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There is a great deal of debate on the extent, causes and even the reality of 

land degradation in the Sahel. On one hand, extrapolations from field-scale studies 

suggest widespread and serious reductions in biological productivity threatning the 

livelihoods of many communities.  On the other hand, coarse resolution remote 

sensing studies consistently reveal a net increase in vegetation production exceeding 

that expected from the recovery of rainfall following the extreme droughts of the 

1970s and 1980s, thus challenging the notion of widespread, subcontinental-scale 

degradation.  Yet, the spatial variations in the rates of vegetation recovery are not 

fully explained by rainfall trends which suggest additional causative factors.  In this 

dissertation, it is hypothesized that in addition to rainfall other climatic variables and 

anthropogenic uses of the land have had measurable impacts on vegetation 

production.  It was found that over most of the Sahel, the interannual variability in 



  

growing season ΣNDVI (used as a proxy of vegetation productivity) was strongly 

related to rainfall, humidity and temperature while the relationship with rainfall alone 

was generally weaker.  The climate- ΣNDVI relationships were used to predict 

potential ΣNDVI; that is the ΣNDVI expected in response to climate variability alone 

excluding any human-induced changes in productivity.  The differences between 

predicted and observed ΣNDVI were regressed against time to detect any long term 

(positive or negative) trends in vegetation productivity.   

It was found that over most of the Sahel the trends either exceeded or did not 

significantly depart from what is expected from the trends in climate.  However, 

substantial and spatially contiguous areas (~8% of the total area of the Sahel) were 

characterized by significant negative trends. To test whether the negative trends were 

in fact human-induced, they were compared with the available data on population 

density, land use pressures and land biophysical properties that determine the 

susceptibility of land to degradation.  It was found that the spatial variations in the 

trends of the residuals were not only well explained by the multiplicity of land use 

pressures but also by the geography of soil properties and percentage tree cover. 
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Chapter 1: Introduction 

1.1 Background 

Drylands encompass all lands where the climate is classified as arid, semi-arid 

and dry sub-humid
1
 (UNEP 1992; UNEP 1997; Adeel et al. 2005).  Global drylands 

are home to some 2 billion people and cover about 40% of Earth’s land surface 

(Safriel et al. 2005; Safriel 2007a) with a total carbon pool of approximately 1420 

gigatons (Gt) that is almost twice the size of the atmospheric pool (Lal 2004).  Land 

degradation is considered as one of the major environmental problems in drylands 

(UNCED 1992; UNCCD 1994; Reynolds et al. 2007a).  The livelihoods of some 250 

million people are believed to be directly affected, a figure that is likely to increase 

substantially in the face of population growth and climate change (Reynolds et al. 

2007b).  In addition to its threat to human well-being, land degradation reduces 

carbon sequestration and organic soil carbon deposition (Falkowski et al. 2000; 

Prince 2002), disrupts the surface water balance (Balling et al. 1998; Taylor et al. 

2002), increases atmospheric dust concentration (Prospero &  Lamb 2003), reduces 

biodiversity (Maestre et al. 2012), and may intensify and prolong drought episodes 

through vegetation-climate feedbacks (Charney 1975; Clark et al. 2001; Taylor et al. 

2002; Giannini et al. 2003). 

The term “land degradation” has many definitions and several authors have 

provided useful compendiums (Mainguet 1991; Thomas &  Middleton 1994; 

Reynolds 2001). It is generally agreed that land degradation implies long-term 

                                                 
1
 Arid (0.05≥ Precipitation(P)/Potential evapotranspiration (PET)<0.20, ≤75 growing days/yr),  semi-

arid (0.20≤ P/PET<0.50, 75≤ growing days/yr<120), and dry sub-humid (0.50≤ P/PET<0.65, 120≤ 

growing days/yr<180). 
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reductions in the biological productivity of the land resulting from one or a 

combination of processes including reductions in vegetation productivity and cover, 

soil degradation and changes in species composition.  The term “land” has been 

defined by the United Nations Convention to Combat Desertification (UNCCD) as 

“the terrestrial bio-productive system that comprises soil, vegetation, other biota, and 

the ecological and hydrological processes that operate within the system” (UNCCD 

1994).   

Despite its acknowledged importance, the nature and causes of land 

degradation have remained stubbornly intractable (Thomas &  Middleton 1994; 

Reynolds et al. 2002; Nicholson 2011a).  This has been more evident in the Sahel 

region of Africa than in any other part of the world where divergent assessments have 

led to more disagreement and controversy than consensus (Helldén 1991; Nicholson 

et al. 1998).  Much of the controversy, it is generally agreed, have resulted from 

unwarranted extrapolations from limited data or subjective “expert” opinions, from 

the lack of a consensus definition, and from the confusion between climate-induced 

short-term ecosystem dynamics (e.g. short-term response to periodic droughts) and 

land degradation -(a long-term response resulting from chronic and severe 

disturbances) - (Prince et al. 1998; Reynolds 2001; Batterbury et al. 2002; Prince 

2002). 

Prince (2002) strongly makes the case for quantitative assessment of land 

degradation through remote sensing.  He argues that vegetation production which can 

be reliably measured form space is particularly useful since low productivity is at the 

heart of many land degradation definitions.  In this dissertation remotely sensed data 
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were used to develop indicators of land degradation that can detect long-term 

reductions in vegetation production that cannot be explained by climate variability.  

Areas identified as degraded were compared to data on land use pressures to identify 

the human factors that might have caused degradation. 

The human population of the Sahel is rapidly increasing (UN 2011).  Pressure 

on the land is likely to increase accordingly (Barbier 2000; Reardon et al. 2001) and 

perhaps the extent and severity of land degradation.  There is a pressing need for an 

objective and spatially explicit measure of land degradation and for an assessment of 

its linkages, if any, to human uses of the land (Batterbury et al. 2002; Dregne 2002; 

Safriel 2007b).  The tragic shortage of data on human-induced land degradation is 

believed to have contributed to the failure of most interventions to reverse 

degradation and has brought about a policy dilemma on how to minimize further 

deterioration (Batterbury et al. 2002; Mortimore &  Harris 2005). 

1.2 Study area 

The term “Sahel” is often applied to the general region extending across the 

east-west extent of Africa and between the latitudes of roughly 10°N and 18°N 

(figure 1.1).  The region includes the Sahelian, Sudano-Sahelian, Sudanian and parts 

of the Guinean eco-climatic zones (White 1983) and is characterized by a steep north-

south gradient in mean annual rainfall (Le Houérou 1980b). Vegetation cover in the 

northern Sahel consists of shrubs interspersed between annual and perennial grasses, 

and further south by grasslands and deciduous, open savanna woodlands, with woody 

cover only locally exceeding 5%.  The Sudanian zone is dominated by deciduous 

shrublands with sparse trees, and further south by deciduous woodlands with grass 
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understory.  Finally, the Guinean zone is dominated by semi-deciduous closed 

woodlands and evergreen forests (Le Houérou 1980b; White 1983). 

 

Figure 1.1 Dryland systems of the study area and the extent of the Sahel region. 

Most of the Sahelian rainfall occurs during the northern hemisphere summer 

and is linked to periodic northwards excursions of the West African monsoon (Lebel 

et al. 2003; Dieng et al. 2008; Nicholson 2013).  The onset of the monsoon proceeds 

slowly and is characterized by a succession of active and inactive phases (Lebel et al. 

2003; Dieng et al. 2008).  The initial wet spell in the northern Sahel does not usually 

produce significant rains.  It is only when the Intertropical Convergence Zone (ITCZ) 

abruptly shifts from 5ᵒN to 10ᵒN that significant rain is rapidly observed over the 

Sahelian ecoclimatic zone (Sultan &  Janicot 2000b; Lebel et al. 2003; Sultan &  

Janicot 2003).  The mean onset date of the wet season in the Sahelian zone is the 24
th

 

of June with a standard deviation of 8 to 10 days (Sultan &  Janicot 2000a; Sultan &  

Janicot 2003; Dalu et al. 2009) and most rains fall between mid-July and September 

(Lebel et al. 2003).  On average, the length of the wet season increases from about 50 

days in northern Sahel at 18ᵒN to roughly 8 months in the coastal Guinean zone at 

10ᵒN (Zhang et al. 2005). Compared to the onset phase, the withdrawal phase is 
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relatively abrupt and rather uniformly distributed throughout the entire monsoon 

region (Nicholson 2013).  The vegetation cycle closely responds to the seasonality in 

rainfall, with virtually all biomass production taking place in the wet summer months 

(Tucker et al. 1991; Tucker &  Nicholson 1999; Herrmann et al. 2005a; Zhang et al. 

2005). 

During the last few decades, two sequences of extremely dry years in 1972-

1973 and again in 1983-1984 struck the Sahel and were part of a longer drought that 

lasted from the end of the 1960s to the mid-1990s (Nicholson 2001; Le Barbé et al. 

2002) (figure 1.2).  This unusual dry spell was not limited to the Sahel but extended 

to regions more to the south as well (Le Barbé et al. 2002).  The total number of 

rainfall events during the drought also decreased thus increasing the probability of dry 

spells during the rainy season (Le Barbé et al. 2002).  Since 1994, annual rainfall 

totals somewhat recovered and varied around the mean of the standard climatological 

period of 1931-1960 (Nicholson 2001; Hiernaux et al. 2009b).  These fluctuations in 

rainfall at intra-annual, interannual and decadal time scales made the Sahelian region 

of Africa the most dramatic example of climate variation that has been directly 

measured (Hulme 2001).  The Sahel therefore provides (1) a valuable natural 

experiment on the effects of climatic variations on vegetation production and (2) a 

testing bed of indicators that attempt to differentiate climate-induced short-term 

ecosystem dynamics from land degradation. 
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Figure 1.2 Wet season (June through October) Sahel precipitation anomalies (1930-

2006).  Data are from the National Oceanic and Atmospheric Administration 

(NOAA) National Climatic Data Center (NCDC). 

1.3 The controversy surrounding land degradation in the Sahel 

The Sahel region of Africa is supposed to be one of the world’s most affected 

areas by degradation (Oldeman et al. 1990; Le Houérou 1992; UNEP 1992).  During 

the last few decades, high population growth rates in the Sahelian and Sudanian 

ecoclimatic zones (collectively referred to here as the “Sahel”, figure 1) have been 

accompanied with cropland expansion and with an increase in livestock numbers 

(Vierich &  Stoop 1990; Ramaswamy &  Sanders 1992; van de Koppel et al. 1997; 

Lambin et al. 2003; FAO 2011).  These changes in the Sudano-Sahelian agricultural 

and pastoral regions coincided with the Sahelian drought (late-1960s to the mid-

1990s) (Nicholson 2001; Le Barbé et al. 2002).  Commensurate with these changes in 

land use and with the drought were catastrophic reductions in crop yields and 

rangeland carrying capacity (Nicholson 1978; Lamb 1983; Hiernaux et al. 2009b).  
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The resulting famines of the 1970s and 1980s plus anecdotal accounts of progressive 

southwards march of the Sahara desert (Norman 1987; Lamprey 1988) led to the 

widely accepted narrative that population growth drives cropland expansion, 

overgrazing and infrastructure extension and that these changes in land use have 

resulted in widespread land degradation (e.g. Le Houérou 1996; Le Houérou 2002).  

Furthermore, Charney (1975) controversially suggested that overgrazing and land 

degradation may have even been the cause of the extreme droughts of the 1970s 

through positive feedback between rainfall and surface albedo.  Faced with what has 

seemed at the time as a new and sinister problem threatening human well-being, the 

United Nations agencies initiated programs to combat land degradation despite the 

lack of substantiated information on its location, severity and causes (Prince 2002). 

Following the 1974 drought, various attempts have been made to inventory 

land degradation and to provide a baseline for monitoring (Dregne 1977; Dregne 

1983; Oldeman et al. 1990; Dregne &  Chou 1992; Lepers 2003).  Yet, the paucity of 

data on land degradation and the lack of any readily measured, objective indicators 

have inhibited progress (Prince 2002).  Estimates of the extent of land degradation 

have ranged between 4% and 60% of the total area of the Sahel.  Nevertheless, the 

figure of 60% degradation drawn from the Global Assessment of Soil Degradation 

(GLASOD; Oldeman et al. 1990) has been cited more often than the others (Safriel 

2007a). The GLASOD study drew its estimates from judgment by regional soil 

experts.  While subjective in its approach, it was based on more rigorous and 

consistent set of guidelines than previous assessments (Prince 2002).  In addition to 

mapping the extent and severity of soil degradation, the GLASOD study included an 
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assessment of the human activities responsible for degradation.  Its findings 

reinforced the preconceived narrative that overgrazing, cropland expansion and 

excessive fuel wood collection have caused widespread degradation. 

Agronomists, geographers and development economists have tried to explain 

the findings of widespread degradation. Vierich and Stoop (1990) argued that drought 

reduced agricultural yields while rapid population growth increased demand for food.  

The widening gap between food supply and demand drove the vast majority of 

farmers to shorten fallow periods and to expand cultivation onto marginal lands thus 

increasing the risks of soil fertility depletion, erosion and crusting (Vierich &  Stoop 

1990; Vlek 1990; Swift et al. 1994; Bationo et al. 1998; Drechsel et al. 2001).  

Reardon et al. (2001) contended that capital deficiencies, the elimination of fertilizer 

subsidies, and poor accessibility to markets hampered the adjustments of farming 

methods posited by Boserup’s (1965, 2005) theory of agricultural intensification that 

are necessary to counteract the threat of degradation.  Reardon et al. (2001) view 

paralleled that of other economists (e.g. Breman 1997; Barbier 2000) and geographers 

(e.g. Webber 1996; Drechsel et al. 2001) who further argued that once degraded, 

agricultural lands were often abandoned and new lands were brought into production 

resulting in a perpetuating cycle of agricultural extensification and land degradation.  

Agricultural extensification is also believed to have contributed, at least in part, to 

rangeland degradation (van Keulen &  Breman 1990; van de Koppel et al. 1997; 

Barbier 2000).  In the Sahel, it was hypothesized that arable lands expanded at the 

expense of pastures consequentially increasing livestock densities in areas remaining 

accessible to pastoralists.  In these rangelands, over-stocking is thought to have 
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perturbed vegetation cover sufficiently to expose soils to wind and water erosion as 

well as to crusting and compaction by animal trampling (Le Houérou 1980a; Olsson 

&  Rapp 1991; Le Houérou 1996). 

The evidence supporting many of the aforementioned arguments is, however, 

surprisingly slim (Turner et al. 1993).  On one hand, the thesis that Sahelian 

agriculture tends to be mainly extensive and degrading has been found to be in 

discordance with crop yield data recorded between the 1960s and late 1990s (Hellden 

1991; Breman 1998; Harris 1998; Niemeijer &  Mazzucato 2002; Mortimore &  

Harris 2005).  On the other hand, claims of widespread rangeland degradation 

through overgrazing run counter to long term increases in livestock populations 

(Sullivan &  Rohde 2002; Mortimore &  Turner 2005).  Extensive studies in the 

Sudan (Olsson 1985; Ahlcrona 1988; Helldén 1991) have also demonstrated that 

earlier reports of serious human-induced land degradation (e.g. Hammer-Digernes 

1977; Baumer &  Tahara 1979) were rather misinterpretations of natural ecological 

adjustments to climatic fluctuations.  They demonstrated that while droughts have 

reduced vegetation cover and agricultural yields, the return of more favorable climatic 

conditions has been accompanied with full recovery of land productivity, suggesting 

that there has been no degradation.  Similarly, analysis of satellite data from 1982-

onwards has revealed a consistent trend of vegetation recovery from the extreme 

droughts of the 1970s and early 1980s (Tucker &  Nicholson 1999; Eklundh &  

Olsson 2003; Herrmann et al. 2005a; Olsson et al. 2005; Heumann et al. 2007a; 

Fensholt &  Rasmussen 2011), suggesting that the perceived widespread degradation 

in the Sahel can be largely attributed to climate variability and not to irreversible 
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changes in land productivity (Prince et al. 1998; Herrmann et al. 2005a; Fensholt &  

Rasmussen 2011).  Furthermore, interannual variations in agricultural yields per unit 

cultivated area in Burkina Faso and Nigeria; two countries identified by the GLASOD 

study as the most degraded in the Sahel; have been found to be strongly related to 

rainfall variability (Niemeijer &  Mazzucato 2002).  In fact, in these countries 

agricultural yields per unit rainfall have increased since the mid-1960s (Niemeijer &  

Mazzucato 2002; Mortimore &  Harris 2005) raising the possibility that the extent 

and magnitude of adverse changes in soil properties reported by regional studies 

(Oldeman et al. 1990; Stoorvogel &  Smaling 1990; Some et al. 1992) have been 

grossly overestimated (Niemeijer &  Mazzucato 2002). 

Other accepted tenets of human-induced land degradation have also been 

challenged.  Studies in the Western Sahel have shown that the capability or 

willingness of farmers to invest in sustainable farming methods have been 

underestimated (de Ridder et al. 2004) and that the expansion of agriculture onto 

marginal lands did not necessarily result in degradation mainly due to investments in 

soil and water conservation measures and to the emergence of mixed livestock-

farming systems (e.g. Tiffen et al. 1994; Adams &  Mortimore 1997; Mazzucato &  

Niemeijer 2000; Mortimore &  Harris 2005; Mortimore &  Turner 2005).   

None of these studies however claim that land degradation has not occurred in 

the Sahel.  There are several well documented cases of local degradation resulting 

from the excessive utilization of the land with respect to its resilience (Geist &  

Lambin 2004) but the premise that regional degradation can be characterized using 

extrapolations from limited local scale data (e.g. Somé et al. 1992; Stoorvogel & 
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Smaling 1990; Le Houérou 1996) or by upscaling of local “expert” opinions (e.g. 

Oldeman et al. 1990) are unwarranted and lack a certain objective rigor (Thomas &  

Middleton 1994; Prince et al. 1998; Stocking 2001; Batterbury et al. 2002; Koning &  

Smaling 2005; Mortimore &  Turner 2005). 

Several measurable indicators have been proposed to monitor land 

degradation such as: accelerated soil erosion rates (Stroosnijder 2007); deteriorating 

soil fertility (Batterbury et al. 2002); and long-term and irreversible reductions in 

vegetation cover or production efficiency (Nicholson et al. 1998; Prince et al. 1998; 

Batterbury et al. 2002; Prince 2002).  However, soil measurements in the Sahel 

remain few and far between (Niemeijer &  Mazzucato 2002; Fleitmann et al. 2007).  

Alternatively, long term and spatially contiguous changes in vegetation cover and its 

production, which are inherently linked to the major processes that lead to 

degradation (Prince 2002; Safriel 2007a; Nicholson 2011a), can be monitored using 

repeated satellite observations (e.g. Prince &  Goward 1995; Myneni et al. 2002; 

Hansen et al. 2003; Running et al. 2004) and maybe able to answer some of the 

questions raised above. 

1.4 Temporal scales for the detection of land degradation 

It is generally agreed that human-induced land degradation is a long term 

process set in motion by inappropriate intensity or type of land use (Prince 2002; 

Wessels et al. 2007; Nicholson 2011a).  Land uses which disturb vegetation cover 

and function may lead to the deterioration of the edaphic factors that contribute to 

plant growth (Schlesinger et al. 1990; Le Houérou 1992; Le Houérou 2002; Prince 

2002). If so, the vegetation may transition to a new and less-productive vegetation 
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domain (Jeltsch et al. 1997; Prince 2002).  As the degradation process proceeds, 

several transition domains may exist resulting in progressive and long term reductions 

in production efficiency (Jeltsch et al. 1997; Prince 2002; Nicholson 2011a); a 

concept that is embodied is state-and-transition models (Briske et al. 2005).  The 

occurrence and severity of land degradation depend on the intensity of disturbances 

and the intrinsic characteristics of the soil, meteorological conditions, topography and 

post-disturbance land management (Lal et al. 1997; Eswaran et al. 2001).  However, 

if land use intensity is reduced and vegetation recovers then there has been no 

degradation in the sense used here (Prince 2002).  The time scale of post-disturbance 

vegetation recovery in the absence of soil degradation varies between biomes but 

field observations (Valone et al. 2002; Valone &  Sauter 2005) and modeling studies 

(Wiegand &  Milton 1996; Jeltsch et al. 1997; Weber et al. 2000) suggest time scales 

greater than 20 years.  Therefore the time scales of observation necessary for 

monitoring land degradation should be greater than the normal sequence of vegetation 

recovery and the sequence of cultural practices such as periodic fallow and stocking 

rate cycles (Prince 2002). 

1.5 Remote sensing of vegetation production 

The Advanced Very High Resolution Radiometer (AVHRR/2 and /3) 

instruments carried on NOAA's Polar-orbiting Operational Environmental Satellites 

(POES) have been providing global daily measurements since 1981 (Robel et al. 

2009).  The Normalized Difference Vegetation Index (NDVI) calculated from the 

AVHRR red and NIR spectral bands have been found to have a strong linear 

relationship with the fraction of photosynthetic active radiation absorbed by 
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vegetation canopy (fPAR) (Monteith 1972; Fuchs et al. 1984; Goward &  Dye 1987; 

Sellers 1987; Goward &  Huemmrich 1992; Myneni &  Williams 1994; Sellers et al. 

1997; Fensholt et al. 2006) and with maximum (i.e. unstressed) canopy 

photosynthetic uptake (Schloss et al. 1999; Merbold et al. 2009).  This relationship 

has been exploited in light use efficiency (LUE) models to estimate Net Primary 

Production (NPP).  The models require, in addition to fPAR, incident PAR and 

measurements of the principal environmental stress factors, such as soil moisture, 

temperature and humidity. This approach (Prince &  Goward 1995) has been adopted 

using the Moderate Resolution Imaging Spectroradiometer (MODIS) data as an 

operational, global productivity monitoring system (Running et al. 2004).   

