14,041 research outputs found

    The design and applications of the african buffalo algorithm for general optimization problems

    Get PDF
    Optimization, basically, is the economics of science. It is concerned with the need to maximize profit and minimize cost in terms of time and resources needed to execute a given project in any field of human endeavor. There have been several scientific investigations in the past several decades on discovering effective and efficient algorithms to providing solutions to the optimization needs of mankind leading to the development of deterministic algorithms that provide exact solutions to optimization problems. In the past five decades, however, the attention of scientists has shifted from the deterministic algorithms to the stochastic ones since the latter have proven to be more robust and efficient, even though they do not guarantee exact solutions. Some of the successfully designed stochastic algorithms include Simulated Annealing, Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony Optimization, Firefly Optimization etc. A critical look at these ‘efficient’ stochastic algorithms reveals the need for improvements in the areas of effectiveness, the number of several parameters used, premature convergence, ability to search diverse landscapes and complex implementation strategies. The African Buffalo Optimization (ABO), which is inspired by the herd management, communication and successful grazing cultures of the African buffalos, is designed to attempt solutions to the observed shortcomings of the existing stochastic optimization algorithms. Through several experimental procedures, the ABO was used to successfully solve benchmark optimization problems in mono-modal and multimodal, constrained and unconstrained, separable and non-separable search landscapes with competitive outcomes. Moreover, the ABO algorithm was applied to solve over 100 out of the 118 benchmark symmetric and all the asymmetric travelling salesman’s problems available in TSPLIB95. Based on the successful experimentation with the novel algorithm, it is safe to conclude that the ABO is a worthy contribution to the scientific literature

    An improved optimization technique for estimation of solar photovoltaic parameters

    Get PDF
    The nonlinear current vs voltage (I-V) characteristics of solar PV make its modelling difficult. Optimization techniques are the best tool for identifying the parameters of nonlinear models. Even though, there are different optimization techniques used for parameter estimation of solar PV, still the best optimized results are not achieved to date. In this paper, Wind Driven Optimization (WDO) technique is proposed as the new method for identifying the parameters of solar PV. The accuracy and convergence time of the proposed method is compared with results of Pattern Search (PS), Genetic Algorithm (GA), and Simulated Annealing (SA) for single diode and double diode models of solar PV. Furthermore, for performance validation, the parameters obtained through WDO are compared with hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), Generalized Oppositional Teaching Learning Based Optimization (GOTLBO), Artificial Bee Swarm Optimization (ABSO), and Harmony Search (HS). The obtained results clearly reveal that WDO algorithm can provide accurate optimized values with less number of iterations at different environmental conditions. Therefore, the WDO can be recommended as the best optimization algorithm for parameter estimation of solar PV

    Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System

    Get PDF
    This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.Fil: Méndez Babey, Måximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemåtica Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemåtica. Instituto de Matemåtica Bahía Blanca; ArgentinaFil: Gonzålez, Begoña. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin

