length was selected, and then a 30-day rolling
mean was applied to the result to smooth it.

4.1.2 Comparison over CONUS
This section will compare the data from the overall CONUS domain. Ap-
pendix C provides this same comparison over the subdomains shown in Chap-
ter 2 and Figure 2.10.

These density scatter plots represent all times and points when there is both
VOD and LAI data. A linear regression and correlation score have been plotted
over the data. Table 4.1 gives these correlations in a single table. Logarithmic
transformations to the VOD data were also applied, but with no significant
increase in regression correlation or regression shape. Furthermore, a linear
regression and re-scaling was ultimately selected as it is supported by previous
experiments (Kumar et al., 2020), and it is more robust over varying vegetation
types. As will be shown in the VOD and LAI comparisons over patches domi-
nated by different vegetation, some vegetation has more of a logarithmic shape,
while other types have a far more linear shape. These comparisons only looks
at the months of April-September, which are typically considered the "growing
season" in much of the CONUS domain. All density scatter plots are set to
have the same x and y axes for better visual comparison. The colorbar is loga-
rithmically scaled in order to emphasize the distributions, and bins with under
5 count are eliminated. Figure 2.2 can be used to suppose certain VOD or LAI
responses over different regions of the US based on dominant vegetation type
in ECOCLIMAP-II or ECOCLIMAP-SG.
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Table 4.1: Correlation coefficients between VODCA VODX and
VODC versus CGLS LAI and ISBA LAI over the various subdo-

mains

Domain
CGLS LAI
vs VODC

CGLS LAI
vs VODX

ISBA LAI
vs VODC

ISBA LAI
vs VODX

CONUS 0.482 0.660 0.659 0.795
California 0.184 0.181 0.539 0.557
Midwest 0.610 0.717 0.700 0.761
Northeast 0.007 0.413 0.329 0.667

Southern Plains 0.346 0.317 0.595 0.587
Nebraska 0.517 0.637 0.548 0.608

On average over the CONUS domain, there is a moderately strong rela-
tionship between LAI and VOD, for both VODC in Figure 4.1 and VODX in
Figure 4.2. Panel A is LAI from observations in the CGLS dataset plotted
against VOD from the VODCA dataset. Panel B is LAI from the ISBA LSM
(with no data assimilation), using ECOCLIMAP-SG land surface parameter-
ization plotted against VOD from VODCA. A pattern observed here, and in
the subdomains analyzed in Appendix C, is that VODX values are consistently
higher than VODC values, as well the VODC comparison containing more noise.
This may be explained by C-band radar’s longer wavelengths better penetrat-
ing larger canopies, and retrieving more ground or low vegetation backscatter
(Frappart et al., 2020; Jiao et al., 2010). The higher noise from VODC is part
of why over CONUS, the correlations between VODX and LAI are higher. Over
CONUS, the VODC-LAI observation correlation is 0.48, while the VODX-LAI
observation correlation is 0.66.

While the LAI observations are moderately well correlated to VOD, the
relationship of VOD with LAI from ISBA (Panel B) shows consistently stronger
values. The VODC-LAI ISBA correlation is 0.66 while VODX-LAI ISBA has a
0.80 correlation value. Visually, we can see at higher LAI values, there is a more
dramatic increase in VOD in Panel B, whereas in Panel A, the VOD values seem
almost as if they flatten out. This is partly seen in Panel B, but is also slightly
compensated by progressively higher VOD, while eliminating low VOD values at
high LAI. Additionally, Panel B clearly shows certain artificial thresholds from
ISBA, including the 0.3 m2/m2 lower limit LAI for most vegetation and the 1
m2/m2 lower limit for evergreen forests. These artifacts can be seen at a wide
range of VOD values, and are also visible in these graphics for the sub-domains
(Appendix C). As explained in Chapter 2, these lower limits in ISBA are often
reached in Winter months when vegetation activity and LAI are lowest. Because
this comparison, as well as those of the subdomains to follow, compare VOD to
LAI at all points in time, these limited minimum values are seen.
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Figure 4.1: A density scatter plot detailing the relationship between LAI and VODC
from VODCA. This comparison only analyzes where and when there are both LAI
and VOD observations. Warm colors represent more counts of points in the hexagonal
bins. The colorbar is logarithmically scaled in order to emphasize the distributions,
and bins with under 5 count are eliminated. A regression line and correlation score
are added. This comparison only looks at points during the growing season months
(April-September). Panel A) compares LAI from CGLS observations while panel B)

compares to LAI from ISBA OL.

Figure 4.2: Same as Figure 4.1 but with VODX instead of VODC
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4.1.3 Anomaly Comparison of Corn Yield to VOD and
LAI over Nebraska

It is clear that the VOD observations from VODCA share a significant amount of
information with LAI, even before being linearly rescaled, as just demonstrated
over the various vegetation types. In order to take a slightly deeper look into the
relationship between VOD and C4 crops, the same comparison as in Figure A.2
was performed, but adding VODC and VODX anomalies. As seen in Table A.1,
the OL LAI anomaly had a 0.80 correlation to the annual corn yield anomaly,
while the SEKF (assimilating both LAI and SSM) saw an improved score of
0.85. The VOD anomalies also provide relatively high correlation scores with
corn yield, at 0.77 for VODX and 0.80 for VODC.

Overall, the variation between VOD observations and corn yield is not per-
fect, but the general tendency is similar. Most notably, the 2012 drought is
not strongly seen in VOD, but from 2013 to 2018, the anomalies match well.
This is just another indicator that shows that VOD observations have utility
in monitoring vegetation. And while they do not perfectly match any direct
drought or vegetation health index, they provide useful information regardless,
and in the context of this thesis, they provide far more frequent observations.

Figure 4.3: A time series representing the inter-annual anomalies of observed, mod-
elled, and analyzed LAI, and corn yield over Nebraska. The black line and stars rep-
resent the mean annual observed LAI anomalies from the CGLS LAI V2 dataset. The
green dashed line represents annual corn yield anomalies as reported by the USDA. The
blue and red lines are the LDAS-Monde OL and SEKF LAI products respectively. The
cyan and magenta lines are VODX and VODC observations from VODCA respectively.

4.1.4 Relationship Between VOD and LAI over Domi-
nant Vegetation Types

As a more direct way to look at VOD and LAI responses over different vegetation
types, their relationship is compared over six different dominant vegetation
types in the following section. Dominant vegetation is defined as 50% or more
of a single type in a patch as defined by the ECOCLIMAP land use database(s).
The six patches investigated are A) deciduous forests, B) coniferous forests, C)
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C3 crops, D) C4 crops, E) C3 grasslands, and F) irrigated crops, and are labeled
as such in the figures to follow. This section looks at the response for both
ECOCLIMAP-II and ECOCLIMAP-SG databases over the patches. The tables
also present the correlations over all types of vegetation, where there is less than
10% of non-vegetated surfaces in a patch defined by each ECOCLIMAP version
respectively. As there are changes to these non-vegetated surfaces, between the
two versions, the correlations themselves over all vegetation can differ. The
contrast between the two ECOCLIMAP versions can also help shed light on
large changes or mischaracterizations of vegetation that may be highlighted in
model results. The primary focus is on the VODX product from VODCA, and
all the tables and figures in the chapter are dealing with the X-Band, as this
band was chosen to assimilate in the LDAS-Monde experiments. However, this
same analysis was performed on the C-Band from VODCA and the results are
laid out in Appendix B.

This section will first look at ECOCLIMAP-II, and how the relationship
between LAI observations from CGLS and VODX observations from VODCA
change with vegetation type. The same analysis is then done, but substi-
tuting the matched VODX. This process is repeated in the same way for
ECOCLIMAP-SG. Each of the following density scatter plots records any point
and time when there are both VODX and LAI observations for the patches
dominated by the specific vegetation type of interest, with darker colors
representing a higher concentration of points. A seasonal analysis is also shown
using the meteorological seasons (Winter:DJF, Spring:MAM, Summer:JJA,
and Autumn:SON), with each season being a spatial average of the days with
observations. Those dots are color coded as follows: cyan is Winter, green is
Spring, red is Summer, and yellow is Autumn. After each density scatter plot,
the correlation scores are given in a table, for the entire time period, as well as
split up into the same meteorological seasons.

LAI versus VODX

Beginning with the earlier ECOCLIMAP version, ECOCLIMAP-II, it is im-
mediately apparent that vegetation type plays huge role in the LAI and VOD
response. Figure 4.4 shows the density scatter plot of the patches along with
the average seasonal correlations in the top left, and Table 4.2 gives all the
correlation values along with the number of points in each for the seasonal cal-
culations. Of all the vegetation types, coniferous forests were the only to have a
negative all season correlation at -0.09. All of the other vegetation types show
a moderately strong correlation between 0.43 for irrigated crops and 0.68 for
C4 crops.

The seasonality does play a strong part as well, and the figures show a clear
separation of values according to seasons over the patches. Winter correlations
are typically low for all vegetation types, and the cyan seen in the graphs are
often clumped at low LAI values. Spring scores are on average increased, and
contain a far wider range of LAI values, but similar range of VOD values.
Summer and Autumn see the highest correlation scores and are characterized
by a wider range of LAI and VOD values. Notably, deciduous forests have
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a negative correlation during Summer months, but the Autumn correlation is
strongly positive.

As previously mentioned, these same tables and figures are given for C-
band VOD in Appendix B. In general, the same conclusions can be gained
from looking at the C-band. Correlations are generally slightly degraded, and
there are certainly more outliers in the high VOD values. Additionally, the
correlations between VODC and LAI observations over forests are weaker than
with VODX.

Using different land use databases does show some different LAI and VOD
responses, while the same overall trends are still present. ECOCLIMAP-SG
patches show almost identical shapes in the density scatter plots, shown in
Figure 4.5, but do see some correlation strength changes as well as slightly al-
tered seasonal responses, shown in Table 4.3. The shape of the distribution of
deciduous forests is slightly changed as well, with a significantly higher con-
centration of low LAI and low VOD points, which in turn, skew the seasonal
means lower. The density scatter plot colors, which are fixed between all domi-
nant patch plots, indicate that ECOCLIMAP-SG has significantly more patches
dominated by deciduous forests compared to ECOCLIMAP-II. Irrigated crops
also see stronger changes, with ECOCLIMAP-SG strongly reducing the num-
ber of these patches, and the seasonal averages are far more variable. C3 and
C4 crops are mostly similar, with the starkest change being a wider range of
seasonal mean averages in ECOCLIMAP-SG. In the case of C3 crops, this is
likely caused by a visible increase in the range of LAI values over C3 patches
from ECOCLIMAP-SG.

Considering all vegetation, ECOCLIMAP-SG allows for better correlations
between LAI and VODX observations, but individual vegetation types have
more variability. The correlations over coniferous forests are lowered the most
dramatically from ECOCLIMAP-II to ECOCLIMAP-SG, while deciduous, C3
crops, C4 crops, and C3 grasslands vegetation are overall similar between the
two databases. Irrigated crops also show a dramatic decrease, going from weak
or moderately positive, to almost zero correlation. This response is likely due to
the far fewer patches of irrigated crops included in ECOCLIMAP-SG. Seasonal
patterns are quite similar, with Winter having lowest correlations, and spring
having the highest, but using ECOCLIMAP-SG reduces the positive summer
correlations for most vegetation types except C3 and C4 crops.

These differences do suggest that the selection of land use parameters used
in the LSM is important and can change the interpretation of result, espe-
cially if looking at small domains. Even the relatively minor changes between
ECOCLIMAP-II and ECOCLIMAP-SG are visible in this comparison over a
very large domain. Smaller domains that see a greater relative change between
the two versions would amplify these differences. Additionally, the relatively
straightforward and high correlations of LAI and VODX over C3, C4 crops,
and C3 grasslands patches signal that the Midwest and Great Plains regions of
the United States may be the most appropriate regions where VOD may act as
an LAI proxy.
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Table 4.2: Seasonal and total correlations of VODX versus LAI
for ECOCLIMAP-II patches

VODX
ECOII

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.58 0.57 0.70 0.68 0.56
Deciduous 0.56 -0.16 0.22 -0.23 0.78
Coniferous -0.09 0.23 -0.19 0.16 -0.04
C3 Crops 0.67 -0.04 0.46 0.47 0.61
C4 Crops 0.68 -0.04 -0.34 0.85 0.74

C3 Grasslands 0.58 0.34 0.59 0.62 0.30
Irrigated Crops 0.43 0.18 0.31 0.57 0.34

Table 4.3: Seasonal and total correlations of VODX versus LAI
for ECOCLIMAP-SG patches

VODX
ECOSG

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.76 0.37 0.74 0.32 0.61
Deciduous 0.53 0.57 0.39 0.67 0.56
Coniferous -0.46 0.17 -0.42 -0.06 -0.23
C3 Crops 0.73 0.07 0.02 0.76 0.56
C4 Crops 0.68 -0.33 -0.21 0.89 0.60

C3 Grasslands 0.68 0.42 0.61 0.58 0.57
Irrigated Crops 0.14 -0.02 0.21 0.10 0.03
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Figure 4.4: A density scatter plot detailing the relationship between LAI and VODX
from VODCA over six dominant vegetation types, A) Deciduous Forests, B) Conifer-
ous Forests, C) C3 Crops, D) C4 Crops, E) C3 Grasslands, and F) Irrigated Crops.
Dominant vegetation is defined as where 50% or more of a patch containing a single
vegetation type. Higher concentrations of points trend towards black. Colored dots
represent the spatial average over the four seasons, where cyan is Winter, green is
Spring, red is Summer, and yellow is Autumn. Black and white dashed lines represent

the linear regression of the seasonal scores.
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Figure 4.5: Same as Figure 4.4, but using ECOCLIMAP-SG instead of
ECOCLIMAP-II.
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LAI versus Matched VODX

Now using matched VODX to compare to LAI observations, it is shown that
that the correlations between the two datasets increase dramatically. Visually,
the data are strongly aligned (Figure 4.6), and the correlations in Table 4.4
have scores closely approaching the maximum of 1. Deciduous and coniferous
forest along with C4 crops share a relatively wide variation, while C3 crops,
C3 grasslands and irrigated crops have more compact distributions. These
distributions are likely due to the natural tendency of forests to have higher
LAI values, while most C3 plants are far lower. In the United States, the
primary C4 crops are corn (maize), millet, sorghum, and in a few parts, sugar
cane. C4 plants have higher optimal leaf areas compared to C3 (Anten et
al., 1995), and seasonality plays a clear role in the distributions of LAI and
matched VOD. The seasonal variations generally widen slightly compared to
non-matched VOD. For all vegetation types except for irrigated crops, Summer
months provide clearly higher coupled LAI and VOD values. Irrigated crops
instead show that Autumn and Summer compete for the highest levels. This
is a response from the far less water restricted environment of irrigated fields,
leading to a longer growth phase and thus delaying the timing of maximum leaf
area, even when the region is under light to moderate water stress.

Additional things to note are that in deciduous forests, C3 and C4 crops,
there is a clear indication that matched VOD in Autumn months are higher
than expected from the LAI observations. In fact, both deciduous forests (Fig-
ure 4.6 Panel A) and C4 crops (Figure 4.6 Panel D) show a signal of hysteresis,
where the timing of the LAI or matched VOD observation changes the pattern.
In the case of C4 crops, I hypothesize that heavier ground litter during and after
harvesting produces a stronger VOD response while at lower LAI. This effect
is more apparent in C4 crops potentially due to their overall higher LAI and
VOD values. Another potential cause of this hysteresis could be from leaf water
interception, both on growing plants and ground litter, which would also dispro-
portionately increase the VOD observations, leading to an offset. Yet another
explanation could be linked to the surface roughness. Fernandez-Moran et al.
(2015) and Hornbuckle et al. (2016) found that satellite microwave retrievals are
impacted by surface roughness as well as vegetation water content and soil mois-
ture. As management decisions for agricultural producers can impact a field’s
roughness, (i.e by plowing or tilling), it is possible higher values of microwave
retrievals, and ultimately VOD, may be at least partially explained by a higher
roughness. Further analysis of LAI and VOD over agricultural lands of varying
roughness could be conducted towards better understanding this phenomenon.

This mismatch in seasonality between matched VOD and LAI does pose
the question: is the linear re-scaling, as implemented, sufficient to account for
the differences in values and trends between these two datasets? The 3-month
re-scaling period is meant to account for this type of response, but clearly does
not perfectly transform the VOD product into a matching LAI proxy. While
that is somewhat expected, these results can be further analyzed and can lead
to finding even more solutions.
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When comparing ECOCLIMAP-II to ECOCLIMAP-SG for LAI versus
matched VODX, the overall shapes of the plots are similar. Figure 4.7 provides
the same figure comparisons, but for ECOCLIMAP-SG. Some of the notable
differences include the far more concentrated seasonal means in deciduous
forests, the overall increase in LAI and matched VODX values for C3 crops,
the enhanced hysteresis seen in C3 (Figure 4.7 Panel C), and especially C4
crops (Figure 4.7 Panel D), and the skewed regression over irrigated crops. The
seasonal variation in deciduous forests strongly shrinks from ECOCLIMAP-II
to ECOCLIMAP-SG, but the general pattern of highest values in Summer,
Autumn and Spring sharing the transition period, and Winter values being
lowest, remains. This shift actually increases the seasonal correlation in Winter,
but lowers it in Summer. C3 crop patches show a general expansion of LAI
and matched VOD values, widening the shape of the plot, and their seasonal
means. This change could be due to ECOCLIMAP-SG increasing the amount
of C3 crops in patches, which in turn would widen the range of observed LAI
values. It is likely that this expansion directly leads to the enhanced hysteresis
pattern seen in C3 crops, with the Autumn averages trending consistently
above the regression. The C4 crop patches see the same widening of the
hysteresis, but with an overall loss of number of C4 crop patches. One potential
explanation to this response is that ECOCLIMAP-SG shifted a number of C4
crop patch fractions to C3 crops, resulting in an overall smaller selection of C4
crop dominated patches. If this change moves the land cover closer to reality,
it suggests that C4 crops are more susceptible to this hysteresis phenomenon.
This also again calls into question if the linear re-scaling is sufficient to account
for these seasonal changes.

The use of linear re-scaling to produce matched VOD observations dramat-
ically increases correlation over all vegetation types. While it is important to
keep in mind VOD is not LAI, and the two datasets, even after re-scaling will
never be perfectly matched, the strong agreement after re-scaling is a promising
sign for VOD’s use in data assimilation, discussed later in this chapter.

