
1377 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 4, APRIL 2016

Manuscript received 21 Sept. 2015; accepted 10 Jan. 2016. Date of publication
20 Jan. 2016; date of current version 19 Mar. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2016.2518079

1077-2626 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Construction and Evaluation of an Ultra Low Latency Frameless
Renderer for VR

Sebastian Friston, Student Member, IEEE, Anthony Steed, Member, IEEE,
Simon Tilbury and Georgi Gaydadjiev, Member, IEEE

Abstract—Latency - the delay between a user’s action and the response to this action - is known to be detrimental to virtual reality.
Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is
incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In
this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has
a latency of ∼1 ms from ‘tracker to pixel’. Its frameless nature means that the region of the display with the lowest latency immediately
follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases
as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ∼1 ms. We examine
how the renderer performs when driving a traditional sequential scan-out display on a readily available HMD, the Oculus Rift DK2. We
contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures,
we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker,
renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is
affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully
draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both
systems is lowered, but that it is much lower for ours.

Index Terms—Low Latency, Frameless Rendering, Image Quality, Ray Casting, Hardware Acceleration

1 INTRODUCTION

Frameless rendering is a method that involves updating pixels on a
display in an arbitrary, application-defined order [2]. This is in contrast
to traditional frame-based algorithms, such as the painter’s algorithm,
where individual frames are rendered and only then displayed to the
user in sequence [10]. The requirement to render a complete frame
before it can be used places a lower limit on latency.

Latency is commonly defined as the delay between a user’s action
and the response to this action. It is a result of the processing, transport,
sampling and scan-out delays of the components that make up a Virtual
Envrionment (VE) [18]. Latency is highly detrimental to Virtual Reality
(VR) in terms of both user comfort and performance (e.g. [3, 15]).
However, because it is inherent to the current technology used to build
VEs, it cannot be entirely eliminated. Frameless renderers have been
proposed as a way to minimise the apparent latency of interactive
systems [2]. Since they do not need to wait on any single frame, the
delay between user input and the response can be significantly reduced.
This is most clearly illustrated in examples utilising image warping,
where the tracker is separated from the display by only a few image
transformations (e.g. [29, 23] - though many systems using a variety of
techniques have been proposed).

Authors typically compare the performance of frameless rendering
algorithms to traditional algorithms in terms of spatial quality. A num-
ber of studies have demonstrated that frameless renderers can match
traditional renders for quality. Less time has been spent examining the

• Sebastian Friston is with University College London. E-mail:
sebastian.friston.12@ucl.ac.uk.

• Anthony Steed is with University College London. E-mail:
a.steed@cs.ucl.ac.uk.

• Simon Tilbury is with Maxeler Technologies Ltd. E-mail:
simon@maxeler.com.

• Georgi Gaydadjiev is with Maxeler Technologies Ltd. E-mail:
georgi@maxeler.com.

behaviour of a frameless renderer in terms of latency however. Further,
frameless renderers must still be integrated with existing technologies
to form a VE system. While frameless rendering ameliorates the re-
quirement of double-buffering to avoid image tearing, most display
technologies still use a sequential scan-out. In this study we combine
an Oculus Rift DK2 with a custom frameless renderer to form a real
VE with which to investigate this.

We present a new ultra-low latency frameless renderer based on
hardware accelerated ray-casting on a Field Programmable Gate Ar-
ray (FPGA). Like Regan & Pose’s Address Recalculation Pipeline [25]
or Regan et al.’s light field renderer [26], our frameless render works
on the principle of “just in time pixels” where the computation for a
single pixel is completed only moments before it is transmitted to the
display. This facilitates changing the viewing transforms to reflect the
latest tracking data during scan-out, and minimising the latency of the
rendering stage as far as possible. The use of ray casting means individ-
ual pixels can be computed in an arbitrary order and used immediately.
By implementing the ray-caster in hardware we reduce the latency
of our rendering stage to within a millisecond. Using a combination
of high and low speed video captures, and objective Image Quality
Measures (IQMs) suitable for Computer Generated (CG) imagery, we
investigate the behaviour of this renderer and compare it with that of
an equivalent system built using a GPU.

We describe how the latency across a display is not constant, as
it is usually considered, but varies as the visible pixels drawn on the
display age during the scan-out process. The relative age of different
regions of the screen is not the same between rendering techniques. Our
frameless render has a latency less than one frame period, and so the
lowest latency regions of the display follow the scan-beam. A frame-
based GPU system on the other hand begins scanning out an already
aged image from the same location on each frame. The implications
are not just a lower average latency for the frameless system, but an
inherently different composition. The frameless renderer displays an
amalgamation of 13 ms worth of tracker history manifested as a skew
feature under motion. To assess the consequences of these differences
we generate ground truth renders to emulate an ideal VE, with a zero
latency tracker, renderer and display, each running at 1 kHz. Using
image quality metrics suitable for CG imagery we judge the fidelity of
the two renderers and how it varies with display persistence and tracker
velocity.

1378 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 4, APRIL 2016

In Section 2 we review frameless rendering as applied to VR, and
contrast existing hardware accelerated renderers with our own. We
also provide a brief overview of image quality measures, specifically
where applied to CG imagery and for purposes other than compression
artefacts (the typical application of such measures). In Section 3 we de-
scribe the apparatus used for our investigation. This section includes an
in-depth description of the operation of our ultra low latency renderer.
In Section 4 we describe the results of our investigation into the two
systems. We first discuss how the latency of each system was measured
and give the results. We then describe how each system renders to the
display and the implications for the latency and the resulting compo-
sition seen by the user. Section 4.3 covers in detail the procedure for
capturing and analysing real-time systems, justification for our chosen
IQMs, and a discussion on how the measured fidelities relate to the
behaviour we observed in Section 4.2. Our conclusions are presented
in Section 5.

2 PREVIOUS WORKS

2.1 Frameless Rendering in Virtual Reality
Latency cannot be removed given current technology, so a number
of authors have designed methods to compensate for it. Regan &
Pose created the Address Recalculation Pipeline, which decoupled
the user’s head orientation from the rendering process [25]. It did
this by continually rendering a scene into a cubic environment map.
This was then sampled at a high rate, each sample using the latest
orientation tracking data. By decoupling the generation of the final
image from the slower traditional rendering process, Regan & Pose
could minimise apparent latency. Using image composition, they could
also combine parts of the scene rendered at different rates, or using
different techniques or even hardware. Regan & Pose’s implementation
was designed to run with a pixel clock of 25.2 MHz, each of the five
pipeline stages executing within 40 ns. If each reported stage was
atomic, the total latency would be 200 ns. Our system is very similar to
that of Regan & Pose, however we use real-time ray casting to perform
the sampling address lookup, and we use caching and mip-mapping
with lower cost DRAM as opposed to their low latency SRAM for
storing the maps.