However, in arid and semi-arid areas, growing season sums of NDVI 

(ΣNDVI) alone, without the other components of a LUE model demanded by theory, 

have been found to be strongly related to NPP (Prince 1991; Rasmussen 1998; 

Seaquist et al. 2003) and above ground biomass measurements (Prince &  Astle 1986; 

Prince &  Tucker 1986; Fensholt et al. 2006).  The reason for this is that the 

environmental stressors (e.g. acute water stress, intra-seasonal drought, land 

degradation) that limit photosynthetic canopy uptake generally induce changes in leaf 

display and hence in fPAR and NDVI (Gamon et al. 1995; Wessels 2005).  Similar to 

many earlier studies in drylands(e.g. Nicholson et al. 1990; Nicholson et al. 1998; 

Prince et al. 1998; Herrmann et al. 2005b; Olsson et al. 2005; Camberlin et al. 2007; 

Helldén &  Tottrup 2008), growing season sums of NDVI will be used in this study as 

a proxy of vegetation productivity. 



  

 14 

 

1.6 Monitoring land degradation with satellite remotely sensed data 

A number of studies have demonstrated the utility of long term NDVI datasets 

to detect and monitor human-induced land degradation (e.g. Pickup &  Chewings 

1994; Geerken &  Ilaiwi 2004; Li et al. 2004; Wessels et al. 2007).  These studies 

have shown that in areas where vegetation production is tightly coupled to seasonal 

precipitation, human-induced land degradation results in negative temporal trends in 

vegetation production per unit rainfall.  For example, Wessels et al. (2007) and Prince 

et al. (2009) found that in contrast to the non-degraded commercial areas, the 

excessively utilized and degraded communal areas in Zimbabwe and South Africa 

exhibited negative temporal trends in the ΣNDVI-rainfall relationship.  Similar 

findings have been reported in the Syrian Steppe (Geerken &  Ilaiwi 2004; Hirata et 

al. 2005), Australian drylands (Pickup &  Chewings 1994) and in the Sahel 

(Herrmann et al. 2005).  Nevertheless, precipitation is not the only factor that controls 

production and poor relations have been reported in the Sahel (Goward &  Prince 

1995a; Tracol et al. 2006; Williams et al. 2008; Hiernaux et al. 2009b; Hiernaux et 

al. 2009c; Fensholt &  Rasmussen 2011) and elsewhere (Fuller &  Prince 1996; 

Knapp &  Smith 2001; Reynolds et al. 2004b).  In areas where rainfall is not the only 

climatic factor limiting plant growth, negative temporal trends in vegetation 

production per unit rainfall do not necessarily indicate land degradation (Fensholt &  

Rasmussen 2011). 

Several factors may influence the rainfall-production relationship in drylands. 

Nicholson et al. (1990), Fuller &  Prince (1996) and Potts et al. (2006), for example, 

found positive feedbacks between vegetation production and antecedent rainfall at 
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monthly and interannual timescales. These feedbacks are sometimes likened to a 

“memory” in land surface processes (Goward &  Prince 1995b; Prince &  Goward 

2000; Wiegand et al. 2004) and can arise from purely physical reasons, such as soil 

moisture carried over from antecedent rainfall (Goward &  Prince 1995a; Fuller &  

Prince 1996) or can result from inter-annual carryover of soil nutrients and seed 

banks (Lauenroth &  Sala 1992; Nouvellon et al. 2001; Oesterheld et al. 2001).  Such 

relations, however, are complex and feedbacks are not found in all climatic vegetation 

types (Fuller &  Prince 1996; Grist et al. 1997).  For instance,  Reynolds et al. 

(2004a) and Knapp et al. (2008) argue that, in most ecosystems, growing-season 

precipitation should have the most direct impact on vegetation production.  On one 

hand, a large portion of Sahelian precipitation falling at the beginning of the wet 

season may be lost to evaporation before it can be used for photosynthesis (Huxman 

et al. 2004) and, while early season precipitation event(s) may trigger germination of 

annual plants, seedling development and culm elongation are aborted unless 

subsequent rain events allow seedlings to survive and grow (Elberse &  Breman 

1989; Elberse &  Breman 1990; Huxman et al. 2004; Hiernaux et al. 2009c).  On the 

other hand, precipitation falling after fructification is not used for production by most 

annuals (Hiernaux et al. 2009c) and, while leaves of trees and some shrubs developed 

early in the growing season are usually retained until late in the season, they typically 

have lower photosynthetic capacity than younger leaves (Chabot &  Hicks 1982).   

The frequency and intensity of precipitation events can also influence 

vegetation production (Noy-Meir 1973; Sala &  Lauenroth 1982; Prince et al. 1998; 

Wainwright et al. 1999; Jobbagy &  Sala 2000; Paruelo et al. 2000; Knapp &  Smith 
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2001; Knapp et al. 2002; Reynolds et al. 2004b; Schwinning &  Sala 2004; Knapp et 

al. 2008; Williams et al. 2008; Heisler-White et al. 2009; Robertson et al. 2009) 

either by altering soil moisture levels (Lebel et al. 2003; Knapp et al. 2008; Good &  

Caylor 2011) or nutrient availability (Belnap et al. 2005) or both.  A number of field 

experiments in North American grasslands and shrublands have demonstrated the 

sensitivity of vegetation production to an intensified precipitation regime (Jobbagy &  

Sala 2000; Paruelo et al. 2000; Knapp &  Smith 2001; Knapp et al. 2002; Heisler-

White et al. 2009; Robertson et al. 2009).  For the same amount of total rainfall, 

vegetation production in dry biomes have been found to respond positively to more 

intense and less frequent precipitation events, whereas in the wetter biomes 

vegetation production have been found to decrease in response to an intensified 

precipitation regime (Knapp &  Smith 2001; Knapp et al. 2002; Heisler-White et al. 

2009).  Modeling studies suggest that this asymmetrical response to precipitation 

regimes is mainly due to differences between biomes in the proportional losses of 

precipitation to evaporation and runoff (Reynolds et al. 2004b; Knapp et al. 2008). 

In addition to the timing, frequency and intensity of precipitation events, air 

humidity and temperature can also affect vegetation production either directly by 

influencing stomatal conductance and photosynthetic reaction rates (Collatz et al. 

1991; Collatz et al. 1992; Reichstein et al. 2007; Williams et al. 2008) or indirectly 

by altering soil evaporative demands (Xue et al. 1991a; Reichstein et al. 2007).  By 

analyzing eddy-covariance measurements across a range of vegetation types and 

climate zones in Africa, Merbold et al. (2009) found strong relations between net 

photosynthetic accumulation by C3-plants and vapor pressure deficit but these 
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relations were poor to non-existent at the C4-plant dominated sites.  These and land 

surface modeling studies that have investigated the relative influence of climatic 

factors on vegetation production have indicated that in addition to precipitation, air 

humidity (Williams et al. 2008) and temperature (Beer et al. 2010) may play an 

important, yet secondary role in limiting vegetation production in drylands. 

Similar to many earlier studies (e.g. Goward &  Prince 1995a; Tracol et al. 

2006; Williams et al. 2008; Hiernaux et al. 2009b; Hiernaux et al. 2009c), Fensholt &  

Rasmussen (2011) found that the inter-annual variations in vegetation production 

were poorly explained by annual rainfall totals.  It is very likely that in addition to 

precipitation, other climate factors acted synergistically to influence vegetation 

production by altering soil moisture levels (Sala et al. 1988; Epstein et al. 1997; 

Lebel et al. 2003; Reichstein et al. 2007; Knapp et al. 2008; Good &  Caylor 2011), 

nutrient levels (Belnap et al. 2005), and stomatal resistance and photosynthetic 

reaction rates (Collatz et al. 1991; Collatz et al. 1992; Williams et al. 2008; Merbold 

et al. 2009; Beer et al. 2010).  This suggests that it might be necessary to account for 

climate factors other than precipitation alone in order to distinguish between climate-

induced fluctuations in vegetation production and human-induced changes which are 

generally more subtle and gradual (Evans &  Geerken 2004; Fensholt &  Rasmussen 

2011). 

It is unlikely that any stand-alone remote sensing-based method will be able to 

unequivocally map human-induced land degradation. In addition, the evaluation of 

these methods has proven difficult owing to the paucity of field validation data 

(Batterbury et al. 2002; Wessels et al. 2008).  Also, remotely sensed indicators 
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provide little if any information on the social processes that give rise to degraded 

landscapes.  To complement the monitoring process, Batterbury et al. (2002) and 

Nicholson (2011a) argue that it is important to identify the human factors that act as 

drivers to degradation not only to alert officials to unsustainable land use practices 

but also to determine whether long term reductions in production efficiency are in 

fact human-induced.  Recent studies have produced highly resolved spatial data on 

human demographics and anthropogenic uses of the land (Imhoff et al. 2004; CIESIN 

2005; Robinson et al. 2007; Ramankutty et al. 2008).  These data, together with 

remotely sensed indicators of land degradation, can be used to investigate the spatial 

component of demographic and anthropogenic land use pressures.  

1.7 Research Objectives 

The fundamental goal of this dissertation is to examine whether there is 

evidence of human-induced land degradation in the Sahel and, if so, its location and 

intensity.  The general hypothesis was that long-term negative trends in production 

efficiency can be used to detect human-induced land degradation.  To test whether the 

negative trends were in fact human-induced, they were compared with the available 

data on population density, land use and land biophysical properties that determine 

the susceptibility of land to degradation. 

The following specific research objectives were addressed: 

1. Characterize the correlations between remote sensing estimates of 

vegetation production and the meteorological variables, namely precipitation, 

seasonal precipitation distribution, air humidity and temperature. (Chapter 2) 
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2. Explore the biophysical mechanisms of vegetation response to 

climate variability at the process level using a Soil-Vegetation-Atmosphere 

Transfer (SVAT) model. (Chapter 2) 

3. Identify any long term trends in vegetation production which are not 

caused by natural ecological adjustments to episodic droughts and changes in 

air humidity and temperature. (Chapter 3)  

4. Explore the relationship between long-term trends in vegetation 

production, population density, human appropriation of NPP, livestock, and 

cropping. (Chapter 4)   

1.8 Outline of Dissertation 

This dissertation consists of five chapters.  Chapter 1 introduces the topic of 

land degradation, reviews the ongoing debate on the extent, severity and causes of 

land degradation in the Sahel and sets the research objectives.  In Chapter 2, the 

relationship between growing season sums of daily AVHRR NDVI data (ΣNDVI) 

and meteorological variables from 1982 to 2006 are characterized for the study area.  

This was done to identify the meteorological variables that influence vegetation 

production. The biophysical mechanisms that can explain the observed relationship 

are explored using a SVAT model.  

In Chapter 3, the ΣNDVI-climate relationships were used to estimate potential 

ΣNDVI for each year in the satellite record; that is the ΣNDVI expected from the 

response of vegetation to climate variability alone excluding other factors that limit 
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vegetation production, including human land use.  The residuals (observed – potential 

ΣNDVI) were used to normalize for the effects of climate variability on vegetation 

production (Prince 2002; Geerken &  Ilaiwi 2004).  Significant negative residual 

trends were then mapped to identify areas where there may be human-induced land 

degradation.  This approach is similar to the method which was used to identify 

negative trends in the production-rainfall relationship in the degraded areas of South 

Africa and Syria (Prince 2002; Hirata et al. 2005; Wessels et al. 2007) but extends the 

climatic controls to include in addition to rainfall the other meteorological variables 

that were found to influence vegetation production. However, it should be stressed 

that even when NDVI or NPP falls below the potential set by the meteorological 

conditions, the cause is not necessarily human-induced. 

Chapter 4 compares the residual trend maps with the available data on 

population density and land use to investigate whether the type and intensity of land 

use is associated with negative trends in vegetation production.  Furthermore, chapter 

4 investigates whether the influence of land use varies with the geography of land 

biogeophysical properties that determine the resilience of land to degradative 

processes.  Chapter 5 summarizes the findings, discusses the limitations of remotely 

sensed estimates of land degradation, and how these limitations may be addressed in 

future research.  Finally, the methods used for the reconstruction of daily AVHRR 

NDVI data are presented in Appendix I.  
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Chapter 2: Vegetation responses to climate variability 

2.1 Introduction 

The effect of climate variation on vegetation production is a major research 

focus in African drylands (Fuller &  Prince 1996; Olsson et al. 2005; Hiernaux et al. 

2009c) and elsewhere (Goward &  Prince 1995a; Fang et al. 2001; Nemani et al. 

2003).  More recently, interest has intensified as global circulation models project an 

increase in inter-annual precipitation variation, higher temperatures, and an 

intensified precipitation regimes (through larger individual precipitation events) with 

longer intervening dry periods than at present (Easterling et al. 2000; IPCC 2007). 

Vegetation production in drylands is often assumed to be closely related to 

inter-annual rainfall variability (Le Houérou et al. 1988; Herrmann et al. 2005a).  Le 

Houérou (1984) suggested that the ratio of NPP to precipitation (Rain Use Efficiency, 

RUE) in drylands has a stable value (≈4 kg dry matter/ha/year/mm rainfall).  Wessels 

et al. (2007) and Nicholson et al. (1990) found moderate to strong linear relationships 

between rainfall and vegetation production in parts of arid and semi-arid South Africa 

and the Sahel.  Nevertheless, precipitation is not the only factor that controls 

production and poor relations have been reported in the Sahel (Goward &  Prince 

1995a; Tracol et al. 2006; Williams et al. 2008; Hiernaux et al. 2009b; Hiernaux et 

al. 2009c; Fensholt &  Rasmussen 2011) and elsewhere (Fuller &  Prince 1996; 

Knapp &  Smith 2001; Reynolds et al. 2004b).   

In drylands, soil properties, the frequency and intensity of rainfall events, air 

humidity and temperature combine to influence vegetation production (Noy-Meir 
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1973; Prince et al. 1998; Sankaran et al. 2005; Williams et al. 2008; Good &  Caylor 

2011) by altering infiltration rates, evaporative demands, nutrient availability and 

leakage losses from the soil column (Sala et al. 1988; Epstein et al. 1997; Lebel et al. 

2003; Reichstein et al. 2007; Knapp et al. 2008; Good &  Caylor 2011).  

Furthermore, air humidity and temperature may also directly influence vegetation 

production by altering stomatal resistance and photosynthetic reaction rates (Collatz 

et al. 1991; Collatz et al. 1992; Williams et al. 2008; Merbold et al. 2009; Beer et al. 

2010).  

While several remote sensing studies have investigated the nature of the 

relation between NDVI (used as a proxy of vegetation productivity) and rainfall in the 

Sahel (e.g. Nicholson et al. 1990; Nicholson et al. 1998; Prince et al. 1998; Herrmann 

et al. 2005b; Olsson et al. 2005; Camberlin et al. 2007; Helldén &  Tottrup 2008), 

only few studies have expanded beyond that to include other meteorological variables 

that might influence vegetation production (Nemani et al. 2003; Beer et al. 2010).   

The purpose of this study was twofold; (i) to characterize empirically the 

nature of the relationship between remotely sensed estimates of vegetation production 

and climate variability and (ii) to explore, using a land surface model, the underlying 

hydraulic and biophysical processes to which these relationships can be attributed.  

Bias-corrected-hybrid meteorological datasets constructed by combining a 

suite of global observation-based datasets with numerical weather prediction and 

assimilation models are becoming available at higher temporal and spatial resolutions 

(Sheffield et al. 2006).  These, along with recent developments in Advanced Very 
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High Resolution Radiometer (AVHRR) data processing (Pedelty et al. 2007), 

provided the opportunity to expand on previous studies of vegetation responses to 

climate variability (Nicholson et al. 1990; Helldén 1991; Olsson &  Rapp 1991; 

Nicholson 2001; Nemani et al. 2003; Herrmann et al. 2005a; Olsson et al. 2005; 

Helldén &  Tottrup 2008; Hiernaux et al. 2009c; Beer et al. 2010). 

While the empirically derived relationships may reveal the direction and 

magnitude of vegetation responses to climate variation, they offer little understanding 

of the underlying biophysical processes to which these relations can be attributed.  To 

address this problem, a land surface model was used to explore these processes. The 

model selected was the Simplified Simple Biosphere (SSiB2 ver.2) (Xue et al. 1991b; 

Zhan et al. 2003). SSiB2 is a process-oriented model that simulates explicitly the 

interactions between climate, soil, and plants.  In SSiB2, the rates of carbon 

sequestration change with temperature, the proportion of incident photosynthetically 

active radiation absorbed by green vegetation (fPAR), and intracellular CO2 

concentration. The Farquhar and Collatz (Farquhar et al. 1980; Collatz et al. 1991; 

Collatz et al. 1992) formulations are used to model CO2 uptake within the leaf. CO2 

uptake at the canopy scale is regulated by stomatal conductance which, in turn, is 

limited by stress multipliers of air-to-leaf vapor pressure deficit and soil moisture 

(Zhan et al. 2003).  The focus of the modeling approach was to investigate, in 

different climates and for different vegetation types, the sensitivity of soil moisture, 

leaf temperature, and stomatal conductance to changes in precipitation, temperature, 

and humidity and whether climate-induced changes in soil moisture, stomatal 

conductance and leaf temperature, if any, influence vegetation production. 
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Establishing the relationship between remotely sensed estimates of vegetation 

production and meteorological variables is essential for developing a reliable land 

degradation monitoring approach that is capable of distinguishing human-induced 

land degradation from climate-induced vegetation dynamics (Reynolds 2001; Prince 

2002; Geerken &  Ilaiwi 2004). 

2.2 Material and Methods 

2.2.1 Remote sensing data 

Version 2 of the Long-term Data Record (LTDR) daily time series of the 

National Oceanic and Atmospheric Administration (NOAA) AVHRR Global Area 

Coverage (GAC) reflectance data (Pedelty et al. 2007) for the years 1982 to 2006 

were used in this study (http://ltdr.nascom.nasa.gov).  While the spatial resolution of 

the AVHRR instrument is ~1.1 km at nadir, the NOAA satellites transmit the reduced 

resolution (~4.4 km) GAC data generated onboard by averaging the reflected 

radiances from a sample of four out of every five measurements along every third 

scan line (i.e. a sampling frequency of 4 out of every 15 measurements) (Kidwell 

1998).  The LTDR data processing stream ingests the GAC data from NOAA 

satellites 7,9,11 and 14 and creates a daily reflectance product using a geographic 

projection at a spatial resolution of 0.05°.  LTDR data processing includes a vicarious 

sensor calibration of the red (0.58–0.68 µm) and near infrared (0.725–1.10 µm) 

channels using cloud/ocean techniques to remove variations caused by changes in 

sensors and sensor drift (Vermote &  Kaufman 1995; Vermote &  Saleous 2006a).  

LTDR processing also includes an improved atmospheric correction scheme to reduce 

http://ltdr.nascom.nasa.gov/
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the effects of Rayleigh scattering, ozone, and water vapor but does not include 

corrections for the effects of aerosols (Pedelty et al. 2007).  

For the present study, the LTDR reflectances in the red (0.58–0.68 µm) and 

near infrared (NIR) (0.725–1.10 µm) were: (1) spatially aggregated to 0.15° (3x3 

pixels); (2) normalized to a standard sun-target-sensor geometry; and (3) filtered for 

cloud-contaminated observations which were then replaced with reconstructed values 

interpolated from preceding and succeeding clear-sky observations.  An account of 

the Bidirectional Reflectance Distribution Function (BRDF) correction, cloud 

filtering, and interpolation procedures is given in Appendix 1.  Daily NDVI values 

were subsequently calculated (NDVI = (NIR-red) / (NIR+red)). 

Spatial aggregation to 0.15° reduces most of the errors introduced by the GAC 

sampling scheme (Rembold & Maselli 2010) and aggregation to 0.25° or 0.35° only 

results in marginal further improvements (Nagol 2011).  Because of this, analyses of 

the AVHRR data were conducted at 0.15° spatial resolution.   

BRDF and atmospheric corrections reduce noise in surface NDVI data (Nagol 

et al. 2009) that would otherwise result from the strong bidirectional properties of 

vegetation (Gutman 1991; Vermote et al. 2009a; Fensholt et al. 2010) and the 

considerable absorption in the AVHRR NIR channel by atmospheric water vapor 

(Cihlar &  Howarth 1994).  The resulting daily data were intended to enable more 

precise identification of vegetation dynamics (Viovy et al. 1992) than maximum 

value compositing (generally 10 days or monthly), particularly in the drier areas with 

short growing season. 
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2.2.2 Meteorological data 

The Princeton Hydrology Group (PHG) 1.0° dataset of daily precipitation, 

surface air temperature, specific humidity, atmospheric pressure and incident solar 

radiation (Sheffield et al. 2006)  were used in this study.  The dataset is constructed 

from the NCEP–NCAR
2
 reanalysis data and corrected for biases using observation 

based datasets of precipitation and air temperature. Daily data for the period 1982-

2006 were downscaled from 1° to the 0.15° resolution of the AVHRR dataset using 

bilinear interpolation. 

2.2.3 Estimating phenological transition dates and the length of the growing 

season 

The rates of change of daily NDVI data were used to define key phenological 

transition dates of the growing season (Zhang et al. 2003).  These were the “onset of 

greenness increase”, the “onset of maturity”, the “onset of greenness decrease”, and 

the “onset of dormancy”, hereafter referred to as green-up, maturity, senescence and 

dormancy; respectively.  Green-up is the date when NDVI begins to increase rapidly 

indicating the onset of leaf development.  Maturity is the date when the rate of 

increase in NDVI slows and NDVI approaches its maximum indicating peak green 

leaf area.  Senescence is the date when NDVI begins to decrease rapidly indicating 

leaf senescence. Dormancy is the date when NDVI approaches its minimum annual 

value owing to death of annuals and suspension of growth and true dormancy in 

perennials. 

                                                 
2
 NCEP-NCAR: National Center for Environmental Prediction(NCEP)–National Center 

for Atmospheric Research(NCAR) 
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To estimate the phenological transition dates, piecewise sigmoid functions 

(equation 2.1) were fitted to periods of sustained NDVI increase (i.e. growth) and 

decrease (i.e. senescence).  The rates of change in the curvature of the fitted sigmoid 

functions (i.e. the second derivative) were then calculated.  During the period of 

sustained NDVI increase, the local maxima of the second derivative were used for the 

dates of green-up and maturity, and the local minima of the second derivative during 

the period of sustained NDVI decrease were used for senescence and dormancy 

(Zhang et al. 2003). The phenological transition dates were compared with MODIS 

Land Cover Dynamics Science Dataset Collection 4 (Zhang et al. 2006) during the 

overlapping period (2002-2006). 

