8 research outputs found

    DESIGN OF NOVEL MULTIPLEXER CIRCUITS IN QCA NANOCOMPUTING

    Get PDF
    Quantum-dot Cellular Automata (QCA) technology is a promising alternative nano-scale technology for CMOS technology. In digital circuits, a multiplexer is one of the most important components. In this study, an efficient and single layer 2 to 1 QCA multiplexer circuit is proposed using majority gate and inverter gate. In addition, efficient 4 to 1 and 8 to 1 QCA multiplexer circuits are implemented using this 2 to 1 multiplexer circuit. The developed multiplexer circuits are implemented in QCADesigner tool. According to the results, the developed 2 to 1, 4 to 1, and 8 to 1 multiplexer circuits utilize 16 (0.01μm2), 96 (0.11μm2), and 286 (0.43μm2) QCA cell (area). The results demonstrate that the proposed 8 to 1 multiplexer circuit reduces the cost by about 25%-99% compared to the existing multiplexer circuits

    High functionality reversible arithmetic logic unit

    Get PDF
    Energy loss is a big challenge in digital logic design primarily due to impending end of Moore’s Law. Increase in power dissipation not only affects portability but also overall life span of a device. Many applications cannot afford this loss. Therefore, future computing will rely on reversible logic for implementation of power efficient and compact circuits. Arithmetic and logic unit (ALU) is a fundamental component of all processors and designing it with reversible logic is tedious. The various ALU designs using reversible logic gates exist in literature but operations performed by them are limited. The main aim of this paper is to propose a new design of reversible ALU and enhance number of operations in it. This paper critically analyzes proposed ALU with existing designs and demonstrates increase in functionality with 56% reduction in gates, 17 % reduction in garbage lines, 92 % reduction in ancillary lines and 53 % reduction in quantum cost. The proposed ALU design is coded in Verilog HDL, synthesized and simulated using EDA (Electronic Design Automation) tool-Xilinx ISE design suit 14.2. RCViewer+ tool has been used to validate quantum cost of proposed design

    Optimized Reversible Logic Multiplexer Designs for Energy-Efficient Nanoscale Computing

    Get PDF
    Nano- and quantum-based low-power applications are where reversible logic really shines. By using digitally equivalent circuits with reversible logic gates, energy savings may be achieved. Reducing garbage output and ancilla inputs is a primary emphasis of this study, which aims to lower power consumption in reversible multiplexers. Multiplexers with switchable 2:1, 4:1, and 8:1 ratios may be built using the SJ gate and other simple reversible logic gates. The number of ancilla inputs has been cut in half from four to zero, and the amount of garbage output has been cut in half as well, from eight to three, making the 2:1 multiplexer an improvement over the prior design. New 4:1 multiplexer has 10' ancilla inputs, up from 2' in the previous designs. The proposed 4:1 multiplexer also cuts waste production in half from the current 5-to-6 bins per day. The 8:1 multiplexer has two ancilla inputs and nine trash outputs, while the current architecture only has one of each. The functionality of the VHDL and Xilinx 14.7-coded designs is validated by ISIM simulations

    MF-RALU: design of an efficient multi-functional reversible arithmetic and logic unit for processor design on field programmable gate array platform

    Get PDF
    Most modern computer applications use reversible logic gates to solve power dissipation issues. This manuscript uses an efficient multi-functional reversible arithmetic and logical unit (MF-RALU) to perform 30 operations. The 32-bit MF-RALU includes arithmetic, logical, complement, shifters, multiplexers, different adders, and multipliers. The multi-bit reversible multiplexers are used to construct the MF-RALU structure. The Reduced instruction set computer (RISC) processor is designed to realize the functionality of the MF-RALU. The MF-RALU can perform its operation in a single clock cycle. The 1-bit RALU is developed and compared with existing approaches with improvements in performance metrics. The 32-bit reversible arithmetic units (RAUs) and reversible logical units (RLUs) are constructed using 1-bit RALU. The MF-RALU and RISC processor are synthesized individually in the Vivado environment using Verilog-HDL and implemented on Artix-7 field programmable gate array (FPGA). The MF-RALU utilizes a <11% chip area and consumes 332 mW total power. The RISC processor utilizes a <3% chip area and works at 483 MHZ frequency by consuming 159 mW of total power on Artix-7 FPGA

    Design and simulation of a new QCA-based low-power universal gate

    Get PDF
    Quantum-dot Cellular Automata (QCA) is recognized in electronics for its low power consumption and high-density capabilities, emerging as a potential substitute for CMOS technology. GDI (Gate Diffusion Input) technology is featured as an innovative approach for enhancing power efficiency and spatial optimization in digital circuits. This study introduces an advanced four-input Improved Gate Diffusion Input (IGDI) design specifically for QCA technology as a universal gate. A key feature of the proposed 10-cell block is the absence of cross-wiring, which significantly enhances the circuit’s operational efficiency. Its universal cell nature allows for the carrying out of various logical gates by merely altering input values, without necessitating any structural redesign. The proposed design showcases notable advancements over prior models, including a reduced cell count by 17%, a 29% decrease in total energy usage, and a 44% reduction in average energy loss. This innovative IGDI design efficiently executes 21 combinational and various sequential functions. Simulations in 18 nm technology, accompanied by energy consumption analyses, demonstrate this design’s superior performance compared to existing models in key areas such as multiplexers, comparators, and memory circuits, alongside a significant reduction in cell count

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    Designing memory cells with a novel approaches based on a new multiplexer in QCA Technology

    Get PDF
    Transistor-based CMOS technology has many drawbacks such that it cannot continue to follow the scaling of Moore’s law in the near future. These drawbacks lead researchers to think about alternatives. Quantum-dot Cellular Automata (QCA) is a nanotechnology that has unique features in terms of size and power consumption. QCA has the ability to represent binary numbers by electrons configuration. The memory circuit is a very important part of the digital system. In QCA technology, there are many approaches presented to accomplish memory cells in both RAM and CAM types. CAM is a type of memory used in high-speed applications. In this thesis, novel approaches to design memory cells are proposed. The proposed approaches are based on a 2:1 multiplexer. Using the proposed approach of RAM cell, a singular form of RAM cell (SFRAMC) is accomplished. In QCA technology, researchers strive to design electronic circuits with an emphasis on minimizing important metrics such as cell count, area, delay, cost and power consumption. The SFRAMC demonstrated significant improvements, with a reduction cell count, occupied area and power consumption by 25%, 24% and 36%. In terms of implementation cost, the SFRAMC saves 43% of the cost when compared to the previous best design. On the other hand, by using the proposed approach of CAM cell, two different structures of the QCA-CAM cell have been introduced. The first proposed CAM cell (FPCAMC) gives improvements in terms of cell count, and delay by 15% and 17% respectively. The second proposed CAM cell (SPCAMC) gives improvements in terms of cell count, and delay by 6% and 17% respectively. In terms of total power consumption, both FPCAMC and SPCAMC have an improvement of about 53% over the best-reported design. The above features of the proposed memory cells (RAM and CAM) could pave the road for designing energy-efficient and cost-efficient memory circuits in the future
    corecore