Mark et al. [16] created an architecture performing 3D post-
rendering warping. In this system, a traditional renderer created a
set of reference frames containing depth information. One of two pos-
sible reconstruction techniques (planar-to-planar warps defining per
pixel disparities, or a deformed mesh imposter) could then be used to
composit these reference frames into a new image. The reconstruction
stage is computationally far simpler than rendering the entire scene,
so it allows the system to appear to respond more quickly. Mark et
al.’s system through the use of depth information supports changes in
both orientation and translation. An exact latency was not reported but
Mark et al. state it would be only the time required to perform a 3D
warp. Smit et al. [28] pursued this image warping architecture. Their
system created a mesh - a grid of vertices with a count equivalent to the
reference image resolution. A typical GPU was then used to deform
this mesh with a vertex shader implementation of an image warping al-
gorithm. The fragment parameters of the resulting frame could then be
used to sample the original image. The image could be reconstructed in
a number of ways, however Smit et al. found that treating each vertex as
a point and performing screen space point-splatting, with the point size
dependent on the depth, provided the best trade-off of speed and quality.
They measured the latency of a single-GPU implementation (rendering
and then warping on the same device) as 15.7-17.1 ms, depending on
scene complexity. The latency of a multi-GPU implementation (one
rendering, one warping) was higher at 50.8-57.4 ms, but much less
sensitive (lower standard deviation) to scene complexity.

Post-rendering warping techniques have also been augmented with
dedicated hardware. Systems such as the Warper Board [29] and
WarpEngine architecture [23] implement the warping (or, local loop)
stage entirely on dedicated hardware. When combined with a Kalman
filter for predictive tracking, the Warper Board reduced apparent la-
tency to 4.33 ms from 42.35 ms. Popescu et al. provided detailed
performance models for their system but did not report the total end

to end latency. Li et al. performed full depth image warping on an
FPGA [14]. They did not report a latency but determined their circuit
could run at up to 88.152 MHz. Yanagida et al. [33] proposed using a
rate gyro to determine the corrections required for a latent image from
the point at which rendering began to right before it was displayed to
the user. The image underwent a simple shift and rotation to account
for the change in orientation detected by the gyro. The authors used a
gyro as it was faster than the absolute magnetic trackers used to render
the reference frame. The authors simulated the effect of their system
on image quality but did not build the entire system so the latency is
unavailable. While our design is a ray-caster, and it does make use of
techniques such as mip-mapping and caching to exploit ray-coherence,
it has more in common with the designs of Li et al. and Regan &
Pose, than hardware-accelerated ray-casters. This is because our design
performs no shading and limits the traversal depth to minimise latency,
making it more like a lumigraph renderer than a ray-tracer.

One issue with compensating for latency with image warping is that
typical techniques use a short history of one or two reference frames
with which to compute new images. If the user moves too quickly, or the
rate of reference image generation is too low, missing information will
result in holes in the warped image. Bergman et al. [1] introduced the
concept of a ‘golden thread’ while describing their adaptive refinement
rendering algorithm. The golden thread is a single step that as it is
executed results in an ever higher fidelity image. A crude image can
be presented to the user quickly, with the quality improved over time
where extra rendering time is acceptable. Their renderer approximated
this process by supporting a number of rendering modes, of increasing
complexity and quality. The renderer would execute each increasingly
complex mode, immediately presenting the results to the user, so long
as it could before the rendering parameters were updated.

A number of authors have pursued this idea in their construction
of frameless renderers, many of which are based around ray-tracing.
For example Bishop et al. [2] created a frameless renderer where
individual pixels were recomputed using ray-tracing. The pixels to
be recomputed were selected randomly. This allowed the image to be
updated constantly, independent of the scan-out to the display while
avoiding image tearing. Dayal et al. [5] extended this approach, but took
advantage of the selective sampling ability of ray-tracing to prioritise
updating the most salient parts of the image. They designed an adaptive
sampler which would direct the ray-tracer to regions undergoing the
most significant changes in space or time. Wooley et al. [32] combine
ray-tracing and forward rendering in a very novel progressive rendering
approach they term interruptible rendering. They define a unified error
metric called dynamic visual error, which encompasses both spatial and
temporal error. With this, their system can minimise error by choosing
whether to continue to refine a frame, or swap it out for a less detailed,
but newer image. Kratz et al. [13] created an adaptive error-controlled
sampling controller for a ray-tracing based volume caster. The authors
used Finite Element Methods theory to compute the error. The latency
of these systems was not reported (and frame rate is a poor analogy
in these cases). Petkov & Kaufman [22] present a ray-tracing based
adaptive volume renderer, however their sampling controller uses filters,
similar to Dayal et al., but in non-cartesian space. The latency of their
system was 200 ms when driving a 6 node, 24 screen 7960 x 12088
display. This was a 20x reduction over the best performing frame-based
system.

Qu et al. [24] combined 3D warping and ray-tracing in their voxel
renderer. The authors’ cascaded system performed a 3D warp of a
keyframe, and would then fill in any missing information by ray-tracing
those specific pixels. The latency was not reported, the authors’ test
implementation designed evaluate quality rather then speed. Zheng et
al. [37] propose a cascaded data path framework with multiple warping
stages. Their design is based on the observation that the magnitude of
the error introduced in a warping stage, corresponds to the magnitude of
the warp. Starting with a frame rendered from a traditional GPU, they
chain multiple warping stages, each one simpler than the one before it,
but operating at a higher rate. The higher speeds mean the corrections
applied by the cruder stages are less significant and therefore less
visible, but the perceptual latency is still only as high as the final stage.

FRISTON ET AL.: CONSTRUCTION AND EVALUATION OF AN ULTRA LOW LATENCY FRAMELESS RENDERER FOR VR 1379

Ng et al. [20] also directly coupled the tracker and renderer in their
High Performance Touch prototype. This system was designed to
emulate a 2D GUI for the purposes of experimentation involving direct-
touch user interfaces. The system used a proprietary touch sensor and a
Digital Micro-mirror Device projector display, driven by an FPGA, to
achieve a latency of ∼1 ms.

2.2 Quantifying Visual Quality
When building systems that trade-off spatial quality for speed, authors
need a way to quantify the performance of their renderer. As discussed
by Ferwerda [7], there are a number of ways to define quality or realism
when discussing synthetic images and virtual reality. VR attempts to
substitute virtual stimuli for real, and therefore one metric would be
sensory believability [12]. Current technology does not have the ability
to re-create the full range of visual stimuli that would be required if we
were to compare a render to the ‘real world’ however. Most authors
of frameless rendering techniques compare the performance of their
renderers to ground truth renders - images produced off-line, simulating
an ideal renderer with zero latency. Various metrics are used to describe
the fidelity of the first image to the latter, for example Mean-Squared
Error (MSE) for static images (e.g. [31]) or Fast Fourier Transforms in
the spatial domain for dynamic images (e.g. [34]).