 ( )  
 

       
     (   ) 

where t is time in days, y(t) is the NDVI value at time t, a and b are fitting parameters, 

d is the initial minimum NDVI value and c+d is the maximum NDVI value.  

The onset of leaf development and leaf senescence were then used to define 

the timing and duration of the growing season.  Annual and growing season sums of 

daily NDVI, precipitation, temperature, and humidity were calculated for each year 

(1982-2006). 

2.2.4 Relationship of annual ΣNDVI with annual total precipitation 

 

The relationships of annual and growing season sums of precipitation and 

ΣNDVI were characterized using linear regressions for every three by three pixels.  

The coefficients of determination (r
2
) were mapped to show the geographical patterns 
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of the ΣNDVI -total precipitation relationships for the entire year and for the growing 

season alone. 

2.2.5 Relationship of growing season ΣNDVI with intraseasonal precipitation 

distribution 

A series of small precipitation events may have a different effect on 

vegetation production than an equivalent amount of rainfall occurring in a few intense 

events (Reynolds et al. 2004b; Good &  Caylor 2011).  To describe the statistical 

manner by which precipitation arrived on the landscape, two higher order moments of 

intraseasonal precipitation distribution were calculated from daily precipitation data.  

These were the growing season precipitation variance and its skewness. Summary 

statistics were used since it is impractical to specify explicitly the enormous number 

of seasonal patterns of rainfall frequency and amount that can occur for more than a 

few pixels.  High precipitation distribution variance indicates higher than normal 

deviation from mean seasonal precipitation and can result from extended periods of 

drought or from intense precipitation events or a combination of both, while the 

skewness is a measure of the dominant frequency of either high intensity precipitation 

events (negative skewness) or low intensity precipitation events (positive skewness). 

The relation of growing season ΣNDVI to seasonal precipitation totals, 

precipitation variance and skewness were characterized using multivariate linear 

regression analysis.  To reduce the effects of multicollinearity between input variables 

and consequent overfitting (Dielman 2005), a subset of independent variables that 

‘best’ explained ΣNDVI variation were selected for each 3 by 3 pixels using the 

computational approach of (Furnival &  Wilson 1974). 



  

 29 

 

The computational approach of (Furnival &  Wilson 1974) searches for the 

variable subsets with the highest r
2
 value adjusted for degrees of freedom (adjusted 

r
2
).  The variables of the regression model with the highest adjusted r

2
 were tested for 

multicollinearity and the model regression coefficients were tested to determine 

whether they were significantly different from zero.  To test for multicollinearity, the 

variance inflation factors (VIFs) of the model independent variables were evaluated 

relative to the r
2
 value of the model (Dielman 2005a).  Multicollinearity was 

considered strong enough to affect the model coefficient estimates whenever any of 

the VIFs was larger than 1/(1- r
2
) (Freund &  Wilson 1998).   A t-test was used to test 

the null hypothesis that the model regression coefficients Bk1…n were equal to zero.  If 

there was insufficient evidence to reject the null hypothesis (H0k1…n: Bk1…n = 0, p > 

0.05) or if multicollinearity was strong enough to affect model estimates then the 

regression model with the second to highest adjusted r
2
 was subjected to the same 

tests.  The procedure was repeated until the test conditions were met. 

2.2.6 Relationship of growing season ΣNDVI with intraseasonal precipitation 

distribution 

The relationships of growing season ΣNDVI and seasonal precipitation totals, 

specific humidity and air temperature were characterized by regression analysis using 

the same computational approach described in the previous section.  Furthermore, the 

three meteorological variables and the ΣNDVI data were standardized to zero mean 

and a standard deviation of one.  The standardized regression coefficients were then 

estimated to measure the relative contribution of each meteorological variable to the 

observed ΣNDVI variation.  The standardized regression coefficients were  

summarized by the landcover types in the study area (Friedl et al. 2002) in order to 



  

 30 

 

characterize the relative contribution of each of the meteorological variables to the 

observed NDVI variation in grasslands, shrublands, and savannas. 

2.2.6 Soil-vegetation-atmosphere transfer modeling 

2.2.6.1 Model description 

The Simplified Simple Biosphere (SSiB2 ver.2) land surface model (Xue et 

al. 1991b; Zhan et al. 2003) was used in its “offline” mode to represent ecosystem 

physiology as driven by prescribed meteorology and vegetation phenology.  SSiB2  is 

a simplified version of the Simple Biosphere model (SiB) originally designed by 

(Sellers et al. 1986).  SSiB2 models vegetation as a single layer instead of the two in 

SiB, and implements a less computationally expensive scheme to calculate 

aerodynamic resistance.  In addition, the prognostic equations in SiB that relate 

stomatal conductance to soil moisture and calculate the diurnal variation in radiation 

absorption and albedo are replaced with empirical relations that require fewer 

parameters.  SSiB2 replaces Jarvis’ empirical approach for the estimation of stomatal 

conductance (Jarvis 1976) with a modified version of Farquhar et al. (1980) 

biochemical photosynthesis model (Collatz et al. 1991; Collatz et al. 1992), scaled by 

the canopy integration scheme of (Zhan et al. 2003) and coupled to the Ball-Berry 

semi-empirical stomatal conductance model so that stomatal conductance and canopy 

net photosynthesis are estimated simultaneously. In the model, the rate of 

photosynthesis changes with temperature, fPAR, and intercellular CO2 concentration. 

The latter is regulated by stomatal conductance.  Stomatal conductance is limited by 

stress multipliers of air-to-leaf vapor pressure deficit and soil moisture (Zhan et al. 

2003). The SSiB2 standard model parameters have been refined for several soils and 

vegetation functional types (Chen et al. 1996; Xue et al. 1996a; Xue et al. 1996b; 
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Schlosser et al. 1997; Zhan et al. 2003; Sun &  Xue 2004), including some of those 

found in the Sahel region (Kahan et al. 2006).   

Parameterization and validation studies and land surface model inter-

comparison experiments (Robock et al. 1995; Wetzel et al. 1996; Liang et al. 1998; 

Lohmann et al. 1998; Wood et al. 1998) have demonstrated that SSiB2 can 

reasonably reproduce measured energy and water fluxes at diurnal, seasonal, and 

multi-annual scales across diverse climates and vegetation functional types. 

2.2.6.2 Sensitivity experiments 

SSiB2 was used to explore the underlying hydrological and physiological 

processes to which the empirical relationships, revealed in the statistical analysis of 

co-variation between meteorology and vegetation productivity, can be attributed.  The 

model was run for the period 1999–2007 with a 3-hourly time step for a number of 

sites representative of different vegetation types and climatologies throughout the 

Sahel (table 2.1).  Model inputs for the base run were Princeton Hydrology Group 

meteorology, LAI and fraction vegetation cover (Baret et al. 2007).   

To investigate the sensitivity of vegetation to precipitation variation during the 

early stages of phenological development (i.e. greenup to maturity), SSIB2 was run 

eight times with the precipitation data modified for the corresponding period ( ±0.5, 

±1, ±1.75 and ±2.5 standard deviations from the values used in the base run; changed 

values that exceeded the range of long term (1982-2007) natural meteorological 

variation were reset to the minimum and maximum of observed meteorological 

variation, as appropriate) while keeping the remaining meteorological variables 
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unchanged. The sensitivity experiments were repeated for the maturity stage (i.e. 

from maturity to senescence).  The same approach was used to investigate the 

sensitivity of vegetation to changes in humidity and temperature.  The resulting 

changes in soil moisture and stomatal conductance and their relation to canopy scale 

net photosynthesis were summarized at a daily time step and averaged over each of 

the two stages of phenological development. 
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2.3 Results 

2.3.1 Phenological transition dates 

For the transition dates of greenup, maturity and senescence, the comparison 

between the AVHRR and MODIS (Zhang et al. 2006) measurements revealed a good 

agreement with root mean square errors only slightly higher than the reported 

accuracies of the MODIS products (Zhang et al. 2003; Zhang et al. 2006).  However, 

the measurements of the dormancy transition dates did not agree and the root mean 

square error (RMSE = 29 days) of the dormancy comparison was one order of 

magnitude higher than the RMSE values for greenup, maturity and senescence (figure 

2.1).  This is perhaps due to the less pronounced transitions in the rates of change in 

NDVI curvature towards the end of the growing season which renders derivatives of 

the dormancy dates more sensitive to errors in NDVI measurements. 

The greenup transition dates were characterized by a pronounced north-south 

gradient with greenup detected as early as February at lower latitudes (7.5ᵒN) and as 

late as August at higher latitudes (17.5ᵒN).  The senescence transition dates also had a 

pronounced north-south gradient but with the dates detected earlier at higher latitudes 

(late August) than at lower latitudes (late October).  Both dates were found to vary 

between years with grasslands in the arid region showing the highest temporal 

variability in greenup dates. On average, the length of the growing season (the 

difference between the two dates) varied from approximately 20 days at the southern 

edge of the Sahara desert to approximately 250 days in the wetter parts of the study 

area (figure 2.2).   
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Figure 2.1 Scatter plot of MODIS and AVHRR phenological transition dates of 250 

randomly selected points from the study area.  Open circles (○) represent the dates of 

onset of greenness increase (RMSE = 15.5 days, r=0.89).  Crosses (+) represent the 

dates of onset of maturity (RMSE = 14.9 days, r = 0.71). Open squares (□) represent 

the dates of onset of greenness decrease (RMSE = 17 days, r = 0.63).  Open triangles 

(Δ) represent the dates of onset of dormancy (RMSE = 29 days, r = 0.2). 
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Figure 2.2  Spatial variation in averaged values (1982-2006), of (a) greenup “onset of 

greenness increase”, (b) senescence “onset of greenness decrease”, and (c) length of 

growing season (days).  The map in (d) is the between years variation (±2 standard 

deviations) in the onset date of greenness increase.  The abbreviation DOY is the 

Julian day of the year. 

 

2.3.2 Relationship of NDVI with rainfall 

The relationships of annual and growing season sums of rainfall and NDVI 

differed in strength and to some extent in their spatial patterns.  The growing season 

rainfall-ΣNDVI relationships were generally the stronger one (figure 2.3). The 

(a) 

(b) 

(c) 

(d) 
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growing season rainfall-ΣNDVI relationships were significant
3
 in approximately 58% 

of the study area whereas the annual rainfall-ΣNDVI relationships were significant in 

37% of the study area. 

A belt of significant annual ΣNDVI-rainfall relationships was evident around 

the 700mm rainfall isohyet (figure 2.3a).  However, areas receiving less than 400mm 

rainfall/year and areas receiving more than 1000mm rainfall/year were generally 

characterized by insignificant relationships (figure 2.4).  On average, stronger 

growing season ΣNDVI-rainfall relationships were found in the arid and semi-arid 

areas with shrubland and grassland landcover (r
2
 = 0.43±0.17

44
) than in sub-humid 

areas with woody savanna land cover (r
2
 = 0.3±16

45
). 

 

Figure 2.3 Coefficients of determination (r
2
) for (a) annual rainfall-ΣNDVI and (b) 

growing season rainfall-ΣNDVI regressions. The dashed lines from north to south are 

the 300mm, 700mm and 1100mm rainfall isohyet. 

                                                 
3
 Critical t-values calculated for each pixel indicated that, in general, regressions with r

2
 values greater 

than 0.3 were significant (p<0.05). 
4
 Mean ± one standard deviation 

 
 

(a) 

(b) 
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Figure 2.4 Percentage area with significant ΣNDVI-rainfall relationships (bars) in 

each rainfall range and the spatial average of the coefficient of determination (r
2
) 

values (points) of all pixels within each rainfall range. 

 

2.3.3 Relationship of growing season ΣNDVI with intraseasonal precipitation 

distribution 

The multivariate regressions between ΣNDVI, total growing season rainfall 

and the two moments of rainfall distribution (variance and skewness) provided robust 

yet simple statistical models of NDVI variation (figure 2.5a).  Compared to the 

growing season ΣNDVI-rainfall relationships, adding the two moments increased the 

ability of the models to explain NDVI variation (figure 2.5b).  The changes in 

percentage variance explained varied spatially but these were not significantly related 

to either the aridity gradient or to the spatial distribution of land cover types. 
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Figure 2.5 Spatial distributions of (a) the coefficients of determination (adjusted r
2
) 

for the multiple regression of ΣNDVI on total growing season rainfall, its variance 

and its skewness. (b) The change in the percentage of variance explained by including 

the additional variables over the percentage variance of ΣNDVI and rainfall alone. 

The dashed lines from north to south are the 300mm, 700mm and 1100mm rainfall 

isohyet. 

The coefficients of the multivariate linear regressions quantified the direction 

and magnitude of the relationship between precipitation distribution and growing 

season NDVI.  In general, growing season NDVI was positively related to 

precipitation totals and to the skewness of precipitation distribution but negatively 

related to its variance which suggest that, for a given precipitation total, the 

seasonally summed NDVI values were higher when precipitation arrived in more 

frequent and less intense precipitation events (figure 2.6). 

 

 

 

(a) 

(b) 
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Figure 2.6 Coefficients of (a) seasonal rainfall variance, and (b) seasonal rainfall 

skewness obtained from the multivariate regressions of growing season ΣNDVI on 

total seasonal precipitation, precipitation variance and skewness. Missing values 

(white pixels) are areas with high multicollinearity between explanatory variables, or 

where the coefficients were insignificantly different from zero (p>0.05).  The dashed 

lines from north to south are the 300mm, 700mm and 1100mm rainfall isohyet. 

 

2.3.4 Relationship of growing season ΣNDVI with humidity and temperature 

The adjusted r
2
 of the multivariate regressions of growing season ΣNDVI on 

total growing season precipitation, specific humidity and temperature are shown in 

figure 2.7a.  Compared to the growing season ΣNDVI-rainfall relationships, adding 

specific humidity and temperature increased the ability of the models to account for 

NDVI variation (figure 2.7b).  On average, the largest gains in the percentage NDVI 

variance explained were to the south of the 700 mm rainfall isohyet (figure 2.7b).  

However, the relationships remained insignificant in the humid coastal Guinean zone. 

This might be due to the saturation of NDVI at high values of LAI (Sellers 1987; 

Malo &  Nicholson 1990), to the persistence of cloud cover which adversely affects 

the quality of ΣNDVI values (Nagol 2011a), or to the influence of other climatic and 

(a) 

(b) 
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non-climatic factors on NPP, such as low plant nutrient availability or low incident 

photosynthetic radiation (Davenport &  Nicholson 1993; Beer et al. 2010). 

 

Figure 2.7 Adjusted r
2
 for (a), the relation of ΣNDVI with total growing season 

rainfall, air humidity and temperature. (b) The change in the percentage of variance 

explained by including the additional variables over the percentage variance of 

ΣNDVI and rainfall alone. The dashed lines from north to south are the 300mm, 

700mm and 1100mm rainfall isohyet. 

The regression coefficients calculated for every grid cell provided a statistical 

estimate of the mean rate of change in ΣNDVI in relation to variations in rainfall, 

humidity, and temperature.  The highest precipitation coefficient values (0.08 – 0.1 

ΣNDVI.mm
-1

) were evident in the arid margins whereas the lowest (0.01-0.02) were 

in the wetter parts of the study area (figure 2.8a).  Conversely, the humidity 

coefficient values were generally the lowest in the northern arid zone (figure 2.8b).  

The temperature coefficient values, on the other hand, differed in sign with spatially 

coherent positive ΣNDVI relations to temperature evident in the Bongos mountain 

range (in western Southern Sudan and northern Central African Republic) and in 

northern Ethiopian highlands (figure 2.8c), while negative ΣNDVI relations to 

temperature were more common in the arid zone (300-700mm). 

(a) 

(b) 
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Figure 2.8 Regression coefficients of (a) specific humidity, and (b) air temperature 

obtained from the multivariate regressions of growing season ΣNDVI on 

precipitation, specific humidity and temperature.  Missing values (white pixels) are 

areas with high multicollinearity between explanatory variables, or where the 

coefficients were insignificantly different from zero (p>0.05).  The dashed lines from 

north to south are the 300mm, 700mm and 1100mm rainfall isohyet. 

 A negative exponential pattern emerged when the precipitation coefficients 

were plotted against rainfall climatology (figure 2.9a).  However, there were some 

wet sites with comparatively high precipitation coefficients (green circle; figure 2.9a).  

These were generally associated with the agricultural landscapes in eastern Ghana, 

southern Benin and Togo.  In these landscapes, the percentage of land used for 

farming was estimated to range between 45-90% of the total area (Ramankutty et al. 

2008).  Here the high ΣNDVI was probably dependent on irrigation rather than on 

local rainfall where several small scale periurban irrigation systems (Gruber et al. 

2009) and large irrigation projects expanded the irrigation network in the Ouémé 

(a) 

(b) 

(c) 
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Catchment in Benin (ADBG 1998) and the Volta river basin in Benin, Togo and 

Ghana (Hanjra &  Gichuki 2008).  In contrast, a positive linear pattern emerged when 

the humidity coefficients were plotted against rainfall climatology (figure 2.9b) and 

there was no distinctive relationship between temperature coefficients and rainfall 

climatology (not shown). 

  

Figure 2.9 A randomly drawn sample (10%) representing the relationship of rainfall 

climatology to (a) precipitation coefficient (ΣNDVI.mm
-1

) and (b) specific humidity 

coefficient (ΣNDVI.(kgH2O/kgAir)
-1

) 

The standardized coefficients of the multivariate regression models were 

calculated to estimate the relative contributions of growing season precipitation, 

specific humidity and temperature on ΣNDVI variations.  When summarized for the 

land cover types in the study area, precipitation emerged, on average, as the primary 

factor influencing NDVI, followed by specific humidity and then temperature (figure 

2.10).  Except in woody savanna and forests, the precipitation standardized 

coefficients were significantly higher (p < 0.01) than the standardized specific 

humidity coefficients and approximately three to four orders of magnitude higher 

than the standardized temperature coefficients (figure 2.10).  The standardized 
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specific humidity coefficients, on the other hand, were significantly higher (p < 0.01) 

than the standardized temperature coefficient in woody savannas and forests but not 

for the other land cover types (figure 2.10). 

 

Figure 2.10 Mean absolute values of the standardized coefficients of the multivariate 

regression between NDVI and explanatory variables (precipitation, specific humidity 

and temperature) summarized for the land cover types.  Error bars are ±1 standard 

deviation around the mean. 

 

2.3.5 Soil-vegetation-atmosphere transfer modeling 

The SSiB2 model was used to explore the hydrological and physiological 

mechanism that can explain the empirical relations found by correlation between 

meteorological variables and vegetation ΣNDVI.  Five sites are provided to illustrate 

the overall results (table 2.1).  Koumbi Saleh (southern Mauritania) is the driest and 
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the warmest with a cumulative growing season precipitation of 300 mm, a mean 

growing season daily temperature of 30.45ᵒC, and growing season length of 3 

months.  Fadjė, located to the southeast of Lake Chad, is considerably wetter and 

2.5ᵒC cooler than Koumbi Saleh.  Growing season precipitation for the remaining 

three sites is greater than 650mm (Kem Kem, Abyie, and Quadra Djallė) but the sites 

differ greatly in mean growing season temperature and mean growing season specific 

humidity (table 2.1). 

The daily modeled responses of soil moisture, stomatal resistance, and net 

primary productivity (NPP) to changes in precipitation, air temperature, and specific 

humidity were summarized for the two periods of the growing season (green-up to 

maturity, and maturity to senescence) and are shown in figures 2.11 to 2.13.  Higher 

specific humidity reduced evapotranspiration demand (not shown) resulting in higher 

volumetric soil moisture content in the root zone (figure 2.11).  Particularly at drier 

sites or during dry periods, higher volumetric soil moisture content and higher 

atmospheric vapor pressure combined to increase modeled stomatal conductance 

(figure 2.12) and therefore canopy-scale NPP (figure 2.13).  In the wetter sites such 

as, Kem Kem, Abyie and Quadra Djallė, higher specific humidity also increased leaf 

temperature at a rate of approximately 0.25ᵒC per unit increase in specific humidity (g 

H2O/kg dry air).  Higher leaf temperatures below the temperature inhibition point can 

also increase NPP by increasing the photosynthetic reaction rates (Collatz et al. 

1991). 

 Dry sites such as Koumbi Saleh and Fadjė showed a strong increase in NPP in 

response to precipitation during the greenup period, and somewhat less in the 
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maturity period (figure 2.13).  In the wetter sites Quadra Djallė and Kem Kem, there 

were not any noticeable changes in modeled NPP in response to precipitation during 

either the greenup or maturity periods (figure 2.13).  At these sites changes in soil 

moisture content in response to precipitation (figure 2.11) did not induce noticeable 

changes in stomatal resistance (figure 2.12) and hence NPP.  The productivity in 

these sites, however, was sensitive to changes in temperature where increases in 

temperature increased modeled NPP (figure 2.13).  The woody savanna site (Abyie) 

which is wetter than Kem Kem but drier than Quadra Djallė showed a strong increase 

in stomatal conductance and NPP in response to precipitation during the greenup 

period but no responses during the maturity period (figure 2.13).  At Abyie and Fadjė, 

changes in temperature produced contrasting responses in modeled NPP (figure 2.13).  

During the maturity period, when productivity was not limited by available soil 

moisture, productivity responded positively to higher temperatures.  However, during 

the green-up period when soil moisture levels were comparatively lower (figure 

2.11), higher temperature lowered productivity. 
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2.4 Discussion 

2.4.1 Phenological transition dates 

The interannual variation in the timing of greenup was highest in the arid 

regions dominated by grasslands, for which there are several possible causes. In the 

Sahelian eco-climatic zone, the onset of the summer monsoon in successive years can 

vary by more than 30 days (Sultan &  Janicot 2003). After the start of the wet season, 

above ground biomass production starts when seedlings establish their root system 

(Hiernaux et al. 2009c).  This is followed by rapid growth that produces a detectable 

increase in NDVI.  However, the length of time between the start of the wet season 

and rapid growth has also been found to vary between years (Hiernaux et al. 2009c).  