Table 4.4: Seasonal and total correlations of Matched VODX
versus LAI for ECOCLIMAP-II patches

Matched VODX
ECOII

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.93 0.72 0.89 0.72 0.90
Deciduous 0.97 0.09 0.96 0.29 0.94
Coniferous 0.95 0.20 0.72 0.67 0.90
C3 Crops 0.95 0.49 0.83 0.69 0.91
C4 Crops 0.94 0.04 0.89 0.87 0.94

C3 Grasslands 0.95 0.48 0.90 0.87 0.93
Irrigated Crops 0.93 0.71 0.63 0.88 0.90
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Table 4.5: Seasonal and total correlations of Matched VODX
versus LAI for ECOCLIMAP-SG patches

Matched VODX
ECOSG

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.96 0.29 0.92 0.35 0.96
Deciduous 0.96 0.61 0.91 0.14 0.95
Coniferous 0.97 0.27 0.82 0.63 0.94
C3 Crops 0.95 0.26 0.74 0.80 0.95
C4 Crops 0.92 0.41 0.46 0.92 0.89

C3 Grasslands 0.96 0.30 0.93 0.72 0.95
Irrigated Crops 0.83 0.47 0.76 0.62 0.67
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Figure 4.6: Same as Figure 4.4, but with matched VODX instead of raw.
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Figure 4.7: Same as Figure 4.6, but using ECOCLIMAP-SG instead of
ECOCLIMAP-II.
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4.2 Impact of Assimilating VOD as an LAI
proxy

This section of Chapter 4 analyzes the impact of using and assimilating VODX
as an LAI proxy in the LDAS-Monde system. A total of 10 experimental as-
similation setups were run over the CONUS domain from 2003-2018. 2003 was
chosen as the start date, as this is approximately when the TRRM mission
ceases to be the only functioning VOD dataset included in VODCA. Because
of the limited geographic extent of this mission (only up to 35◦N), the analysis
would be skewed. Table 4.6 provides the experiment names used throughout to
reference the assimilation setups, and briefly describes what data is assimilated
for each one. Besides the OL, SEKF LAI, SEKF VODX, SEKF SSM, SEKF
LAI SSM, and SEKF VODX SSM, several experiments were run at the same
time, but using modified observations of VODX. SEKF VODX10 and the joint
assimilation with SSM (SEKF VODX10 SSM), uses VODX observations from
VODCA as before, but has filtered those observations to coincide only where
and when LAI observations from CGLS exist. This is used to test whether
the changes produced between SEKF LAI and SEKF VODX are truly from
the more frequent assimilation, or from the quantifiable differences between
matched VODX and LAI. If the SEKF VODX10 results are closely resembling
SEKF LAI results, but SEKF VODX are far different, this indicates the fre-
quency of assimilated observations is the primary cause of those differences.

Additional experiments of SEKF VODX_Int and SEKF VODX_Int SSM
slightly change the processing of linear re-scaling the VODX by linearly inter-
polating the CGLS LAI observations from their native temporal frequency of
every 10 days at best, to daily values. The VODX is then linearly re-scaled as
before, but to these values provided every day. It is important to note that the
SEKF VODX_Int and SEKF VODX_Int SSM experiments were ran to make
sure that the LAI observations approximately every 10 days were sufficient for
linear re-scaling. The results of these experiments are shown, but the focus
stays with the other experiments.

This section specifically analyzes the assimilation of the various matched
VOD data (VODX, VODX10 and VODX_Int) in place of LAI, as well as some
assessment of SEKF SSM by itself. The following section then looks at the
impact of jointly assimilating SSM with LAI and the matched VOD proxies of
LAI.

This section will go through the results of these experiments over CONUS.
Appendix D details this same analysis over the subdomains shown in Chapter 2
and Figure 2.10. As described in Chapter 2, the primary variables of interest
are LAI, GPP, ET, and SSM. GPP, ET, and SSM (depending on the experi-
ments analyzed) are truly independent datasets to compare to, and the main
conclusions are drawn from these variables. Comparisons to LAI observations
are still presented, but as the LAI was used in the assimilation itself (except
for SEKF SSM), or to re-scale the VOD, it acts more as a benchmark for the
assimilation.
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The primary focus of this analysis is done using the statistical score of corre-
lation coefficient. The LDAS-Monde workflow includes two ways of calculating
the correlation over a domain. First is what is termed the "Per Point" calcula-
tion, which is a simple and intuitive average of correlations over the gridcells of
interest. Each gridcell’s correlation to the observations through the time period
is separately calculated, and the arithmetic mean is then taken. While this
score is the most commonly used, and is easy to calculate and visualize, there
are concerns that an averaged correlation looses strict meaning, primarily when
the distribution of the scores are not Gaussian. Critical information about the
variability and range of the scores is lost. Depending on time scale, the signifi-
cance of this score can also be weak if there are fewer observations over certain
points.

The second option is termed the "For All Points" calculation, which combines
all points in the domain into a single, long, time series, which is then computed
against the observations processed in the same way. This provides only one
correlation score over the domain. However, the significance of the score is
strengthened due to the far larger sample length.

This analysis uses both these scores in combination against the satellite
derived observations of LAI, GPP, ET, and SSM. For each domain, correlations
by month are provided using the "For All Points" calculation. Then probability
distribution functions (PDF), derived from the histogram of individual gridcell
correlations, are calculated using a Gaussian kernel density estimation, and use
the "Scott’s Rule" to calculate an appropriate smoothing bandwidth, as justified
in Chapter 2. This dual calculation approach allows us to both describe seasonal
variations of correlation for each experiment, while also showing the distribution
of scores throughout the domain.
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Table 4.6: List of experiment names and their assimilated ob-
servations analyzed in Chapter 4

# Experiment Name Assimilated Observations
1 Open Loop (OL) No Assimilation
2 SEKF LAI CGLS LAI
3 SEKF VODX VODCA Matched VODX
4 SEKF SSM ESA CCI SSM

5 SEKF VODX10
VODCA Matched VODX only when there
is an associated LAI observation (every 10
days)

6 SEKF VODX_Int
VODCAMatched VODX linearly rescaled
using LAI observations that were interpo-
lated to daily data

7 SEKF LAI SSM Joint CGLS LAI + ESA CCI SSM

8 SEKF VODX SSM Joint VODCA Matched VODX + ESA
CCI SSM

9 SEKF VODX10 SSM Joint VODCA Matched VODX10 + ESA
CCI SSM

10 SEKF VODX_Int SSM Joint VODCA Matched VODX_Int +
ESA CCI SSM



4.2. Impact of Assimilating VOD as an LAI proxy 101

4.2.1 Analysis over CONUS using Satellite-Derived Ob-
servations

Figure 4.8: Graphs of monthly correlations over CONUS be-
tween LDAS-Monde OL (blue), SEKF LAI (green), SEKF VODX
(red), SEKF VODX10 (maroon), and SEKF VODX Int (yellow)
and satellite derived observations of A) LAI, B) GPP, C) ET, and

D) SSM.

Over CONUS, the experiments of OL, SEKF LAI, SEKF VODX, SEKF VODX,
and SEKF VODX_Int are analyzed. Figure 4.8 gives the monthly correlation
scores throughout the year of the experiments compared to satellite derived
observations of A) LAI, B) GPP, C) ET, and D) SSM.

LAI: First looking at LAI, the whole CONUS domain sees added value during
the months of May through September when assimilating matched VODX in
place of LAI. The rest of the year, the scores for SEKF VODX are slightly
below that of SEKF LAI. SEKF VODX_Int matches VODX almost perfectly
through the year, and this trend is seen in all the other variables as well. The
improvement in LAI correlation from assimilating VODX comes as a slight
surprise, as this is comparing to the CGLS LAI observations that themselves
were assimilated in SEKF LAI. Some potential explanations include the far
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more frequent assimilation of VOD during the summer months when LAI is
most rapidly changing. The results of SEKF VODX10 also show definitively
that it is the more frequent observations, and not the differences between LAI
and matched VOD that are causing some improvement, as SEKF VODX10 is
consistently lower than both SEKF LAI and SEKF VODX. Another reason
this improvement of SEKF VODX is seen compared to SEKF LAI, is possibly
related to the "For All Points" calculation of correlation. Additionally, this panel
shows that any assimilation of VODX or LAI significantly improves correlations
compared to the model by itself (OL).

GPP: For the variable of GPP, some similar trends are seen. During the
months of March through July, the assimilation of VODX (or VODX_Int) per-
forms far better than SEKF LAI or SEKF VODX10. From July to October,
there is also some improvement, but not as strongly as in the Spring and early
Summer. Interestingly, for the OL, SEKF LAI, and SEKF VODX10, there is
a visible dip in correlation scores during the month of May, while the SEKF
VODX and the interpolated counterpart see near constant, or even slightly
higher correlations compared to previous and future months. I hypothesize
that May sees some of the fastest vegetation change of the year for CONUS,
and all the model, and even all the observations assimilated at best every 10
days do not provide sufficient constraint to the vegetation. The near daily
VODX products do provide that, and thus prove immediately their utility in
use as LAI proxies for data assimilation. The changes in correlations between
experiments and GPP observations are not as drastic as seen in LAI, but they
do show the same overall trends. And importantly, this GPP observation is an
independent evaluation of vegetation health and production, where the large
improvements from VOD assimilation are observed in the Spring and Summer
months, when droughts and heatwaves are most likely to damage agricultural
production.

ET: The ET variable is a slightly more tricky one to unpack, as the correlation
scores for all the experiments seen here are relatively close. The only easily
distinguishable differences arise in the months of May to August. During these
months, like with LAI and GPP, SEKF VODX and SEKF VODX_Int are
nearly indistinguishable and have the highest correlations. They are followed
by SEKF LAI and SEKF VODX10, which are close to one another, then finally
followed by the OL. In general, these correlation scores are lower than for LAI or
GPP, but also are at their peak during much of the Summer, when evaporative
demand is highest, and when it is critical for agricultural production to account
for hot and dry conditions.

SSM: With SSM, as with ET, correlations between our experiments are nearly
indistinguishable except for some months in the Summer, namely June through
August in this case. Overall correlations are very high, consistently higher
than 0.80, and contrary to all the other variables, provide the best correlations
in Winter months. During these months of differences in the Summer, we
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can see that the OL actually performs the best, followed by SEKF LAI and
SEKF VODX10, and finally with the lowest scores given to SEKF VODX and
SEKF VODX_Int. While in absolute terms these differences are small, a logical
explanation can be had that supports these rankings: any data assimilation in
LDAS-Monde, whether it is of vegetation such as LAI or VOD, or SSM, directly
changes the 8 control variables. Seven of these variables are soil moisture, with
6 of them deeper than the 5cm WG3 layer used to compare against these ESA
SSM observations. The assimilation, of LAI or VODX in this case, impacts all
these layers and can adjust the uppermost layer used here to coincide with higher
LAI values. In these experiments, only the vegetation variable is assimilated,
and thus there is no secondary compensation at the upper soil levels done by
assimilating SSM observations. We will see more evidence in later sections to
support this idea.

Figure 4.9: Graphs of Probability Distribution Function (PDF)
correlation distributions over CONUS between LDAS-Monde OL
(black), SEKF SSM (blue), SEKF LAI (green), SEKF VODX
(red) and satellite derived observations of A) LAI, B) GPP, C)
ET, and D) SSM. The PDFs were calculated using a Gaussian

kernel density estimation of the scores.

The PDFs (derived from the histogram of correlation scores) are given in
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Figure 4.9 for CONUS. In order to better view certain differences, these his-
tograms analyze the experiments of OL, SEKF SSM, SEKF LAI, and SEKF
VODX. The x axes are fixed to the same range for all the variables.

LAI: LAI provides a very clear indication that the assimilation of vegetation
variables, whether LAI or VODX heavily shifts the distribution of correlations
higher. For CONUS, the assimilation of SSM changes the distribution very
little compared the OL, while both SEKF LAI and SEKF VODX share a lower
amount of points at the low and moderate correlations, while beginning a strong
upward trend at 0.7 and higher. It is also of note, that there is a small "bump"
in correlations for SEKF LAI and SEKF VODX at and around 0.0, not seen
in the OL or SEKF SSM. This is seen in more detail in the California domain
(Appendix D, and is likely related to land use and the amount of bare ground.
From correlations of 0.1 to 0.45, SEKF VODX has slightly more points than
SEKF LAI, and this is reversed from 0.45 to 0.75. SEKF VODX then quickly
spikes at a correlation value of 0.88, with SEKF LAI shifted higher, with a
peak closer to 0.9. These strongly changed values from the OL and similarities
between SEKF LAI and SEKF VODX demonstrate even more that VODX can
properly act as an LAI proxy.

GPP: The distribution of GPP correlations are not as widespread as LAI,
however, a clear pattern still emerges. Starting at 0.4, the SEKF LAI and
SEKF VODX have less gridcells than the OL, which lasts until around 0.8.
It is around this point that the shift towards more higher correlation points
with SEKF LAI and SEKF VODX is strongly apparent. While similar, SEKF
VODX does slightly outperform SEKF LAI in this case as well, having more
higher correlation values. OL and SEKF SSM are indistinguishable for the
entire range of correlations.

ET: Like with the monthly correlations presented before, this distribution of
ET scores are very similar between all the experiments. At around 0.4, there
is a noticeable difference where SEKF VODX and SEKF LAI begin containing
less points, which is then made up with those experiments having more higher
values consistently between 0.55 and 0.7. At their peak densities, SEKF LAI
slightly outperforms SEKF VODX, but SEKF VODX still improves over the
OL and SEKF SSM, which, again, are nearly indistinguishable.

SSM: For all experiments in the figure, the distribution of SSM correlations
cores are almost bimodal. There is one peak at 0.55 and another between 0.7
and 0.8. In this case, the SEKF SSM, which has assimilated ESA CCI SSM
observations, is not compared to an independent dataset, but exactly that which
was assimilated. It is then comforting to see that the assimilation increases the
score distributions across the board, outperforming all other scenarios. Other
SSM datasets would be needed for an independent evaluation, and may be
performed in follow up studies. The other experiments of SEKF LAI and SEKF
VODX are only slightly changed, with both edging out better performance than
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the OL. SEKF VODX also edges out a better performance than SEKF LAI,
but just barely. This is due to a lower amount of scores in the first peak, while
consistently having very slightly more scores from 0.7 and higher.

4.2.2 USCRN Soil Moisture
The comparison of LAI, GPP, ET, and even SSM against satellite derived ob-
servations serves an important purpose, as those observations are spatially con-
tinuous. However, errors in the sensors or processing of the data still exist,
and relatively large spatial resolutions mean losses of more localized informa-
tion. With this in mind, I compare all of the experiments listed in Table 4.6 to
soil moisture observations from the United States Climate Reference Network
(USCRN) in situ soil moisture monitoring stations.

The comparison is done at four depths, which are matched to ISBA soil
layers, 5cm (WG3), 20cm (WG_20), 50cm (WG6), and 100cm (WG8). The
USCRN observations are point measures at each of those depths. This compar-
ison uses the ISBA soil layers to directly compare against these point measures,
but it is important to keep in mind that WG3, WG_20, WG6, and WG8 are
just that, layers of soil. WG3 is from 5cm to 10cm, WG_20 is a weighted aver-
age of WG4 and WG5 (as performed in Mucia et al., 2020) representing 10cm
to 40cm, WG6 is a layer from 40cm to 60cm, and WG8 is the 80cm to 100cm
layer. This comparison between points and layers will certainly result in some
error, but the overall scores and trends seen will still be valid.

As discussed in Chapter 2 and Mucia et al., 2020, this comparison uses
USCRN data between the years of 2011 and 2018. While the network was oper-
ational as early as 2005, 2011 was selected as the start of the comparison in order
to maximize the number of stations, and homogenize the results of comparisons
between stations. The station observations are processed and filtered, with the
most notable filters including the removal of any data with corresponding soil
temperature observations at or below 4◦C. Stations with less than 100 days of
observations are also removed, as the scores proved too variable. Finally, only
correlation scores with associated p-values less than or equal to 0.05 are retained
(α = 95%).

Table 4.7 provides the mean calculated correlations for each of the experi-
ments and at each of the depths. As previously seen in (Mucia et al., 2020), cor-
relations strongly drop as the depths become lower. With 2 significant figures,
the correlations at 5cm are all identical at 0.75, except for SEKF VODX_Int
SSM, which is at 0.76. There is very slightly more variability at lower depths
with 20cm scores ranging from 0.68 for the OL, to 0.70 for all the experiments
jointly assimilating vegetation and soil moisture observations. Similar varia-
tions are present for the 50 and 100cm depths. Notably, the 100cm scores are
all the same at 0.48 except for the OL and SEKF SSM experiments with 0.46.

Statistical bootstrapping (as described in Chapter 2) was performed on all
the calculated values, before rounding significant figures, to calculate the upper
and lower bounds of the 95% confidence intervals (CIs). The resulting CIs
showed that at every depth, all the experiment’s mean correlations were within
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every CI, meaning no experiment could be said to be statistically different than
any other at the same depth.

While the differences may not be statistically significant, the small trends
seen between the mean correlations of different assimilation scenarios still do
point to some changes. Figure 4.10 displays in graph form the figures from
Table 4.7, limiting the number of experiments shown. Figure 4.11 is the same,
but including all experiments. The experiments displayed in the figures are
sorted from lowest correlation at 100cm on the left to highest correlation at
100cm on the right. These figures demonstrate that the differences in mean
correlations between experiments seem to be amplified at depths. Very little
changes are seen at 5 and 20cm, but at 50 and especially at 100cm, there is a
clear improvement from the OL and SEKF SSM to assimilation using vegeta-
tion and joint vegetation and soil moisture. This result follows the logic that
the assimilation of vegetation, with LAI or VODX and its similarly processed
counterparts, more strongly influences deeper soil moisture layers, and, in gen-
eral, improves the correlation to these in situ observations. And again, while
not statistically significant, the assimilation of VOD and joint VOD and SSM
assimilation provides better scores at the 100cm level.
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Figure 4.10: Average correlation scores between USCRN stations and a limited se-
lection of LDAS-Monde Experiments at 5 (blue, solid), 20 (red, dashed), 50 (maroon,

dotted), and 100cm (green, dash/dot).
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Figure 4.11: Average correlation scores between USCRN stations and all LDAS-
Monde experiments at 5 (blue, solid), 20 (red, dashed), 50 (maroon, dotted), and

100cm (green, dash/dot).

Table 4.7: Average correlations scores between USCRN in situ soil moisture observa-
tions and LDAS-Monde soil moisture at 5, 20, 50, and 100cm depths. Bolded values
indicate the highest score at each depth. *WG_20 is a weighted average of WG4 and

WG5 in order to directly compare to 20cm observations from USCRN.

Experiment WG3 (5cm)
(n=110)

WG_20* (20cm)
(n=87)

WG6 (50cm)
(n=85)

WG8 (100cm)
(n=84)

OL 0.75 0.68 0.59 0.46
SEKF SSM 0.75 0.69 0.60 0.46
SEKF LAI 0.75 0.69 0.60 0.48
SEKF VODX 0.75 0.69 0.60 0.48
SEKF VODX10 0.75 0.69 0.60 0.48
SEKF VODX_Int 0.75 0.70 0.61 0.48
SEKF LAI SSM 0.75 0.70 0.61 0.48
SEKF VODX SSM 0.75 0.70 0.60 0.48
SEKF VODX10 SSM 0.75 0.70 0.61 0.48
SEKF VODX_Int SSM 0.76 0.70 0.60 0.48

Seen throughout these results is the changing number of stations (n) used
in the analyses. 5cm comparisons have 110 stations, 20cm uses 87 stations,
50cm uses 85 stations, and 100cm uses 84 stations. This is simply due to the
fact that the USCRN network cannot install soil moisture or soil temperature
probes in hard or rocky ground layers, as stated in the USCRN soil climate ob-
servations documentation (USCRN Soil Climate Observations Documentation).
In all cases, the 5cm and 10cm probes are installed, but deeper layers depend
on the regolith type.