As illustrated by McNamara [17], objective Image Quality Measures
(IQMs), like MSE, can deviate significantly from what a user would
consider to be a correct characterisation. Accordingly, a number of
authors have proposed measures which are based on the operation of the
human visual system. These are intended to give more weight to salient
artefacts while minimising the influence of (to us) insignificant ones.
Wajid et al. [30] compared a number of these measures to determine
which could most accurately predict the Image Quality Assessments
(IQAs) performed by human participants. They found that MSE & Peak
Signal to Noise Ratio (PSNR) were acceptable but Visual Information
Fidelity (VIF) ([27]) performed best. However, by considering only
those artefacts which are subjectively most significant, we risk missing
an unexpected interaction or misrepresenting the fidelity of the image.

For example, motion blur is a rendering artefact which reduces im-
age quality when compared with a ground truth render, but it is also
a good visual cue that improves user experience when it stops anima-
tion being seen as jerky or strobing [19]. Čadı́k et al. [4] performed
a similar study to Wajid et al. but focusing on the performance of
IQMs in assessing artefacts common in synthetic CG imagery, noting
that traditional IQMs are often tuned for compression & transmission
artefacts. They confirm that no single metric performs steadily for
all tested stimuli, though sCorrel (Spearman’s Rank Correlation Co-
efficient over 8x8 pixel blocks) performs relatively well. Zhang &
Wandell [36] performed a similar study comparing the simpler Root
Mean Squared (RMS), CIELAB and their own spatial-CIELAB ([35])
metrics. They found that the sCIELAB predictions were significantly
better than RMS. It is important to consider that various IQMs will
have inbuilt biases, and to select a range of measures.

3 EXPERIMENTAL APPARATUS

A number of studies have performed objective measurements of the
quality of frameless renderers, but so far none have examined what is
perceived by the user when these are integrated into a complete system.
Below we describe the construction of an experimental system used
to render a virtual environment in real-time with ultra low latency, an
equivalent GPU-based system, and a configuration that allowed both to
be captured and synchronised in order to compare their performance.

3.1 DFE Renderer
To drive the display we implemented a custom renderer on a ANON
Dataflow Engine (DFE) [21]. DFEs are processing cards which execute
algorithms described as dataflow graphs. The algorithms are imple-
mented as a pipeline of discrete operations laid out in space, rather
than time as on a traditional CPU. This spatial parallelism allows each
operation to execute with true parallelism, massively increasing the
throughput of the implementation. As the pipeline is fixed at design
time the latency is known and deterministic. Using this platform we

are able to design a renderer with an architecture far different from a
traditional GPU and therefore achieve a lower latency.

Our algorithm (or, graph) begins with a set of counters which identify
the location on the physical display to be rendered. This location is
transformed to undo the distortion of the Head Mounted Display (HMD)
lenses. The transformation consists of a per-pixel mapping between
a location on the real display and a location on the virtual viewport.
The Ray Distortion Sampler Kernel and the Ray Distortion Reader
Kernel are responsible for reading the per-pixel disparities from a
distortion map, and feeding the locations on the virtual viewport onto
the Raycaster Kernel. The Raycaster kernel computes the parameters
of sampling rays in the traditional way from camera properties sent
asynchronously over PCIe. It then performs intersection tests between
these rays and six planes. Each intersection test is a separate series of
operations in hardware and the plane parameters are defined at design
time. The result of each intersection test is compared with that of the
one before it, and the result of the closest intersection is propagated to
the next test. Once the closest plane has been identified, the intersection
point on its surface, and then a set of UV coordinates are computed.
The UV coordinates are converted into a memory address by the Ray
Sampler Kernel. This address is sampled by the Ray Sample Reader
Kernel. The resulting colour value is combined with timing signals in
the Video Signal Generator Kernel and transmitted via DVI to the HMD.
A diagram of the dataflow graph is shown in Figure 1.

Both the distortion map and the environment map are stored in
DRAM (LMEM). On a DFE multiple DRAM modules are concatenated
to form one very wide (1536 bit) address space (LMEM). DRAM is low
cost but has high latency and so caching is used to maximise bandwidth
utilisation. Both the distortion map and environment map are split
into tiles and these are read from DRAM using burst accesses. When
LMEM is accessed, upstream kernels generate read commands and
downstream kernels read the resulting data. The addressing logic is
duplicated in both, so downstream kernels can predict what commands
the upstream kernels will send and therefore whether their current cache
is valid, and what tiles they can expect to receive subsequently. In a
dataflow graph all tokens are executed and transmitted in order. Kernels
only run when tokens are available at all inputs and space is available
at the output. By duplicating the addressing logic, the upstream and
downstream kernels do not have to be explicitly synchronized around
the non-deterministic accesses into LMEM. Similarly, because pixels
are generated in the same order as they are scanned out to the display,
the Video Signal Generator kernel can maintain the current location
on the physical display using its own counters, without any direct
connection to the first kernel.

The distance across the surface of a plane between two subsequent
ray intersection points depends on parameters such as field of view, and
distance between the camera and the plane. These cannot be assumed
ahead of time and so mip-mapping is used to ensure that for each
memory read, on average, 8 subsequent samples can be read from
cache. Due to the high latency of DRAM if this were not done the
memory would not be able to keep up with the sample requests and
the display would be starved of data. The mip level is recomputed for
each pixel based on the distance of the current intersection point on the
plane, from the previous intersection point.

The design can be scaled to support more than six planes and is
limited by space on the FPGA. In addition, transparency mapping is
performed by masking collision results based on low resolution 1 bit
maps stored in low latency SRAM. Neither of these features are used
in the current environment map renderer but can be used to create more
dynamic VEs (for example the Pit Room shown in Figure 2.

The dataflow graph generated logically compliant DVI words, which
were transmitted from the FPGA via four high speed transceivers. A
simple board adapted the physical layer and made the connection to the
HMD. The DFE took the place of the GPU in an otherwise typical PC
running CentOS 6.5.

3.2 GPU Renderer
In order to compare how the behaviour of our frameless renderer devi-
ated from a typical VE, we constructed an equivalent system, but using

1380 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 4, APRIL 2016

Fig. 1. Diagram of the ray-caster renderer architecture

Fig. 2. Images of two virtual environments designed for the DFE frameless renderer, along with photos of the right eye region of the display showing
them being drawn in real-time. The Pit Room (left) is a synthetic environment made up of nine alpha-mapped planes. When it is complete, global
illumination and shadows will be baked into the textures, as shown in the leftmost image. The Lazarus environment (right) is a six sided cube map
captured from the real world, and is the one used in the current experiment.

a GPU in place of the DFE. Our GPU system consisted of a typical
PC running Windows 7 with an NVidia GTX 680 GPU. The CPU
application was a modified version of OculusRoomTiny, a reference
design included in version 0.4.4 of the SDK for our HMD. We modified
this application to remove the input processing stages and have it draw
a cube made up of six planes surrounding the user’s viewpoint. We
also removed a feature which used the latest tracking data to adjust the
mesh used to apply the lens distortion before post-rendering warping.
This was because these types of warps may introduce unpredictable
spatial distortions. Further this functionality gives it some features of a
3D warping architecture, and our aim was to make a comparison with
a typical GPU system. The use of techniques such as View Bypass
and Time Warping which are supported by the SDK can be very effec-
tive at reducing apparent latency however, and this is discussed in the
conclusion.