In this study, in general, the interannual variation in the timing of green-up decreased 

from north to south probably because of the lower interannual variability in the onset 

of rainy season at lower latitudes (Le Barbé et al. 2002). 

In addition to the interannual variability in the timing of the start of the 

growing season the results revealed a pronounced north-south gradient in the length 

of the growing season (the period between greenup and senescence) (Figure 2.2).  

The spatiotemporal variability in the timing and duration of the growing season 

throughout the Sahel clearly indicates that daily data, as were used here, are needed to 

monitor the shorter growing seasons particularly in the northern Sahel. It also 

indicates that using a standard integration period such as the June-August period that 

is often used to cover the growing season in the Sahel (e.g. Fensholt &  Rasmussen 

2011; Huber et al. 2011) can miss significant parts of the growing season. 
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2.4.2 Relationship of ΣNDVI with climate variability 

In arid and semi-arid regions, NPP and ΣNDVI have been shown to have a 

strong relationship with precipitation (Le Houérou et al. 1988; Le Houérou 1989; 

Wessels et al. 2007).  Indeed, average NPP has been shown to increase linearly or 

near-linearly with mean annual precipitation, to an upper limit (Lieth 1975; Breman 

&  de Wit 1983; Le Houérou et al. 1988; Merbold et al. 2009).  However, the 

interannual variability in NPP does not always exhibit such a strong relation, as 

evidenced by the weak correlations between annually summed NPP and rainfall 

(Knapp &  Smith 2001; Tracol et al. 2006; Hiernaux et al. 2009a; Hiernaux et al. 

2009c) and between ΣNDVI and rainfall (Goward &  Prince 1995a; Helldén &  

Tottrup 2008; Fensholt &  Rasmussen 2011).  Also, RUE, which was assumed to be a 

conservative parameter (Le Houérou 1984), has been found to vary through time and 

space (Prince et al. 1988; Wessels 2005).  Similarly, in this study, the correlations 

between annually summed NDVI and rainfall, in general, did not reveal strong 

relationships, yet there were some systematic, though weak, correlations in areas 

receiving intermediate precipitation (figures 2.3a, 2.4).   Helldén &  Tottrup (2008) 

and Fensholt &  Rasmussen (2011) similarly found that the degree of ΣNDVI 

variance explained by rainfall was high in some areas and low in others with weak to 

insignificant relationships more common in the dry and wet margins of the Sahel.   

Nicholson et al. (1990) suggested that the apparent lack of ΣNDVI response to 

additional precipitation in the dry sub-humid Sahel may be caused by the low 

sensitivity of fPAR, and thus NDVI, to additional rain during wet years.  Another 

plausible explanation is that precipitation in the wetter areas is not the primary factor 
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controlling vegetation growth (Knapp &  Smith 2001).  The simulations of net 

primary productivity in the dry sub-humid areas such as at Quadra Djallė and Kem 

Kem (figure 2.13) shown here revealed little or no sensitivity of NPP to variations in 

precipitation.  At these sites, the modeled volumetric soil moisture in the root zone 

remained above approximately 14% by volume (figure 2.11) which is unlikely to 

induce acute water stress, stomatal closure and a drop in NPP (figure 2.12).  

Similarly, modeling results by Williams et al. (2008) suggested that the woody plant 

associations in the wetter parts of the Sudanian and the Guinean ecoclimatic zones 

had sufficient soil moisture to meet evapotranspirational demands even during years 

with below-average precipitation. 

The variance of ΣNDVI explained by rainfall in the northern boundary of the 

Sahel was generally low.  This was expected since RUE has been found to vary over 

a wide range in dry areas and at low rainfall (Prince et al. 1988; Wessels 2005).  

However, several studies have reported a strong coupling between NDVI and rainfall 

in northern Sahel (Malo &  Nicholson 1990; Nicholson et al. 1990; Davenport &  

Nicholson 1993; Herrmann et al. 2005b).  The analyses carried out in those studies 

used time-series of moving average monthly precipitation and ΣNDVI data. 

Successive monthly values of precipitation and ΣNDVI are usually highly 

autocorrelated (Herrmann et al. 2005a).  Regression of autocorrelated variables can 

cause overestimation of the strength and significance of the relationship (Granger &  

Newbold 1974).  Whether the differences between the strength of the relationship 

found here and those reported in Nicholson et al. (1990), Malo & Nicholson (1990), 
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Davenport & Nicholson (1993) and Herrmann et al. (2005) were the result of using 

different integration periods cannot be deduced from the current analysis. 

In the arid and semi-arid Sahel, the correlations between growing season, 

compared with annual integrated ΣNDVI and precipitation totals, were generally 

higher (Figures 2.3 & 2.4), confirming that occasional rainfall outside the main 

growing season has little effect on vegetation production (Yang et al. 1998; Wang &  

Eltahir 2000; Wessels 2005; Wessels et al. 2007; Knapp et al. 2008).  Long periods of 

drought following early rain, the probability of which increases as the climate gets 

drier northwards (Barron et al. 2003; Frappart et al. 2009; Yengoh et al. 2010), have 

been found to kill the seedlings of fast-germinating species favoring species with 

long-lived seed banks which have reserves of seeds that germinate when the rainy 

season resumes (Elberse &  Breman 1989; Elberse &  Breman 1990).  On the other 

hand, rains falling later than senescence may not be used for production by most 

annuals irrespective of the amount of precipitation as vegetative growth ends with 

fructification which date is set by sensitivity to photoperiod (de Vries &  Djitèye 

1983; Hiernaux et al. 2009c). 

Interestingly, the geographical distribution of the precipitation coefficients 

(figure 2.8a) was correlated with precipitation totals; higher precipitation coefficients 

in dry areas and lower in wet areas (figure 2.9a).  This does not completely agree with 

the findings of Le Houérou (1984), who found that the ratio of NPP to precipitation 

(RUE) decreased with increasing aridity. Le Houérou (1984) attributed the low RUE 

values in dry area to the higher proportional losses of precipitation to evaporation in 

dry areas compared to wet areas. However, the results of this study are in agreement 
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with other studies in the Sahel (Prince et al. 1998) and South Africa (Wessels 2005).  

Higher precipitation coefficients could be the result of overestimation of very low 

∑NDVI values by satellite observations (Prince, 1991), or an upward shift in the RUE 

in desert margin vegetation (Prince et al., 1998).  Also, by analyzing eddy-covariance 

measurements across a range of vegetation types and climate zones in Africa, 

Merbold et al. (2009) similarly found that NPP at the wetter sites varied over a 

narrow range in relation to precipitation variability, whereas NPP at the drier sites 

responded more strongly.  The maximum photosynthetic response to precipitation 

variation was greater for grasses in dry areas than for trees in wetter areas, which 

Merbold et al. (2009) attributed to the differences in the photosynthetic pathways of 

trees (C3) and grasses (C4).  It could also be that the differences are a result of the 

non-linearity of soil moisture response to precipitation in the wetter areas (figure 

2.11) where high precipitation rates can saturate infiltration and therefore additional 

precipitation does not increase soil moisture and photosynthesis.  

In contrast to the ΣNDVI–rainfall relations, specific humidity coefficients 

(figure 2.8b) were higher in the wetter areas (figure 2.9a).  Unfortunately, this could 

not be compared to eddy-covariance studies since those studies usually report the 

relationship of net photosynthesis to vapor pressure deficit rather than to specific 

humidity.  Mechanistically, however, high specific humidity may restrict 

evapotranspiration-driven reductions in soil water thus alleviating plant soil water 

stress.  On the other hand, low specific humidity may increase evapotranspirative 

demand resulting in a net decrease in soil moisture availability (Williams et al. 2008).  

The combination of soil moisture stress and low specific humidity was found to 



  

 58 

 

increase stomatal resistance which in turn decreased productivity (figures 2.11 to 

2.13). 

Surprisingly, the ΣNDVI-temperature relations differed between the two 

directions of change (figure 2.8c).  The effects of temperature on plant growth are 

largely mediated by its effects on chemical reactions (e.g. photosynthesis and 

respiration) and its effects on soil moisture.  On one hand, photosynthesis reaction 

rates increase with temperature up to an upper limit beyond which photosynthesis 

decrease due to the denaturation of proteins.  On the other hand the desiccating 

effects of higher temperatures can reduce net photosynthesis. The empirical results 

show that for some areas in the Ethiopian highlands, the Guinean ecoclimatic zone 

and from western South Sudan to southern Chad growing season temperature was 

positively related to ΣNDVI.  These and the modeling results at the Kem Kem 

(Ethiopean highlands) and the Qudra Djallė sites (Bongos Mountains) (figure 2.13) 

suggest that increases in temperature-dependent photosynthetic reaction rates may 

counter the desiccating effects of higher temperature.  However, global studies of 

climatic limits on plant growth do not identify temperatures as an important factor 

influencing vegetation growth in either the Ethiopian highlands or in the Bongos 

Mountains range but rather point that vegetation growth in these areas is primarily 

limited by incident photosynthetic active radiation (PAR) (Churkina &  Running 

1998; Nemani et al. 2003).  The influence of PAR on vegetation production was not 

investigated here due to the low spatial resolution of the data available at the time 

(2.5ᵒ). 
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The suggestion that an intensified hydrological regime would increase NPP in 

xeric environments while reducing NPP in mesic environments (Knapp et al. 2008) 

was not verified in the present study.  Throughout most of the Sahel, an intensified 

precipitation regime (higher variance and lower skewness) was inversely related to 

ΣNDVI values.  Knapp et al. (2008) suggestion was based on the assumption that, in 

xeric environments, the proportional losses of precipitation to canopy interception 

and to evaporation would be reduced if precipitation event size increased and that this 

reduction would offset or even exceed the volume of water lost to runoff, thereby 

increasing soil water availability (Knapp et al. 2008).  The proportional effects of 

reductions in evaporation due to an intensified precipitation regime might be less than 

theorized as the percentage of total precipitation that falls in very small events (<7 

mm/day) in the Sahel is minimal (Barbé &  Lebel 1997; D'Amato &  Lebel 1998; Le 

Barbé et al. 2002).  Thus it is plausible that larger precipitation events with longer 

intervening dry periods would lead to greater drying of the soil and reduce NPP. 

2.5 Conclusions 

Vegetation growth and rates of development in arid and semi-arid Sahel were, 

as expected, generally related to precipitation.  It was also found that air humidity and 

temperature have a significant role, in agreement with several recent modeling studies 

(Williams et al. 2008; Beer et al. 2010).  The magnitude of the effects of these three 

variables varied between vegetation functional types and latitude.   

The effects of precipitation, temperature and humidity on productivity were 

geographically coherent, suggesting fundamental causes. Unfortunately, the lack of a 

dense network of observational data meant that the emergent spatial patterns found 
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here could not be analyzed further.  Still, it is worth noting that the general patterns 

were compatible with previous modeling studies (Williams et al. 2008) and 

observational data from the few flux tower measurements in the study area (Merbold 

et al. 2009). 

One surprising result was that the vegetation, particularly at the wetter sites, 

did not always respond directly and proportionately to variations in soil moisture. 

Model simulations showed that, while variations in meteorology were indeed found to 

significantly alter soil moisture, this did not always increase production. The changes 

in vegetation productivity at the wetter sites were either dampened or enhanced by the 

direct effects of temperature and humidity on leaf temperature and stomatal 

conductance.  These results were based on modeling and should be generalized with 

caution; for example, it is known that, in some regions, antecedent meteorology and 

productivity affects productivity in the following year – so called lags - but these 

mechanisms are not simulated in SSiB. 

Seasonal precipitation distribution also influenced productivity.  For the same 

total precipitation amount, productivity was higher when precipitation arrived in more 

frequent and less intense precipitation events.  The suggestion by Knapp et al. (2008) 

that vegetation productivity in xeric environments responds favorably to more intense 

and less frequent precipitation events was not supported. 

Inaccuracies in the reconstructions of daily AVHRR NDVI and of the 

independent variables, particularly meteorological data, may influence these 

conclusions.  Despite these shortcomings, it was evident that vegetation dynamics in 
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the Sahel and their environmental correlates are more complex than the equilibrial 

relationships between growing season precipitation and NPP variation. The spatially 

explicit representation of these relationship presented here provide a new dimension 

to rainfall–productivity relationships in the Sahelian-Guinean ecoclimatic-zones. 
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Chapter 3: Long term trends in vegetation productivity  

3.1 Introduction 

There is a great deal of debate on the extent, causes and even the reality of 

land degradation in the Sahel.  On one hand, extrapolations from field-scale studies 

suggest widespread and serious reductions in biological productivity threatening the 

livelihoods of many communities (Oldeman et al. 1990; Le Houérou 1996).  On the 

other hand, coarse resolution remote sensing studies consistently reveal a net increase 

in vegetation production exceeding, in some areas, that expected from the recovery of 

rainfall following the extreme droughts of the 1970s and 1980s (Eklundh &  Olsson 

2003; Herrmann et al. 2005b; Olsson et al. 2005; Heumann et al. 2007b), thus 

challenging the notion of widespread, subcontinental-scale degradation.  To date, the 

causes, extent and severity of land degradation throughout the Sahel remain 

controversial (Hein &  De Ridder 2006; Prince et al. 2007; Hein et al. 2011). 

There are several reasons for the current lack of information on the extent, 

severity and causes of land degradation, including the lack of appropriate indicators 

that are consistent and practicable for use over large areas.  NPP, which can be 

reliably measured from space, is a promising technique for monitoring land 

degradation since most of the biophysical processes involved in degradation (e.g. soil 

crusting, compaction and erosion, depletion of soil nutrients and organic matter, and 

the disruption of biogeochemical cycles) reduce the NPP – that is accumulation of 

biomass through time (Prince 2002).  However, interannual variations in NPP are 

dominated by meteorological conditions, particularly by erratic rainfall, which mask 

any degradation signal that is generally more subtle and gradual (Wessels et al. 
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2007).  Thus it is difficult to interpret trends in NPP without accounting for the effects 

of climate variability on productivity (Evans &  Geerken 2004). 

In order to normalize the effects of rainfall variability, Evans & Geerken 

(2004) and Wessels et al. (2007) developed the residual trends method by which an 

Ordinary Least Squares (OLS) linear regression relationship is developed for each 

grid cell (one or more pixels) between ΣNDVI and season total rainfall. Evans & 

Geerken (2004) and Wessels et al. (2007) used ΣNDVI as a proxy of NPP since 

ΣNDVI have been shown to be linearly related to NPP in drylands (Sellers 1987; 

Goward &  Huemmrich 1992; Seaquist et al. 2003).  The regression equation is used 

to predict potential NDVI as set by rainfall.  The residuals (differences between 

observed and potential ΣNDVI values) are sorted in their temporal order and 

regressed against time. Significant negative slopes (trends) in the residuals indicate 

progressive reductions in vegetation production from its potential which have often 

been interpreted as an indicator of human-induced land degradation (Evans &  

Geerken 2004; Herrmann et al. 2005a; Fensholt &  Rasmussen 2011). 

Analysis of the rainfall–ΣNDVI relationship for every grid cell separately 

accommodates the effects of local variations in soil and vegetation cover which 

otherwise would have a major influence on the nature of this relationship (Prince et 

al. 1998; Wessels et al. 2007).  The residual trends method showed promising results 

when applied to South Africa  where significant negative trends were associated with 

the degraded communal areas (Wessels et al. 2007).  However, the inter-annual 

variations in ΣNDVI were poorly explained by annual rainfall totals (Chapter 2) in 

large areas in the dry (< 400mm mean annual precipitation (MAP)) and wet margins 
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(>1000mm MAP) of the Sahel.  The consequences of poor ΣNDVI-rainfall 

relationship are large prediction errors of potential ΣNDVI which propagate to the 

residuals and result in high uncertainties associated with the slope values of the 

regression of the residuals against time.  Thus the trends of the residuals are 

interpretable only where significant ΣNDVI-rainfall relationships exist (Fensholt &  

Rasmussen 2011). 

In the study of vegetation responses to climate variability in the Sahel 

(Chapter 2), the inter-annual variations in NPP were better explained by precipitation, 

specific humidity and temperature or by precipitation and its intra-seasonal 

distribution than by precipitation totals alone. These results suggest that it might be 

necessary to account for the influence of climate factors other than precipitation alone 

to produce more realistic and better constrained predictions of potential ΣNDVI. 

The objectives of this study were to monitor changes in vegetation 

productivity relative to its potential using the residual trends method.  Six residual 

trends models were calculated.  The difference between these models was the means 

by which potential growing season ΣNDVI (ΣNDVI) was predicted.  Predictions of 

potential ΣNDVI were obtained from the conditional mean and upper 95th quantile 

distributions of observed ΣNDVI responses to (1) rainfall, (2) rainfall, its seasonal 

variance and skewness, and (3) rainfall, specific humidity, and temperature. 

Estimating potential ΣNDVI from the observed distribution of ΣNDVI and 

rainfall data using OLS regression techniques is not without its problems.  In 

drylands, negative deviations of ΣNDVI from its potential could result from any 
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number of reasons including an ongoing process of land degradation but these 

deviations are smaller in dry years than they are in wetter years (Pickup et al. 1998).  

Such heteroskedasticity will most likely reduce the slope value of the OLS regression 

line, the consequences of which is an underestimation of potential ΣNDVI in wetter 

years.  Quantile regression techniques (Koenker &  Bassett 1978; Koenker &  

Hallock 2001; Koenker 2005), on the other hand, offer the distinct advantage of 

predicting the ΣNDVI-rainfall relationship in any part of the conditional distribution 

of ΣNDVI response to rainfall.  The use of quantile regressions is not new to 

ecological applications (Cade &  Noon 2003).  Sankaran et al. (2005) and Good et al. 

(2011), to mention but few examples, used UQ regressions to quantify the extent to 

which rainfall limits potential woody cover.  To reduce the effects of degraded 

ΣNDVI values, conditional upper quantile (UQ) regressions could be used to develop 

upper boundary functions of ΣNDVI response to rainfall and by extension upper 

boundary functions of ΣNDVI response to any number of meteorological variables. 

Finally, potential ΣNDVI prediction errors were propagated through the 

models to obtain a measure of uncertainty of the slopes of the regression between the 

residuals and time. Insignificant trends result from uncertainties being greater than 

their respective slope coefficients.  The models that predict potential ΣNDVI from the 

ΣNDVI-rainfall relation alone are expected to result in larger prediction errors and 

higher coefficient uncertainties, thus masking trends that are otherwise significant. 
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3.2 Material and methods 

3.2.1 Remote sensing data 

The AVHRR daily reflectance data in the Land Long Term Data Record 

(LTDR, version 2; Pedelty et al. (2007)) were used to reconstruct daily NDVI values 

from 1982 to 2006 at a spatial resolution of 0.05ᵒ (Appendix 1).   The sequence of 

data included observations from AVHRR sensors onboard NOAA satellites 7, 9, 11 

and 14.  The AVHRR LTDR data processing stream employs a vicarious sensor 

calibration of the red (0.58–0.68 µm) and near infrared (0.725–1.10 µm) channels 

using cloud/ocean techniques to remove variations caused by changes in sensors and 

sensor drift (Vermote &  Kaufman 1995; Vermote &  Saleous 2006a).  It also 

employs an improved atmospheric correction scheme to reduce the effects of 

Rayleigh scattering, ozone, and water vapor (Pedelty et al. 2007).  The data used in 

this study were normalized to a standard sun-target-sensor geometry and cloud 

contaminated observations were replaced with reconstructed values interpolated from 

preceding and succeeding “clear sky” observations.  BRDF and atmospheric 

corrections should reduce random and systematic errors in NDVI data (Nagol et al. 

2009).  Random errors (or “noise”) result from the strong anisotropic properties of 

vegetation (Gutman 1991; Vermote et al. 2009a; Fensholt et al. 2010) and from 

atmospheric absorption and scattering, particularly from considerable absorption in 

the AVHRR near infrared channel by atmospheric water vapor (Cihlar et al. 2001) 

characterized by high spatiotemporal variability throughout the Sahel (Justice et al. 

1991).  Systematic errors, on the other hand, result from progressive increases in solar 

zenith angle and atmospheric path length associated with satellites orbital drift 

(Gutman 1987; Privette et al. 1995; Csiszar et al. 2001).  An account of the LTDR 
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AVHRR data relative errors estimation is provided in Appendix 1, Section A1.3.   If 

not accounted for, random errors may obscure subtle NDVI trends while systematic 

errors may reveal trends that are an artifact of the data rather than actual changes in 

vegetation production. 

The reconstructed daily AVHRR-NDVI data were used to derive annual 

phenological transition dates (Chapter 2).  The transition dates included the “onset of 

greenness increase” and the “onset of greenness decrease”.  A comparison between 

the AVHRR transition dates and the transition dates from the MODIS Land Cover 

Dynamics Science Dataset (Zhang et al. 2006) during the overlapping period (2002-

2006) revealed a good agreement (Chapter 2) with root mean square errors only 

slightly higher than the reported accuracies of the MODIS products (Zhang et al. 

2006).  The “onset of greenness increase” was characterized by a pronounced north-

south gradient with onset dates detected as early as February at lower latitudes 

(7.5ᵒN) and as late as August at higher latitudes (17.5ᵒN).  The “onset of greenness 

decrease” also had a pronounced north-south gradient but with the onset dates 

detected earlier at higher latitudes (late August) than at lower latitudes (late October).  

Both dates were also found to vary between years with grasslands in arid region 

showing the highest temporal variability. On average, the length of the growing 

season (the difference between the two dates) varied from approximately 20 days at 

the southern edge of the Sahara desert to approximately 250 days in the wetter parts 

of the study area (Figure 2.2; Chapter 2).  The spatiotemporal variability in the timing 

and duration of the growing season throughout the Sahel clearly indicates that daily 

data are needed to monitor the shorter growing seasons. It also indicates that 
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interannual changes in ΣNDVI cannot be adequately captured using a standard 

integration period such as the June, July, August (JJA) period usually used to define 

the start and end of the growing season (e.g. Fensholt &  Rasmussen 2011).  Rather 

than using a standard integration period, growing season sum NDVI and 

meteorological data were calculated by integrating daily values bounded by the 

interval between the two transitions dates; i.e. greenup and senescence. 