As previously discussed with the "Per Point" and "For All Point" correlation
calculation, the averaging of correlation scores does not have much meaning
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and looses information. To better analyze differences on a more individual
scale, the normalized information contribution of the correlations (NICR) were
calculated for each experiment and each depth in comparison to the OL. These
NICR values tell us by how much the assimilation experiments improved or
degraded scores in respect to the OL. Table 4.8 displays each experiment and
depth, and the number of stations that were degraded (red), neutral (black), and
improved (green). This approach avoids averaging scores, while still providing
a performance overview of the whole domain.

In a similar manner, Figure 4.12 displays the PDF of the distribution of
differences in correlation for each of the four depths compared to the OL, and
looks at the responses of SEKF SSM, SEKF LAI, SEKF VODX, SEKF LAI
SSM, and SEKF VODX SSM experiments.

In both the NICR table and PDFs, the 5cm changes are the strongest seen,
with SEKF VODX SSM, SEKF VODX_Int SSM providing the highest number
of improved stations, while having some of the lowest number of degraded sta-
tions. SEKF LAI SSM and SEKF VODX10 SSM perform similarly, but with
a reduction in improved stations. Assimilating just LAI, VODX, VODX10,
or VODX_Int consistently under-perform their matching joint assimilation ex-
periments by increasing the number of degraded stations, while having fewer
improved stations. And finally, SEKF SSM, while showing the fewest degraded
stations, also has the fewest improved. As depths get lower, the numbers be-
come closer. It is generally still seen that the joint assimilation of vegetation
and soil moisture improve more stations than the individual assimilation, and
the number of stations degraded stays similar. These trends go to show that
the joint assimilation has distinct added value in soil moisture monitoring, and
will be discussed in more detail in the next section.

Table 4.8: Number of degraded (red), neutral (black), and improved (green) USCRN
stations after assimilation using NIC R between OL and various LDAS-Monde exper-
iments at 5, 20, 50, and 100cm depths. Stations are considered improved if the NICR
is greater than 3, degraded if the score is less than 3, and neutral if it is between -3
and 3. *WG_20 is a weighted average of WG4 and WG5 in order to directly compare

to 20cm observations from USCRN.

Experiment WG3 (5cm)
(n=110)

WG_20* (20cm)
(n=87)

WG6 (50cm)
(n=85)

WG8 (100cm)
(n=84)

SEKF SSM 3/79/28 4/59/24 8/59/18 15/52/17
SEKF LAI 10/69/31 10/51/26 8/49/28 14/43/27
SEKF VODX 13/55/42 10/40/37 14/36/35 17/35/32
SEKF VODX10 9/68/33 7/53/27 9/52/24 13/44/27
SEKF VODX_Int 15/54/41 12/38/37 14/37/34 16/36/32
SEKF LAI SSM 7/57/46 6/41/40 12/41/32 13/36/35
SEKF VODX SSM 8/45/57 10/34/43 15/36/34 17/35/32
SEKF VODX10 SSM 7/56/47 7/44/36 13/38/34 17/37/30
SEKF VODX_Int SSM 8/48/54 10/35/42 14/35/36 18/31/35
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Figure 4.12: Probability Distribution Functions of the Distribution of Correlation
Differences between OL and SEKF SSM (blue), SEKF LAI (green), SEKF VODX
(red), SEKF LAI SSM (cyan), and SEKF VODX SSM (orange) for USCRN at A)

WG3 (5cm), B) WG_20 (20cm), C) WG6 (50cm), and D) WG8 (100cm).

In order to assess any geographic patterns of the USCRN correlations, maps
of the NICR of each station are plotted for the four depths looking at the SEKF
SSM, SEKF LAI SSM, and SEKF VODX SSM experiments. Figure 4.13 dis-
plays WG3 maps in Panels A-C and WG_20 maps in Panels D-F. Figure 4.14
provides WG6 maps in Panels A-C and WG8 maps in Panels D-F. It is clear
from these figures that stations are strongly improved by using either LAI SSM
or VODX SSM assimilation, compared to just SSM. Additionally, a geographic
pattern does emerge, primarily at 5 and 20cm. This pattern is that much of
the Great Plains and Midwest show strong improvement due to the joint as-
similation, while the south and east coasts show little change. Stations in the
western US are more sporadic, with improved, degraded, or neutral stations
spread throughout. This western region is, however, where most of the stations
experiencing degradation are located. At 50 and 100cm, the SEKF SSM show
minimal concrete changes compared to the OL, with near-even numbers of im-
proved and degraded sites. The joint assimilation improves upon these values,
and while the degraded stations are typically still degraded in SEKF LAI SSM
and SEKF VODX SSM, more stations move from neutral to improved.
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Overall, the use of the USCRN in situ observations strongly agrees with
the hypothesis that the assimilation of vegetation has stronger effects on soil
moisture than the assimilation of SSM. It also goes to show that the assimilation
of VODX is on par or even an improvement from the assimilation of LAI.

Figure 4.13: Maps of Normalized Information Contribution (NIC) correlation for
A-C) WG3 (5cm depth) and D-F) WG_20 (20cm) between the OL and SEKF SSM,
SEKF LAI SSM, and SEKF VODX SSM. Circles represent a change greater than 3%,
while triangles indicate changes less than 3%. Blue indicates correlation improvement

from the assimilation with respect to the OL, while red indicates degradation.
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Figure 4.14: Same as Figure 4.13, but for WG6 (50cm) and WG8 (100cm).

4.3 Impact of Jointly Assimilating Vegetation
Variables and SSM

While previously discussed above when assessing correlations and NICR for the
USCRN, this section will go into more detail regarding the effects of jointly as-
similating variables of vegetation (LAI or Matched VODX) and SSM in LDAS-
Monde. We have already seen that the joint assimilation provides a noticeable
increase in improved USCRN stations relative to the OL, over the single assim-
ilation of vegetation variables or SSM. This section analyzes the joint assimila-
tion of observations over CONUS, while Appendix D details this same analysis
over the subdomains shown in Chapter 2 and Figure 2.10.
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Figure 4.15 presents the same type of figure as previously, looking at the
monthly scores of four LSVs of interest over CONUS, but including the joint
assimilation experiments of SEKF LAI SSM and SEKF VODX SSM. The main
concern in this figure and the following, is determining the improvement, if any,
between the dashed (single assimilation) and solid (joint assimilation) red and
green lines. As seen in Panel A, there is no discernible difference between the
single and joint assimilation for LAI. But as Panel B and C shows, jointly as-
similating vegetation and SSM produces slightly improved monthly correlations
over the whole CONUS domain for GPP and ET respectively. These improve-
ments are primarily seen in the months of June through August, and are quite
small. Regarding the variable of SSM, the joint assimilation strongly improves
the monthly correlations from LAI to LAI SSM and from VODX to VODX
SSM. To reiterate, because the SSM observations assimilated are the same used
to compare in Panel D, it is merely an indication that the data assimilation is
truly shifting model soil moisture values closer to that of observations.

Figure 4.15: Graphs of monthly correlations over CONUS between LDAS-Monde OL
(blue), SEKF SSM (cyan), SEKF LAI (green, dashed), SEKF VODX (red, dashed),
SEKF LAI SSM (green, solid), and SEKF VODX SSM (red, solid) and satellite derived

observations of A) LAI, B) GPP, C) ET, and D) SSM.
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4.4 Summary of Chapter 4
This chapter explores the relationship between LAI and VOD, both X and C-
Band over CONUS, and shows agreement with previous research that these two
variables do share useful vegetation-related information. A deeper dive into this
relationship is performed, focusing on the differences over six vegetation types.
The linear re-scaling of VODX was described, and analysis was done regard-
ing the responses of LAI versus VODX and LAI versus matched VODX over
the two versions of the land use database, ECOCLIMAP-II and ECOCLIMAP-
SG. A brief comparison was also performed regarding the VODX and VODC
anomalies compared to annual corn yield and observed LAI anomalies. Then
the last sections deal with the analysis resulting from 10 different LDAS-Monde
experiments focused on the assimilation of matched VODX as an LAI proxy.
Included in these experiments were those designed to test the differences be-
tween single assimilation of vegetation (LAI or matched VOD) or SSM, and the
joint vegetation-SSM assimilation.

This is one of the very few attempts at assimilating VOD. To the best of
our knowledge, only Kumar et al. (2020) have, to date, developed a similar
methodology. Unlike Kumar et al. (2020), in our study, assimilating VOD has
a direct impact, not only on LAI, but also on the root zone soil moisture analysis
(as SM layers 2 to 8 are also control variables). In addition to the successful
results linked to a stronger constraint on vegetation within LDAS-Monde, this
pioneering work shed light on additional research needed on (1) how to best re-
scale VOD to LAI, (2) how to best set up observational errors to the re-scaled
VOD in the data assimilation system, (3) how to deal with areas where a weaker
relationship between VOD and LAI was obtained.

The major individual conclusions are as follows:

• Analysis of VOD versus LAI

– Both X and C-band VOD observations from VODCA contain a sig-
nificant amount of information related to vegetation.

– VOD is not LAI, even while direct correlations between LAI and
VOD observations were positive and moderately strong.

– C-band VOD was shown to contain far more variation and noise when
compared to LAI, and resulted in overall weaker correlations than X-
band VOD. Therefore, X-band VOD from VODCA was selected to
be assimilated in the LDAS-Monde experiments.

– The overall tendency between annual VOD, LAI, and corn yield
anomalies are well matched, indicating the utility of VOD in veg-
etation monitoring.

• Role of Dominant Vegetation

– Dominant vegetation plays a strong role in the relationship between
LAI and X-band VOD. Coniferous forests consistently had the weak-
est matching, while C3 and C4 crops typically performed the best.
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– Seasonality also dramatically changed the LAI-VODX relationship,
with Winter scores typically the lowest, and Summer and Autumn
correlations typically the strongest.

– Matched VODX was far more strongly correlated to LAI observations
than non-matched VODX, but still exhibited significant variation.

– While both ECOCLIMAP versions showed similar results, some of
the differences point to mischaracterization of land surfaces, specifi-
cally irrigated crops.

– A hysteresis pattern was observed in both LAI versus matched and
non-matched VODX comparisons, and in both ECOCLIMAP ver-
sions. The VOD values in Autumn specifically tend to indicate a
possibility that harvest produced ground litter increases VOD re-
sponses. This also may indicate the linear re-scaling is not sufficient
to correct for these differences.

• Assimilating VOD as an LAI Proxy

– Assimilating VODX in place of LAI generally improved month to
month correlations of GPP and ET. The distribution of GPP corre-
lations were also strongly and consistently shifted to higher values.

– The improvements seen in GPP and ET correlations by assimilating
VODX in place of LAI are almost entirely due to the more frequent
observations of VOD. This is shown because the experiment SEKF
VODX10, which assimilated matched VODX at the same frequency
as LAI observations performs considerably worse than the natural
VODX observation frequency.

– Correlations to the USCRN in situ observations strongly support the
assertion that matched VODX can act as an assimilation replacement
for VOD, with scores staying near, or even improving upon those of
assimilated LAI.

– The counting of degraded, neutral or improved NICR for USCRN
stations indicate the most definitive effect of data assimilation is seen
at the upper layers of 5 and 20cm, even when the averaged scores
show no significant differences.

– The spatial distribution of the USCRN NICR scores demonstrate the
Great Plains and Midwest as benefiting the most from assimilation.

• Joint Assimilation of Vegetation and SSM

– The counting of degraded, neutral or improved NICR for USCRN sta-
tions tend to show that the joint assimilation of vegetation and SSM
regularly performs better, with fewer degraded and more improved
stations at upper soil layers, and simply more improved stations at
deeper layers.
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– Correlations of LAI show no strong trend of improvement or degra-
dation from single to joint vegetation-SSM assimilation.

– GPP and ET correlation scores exhibit a very small improvement
due to the joint assimilation over the broader CONUS domain.

– The comparisons of all the experiments definitively reveal that the
assimilation of SSM has a far weaker effect on the model and system.
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Chapter 5

Towards Forecasting Impacts of
Extreme Events on Land Surface
Variables with LDAS-Monde

This chapter describes a prospective experiment as a follow up to work presented
in Chapters 3 and 4. The purpose of this experiment is to analyze the effective-
ness of the LDAS-Monde system in a forecast configuration to provide drought
forecast alerts. The experiment takes lessons learned from the initial forecast
experiment over CONUS (Chapter 3; Mucia et al. (2020)) and combines it with
assimilation of matched VODX (Chapter 4) to provide better initial conditions.
After details of the experiment requirements are laid out, the next section pro-
vides details of how the analysis will be done, and how the assessment of the
system’s drought forecast and alert capability will be conducted.

A proof of concept analysis is performed using the 2003-2018 experiment in
Chapter 4 and a 19 year OL baseline. This analysis demonstrates the capability
to transform LDAS-Monde LSVs into percentile ranks, that is to say that for
each selected time window (week or month) the LSV in question is percentile
ranked as a function of the distribution of that LSV in the same window, for
every year in the time period. This percentile rank is then subsequently con-
verted into drought categories, as defined by the US Drought Monitor (USDM).
And even with the relatively short comparison period, the RZSM and ET LSVs
correctly identify the major 2012-2013 Great Plains drought. These results
of LDAS-Monde in a monitoring configuration set the stage for the proposed
experiment in forecast configuration.

Primary datasets used in the comparison include the USDM over the selected
area, as well as other potential drought indices (DI) such as the Vegetation
Drought Response Index (VegDRI) or the Normalized Difference Vegetation
Index (NDVI). An OL experiment similar to the one used in Chapter 4, but
instead from 1970-2020, forced by ERA5, will serve as a baseline of LSVs in order
to compute percentiles. Certain LSVs such as ET, RZSM, and LAI are selected
to be blended with variable weighting so that during the case study period,
times when the blends drop below the Drought Monitor thresholds (Figure 1.1)
will be noted and analyzed. The timing of these alerts will be compared to
onset of drought determined by the USDM, and the LSV percentiles can then
be directly compared to both USDM drought levels (which are defined with
percentiles) or other DIs that are percentiles or standardized anomalies.
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5.1 Drought Forecast Alert System Case Study
In this section, requirements and parameters of the prospective CONUS drought
case study will be presented and discussed. While LDAS-Monde is a global sys-
tem, ancillary data over CONUS provide the capability to correlate and analyze
results against a large amount of continuous drought monitoring datasets, most
importantly the United States Drought Monitor, which is not available outside
the US (or North America at reduced frequency).

5.1.1 Requirements of the Case Study
Any forecast case study used as a follow up to the work presented in Chapter 3
and Chapter 4 must meet a number of basic requirements in order to truly con-
tinue the work and draw meaningful conclusions. As discussed above, CONUS
is the primary working domain, and thus, it is required that any drought event
must have taken place over the same domain as previously assessed. Addition-
ally, while drought is a widespread event, the resolution of LDAS-Monde must
be high enough to still see regional details, and thus 0.5◦ x 0.5◦ will be imposed
as the upper resolution limit.

Time Frame

The availability of datasets used either as forcing (atmospheric forecasts) or
analysis (USDM) are the most immediate limiting factors of the time frame of
this experiment. A wider limit is forced by the USDM, with drought monitoring
started in the year 2000, and available continuously until present. As described
in Chapter 1, the USDM is a weekly synthesis of objective drought indicators
and indices made by experts and coordinated with ground truth information
and local observers across the country. And being the default tool for drought
monitoring in the United States, this data must be used in this future assess-
ment. The USDM provides a near real time (2 day time lag) look at current
drought extent and impacts by categorizing into drought levels defined with spe-
cific percentile rank ranges. As shown in Figure 1.1, drought levels are defined
as: D0 (Abnormally Dry) = 30-21%; D1 (Moderate Drought) = 20-11%; D2
(Severe Drought) = 10-6%; D3 (Extreme Drought) = 5-3%; D4 (Exceptional
Drought) = 2-0%.

However, the atmospheric forecasts are a far stronger limiting factor. Ta-
ble 5.1 provides the basic details of some atmospheric forecast forcings available
for use in LDAS-Monde. ECMWF forecasts used in Chapter 3 and Mucia et
al. (2020) only provide data from April 2016 onward, and thus limit our case
selection to only a few years.

The inclusion of the ECMWF ENS Extended forecast (ECMWF, 2018),
which provides 0.4◦ x 0.4◦ resolution forecasts from 16 to 46 days in advance,
significantly lengthens the potential lead time of any alert system. The ENS
Extended forecast has had significant changes since its first operational real-time
forecast in October 2004, including the extension from 32 to 46 days maximum
lead time in May 2015. The data availability and procurement of this forecast
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would ultimately be the determining factor of drought event selection. If even a
32 day surface forecast that is quantitatively consistent was procured for years
earlier than 2016, it would significantly help choosing a specific case study.
However, with forecast periods this long, the quality of the specific, daily (or
6-hourly in this case) information is constantly challenged.

Additionally, this ENS Extended forecast is run only twice per week, Mon-
days and Thursdays. As will be discussed in section 2 of this chapter, most
drought indices, including the Drought Monitor, are weekly products valid on
one day (Tuesdays for the DM), but accounting for the developments earlier
in the week. Because the ENS Extended run starts are fixed, it means that
only 2/7 of the individual forecast lead times will ever be directly comparable
to USDM (for example there will never be a 3-day forecast valid at the same
time as the DM). However, as the forecasts are continuous and initiated in the
same manor, it is expected that the comparison of every 2/7 forecast days will
still give a reasonable approximation of the forecast LDAS’s capabilities.

Finally, as the ENS Extended only produces forecasts beginning from a
16-day lead time, the ENS CTRL would be used as the forecast forcing for
days 1-15. This transition can present some problems, most notably related to
the changing spatial resolution and temporal frequency. Regarding the spatial
resolution, the ENS CTRL is produced at 0.2◦ x 0.2◦ while ENS Extended is
at 0.4◦ x 0.4◦. The most straightforward approach would be to either up-scale
the ENS CTRL to 0.4◦ or to down-scale the ENS Extended to 0.2◦. Albergel et
al. (2019) has previously tested down-scaling of ERA5 reanalyses to match the
higher resolution of HRES, and found the new resolution performed similarly
and nearly as well as the first period of these operational forcings. This can
justify the use of the higher resolution, down-scaled, forecasts, providing more
detailed regional analyses. The differences in temporal frequency (ENS CTRL:
3-hourly up to day six, 6-hourly up to day 15, ENS Extended: 6-hourly through
end), can be solved in the same manor as in Mucia et al. (2020), with taking
only the six hourly time steps, and linearly interpolating them to 3-hourly. This
allows for the matching to the 0900UTC assimilation window in LDAS-Monde,
and also avoids variable temporal frequencies as forecasts progress.

Table 5.1: Atmospheric Forecast Options for Case Study

Atmospheric
Forecast

Spatial
Resolution

Temporal
Availability

Forecast
Length

HRES 0.1◦ x 0.1◦ April 2016 - Present 1 to 10-Day
ENS CTRL 0.2◦ x 0.2◦ April 2016 - Present 1 to 15-Day

ENS Extended 0.4◦ x 0.4◦ October 2004 - Present 16 to 32 or
16 to 46-Day

Selection of Drought Event

A major step in this prospective case study is the selection of a drought event
corresponding to the requirements laid out above.
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Over CONUS the most ideal regions for study are over the Great Plains,
Midwest, Northeast, and some of the Southeast. LDAS-Monde over these
locations demonstrated strong performance in monitoring vegetation and
soil moisture conditions, while certain drier regions, most notably the
California/Arizona/Nevada border, identified monitoring problems.