    A New Optimization Algorithm Based on Search and Rescue Operations

    Full text link
    [EN] In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving single-objective continuous optimization problems. SAR is inspired by the explorations carried out by humans during search and rescue operations. The performance of SAR was evaluated on fifty-five optimization functions including a set of classic benchmark functions and a set of modern CEC 2013 benchmark functions from the literature. The obtained results were compared with twelve optimization algorithms including well-known optimization algorithms, recent variants of GA, DE, CMA-ES, and PSO, and recent metaheuristic algorithms. The Wilcoxon signed-rank test was used for some of the comparisons, and the convergence behavior of SAR was investigated. The statistical results indicated SAR is highly competitive with the compared algorithms. Also, in order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison with the other existing algorithms. Thus, the proposed algorithm can be considered an efficient optimization method for real-world optimization problems.This study was partially supported by the Spanish Research Project (nos. TIN2016-80856-R and TIN2015-65515-C4-1-R).Shabani, A.; Asgarian, B.; Gharebaghi, SA.; Salido Gregorio, MA.; Giret Boggino, AS. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering. 2019:1-23. https://doi.org/10.1155/2019/2482543S1232019Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2008). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2), 239-287. doi:10.1007/s11047-008-9098-4Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267(1), 66-72. doi:10.1038/scientificamerican0792-66Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M. N., Salcedo-Sanz, S., & Geem, Z. W. (2013). A survey on applications of the harmony search algorithm. Engineering Applications of Artificial Intelligence, 26(8), 1818-1831. doi:10.1016/j.engappai.2013.05.008Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2012). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57. doi:10.1007/s10462-012-9328-0Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. doi:10.1016/j.cad.2010.12.015Zhang, C., Lin, Q., Gao, L., & Li, X. (2015). Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems. Expert Systems with Applications, 42(21), 7831-7845. doi:10.1016/j.eswa.2015.05.050Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78. doi:10.1504/ijbic.2010.032124Punnathanam, V., & Kotecha, P. (2016). Yin-Yang-pair Optimization: A novel lightweight optimization algorithm. Engineering Applications of Artificial Intelligence, 54, 62-79. doi:10.1016/j.engappai.2016.04.004Zhao, C., Wu, C., Chai, J., Wang, X., Yang, X., Lee, J.-M., & Kim, M. J. (2017). Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Applied Soft Computing, 55, 549-564. doi:10.1016/j.asoc.2017.02.009Zhao, C., Wu, C., Wang, X., Ling, B. W.-K., Teo, K. L., Lee, J.-M., & Jung, K.-H. (2017). Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing. Applied Mathematical Modelling, 49, 319-337. doi:10.1016/j.apm.2017.05.001Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82. doi:10.1109/4235.585893Simon, D. (2008). Biogeography-Based Optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702-713. doi:10.1109/tevc.2008.919004Garg, H. (2015). An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm and Evolutionary Computation, 24, 1-10. doi:10.1016/j.swevo.2015.05.001Storn, R., & Price, K. (1997). Journal of Global Optimization, 11(4), 341-359. doi:10.1023/a:1008202821328Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution – An updated survey. Swarm and Evolutionary Computation, 27, 1-30. doi:10.1016/j.swevo.2016.01.004Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513-516. doi:10.1038/nature03236Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. doi:10.1016/j.cnsns.2012.05.010Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. doi:10.1016/j.advengsoft.2013.12.007Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang–Big Crunch. Advances in Engineering Software, 37(2), 106-111. doi:10.1016/j.advengsoft.2005.04.005Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers & Structures, 139, 18-27. doi:10.1016/j.compstruc.2014.04.005Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004Zheng, Y.-J. (2015). Water wave optimization: A new nature-inspired metaheuristic. Computers & Operations Research, 55, 1-11. doi:10.1016/j.cor.2014.10.008Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray Optimization. Computers & Structures, 112-113, 283-294. doi:10.1016/j.compstruc.2012.09.003Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206. doi:10.1287/ijoc.1.3.190Chiang, H.-P., Chou, Y.-H., Chiu, C.-H., Kuo, S.-Y., & Huang, Y.-M. (2013). A quantum-inspired Tabu search algorithm for solving combinatorial optimization problems. Soft Computing, 18(9), 1771-1781. doi:10.1007/s00500-013-1203-7Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2017). Human mental search: a new population-based metaheuristic optimization algorithm. Applied Intelligence, 47(3), 850-887. doi:10.1007/s10489-017-0903-6Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471. doi:10.1007/s10898-007-9149-xRao, R. V., Savsani, V. J., & Vakharia, D. P. (2012). Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Information Sciences, 183(1), 1-15. doi:10.1016/j.ins.2011.08.006Digalakis, J. G., & Margaritis, K. G. (2001). On benchmarking functions for genetic algorithms. International Journal of Computer Mathematics, 77(4), 481-506. doi:10.1080/00207160108805080Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108-132. doi:10.1016/j.amc.2009.03.090Lim, T. Y., Al-Betar, M. A., & Khader, A. T. (2015). Adaptive pair bonds in genetic algorithm: An application to real-parameter optimization. Applied Mathematics and Computation, 252, 503-519. doi:10.1016/j.amc.2014.12.030Fleury, C., & Braibant, V. (1986). Structural optimization: A new dual method using mixed variables. International Journal for Numerical Methods in Engineering, 23(3), 409-428. doi:10.1002/nme.1620230307Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18. doi:10.1016/j.swevo.2011.02.002Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17-35. doi:10.1007/s00366-011-0241-yWang, G. G. (2003). Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points. Journal of Mechanical Design, 125(2), 210-220. doi:10.1115/1.1561044Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:10.1016/j.compstruc.2014.03.007CHICKERMANE, H., & GEA, H. C. (1996). STRUCTURAL OPTIMIZATION USING A NEW LOCAL APPROXIMATION METHOD. International Journal for Numerical Methods in Engineering, 39(5), 829-846. doi:10.1002/(sici)1097-0207(19960315)39:53.0.co;2-uChou, J.-S., & Ngo, N.-T. (2016). Modified firefly algorithm for multidimensional optimization in structural design problems. Structural and Multidisciplinary Optimization, 55(6), 2013-2028. doi:10.1007/s00158-016-1624-xSonmez, M. (2011). Artificial Bee Colony algorithm for optimization of truss structures. Applied Soft Computing, 11(2), 2406-2418. doi:10.1016/j.asoc.2010.09.003Degertekin, S. O. (2012). Improved harmony search algorithms for sizing optimization of truss structures. Computers & Structures, 92-93, 229-241. doi:10.1016/j.compstruc.2011.10.022Degertekin, S. O., & Hayalioglu, M. S. (2013). Sizing truss structures using teaching-learning-based optimization. Computers & Structures, 119, 177-188. doi:10.1016/j.compstruc.2012.12.011Talatahari, S., Kheirollahi, M., Farahmandpour, C., & Gandomi, A. H. (2012). A multi-stage particle swarm for optimum design of truss structures. Neural Computing and Applications, 23(5), 1297-1309. doi:10.1007/s00521-012-1072-5Kaveh, A., Bakhshpoori, T., & Afshari, E. (2014). An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm. Computers & Structures, 143, 40-59. doi:10.1016/j.compstruc.2014.07.012Kaveh, A., & Bakhshpoori, T. (2016). A new metaheuristic for continuous structural optimization: water evaporation optimization. Structural and Multidisciplinary Optimization, 54(1), 23-43. doi:10.1007/s00158-015-1396-8Jalili, S., & Hosseinzadeh, Y. (2015). A Cultural Algorithm for Optimal Design of Truss Structures. Latin American Journal of Solids and Structures, 12(9), 1721-1747. doi:10.1590/1679-7825154