3.3 HMD and Tracker

The HMD we used was an Oculus Rift DK2. For capturing head motion,
we considered only orientation data. It was captured from the on-board
Inertial Measurement Unit Gyroscope, which connects via USB and
updates at a rate of 1 kHz. To perform the head motion captures we
used the same GPU system described in Section 3.2, however it was
modified so that tracker was read in a separate thread not restricted
by the GPU. The timestamp of each sample was considered to be the
timestamp already assigned by the SDK when it was read in. The mean
interval over the entire capture was 1.5 ms, though 22% of the samples
had an interval of 1 ms or less. The tracker then is capable of running
at 1 kHz, though some variance is introduced between the device and
our code receiving the samples. As a result an 18 second sequence

is covered by approximately 12100 samples. The DK2 features a
1920x1080 portrait display orientated on its side connected via HDMI.
HDMI is backwards compatible with DVI using a passive physical
adapter. The screen is split so that each eye sees 960x1080. For our
experiment, once the head motion had been captured we dismantled the
HMD and secured the display to a camera rig (Figure 3). At this point
tracker data was provided from the logs and only the display was used.

3.4 Synchronisation LED
To measure the latency of the rendering stages of our systems, and to
synchronise the video captures of the HMD with the tracking data, we
needed to be able to instrument the CPU code. To do this we used an
Arduino Uno to toggle an LED on command via serial link over USB.
To ensure that the latency of the serial link, and rise & fall times of the
LED were trivial, we configured the Arduino to loopback all commands,
and the CPU code to block until receipt of these echos. The CPU then
cycled the LED as fast as it could, while it was monitored with a 1000
fps camera. The total round trip time for two commands was ∼3 ms
on both Windows and Linux, much shorter than the frame period of
rendering captures. The loopback was disabled during captures of the
renderers running in real-time.

3.5 Cameras
To measure the latency and confirm correct operation of our apparatus
we used a Casio EX-ZR1000 consumer digital camera. This camera is
capable of capturing 224x64 video at 1000 fps with a rolling shutter. To
capture the rendering systems in operation for image quality analysis
we used a PixeLink DL-D722CU-T USB3 camera. This camera had a
configurable exposure time down to 1 ms, a global shutter and could

FRISTON ET AL.: CONSTRUCTION AND EVALUATION OF AN ULTRA LOW LATENCY FRAMELESS RENDERER FOR VR 1381

capture at up to 257.7 fps. The screen, camera rig and synchronisation
LED are shown in Figure 3.

Fig. 3. Image of the apparatus showing the low speed camera, Arduino
and DK2 screen

4 RESULTS

4.1 Latency
We measured the latency of the rendering stages of both GPU and
DFE systems. To do this we configured the CPU application to cycle
between two viewport orientations values, at a rate of 1 Hz. When
changing the orientation, the CPU cycled the synchronisation LED to
indicate exactly when it had updated the state of the rendering system.
1000 fps video was taken, with both the display and the LED in view.
The latency was measured by counting the number of frames between
the transition of the LED and the first change in the content of the
display (the ‘tracker to beam’ latency, or, the latency of the rendering
stage not including the scan-out time). The technique is similar to those
described by He et al. [9] and Di Luca [6].

The GPU system had a latency of 25.7±0.4 ms. This is not unex-
pected. The display refresh rate is 75 Hz and the CPU application we
based our system on syncs its main loop to this. One frame period is
13.2 ms. It will take the CPU one cycle to issue the commands to render,
and once complete the GPU will wait for VSync before the frame is
swapped to the display. In addition no less than 13.2 ms of latency will
be added as the scan moves across the screen. This is because the GPU
system scans out a single frame at a time.

The DFE system had a latency typically lower than the the temporal
resolution of the video. At this level the synchronisation LED latency
becomes non-trivial, so we cannot say the latency of the rendering stage
is less than 1 ms. It takes the frameless renderer less time to read a
tracker value and update its state than it does to scan out, therefore the
latency will be 1 ms at the location of the scan-beam, and 13.2 ms at
the location about be overwritten by it.

4.2 Rendering
To better illustrate the differences resulting from the alternate rendering
techniques, we applied a simple grid as the texture of our six-sided
environment. The CPU was then configured to pitch the camera up and
down through 180◦at 2-17 Hz, while the display was captured. The
DFE system continually updates the tracking data every few lines. The
latency is therefore lowest at the point the ‘beam’ is scanning across
the display, and highest at the oldest visible pixel. The frame-based
GPU system draws a static image produced for some previous tracking
sample. The latency is therefore lowest at the point that scan-out begins
(the shortest time between the production of the frame and it beginning
to be visible), and increases as the beam moves across the display, as
the frame being scanned is ageing while the scan-out proceeds.

If we look at a 13.2 ms exposure capture, we can see clearly the
differences in the approaches. The DFE system results in a skewed

image under high velocity, never displaying a whole frame for a single
tracking sample. The GPU does not have these skewing features, but
at the cost of a much greater time between, and therefore difference
in, subsequent frames. This is shown in Figure 4. Figure 4 has been
annotated showing the latency between regions of the display and the
current tracking data (i.e. the ideal tracking data at the time the capture
was taken).

Fig. 4. Captures of the DK2 screen with a 13.2 ms exposure, drawn
by the DFE and GPU while in motion, annotated with the latencies at
four different locations on each frame for an arbitrary point in time during
scan-out (at line 1600)

C The current location of the scan-out. The latency of the DFE is
∼1ms. At 144 lines per ms the vertical region around C has the
lowest latency of any on the display. This is because pixels drawn
around region D, for example, were computed for older tracking
samples than those at C.

D The start of the scan-out for the display. This has less meaning
for a frameless renderer than a frame-based renderer since the
sampling of the tracker is independent of where the scan-out
begins.

B,A The scan loops round immediately from A to D, so region B is the
oldest region on the frame, last drawn 13.2 ms before the latest
tracking data.

H This is where a new frame from the GPU begins. The GPU has a
latency of 25.7 ms, so when a scan-out begins the frame is already
25.7 ms old. If we were to capture when the scan was at H, the
latency at H would be 25.7 ms.

G As the scan moves across the screen, the 25.7 ms old frame is
ageing as it goes. By the time the scan reaches region G, the frame
has aged an additional 11 ms. Any part of the display showing
the content of that frame (between and including regions H and
G) is therefore showing data 36.7 ms old (25.7 + 11), and this

1382 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 4, APRIL 2016

latter number will increase as the scan proceeds through F and
H. On a V-Synced frame-based system, scan-out always begins
at the same place, so these delays across the display will be the
same for every frame.

E,F These show the previously rendered frame as they have not yet
been overwritten. The previous frame continues to age while
the new one is being scanned out, so the latency of any region
showing this content is the latency required to complete and draw
the previous frame (25.7 + 13.2) plus the time to reach the region
in order to overwrite it with the new one (11): (25.7 + 13.2 + 11
= 49.9).