While the selection of the atmospheric forecast forcing will primarily drive
the drought event selection, the seasonal timing can also be important. Spring
through Autumn months typically show the best LDAS-Monde performance in
monitoring LSVs. These months are also when some of the most extreme causes
and effects of drought emerge, such as heat waves, plant stress, and plant death.

Using the USDM database of archived drought monitor maps, the selection
of a case study event can begin by selecting a geographic region, and reviewing a
time series of percent of that area in each of the drought categories (D0-D4), as
is depicted for the North Central region in Figure 5.1.This method of selection
will give a general overview of a drought’s severity and extent, which will then
be further investigated by reviewing the weekly drought maps for that region.

This North Central region’s percent area in drought time series for 2003-2018
clearly shows a significant drought event beginning mid-2012. The percent of
this region in every drought level very quickly spikes, with a nearly 20% of this
region in D4 drought, a 2% or 1 in 50 year event. This 2012-2013 drought event,
which most strongly affected the Great Plains and Midwest United States, is
the most extreme, widespread drought event since the beginning of the USDM.
This event will also serve as an important sanity check when comparing to
LDAS-Monde derived drought indicator time series.

Figure 5.1: Time series of percent area in drought over the North Central region of
the US according to the US Drought Monitor for 2003-2018. The y-axis represents
the percent of the region in each level of drought (D0-D4). Time series such as these
over US regions can help identify and select case study areas and time periods for
the prospective experiment in this chapter. This time series was produced via the
website of the National Drought Mitigation Center: https://droughtmonitor.unl.

edu/DmData/TimeSeries.aspx

https://droughtmonitor.unl.edu/DmData/TimeSeries.aspx
https://droughtmonitor.unl.edu/DmData/TimeSeries.aspx
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5.1.2 LDAS-Monde Experimental Parameters
Once selected, the LDAS-Monde parameters can be set and the experiment run.
The following subsections will detail the characteristics of the SEKF assimila-
tion analysis, but there will also be a matching OL run along side. The same
statistics and LSVs parameters will be analyzed for both the OL and SEKF
runs, and thus this OL experiment will be a good tool to use as a baseline alert
system. The comparison of the alerts between the OL and SEKF runs will
provide more information on the utility and performance of the assimilation in
the direct context of drought monitoring and warning.

Improving Initial Conditions with VOD assimilation

As demonstrated in the previous chapter (Chapter 4), the assimilation of
matched VODX as an LAI proxy provided improved correlations of GPP and
ET over CONUS to satellite derived observations, while also improving aspects
of soil moisture monitoring compared to the USCRN. These improvements
were caused almost exclusively by the more frequent availability, and thus more
frequent assimilation, of the VOD observations compared to LAI observations.
The improvements seen in this non-forecast configuration would directly impact
the initial conditions of the forecast experiments. And as shown in Chapter 3,
the initial conditions have a generally strong and long-lasting impact on the
quality of the forecasts. Therefore, this case study will assimilate matched
VODX as an LAI proxy.

Joint Assimilation of Vegetation and Soil Moisture Observations

The joint vegetation-soil moisture assimilation demonstrated minor improve-
ments in certain domains concerning ET and GPP monitoring, and more dras-
tically improved soil moisture correlations to the USCRN. Therefore, ESA CCI
SSM observations will also be assimilated in LDAS-Monde for this case study.

5.2 Linking LDAS-Monde Forecasts to a
Drought Indicator

This experiment follows a similar methodology as Mocko et al. (2021), which
reviewed OL and LAI assimilated experiments with Noah-MP LSM in order to
improve the representation of drought for agricultural areas. The prospective
study described in this chapter will use many of the same analysis techniques
and statistics later presented in this section, but is targeted towards the LDAS’s
potential capacity for forecast and alerts of future drought events. This study
also differentiates itself by creating the blend of LSVs for use as a drought index
instead of just soil moisture percentiles.

One of the first steps will be converting LDAS-Monde LSVs of interest to a
percentile, which can be directly compared to USDM drought levels, as well as
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standardized anomaly indices. These LDAS-Monde percentiles are calculated
as a percentile of a long term OL experiment over the CONUS domain.

Among the statistics used in the analysis will be a Spearman rank corre-
lation for each gridcell and over the entire time frame. The Spearman rank
correlation is used to determine a monotonic relationship between data, which
better suits this ranked data. After the immediate post-processing, our LSV
data from LDAS-Monde, the USDM, and other DI data are percentiles (or
can be converted to percentiles). As such, the value difference between any
percentile is entirely dependant on the immediate neighbor percentiles and can-
not be assumed to be linear. In other words, the values associated with each
percentile are not necessarily distributed evenly.

Additionally, statistics and scores designed specifically for the verification
of forecast will be used for the full drought forecast case study. Starting off,
calculations of the Probability of Detection "Yes" Events (PODY) and False
Alarm Rate (FAR) will be performed for each gridcell. PODY is defined as
the number of correctly simulated drought level "hits", divided by the sum
total of both hits and misses. In this case, a "hit" is a week when the gridcell
correctly characterizes the USDM drought level, while a miss is when the gridcell
shows a drought level not matched by the USDM. In the reverse way, FAR is
calculated as a ratio of the number of false alarms, meaning a drought level
is simulated from LDAS-Monde but the USDM shows no drought, over the
sum total of false alarms and hits. These two statistics provide a useful metric
in determining if the LDAS-Monde drought levels are over-sensitive or under-
sensitive or both, compared to the USDM standard. Together, PODY and FAR
used in conjunction allow for a significant analysis of the system’s performance.

More scores, such as Brier’s score, continuous ranked probability score
(CRPS), and Heidke skill score (HSS) can also be calculated in order to provide
further in depth analysis, as well as to note this system’s scores for comparisons
to other drought forecasts as well as to potentially improved LDAS-Monde
forecasts. The Brier’s score (Brier, 1950) measures the probability of errors
associated in forecasts. While a useful quantity in terms of the system’s
mistakes, a larger sample of extreme events would be required to function as a
robust score. The CRPS is another quantitative measure of performance where
the cumulative distribution functions (CDFs) of the forecast and of empirical
reality are compared, and has a similar decomposition to the Brier score
(Hersbach, 2000). Unlike the Brier score, the CRPS allows for an evaluation
of more than one aspect of the forecast. In the use with the LDAS-Monde
forecast system, this means the CRPS can evaluate the LSV percentiles at
drought and non-drought levels. Finally, the Heidke skill score (Heidke, 1926)
is a simple score of categorical forecasts in a "proportional correct" form,
using hits, misses, false alarms, and correct rejections. This score provides
a simple way to encompass the four forecast outcomes, but is relative to
random chance and would also require a large sample for comparison. For all
of the described metrics, improvements or degradation between the OL and
assimilated experiment can also prove useful.
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5.2.1 Indicators Used in Drought Alerts
Certain LSVs that are directly output from LDAS-Monde will be taken and con-
verted to percentile ranks for the whole period of the case study. The primary
LSVs concerned, as an initial step, will be RZSM, ET, and LAI. LDAS-Monde
RZSM will be calculated averaging layers WG2-WG8 (2-100cm) by the weights
of their respective layer thicknesses. Once in percentile form, the three LSVs
will then be blended using the different proposed weighted average schemes as
follows:

Blend 1 = (0.33)LAI + (0.33)RZSM + (0.33)ET (5.1)

Blend 2 = (0.50)RZSM + (0.50)ET (5.2)

Blend 1 in Equation 5.1 is simply the normal arithmetic mean (with rounded
weights) of the three LSVs. Blend 2 in Equation 5.2 is the simple mean of
RZSM and ET, in order to isolate potential biases with LAI. These blends are
formulated in this way so that additional weights can be developed during the
analysis as well in order to arrive at a best match. For example, it may be
found that RZSM should be weighted far more than ET in order to best match
known events. As discussed and shown below, individual LDAS-Monde LSV
percentiles do not perfectly match historic observations and drought categories,
and so the given blends will be used simply as an arbitrary starting point for a
best initial guess to best match to USDM levels.

The duration of the drought in the case study is also of strong importance.
All three of the selected variables are strongly indicative of short to medium
length drought events, but do not consider long-term impacts such as hydro-
logical variables (runoff, drainage, groundwater). However, additional blends
can be quickly made later during the analysis using the same process with per-
centiles of alternative hydrologic or vegetation-related variables. Additionally,
as these variables in percentile form are normalized, this combination of vari-
ables can help represent a wider array of drought conditions including vegetation
and water availability, rather than looking at each variable individually.

5.2.2 Proof of Methodology
To test and advance the techniques that will be used in the full case study, the
SEKF VODX SSM analysis from Chapter 4, for the Midwest domain, has been
processed according to the above description. This experiment was run from
2003 to 2018, strictly in a monitoring configuration, that is to say not producing
any land surface forecasts. In this way, this comparison acts as a proof of
concept for the methodology, and shows that the processing and analysis can
be successfully performed on the data, resulting in similar results to the USDM.
Further work will expand this same type of processing and analysis to forecast
experiments.

For this initial analysis, the comparison period of the OL for this test is only
19 years (2000-2018), and thus the percentile rankings of the 16 year 2003-2018
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SEKF VODX SSM are rather weak. A longer time period for the comparison
period, such as the proposed 50 years, would strongly increase the significance,
and likely increase the similarities between LDAS-Monde and the USDM. In
this initial comparison, the LSVs of LAI, RZSM, and ET were computed and
then compared in a percentile rank compared to a slightly longer OL experiment
that was run over CONUS from 2000-2018.

Figure 5.2: Map of the two different domains used in the USDM comparison. The
blue box represents the region defined in Figure 2.10 as "Midwest" for LDAS-Monde
purposes. The US states shaded in red are a part of the "North Central" region ac-
cording to the USDM. These are the closest matching pre-defined domains, and thus

used in this initial comparison.

Figure 5.2 presents a map of the domains used in this proof of concept
analysis. The blue box is the same "Midwest" domain as in Figure 2.10 used in
LDAS-Monde, and the USDM "North Central" region is comprised of the red
shaded states (North Dakota, South Dakota, Nebraska, Kansas, Minnesota,
Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, and Ohio).

Figure 5.1 shows the time series of the percent of this area in each drought
level. The following analysis attempts to recreate this type of figure with LDAS-
Monde LSVs and blends. The first section discusses RZSM and ET percentiles.
Figures 5.3 and 5.4 present the time series of percent of area in each drought cat-
egory as determined by the SEKF VODX SSM RZSM, and ET respectively. The
next section looks at LAI percentiles Figures 5.5, and associated problems and
solutions. These percentiles are taken weekly, comparing each week (Monday-
Sunday) of the year throughout the 2003-2018 time period, to the same week of
the year from the 2000-2018 OL experiment time period. Note that due to the
small comparison time period, it is not possible for non-averaged/non-blended
percentile ranks to fall between 5 and 2 percent, which is why D3 droughts are
not seen in the time series to follow of individual LSV percentile ranks.
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RZSM and ET

The RZSM and ET drought indicators present a relatively realistic perspective
drought events. These two variables show high variability, possibly due to
a small comparison period, resulting in a less smooth time series compared
to Figure 5.1. A longer comparison period would include a larger number of
percentiles, allowing for smaller week to week changes, instead of a minimum
5% increment with the 19 year period. Still, the general patterns and events
can be easily seen in both LDAS-Monde RZSM and ET as well as USDM. The
most notable and easily seen event is the 2012-2013 drought that struck this
region. This event is visible and strong with the RZSM drought indicator, and
can still be seen in the ET drought indicator. Also, the relatively lull in drought
from 2010 to 2012 matches well.

Primary differences between the two variables include the overall larger
amount of area in more severe droughts with RZSM compared to ET, and the
higher variability or "noise" of ET drought levels compared to RZSM. These are
just some reasons to merge the variables into blends, which would still include
the data provided by each variable, while also eliminating some of the noise.
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Figure 5.3: A time series of the percent area in each drought category, using RZSM
percentile rank in drought category determination.

Figure 5.4: A time series of the percent area in each drought category, using ET
percentile rank in drought category determination.

LAI

The LAI drought percentile responses in Figure 5.5 are striking, and immedi-
ately indicate bias with this LSV. There is a bi-annual cycle of D4 droughts,
with more area covered in the summer event. This response is because the SEKF
VODX SSM LSVs are compared to that of the OL for a longer time period, as
done in similar studies (Houborg et al., 2012; Mocko et al., 2021). LAI is a
control variable strongly impacted by the VODX assimilation, and in this case,
there is a significant bias where the OL consistently overestimates LAI. After
assimilation, these values are constrained and reduced, and thus when compar-
ing the two, it seems as if there are strong droughts every summer. Additionally,
as ISBA has employed minimum LAI values (1 m2/m2 for evergreen forests and
0.3 m2/m2 for all other vegetation), these percentiles will very often tie in value
and in rank during winter or low vegetation months when these minimums are
consistently reached in both the OL comparison period and the SEKF, leading
to little to no drought information being retrieved. Together, these responses
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identify weaknesses with using LAI as a variable in this methodology for an
LDAS-Monde alert system.

Figure 5.5: A time series of the percent area in each drought category, using LAI
percentile rank in drought category.

Figure 5.6: A time series of the percent area in each drought category, using LAI
percentile rank, with the SEKF VODX SSM as compared against itself, as a drought
category. The SEKF comparing against itself removes the bias due to the assimilation

of the LAI-proxy, but cannot scale to large climatologies.

Figure 5.6 demonstrates the fact that this is in fact an artifact of the bias
due to assimilation. This figure makes the same calculation of percentile rank as
the figure above, but compares to its own 2003-2018 period including the LAI-
proxy assimilation, instead of the 2000-2018 period OL with no assimilation. In
this setup, we see similar responses to that of RZSM and ET, with no bi-annual
events as seen in the normal LAI drought indicator. The 2012-2013 drought
event is still visible, as are the inter-drought periods of 2016 to 2017. Because
of the calculation of percentile rank, and only the 16 year comparison period,
these LAI SEKF-SEKF percentiles do not drop below 5%, and thus no D3 or
D4 drought events are seen.

While this strategy eliminates the bias associated with the LAI-proxy assim-
ilation, it presents other challenges such as a significantly limited comparison
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period (limited by satellite observation availability, for CGLS LAI available from
2000 to present), which weakens the significance of the percentiles. As stated in
Houborg et al. (2012), which performs a similar percentile rank calculation on
their GRACE DA system, "Calculating meaningful, current drought indicator
percentiles requires a consistent long-term data record that extends to present
time". Additional development can be made regarding selections of new, less bi-
ased, drought-related LSVs from LDAS-Monde, such as biomass and drainage,
or statistical bias-correcting can be performed on the LAI variable. Additional
analysis can also look at specific vegetation types such as was done in Chap-
ter 4, with more focus on crops and grasslands over forests, as this system is
targeted towards identifying and predicting agricultural droughts.

While LAI, and other vegetation-related LSVs are an important aspect of
LDAS-Monde, their effectiveness as drought monitoring indicators tends to
weaken in wintertime. Wintertime droughts, at least for much of CONUS, can
strongly affect hydrology as well as certain lower biomass crops such as winter
wheat, but much of the other vegetation is dormant. Snow cover can also impact
the usefulness of these LSVs, as optical or microwave estimations of vegetation
will be intermixed or contaminated by the snow. Thus, LAI would not be a
relevant observation or indicator during this time over regions with this type
of seasonality of vegetation. This is especially true when using LDAS-Monde
LAI, as wintertime values often hit the defined minimum thresholds and give
no more information. Other regions with smaller seasonal changes and little to
no snow, would still find LAI and vegetation LSVs to be useful and impactful
for drought monitoring. Therefore, careful attention must be paid to domain’s
climate zone and season when studying drought events with this system and
these LSVs.

Blends

Taking a further step, two different blends were also calculated and plotted.
Figure 5.7 shows the Blend 1, with equal weighting between LAI, RZSM, and
ET variables, and Figure 5.8 presents an equal weighting of just RZSM and
ET, as we have seen that LDAS-Monde LAI can be a biased indicator. These
blends are the first to show significant area covered by D3 drought category,
due to the weighing of different LSV percentiles. There is also a slight limit
of some variability of the more extreme D3 and D4 drought categories. The
blends also can provide a more holistic view of drought events, and can easily
incorporate new variables and quickly change weighting for rapid prototyping of
a drought index. The Blend 1 in Figure 5.7 includes the biased LAI response as
discussed above, but does show that the weighing and merging can still provide
a reasonable product. Without using LAI, as in Blend 2 and Figure 5.8, we do
see some minor reduced variability.

Overall, these comparisons using the 19 year comparison period do show
promise, and show that the methodology is sound for RZSM and ET LSVs.
But the extreme variability (spikiness) and low number of extreme events in
the period highlight that a longer period would greatly aid in a more in depth
comparison.
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Figure 5.7: A time series of the percent area in each drought
category, using a blend of LAI, RZSM, and ET percentile rank in

drought category determination.

Figure 5.8: A time series of the percent area in each drought cat-
egory, using a blend of RZSM and ET percentile rank in drought

category determination.

5.2.3 Comparison to the United States Drought Monitor
and other Drought Indices

USDM data, which is produced weekly and valid on Tuesdays, will be matched
to the domain grid and time frame of the experiment. Initial analysis will look
at the different drought index blends from the OL and SEKF valid on the same
day as the USDM, converted to USDM equivalent drought levels, where the
Spearman rank correlation, PODY, and FAR will be calculated. The resulting
correlations and scores, along with the difference in these scores between the OL
and SEKF, will be visualized on maps, potentially identifying more localized
troublesome regions. Theses scores can also be plotted on charts and time series
to focus on the timing of drought onset. For additional analysis, weekly averages
of the LDAS-Monde drought blends could be compared to the USDM.
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There may also be use to evaluate the performance of LDAS-Monde drought
indices compared to only certainly levels of drought on the USDM. For example,
the lower levels of drought (D0-D3) may be significantly better matched than
if they included D4. In this analysis, the D4 levels of LDAS-Monde indices and
USDM would just be converted to D3 levels, and the same scores and analyses
re-run. As this is intended to work as a potential early warning system, the
warning at earlier stages of drought is more important than perfectly matching
the timing and extent of the slow developing extremes.

The same procedure described to compare LDAS-Monde forecast results to
the USDM can be similarly applied to many other DIs. One such example is
VegDRI, or Vegetation Drought Response Index, which is a composite map of
satellite-based observations related to vegetation stress. Comparisons to other
DIs can enhance the understanding of the system’s performance, specifically
related to the timescale of drought. For example, the Palmer Drought Sever-
ity Index (PDSI) is typically targeted towards long-term droughts, while the
Standardized Precipitation Index (SPI) can be adjusted to account for short or
long-term trends. Other DIs such as VegDRI target seasonal variability, and
even others, such as QuickDRI were developed with short-term, rapid changes
in mind.