    The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms

    Get PDF
    open access articleWe present Stochastic Optimisation Software (SOS), a Java platform facilitating the algorithmic design process and the evaluation of metaheuristic optimisation algorithms. SOS reduces the burden of coding miscellaneous methods for dealing with several bothersome and time-demanding tasks such as parameter tuning, implementation of comparison algorithms and testbed problems, collecting and processing data to display results, measuring algorithmic overhead, etc. SOS provides numerous off-the-shelf methods including: (1) customised implementations of statistical tests, such as the Wilcoxon rank-sum test and the Holm–Bonferroni procedure, for comparing the performances of optimisation algorithms and automatically generating result tables in PDF and formats; (2) the implementation of an original advanced statistical routine for accurately comparing couples of stochastic optimisation algorithms; (3) the implementation of a novel testbed suite for continuous optimisation, derived from the IEEE CEC 2014 benchmark, allowing for controlled activation of the rotation on each testbed function. Moreover, we briefly comment on the current state of the literature in stochastic optimisation and highlight similarities shared by modern metaheuristics inspired by nature. We argue that the vast majority of these algorithms are simply a reformulation of the same methods and that metaheuristics for optimisation should be simply treated as stochastic processes with less emphasis on the inspiring metaphor behind them

    A novel fuzzy adaptive teaching–learning‑based optimization (FATLBO) for solving structural optimization problems

    Get PDF
    This paper presents a new optimization algorithm called fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving numerical structural problems. This new algorithm introduces three new mechanisms for increasing the searching capability of teaching–learning-based optimization namely status monitor, fuzzy adaptive teaching–learning strategies, and remedial operator. The performance of FATLBO is compared with well-known optimization methods on 26 unconstrained mathematical problems and five structural engineering design problems. Based on the obtained results, it can be concluded that FATLBO is able to deliver excellence and competitive performance in solving various structural optimization problems

    Enhanced Symbiotic Organisms Search (ESOS) for Global Numerical Optimization

    Get PDF
    Symbiotic organisms search (SOS) is a simple yet effective metaheuristic algorithm to solve a wide variety of optimization problems. Many studies have been carried out to improve the performance of the SOS algorithm. This research proposes an improved version of the SOS algorithm called the “enhanced symbiotic organisms search” (ESOS) for global numerical optimization. The conventional SOS is modified by implementing a new searching formula into the parasitism phase to produce a better searching capability. The performance of the ESOS is verified using 26 benchmark functions and one structural engineering design problem. The results are then compared with existing metaheuristic optimization methods. The obtained results show that the ESOS gives a competitive and effective performance for global numerical optimization
    • 

    corecore