34,987 research outputs found

    Fast Reliable Ray-tracing of Procedurally Defined Implicit Surfaces Using Revised Affine Arithmetic

    Get PDF
    Fast and reliable rendering of implicit surfaces is an important area in the field of implicit modelling. Direct rendering, namely ray-tracing, is shown to be a suitable technique for obtaining good-quality visualisations of implicit surfaces. We present a technique for reliable ray-tracing of arbitrary procedurally defined implicit surfaces by using a modification of Affine Arithmetic called Revised Affine Arithmetic. A wide range of procedurally defined implicit objects can be rendered using this technique including polynomial surfaces, constructive solids, pseudo-random objects, procedurally defined microstructures, and others. We compare our technique with other reliable techniques based on Interval and Affine Arithmetic to show that our technique provides the fastest, while still reliable, ray-surface intersections and ray-tracing. We also suggest possible modifications for the GPU implementation of this technique for real-time rendering of relatively simple implicit models and for near real-time for complex implicit models

    Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    Get PDF
    © 2016 IEEE.Latency-the delay between a users action and the response to this action-is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space-but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of 1 ms from tracker to pixel. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of 1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system-one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours

    3D scanning of cultural heritage with consumer depth cameras

    Get PDF
    Three dimensional reconstruction of cultural heritage objects is an expensive and time-consuming process. Recent consumer real-time depth acquisition devices, like Microsoft Kinect, allow very fast and simple acquisition of 3D views. However 3D scanning with such devices is a challenging task due to the limited accuracy and reliability of the acquired data. This paper introduces a 3D reconstruction pipeline suited to use consumer depth cameras as hand-held scanners for cultural heritage objects. Several new contributions have been made to achieve this result. They include an ad-hoc filtering scheme that exploits the model of the error on the acquired data and a novel algorithm for the extraction of salient points exploiting both depth and color data. Then the salient points are used within a modified version of the ICP algorithm that exploits both geometry and color distances to precisely align the views even when geometry information is not sufficient to constrain the registration. The proposed method, although applicable to generic scenes, has been tuned to the acquisition of sculptures and in this connection its performance is rather interesting as the experimental results indicate

    Progressive refinement rendering of implicit surfaces

    Get PDF
    The visualisation of implicit surfaces can be an inefficient task when such surfaces are complex and highly detailed. Visualising a surface by first converting it to a polygon mesh may lead to an excessive polygon count. Visualising a surface by direct ray casting is often a slow procedure. In this paper we present a progressive refinement renderer for implicit surfaces that are Lipschitz continuous. The renderer first displays a low resolution estimate of what the final image is going to be and, as the computation progresses, increases the quality of this estimate at an interactive frame rate. This renderer provides a quick previewing facility that significantly reduces the design cycle of a new and complex implicit surface. The renderer is also capable of completing an image faster than a conventional implicit surface rendering algorithm based on ray casting
    corecore