5.2.4 Impact of Forecast LSVs on the LDAS-Monde
Drought Indicators

While the presented proof of concept and methodology demonstrates the analy-
sis can be performed on this data, the ultimate goal of the proposed experiment
is to study the effect of forecasting LSVs on the LDAS-Monde drought indica-
tors. We know from Chapter 3 that LSV correlations to observations decrease as
forecast lead time increases, as a logical progression from decreasing atmospheric
forecast accuracy. I hypothesize that the same will hold true for LDAS-Monde
drought indicators and their associated drought levels. As forecast lead time
increases, the Spearman correlation will decrease, the PODY will decrease, and
the FAR will increase. When using 6 week atmospheric forecasts, a sufficiently
long time period will also be required to build a large enough sample size of
each forecast length to analyze changes in these statistical scores.

5.3 Summary of Chapter 5
This chapter explores the details of a prospective experiment to continue and fol-
low on the work presented in Chapter 3 and Chapter 4. It takes lessons learned
from both the two year forecast experiment over CONUS and the experiments
with various assimilation scenarios, combining the knowledge in order to eval-
uate how the LDAS in forecast mode can perform as a drought alert system.
The requirements of the case study (time period, domain) are also presented,
which are primarily linked to data availability of the atmospheric forecasts and
drought analysis data. The selection of LDAS-Monde configuration is then
given and explained, with the joint assimilation of matched VODX and SSM
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as the chosen setup in order to best improve the land surface initial conditions,
primarily over the months of April through October.

Next, details are provided regarding the proposed analysis of the results of
this prospective experiment. The methodology of this analysis follows Mocko
et al. (2021), using the Spearman correlation, PODY, and FAR statistics, but
instead focuses on the system’s forecast and alert potential. Then, ET, RZSM,
and LAI are selected as important LSVs which can be merged into a single
blend to work as a drought indicator for LDAS-Monde. An analysis using ex-
isting experiments was performed using the proposed methodology, allowing
for the processing and conversion of LDAS-Monde LSVs into percentile rank
and USDM drought categories over the Midwest. These new drought indicators
were also compared to a USDM time series of the area in each drought cate-
gory. The RZSM and ET LSVs, along with the two blends, were able to match
many details of USDM product over a similar area, most notably the 2012-2013
drought, while LAI was found to be heavily biased by the assimilation, limiting
its use in this methodology. Finally, an explanation is given regarding how the
comparison to USDM and other drought indicators will be conducted, and a
discussion is had regarding the impact of forecasts on the LDAS-Monde drought
indicators.
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Chapter 6

Conclusions et Perspectives

Ce travail de thèse a eu pour objet d’étude l’évaluation de la capacité du sys-
tème d’assimilation de données satellitaires pour les surfaces terrestres LDAS-
Monde à suivre et à prévoir les sécheresses agricoles. De manière générale, les
modèles des surfaces terrestres et les données d’observation de la Terre depuis
l’espace sont affectés par des incertitudes qui limitent leur capacité à suivre et
à prévoir les sécheresses et leurs impacts. Ce travail a montré que l’assimilation
d’observations satellitaires dans le modèle ISBA permet de réduire ces incerti-
tudes et d’améliorer les conditions initiales du modèle pour réaliser des prévi-
sions. La configuration de LDAS-Monde a été modifiée afin de pouvoir utiliser
des prévisions des variables atmosphériques pour forcer le système. Cela a rendu
cet outil capable de fournir une prévision des variables des surfaces terrestres.
Après avoir été mise en œuvre, cette nouvelle capacité de LDAS-Monde a été
évaluée sur les USA. Une fois les limitations du système connues, des solutions
permettant d’améliorer la précision des prévisions ont été proposées et testées
dans la perspective de créer un système d’alerte des sécheresses agricoles et de
leurs impacts.

6.1 Résumé des résultats
Les premières étapes de cette thèse se sont concentrées sur l’analyse des per-
formances du système LDAS-Monde pour le suivi des impacts de la sécheresse
sur la végétation et l’humidité du sol, et sur la manière dont les données aux-
iliaires affectent les résultats (par exemple les paramètres statiques du modèle
ISBA gérés par ECOCLIMAP). Deux simulations ont été effectuées sur l’état du
Nébraska, aux USA : une simulation « open-loop » (OL, une simulation sans as-
similation de données) et une analyse (SEKF, une simulation avec assimilation
d’observations d’humidité superficielle du sol et de l’indice de surface foliaire
- LAI). Les anomalies annuelles moyennes de LAI simulées par OL et SEKF
ont été comparées aux anomalies de rendement agricole de maïs, montrant de
fortes correspondances, en particulier avec SEKF (les corrélations obtenues avec
SEKF sont meilleures que celles d’OL). L’utilisation des valeurs annuelles max-
imales de LAI (au lieu de la moyenne annuelle) pour calculer les anomalies
a donné des résultats presque identiques. Les données de précipitation de la
ré-analyse atmosphérique ERA5 utilisées comme forçage atmosphérique ont été
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évaluées en utilisant les mesures réalisées in situ à deux stations météorologiques
du Nebraska. La comparaison montre une bonne correspondance générale.

A suivi ensuite le développement et l’utilisation de la capacité de LDAS-
Monde a prévoir les variables des surfaces terrestres. Une expérience numérique
a été mise en place sur les USA, couvrant la période de temps 2017-2018. Les
simulations OL et SEKF ont été réalisées en étant forcées par le membre de
contrôle de la prévision d’ensemble du ECMWF (ENS-CTRL). Cela a produit
une prévision de 15 jours pour chaque journée de la période considérée. La
persistance de diverses variables (LAI, RZSM, SSM, ruissellement, drainage et
ET) a été analysée. Les variables LAI, ET et SSM ont été comparées à des ob-
servations satellitaires et in situ. Les résultats indiquent que le ruissellement est
la variable la plus dynamique et la moins persistante dans le temps. La qualité
des prévisions du ruissellement et du SSM dépend fortement de la qualité des
prévisions atmosphériques. LAI et RZSM sont plus persistants dans le temps
et varient moins vite à mesure que la prévision avance dans le temps. Pour les
simulations de LAI, SSM et ET qui ont été comparées aux observations satelli-
taires, il apparaît clairement qu’à mesure que la période de prévision augmente,
la précision du système diminue, mais fournit toujours des informations utiles
sur toute la longueur de la période de prévision. On constate aussi que le choix
des conditions initiales, c’est-à-dire les prévisions initialisées avec OL ou SEKF,
a un fort impact sur les performances. Les conditions initiales plus précises
fournies par SEKF sont plus performantes et pour des durées de prévision plus
longues, notamment pour ET et LAI. Cette étude a été publiée dans Mucia
et al., 2020.

Ayant identifié un moyen d’améliorer la précision de la prévision des vari-
ables des surfaces terrestres, c’est-à-dire l’amélioration des conditions initiales
du système, et l’assimilation des observations liées à la végétation (comme le
LAI dans notre cas), mon travail s’est orienté vers la recherche d’un moyen de
mieux contraindre le LDAS en assimilant plus fréquemment des variables liées à
la végétation. Contrairement au LAI qui provient d’observations réalisées dans
le domaine du visible, du proche infrarouge et de l’infrarouge moyen, l’épaisseur
optique de la végétation dans le domaine des micro-ondes (VOD en anglais pour
« Vegetation Optical Depth ») est dérivé d’observations micro-ondes disponibles
dans presque toutes les conditions météorologiques, de jour comme de nuit. Le
VOD a été sélectionné comme variable à utiliser comme proxy du LAI et à
assimiler par le LDAS car cette quantité contient de l’information pertinente
relative à la végétation. Afin de mieux caractériser la relation entre LAI et VOD,
des analyses ont été menées sur plusieurs zones géographiques en comparant les
observations de LAI satellitaires et les simulations du modèle ISBA, aux obser-
vations de VOD en bande X et C (VOD-X et VOD-C, base de données VODCA)
sur l’ensemble du domaine USA et sur des sous-domaines : la Californie, le
Midwest, le Nord-Est, les plaines du Sud et le Nebraska. Ces comparaisons ont
montré une corrélation généralement élevée entre LAI et VOD, mais avec des
variations liées au type de végétation dominant dans chaque sous-domaine. Il a
également été constaté que le VOD en bande X présentait moins de bruit et des
corrélations plus fortes que celui en bande C. Les anomalies de VOD en bande X
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et C ont également été évaluées, comme celles concernant les observations LAI,
pour leur capacité à représenter la variabilité interannuelle des rendements du
maïs. Les résultats sont comparables. Comme la végétation dominante semble
jouer un rôle majeur dans la force de la relation entre LAI et VOD, six types
de végétation (forêts de feuillus, forêts de conifères, cultures en C3, cultures en
C4, prairies en C3 et cultures irriguées) ont été sélectionnés pour approfondir
l’analyse. La relation entre LAI et VOD a été analysée sur les USA pour les
pixels contenant plus de 50% de ces types de végétation selon les bases de don-
nées d’occupation des sols ECOCLIMAP-II et ECOCLIMAP-SG. Les forêts de
conifères présentent les corrélations les plus faibles, tandis que les autres types
de végétation présentent des corrélations modérées à fortes. La saisonnalité joue
également un rôle important, de meilleures corrélations entre VOD et LAI étant
généralement observées au printemps et en automne qu’en été et (surtout) qu’en
hiver. La même analyse a été effectuée avec le VOD redimensionné linéairement
aux observations de LAI via une fonction de distribution cumulative sur une
fenêtre glissante de 3 mois. Cela permet d’obtenir des corrélations beaucoup
plus fortes. Un phénomène d’hystérésis de l’évolution du VOD par rapport au
LAI a été observé. Il se manifeste surtout pour les cultures en C4 en automne,
avec des valeurs élevées de VOD. Ce phénomène semble indiquer que l’utilisation
d’une méthode linéaire pour passer du VOD au LAI n’est pas suffisante pour
tenir compte des tendances saisonnières. Cette analyse a également montré de
fortes différences entre ECOCLIMAP-II et ECOCLIMAP-SG. En particulier,
ECOCLIMAP-SG réduit le nombre de pixel dominés par les cultures en C4 et
les cultures irriguées sur l’ensemble du domaine USA.

Après avoir comparé LAI et VOD-X (avant et après linéarisation), une
série d’expériences d’assimilation a été réalisée. VOD-X, une fois redimen-
sionné linéairement aux observations de LAI, a été assimilé à la place du LAI
dans LDAS-Monde. Les résultats ont été comparés à quatre jeux de données
d’observation satellitaires. Parmi eux, la production primaire de la végétation
(GPP) et l’évapotranspiration (ET) sont indépendants des expériences. Sur la
base des corrélations mensuelles moyennes, ainsi que des distributions des cor-
rélations sur chaque point de grille, les résultats montrent que l’assimilation de
VOD-X (mis à l’échelle du LAI) a amélioré la représentation de la GPP et de
l’ET par rapport à l’assimilation directe du LAI sur la plus grande partie du
domaine. Ces améliorations se produisent principalement pendant la saison de
croissance de la végétation. Elles sont dues aux observations plus fréquentes du
VOD par rapport au LAI qui permettent de mieux contraindre le modèle ISBA.
Une évaluation complémentaire de ces résultats par rapport à des mesures in
situ de l’humidité du sol indique que l’utilisation de VOD-X comme proxy du
LAI dans l’assimilation permet d’obtenir des corrélations inchangées ou légère-
ment améliorées.

C’est l’une des premières études à assimiler le VOD dans un LSM. Kumar
et al. (2020) a réalisé des expériences avec une méthodologie similaire, mais
notre étude fournit l’utilité de l’assimilation VOD ayant un impact direct, non
seulement sur le LAI, mais également sur les variables de contrôle de l’humidité
du sol dans la zone racinaire. Les résultats ont démontré une contrainte plus
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forte sur la végétation au sein de LDAS-Monde, et ce travail pionnier a mis
en lumière des domaines où des recherches supplémentaires sont nécessaires, en
particulier (1) comment redimensionner au mieux le VOD en LAI, (2) comment
configurer au mieux les erreurs d’observation pour le VOD redimensionnée dans
le système d’assimilation de données, (3) comment traiter les zones où une
relation plus faible entre VOD et LAI a été obtenue.

Des expériences supplémentaires ont permis d’analyser les effets de
l’assimilation individuelle et/ou conjointe des différentes observations. Aucune
amélioration notable des scores de GPP et ET n’a été obtenue par assimilation
conjointe des variables, par rapport à l’assimilation du LAI ou du VOD-X
seuls. Cependant les comparaisons avec les observations in situ ont montré
moins d’impacts négatifs et une plus grande amélioration des corrélations
via l’assimilation conjointe. Ces expériences ont également montré que
l’assimilation du SSM a un effet beaucoup plus faible sur l’évolution des
variables des surfaces terrestres par rapport à l’assimilation du LAI ou du
VOD-X.

Ayant acquis la certitude que l’assimilation du VOD-X en tant que proxy
du LAI permet d’améliorer les conditions initiales, on peut recommander
d’utiliser cette configuration de LDAS-Monde dans un contexte de prévision.
Une méthodologie a été proposée pour comparer les variables produites par
LDAS-Monde et un système existant de suivi des sécheresses. Afin de tester
cette méthodologie, l’expérience SEKF assimilant VOD-X (en tant que proxy
du LAI) et SSM de 2003-2018 a été comparée à une simulation OL de 2000 à
2018, et des classes de percentiles ont été produites sur la zone du Midwest.
Une série chronologique sur cette zone dans chaque catégorie de sécheresses a
été comparée aux produits du système de surveillance US Drought Monitor.
L’utilisation des variables RZSM et ET issus de l’analyse ont montré certaines
similitudes avec le US Drought Monitor, notamment en ce qui concerne la
sécheresse majeure de 2012-2013.

La variable LAI produite par le SEKF présente des valeurs plus faibles que
le LAI issu de OL. L’assimilation du LAI ou de VOD-X en proxy LAI réduit
systématiquement le LAI simulé, conduisant souvent à des classes de percentiles
artificiellement basses, c’est-à-dire à des sécheresses de forte intensité. Cepen-
dant, cette comparaison montre que cette méthodologie est applicable à LDAS-
Monde, et que même avec une période de comparaison courte, des épisodes de
sécheresse peuvent être détectés.

6.2 Perspectives
Bien que cette thèse ait fait une comparaison approfondie du VOD en tant
que proxy du LAI, plusieurs questions restent en suspens. Le VOD n’est pas
une quantité équivalente au LAI. Certains comportements, comme l’hystérésis
observée au Chapitre 4 sur les forêts de feuillus, et surtout sur les cultures en
C4, indiquent que leur relation n’est pas linéaire. Il serait utile d’approfondir ces
résultats afin de déterminer la cause précise de ces phénomènes, qu’il s’agisse de
la présence de litière au sol, de l’interception de l’eau précipitée par les feuilles ou
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d’un autre processus. Effectuer la même analyse, mais filtrer les résultats par la
présence d’un réservoir d’interception non nul (une variable de sortie d’ISBA),
puis analyser les différences, serait un premier pas dans cette direction.

Une autre piste de travail consisterait à assimiler directement des données de
niveau 1 dans LDAS-Monde, par exemple les coefficients de rétrodiffusion radar
ASCAT ou des températures de brillance micro-ondes issues d’instruments pas-
sifs. Cela permettrait d’utiliser toute l’information contenue dans le signal,
à la fois sur l’humidité du sol et sur la végétation, tout en gérant mieux les
erreurs d’observation dans l’assimilation de données (Shamambo et al., 2019;
Shamambo, 2020). Une étape majeure dans ce développement est la mise
en place d’opérateurs d’observation. Cela peut se faire par l’utilisation de
l’apprentissage automatique.

Concernant le système d’alerte des sécheresses et les comparaisons avec le
système US Drought Monitor sur les USA, les prochains travaux pourraient con-
cerner l’application de LDAS-Monde à l’alerte précoce des sécheresses, ainsi que
sur l’utilisation des prévisions saisonnières pour générer des prévisions de vari-
ables des surfaces terrestres à plus longue échéance. Comme décrit au chapitre 5,
une étape pourrait consister à effectuer un test des capacités d’alerte des sécher-
esses du système en utilisant les prévisions atmosphériques à moyen et à long
terme du ECMWF. Des concepts similaires ont été appliqués à d’autres sys-
tèmes d’assimilation de données dans le but de produire des indicateurs de
sécheresse correspondant au US Drought Monitor. Par exemple, Houborg et
al., 2012 ont assimilé des valeurs d’anomalies gravimétriques de GRACE dans
le modèle de surface « Catchment » pour produire des indicateurs de sécheresse
hydrologiques. Getirana et al., 2020 ont ensuite utilisé ce système dans une con-
figuration de prévision en utilisant des prévisions saisonnières à 30, 60 et 90 jours
du système de prévision saisonnière à interannuelle du système d’observation
de la Terre Goddard (GEOS) de la NASA (Borovikov et al., 2019), pour pro-
duire des indicateurs de sécheresse. Une approche similaire pourrait être mise
en œuvre dans LDAS-Monde, mais avec l’avantage d’assimiler des variables de
la végétation afin de mieux caractériser les sécheresses agricoles. Un tel système
offrirait la possibilité de customiser des produits plus proches des besoins des
acteurs du monde agricole.

Cependant, l’utilisation de prévisions saisonnières présenterait plusieurs dé-
fis à surmonter. Par exemple, la base de données du projet de prévision sub-
saisonnière à saisonnière (S2S) (Vitart et al., 2017) fournit des prévisions jusqu’à
60 jours provenant de nombreux centres opérationnels. Cependant, ces prévi-
sions ne comportent pas toujours toutes les variables atmosphériques requises
pour forcer ISBA. Par ailleurs, pour les durées de prévision plus longues, en
particulier pour les durées saisonnières, les pas de temps sont souvent quoti-
diens. Par conséquent, une réduction d’échelle statistique devrait être utilisée
pour obtenir un pas de temps suffisamment fin pour forcer ISBA (horaire, tri-
horaire). Une autre option serait d’initialiser un système de prévision saison-
nière en utilisant les variables analysées par LDAS-Monde.

A partir des méthodes mises en œuvre dans le Chapitre 5, la capacité à
caractériser les sécheresses de diverses variables ou combinaison de variables
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provenant du LDAS ou pouvant être intégrées dans l’assimilation de données
pourrait être explorée. Parmi ces variables supplémentaires, la fluorescence
chlorophyllienne (SIF en anglais pour Solar-Induced chlorophyll Fluorescence)
et la biomasse de la végétation pourraient être étudiées plus en détail. Lors de la
photosynthèse, les plantes émettent un rayonnement dans une bande spectrale,
qui change instantanément lorsqu’elle réagit aux conditions environnementales
telles que l’éclairement ou la disponibilité en eau. Cela fait du SIF un proxy
de l’activité photosynthétique pouvant être observé depuis l’espace (Meroni et
al., 2009). Au fur et à mesure que les observations satellitaires du SIF se
développent et qu’une période d’observation plus longue devient disponible, le
SIF a tout pour devenir une donnée de plus en plus utile pour suivre l’état de
la végétation. De même, la biomasse aérienne de la végétation, c’est à dire la
masse sèche de bois par unité de surface, peut fournir une valeur de référence
pour la production et la santé des forêts. Elle peut être utilisée avec d’autres
variables de surface pour déterminer les impacts à long terme des sécheresses.
Des liens étroits ont également été montrés entre le VOD en bande L et la
biomasse aérienne de la végétation (par exemple Rodríguez-Fernández et al.,
2018). Ces liens pourraient être analysés plus en détail dans le contexte de
l’assimilation du VOD en tant que proxy du LAI dans LDAS-Monde.