3.2.2 Meteorological data 

The Princeton Hydrology Group (PHG) bias-corrected-hybrid meteorological 

datasets of daily precipitation, surface air temperature, and specific humidity 

(Sheffield et al. 2006) were used in this study.  The datasets are constructed from the 

National Center for Environmental Prediction–National Center for Atmospheric 

Research (NCEP–NCAR) reanalysis data and corrected for biases using observation 

based datasets of precipitation and air temperature.  The daily data for the period 

1982-2006 were downscaled spatially from 1° to the 0.05° resolution of the AVHRR 

dataset using bilinear interpolation.  In addition to growing season precipitation totals, 

two higher order moments of growing season precipitation, namely variance and 

skewness, were calculated from daily precipitation storm frequency and intensity.  

High variance indicates higher than normal deviation from mean seasonal 

precipitation and can result  from extended periods of drought or from intense 

precipitation events or a combination of both, while the skewness is a measure of the 

dominant frequency of either high intensity precipitation events (negative skewness) 

or low intensity precipitation events (positive skewness). 
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3.2.2 Estimating potential ΣNDVI 

Potential Growing Season ΣNDVI values were predicted using OLS and UQ 

linear regression techniques from the observed ΣNDVI response to (1) precipitation, 

(2) precipitation, specific humidity and air temperature, and (3) precipitation and two 

moments of its distribution; namely growing season precipitation variance and 

skewness.  The six regression models were applied to every grid cell (3x3 AVHRR 

pixels) within the study area.  To reduce the risk of model overfitting, either the full 

set or a subset of the explanatory variables was selected to predict potential ΣNDVI 

(Dielman 2005).  The selection criteria included a test for multicollinearity between 

the explanatory variables  (Freund &  Wilson 1998) and a search for the subset that 

resulted in the highest r
2
 value adjusted for degrees of freedom (Furnival &  Wilson 

1974).  Further details on the selection criteria can be found in Chapter 2.   

Inferences of standard errors for the UQ regressions were obtained using the 

“wild bootstrap” method of (Feng et al. 2011), whereas the standard errors for the 

OLS regressions were calculated from the regression goodness of fit (r
2
) and the 

standard deviation of observed ΣNDVI values.  Potential ΣNDVI prediction errors 

were then calculated from the standard errors of the intercept and slopes at the 95% 

confidence level.  It is important to note here that the standard errors were estimated 

with the assumption that the regression covariates were measured with no error (see 

discussion section). 

3.2.3 Residual trends 

The residuals (observed ΣNDVI – potential ΣNDVI) were regressed linearly 

against time.  Negative or positive slopes (trends), if significant, indicate persistent 
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changes in ΣNDVI relative to the potential, as estimated by the OLS or UQ 

regressions of ΣNDVI on one or more of the meteorological variables.  However, 

errors associated with the calculation of the residuals introduce additional uncertainty 

to the regression of the residuals on time.  To measure this uncertainty, the total errors 

associated with the residuals were estimated by combining errors of the AVHRR 

NDVI measurements with the errors of the regression used to estimate potential 

ΣNDVI.  The standard errors of the ΣNDVI values were estimated in Appendix 1 to 

range between ±1.47 ΣNDVI units in grasslands (~3.3% of the ΣNDVI signal) and 

±3.3 ΣNDVI units in forests (~4.1% of the ΣNDVI signal).  Both sources of error 

were combined using the sum rule for the propagation of error.  The errors of the 

residuals were then propagated to the time-series linear regression used to estimate 

the residual trends (equation 1; Press et al. (1998)).  Significant residual trends were 

identified as the ones statistically different from zero (probability of the F value < 

0.05) and having absolute values greater than their respective uncertainties at the 95% 

confidence level.  
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Where    is the 1 sigma uncertainty of the slope value  ,     is the standard error 

associated with each residual value    ,    is the time variable, and   is the number of 

observations. 
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3.3 Results 

3.3.1 Estimating potential ΣNDVI 

Overall, UQ estimates of potential ΣNDVI were higher than those given by 

OLS regression models (table 3.1).   Furthermore, the UQ precipitation regression 

coefficients were consistently higher than their OLS counterparts (Figure 3.1 a & b).  

Thus the differences between the predicted values (UQ– OLS) were higher in wet 

years than in dry years.  Adding specific humidity and temperature or seasonal 

precipitation distribution variance and skewness as co-independent variates in the 

OLS regression models (see table 3.1, models B & C) increased the ability of these 

models to account for the observed variability in ΣNDVI (figure 3.1c), the 

consequences of which were more constrained predictions of potential ΣNDVI  

values.  However, compared to models E and F the UQ regressions using 

precipitation alone (model D), on average, had the lowest prediction errors (table 3.1). 

The geographical distribution of prediction errors was characterized by a pronounced 

latitudinal gradient with larger errors at lower latitudes (e.g. figure 3.2a).  Adding 

specific humidity, air temperature, seasonal precipitation variance and skewness to 

precipitation as predictor variables in OLS regression models decreased potential 

ΣNDVI prediction errors (figure 3.2 e & f) particularly at middle and higher latitudes 

(figure 3.2 b & c). 
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Model to 

estimate 

potential NPP 

Independent 

variables 

Model name 

abbreviation 

Mean coefficient 

value(s) 

Mean errors 

(NDVI units) 

OLS 
Precipitation 

Model A 0.028*prcp 28.1 

UQ Model D 0.032*prcp 19.8 

OLS Precipitation (prcp), 

specific humidity 

(shum) and 

temperature at 

surface (tas) 

Model B 

0.013*prcp + 

19.8*shum-

0.0016*tas  22.0 

UQ 

Model E 

 

0.015*prcp + 

19.7*shum-

0.0045*tas 20.6 

OLS Precipitation, 

seasonal distribution 

variance (var) and 

skewness (skew) 

 

Model C 

0.151*prcp - 

0.10*var + 

2.4*skew 24.7 

UQ 

Model F 

 

0.154*prcp - 

0.13*var + 

2.55*skew 21.7 

Table 3.1 Independent variables used in OLS and UQ regression models to estimate 

potential ΣNDVI values.  The mean regression coefficient values and potential 

ΣNDVI prediction errors at the 95% confidence level are the averages of all 

regression equations estimated for each 9 pixel arrangement of adjacent pixels. 
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Figure 3.1.  Properties of the models used to estimate potential ΣNDVI from the 

relationship between observed ΣNDVI and climate variables.   (a) The OLS and UQ 

regression lines and their prediction intervals at the 95% confidence level for a 

cropland site (3.725W, 11.525N) along with the ΣNDVI and precipitation values used 

in their estimation.  (b) Demonstrates the difference between the OLS and UQ 

precipitation coefficient values for all sites throughout the Sahel. (c) The ability of 

precipitation (model A), precipitation, specific humidity and temperature (model C) 

and precipitation and its intra-seasonal distribution (model B) to account for the 

variations in ΣNDVI. 
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Figure 3.2 Potential ΣNDVI prediction errors: (a) prediction errors of the OLS 

regression between ΣNDVI and precipitation (model A).  Compared to model A are 

(b) percentage reduction in potential ΣNDVI prediction errors of the OLS regression 

between ΣNDVI and precipitation, specific humidity and temperature (model B), and 

(c) percentage reduction in potential ΣNDVI prediction errors of the OLS regression 

between ΣNDVI and precipitation, its seasonal distribution variance and skewness 

(model C). (d) Frequency distribution of prediction errors for the three models 

normalized by the range of NDVI values [PE/(maximum NDVI – minimum NDVI)], 

and (e) frequency distribution of the values in (b) and (c). 
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3.3.2 Residual trends 

The total errors of the residuals calculated from potential ΣNDVI and 

observed ΣNDVI error components were larger at lower than at higher latitudes.  At 

higher latitudes, the two error components were similar in magnitude and contributed 

equally to the residual errors.  At lower latitudes, however, residual errors were 

dominated by the uncertainties of potential ΣNDVI values. 

   A comparison of the combined errors (equation 1) and simple F tests for four 

example sites is shown in figure 3.3 a-d. It turned out that the test for uncertainty was 

sufficient:  the probability of the F value test was < 0.05 for all slope values greater 

than their uncertainty, while the reverse statement was not always true (figure 3.3c & 

d). 

The geographical patterns of the residuals and their significance for the six 

models (figure 3.4) were similar.  There were relatively large areas with significant 

negative trends in western Sudan centered around Nyala, in southern Niger around 

the cities of Zinder, Maradi, Dosso and Niamey, in Nigeria extending between Kano 

in the north and Abuja in the south, and throughout Burkina Faso.  However, there 

were areas of disagreement between the models including in western Senegal and in 

Ethiopia to the east of Lake Tana.  Large areas with positive trends (i.e. increases in 

productivity beyond what can be explained by meteorological conditions) were 

recorded in Chad, Benin, Togo, Ghana, and elsewhere (figure 3.4 a though f).  Table 

3.2 summarizes the results from the six residual trend models.  Compared to the OLS 

(figure 3.4 a, b, & c), the maps of the UQ regression models (figure 3.4 d, e, & f) had 

more area with significant negative trends and less with significant positive trends. 
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Figure  3.3(a-d) Trends (slopes) of NDVI residuals (observed –potential) regressed 

over time at four locations in the Sahel.  The trends in (a) and (b) are significantly 

different from zero (p value of the  F test <  0.05 and their absolute values are greater 

than their respective uncertainty), whereas the trends in (c) and (d) are not significant 

on the basis of the same criteria. Bars are residual errors at the 95% confidence level. 
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Figure  3.4 a –f: Trends (slopes) of NDVI residuals (observed –potential) over time as obtained 

from the six residual trend models (A through F; see table 1). 

3.4 Discussion 

A key aspect in developing degradation indices is the estimation of potential, non-

degraded productivity (Prince 2002; Nicholson 2011a).  Vegetation productivity potential 

(or potential NPP) can be estimated using process-based prognostic vegetation models 

such as BIOME-BGC (Running &  Hunt 1993) and LPJ-DVGM (Hickler et al. 2005).  

However, the coarse resolution of soil data, the complexity of modeling competition 

between plant functional types, and the difficulty in parameterizing the interactions 
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between soil, vegetation and the atmosphere, lead to serious problems in model 

calibration (Jetten et al. 1999; Beer et al. 2010), resulting in large  uncertainties in 

potential NPP estimates.  The alternative approach employed here is data-oriented, also 

described as diagnostic or top-down, where relationships between interannual variations 

in ΣNDVI and meteorological conditions were first inferred for every grid cell at a spatial 

resolution of approximately 15km (9 adjacent AVHRR pixels).  These relationships were 

then used to estimate ΣNDVI potential as set by meteorological conditions for every year 

in the satellite record.   This method assumes that  ΣNDVI is linearly or near-linearly 

related to NPP, which, although unsupported in some cases (Sellers 1987), is a reasonable 

starting point particularly in drylands such as the Sahel where leaf areas index values 

rarely exceeded 3 (Seaquist et al. 2003; Fensholt et al. 2006). 

The degree of ΣNDVI variance explained by precipitation varied throughout the 

Sahel with higher r
2 

values more frequently observed in drier areas than in wetter areas 

(Chapter 2).  Overall, the average strength of the linear ΣNDVI/precipitation relationship 

(mean r
2 

= 0.43, figure 3.1c) was higher than reported by Fensholt &  Rasmussen (2011) 

but lower than the r
2
values reported in Herrmann et al. (2005). Both of these studies used 

GIMMS AVHRR NDVI data (Tucker et al. 2005) and gridded Global Precipitation 

Climatology Project (Huffman et al. 1997) or Rainfall Estimate (RFE) data (Xie &  Arkin 

1997).  The analysis by Fensholt et al. (2011) was based on annual sums of NDVI and 

precipitation.  In Chapter 2, the correlations between annual sums of NDVI and 

precipitation were found to be generally weaker than the relation between ΣNDVI and 

growing season precipitation totals.  Herrmann et al. (2005), on the other hand, found 

very strong correlations between monthly NDVI and cumulative rainfall of the current 
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plus the two previous months.  However, in Herrmann et al. (2005)  both monthly NDVI 

and monthly precipitation data were highly autocorrelated (Herrmann et al. 2005).  

Regression of  autocorrelated variables will most likely result in an overestimation of the 

strength and significance of the relationship (Granger &  Newbold 1974).  Whether the 

differences between the strength of the relationship found here and these reported in 

Fensholt et al. (2011) and Herrmann et al. (2005) was the result of using different 

integration periods or was the result of differences in precipitation and NDVI data quality 

cannot be deduced here.  

The current analysis, however, clearly indicated that ΣNDVI variance was better 

explained by growing season precipitation, specific humidity, and temperature or by 

seasonal variance and skewness of precipitation, rather than by precipitation alone (figure 

3.1c).  This was expected because of the roles these meteorological variables play in 

growth and rates of development of vegetation throughout the Sahel (Williams et al. 

2008; Merbold et al. 2009; Good &  Caylor 2011; Rishmawi et al. 2013).  Despite 

significant increases in r
2
 values, the strength of the relationship between ΣNDVI and the 

meteorological variables remained relatively weak south of the 900mm isohyet as well as 

near perennial lakes, irrigated agriculture, and rivers.  The low r
2
 values alongside rivers 

might have resulted from lateral inflows of water into these landscapes either due to 

flooding events or from irrigation.  The moderate to low r
2
 values at wetter sites may be 

attributed to the ability of trees to utilize rainfall from previous years stored deep in the 

soil profile (Fuller &  Prince 1996) or to the nature of the rainfall-soil moisture 

relationship becoming increasingly non-linear as the climate gets wetter (Chapter 2).  
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Whatever the reason, the moderate to low r
2
 values in these areas resulted in higher 

potential ΣNDVI prediction errors (Figure 3.2). 

 Potential ΣNDVI prediction errors were calculated with the assumption that the 

meteorological datasets were error-free.  This is clearly not the case and can be expected 

to increase potential ΣNDVI prediction errors and, if sufficiently large, would reduce the 

extent of the areas with significant trends. Unfortunately modeled meteorological data 

sets are rarely accompanied by measures of error and validation of the PHG data using 

meteorological stations is not possible since station data are used in the construction of 

the dataset (Sheffield et al. 2006).  Moreover, the systematic error component of the 

AVHRR data were not evaluated as data from other sensors with similar spatiotemporal 

resolution are not available for the period 1982-2006. However, the corrections applied to 

the meteorological and to the AVHRR data (Sheffield et al. 2006; Pedelty et al. 2007) 

were reported to significantly reduce the systematic error components in these datasets 

and therefore are not expected to influence greatly the conclusions of this study. 

Potential ΣNDVI values estimated from OLS regressions were generally lower 

than their counterparts obtained from the 95th upper quantile (UQ) distribution (Figure 

3.1 a & b).  Furthermore the deviations between OLS and UQ regression estimates often 

increased with rainfall (i.e. were higher in wetter than drier years).  Unlike UQ functions, 

OLS regressions may underestimate vegetation production potential because ΣNDVI time 

series often include years when vegetation production was not only limited by 

precipitation, humidity and temperature but was further reduced by land degradation and 

a number of slow and fast processes such as depletion of the meristems for the next 

year’s growth (e.g. seed and bud banks) (Dalgleish &  Hartnett 2006), nutrient 
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limitations, excessive run-off, grazing, and fuel wood collection (Pickup 1996).  In such 

cases, the mean rates of change in ΣNDVI will underestimate the production rates 

expected in response to climate variability (i.e. potential ΣNDVI values) but, because the 

magnitudes of these reductions often increased with rainfall, underestimating potential 

ΣNDVI values will influence the slope of the residuals with respect to time.  The 

consequences of which is an underestimating of the “degradation” signal and an 

overestimating of the “greening” signal.  That is not to suggest that estimating potential 

ΣNDVI using UQ regression functions is without its own problems, it is subject to the 

same errors as OLS because it is based on the same data, furthermore it is conceivable 

that supplementary irrigation and fertilization, run-on, carry over effects of soil moisture 

from previous wet years, and increases in seed and bud banks associated with high 

vegetation productivity in previous years (Fuller &  Prince 1996; Easterling et al. 2000; 

Easterling et al. 2007; Hiernaux et al. 2009a), among other causes, may result in an 

overestimation of potential vegetation production.  However, the effects of these factors 

are limited to the wetter areas of the Sahel, flood zones, and irrigated areas; most of 

which had high potential ΣNDVI prediction errors and insignificant trends. 

 As expected, the OLS based residual trend models (models A, B, and C)  resulted 

in larger areas with significant positive trends than the UQ based residual trend models 

(models D, E, and F) (table 3.1).  Despite the differences between the models in the 

significance of these trends, they all nonetheless indicate large and spatially coherent 

areas that greened faster than can be accounted for by changes in meteorological 

conditions (Figure 3.4).  Explanations of the “greening” trend in the literature include 

agricultural intensification, increased investment and improvements in soil and water 
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conservation techniques, land abandonment associated with economic migration and civil 

strife, and increases in water use efficiency associated with CO2 fertilization or 

transitions to new quasi-stable vegetation composition following the extreme droughts of 

the 1970s and 1980s (Prince 2002; Hickler et al. 2005; Mortimore &  Turner 2005; 

Olsson et al. 2005).  After removing the effects of rainfall on NDVI variability, 

Herrmann et al. (2005) similarly found positive trends over parts of the Senegal, 

Southern Mali, and Chad. However, large parts of Burkina Faso, northern Nigeria, 

southern Niger, and western Sudan were characterized by significant negative trends 

(Figure 3.4).  Even though some disagreement was expected due to differences between 

the climate datasets and because of differences in AVHRR data, the lack of agreement 

over such large areas is surprising.  Even more conflicting is the conclusion by Fensholt 

et al. (2011) that the residual trend method did not identify significant trends over the 

Sahel at the scales determined by the resolution of the AVHRR sensor.  

  The residual trend results were compared qualitatively by comparison with 

published case studies of land degradation and rehabilitation in the Sahel (e.g. Olsson &  

Rapp 1991; Hurault 1998; Faye et al. 2001; Mortimore et al. 2001; Tappan et al. 2004; 

Hurni et al. 2005) as well as by comparison with field observations by experts (Grey 

Tapan, 2008 pers com).   While these comparisons showed favorable agreement (table 

A2.1; Appendix 2), they should not be construed as validation results.   Validation sensu 

stricto requires direct measurements of vegetation at appropriate scales over a distributed 

set of sites.  Until such datasets become available, validation of satellite-derived 

degradation indices at the scales studied here will not be easy. 
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3.5 Conclusions 

It is unlikely that any stand-alone remote sensing-based approach will be able to 

unequivocally map human-induced land degradation (Prince 2002).  Furthermore, 

remotely sensed indicators provide little if any information on the social processes that 

give rise to degraded landscapes (Batterbury et al. 2002).  To complement the monitoring 

process, the next Chapter (Chapter 4) investigates whether the spatial variations in 

residual trend values (positive or negative) are related to land use and demographic 

pressures. 
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Chapter 4: Are changes in productivity related to demographic 

pressures? 

4.1 Introduction 

There are numerous claims that the process of land degradation is intricately 

linked to population growth, capital deficiencies and drought (Vierich &  Stoop 1990; 

Vlek 1990; Swift et al. 1994; Bationo et al. 1998; Breckle et al. 2001; Drechsel et al. 

2001; Le Houérou 2002).  On one hand, drought reduces agricultural yields and 

vegetation cover rendering the environment more sensitive to disturbances and 

mismanagement (Nicholson 2011a).  On the other hand, the widening gap between food 

supply and demand, capital deficiencies and the elimination of fertilizer subsidies are 

thought to drive the majority of farmers to shorten fallow periods and to expand 

cultivation onto marginal lands (Breman 1997; Barbier 2000; Reardon et al. 2001) thus 

increasing the risks of soil fertility depletion, erosion and crusting.  Once degraded, 

agricultural lands are often abandoned and new lands are brought into production 

resulting in a perpetuating cycle of agricultural extensification and land degradation 

(Webber 1996; Drechsel et al. 2001).  Agricultural extensification is also believed to 

have contributed, at least in part, to rangeland degradation (van Keulen &  Breman 1990; 

van de Koppel et al. 1997; Barbier 2000).  As arable land encroaches onto rangelands,  

the areas remaining accessible to pastoralists are often overstocked thus perturbing 

vegetation cover sufficiently to expose soils to wind and water erosion as well as to 

crusting and compaction by animal trampling (Le Houérou 1980a; Olsson &  Rapp 1991; 

Le Houérou 1996).   
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In a meta-analysis of 132 subnational case studies on the causes of land 

degradation, Geist &  Lambin (2004) identified a recurrent scenario of dryland 

degradation in Africa that involves the movement of farmers and pastoralists into 

marginal lands.  Mediated by socioeconomic and policy factors, this movement often 

resulted in overgrazing, extensive fuel-wood collection, and high cropping intensities 

especially during drought episodes.  This degradation scenario, however, has been 

challenged by a number of studies in the Western Sahel which have demonstrated that, 

under certain conditions, the expansion of agriculture onto marginal lands does not 

necessarily result in degradation mainly due to investments in soil and water conservation 

measures and to the emergence of mixed livestock-farming systems (Tiffen et al. 1994; 

Adams &  Mortimore 1997; Mazzucato &  Niemeijer 2000; de Ridder et al. 2004; 

Mortimore &  Harris 2005; Mortimore &  Turner 2005).  The thesis that Sahelian 

agriculture tends to be mainly extensive and degrading has also been found to be in 

discordance with agricultural yield data recorded between the 1960s and late 1990s 

(Hellden 1991; Breman 1998; Harris 1998; Niemeijer &  Mazzucato 2002; Mortimore &  

Harris 2005).  Furthermore, claims of rangeland degradation through overgrazing run 

counter to persistent long term increases in livestock populations (Sullivan &  Rohde 

2002; Mortimore &  Harris 2005).  To date, the causes of dryland degradation remain 

controversial (Helldén 1991; Thomas &  Middleton 1994; Lambin et al. 2001; Nicholson 

2011a). 