The DK2 uses an Organic Light-Emitting Diode (OLED) display.
As an OLED display, the individual pixels have transition times much
faster than those of LCDs, closer to that of CRTs. The low persistence
of the display is facilitated by rolling scans, in which the screen scans
from top to bottom like a CRT, illuminating a narrow moving band of
lines as it does so [11]. A 1 ms capture of this is shown in Figure 5. The
DFE system should have a visible latency equivalent to the maximum
width (in time) of the rolling band, while that for the GPU system
will be the time it takes the band to traverse the screen. Since the age
of the oldest visible pixel is limited, the skewing features are not so
pronounced in the 1 ms capture, although they can be seen with the
help of grid-lines.

Fig. 5. Captures of the DK2 screen with a 1 ms exposure, with grid lines
to help delineate the skew in the DFE render due to motion.

4.3 Image Fidelity Analysis
To assess what effect these differences in rendering approach had on
the ability to reproduce virtual stimuli, we subjected captures of the ren-
derers in action to some IQMs. IQMs characterise image degradation.
Given a test image and a reference image, they provide an objective
numerical score describing how close the two are. Originally designed
to measure degradation due to compression artefacts, more advanced
IQMs are based on models of human perception, designed so that their
scores should correlate with those given by a human. In our experiment
we use IQMs to measure the abilities of our rendering systems, compar-
ing their true output with what they would ideally display, if we could
build a system with zero latency. The expectation is that the measures
will differ between the systems, showing that the rendering technique
has a significant effect on what is perceived by the user.

4.3.1 Procedure
While previous studies have incorporated animation ([34]), none com-
pared renders with moving viewpoints. With our renderers however,
differences will only be apparent under motion. To create a suitable
set of renders, we tracked the head motion of a human participant. We
then selected a segment of the capture which had a range of angular
velocities consistent with previously observed maximums under volun-
tary head motions [8]. With this tracking data we were able to produce
a set of reference images, and drive the rendering systems in real-time
with the same motion.

To measure the quality of the rendering systems’ output, we required
a set of ground truth reference images. These images are what would
be displayed by an ‘ideal’ VE with zero latency. We produced a set of
18,000 images spaced 1 ms apart in time. Since an ideal system would

update the entire display instantly, there was no point in producing
images with a temporal resolution beyond that of the captured tracker
data. For each image, its timestamp was determined and used to sample
the tracker data by retrieving the nearest sample. This sample was used
to configure the pose of the camera, then the frame was rendered on
the GPU as if it were driving the HMD. Instead of being drawn to the
display however the frame was read back from the GPU and written
to disk. The result is a sequence of images showing what the HMD
should display, if the system had an end-to-end latency of zero and was
run at 1 kHz.

The tracking data was then used to drive both rendering systems
in real-time, drawing to the screen of the DK2 while it was captured
with a camera. The synchronisation LED was used to indicate when
in the capture the first tracking data was read into memory. The frame
at which the LED transition occurs is considered the epoch, and the
timestamp of future frames relative to the first tracking sample are
calculated based on the framerate of the capture. The synchronisation
LED is cycled by the CPU at 1 Hz to ensure the clocks of the camera
and the CPU were matched. Each rendering system was captured twice,
once with a 1 ms exposure at a framerate of 257.7 fps, and once with a
13.2 ms exposure at a rate of 75 fps. This is equivalent to the framerate
of the DK2 display and approximates a high persistence equivalent of
the display. When in focus the DK2 screen and Arduino consumed an
area of the frame 1280x600 and the display area of the DK2 screen was
874x491. Examples of the real-time captures are in Figure 6 and an
example of a ground truth frame is in Figure 7.

Once the captures had been taken and synchronised, the area outside
of the eye view-ports (which is invisible to the wearer of the HMD)
was masked and set to black to avoid any luminance changes within
it skewing the IQMs. For each tracking sample, the closest (in time)
images were selected from the ground truth sequence and real-time
capture and these images were compared with a number of IQMs. This
was done for all 12,100 tracker samples, and repeated for all four
captures (the DFE & GPU with 1 ms exposures (low-persistence) &
13 ms exposures (high-persistence). The IQMs always operate on the
entire image. This means the masked area outside of the view-ports
will influence the measures but this influence will be constant across
all the captures. For the pixels outside of the rolling-band, what is
compared with the reference depends on the exposure time. For the 13
ms captures it will be the older pixels which were driven by the band
previously, for the 1 ms captures it will be colour of the pixels when
they are not being driven.

Fig. 6. Example frames from two of the captures of the HMD screen (13
ms exposure)

FRISTON ET AL.: CONSTRUCTION AND EVALUATION OF AN ULTRA LOW LATENCY FRAMELESS RENDERER FOR VR 1383

Fig. 7. Example frame from the ground truth renders

4.3.2 Metrics
We cannot compare our stimuli with a real-world ground truth, because
we do not have the ability to recreate the full dynamic range that the
eye is sensitive to. However, we cannot assume either that the Image
Quality Measures (IQMs) designed to mimic human IQAs can identify
the optimal stimuli either. We therefore select a range of IQMs, of
varying levels of complexity.

• RMSE is a measure of the absolute pixel-by-pixel difference of
two frames. It is a noisy measure, but simple and fast, and used
in a number of previous works.

• sCorrel (SCOR) ([4]) performs a Spearmans Rank-Order Corre-
lation on 18x18 pixel blocks. It is a more complex measure than
RMSE, but is still not perceptually based. It has the advantage
of being less sensitive to brightness changes and low frequency
noise, both of which we can expect when comparing images
captured with a camera to an offline render.

• VIF ([27]) compares the information available in an image to
that in its reference. The information is extracted by passing the
images through a ‘distortion channel’ approximating the Human
Visual System (HVS).

We pick the above structural metrics because our investigation is
geared towards spatial differences caused by scan-out and latency,
whereas we can expect large colour discrepencies simply due to differ-
ences in the response of the rendering systems, the DK2 screen and the
camera. Other frameless renders may pick different metrics that best
reveal their differences. Another metric we would have preferred is
sCIELAB [35], based on the CIELAB standard (Euclidean distance in
L*a*b space). This metric is relatively simple and effective at attenuat-
ing low spatial frequency variations [4]. However it requires a mapping
of RGB data to real-world wavelengths and dimensions of each pixel.
We did not have this calibration for the DK2, nor the inverse through
the camera, and so were unable to use it in this study.

4.3.3 Results
From the ground truth to the capture the renders were distorted con-
siderably: by spatial distortions of the lens of the camera, differences
between the FOV of the two rendering systems, luminance responses
between the two systems and the colour responses of both the display
& the camera. How significantly these differences affected the fidelity
metrics was dependent on the content of the part of the scene that was
visible, and therefore the orientation of the viewport.