Malgré les défis inhérents aux indicateurs individuels et les biais qui en dé-
coulent, la méthodologie présentée au Chapitre 5 fournit une base pour prévoir
le déclenchement et la sévérité des épisodes de sécheresse avec LDAS-Monde.
Ce dernier pourrait encore être amélioré avec de nouvelles variables simulées
et de nouvelles observations à assimiler. Les résultats de prévisions à de plus
longues échéances temporelles, par exemple saisonnière, permettraient égale-
ment d’apporter un éclairage sur la précision et, par conséquent, l’utilité d’un
tel système de prévision des sécheresses. Les étapes suivantes pourraient alors
être définies, sur la base de ces résultats, de la disponibilité des données et des
besoins des utilisateurs. Finalement, les futurs systèmes d’alerte et de prévision
des sécheresses, tels que celui proposé dans cette thèse, pourraient fournir des
informations vitales pour la prise de décisions en agriculture (dates d’irrigation,
de semis, et de récolte par exemple), afin d’atténuer l’impact des sécheresses.
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Chapter 7

Conclusions and Prospects

This thesis has investigated the ability and utility of LDAS-Monde to monitor
and forecast agricultural droughts and water resources. Land surface models
or satellite Earth observations alone are not sufficient to accurately monitor
and predict drought events and impacts. However, the assimilation of satellite
observations into LSMs provides reduced error and improved initial conditions.
LDAS-Monde has been upgraded to allow for the ability to ingest atmospheric
forecasts and produce land surface forecasts. This thesis focused on the use of
this new capability, its limits, and analyzed ways to improve the accuracy of
the land surface forecasts for the purpose of creating a drought alert warning
system targeted towards agricultural impacts of drought.

7.1 Summary of Results
The initial steps of this thesis focused on analyzing how LDAS-Monde performs
in monitoring impacts of drought on vegetation and soil moisture, and how
the required supporting data (e.g. ECOCLIMAP) affect the results. Over
the US State of Nebraska, the system was run in both OL (no assimilation)
and SEKF (assimilating LAI and SSM) modes. These simulated mean annual
LAI anomalies of the OL and SEKF were compared to reported corn yield
anomalies, with strong matches between the experiments and agricultural yields.
The SEKF also improved upon the OL correlations. Using yearly maximum
LAI values (instead of yearly mean) to calculate the anomalies provided nearly
identical results. The precipitation data from the ERA5 atmospheric reanalysis
used as atmospheric forcing was also analyzed at two weather stations over
Nebraska, overall providing a good match.

Work then moved to implementing the forecast configuration of LDAS-
Monde and applying this new functionality over CONUS. An experiment was
conducted, running the OL and SEKF over CONUS for 2017-2018, with the
ECMWF ENS CTRL atmospheric forecast acting as the atmospheric forcing.
This produced a 15-day forecast for each day of the time period. The persis-
tence of LAI, RZSM, SSM, Runoff, Drainage, and ET variables were analyzed.
LAI, ET, and SSM were compared to satellite derived and in situ observations.
Results indicate that Runoff is the most dynamic and least persistent variable,
and along with SSM, heavily dependent on accurate forecasts. LAI and RZSM,
however, are more persistent in time and change far less strongly as the forecast
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length increases. For the LAI, SSM, and ET that were compared to satellite de-
rived observations, it is clear that as the forecast period increases, the accuracy
of system decreases, but still provides useful information out to the full forecast
length. It is also clear that the initial conditions, that is the forecasts initialized
with the OL or SEKF, make a strong impact on the performance, with the
more accurate initial conditions of the SEKF performing better and for longer
forecast lengths, particularly for ET and LAI. This analysis was published in
Mucia et al. (2020).

Now having identified a way to improve land surface forecast accuracy, that
is improving the initial conditions of the system, and that the assimilation of
vegetation-related observations (i.e. LAI) have the strongest impact on the sys-
tem, the focus of the thesis shifted towards a way to better constrain the LDAS
by assimilating an LAI-like variable more frequently. VOD from the VODCA
dataset was selected as the variable to transform to an LAI proxy and assim-
ilate into the LDAS, as VOD is a microwave observation producing nearly all
weather and close to daily observations in contrast to optical observations such
as LAI, and it contains pertinent information related to vegetation. To bet-
ter characterize the LAI-VOD relationship over various domains, analyses were
conducted comparing LAI observations and ISBA simulated LAI to X and C-
band VOD observations over CONUS, California, the Midwest, the Northeast,
the Southern Plains, and Nebraska. These comparisons found a generally good
correlation between the two variables, but with significant variation strongly
linked to dominant vegetation type in each sub-domain. It also found X-Band
VOD had significantly less noise and stronger correlations than C-Band. The
two VOD bands were also plotted as anomalies next to LAI and corn yield
anomalies, providing a moderately good match. As the dominant vegetation
seemed to play a key role in the strength of the LAI-VOD relationship, six
vegetation types (deciduous forests, coniferous forests, C3 crops, C4 crops, C3
grasslands, and irrigated crops) were selected. The LAI-VOD relationship was
analyzed over CONUS for pixels with more than 50% of these vegetation types
according to the ECOCLIMAP-II and ECOCLIMAP-SG land use databases.
Coniferous forests consistently had the lowest correlations, while other vegeta-
tion types had moderately strong correlations. Seasonality played a large role
as well, with spring and autumn months typically outperforming summer, and
strongly outperforming winter. The same analysis was performed with VOD
that had been linearly re-scaled to LAI observations through a 3-month moving
window cumulative distribution function, instead of using the raw observations,
resulting in very strong correlations throughout. A hysteresis pattern was ob-
served in the autumn season of the LAI to VOD comparison where C4 crops had
higher VOD at lower LAI. This pattern potentially indicates that the linear re-
scaling is not sufficient to account for seasonal trends. This analysis also found
some strong differences between ECOCLIMAP-II and ECOCLIMAP-SG, with
a ECOCLIMAP-SG reducing patches dominated by C4 and irrigated crops over
CONUS.

After comparing LAI and both matched and unmatched VODX, a series of
assimilation experiments were run, where X-band VOD, linearly re-scaled to
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LAI observations, was assimilated in place of LAI in LDAS-Monde. The re-
sults were compared to four satellite-derived observation datasets, with GPP
and ET being completely independent evaluations datasets. Through averaged
monthly correlations, as well as the distributions of the individual point corre-
lations, the results demonstrate the assimilation of matched VODX improved
representation of GPP and ET over that of assimilating LAI over most of the
US. These improvements primarily occurred during the growing season, when
the vegetation dynamics are at their peak, and the improvements are due to
the more frequent observations of VOD compared to LAI. Additional evaluation
of these results against in situ soil moisture observations support that matched
VODX can replace LAI in assimilation with correlations being either unchanged
or slightly improved.

This is one of the first studies to assimilate VOD in an LSM. Kumar et
al. (2020) has performed experiments with similar methodology, but our study
provides the utility of VOD assimilation directly impacting not only on LAI, but
the root zone soil moisture control variables as well. The results demonstrated
stronger constraint on vegetation within LDAS-Monde, and this pioneering work
illuminated areas where additional research is needed, specifically (1) how to
best re-scale VOD to LAI, (2) how to best set up observational errors to the
re-scaled VOD in the data assimilation system, (3) how to deal with areas where
a weaker relationship between VOD and LAI was obtained.

Additional experiments analyzed the effects of individual and joint assim-
ilation of vegetation related LSVs and SSM. No notable differences were seen
in the independent GPP or ET observations when assimilating vegetation re-
lated information by itself or jointly with SSM. However, in situ comparisons
demonstrated fewer negative impacts, and more improved correlations via joint
assimilation. These experiments also proved that the assimilation of SSM has
a far weaker effect on the evolution of the land surface compared to the assim-
ilation of LAI or matched VODX.

With evidence that shows assimilating matched VOD provides some advan-
tages improving initial conditions, we can recommend using this LDAS-Monde
forecast configuration. A methodology was proposed to compare LDAS-Monde
LSVs to an existing drought monitoring system. In order to test this method-
ology, the SEKF experiment assimilating VODX (as an LAI-proxy) and SSM
from 2003 to 2018 was compared to an OL simulation from 2000 to 2018, and
the percentile ranks were produced over the Midwest. A time series over the
area in each drought category was compared to a similar region from the USDM.
Variables of RZSM and ET demonstrated some similarities, specifically picking
up on the major 2012-2013 drought event. LAI was found to be significantly bi-
ased by the SEKF to OL comparison, as the assimilation of LAI or LAI-proxies
systematically reduces the simulated LAI, often leading to artificially low per-
centiles, i.e. severe droughts. However, this comparison goes to show that the
percentile rank methodology can be performed on LDAS-Monde results, and
that even with a short comparison period, drought events can be detected.
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7.2 Prospects
While this thesis has made an in depth comparison of VOD as an LAI-proxy,
there remain several important questions. VOD is not equivalent to LAI. Cer-
tain responses, namely the hysteresis seen in Chapter 4 over deciduous forests
and especially over C4 crops, indicate that VOD and LAI do not have a purely
linear relationship. Future analysis continuing this work can look deeper into
these results, and determine the precise cause, whether ground litter, leaf-water
interception, or some other process. Performing the same analysis, but filtering
out any point and time when there is a non-zero interception reservoir (an out-
put variable of ISBA), and analyzing the differences would be the first step in
that direction.

Another step in that direction consists of directly assimilating level 1 data
into LDAS-Monde, ASCAT radar backscatter or microwave brightness temper-
ature from passive instruments for example. This would allow the use of all the
information contained in the signal, including soil moisture and vegetation, and
at the same time reduce observations errors in the data assimilation (Shamambo
et al., 2019; Shamambo, 2020). A major step in this development is the solution
of the observation operator. Further steps towards developing this operator will
focus on using machine learning approaches to find the optimal term.

Regarding the drought alert system and comparisons to the US Drought
Monitor, follow up work to this thesis could focus on the application of the
LDAS-Monde forecast system towards drought early warning, as well using sea-
sonal forecasts to drive longer land surface forecasts. As described in Chapter 5,
a next step could be to perform a test of the system’s drought alert capabilities
using medium to long range atmospheric forecasts from ECMWF. Similar con-
cepts have been applied to other data assimilation systems with the goal of pro-
ducing objective drought indicators matching the Drought Monitor. Houborg
et al. (2012) uses assimilated GRACE gravity anomaly data in the Catchment
LSM to produce hydrological drought indicators in percentile form. Getirana
et al. (2020) then takes the GRACE-DA system into a forecast configuration us-
ing 30, 60, and 90-day seasonal forecasts from NASA’s Goddard Earth Observ-
ing System (GEOS) Seasonal-to-Interannual Forecast System (Borovikov et al.,
2019), producing drought indicator outlooks in the same percentile form. A sim-
ilar implementation can be imagined for LDAS-Monde, but with the advantage
of assimilating vegetation variables and a focus on agricultural drought. This
gives the ability to experiment with different variables and blends of variables,
potentially better tuning the system to the needs of agricultural producers.

However, using seasonal forecasts would present several challenges needing
to be overcome. The Subseasonal to Seasonal (S2S) Prediction Project Database
(Vitart et al., 2017) provides seasonal forecasts, up to 60 day, from numerous
operational centers. A significant first hurdle would be to find a forecast that
outputs all the atmospheric variables required by ISBA at the surface. Variables
such as wind speed, or shortwave and longwave radiation are not guaranteed to
be available products. For longer forecast lengths, especially at seasonal length,
the time steps are often daily. Therefore, statistical down-scaling would need
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to be employed to obtain the sub-daily evolution of the atmosphere needed to
drive ISBA. Another option would be to initialize a seasonal forecast system
using the LDAS-Monde analyzed variables.

Using the methodology of Chapter 5, additional LSVs from the LDAS can
be reviewed and processed to determine their utility as individual or a part of
blended indicators. Among these additional LSVs, Solar-Induced chlorophyll
Fluorescence (SIF) and vegetation biomass can be studied in more detail. As
plants photosynthesize, they emit radiation in a narrow spectral band, which
instantly changes as the plant responds to environmental conditions such as
water and light availability. This makes SIF a direct proxy for photosynthetic
activity, and can be actively monitored via remote sensing (Meroni et al., 2009).
As these satellite observations of SIF become more widely available and a longer
observation period is built up, SIF becomes a more and more useful tool in
monitoring vegetation conditions. Similarly, plant biomass, the total mass of
vegetation in a unit area, provides a reference LSV for vegetation production and
health, which can be used together with other surface variables to determine
drought impacts. There have also been strong links found between L-Band
VOD and above ground biomass (Rodríguez-Fernández et al., 2018), which can
be further analyzed in the context of assimilating VOD as an LAI-proxy in
LDAS-Monde.

Despite the challenges associated with individual indicators and the biases
found therein, the methodology shown in Chapter 5 provides a solid base for
predicting drought onset timing and severity with LDAS-Monde that can be
incrementally improved with new variables and as new observations become
available. The results of longer, seasonal scale, forecasts will also shed light
on the accuracy, and consequently the utility, of this drought forecast system.
Steps beyond that will be determined by those results, data availability, and
the needs of potential users. Ultimately, future drought warning and prediction
systems, such as the one proposed in this thesis, can provide stakeholders with
vital information to make crop and timing decisions (irrigation, planting, and
harvesting for example), as well as better mitigate drought impacts.
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A.1 LDAS Experimentation over Nebraska
The U.S. state of Nebraska was chosen as a domain for initial case studies in
which LDAS-Monde runs in a normal configuration, as this state is a significant
agricultural producer, as well as having a very strong presence of irrigation.
Being a significant producer of crops allows for good comparisons between LSVs
and crop production on an annual basis. The smaller domain of the state
(compared to CONUS) also allows for the experimentation of LDAS-Monde in a
higher spatial resolution. The atmospheric forcing can also be evaluated against
in situ weather observations stations. Differences in land surface properties
between ECOCLIMAP-II and ECOCLIMAP-SG are also investigated.

A.1.1 Potential High Resolution LDAS
LDAS-Monde can be set to any spatial resolution, and is limited primarily by
the resolutions of atmospheric forcing, land cover, observations, and coupled
models (e.g. CTRIP). Higher resolution monitoring with LDAS-Monde has
been shown to improve representation of vegetation conditions (Albergel et al.,
2019). As ERA5 resolution is natively 0.25◦ x 0.25◦, most LDAS-Monde ex-
periments have been run with equal spatial resolution. However, there is some
evidence from Albergel et al. (2019) that simply using a bilinear interpolation
to downscale ERA5 forcing to 0.1◦ x 0.1◦ spatial resolution improves the moni-
toring of vegetation almost as much as using the native 0.1◦ IFS HRES forcing.

Some initial experiments with LDAS-Monde over Nebraska included a run
from 2017-2018 at 0.1◦ spatial resolution and forced by the ECMWF IFS HRES
atmospheric forecasts (see Table 2.1). This experiment was also a first test of the
forecast configuration of LDAS-Monde, with 10 day forecasts being produced.
With the increased spatial resolution, coupling to CTRIP becomes impractical
and introduces errors. As CTRIP is run at 0.5◦, resolutions smaller than half
of that produce visible artifacts in output data.

Even without a full run experiment, some insight can be gained from look-
ing at parameters at high resolutions. Figure A.1 shows maps of Nebraska’s
C4 fraction as given by ECOCLIMAP-SG for 0.25◦, 0.1◦, and 0.01◦ spatial
resolutions. ECOCLIMAP has an effective spatial resolution of 1km, but is
interpolated to the model grid resolution. In this figure, the heavily pixelized
large spatial resolutions progressively become clearer, to the point where, at
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the 0.01◦ level, an large amount of detail can be gleaned from the land use.
Geographic features such as rivers, lakes, urban centers, and topography all can
be easily viewed at these higher resolutions. Field scale or smaller detail is pos-
sible, and applications of this scale can be made even to precision agriculture
or more targeted monitoring and forecasting.
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Figure A.1: Maps of the fraction of C4 crops as given by ECOCLIMAP-SG at A)
0.25◦, B) 0.1◦, and C) 0.01◦ spatial resolutions.
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The downside to using this high resolution is primarily the cost (both time
and energy) of running the system for such a domain. Such detailed resolution
of a small domain on the scale of a state could be equal in computing cost to
that of a more traditional resolution experiment over the scale of a continent.
Additionally, the atmospheric forcing or forecasts are typically the bottleneck
in terms of spatial resolutions of the input datasets.

A.1.2 Assessment of LDAS-Monde, ERA5, and ECO-
CLIMAP over Nebraska

LDAS-Monde

Mucia et al. (2020), shown later in this chapter, analyzed and compared LAI
observations and corn yield on an annual basis. Figure A.2 demonstrates this
same comparison, but with the addition of LDAS-Monde OL and SEKF results.
This figure, and subsequent anomaly figures over Nebraska, use the mean annual
LAI for observations and OL/SEKF results to calculate the anomalies. When
the maximum LAI was use to calculate the anomalies, little to no change was
seen. It is seen that both the model and analysis closely match the observed
inter-annual variability of LAI as well as of corn yield. Table A.1 provides the
correlation scores between the observed, modelled, and analyzed LAI and corn
yield.

Figure A.2: A time series representing the inter-annual anomalies of mean observed,
modelled, and analyzed LAI, and corn yield over Nebraska. The black line and stars
represent the mean annual observed LAI anomalies from the CGLS LAI V2 dataset.
The green dashed line represents annual corn yield anomalies as reported by the USDA.
The blue and red lines are the LDAS-Monde OL and SEKF LAI products respectively.
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Table A.1: Correlation Coefficients between Observed, Model,
and Analysis LAI and Corn Yield over Nebraska

Yield Model Analysis Observations
Yield 1 0.79 0.87 0.92
Model 1 0.97 0.86
Analysis 1 0.94

Observations 1

As stated in Mucia et al. (2020), the LAI observations closely match the
annual corn yield anomalies, with a correlation of 0.92. We can extrapolate
that annual LAI anomalies can be used as a yield proxy. LDAS-Monde also
proved to be able to follow these inter-annual variations of corn yield with
its simulated LAI. The model alone provided a correlation of 0.79, while the
analysis improved that to a correlation of 0.87 thanks to the assimilation of LAI
and SSM observations.

The results of this test can be broadly categorized as showing that the
LDAS-Monde system has the capability to monitor land surface variables and
conditions related to drought events in an agricultural setting. Coupled with
previous studies (Albergel et al., 2018a; Albergel et al., 2019; Tall et al., 2019),
LDAS-Monde has shown that it can successfully monitor more general drought
conditions.

ERA5

Analysis was performed over Nebraska to assess the accuracy of ERA5 atmo-
spheric forcing compared to monitoring stations. While previous studies have
shown ERA5 provides accurate atmospheric conditions, and even improves
the performance of LDAS-Monde compared to ERA-Interim (Albergel et al.,
2018a), over a more localized domain, this analysis is also necessary to confirm
the accuracy.