Drylands are extremely diverse in the biophysical conditions of the environment 

that influence their resilience (or susceptibility) to degradation by demographic and land 

use pressures (Lal et al. 1997; Eswaran et al. 2001; Nicholson 2011a). Soils range from 
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highly resilient to extremely sensitive and fragile.  Factors influencing soil resilience 

include soil inherent characteristics (e.g. soil texture, infiltration rate), vegetation cover, 

climate and terrain slope length and gradient (Lal et al. 1997). For instance, clays are 

generally resilient under conditions of high rainfall but are easily degraded under 

conditions of low rainfall while the opposite is generally true for sandy soils (Nicholson 

2011a). 

In Chapter 3, six residual trend models were developed to identify the areas where 

the land surface in the Sahel has been greening “faster” (i.e. positive residual trends) or 

“slower” (i.e. negative residual trends) than what would be expected from the trends in 

climate.  Over large areas of the Sahel (> 87%), the trends of vegetation greenness either 

exceeded (i.e. positive residual trends) or did not significantly depart (i.e. insignificant 

residual trends) from what was expected from the trends in climate.  However, substantial 

and spatially contiguous areas (8-13%) of the total area of the Sahel were characterized 

by significant negative trends (chapter 3, figure 3.4).  Significant negative trends indicate 

progressive reductions in vegetation production from the potential set by climate and soil 

(or reduced production efficiency; (Nicholson 2011a).  Reduced production efficiency 

has often been interpreted as an indicator of human-induced land degradation (Evans &  

Geerken 2004; Herrmann et al. 2005a; Fensholt &  Rasmussen 2011).   However 

negative or positive trends in production efficiency are not necessarily the result of land 

degradation or land improvement as they can result from other factors including changes 

in land use, agricultural intensification and CO2 fertilization among others. 

To test whether reductions in production efficiency were related to anthropogenic 

pressures, they were compared with the available data on population density and land 
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use.  Furthermore, this study investigates whether the influence of population and land 

use vary with the geography of land biogeophysical properties that determine the 

resilience of land to degradative processes (Scott 1979; Lal et al. 1997; Le Houérou 

2002; Meadows et al. 2004).  The results are relevant to the ongoing debate on the causes 

of land degradation in the Sahel. 

4.2 Material and methods 

4.2.1 Demographic and land use pressures data 

Sahelian population data were obtained from the Gridded Population of the World 

(GPW) population density data (ver. 3) for the year 2000 

(http://sedac.ciesin.columbia.edu/gpw).  The data are constructed from national and sub-

national census data (CIESIN 2005).  The major improvement over previous versions 

was a substantial increase in the number of sub-national input census data, the result of 

which is a significant improvement in the spatial resolution of gridded population density 

estimates (Balk et al. 2010).  Despite these improvements, large areas of Chad, Sudan and 

Guinea remain poorly resolved.   

A global agricultural gridded landcover dataset for the year 2000 (Ramankutty et 

al. 2008) was obtained from the NASA Socioeconomic Data and Applications Center 

(http://sedac.ciesin.columbia.edu/es/aglands.html).  This dataset merges a compilation of 

national and sub-national agricultural census data with satellite-based land cover 

classification maps. The satellite data are used to spatially locate agricultural grid cells in 

each census unit.  The results are provided as a global gridded map with values ranging 

between 0 and 1 depicting the location and fraction (or extent) of arable lands and 

permanent crops within each grid cell (figure 4.1c).  

http://sedac.ciesin.columbia.edu/gpw
http://sedac.ciesin.columbia.edu/es/aglands.html
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A gridded dataset of livestock density for the entire Sahel was obtained from the 

Food and Agriculture Organization (FAO) GeoNetwork database 

(http://www.fao.org/geonetwork/) for the year 2000. The dataset includes information on 

cattle, sheep and goat densities (animal.km
-2

).  The densities are calculated from sub-

national livestock census data and from land area suitable for grazing or browsing.  The 

spatial resolution of the gridded datasets is further refined by redistributing the densities 

within the administrative units based on statistical relationships between animal density 

and environmental variables.  The process includes developing statistical relationships for 

each agro-ecological zone from high spatial resolution training data and then applying 

these to fill data gaps or to refine coarse resolution data (Robinson et al. 2007).  In this 

study, the data were used to calculate total livestock unit (LSU) density using the FAO 

species coefficients for sub-Saharan Africa (Jahnke 1982) (figure 4.1d).  Because the 

impact on soil erosion of shrub or tree cover reduction is usually considered to be more 

severe than that associated with reductions in grass cover (Le Houérou 1996), browsers 

and grazers LSU densities were also calculated using livestock species food preferences. 

Studies of goats and sheep food preferences estimate goats diet to be made of 

approximately 80% shrub and tree fodders and 20% grasses and forbs, whereas sheep ate 

on average 80% herb and 20% browse (e.g. Wilson et al. 1975; Pfister &  Malechek 

1986; Bartolomé et al. 1998).  Cattle, on the other hand, were considered to depend 

mainly on grasses and forbs (Devendra 1990).   

Demographic and land use pressures are not limited to grazing and agricultural 

production but also include, among others, waste disposal, urbanization, and wood 

collection (for building and fuel).  A potential proxy for these is the local deficit between 
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consumption and production of goods (food, wood, and fiber).  (Imhoff et al. 2004) have 

modeled NPP using the Carnegie Ames Stanford Approach (CASA) and calculated an 

index of Human Appropriation of NPP (HANPP) from FAO data on products consumed 

in 1995 multiplied by harvest, processing and efficiency coefficients.  Their spatially-

indexed balance sheet of production and consumption expressed in Net Primary 

Productivity (NPP) units (g C.yr
-1

) at a spatial resolution of 0.25ᵒ was used here. 

Expressing HANPP as a percentage of NPP (%HANNP) revealed considerable 

heterogeneity in the spatial patterns of consumption and production throughout the Sahel 

(figure 4.1b). 

4.2.2 Soil and land cover data 

Information on soil physical and hydrological variables were obtained from the 

Harmonized World Soil Database (HWSD; (FAO/IIASA/ISRIC/ISSCAS/JRC 2009).   

Within the Sahel region, the database merges the soil map units (SMU) from the FAO 

soil map of the world at a scale of 1:5 million with Soil and Terrain (SOTER) regional 

studies in Sudan, Ethiopia, Senegal, and Gambia at scales ranging between 1:1 million 

and 1:5 million.   Thus, the spatial detail and quality of the data vary across the Sahel. In 

the HWSD database estimates of topsoil and subsoil variables within each SMU are 

derived using soil profiles (contained in the second version of the WISE database) and 

taxonomy-based pedotransfer functions. In this study, the soil mapping units were 

rasterized to a spatial resolution of 0.05ᵒ to match that of the AVHRR data.  In addition to 

the variables contained in the HWSD, the Soil Erodibility Factor was estimated using a 

mathematical representation (Keefer 2000) of the nomograph method based on the work 

by (Wischmeier et al. 1971). 
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The proportional estimates of bare ground, woody and herbaceous vegetation 

cover for the year 2000 in the MODIS MOD44B Vegetation Continuous Fields product 

(Hansen et al. 2003) were used (downloaded from GLCF, http://www.landcover.org/).  

These data provide an improved depiction of spatially complex landscapes compared 

with discrete classifications (Hansen et al. 2003).  

All coarse resolution mapped data were resampled to the 0.15° resolution of the 

six residual trend datasets using nearest neighbor resampling for categorical data and 

bilinear interpolation for continuous data. 

 

 

 

 

 
Figure 4.1 a: Trends (slopes) of NDVI residuals (observed –potential) over time as 

obtained from the OLS regression of NDVI with precipitation, specific humidity and 

temperature (see table 4.1).    b – d: datasets used to explore the relationship between 

residual trends and land use pressures (Ramankutty et al. 2008; FAO 2011).  

(a) 

(b) 

(c) 

(d) 

http://www.landcover.org/
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4.2.3 Relating residual trends to demographic pressures, land cover, and soil 

variables 

The relation of residual trends to land exploitation by human agencies and to land 

biophysical characteristics that might influence its susceptibility to degradation were 

explored using statistical summaries, multivariate linear regression models and regression 

tree analysis (RTA).  Data on demographic pressures included population density, 

HANPP, %HANPP, the percentage of land used for crops (%crops), grazers and 

browsers livestock unit densities (Grazer LSU and Browser LSU), as well as 

transformations of LSU in relation to local NPP (LSU/NPP) and %crop area in relation to 

mean annual rainfall (%crops/MAP).   Plots of the mean and standard deviation of 25 

equally sized groupings of residual trend values ranked by each demographic pressure 

variable were used to discern whether the spatial variability in any of these datasets was 

associated with changes in land productivity.  For example, the residual trend values were 

ranked by population density and placed in 25 equally sized groups.  The mean and 

standard deviation of the residual trend values within each group were then calculated 

and plotted against their corresponding mean population density values.  In addition to 

these univariate statistical summaries, multivariate linear regression models were used to 

explore the additive effects of demographic pressures on residual trends. 

Land cover type and soil physical and hydrological conditions may attenuate or 

accelerate the effects of demographic pressures on land productivity (Prince 2002; Geist 

&  Lambin 2004).  The recursive data mining approach in RTA has been found to be 

effective in uncovering such hierarchical relations (Prasad et al. 2006). Furthermore, 

RTA allows for the discovery of both additive and multiplicative relations among the 

response and explanatory variables (Moore et al. 1991).  In this study, two RTA 
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techniques were used, namely the Classification and Regression Trees (CART; (Breiman 

et al. 1984) and the Random Forest (RF; (Breiman 2000; Breiman 2001) techniques.  The 

CART trees provided hierarchical mapping of the relations between the explanatory 

variables and the residual trends.  The RF technique, on the other hand, evaluated the 

ability of the explanatory variables to account for the variability in residual trend values. 

The relative importance of each variable in explaining residual trend variations was 

determined based on reductions in percentage variance explained when the explanatory 

variable was not used in the analysis. 

  Instead of including all explanatory variables in one RF models, several RF 

models were developed each using a subset of the explanatory variables that were not 

highly correlated.  For example, the highly correlated soil erodibility and soil texture 

variables were not used in the same RF model.  500 trees were grown for each RF model.  

Each tree was grown using a randomly selected training sample representing 67% of the 

entire population of significant residual trend values and their covariates (   ).  The 

remaining 33% of the data  produced 500 “out-of-bag” samples (Breiman 2001), each 

corresponding to one tree in the RF model.  Each tree (i.e. set of rules) was then used to 

predict the expected residual trend value E(Y) for each data point in its “out-of-bag” 

sample.  Because of the large number of trees grown, it follows almost surely that there 

are multiple residual trend predictions  (    
 ) for each data point in the population 

(   ). The predictions  (    
 ) were averaged and compared to their corresponding   

values to calculate the mean square error (MSE) and the strength (r
2
) of the RF model as 

described in Breiman (2001).  (Breiman 2001; Prasad et al. 2006) found this “out-of-bag” 

method for estimating generalization error is as accurate as MSE and r
2
 values obtained 
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by cross validation.  To test the accuracy of the “out-of-bag” method, 10 set-aside test 

sets were selected randomly, each about one-third the total population size.   The 

remaining data (i.e. training sets) were used to develop 10 RF models.  The RF models 

were used to predict the residual trend values of the test sets.  The predicted and original 

test set residual trend values were compared to estimate the errors and strengths of the RF 

models.  Indeed, the MSE and r
2
 values obtained by cross-validation were almost equal 

and even sometimes slightly better than the corresponding values obtained from the “out-

of-bag” method. 

4.3 Results 

Significant trends were compared to demographic and land use pressures. Plots of 

the mean and standard deviation of 25 equally sized groupings of residual trend values 

ranked by each demographic and land use pressure variable showed a poor relationship 

between population density and the trends of the residuals, although a negative trend is 

clear (Figure 4.2a).  However, there was a distinct inverse relationship between residual 

trends and %HANPP (Figure 4.2b), possibly because HANPP accounts for the effects of 

population density and the geographical variation in per capita consumption levels.  The 

plots also suggest an inverse, near linear relationship between residual trends and 

livestock unit density and a similar relation with livestock unit density divided by 

productivity (LSU/NPP) (Figure 4.2c & d).  However, Figure 4.2e shows a weak inverse 

logarithmic relationship between residual trends and %crop cover. The relation between 

residual trends and %crop cover was further investigated using an index (%crop 

cover/mean annual precipitation [MAP]) to assign higher values to the same %crop cover 

in drier areas compared with wetter areas.  Residual trends were found to be inversely 
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related to this index (Figure 4.2f).  This suggests that agricultural extensification affects 

land productivity disproportionately in dry areas. 

The multivariate linear regression analysis of residual trends revealed that the 

additive effects of multiple land uses better explained the spatial variations in residual 

trend values than individual land use pressures (Table 3). The highest goodness of fit (r
2 

= 

0.49) was between model E residual trends and the three variables (%HANPP, LSU/NPP, 

and %crop cover/MAP), while the lowest (r
2 

= 0.34) was for the trends calculated using 

model D. 
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Figure 4.2 Mean residual trend values (observed – potential)  within groupings of (a) population 

density (person/ha); (b) percentage human appropriation of NPP; (c) livestock unit density 

(unit/ha); (d) livestock unit density normalized by site productivity; (e) fraction land area used for 

crops; and (f) fraction land area used for crops normalized by mean annual precipiattion. Filled 

circles are trends of the residuals where potential NDVI was obtained from OLS multivariate 

regression between NDVI and precipitation, specific humidity, and temperature.  Open circles are 

trends of the residuals where potential NDVI was obtained from OLS multivariate regression 

between NDVI and precipitation, its seasonal variance and skewness.  Error bars are ±1 standard 

deviation around the mean. 
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The RF regression analysis indicated that, in addition to demographic and land 

use pressures, land cover and soil properties were significant (model E) (tables 4.2 & 

4.3).  The addition of fraction tree cover, soil bulk density and soil erodibility increased r
2
 

values.  For example, the percentage variance in residual trend values explained by the 

variables LSU/NPP, crop density, and population density was approximately 60%.  

Adding soil bulk density or fraction tree cover increased the percentage variance 

explained (r
2
) by more than 14% (table 4.2).  Similarly, %HANPP alone explained 25% 

of the variability in residual trend values (Table 4.1) but adding soil bulk density and 

fraction tree cover increased the percentage variance explained to approximately 80% 

(table 4.3).  The r
2
 and the RMSE values of the RF models estimated using the “out-of-

bag” method were similar to those obtained using the cross-validation approach, which 

indicates that, while RF trees were grown to a maximum without pruning, there was no 

evidence of model overfitting.   Cross validation results for two RF models with 

relatively high r
2
values are shown in Figures 4.3c & 4.4c.  The most important variables 

in relation to the spatial distribution of residual trend values listed in descending order 

were fraction tree cover, soil bulk density, soil erodibility, livestock unit density divided 

by the products of local photosynthesis (LSU/NPP), the index of cropping density 

divided by mean annual precipitation (%crop/MAP), and finally population density 

(figures 4.3b & 4.4b).  The component loadings obtained from principal component 

analysis suggest that, except for fraction tree cover, all other variables were inversely 

related to residual trend values (figures 4.3a & 4.4a).   The same analytical procedure was 

repeated but by utilizing residual trend values calculated from the other models (i.e. 

models A, B, C, D & F). While the nature of the relationships with land use pressures, 
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land cover and the geographical positions of soil properties were similar to these 

described for model E, the strength of the these relationships were persistently lower 

when residual trend values from models A & D were used in RF regression analysis, 

whereas the r
2
 values for model B approached the corresponding model E values. 

  

Explanatory variables used in the regression tree 

model 

Variance 

explained 

(~r
2
) 

Land use 
LSU/NPP 0.31 

LSU/NPP + CD/MAP 0.54 

Land use +  

… + Available Water Capacity  0.58 

… + Soil Texture  0.62 

… + Soil Erodibility Factor (SEF) 0.64 

… + Soil Bulk Density (SBD) 0.69 

… + Land cover type  0.52 

… + Fraction herb cover  0.6 

… + Fraction tree cover (fTree) 0.68 

… + Topographic Slope 0.56 

… + Fire density 0.62 

… + Population density (PopD) 0.64 

"Best" models 

Land use + PopD + SEF 0.72 

Land use + PopD + fTree 0.76 

Land use + PopD + SBD 0.8 

Table 4.2 Spatial variation in residual trend values explained by land use (livestock unit 

density and cropping density), land use and soil properties, and land use and land cover 

using RF regression tree models. LSU/NPP - livestock unit density normalized by site 

primary productivity, CD/MAP – Cropping density normalized by Mean Annual 

Precipitation. 
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Explanatory variables used in the regression tree 

model 

Variance 

explained 

(~r2) 

%HANPP 

… + Available water capacity 0.56 

… + Texture  0.66 

… + Erodibility factor 0.69 

… + Soil Bulk density (SBD) 0.74 

… + Land cover type  0.53 

… + Fraction herb. cover  0.64 

… + Fraction tree cover (fTree) 0.73 

… + Slope 0.64 

… + Fire density (FD) 0.65 

"Best" 

models 

%HANPP+SBD+fTree 0.80 

%HANPP+SBD+fTree+FD 0.81 

Table 4.3  Spatial variation in residual trend values explained by 

%HANPP and soil properties, %HANPP and vegetation cover, 

%HANPP and fire density, and %HANPP soil bulk density and 

fraction tree cover using RF regression tree models. 
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Figure 4.3 The upper panel demonstrates the relationship between significant residual 

trends and four explanatory variables, namely, soil erodibility factor, livestock unit 

density normalized by site productivity (LSU/NPP),  fraction land used for agriculture 

(cropping density), and population density: (a) is a biplot of the of the first and second 

principal component loadings of  a principal component analysis, and (b) are variable 

importance values calculated by the regression tree model Random Forest.  The lower 

panel demonstartes the ability of the four explanatory variables to explain the variation in 

residual trend values: (c) is a comparison between residual trend values modeled from the 

NDVI data time series (x-axis) and residual trend values predicted by RF analysis (y-

axis), and (d) is a histogram of the differences between the plotted values in (c).  Residual 

trends insignificantly different from zero were excluded from the analysis. 
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Figure 4.4 The upper panel demonstrates the relationship between significant residual 

trends and the three explanatory variables, namely, fraction tree cover (fTree), percentage 

human appropriation of NPP (%HANPP), and soil bulk density: (a) is a biplot of the of 

the first and second principal component loadings of a principal component analysis, and 

(b) are variable importance values calculated by the regression tree model Random 

Forest(RF).  The lower panel demonstartes the ability of the three explanatory variables 

to explain the variation in residual trend values: (c) is a comparison between residual 

trend values modeled from the NDVI data time series (x-axis) and residual trend values 

predicted by RF analysis (y-axis), and (d) is a histogram of the differences between the 

plotted values in (c).    Residual trends insignificantly different from zero were excluded 

from the analysis. 
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CART tree models did not capture the spatial variability in model E residual trend 

values as well as RF models, nonetheless they provided a graphical demonstration of the 

nature of the relation of residual trends to the explanatory variables (figures 4.5 & 4.6). 

Negative residual trend values were associated with areas characterized by high soil 

erodibility (>0.41) and population densities above 6.5 persons.km
-2

, whereas areas with 

very high soil erodibility and population density below 6.5 persons.km
-2 

had on average 

positive residual trend values.  Other areas associated with negative residual trends were 

characterized by high LSU/NPP values (>1.41), intermediate soil erodibility (0.24-0.41) 

and high population density (>19.5), or by intermediate LSU/NPP values (0.3-1.41), 

intermediate soil erodibility (0.24-0.41) and high cropping density/MAP (>0.41) (Figure 

11).  The regression tree of the relation of residual trends to %HANPP, fraction tree 

cover, and soil bulk density (figure 12) showed that the areas with low fraction tree cover 

(<8.5%), high soil bulk density (> 140.5), and high %HANPP (>24.5%) were generally 

associated with negative residual trend values, whereas areas with high fraction tree 

cover (>18.5%) and low soil bulk density (<136.5) were associated with positive trend 

values. 
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4.4 Discussion 

Analysis of the relation between residual trend values and population density does 

not support the notion that higher population density in the Sahel invariably causes 

reductions in land productivity (table 4.1).  %HANPP, on the other hand, was related to 

reductions in land productivity (r = -0.55).  It should be noted that the calculation of 

%HANPP in Imhof et al. (2004) does not account for lateral flows (imports or exports) of 

NPP-based products.  Including these effects may provide a better accounting of the 

pressures people impose on their local environment. Nevertheless, the relationship 

between %HANPP and residual trends was strong enough to suggest that higher demands 

for NPP-based goods in relation to local NPP production are likely to impoverish local 

ecosystems as suggested in (Daily et al. 1997).   

Further examination of the relation of single land use pressures such as livestock 

and area of land used in cultivation to the residual trend values revealed moderate to 

weak correlations (table 4.1).  However, stronger relationships were found between 

residual trends and the ratios of both LSU to livestock carrying capacity (LSU/NPP; r = -

0.51) and %crop to mean annual precipitation (%crop/MAP; r = -0.55).   While the 

inverse relationship between residual trends and LSU/NPP was expected, the relation 

with %crop/MAP suggests that the extension of cultivation into marginal lands, not 

suitable for agriculture, may result in long term reductions in productivity or degradation 

(Le Houérou 1996; Geist &  Lambin 2004).  

The meta-analysis of case studies of land degradation (Geist &  Lambin 2004) 

found that, contrary to the theory of single-factor causation (Breckle et al. 2002; Le 
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Houérou 2002), land degradation in Africa can more often be attributed to multiple 

factors and to remote influences such as changes in agricultural policies, extensive 

livestock production, production of annual cash crops and irrigation development. It was 

also found that the spatial variations in residual trend values were not only better 

explained by a multiplicity of land use pressures but also by local variations in 

biophysical variables (tables 4.2 & 4.3).  Of the biophysical variables explored, soil bulk 

density, soil erodibility, and the fraction land area covered by trees were strongly related 

to the vulnerability of landscapes to land use pressures.  These variables either enhanced 

or dampened the adverse effects of demographic and land use pressures (figure 4.5 & 

4.6).  For instance, areas with high soil bulk density were frequently associated with 

negative residual trends suggesting that high bulk density soils were more susceptible to 

water erosion and wind dispersion as suggested in (Meeuwig 1970; Yamamoto &  

Anderson 1973; Young &  Mutchler 1977; Gupta et al. 2010).  Areas with low fraction 

tree cover were also frequently associated with negative residual trends suggesting the 

areas with low fraction tree cover were more susceptible to degradation by human 

agency.  One possible mechanism is that fuel wood collection and agriculture and grazing 

simplify the vegetation structure exposing the soil to wind and water erosion (Le 

Houérou 1996).  