This means that the absolute measures are not comparable between
two systems, and the effects due to latency will be masked by the
effects due to simply pointing the virtual camera in another direction.
To ameliorate this, we normalised the error metrics and performed a
multiple linear regression on the roll, pitch, yaw and average velocity
values of the orientation (predictors) for the measures (responses). The
intent being that the velocity coefficient would be mostly free of the
influence of the changes due to orientation alone. This is as the velocity
correlation will be performed on the residuals after these effects have
already been accounted for by the model. The velocity predictor was

derived by computing the average of the orientation component angles
for each sample, taking the derivative, and then passing through a 10
sample wide smoothing filter.

We performed the linear regression for all captures at both expo-
sures, and the results are shown in Table 1. Only significant predictors
(p < 0.05) are shown. Each measure was computed for all tracker
samples and so each model has 12100 observations and 12095 degrees
of freedom.

Coefficient Estimates and R2 values for three IMQ multilple
linear regression models (p < 0.05)

Exposure
Time

1 ms 13 ms

Predictor DFE GPU DFE GPU
Normalised Root Mean Square Error

Roll 0.060 0.063 0.045
Pitch 0.404 0.430 0.210 0.295
Yaw 0.055 0.058 0.031 0.055
Velocity 1.010 1.089 1.008 1.531
R2 0.434 0.449 0.296 0.383

Spearman’s Rank Correlation Coefficient
Roll -0.015 0.009 0.084 0.134
Pitch 0.034 0.044 -0.170 -0.201
Yaw 0.010 0.010 0.010 0.021
Velocity 0.039 -0.144 -0.490 -0.802
R2 0.192 0.215 0.436 0.481

Visual Information Fidelity
Roll -0.006 0.058 0.037
Pitch 0.012 0.004 0.031 0.012
Yaw 0.003 0.001 0.022 0.010
Velocity -0.033 -0.715 -0.410
R2 0.155 0.142 0.236 0.108

Table 1. Parameters for three multiple linear regression models for the
RMSE, SCOR and VIF IQMs, showing only coefficient estimates with
p < 0.05.

An implication of considering each angle element individually for
the absolute value, but averaged for velocity, is that the magnitude of
the velocity coefficient cannot be compared with that of the angles,
as the influence due to orientation will be distributed between these.
The purpose of the models are to remove the influence of orientation
however, not to examine it. More revealing are the changes in the
velocity estimate between the conditions. Considering what we know
about how the systems render, we can make four observations that are
supported by Table 1.

1. The system with higher latency (GPU), should be more sensitive
to velocity, and we see this for almost all cases. The exception
is the 1 ms RMSE model, in which we expect the difference in
effect is hidden by the noise in the metric.

2. The more complex and sensitive to structure the IQM, the more
it should reflect the differences in rendering approach. This is
because they should be less sensitive to colour and luminance
responses of the screen and camera, which we do not account for.
We see this as SCOR and VIF have better fits than RMSE, and
larger differences in the coefficients between the GPU and DFE,
and 13 ms and 1 ms captures.

3. As the exposure time increases, there will be a higher number
of ‘older’ pixels visible, which will result in a higher average
error across the whole screen. This will be exacerbated by high
velocities, where the discrepancy of these older pixels will become
more egregious. This is the case regardless of the underlying
‘tracker to beam’ latency, and is reflected in the 13 ms captures
having larger coefficients than the 1 ms captures, for both the
DFE and GPU.

1384 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 4, APRIL 2016

The DFE should have an advantage in the 13 ms captures however.
This is part due to the lower system latency, limiting the age of the
oldest pixel, but also because the frameless nature of the display
means the age of the oldest visible pixel increases at a constant
rate equal to the scan-out time, whereas for the frame-based GPU
it increases faster (scan-out time + time since the frame was
rendered). The DFE typically has a smaller coefficient for the 13
ms captures, although to what degree this is due to the frameless
nature, and what due to the lower average latency, we cannot say.

4. With a 1 ms exposure time, there will be fewer older pixels
visible. As a result the error should be less dependent on the
average latency across the entire frame, and more dependent on
the ‘tracker to beam’ latency at any given time. This is what we
see, with the SCOR and VIF coefficients being smaller for the
DFE than the GPU - so far as to be statistically insignificant for
the VIF measure.

The results show then that the stimuli produced by systems rendering
the same VE, can vary significantly depending on which rendering
approach was used under certain conditions (in this case high viewport
velocity). IQMs attempt to quantify the perceived difference between
two images. The coefficients of velocity are typically smaller for the
DFE and low-persistance captures. This implies lower latencies result
in higher fidelity VEs under user motion, and that the highest fidelity is
provided by the DFE. While the IQMs are perceptually based, it cannot
be said that the DFE provides a better experience in absolute terms. To
begin with, the comparisons above are done at single points in time,
with no consideration of the stimuli before or after. There may be
significant temporal interactions with the HVS, which our experiment
will not detect. Since measures are not directly comparable between
the systems, we also cannot say that one system has generally higher
fidelity than the other, only that one is better at approximating the ideal
under motion. Further some artefacts may be desirable, such as blurring
to reduce the perception of jitter during object movement. Future work
will involve using the conclusions here to inform a studies into user
performance, to see how the variation in fidelity affects user behaviour
in a real system.

4.3.4 Outliers
There is one outlier, and that is the velocity predictor shows a positive
correlation with image fidelity for the SCOR metric. Even in a 1 ms
capture, where the age of the oldest pixel will be no more than a few
milliseconds, the correlation should at best be insignificant. The effect
is very small (0.039), but significant (p = 0.0057) and the R2 is low
(0.192). We have no explanation for this result, and can only theorize
that it is due to covariance with the orientation. For completeness, the
mean covariance for all conditions was < 1e−4 for SCOR & VIF, and
< 1e−3 for RMS.

The DFE estimate for the VIF 13 ms capture is also smaller than
that for the GPU, which may on first glance be surprising but should
not be considered an outlier. The DFE system maintains its low latency
at a cost of image distortion, as it is skewed during scan-out under
motion. VIF is the most complex measure and may consider this
distortion more egregious than the discrepancies in orientation due
to time. When the number of visible (older and distorted) pixels is
reduced (in the 1 ms capture) this effect disappears. Future studies
may be improved by designing new metrics specifically for frameless
renderers, or constraining existing ones only to operate on the visible
regions of low persistence displays at a given point in time.

5 CONCLUSION

In this study we investigated a frameless renderer designed for ultra low
latency, but interoperating with an existing, readily available HMD. Our
renderer is an implementation of a real-time ray-caster on an FPGA.
Ray casting is a highly constrained subset of ray-tracing, making it
amenable for hardware acceleration such as we have done. The prin-
ciple of our renderer is similar to that of Regan & Pose’s Address
Recalculation Pipeline. Like Regan & Pose, we do not simulate light

transport but rely on sampling it from detailed maps rendered off-line.
Unlike the Address Recalculation Pipeline however, we use ray-casting
with simple geometric proxies. This allows our renderer to operate
standalone while still permitting users to translate, as well as rotate,
in the virtual world. A 2D image warper in this case would introduce
spatial distortions. User’s still will not see correct anisotropic visual
effects such as specular highlights however - for this our system would
need to be coupled to a renderer re-generating the maps in real-time. In
this case there would be two latencies, for different visual effects, to
consider. This is a similar situation to that encountered with dynamic
objects, the behaviour of which may be computed by a loop with la-
tency characteristics quite different to that of the rendering loop. The
use of ray casting means our renderer is frameless, in that we can com-
pute pixels in an arbitrary order and minimise the time between tracker
data being received, and a pixel being computed. The use of hardware
acceleration facilitates an ultra-low latency, which we measured to
be ∼1 ms.