In particular, the variable of precipitation was chosen as the variable itself is
an important driver of land surface properties, and the comparison and valida-
tion is straightforward. Two sites in Nebraska with National Weather Service
(NWS) weather stations were also chosen, that of Lincoln (40.83N,96.76W) and
Grand Island (40.96N,98.31W). To encompass a wide range of precipitation
conditions, the three years of 2009 (wet), 2011 (normal), and 2012 (dry) were
selected and investigated. Figures A.3 and A.4 represent the monthly cumula-
tive precipitation totals between the station observations and ERA5 at grid cell
containing the station.

In general, one can see a good correspondence for most months between the
two datasets. The seasonality is well captured, and the inter-annual changes
are also seen. There are sporadic months of disconnect between ERA5 and
the observations, but the biggest consistent mismatch is for 2012 in Grand
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Island (Figure A.4C). In this specific case, ERA5 consistently overestimates
precipitation throughout the year. While Lincoln has a slight mismatch between
the two for August and October, this same general pattern is not seen.

One must note that this comparison is to test the general accuracy of the
ERA5 dataset, but this analysis is also a simple one. The observations are a very
high quality point measurement of precipitation, while ERA5 is an estimation
over a 0.25◦ x 0.25◦ grid cell. Precipitation events are often very localized,
especially in thunderstorms and extreme severe weather, as is often seen by
both Grand Island and Lincoln. In fact, the localized precipitation events,
often seen in Spring, could be able to explain the individual large discrepancy
between the two during the month of April in 2009 for Lincoln, and 2012 for
Grand Island.
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Figure A.3: Comparison of monthly cumulative precipitation over Lincoln, Nebraska
between NWS weather station (KLNK) observations and ERA5 for A) 2009, B) 2011,

and C) 2012
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Figure A.4: Comparison of monthly cumulative precipitation over Grand Island,
Nebraska between NWS weather station (KGRI) observations and ERA5 for A) 2009,

B) 2011, and C) 2012
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ECOCLIMAP

As demonstrated by Figure 2.2, ECOCLIMAP-II and ECOCLIMAP-SG have
obvious differences in their dominant patch fractions. When concentrated solely
on the agricultural state of Nebraska, a more focused comparison is possible.
Two main crop types by area in Nebraska are corn (maize), and soybeans. Corn
is a C4 crop, while soybeans use the C3 pathway. With this in mind, and with
already having compared corn yields in the state, much of the focus will continue
to be on C4 crops and corn.

Figure A.5 compares the C4 patch fraction between ECOCLIMAP-II
and ECOCLIMAP-SG at 0.25◦ resolution. These maps demonstrate large
and widespread differences between the two ECOCLIMAP databases. While
ECOCLIMAP-II has nearly the entire Eastern half of the domain at nearly
100% C4 fraction, ECOCLIMAP-SG shows a domain with C4 concentrated
closer to the Platte River and Iowa, while also showing an overall reduction in
C4 fraction where it is present.

While Figure A.5 does demonstrate some significant differences, when the
model is run with both ECOCLIMAP databases, the results are very similar.
Figure A.7 shows the same time series as Figure A.2 but with an identical plot
using ECOCLIMAP-II below. The two experiments were run with the same
forcing, observations, and domain, only differing in the ECOCLIMAP version.
As it shows, the model and analysis (blue and red lines respectively) barely
change at all.

A high resolution frequency map of corn land cover over the state of Ne-
braska is shown in Figure A.6. This map is created from the U.S. Department
of Agriculture’s (USDA) crop-specific data layer online tool (USDA, 2021), and
depicts the frequency of corn cover from 2008-2020. Visually comparing this
map to Figure A.5, it is clear that ECOCLIMAP-SG presents a better spa-
tial representation of C4 crops over Nebraska, as the western third portion of
the states does indeed have a significant presence of corn, which is not seen in
ECOCLIMAP-II.
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Figure A.5: Maps of C4 crop fraction over Nebraska between A) ECOCLIMAP-II
and B) ECOCLIMAP-SG at 0.25◦ resolution.
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Figure A.6: A map of corn frequency over Nebraska between 2008 and 2020. The
color categories indicate how many of the last thirteen years the land has had corn

cover. Source: USDA, 2021

Figure A.7: A time series of annual LAI and corn yield anomalies as in Figure A.2
with solid lines representing the experiment run with ECOCLIMAP-SG, and dashed

lines representing the experiment run with ECOCLIMAP-II.

In terms of changes to statistical scores, Table A.2 demonstrates that,
rounded to two significant figures, the only change seen is a slight increase of
corn yield correlation from 0.86 between the SEKF with ECOCLIMAP-II to
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0.87 with ECOCLIMAP-SG. No significant differences are found in the scores
when running the system with either ECOCLIMAP database. This indicates
that while differences certainly exist, and are visually evident when focused on
individual patch types, they play a smaller role in the outcome of model LAI.
Additionally, the spatial and temporal averages of this comparison smooth out
many differences, leading to very similar scores.

Table A.2: Correlation Coefficients between Model and Analysis LAI versus Corn
Yield and LAI observations over Nebraska for two ECOCLIMAP versions. Values
outside parentheses are correlations from runs with ECOCLIMAP-II and values within

parentheses are from runs with ECOCLIMAP-SG.

OL ECOII (OL ECOSG) SEKF ECOII (SEKF ECOSG)
Corn Yield 0.79 (0.79) 0.86 (0.87)

LAI Observations 0.86 (0.86) 0.94 (0.94)

A.2 Summary of Appendix A
• Among these Nebraska experiments are those focusing on the testing of

running LDAS-Monde at higher resolutions, and assessing the benefit’s
gleaned from the more detailed spatial view. The increased resolutions
provide significantly more detail, and can identify topography, urban cen-
ters, and even large individual fields. This sort of capability may be used
in future studies focused on precision agriculture modelling.

• Using the same domain, testing was performed on the LDAS-Monde sys-
tem, complementing and expanding on information presented in the arti-
cle, this assessment of the capability shows that not only does LAI work
well as a indicator tracking annual crop yield anomalies, but the model
and analysis LAI have similarly strong matches. Additionally, a small
assessment of the ERA5 forcing was performed by comparing monthly
precipitation at two locations in Nebraska over three separate years. Fi-
nally, differences between the ECOCLIMAP-II and ECOCLIMAP-SG are
presented, highlighting the differences in spatial distribution of vegetation
types, as well as comparing LAI anomaly outputs when the two versions
are used in otherwise identical LDAS-Monde experiments.
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This appendix provides the same figures for VODC as were shown in Chapter 4
for VODX. At this point in the study, VODCA VODX had been chosen as
the band that was to be linearly re-scaled and assimilated in LDAS-Monde,
however future studies may select different bands. Thus the same analysis was
performed on both VODC and VODX. In this analysis, the differences were
generally minor.

B.1 LAI versus VODC
Deciduous and coniferous vegetation shown potentially the biggest change, with
LAI-VODC correlations for both ECOCLIMAP-II and ECOCLIMAP-SG sig-
nificantly dropping compared to LAI-VODX. Additionally, the "noisiness" of
VODC compared to VODX as seen in the domain comparisons, is still present
when selecting vegetation types.
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Table B.1: Seasonal and total correlations of VODC versus LAI
for ECOCLIMAP-II patches

VODC
ECOII

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.47 0.71 0.68 0.74 0.49
Deciduous -0.06 -0.15 -0.26 -0.33 0.38
Coniferous -0.38 0.23 -0.28 0.14 -0.24
C3 Crops 0.59 0.04 0.36 0.50 0.53
C4 Crops 0.63 0.06 -0.44 0.83 0.74

C3 Grasslands 0.49 0.54 0.57 0.63 0.21
Irrigated
Crops

0.38 0.28 0.44 0.63 0.26

Table B.2: Seasonal and total correlations of VODC versus LAI
for ECOCLIMAP-SG patches

VODC
ECOSG

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.69 0.30 0.71 0.37 0.51
Deciduous 0.22 0.66 0.22 0.67 0.25
Coniferous -0.61 0.12 -0.51 0.01 -0.38
C3 Crops 0.69 0.05 -0.04 0.76 0.54
C4 Crops 0.59 -0.23 -0.23 0.85 0.61

C3 Grasslands 0.44 0.52 0.45 0.55 0.33
Irrigated
Crops

0.16 0.14 0.30 0.12 0.04
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Figure B.1: A heatmap detailing the relationship between LAI and VODC from
VODCA over six dominant vegetation types, Deciduous Forests, Coniferous Forests,
C3 Crops, C4 Crops, C3 Grasslands, and Irrigated Crops. Dominant vegetation is
defined as where 50% or more of the patch contains that single vegetation type. Black
dots represent are where and when both observations of LAI and VODC are present.
Colored dots represent the spatial average over the four seasons, where cyan is Winter,
green is Spring, red is Summer, and yellow is Autumn. Purple dashed lines represent

the linear regression of the seasonal dots.
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Figure B.2: Same as Figure B.1, but using ECOCLIMAP-SG
instead of ECOCLIMAP-II
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B.2 LAI versus Matched VODC
After linear re-scaling, the correlations and density scatter plots strongly re-
semble the LAI-matched VODX results in Chapter 4. The hysteresis pattern
seen primarily in the C3 and C4 crops is still present when looking at matched
VODC instead of matched VODX, indicating that this phenomenon is not VOD
band dependent.

Table B.3: Seasonal and total correlations of Matched VODC
versus LAI for ECOCLIMAP-II patches

Matched VODC
ECOII

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.92 0.79 0.89 0.73 0.90
Deciduous 0.97 0.15 0.93 0.25 0.96
Coniferous 0.96 0.18 0.73 0.67 0.90
C3 Crops 0.93 0.43 0.83 0.60 0.91
C4 Crops 0.94 0.09 0.89 0.89 0.93

C3 Grasslands 0.95 0.56 0.89 0.83 0.92
Irrigated
Crops

0.93 0.66 0.60 0.89 0.87

Table B.4: Seasonal and total correlations of Matched VODC
versus LAI for ECOCLIMAP-SG patches

Matched VODC
ECOSG

Veg Type All Seasons
(575)

Winter
(144)

Spring
(143)

Summer
(144)

Autumn
(144)

All Vegetation 0.95 0.17 0.91 0.33 0.94
Deciduous 0.95 0.66 0.89 0.23 0.95
Coniferous 0.97 0.27 0.82 0.70 0.93
C3 Crops 0.95 0.25 0.74 0.83 0.95
C4 Crops 0.90 0.36 0.46 0.89 0.86

C3 Grasslands 0.96 0.36 0.91 0.70 0.93
Irrigated
Crops

0.81 0.58 0.71 0.58 0.61
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Figure B.3: Same as Figure B.1, but using Matched VOD in-
stead of raw.
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Figure B.4: Same as Figure B.2, but using Matched VOD in-
stead of unmatched.
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C.1 VOD vs LAI Comparison over Subdo-
mains

This appendix plots the relationship between LAI and VOD over the domains
shown in Chapter 2 and Figure 2.10. For each domain, there are two figures,
each with two graphs. The first figure presents LAI versus VODC, while the sec-
ond figure is LAI versus VODX. Panel A of each figure is LAI from observations
in the CGLS dataset plotted against VOD from the VODCA dataset. Panel
B of each figure is LAI from the ISBA LSM (with no data assimilation), us-
ing ECOCLIMAP-SG land surface parameterization plotted against VOD from
VODCA.

California

Over California (or more specifically, the California domain from Figure 2.10),
there is far weaker a relationship between VOD and LAI observations from
CGLS in (Figures C.1 and C.2). For both VODC and VODX, the strength of
the regression is low (correlations of 0.18 for both), primarily caused by a con-
centration of low value LAI observations with more variable VOD observations
seen on the bottom left of Panel A for both Figures C.1 and C.2. While the rest
of the observations at higher LAI and VOD values follow a good slope, they are
heavily outweighed by the far higher concentrations at low values.

Compared to LAI from LDAS-Monde, however, a stronger relationship is
shown, with lower variation at lower VOD and LAI values. Correlations are
0.54 for VODC-LAI ISBA and 0.56 for VODX-LAI ISBA. While the variation
at lower LAI values is lower, there is increased VOD variation at LAI values
higher than 1 m2/m2.

One potential reason for a strong disagreement between LAI observations
and LAI from ISBA is that this California domain contains a large sampling of
rocky and desert regions. These areas would have very low LAI values through-
out the year, but the VOD values would be significantly affected by any precip-
itation.
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Figure C.1: Same as Figure 4.1, but for the California domain.

Figure C.2: Same as Figure 4.2, but for the California domain.

Midwest

The Midwest domain provides a relatively strong relationship between VOD and
LAI from both observations and ISBA, as given in Figure C.3 and Figure C.4.
This Midwest region is comprised of a large amount of agricultural land, mixed
between C3 and C4 crops, as well as containing a fair amount of grasslands.
The northern portions also contain a sizable number of deciduous and coniferous
trees. Correlation scores between VOD and observed LAI are far stronger than
that of California at 0.61 for VODC-LAI obs and 0.72 for VODX-LAI obs. Much
like CONUS, as observed LAI increases over the Midwest, the VOD variation
seems to flatten out. However, the density differences seen in the colors of the
figures show that the VOD-LAI response is still in fact increasing on average.
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The correlations between ISBA LAI and VODC and VODX are also quite
strong (0.70 and 0.76 respectively). The difference between VODC and VODX
is stark in this region, with the noise of higher variation very visible in VODC.

Figure C.3: Same as Figure 4.1, but for the Midwest domain.

Figure C.4: Same as Figure 4.2, but for the Midwest domain.

Northeast

The Northeast region demonstrates a far weaker VOD-LAI relationship in Fig-
ure C.5 and Figure C.6, with very little change in VOD even as LAI values grow
quite large. This response is in some respects the opposite seen in Figures C.1
and C.2 in California when compared to observed LAI from CGLS. In Cali-
fornia, the LAI was concentrated at low values, while the VOD was variable.
Here in the Northeast, the LAI is variable while the VOD concentration is more
or less flat, with the highest concentration of VOD-LAI at high LAI values, in
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contrast to all the other domains. This can be due to the Northeast region’s
high concentration of forests. Even with variable LAI values, the correlation
between observed LAI and VODC is just barely positive at 0.01, and VODX
strongly improves that score at 0.41 due to a more consistent distribution of high
VODX values. The heavy forests also may be the cause of the poor correlations
between observations. Saatchi et al. (2011) demonstrates that L-band satel-
lite radar estimations of above ground biomass (AGB) are strongly impacted
by forest structure, and Mialon et al. (2020) shows poor correlations between
L-band VOD and estimated AGB over heavily forested areas of the Northern
hemisphere. The higher energy wavelengths, such as the C and X-band used
here, penetrate less deeply into the forest canopy, and that lack of penetration
may reduce some variability, but also hides the information of the underlying
vegetation. However, this relatively strong mismatch seems to fall in line with
previous studies on the subject.

Correlations to ISBA LAI increase the correlations of VODC (0.33) and
VODX (0.67). Again, the noise seen in the VODC figure is strongly reduced in
the VODX figure, while VODX still has higher average values. The very visible
artifact of the minimum 1m2/m2 threshold for evergreen forests is seen in Panel
B of both figures, indicating that evergreen forests are strongly represented in
this region from ECOCLIMAP-SG. As the concentration of LAI values is far
higher in the observations from CGLS, this suggests that ECOCLIMAP may
be mischaracterizing the land surface in this region.
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Figure C.5: Same as Figure 4.1, but for the Northeast domain.

Figure C.6: Same as Figure 4.2, but for the Northeast domain.

Southern Plains

The Southern Plains region, with VOD-LAI responses given in Figure C.7 and
Figure C.8, shows weak to moderate strength between observed LAI and VOD.
This Southern Plains region contains a diverse range of vegetation, including
a dry, rocky west and transitioning to a warm, subtropical zone in the east
and on the Gulf of Mexico. The observed LAI-VODC correlation is 0.35, while
the observed LAI-VODX correlation is 0.317. As with other regions, the high
concentration of low LAI values is the driving force of the relationship.

Modeled LAI from ISBA is better correlated to VODC (0.60) and VODX
(0.59). These graphs are characterized by significant densities of LAI values at
the minimum 0.3 m2/m2 threshold, which falls in line with western portions of
this domain marked by dry and low-vegetation conditions. The large range of
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LAI also seems in accordance with what we know of the domain, as the eastern
and coastal regions have far larger LAI values.

Figure C.7: Same as Figure 4.1, but for the Southern Plains
domain.

Figure C.8: Same as Figure 4.2, but for the Southern Plains
domain.

Nebraska

The Nebraska domain shows a moderate strength correlation between LAI obs
from CGLS and VODC (Figure C.9) at 0.52 and a higher correlation between
LAI obs and VODX (Figure C.10) at 0.64. LAI values are generally low,
less than 2 m2/m2, and VOD stays generally flat, or even slightly declines
at higher LAI values. During this growing season, corn, soy, and grasslands are
widespread, which generally agrees with the low LAI observation values.
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When compared with LAI from ISBA, the regression scores remain close to
those with the LAI observations. We do see, however, a larger range of VOD
values at higher LAIs, and a generally higher amount of larger LAI values.
This indicates that ISBA by itself is overestimating LAI with respect to the
observations.

Figure C.9: Same as Figure 4.1, but for the Nebraska domain.

Figure C.10: Same as Figure 4.2, but for the Nebraska domain.
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Appendix D

This appendix analyses the results of the experiments shown in Table 4.6 over
the domains from Chapter 2 and Figure 2.10. The same analysis that is applied
to CONUS is also applied to these subdomains.

D.1 Impact of Assimilating VOD as an LAI
proxy - Subdomains

California

Figure D.1: Same as Figure 4.8, but for California
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Figure D.1 shows the same monthly correlations for A) LAI, B) GPP, C) ET,
and D) SSM, as previously seen for CONUS.

LAI: The month by month correlations of LAI over California show some
similar trends as they were over the whole CONUS domain, but also some ad-
ditional information can be gleaned. For example, during the months of April
to August, the OL has far weaker scores than CONUS, and a similar, but far
less pronounced impact is seen with SEKF LAI and SEKF VODX10 in May.
This may have a similar explanation as seen with GPP over CONUS, where
these months of rapid vegetation change are not well constrained by the model,
and not optimally improved by data assimilation at a 10 day frequency. How-
ever, the California domain contains far less vegetation with seasonal extremes,
and in fact contains a fair amount of desert. Still, for the months of March
through September, SEKF VODX and SEKF VODX_Int perform better than
SEKF LAI and SEKF VODX10, with correlations consistently above 0.9. As
with CONUS, the SEKF VODX10 is consistently, slightly lower in score than
SEKF LAI, meaning the added frequency of SEKF VODX is what is driving
the improvement of these scores.

GPP: Scores compared to GPP estimations show the same pattern, that there
is added value of SEKF VODX over SEKF LAI. For all months except Septem-
ber, the SEKF VODX (and SEKF VODX_Int) outperform all other experi-
ments by a visible margin. A positive note for all experiments assimilating data
is that they consistently outperform the OL against this independent dataset.
Adding to the pile of evidence that show the more frequent assimilation of
VODX better constrains these vegetation variables is that SEKF VODX10 and
SEKF LAI are almost identical throughout the period, where the assimilation
frequencies are exactly the same.