4.5 Conclusions 

Several studies have demonstrated that the return of more favorable climate 

conditions in the Sahel, following the extreme droughts of the 1970s and early 1980s, 

was accompanied by a net increase in vegetation greenness (e.g. Nicholson et al. 1998; 

Eklundh &  Olsson 2003).  Yet the spatial variations in the rates of vegetation recovery 
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have only partially been explained by climate trends (Olsson et al. 2005; Hiernaux et al. 

2009b) thus reinvigorating the debate about the influence of anthropogenic land uses on 

vegetation productivity (Hein &  De Ridder 2006; Hein et al. 2011).  The analysis in 

Chapter 3 identified the areas where the land surface has been greening “faster” (i.e. 

positive residual trends) or “slower” (i.e. negative residual trends) than what would be 

expected from the trends in climate.  In this Chapter, the spatial variations in residual 

trend values were related to land use and demographic pressures. 

The results suggest that over large areas of the Sahel (> 87%), the trends of 

vegetation greenness either exceeded (i.e. positive residual trends) or did not significantly 

depart from what is expected from the trends in climate (i.e. insignificant residual trends).  

The areas with positive residual trends were frequently associated with relatively low 

demographic and land use pressures. (Olsson et al. 2005) and (Mortimore &  Harris 

2005) cite changes in land use, land rehabilitation and/or investments in soil and water 

conservation measures as possible causes of the recent greening trend in the Sahel.  

Undoubtedly, there are places where land rehabilitation efforts have increased land 

productivity but, at the scale of observation used here, there is little evidence to suggest 

that land rehabilitation or agricultural intensification were adequate explanations of the 

long term increases in land surface greenness.  For instance, Cropland expansion in West 

Africa was accompanied by a decrease in fertilizer use (-1.83% per year) and just a 

modest increase in irrigation (0.31% per year) (Sanchez 2002; Lambin et al. 2003).  The 

scales of the phenomena and the explanations must match. Explanations that match the 

scale of the findings include an increase in water use efficiency caused by CO2 

fertilization, higher nitrogen deposition, higher atmospheric aerosol loadings, or 
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transitions to new quasi-stable vegetation compositions following the extreme droughts 

of the 1970s and 1980s (Cohan et al. 2002; Matson et al. 2002; Nemani et al. 2003; Cao 

et al. 2004; Hickler et al. 2005) and, perhaps, non-linear, accelerating responses of 

vegetation to the changing climate.  

Contrary to findings in similar studies (Herrmann et al. 2005a; Fensholt &  

Rasmussen 2011), this study found substantial (8-13%) and spatially coherent areas with 

significant negative residual trends.  These areas were found to have high livestock 

densities relative to their carrying capacity, heavily utilized for cultivation, overworked 

marginal lands or combinations of these. The results suggest that demographic and land 

use pressures have had a measurable impact on vegetation dynamics in some parts of the 

Sahel during the period 1982–2006. 
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Chapter 5:  Synthesis, discussion and significance 

5.1 Context 

There is a pressing need for quantitative information on the distribution, severity 

and causes of land degradation (Dregne 2002; Prince 2002). This information is 

important to understand the effects of degradation on land surface properties, atmospheric 

dust transport, and land-atmosphere feedbacks that could enhance, through changes in 

albedo and evapotranspiration, the drying tendency initiated by changes in global sea 

surface temperature (Charney 1975; Zeng 2003). Also, this information is important to 

channel land improvement investments and to support decision-making on the 

appropriate intensity and type of land use (Batterbury et al. 2002; Dregne 2002; Geist &  

Lambin 2004)  

There are several reasons for the current lack of information on the extent, 

severity and causes of land degradation, including the lack of appropriate metrics that are 

consistent and practicable for use over large areas.  NPP, which can be measured reliably 

from space is a promising technique for monitoring land degradation since most of the 

biophysical processes involved in degradation (e.g. soil crusting, compaction and erosion, 

depletion of soil nutrients and organic matter, and the disruption of biogeochemical 

cycles) reduce the NPP – that is accumulation of biomass through time (Prince 2002).  

The goals of this dissertation were therefore to:  (1) use consistent, spatially 

contiguous, and long-term satellite based estimates of NPP to examine quantitatively 

whether there is evidence of human-induced land degradation in the Sahel and, if so, its 

location and intensity, and (2) investigate the relation of land degradation to demographic 
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and land use pressures.  This chapter synthesizes the findings and discusses their 

significance. 

5.2 Findings 

NPP in arid and semi-arid areas is largely determined by soil moisture 

availability.  Soil moisture is in turn influenced by soil properties, the size and frequency 

of precipitation events, incident solar radiation, air temperature and humidity.  However, 

the Sahelian climate, especially rainfall, is highly variable in time and location so any 

reduction in NPP caused by degradation is often masked by the stronger effects of 

climate variations on NPP.  Therefore it is essential to control for the effects of climate 

variability when attempting to tease out evidence of human-induced land degradation.  

To control for the effects of climate, the observed NPP was examined as a departure from 

potential NPP; that is the NPP expected in response to climate variability alone excluding 

any human-induced changes in productivity.  Earlier studies (e.g. Geerken &  Ilaiwi 

2004; Wessels et al. 2007) estimated potential NPP from the rainfall -NPP relationship 

(Rain Use Efficiency, RUE) which was assumed to be a conservative parameter (Le 

Houérou 1984).  However, estimating potential NPP from the rainfall -NPP relationship 

is only applicable where rainfall is the principal factor limiting vegetation production 

(Prince 2002).  In this research, however, the inter-annual variations in NPP were poorly 

explained by annual rainfall totals (Chapter 2) in large areas in the dry (< 400mm mean 

annual precipitation (MAP)) and wet margins (>1000mm MAP) of the Sahel. 

Several factors other than precipitation totals were found to influence vegetation 

production. For example, statistical analyses revealed positive relationships with 

humidity.  A sensitivity analysis using a detailed soil-vegetation-atmosphere-transfer 
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model (SSIB2) (Chapter 2) indicated that, in addition to rainfall, air humidity and 

temperature can also affect vegetation production (figure 2.13) either directly by 

influencing stomatal conductance (figure 2.12) or indirectly by altering soil moisture 

levels (figure 2.11).  Higher specific humidity was found to reduce modeled 

evapotranspiration demand resulting in higher volumetric soil moisture content in the 

root zone (figure 2.11).  Higher volumetric soil moisture content and higher atmospheric 

vapor pressure, in turn, combined to increase modeled stomatal conductance (figure 2.12) 

and therefore canopy-scale NPP (figure 2.13).  The sensitivity to humidity was, in 

general, higher in wetter areas (figures 2.11, 2.12 & 2.13), possibly because of the 

preponderance of C3 plants which are more sensitive to variations in humidity 

(Kawamitsu et al. 1993) than C4 grasses which dominate the drier regions of the Sahel. 

Modeled vegetation responses to temperature variation revealed both positive and 

negative relationships. Positive associations occurred in the mountainous wet regions and 

during wet periods of the growing season while negative relationships were found in 

hotter, lower altitude regions.  The positive relationships may have been caused by 

increases in temperature-dependent photosynthetic reaction rates that countered the 

desiccating effects of higher temperatures (figures 2.11 and 2.13).  Negative NPP-

temperature relations occurred in the larger, hotter areas (figure 2.8) probably due to the 

desiccating effects of higher temperatures. 

Correlation and model sensitivity analysis indicated that vegetation production in 

the drier parts of the Sahel was more sensitive to inter-annual variations in rainfall totals 

than areas with greater rainfall (figures 2.9 & 2.13). The weak NPP response to additional 

precipitation in the wetter margins suggest that the woody plant associations in sub-
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humid southern Sahel had sufficient soil moisture to meet evapotranspiration demands 

even during years with below-average precipitation (Chapter 2).  Model sensitivity study 

of NPP response to precipitation at several sub-humid locations showed that soil moisture 

by volume, even in dry years, did not drop below 12% (figure 2.11) and hence did not 

limit transpiration or  productivity (figure 2.12). 

In addition to precipitation totals, the within-season distribution of precipitation 

events was also found to be correlated with vegetation production.  The correlations 

between growing season, compared with annual integrated NPP and precipitation totals, 

were generally higher (Chapter 2), confirming that occasional rainfall outside the main 

growing season has little effect on vegetation production (Yang et al. 1998; Wang &  

Eltahir 2000; Wessels 2005; Wessels et al. 2007; Knapp et al. 2008).  This was 

particularly evident in the northern Sahel where seedlings of early germinating species, 

including staple crops such as millet, can be killed by drought following early rain. 

While NPP was inversely related to intra-seasonal precipitation variance, it was 

positively related to its skewness, suggesting that, for the same amount of precipitation, 

vegetation production is higher when precipitation arrives in more frequent and less 

intense events.  These findings are different from the suggestion in Knapp et al. (2008) 

that an intensified hydrological regime would increase NPP in xeric environments while 

reducing NPP in mesic environments.  The discrepancy between the results of this study 

and those of Knapp et al. (2008) may be caused by differences in average size of 

precipitation events between their study site in North American grasslands and the Sahel. 

Whereas in North American grasslands, an intensified precipitation regime may reduce 

water losses to canopy interception, evaporation and runoff (Knapp et al. 2008), the same 
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is not necessarily true for the Sahel since the percentage of total precipitation that falls in 

very small events (<7 mm/day) in the Sahel is minimal (Barbé &  Lebel 1997; D'Amato 

&  Lebel 1998; Le Barbé et al. 2002) and therefore the reductions in evaporation due to 

an intensified precipitation regime might not offset water losses to higher runoff.  

In general, the inter-annual variations in NPP were better explained by 

precipitation, specific humidity and temperature or by precipitation and its intra-seasonal 

distribution than by precipitation totals alone.  The climate-NPP relations were 

geographically coherent, suggesting fundamental causes.  The analysis clearly revealed 

that vegetation dynamics in the Sahel and their environmental correlates are more 

complex than equilibrial relationships between total growing season precipitation and 

NPP. The relationships presented here provided a new dimension to climate–productivity 

relationships in the Sahel.  

The geographical distribution of negative trends in productivity, where NPP is 

lower than what can be explained by meteorological conditions, and positive (“greening”) 

trends where productivity is higher than what can be explained by meteorological 

conditions, consistently identified substantial and spatially contiguous areas (~8% of the 

total area of the Sahel) with significant negative trends (Chapter 3).  These included large 

areas in western Sudan centered on Nyala, in southern Niger around the cities of Zinder, 

Maradi, Dosso and Niamey, in Nigeria extending between Kano in the north and Abuja in 

the south, and throughout Burkina Faso (figure 3.4).   

Explanations of the “greening” trend in the literature include agricultural 

intensification, land abandonment associated with economic migration and civil strife, 
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and increased investment and improvements in soil and water conservation techniques 

(Prince 2002; Hickler et al. 2005; Mortimore &  Turner 2005; Olsson et al. 2005).  

However, the areas with positive residual trends found here were frequently in areas with 

lower population and hence land use pressures (Chapter 4).  Therefore, there is little 

evidence to suggest that land rehabilitation, economic migration, or agricultural 

intensification are adequate explanations of the large scale “greening” of the Sahel.  The 

scales of the phenomena and the explanations must match. Explanations that match the 

scale of the findings include an increase in water use efficiency caused by CO2 

fertilization, higher nitrogen deposition, higher atmospheric aerosol loadings, or 

transitions to new quasi-stable vegetation compositions following the extreme droughts 

of the 1970s and 1980s (Cohan et al. 2002; Matson et al. 2002; Nemani et al. 2003; Cao 

et al. 2004; Hickler et al. 2005). 

Contrary to the theory of single-factor causation (Breckle et al. 2002; Le Houérou 

2002),  negative trends of NPP in the Sahel were often related to multiple land use 

pressures especially the expansion of agriculture into dry areas and to high grazing 

densities in the drier parts of the Sahel.  This suggests that in these areas, the existing 

livestock densities and recent agricultural practices (e.g. length of the fallow period) are 

reducing vegetation production thus increasing the risk of land degradation. However, the 

vulnerability of land to degradation from land use pressures was found to vary with soils 

and tree vegetation cover.  Areas with high soil bulk density were more frequently 

associated with negative residual trends suggesting that they were more susceptible to 

water erosion and wind dispersion than others, as suggested in (Meeuwig 1970; 

Yamamoto &  Anderson 1973; Young &  Mutchler 1977; Gupta et al. 2010).  Areas with 
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low tree cover were also more frequently associated with negative residual trends re-

emphasizing the role trees play in protecting the soil from erosion processes. 

5.3 Relevance to climate studies, global carbon budget and food security  

The impacts of land degradation on regional climate are poorly understood.  In 

1975, Charney controversially claimed that the drought had been the result of land 

degradation. He hypothesized that land degradation increases surface albedo which, in 

turn, reduces atmospheric subsidence over the Sahel which in turn suppresses rainfall 

providing a positive feedback by which degradation causes drought and drought becomes 

self-accelerating. While some modeling studies do not support Charney’s hypothesis 

(Taylor et al. 2002; Nicholson 2011b), most support the idea that changes in vegetation 

and soil associated with land degradation can have an influence on weather and climate 

(Zeng et al. 1999; Clark et al. 2001; Prospero &  Lamb 2003), Furthermore, most of these 

simulations tested hypothetical scenarios of expansive and severe degradation (Zeng et 

al. 1999; Clark et al. 2001; Prospero &  Lamb 2003).  Therefore it remains unclear 

whether the actual extent of degradation in the Sahel has any measurable impact on 

climate.  The maps of land degradation produced here are making a significant 

contribution to such modeling efforts (e.g. Xue, personal communication). 

The effects of land degradation on the carbon (C) cycle are poorly known which 

is surprising in view of the fact that  drylands’ soil organic and inorganic C have been 

estimated to comprise 27% and 97% of the global reserves, respectively (Safriel 2007a).  

Land degradation presumably releases large amounts of C from soil erosion and from 

cleared and dead vegetation (Lal 2003; Williams &  Albertson 2005).  Yet the impact of 

land degradation on the C budget is not accounted for in any regional-scale C models 
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(Lal 2003).  Part of the reason is that the available data on the extent and severity of land 

degradation is sparse and is generally subjective, qualitative, and often exaggerated (Lal 

2003; Lal 2004).  The assessment of persistent reductions in land productivity potential as 

a large scale anthropogenic modification of the land surface developed here can make a 

crucial contribution to C-cycle research, including C accounting (Hulme 2001; Nicholson 

2001). 

Furthermore, controlling land degradation is central to achieving food security, 

sustainable agricultural and rural development in many countries. Today, regional and 

international development assistance agencies are actively engaged with the governments 

of the 195 United Nations Convention on Combating Desertification (UNCCD) signatory 

Parties (nations) in designing and implementing land degradation control projects, 

programs, planning and legal frameworks (Low 2013).  Yet, the paucity of data on land 

degradation – its location, severity and causes - partly due to the lack of any readily 

measured, objective indicators have inhibited progress (Prince 2002). 

To strengthen the implementation of the UNCCD goals, the Conference of the 

Parties in its eighth session (2007) invited Parties and international institutions to 

“identify the major aspects of land degradation arising in the various eco-geographical 

zones and to measure their severity in order to find appropriate solutions” and also 

invited the “Committee on Science and Technology (CST) to assist in creating an 

international policy environment for the provision and transfer of adequate technology, 

particularly remote sensing technology, to affected country Parties for the establishment 

of effective monitoring and assessment systems” (UNCCD 2007).  The land degradation 

monitoring techniques developed in this study are relevant to UNEP’s Land Degradation 
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Assessment (LADA) project tasked with developing standardized and improved methods 

for dryland degradation assessment.    

5.4 Technique development 

A key aspect in developing degradation indices is the identification of potential, 

non-degraded sites (Prince 2002; Nicholson 2011a) to provide the standard against which 

actual NPP can be judged.  Because of the more complex relationships between NPP and 

environmental factors revealed by the regression analyses and modeling discussed above, 

potential NPP was estimated here from regression of NPP on (1) precipitation, (2) 

precipitation, specific humidity and temperature, and (3) precipitation and its intra-

seasonal distribution (Chapter 3).  Compared to NPP calculated from precipitation alone 

(1), potential NPP estimated using precipitation, humidity and temperature (2) and intra-

seasonal precipitation distribution (3), had lower prediction errors of potential NPP 

(figure 3.2) than precipitation alone.  These lower errors increase confidence in the 

residual trend results (Chapter 3). 

In addition to the meteorological variables discussed above, NPP is often affected 

by land degradation and other environmental and anthropogenic factors, such as 

variations in nutrient availability, run-on and off, grazing and fuel wood collection 

(Pickup 1996) and lag effects caused by antecedent dry or wet years that affect 

subsequent year NPP (Dalgleish &  Hartnett 2006).  The effects of these factors on NPP 

are smaller in dry years than they are in wetter years (Pickup et al. 1998).  This has an 

effect on the estimation of potential NPP as follows: (a) potential NPP is underestimated 

where factors reduce NPP response to meteorological variables; (b) the opposite occurs 
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where factors increase NPP response to meteorological variables; and (c) the estimation 

error terms are non-normal; higher in wet years than in dry years.  

The consequences of underestimating potential NPP is underestimation of 

“degradation” signal since the magnitude of the residual is reduced.  The opposite occurs 

when potential NPP is overestimated.  In an attempt to minimize these effects, potential 

NPP was estimated using Upper Quantile (UQ) regression since UQ regression 

coefficients are less sensitive than their OLS counterparts to NPP values influenced by 

factors other than the regressors (Buchinsky 2000). 

The residual trends methods highlight potentially degrading areas but further 

examination is essential to confirm the diagnosis since negative or positive trends in 

vegetation production relative to its potential are not necessarily the result of land 

degradation or land improvement. The method thus acts as a means to focus attention on 

the areas that might be undergoing degradation (Prince 2002) and focus more detailed 

investigation. 

Furthermore, degradation can manifest itself in characteristics other than loss of 

potential NPP.  These include reduced biodiversity (Pickup et al. 1998; Adeel et al. 2005) 

and encroachment by woody vegetation (Grover &  Musick 1990).   Woody 

encroachment, in particular, is considered to be a serious environmental problem 

(Sinclair &  Fryxell 1985; Grover &  Musick 1990).  However, the replacement of 

grasses with woody vegetation does not necessarily reduce NPP and consequently might 

not be detected using the residual trends method. Another view is that woody 
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encroachment is a distinct type of degradation and should be excluded from consideration 

using the methods developed here.  

The value of this monitoring approach as an indicator of land degradation should 

be assessed for each area of application. Clearly validations must be carried out over 

areas close to the finest resolution of the maps developed by residual trend analysis 

(278km
2
).  Currently assessments of land degradation and its causes are mainly based on 

expert opinions of the susceptibility of different soils to degradation (Dregne 1977; 

Dregne 1983; Dregne &  Chou 1992) and, to a lesser extent, on actual soil degradation 

(Oldeman et al. 1990).  Thus the land degradation monitoring approach developed in this 

dissertation may provide a long overdue, quantitative alternative to existing assessments.  

5.4 Monitoring versus mapping land degradation 

A distinction should be made between monitoring ongoing degradation and 

mapping existing degradation.  The residual trends method is geared towards detecting 

changes in land productivity potential through time.  Areas that have been degraded prior 

to the observation period and have been stable since will not be detected.  In the present 

study the period is determined by the length of the satellite record. 

To address this limitation, an alternative method, Local NPP Scaling (LNS) has 

been proposed (Prince 2002).  LNS estimates non-degraded reference NPP from the 

upper part of the frequency distribution of NPP values within a land capability class 

(LCC).  The NPP of each pixel within a LCC is then expressed as a proportion of its non-

degraded reference NPP.  Stratification by LCCs allows for spatial variations in climate, 

soils, land use and topography to be normalized.  This  procedure is similar in concept to 
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the use of land classification to determine appropriate uses of land for agriculture or 

livestock production and for land valuation (FAO 1976).   

The LNS method was developed in Zimbabwe (Prince et al. 2009) where there 

was a very appropriate, if regrettable in human terms, opportunity to observe the 

communal lands that are indisputably degraded.  The LCCs were defined by stratification 

of detailed spatial information on rainfall, soils and land use. Large negative departures 

of NPP from its potential were evident in the degraded communal lands whereas the NPP 

values of most (but not all) commercial agricultural areas, parks and reserves were close 

to the non-degraded reference NPP. However, residual inhomogeneities were found in 

some land capability classes which is the critical limitation of the LNS method since it 

causes errors in the estimation of potential NPP.   Some LCCs had small, but highly 

productive, areas such as wetlands, riparian features and irrigated and fertilized crops that 

were not identified by the stratification criteria. The method assumes that the LCCs have 

uniform productive potential and that a sufficient number of non-degraded pixels exist in 

every LCC.  However, if either of the assumptions is violated, the estimates of potential 

NPP will be in error, the consequences of which can be either false positive or false 

negative degradation signals. 

The residual trends and the LNS methods may be applied in tandem to, 

respectively, monitor ongoing degradation and to map the areas that have been degraded 

prior to the observation period and have been stable since. This approach is the subject of 

ongoing research. 
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If the above-mentioned shortcomings of the LNS method can be adequately 

addressed, it promises to be a very useful tool for identifying potentially degraded areas 

in the Sahel and other drylands. More detailed land use and land cover data are becoming 

increasingly available (Ramankutty et al. 2008), can be used to improve the creation of 

LCCs, for example by separating natural vegetation from altered cover types, such as 

irrigated agriculture or human settlements.  To some extent surface runoff can be 

modeled using soil-vegetation-atmosphere transfer models such as SSIB (Xue et al. 