Using a series of high and low speed video captures, and objec-
tive IQMs, we investigated the implications of combining a frameless
renderer with a sequential scan-out OLED display, and compare this
with an equivalent system, but built with a GPU. Typically, latency is
considered as a discrete characterisation of a constant delay between
user input and the response of the display - but this is not complete.
Latency changes across the display during scan-out, and is a function
of a number of things, including the time to render a single frame, the
pipeline depth between the renderer and the display, and the scan-out
period itself. Different renderers do not have equal latency responses,
and changing the rendering approach can significantly alter this re-
sponse. For example, we show how the profile of the frameless render
is very different to that of a GPU. The latency of the frameless renderer
being lowest at the location of the scan-beam, instead of increasing
with it from the top of the screen, as with a frame-based system. This is
because the frameless system has a ‘tracker to beam’ latency lower than
the frame period, so the more time elapsed since a pixel was driven,
the higher the latency of that pixel. Conversely frame-based systems
scan out discrete frames, synchronised to the top of the display. As
soon as a frame is finished, it is ageing even before scan-out begins,
therefore the delay increases as the scan-out proceeds. This difference
is manifested as a skew feature under motion on the frameless renderer,
as a single scan-out is an amalgamation of multiple tracker samples.
Using objective IQMs, we assessed abilities of each system to faithfully
recreate a virtual world. Unsurprisingly we found the system with the
lowest latency performs better than the high latency system. Further
though, we show how the rolling scan approach to low persistence on
the DK2’s OLED screen reduces the effect of velocity on fidelity. The
effect is reduced for both the GPU and the DFE, but on the DFE it is
reduced to practical insignificance.

In order to perform the study we disabled the timewarp functionality
of the GPU apparatus’ CPU application. For other VEs though the
Oculus SDK can combine two features to reduce apparent latency
significantly. The first, View Bypass, compensates for the rendering
latency. The GPU compensates for lens distortion by rendering the
scene to a typical (i.e. planar) viewport, then texture mapping the render
to a mesh which counteracts the distortion of the lenses. The GPU
renders this mesh to the viewport displayed to the user and in doing
so applies a post-rendering warp. View Bypass involves re-sampling
the tracker right before performing this second render, identifying the
change in tracker state since the original frame was rendered, and
compensating for it by warping the 2D image and/or the distortion
mesh itself. Regardless of the complexity of the original render, the
distortion process remains the same for each frame, making the time to
complete it highly predictable. This facilitates the second technique,
Time Warping, in which the post-rendering warp is left as late possible
so it completes just in time for the next scan-out to begin. Under
certain conditions this process is very effective and can reduce apparent
latency to practically imperceptible levels. It has the disadvantage
though of introducing unpredictable spatial distortions. Further, while
the perspective may change, dynamic scene content cannot be warped
in such a manner. With View Bypass and Time Warping, it is in theory

FRISTON ET AL.: CONSTRUCTION AND EVALUATION OF AN ULTRA LOW LATENCY FRAMELESS RENDERER FOR VR 1385

possible to warp on a line by line basis, essentially implementing a
frameless renderer. A naive implementation on a GPU however would
issue thousands of draw calls per frame (one per line) and the drop
in frame rate on any typical PC due to CPU overhead would likely
negate any gains. Such a solution is also restricted to per-line warping,
whereas a frameless renderer such as ours can update on a per-pixel
basis.

Our results were supportive of our observations of the behaviour of
the systems, but our experiment had a number of limitations. First, we
did not account for the colour responses of the screen or the camera.
This lead to high noise floors for the simpler measures such as RMS.
Perniciously though, it also meant that the magnitude of the reported
errors were dependent on absolute orientation. We used multiple linear
regression to minimise this influence, before examining how the render
fidelity varied with velocity, although there is no escaping that velocity
is in part a function of the orientation.

We did confirm the covariance of the predictors was minimal for
our models, but are still unable to explain the outlier described in
Section 4.3.4. In expectation of such outliers, and in recognition that
the response of participants to visual stimuli is not entirely understood,
we chose to use multiple inherently different IQMs. The more sensitive
to structure the IQM, the more sensitive to velocity it appeared to
be. However this also revealed that in the case of high persistence
displays, that for frameless renderers such as ours the skew feature
may be more egregious to a participant than the discrepancy due to
latency. In the future, a better way to perform such assessments may be
to capture the ground truth from the camera & screen. To do this, the
CPU application could be modified to draw a static image (pertaining to
one tracker sample) to the screen. After enough time for all the pixels
to transition has passed, that frame could be captured and considered as
what an ideal, in terms of zero latency everywhere, display would show.
Capturing the ground truth in such a way would reduce the noise floor
to that inherent in the sensor and display itself, removing discrepancies
due to colour and slight differences in the geometry transforms.

While we have shown that the frameless renderer has a higher fidelity
under motion, how this affects participants in a real VE system is not
obvious. One implication of the different rendering techniques for
example is the relative latency of the eyes. On a frame-based system
one eye will always have a higher latency than the other, whereas one
the frameless system the point of lowest latency is constantly changing,
meaning the eyes could have on average an equal latency. The use of
ray casting, rather than simpler affine transforms, allows our renderer
to draw relatively complex virtual environments. The next step will
be to put users in a system built with the frameless render to see what
effects, if any, there are on presence or other performance measures of
a VE.

ACKNOWLEDGMENTS

The authors wish to thank Emil Persson for providing the cubic envi-
ronment map of Larnaca, Cyprus under CC BY 3.0.

REFERENCES

[1] L. Bergman, H. Fuchs, E. Grant, and S. Spach. Image rendering by
adaptive refinement. ACM SIGGRAPH Computer Graphics, 20(4):29–37,
1986.

[2] G. Bishop, H. Fuchs, L. McMillan, and E. J. Scher Zagier. Frameless
Rendering: Double Buffering Considered Harmful. In SIGGRAPH ’94
Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, pages 175–176, 1994.

[3] T. J. Buker, D. A. Vincenzi, and J. E. Deaton. The Effect of Apparent La-
tency on Simulator Sickness While Using a See-Through Helmet-Mounted
Display: Reducing Apparent Latency With Predictive Compensation. Hu-
man Factors: The Journal of the Human Factors and Ergonomics Society,
54(2):235–249, jan 2012.