ET: Contrary to the entire CONUS domain, ET scores do show some more
visible differences over California. From the months of June to September,
SEKF VODX shows consistent improvement over SEKF LAI, which in turn is
an improvement over the OL. Like the other variables, SEKF VODX10 being
almost identical to SEKF LAI shows the frequency is the major factor improving
the results. One oddity seen in this Panel C is that the month of November
sees a strong increase in correlations compared to October and December for all
experiments. While unlikely that this is simply a processing error, some more
investigation is needed to explain this nearly sudden 0.3 jump not seen in other
domains.

SSM: Similarly to CONUS, SSM correlations are only distinguishable from
June to September, with SEKF VODX performing the worst, and the OL having
the best scores. As with CONUS, the potential explanation is that all the
control variables are adjusted by the assimilation, and assimilating values as LAI
strongly affects deeper layers of soil moisture. These changes at deeper layers
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come at the price of affecting shallow layers, which are not directly constrained
by assimilation of SSM in these experiments.

Figure D.2: Same as Figure 4.9, but for California

Figure D.2 shows the distributions of correlations over the California domain
for A) LAI, B) GPP, C) ET, and D) SSM and analyzes the OL, SEKF SSM,
SEKF LAI, and SEKF VODX experiments.

LAI: The small bump in concentrations of correlations near zero as seen at the
CONUS scale has increased greatly when looking at California. Both SEKF LAI
and SEKF VODX show a very dramatic increase at and around 0.0 that is not
seen or even hinted at with the OL and SEKF SSM. Figure D.3, which shows the
LAI correlation differences over the whole CONUS domain between OL and A)
SEKF SSM, B) SEKF LAI, and C) SEKF VODX, clearly indicate that very dry
zone in the Southwest US, comprised primarily of southeast California, south
Nevada, and west Arizona has strongly diminished LAI correlations compared
to the OL. In Panel A, the white gridcells are in fact exactly zero correlation
difference. This is due to the filtering of points over 1500m on the ESA SSM. For
those cells, there is no assimilation and thus no difference between it and the OL.
This means that something about the assimilation of matched VODX and/or
LAI observations is not meshing well within the model, and causes spurious
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poor correlations specifically over this region characterized by habitually dry
conditions. As these are compared against the very observations that were
assimilated in SEKF LAI and that were used to match SEKF VODX, it indicates
that the assimilation in the model does not correctly advance this LAI variable
in these conditions, and is in fact pushing LAI values away from the values of
the observations. More investigation is warranted to find the more precise cause
of this mismatch.

While this region of strong degradation is evident in the PDFs by the large
bump at and around zero, we also see more higher scores from SEKF LAI and
SEKF VODX past 0.8. SEKF LAI does outperform SEKF VODX at these
higher correlations. These very localized spikes of degradation (or improve-
ment) are the reason why all the same analyses are done over all the selected
subdomains.

Figure D.3: Maps of differences in correlation between the OL and A) SEKF SSM,
B) SEKF LAI, and C) SEKF VODX.

GPP: Moving on to Panel B, the distribution of scores does trend higher with
the assimilation of SEKF VODX and SEKF LAI. In this case, starting at 0.4,
SEKF VODX consistently outperforms SEKF LAI, as well as the OL and SEKF
SSM. These distributions again agree with the hypothesis that assimilation of
VODX improves the performance of model vegetation compared to independent
datasets.

ET: The distributions of scores compared to ALEXI ET in Panel C are all very
similar for California. At their peak densities, SEKF LAI and SEKF VODX
are slightly lower in correlation than the OL and SEKF, but as the correlations
trend higher, the reverse occurs. All of these differences are very small, and it
is unlikely that these small changes show any significance.

SSM: Finally, coming to Panel D and the distribution of correlations com-
pared to SSM observations. As expected, the assimilation of the very observa-
tions used in the correlations, yields the best scores, with SEKF SSM strongly
outperforming all other experiments. The distributions of the OL, SEKF LAI,
and SEKF VODX are all too close to glean any useful information from over
this domain.
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Midwest

Figure D.4: Same as Figure 4.8, but for the Midwest

The analysis of monthly LAI, GPP, ET, and SSM correlations over the Midwest
region of the United States is shown in Figure D.4.

LAI: While all assimilation scenarios provide better correlations than the OL
at all months, the Midwest region provides the closest scores between SEKF
LAI, SEKF VODX, SEKF VODX10, and SEKF VODX_Int. The months of
March and April, as well as September to December, show SEKF LAI to be
significantly higher than SEKF VODX, while June through August show the
assimilation of VODX to provide moderately improved correlations to the LAI
observations. Curiously, March and April are also the first indication of monthly
scores where SEKF VODX10 is superior to SEKF VODX. While this improve-
ment is only moderate, and coupled with the fact that SEKF LAI has the highest
score in these months, it may indicate that the VOD that is assimilated was
not sufficiently matched to the LAI. And the more frequent assimilation with
SEKF VODX actually tended the model away from the observed LAI values.
The Midwest region is heavily populated with C3 and C4 crops. It is potentially
these C4 crops that could be a root cause, as looking at Figure 4.7 shows Win-
ter months in blue falling heavily outside the overall regression. Spring months
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in green area also weakly correlated. This matches with the March and April
timing of this observed inversion caused by the worsening of correlations by the
more frequent assimilation of VODX. Additionally, a dip in all scores is seen in
the month of June, which was also seen over CONUS.

GPP: The monthly progression of scores against GPP estimates proceeds
like in other domains. SEKF VODX and SEKF VODX_Int provide the highest
correlation scores, improving the most in the Spring and early Summer months.
All assimilation experiments are consistently outperforming the OL, with the
largest difference seen in May and June when the OL scores dip. This may again
be related to the fast evolution of vegetation during these months, which are
not well captured in the model physics, but that the more frequent assimilation
of VODX does improve.

ET: The evolution of monthly ET correlations are very similar, as seen over
CONUS. During June and September, it is the most clear that the OL is the
least correlated, but no clear and significant pattern of which assimilation ex-
periment performs the best is seen. It is also noted that these scores are often
very poor, with February correlations even dropping into the negatives for all
experiments. However, Spring and Summer months improve these values to
moderate correlations.

SSM: Likewise with ET, SSM correlations are nearly identical over the year.
The months of November and December show that the OL slightly outperforms
the other experiments.
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Figure D.5: Same as Figure 4.9, but for the Midwest

Figure D.5 shows, as in CONUS and California domains, the distribution of
correlation scores compared to our satellite derived LSVs.

LAI: Starting with Panel A, LAI, the SEKF LAI and SEKF VODX exper-
iments show a striking, consistent, and strong improvement over the domain.
Unlike California, there is no bump at all around 0, which agrees with the the-
ory that the model vegetation dynamics of specific dry southwest region of the
California, Arizona, and Nevada border is insufficiently represented. The OL
and SEKF SSM distributions show a semi bimodal pattern, with a surge around
0.4, and the main peak around 0.75. SEKF LAI and SEKF VODX show some
small bumps in correlation density around 0.6, and for SEKF LAI, 0.8. The
primary peak density of SEKF VODX is slightly below and at lower correlations
than SEKF LAI, agreeing with previous domains that SEKF LAI compared to
the LAI observations that it used in assimilation outperforms the additionally
processed and assimilated VODX. Yet the SEKF VODX still shows massive
improvement compared to no assimilation.

GPP: As with LAI, GPP also shows a distinct improvement from the assim-
ilation of VODX or LAI, with a very concentrated number of gridcells having
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high correlations. While the OL and SEKF SSM, which are virtually indistin-
guishable and also give a strong performance, the SEKF LAI and SEKF VODX
exclusively shift the correlations to higher values. In this case, SEKF VODX
slightly outperforms SEKF LAI, by having a small amount more pixels at the
highest correlations.

ET: The distributions of ET correlations are also improved following VODX
or LAI assimilation. The number of correlations in the range of 0.4 to 0.5 are
lowered, but scores from 0.55 to 0.65 are generally increased. From 0.6 to 0.7,
it is also seen that SEKF LAI has higher concentrations of scores compared to
SEKF VODX, which are not made up at higher values. Therefore it seems that
for the Midwest region, while both VODX and LAI assimilation improve the
representation of ET, LAI is still a bit better.

SSM: Similarly to previous domains, the Midwest shows a strong, consistent
shift to higher correlations following the assimilation of SEKF SSM. The dy-
namics of the distribution of SEKF VODX and SEKF LAI scores are far closer,
but SEKF VODX shows an overall, albeit slight, increase in correlations over
the domain.
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Northeast

Figure D.6: Same as Figure 4.8, but for the Northeast

Figure D.6 illustrates the seasonal correlation over the Northeast domain as
done for all the previous domains.

LAI: The trends seen in LAI correlations from month to month are similar to
previous domains, with SEKF VODX outperforming SEKF LAI in the months
of June through August, but with SEKF LAI having higher correlations the
rest of the year. Again, similar to previous domains, any assimilation gives
improvement compared to the OL. A different response seen in this Northeast
region is the far larger variability of the monthly correlations. Here, correlations
for the OL in November and December drop into the negatives, while most of
the other experiments for the rest of the year range from 0.2 to 0.8. Other
domains saw strong changes, but the minimum correlations were generally near
0.5 for LAI. This variation, along with the overall lower scores suggest that
this domain is poorly represented in ECOCLIMAP or the model dynamics for
these vegetation types poorly represented in ISBA. Or both. These scores just
suggest a potential problem, but more in depth research is needed to fully assess
the issue and explore possible solutions.
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GPP: GPP over the Northeast, in Panel B, demonstrates the smallest overall
change due to data assimilation that we have seen in any domain yet. Still,
for the months of April to June, the pattern of SEKF VODX and SEKF
VODX_Iint outperforming SEKF LAI and SEKF VODX10 is consistent, and
the latter two equally outperform the OL. During the months of January to
March and October to December, all the assimilation scenarios are relatively
close in score, and all consistently outperform the OL. The Summer months
where SEKF VODX was clearly the superior scenario, add even more evidence
that VODX assimilation improves the representation of vegetation. As with
LAI over the Northeast, GPP correlations are far more variable compared to
other domains, with OL values dropping as low as 0.1 and assimilation experi-
ments dropping to around 0.2 in June. This backs the general hypothesis made
in the LAI section, that the vegetation in this region is systematically poorly
represented. However, the seasonal timing of these poor correlations are not
matched between the two variables, with LAI dropping to the lowest values in
Winter, and GPP in Summer. Still, the far greater variability in scores of this
region warrants more study.

ET: Correlation scores of ET in the Northeast do not indicate any consistent
differences between experiments. While generally very low, and even dropping
to near zero in February, all the scenarios are well within each other’s potential
error.

SSM: Similarly to ET, correlations to SSM observations over the Northeast
show all the experiments being indistinguishable. However, the overall shape of
the monthly correlations is nearly the inverse of that produced over CONUS,
California, the Midwest, and the forthcoming correlations over the Southern
Plains. While, in general, the correlations drop from a peak in February or
March to a trough in August, the Northeast has steady and high correlations
from May to October. This difference is likely caused by the dominant vegeta-
tion, which over the Northeast is forests. It is possible that the heavier forest
foliage contributes to reduce SSM variability compared to more open and lower
vegetation density regions such as agricultural fields during Summer. This re-
duction in variability may lead to ISBA being able to more accurately predict
SSM during these months.
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Figure D.7: Same as Figure 4.9, but for the Northeast

The distribution of individual gridcell correlations for the Northeast region
are given in Figure D.7.

LAI: The OL and SEKF SSM experiments over the Northeast region has a
visibly different distribution of LAI scores compared to CONUS or any sub-
domain. The distribution is close to bimodal, but the highest density of corre-
lations is actually very low, near 0.3. While still overwhelmingly positive, this
region is no doubt one of the weak links of the model representation of LAI, and
as demonstrated by this figure, is greatly improved through data assimilation.
SEKF LAI and SEKF VODX both strongly shift the distribution to higher cor-
relations, but in this case the VODX assimilation actually slightly outperforms
that of the LAI. Obviously it is still important to keep in mind that this com-
parison is more of a benchmark assessing the assimilation performance and not
the improvement to vegetation monitoring.

GPP: And again, GPP observations being an independent measure, can be
better used to gauge vegetation monitoring and any changes associated with
data assimilation. In the case of the Northeast, the shift is strongly towards
higher correlations by both SEKF LAI and SEKF VODX over that of the OL.
Importantly, even though the assimilation does greatly improve the correlation
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distribution to higher values, even the model by itself provides very consistent
high correlations to GPP. This may seem in contrast to the monthly scores
discussed above that demonstrated higher variation. But with this distribution
we can surmise that it is the seasonality that is likely the cause. The scores in
this distribution are calculated from the first day in the time frame to the last,
whereas the monthly correlations do not capture the inter-seasonal and even
inter-annual trends. These inter-annual trends are likely to increase the overall
correlation score.

ET: The PDF of ET correlation scores in Panel C is clearly bimodal for all
experiments. While there are some changes between the assimilation scenarios,
it is hard to say which are definitively improving, if any. As the SEKF SSM and
SEKF VODX show higher densities of correlations from 0.4 to 0.5, the SEKF
LAI shows higher densities at 0.6. A more precise calculation would be required
to demonstrate significant improvement or degradation.

SSM: As seen with every other domain, the distribution of SSM correlations
is consistently improved by SEKF SSM. The OL, SEKF LAI, and SEKF VODX
are all nearly indistinguishable from one another over this Northeast domain.
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Southern Plains

Figure D.8: Same as Figure 4.8, but for the Southern Plains

In Figure D.8, monthly correlations against the four LSVs of interest are dis-
played for the Southern Plains domain.

LAI: The Southern Plains regions shows much the same month to month LAI
correlations as the overall CONUS domain. All assimilation scenarios strongly
improve against the OL, and the months of May to September are characterized
by the SEKF VODX and SEKF VODX_Int establishing the highest scores. As
mentioned previously, this improvement in the Summer months may be directly
linked to the faster evolution of vegetation being better captured with the more
frequent VODX assimilation. In contrast to other domains, the months of
January through March have a stronger difference between SEKF LAI and
SEKF VODX.

GPP: Regarding GPP scores, the Southern Plains seem to be the only region
that has several continuous months where the SEKF VODX performs the worst
of all the experiments, including the OL. December through February all show
lower correlations, with SEKF LAI having the highest during the same time.
The differences are still relatively minor, around 0.05. This same time also sees
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the SEKF VOD10 performing better than the more frequent assimilation of the
same base data. This indicates that something about the matched VOD moving
the analysis in the wrong direction, and it must be linked to the differences
between LAI and matched VOD. This Southern Plains domain contains dry
conditions in the western and southern extents and the evolution of vegetation
over these regions in Winter may give clues as to why the matched VODX
proves less adequate. More investigation into this specific dynamic would be
required.

ET: With ET correlations in Panel C, there are some noticeable differences
between experiments. Most notably, the SEKF VODX and SEKF VODX_Int
show small, yet consistent improvements compared to SEKF LAI, SEKF
VODX10, and the OL during the months of May to August. SEKF LAI and
SEKF VODX10 also demonstrate slightly improved scores compared to the OL
during this period, but still come short of the SEKF VODX.

SSM: And for the last variable, monthly SSM correlations are mostly inter-
twined, but it can be seen that the OL is very slightly outperformed by all the
assimilation experiments in the months of May to October.

Figure D.9: Same as Figure 4.9, but for the Southern Plains
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Lastly for this section, Figure D.9 provides the distribution of correlations
for the LSVs over the Southern Plains.

LAI: The distribution of LAI correlations for the SEKF LAI and SEKF
VODX experiments show a small similarity to that of California, seen in Fig-
ure D.2, with a noticeable increase of scores around zero. Looking again at
Figure D.3, this discrepancy can be explained in the same way. LAI correla-
tions in northern New Mexico as well as along the Texas-Mexico border, show
strong degradation between the experiments assimilating LAI or VODX and
the OL. This same degradation is not seen between SEKF SSM and the OL.
The rest of this Southern Plains region sees a strongly improved correlation
distribution after LAI or VODX assimilation, and in this case, the assimilation
of LAI seems to slightly outperform the assimilation of VODX.

GPP: Panel B, regarding GPP scores, gives potentially the most straightfor-
ward example of simply improved scores from the assimilation of SEKF VODX.
While the OL and SEKF SSM distribution peaks at around 0.65, SEKF LAI
and SEKF VODX are shifted to about 0.75, but SEKF VODX demonstrates a
remarkably consistent displacement towards higher correlations even over SEKF
LAI. Along with all the other evidence, this panel successfully encapsulates the
advantage to vegetation monitoring by assimilating VOD as an LAI proxy.

ET: While the distributions of ET scores are all very similar, one can clearly
say that SEKF LAI and SEKF VODX do outperform that of the OL and SEKF
SSM. The differences are relatively small, yet consistent from the buildup to
higher density, as well as the decline, as those two experiments steadily shift
the distributions of correlations slightly higher.

SSM: Much the same as the other domains, SSM correlation distributions are
heavily and positively shifted via the assimilation of SSM. There is also a weak,
but again persistent shift towards higher correlations from the SEKF LAI and
SEKF VODX, although it is too close to determine which of the two performs
better.

D.2 Impact of Jointly Assimilating Vegetation
Variables and SSM - Subdomains

The same graphs as analyzed for the individual assimilation of observations
are presented for the joint assimilation, and for all the subdomains, shown in
Figure D.10, Figure D.11, Figure D.12, and Figure D.13. For all the subdo-
mains, the changes in LAI correlations are small or non-existent between the
single and joint assimilation experiments. And equally, for all the subdomains,
the correlations to SSM observations greatly increase when jointly assimilating
vegetation and SSM.
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The responses of GPP and ET, however, are variable. Over California,
there is virtually no difference in GPP correlations, while ET scores are actually
degraded over the months of June and July caused by assimilating SSM with
vegetation. Over the Midwest, we see the strongest responses of GPP and ET
scores to the joint assimilation, improving both over July and August, albeit
very slightly. The Northeast region displays no GPP score changes, and a small
degradation of scores in July and September. Finally, the Southern Plains shows
virtually no changes to either ET or GPP from jointly assimilating LAI or VOD
plus SSM.

PDFs visualizing the distributions of the scores also showed no meaningful
change over vegetation LSVs due to joint assimilation. These results clearly
indicate that the assimilation of SSM, alone or jointly, is far less powerful in
changing vegetation related LSVs. Over the entire CONUS domain, there is
some small direct evidence indicating added value for GPP and ET variables
from joint vegetation and soil moisture assimilation. Localized responses are
far more variable. In conjunction with the results from the USCRN analysis,
joint assimilation does overall show to provide more value than single vegetation
assimilation, and very few drawbacks.

Figure D.10: Same as Figure 4.15, but over the California domain.
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Figure D.11: Same as Figure 4.15, but over the Midwest domain.

Figure D.12: Same as Figure 4.15, but over the Northeast domain.
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Figure D.13: Same as Figure 4.15, but over the Southern Plains domain.
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