1991a) used here and the Soil and Water Assessment Tool (SWAT) (Gassman et al. 

2007). Riparian features and areas with enhanced run-on can be mapped from high 

resolution digital elevation models (e.g. Shuttle Radar Topography Mission, SRTM data).  

These can be used to improve the stratification by creating more homogeneous land 

capability classes. 

5.5 Future research 

 

This research has opened several topics for further research. These can be broadly 

considered under the headings of further technique development, applications to studies 

of land surface process, and application to the science of dryland degradation. 

5.5.1 Science applications 

 

Maps of degradation offer, for the first time, the opportunity to use realistic 

observations of disturbance in land surface-atmosphere (SVAT) models.  Degradation 

affects two aspects of the land surface system, directly through changes in the surface 

energy balance and indirectly by altering the vegetation types.  Most current studies apply 

simple theoretical land surface conditions as was done in the very first climate model of 
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the Sahel in 1993 (Xue &  Shukla 1993).  The relevant question is whether the extent of 

land degradation revealed in this study positively enhanced the drying tendency initiated 

by the changes in global sea surface temperature.  Our collaborators, Dr. Yongkang Xue 

and Dr. Peter Cox have coupled the SSiB SVAT model to global circulation models 

(GCMs) and to the TRIFFID vegetation model, a combination that can study the effects 

of anthropogenic factors including degradation. 

A much less studied consequence of drought and degradation in semiarid regions 

is atmospheric dust.  African dust sources account for about half of the global total today 

(Zeng 2003).  Dust supply influences the energy balance in the atmosphere and at the 

surface and serves as a nutrient for marine phytoplankton and thus may modify the global 

carbon cycle and climate.  While dust concentrations are anticorrelated with concurrent 

rainfall in the Sahel (Prospero &  Lamb 2003), it is difficult to resolve any anthropogenic 

influences on atmospheric dust loads such as those due to land degradation (Tegen &  

Fung 1995; Mahowald et al. 2002) owing to the paucity of data that would allow the 

identification of long-term trends in desertification (Brooks et al. 2005).  Data on existing 

and ongoing land degradation may be studied in tandem with the climatology of dust 

transport occurrence to resolve the degree of degradation-induced dust mobilization. 

 The regression and modeling studies made during this research both point to the 

role of soil moisture in regulation of NPP. Current improvements in remote measurement 

of soil moisture (Albergel et al. 2013) therefore offer the hope of much improved 

measurement of potential NPP for comparison with other sites to identify differences in 

NPP that cannot be attributed to non-anthropogenic effects and are therefore candidates 

for more refined testing to confirm or refute degradation. 
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Perhaps one of the more important questions is the effect of land degradation on 

carbon stocks.   More than half of the organic C stock in grasslands and wooded Savanna 

is stored in soils.  This distribution of soil organic C, which was not correlated with 

aboveground carbon stocks (Ryan et al. 2011) and the very variable nature of soil organic 

matter, complicates the use of remote sensing for spatial mapping of drylands’ C stocks.  

A distributed sample of soil measurements across soil, land cover/use and degradation 

severity classes can be designed to understand the relation, if any, between degradation 

and changes in soil carbon stocks.  Moreover, a number of crucial socio-economic 

processes are not yet well represented in terrestrial ecosystem models that were used to 

estimate the C balance in drylands (Ciais et al. 2011).  The relation of human 

appropriation of NPP as well as grazing and cropping patterns to changes in productivity 

as revealed in this study can be used to improve such models. 

5.5.2 UNCCD-type uses 

 

The creation of maps of existing degradation and of changes in vegetation 

productivity at the country-continental scales can revolutionize the activities of national 

and international organization charged with rehabilitating degraded landscapes and 

limiting further degradation.  The human resources available to affected UNCCD parties 

can be used to validate and, if necessary, to refine the findings of this study.  A spatial 

representation of the relation of soil properties and land use intensity to degradation can 

be produced using the algorithms developed in this study to support policies on the 

appropriate type and intensity of land use and to channel investments in land 

development projects.   



  

 125 

 

The transfer of the techniques developed in this study to affected country Parties 

can aid in the establishment of effective monitoring and assessment systems.  The 

algorithms relating land use pressures to degradation can be used in land degradation risk 

assessment of future land use and development policies. 

5.5.3 Technique development 

 

The human scale of degradation tends to be in the 10 – 100ha range, although can 

be much larger, for example across rangelands, agricultural landscapes, mining 

operations, and highly erodible slopes. The present study was limited to the 278km
2
 of 

the spatially aggregated AVHRR GAC data needed to obtain the longest possible record 

of NPP and is therefore limited to relevance to phenomena at that scale (i.e. phenomena 

that took place during the AVHRR/2 and /3 observation period from 1981 to present).  

Spatial aggregation to 0.15° was necessary to reduces most of the errors introduced by 

the GAC sampling scheme (Rembold & Maselli 2010).  However, computing power and 

the cost of data storage have recently made it possible to process MODIS data (~7 ha) 

globally.  Furthermore the seven land observation spectral channels available from 

MODIS sensor are capable of detecting many more land surface features than the two 

from AVHRR.  Therefore it is entirely possible to undertake LNS analyses at the ~7 ha 

scale of MODIS.  The value of this capability would be to investigate the “hot spots” of 

degradation identified at the AVHRR scale in order to confirm the presence of 

degradation, its dimensions and gain information that may enable causes to be attributed.  

This is a subject of ongoing research. 

Potential NPP can be estimated using process-based prognostic vegetation models 

such as BIOME-BGC (Running &  Hunt 1993), LPJ-DVGM (Hickler et al. 2005) and 



  

 126 

 

SSIB-TRIFFID (Dr. Yongkang Xue, personal comm.).  These models can be used to 

describe NPP, vegetation structure and composition in their natural undisturbed state.  

Actual NPP, on the other hand, can be modeled from satellite measurement (e.g. Running 

et al. 2004).  The difference between actual and potential NPP can be used to map 

degraded areas and to monitor ongoing degradation.  The index to map degradation in 

this case would be the difference between potential and actual NPP while the index for 

monitoring degradation would be the slope of the regression of the residuals (potential – 

actual NNP) with time.  A major limitation of estimating potential NPP using prognostic 

vegetation models was the availability of data to calibrate and validate the models.  

Recently, the CARBOAFRICA (http://www.carboafrica.net) and AMMA (http://amma-

international.org/) projects are operating a network of eddy covariance flux towers 

characterizing the spatial gradients and temporal variations of CO2, and heat and water 

vapor fluxes over woodlands, savannahs and rangelands.  Calibrating the SSIB-TRIFFID 

vegetation model using these flux data is a subject of ongoing research. 
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Appendix 1:  Reconstruction of daily AVHRR NDVI data 

A1.1 Background 

AVHRR daily reflectance data processed by the Long Term Data Record (LTDR; 

Pedelty et al. 2007) were used to reconstruct daily NDVI values from 1982 to 2006.  The 

LTDR processing stream employs an improved atmospheric correction scheme to reduce 

the effects of Rayleigh scattering, ozone, and water vapor but does not correct for the 

effects of aerosols (Pedelty et al. 2007).  Prior to calculation of NDVI values, the 

reflectance data were normalized to a standard sun-target-sensor geometry.  Bidirectional 

Reflectance Distribution and atmospheric corrections should reduce  noise in surface 

NDVI data (Nagol et al. 2009) that would otherwise result from the strong anisotropic 

properties of vegetation (Gutman 1991; Vermote et al. 2009a; Fensholt et al. 2010) and 

from considerable absorption in the AVHRR near infrared channel by atmospheric water 

vapor (Cihlar et al. 2001).  Cloud contaminated observations were removed and replaced 

with reconstructed values from preceding and succeeding “clear sky” observations of the 

same pixel.  The resulting daily data should allow more precise identification of 

vegetation dynamics (Viovy et al. 1992) than maximum value compositing, particularly 

in drier areas with short growing season. 

The AVHRR NDVI data were then compared to NDVI data derived from BRDF 

corrected AQUA Moderate Resolution Imaging Spectroradiometer (MODIS) Climate 

Modeling Grid surface reflectance data (MYD09CMG) (Vermote et al. 2009a; Vermote 

&  Kotchenova 2011) during the overlapping period (2003-2006) to estimate the relative 

residual errors in the AVHRR NDVI data resulting from incomplete sensor calibration, 

atmospheric and BRDF corrections, and from cloud filtering. The relatively low errors in 
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MODIS data (Vermote &  Kotchenova 2008) when compared to those of AVHRR 

(Nagol 2011b) make this approach for estimating errors reasonable.  Daily NDVI data 

errors were then used to estimate the errors in the growing season sums of NDVI. 

A1.2 LTDR AVHRR data 

Version 2 of the LTDR daily time series of the National Oceanic and 

Atmospheric Administration (NOAA) AVHRR Global Area Coverage (GAC) reflectance 

data (Pedelty et al. 2007) for the years 1982 to 2006 were used in this study 

(http://ltdr.nascom.nasa.gov).  The LTDR data processing stream creates a daily 

reflectance product using a geographic projection at a spatial resolution of 0.05°.  LTDR 

data preprocessing includes vicarious calibration of the red (0.58–0.68 µm) and near 

infrared (0.725–1.10 µm) channels using cloud/ocean technique which has been shown to 

have an error of about 1% (Vermote &  Kaufman 1995; Vermote &  Saleous 2006b) and 

inverse navigation to map sensor measurements to Earth locations (Rosborough et al. 

1994). The atmospheric corrections include removal of the effects of Rayleigh scattering, 

ozone, and water vapor but do not include the removal of the effects of aerosols (Pedelty 

et al. 2007).  

The AVHRR instruments are carried on NOAA's Polar-orbiting Operational 

Environmental Satellites (POES) which are deployed in sun-synchronous orbits. 

Unfortunately these satellites generally suffer temporal recession of the equatorial 

crossing-time as each platform ages (Privette et al. 1995).  The temporal recession and 

the wide field of view of the AVHRR instrument result in varying view and illumination 

angles of the observed land surfaces (Gutman 1987; Csiszar et al. 2001).  As most land 

surfaces are strongly anisotropic, the measured reflectance values of the same surface can 

http://ltdr.nascom.nasa.gov/
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fluctuate by a factor of two or more with varying sun-target-sensor geometry (Kriebel 

1978; Csiszar et al. 2001; Trigg et al. 2005; Vermote et al. 2009a) and the variation due 

to surface anisotropy has been  found to be 2 to 3 orders of magnitude greater than the 

variation in normalized reflectance values, even when the target BRDF shapes varied in 

space or time (Bacour &  Bréon 2005).  

A1.3 LTDR AVHRR data processing  

In order to reduce the effects of surface angular anisotropy on NDVI values, the 

AVHRR surface reflectance values were normalized to a standard sun-target-sensor 

geometry of 45° solar zenith angle and a view zenith angle at nadir (equation A1.1).  The 

parameters (k0, k1, and k2) that describe the monthly BRDF shape variations were 

calculated from MODIS directional reflectance values by (Vermote et al. 2009a) through 

inversion of the Ross–Li–Maignan BRDF analytical model. 

  (      )    (       )

    
  ⁄   (      )    

  ⁄   (      )

    
  ⁄   (       )    

  ⁄   (       )
   (    ) 

 

where ρ is the directional reflectance, θs, θv, and ϕ are the observation solar zenith, view 

zenith and relative azimuth, respectively.  F1 and F2 are fixed functions of the 

observation geometry: F1 is the volume scattering kernel, based on the Ross-thick 

function, but corrected for the Hot-Spot process, and F2 is the geometric kernel, based on 

the Li-sparse reciprocal function (Vermote et al. 2009a). This correction method assumes 

that the between-years variations in BRDF are limited.  This might not be the case, 
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especially in areas with significant changes in vegetation type.  BRDF-shape variations 

may therefore slightly reduce the quality of BRDF corrections (Bacour &  Bréon 2005).   

The daily BRDF-corrected AVHRR data time series were then filtered for cloud 

contaminated observations and for high solar zenith (SZ > 65°) and view zenith (VZ > 

55°) angles.  Two levels of cloud filtering were applied to the data. The first identified 

cloud-filled-observations using thresholds applied to AVHRR channels 1 (0.58 - 0.68 

µm) and 5 (11.5-12.5 µm).  This was based on the fact that clouds are generally bright in 

the visible spectrum (Gutman 1992) and cold in the infrared spectrum (Hutchison et al. 

1997).  Channel 1 threshold values were based on global maps of visible channel cloud 

thresholds calculated from monthly mean and standard deviation of BRDF corrected 

MODIS Terra and Aqua data (Vermote et al. 2009b).  An infrared threshold value of 

270°K brightness temperature was selected based on analysis of daytime 3-hourly 

gridded meteorological data of near-surface air temperature (Sheffield et al. 2006) across 

the study region.  The minimum temperature of the coldest day of the year varied 

between 276±1.5°K in the Ethiopian highlands and 299±1°K in Niger; the coldest 

daytime observed temperature was 6°K on average higher than the selected threshold. 

The second level of cloud filtering was a statistical filter applied to a moving window of 

seven consecutive observations in the time series.  The reflectance value of each 

observation was compared to the mean and standard deviation of its preceding and 

following observations.  Sudden spikes in AVHRR channel 1 reflectance values greater 

than two standard deviations from the mean are likely caused by partial cloud 

contamination and were removed.  Sudden drops in AVHRR channel 2 reflectance values 

more than two standard deviations from the mean are likely caused by cloud shadow and 
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were also removed.  The NDVI values were calculated from the AVHRR channels 1 and 

2 reflectance values (equation A1.2).   

     
                 

                 
       (    ) 

 

The AVHRR NDVI data were compared to NDVI data derived from BRDF corrected 

AQUA Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling 

Grid surface reflectance data (MYD09CMG) (Vermote et al. 2009a; Vermote &  

Kotchenova 2011) during the overlapping period (2003-2006) to estimate residual errors 

in the AVHRR NDVI data resulting from incomplete sensor calibration, atmospheric and 

BRDF corrections, and from cloud filtering.  Three statistical metrics were used to 

quantify the error in AVHRR NDVI data (Fox 1981; Willmott 1982); these were the 

mean bias error (equation A1.3; MBE), the root mean square error (equation A1.4; 

RMSE), the random error (i.e., “unsystematic”) component of RMSE (equation A1.5; 

RMSEu) and the systematic error component of RMSE (equation A1.6, RMSEs). 

 

 

 

 

 

 

 

 



  

 132 

 

     
∑ (     ) 

   

 
   (    ) 

     √
∑ (     }  

   

 
   (    ) 

      √
∑ (    ̂ )  

   

 
   (    ) 

      √ 
∑ ( ̂    )  

   

 
   (    ) 

 

where    are AVHRR NDVI values,    are AQUA MODIS NDVI values,   is the 

number of observations, and  ̂  are obtained from the intercept ( ) and slope ( ) of the 

OLS linear regression between AVHRR and AQUA MODIS NDVI values,   ̂    

     .  

Data gaps appearing through the filtering procedure were filled using temporal 

interpolation.   Many AVHRR data processing streams have used piecewise linear 

temporal interpolation to fill the data gaps (Viovy et al. 1992; Cihlar &  Howarth 1994; 

Reichstein et al. 2007).  However, It is possible that piecewise quadratic or upper-

quantile quadratic interpolation models better estimate the seasonal curvilinear 

progression of NDVI than linear interpolation models, especially when several successive 

observation are lost during the filtering process.   An iterative cross-validation method 

(Efron &  Gong 1983) was used to estimate the compound error budgets of the predicted 

values (i.e. the combined model prediction errors and the errors inherent in the input 

AVHRR NDVI data) as follows.  The probability distribution of the random error 

component of AVHRR NDVI data was used to generate a domain of 200 possible NDVI 

data sets. For each NDVI dataset, twenty iterations of cross validation were performed 
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where during any iteration 10% of the data points were randomly removed (reference 

subset) and the remaining data were used to predict the values at the deleted points 

(figure A1.1).  The difference measures (MBE, RMSEs and RMSEu) between the 

predicted values and their corresponding reference observations were calculated. The 

regression model that best approached the magnitude of the reference data was used to 

fill the data gaps appearing through the filtering procedure.  The method is 

computationally expensive and was therefore applied to 30 locations per land cover type 

(180 locations in total).  The locations were selected to represent the range of the annual 

total number of cloud-filtered observations per land cover type because interpolation 

errors might increase in areas with fewer remaining cloud free observations. Daily NDVI 

data errors were then used to estimate the errors in the growing season total and mean 

NDVI.  If daily errors are statistically uncorrelated and functionally independent, the 

propagated errors could be calculated through the use of a Taylor series expansion 

(Schwartz 1975).  However, this is not necessarily the case, especially when temporal 

interpolations are used to fill data gaps.  Therefore the probability distribution of daily 

error components was used in a Monte Carlo simulation to generate a domain of 1,000 

possible sets of daily NDVI values from which their annual means and totals were 

calculated.  The most probable propagated error was then assumed to be equal to ± 1 

standard deviation around the calculated values (Schwartz 1975). 
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 Figure A1.1 Reference NDVI and their corresponding model-predicted values for the 

linear (black diamonds), quadratic (grey diamonds) and upper-quantile quadratic (open 

circles) regression models for a savanna site.  For clarity 2 randomly selected reference 

samples out of 200 are shown.   The piecewise quadratic regression model had the lowest 

MBE, RMSEs, and RMSEu. 

A1.4 LTDR AVHRR data relative errors 

Cloud-filtered, daily AVHRR NDVI data were compared with coincident MODIS 

NDVI data for the overlapping period between the years 2003 and 2006.  NDVI data 

from both sensors captured the seasonal progression of the phenological cycle.  However, 

AVHRR NDVI values had a lower dynamic range than MODIS NDVI values and the 

differences (NDVIMODIS – NDVIAVHRR) increased proportionally with NDVI.  The 

systematic component of the root mean square error (RMSEs) ranged from a low 

0.05±0.017 NDVI units in sparsely vegetated open shrublands to 0.1±0.03 NDVI units in 
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wooded Savanna (figure A1.2).  (Trishchenko et al. 2002), among others (Huete et al. 

2002), have attributed the systematic bias to differences between MODIS and AVHRR 

spectral response functions (SRFs) and therefore the systematic error is only pertinent to 

studies utilizing data from both sensors and is not considered further here.  Conversely, 

the random component of RMSE (RMSEu) measures the errors in AVHRR NDVI 

resulting from, for example, the onboard sampling method used by the AVHRR, the lack 

of aerosol correction and incomplete atmospheric correction.  RMSEu values ranged 

between 0.022±0.004 NDVI units in open shrublands to 0.036±0.007 NDVI units in 

woody Savanna (figure A1.2).  Areas with the highest random errors were found in the 

Ethiopian highlands and in the densely vegetated areas of the Sudano-Guinean 

bioclimatic zone (figure A1.3).  The relative high errors in the Ethiopian highlands could 

arise from inadequate BRDF correction in complex topography as BRDF corrections of 

surface reflectance values applied to both sensors do not account for variations in terrain 

slope and aspect in relation to observation and sun angle geometries. (Nagol 2011b) 

attributed the high random errors in the Sudano-Guinean bioclimatic zone to the lack of 

aerosol correction applied to the LTDR AVHRR data since the effects of aerosols on 

NDVI values are higher in densely vegetated areas, especially where high NDVI and high 

aerosol optical thickness occur simultaneously. 
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Figure A1.2 Area averaged mean bias error (MBE), systematic root mean squared error 

(RMSEs) and random root mean squared error (RMSEu) in NDVI units for the most 

widespread land cover types in the Sahel.  Error bars are one standard deviation around 

the mean. 

 

Figure A1.3 Map showing the spatial variation of RMSEu values for LTDR AVHRR 

NDVI data. Water bodies, deserts, wetlands, urban areas, and locations with less than 30 

paired AVHRR-MODIS data points were excluded (black areas). 

The performances of linear, piecewise quadratic and upper-quantile quadratic 

regression models were evaluated by measuring the degree to which model-predicted 
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values approached the magnitudes of the reference data.  The difference measures (MBE, 

RMSEs, and RMSEu) were summarized for the dominant land cover types in the study 

area. It was observed that the upper-quatile regression model slightly overestimates 

observations (MBE = 0.018±0.008), while the MBE values for the linear and quadratic 

models approached zero.  The positive mean bias error of the upper-quantile regression 

contributed to high systematic root mean square error values (RMSEs = 0.025 ± 0.006) 

relative to the linear (RMSEs = 0.018 ± 0.005) and quadratic (RMSEs = 0.017 ± 0.005) 

models.  The random component of RMSE was also lower for quadratic (RMSEu = 0.042 

± 0.007) compared to upper-quantile (RMSEu = 0.045 ± 0.008) and linear (RMSEu = 0.05 

± 0.009) models. The RMSE values are summarized in figure A1.4 for the most 

widespread land cover types in the study area.  Temporal interpolation errors increase 

with the total number of cloud filtered observations during the growing season.  The 

highest temporal interpolation errors were found in the woody savannas and forests of 

Guinea and Guinea-Bissau.  Quadratic regression equations were used to fill the gaps in 

the daily NDVI dataset.   A typical example of the results for a site in central Sudan is 

shown in figure A1.5. 
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Figure A1.4 Mean RMSE values summarized for land cover types in the Sahel for 

interpolations using linear, upper-quantile and quadratic regression models.  Error bars 

are ± 1standard deviation of the RMSE values and represent the spatial heterogeneity of 

RMSE values within each land cover type. 
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Figure A1.5 Time series of AVHRR NDVI data for a grassland vegetation at 27.725°E, 

12.375°N, corrected for: 1) BRDF (black dots), 2) cloud cover (crosses), and 3) missing 

values (grey circles).  Error bars are NDVI values ± 1 RMSE. 

When the fully corrected and interpolated data were applied to the full growing 

season, the most probable summed NDVI error was ±2.9 NDVI units for grasslands 

(6.5% of the NDVI signal), ±3.3 NDVI units for shrublands (7% of the NDVI signal), 

±4.06 NDVI units for savannas (7.3% of the NDVI signal), and ±6.5 NDVI units for 

woody savannas and forest (8% of the NDVI signal). 
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