[4] M. Čadı́k, R. Herzog, R. Mantiuk, K. Myszkowski, and H.-P. Seidel. New
Measurements Reveal Weaknesses of Image Quality Metrics in Evaluating
Graphics Artifacts. ACM Transactions on Graphics, 31(6):Article 147,
2012.

[5] A. Dayal, C. Woolley, B. Watson, and D. Luebke. Adaptive frameless
rendering. ACM SIGGRAPH 2005 Courses, 2005.

[6] M. Di Luca. New Method to Measure End-to-End Delay of Virtual Reality.
Presence, 19(6):569–584, dec 2010.

[7] J. A. Ferwerda. Three varieties of realism in computer graphics. In
Proceedings of SPIE Human Vision and Electronic Imaging ’03, pages
290–297, 2003.

[8] G. E. Grossman, R. J. Leigh, L. a. Abel, D. J. Lanska, and S. E. Thurston.
Frequency and velocity of rotational head perturbations during locomotion.
Experimental Brain Research, 70(3):470–476, 1988.

[9] D. He, F. Liu, D. Pape, G. Dawe, and D. Sandin. Video-Based Measure-
ment of System Latency. International Immersive Projection Technology
Workshop, 2000.

[10] J. F. Hughes, A. van Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. K.
Feiner, and K. Akeley. Computer Graphics Principles and Practice.
Addison-Wesley, 3rd edition, 2013.

[11] H. Ito, M. Ogawa, and S. Sunaga. Evaluation of an organic light-emitting
diode display for precise visual stimulation. Journal of Vision, 13(7):1–21,
jun 2013.

[12] H. Kim, T. DiGiacomo, A. Egges, E. Lyard, and S. Garchery. Believable
virtual environment: Sensory and perceptual believability. Workshop on
Believability in Virtual Environments, 2008.

[13] A. Kratz, J. Reininghaus, M. Hadwiger, and I. Hotz. Adaptive Screen-
Space Sampling for Volume Ray-Casting. Technical Report February
2011, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2011.

[14] X. Li, B. Liu, and E. Wu. Full Solid Angle Panoramic Viewing by Depth
Image Warping on Field Programmable Gate Array. International Journal
of Virtual Reality, 6(2):69–77, 2007.

[15] I. S. MacKenzie and C. Ware. Lag as a determinant of human performance
in interactive systems. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 488–493, New York, 1993.
ACM Press.

[16] W. R. Mark, L. McMillan, and G. Bishop. Post-Rendering 3D Warping.
In Proceedings of the 1997 Symposium on Interactive 3D Graphics, pages
7–16, 1997.

[17] A. Mcnamara. Visual Perception in Realistic Image Synthesis. Computer
Graphics Forum, 20(4):211–224, 2001.

[18] M. R. Mine. Characterization of end-to-end delays in head-mounted
display systems. Technical report, University of North Carolina at Chapel
Hill, 1993.

[19] F. Navarro, F. J. Serõn, and D. Gutierrez. Motion blur rendering: State of
the art. Computer Graphics Forum, 30(1):3–26, 2011.

[20] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz. Designing for
low-latency direct-touch input. Proceedings of the 25th annual ACM
symposium on User interface software and technology - UIST ’12, page
453, 2012.

[21] O. Pell and V. Averbukh. Maximum Performance Computing with
Dataflow Engines. Computing in Science & Engineering, 14(4):98–103,
jul 2012.

[22] K. Petkov and A. Kaufman. Frameless Volume Visualization. IEEE
Transactions on Visualization and Computer Graphics, XX(XX):1–1,
2015.

[23] V. Popescu, V. Popescu, J. Eyles, J. Eyles, A. Lastra, A. Lastra, J. Stein-
hurst, J. Steinhurst, N. England, N. England, L. Nyland, and L. Nyland.
The warpengine: An architecture for the post-polygonal age. In Proceed-
ings of SIGGRAPH 2000, pages 433–442, 2000.

[24] H. Qu, H. Qu, M. Wan, M. Wan, J. Qin, J. Qin, A. Kaufman, and A. Kauf-
man. Image Based Rendering with Stable Frame Rates. In Proceedings of
the Conference on Visualization ’00, pages 251–258, Salt Lake City, Utah,
USA, 2000.

[25] M. Regan and R. Pose. Priority rendering with a virtual reality address
recalculation pipeline. In Proceedings of the 21st annual conference on
Computer Graphics and Interactive Techniques - SIGGRAPH ’94, pages
155–162, New York, New York, USA, 1994. ACM Press.

[26] M. J. P. Regan, G. S. P. Miller, S. M. Rubin, and C. Kogelnik. A real-time
low-latency hardware light-field renderer. In Proceedings of the 26th
annual conference on Computer Graphics and Interactive Techniques -
SIGGRAPH ’99, pages 287–290, 1999.

[27] H. R. Sheikh and A. C. Bovik. Image information and visual quality.
IEEE transactions on image processing: a publication of the IEEE Signal
Processing Society, 15(2):430–444, 2006.

[28] F. Smit, R. van Liere, S. Beck, and B. Froehlich. An Image-Warping
Architecture for VR: Low Latency versus Image Quality. In Proceedings
of the 2009 IEEE Virtual Reality Conference - VR 2009, pages 27–34. Ieee,
mar 2009.

1386 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 4, APRIL 2016

[29] D. a. Vincenzi, J. E. Deaton, T. J. Buker, E. L. Blickensderfer, R. Pray, and
B. Williams. Mitigation of System Latency in Next Generation Helmet
Mounted Display Systems. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volume 55, pages 2163–2167, sep
2011.

[30] R. Wajid, A. B. Mansoor, and M. Pedersen. A Human Perception Based
Performance Evaluation of Image Quality Metrics. pages 303–312, 2014.

[31] B. Watson and D. Luebke. Breaking the Frame: A New Approach to
Temporal Sampling. Technical report, 1994.

[32] C. Woolley, D. Luebke, B. Watson, and A. Dayal. Interruptible rendering.
In Proceedings of the 2003 symposium on Interactive 3D graphics - SI3D

’03, page 143, New York, New York, USA, 2003. ACM Press.
[33] Y. Yanagida, M. Inami, and S. Tachi. Improvement of Temporal Quality

of HMD for Rotational Motion. In RO-MAN 1998 - The 16th IEEE In-
ternational Symposium on Robot and Human Interactive Communication,
pages 121–126, 1998.

[34] E. J. S. Zagier. Defining and Refining Frameless Rendering. Technical
report, University of North Carolina, Chapel Hill, 1996.

[35] X. Zhang and B. A. Wandell. A spatial extension of CIELAB for digital
color image reproduction. Journal of the Society for Information Display,
5(1), 1997.

[36] X. Zhang and B. A. Wandell. Color image fidelity metrics evaluated using
image distortion maps. Signal Processing, 70(3):201–214, 1998.

[37] F. Zheng, T. Whitted, A. Lastra, P. Lincoln, A. State, A. Maimone, and
H. Fuchs. Minimizing Latency for Augmented Reality Displays: Frames
Considered Harmful. ISMAR 2014, pages 1–6, 2014.

