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1. Introduction 

Today, due to the necessity of clean energy sources, the 
application of renewable and inexhaustible energy sources is 
gradually increasing. Among them, solar energy source seems to 
constitutes one of the best alternative solutions for energy 
provision. However, for this purpose, precise modeling of solar 
PV is required as it must be employ to predict the characteristic 
curves of solar PV at different weather condition of a particular 
area. This, in turn, is necessary for designing the corresponding 
inverter with high efficiency that is suitable for the given 
location. In addition to that, it will be beneficial to identify any 
mismatch in the PV array due to dust in the solar PV module by 
calculating the difference in real power generated by the module 
and predicted power by the model. This will enable to carry out 
maintenance at the right time [1]. 

The modeling of solar PV is generally derived using 
equivalent diode models. The current vs voltage (I-V) 
characteristics of solar PVs are mostly described using two types 
of diode models: single diode model and double diode model [2-
4]. In this work, we focus on both single diode and double diode 
models of the solar PV. The parameters of the solar PV model 
vary with temperature and irradiance. Hence, precise estimation 
of the parameters is required to model the solar PV accurately. 
The popular approaches employed for parameter estimations are 
broadly categorized as analytical techniques [5], numerical 
extraction [6 -9] and evolutionary algorithm techniques [10-14]. 

In the analytical technique, mathematical equations are used 
to find the parameters. Most of the values in the equations are 
not provided in the manufacturer datasheet. As a result, this 
method is not deemed accurate [4]. Numerical extraction 
technique is based on curve fitting. However, the application of 
curve fitting to the nonlinear equation of diode is quite difficult.  
Consequently, numerical extraction approach is not so popular 
either [8]. On the other hand, artificial intelligence techniques 
[11] are considered as excellent in dealing with nonlinear 
equations. In recent years, different optimization techniques 
have been introduced to estimate the parameters of solar PV; 
namely, the Genetic Algorithm (GA) [10], [12], Pattern Search 

(PS) optimization [13], Artificial Immune System (AIS) [14], 
[15],  Bacterial Foraging Algorithm (BFA) [16], Simulated 
Annealing (SA) [17], Differential Evaluation (DE) [18], 
Mutative-scale Parallel Chaos Optimization  (MPCOA) [19], 
Harmony Search (HS) based algorithm [20], Artificial Bee 
Swarm Optimization (ABSO) algorithm [21], Artificial Bee 
Colony (ABSO) optimization [22], Flower Pollination 
Algorithm (FPA) [23], Levenberb – Marquard Algorithm with 
Simulated Annealing (LMSA) [24], Cuckoo Search (CS) [25], 
hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA) 
[26], Fireworks Algorithm (FA) and Generalized Oppositional 
Teaching Learning Based Optimization (GOTLBO) [27]. 
However, these algorithms still require some modifications to 
find the most optimized parameter for different solar PV 
modules [23]. The most efficient algorithm for finding the 
optimized value of solar PV parameters are yet to be found. 

In this work, we proposed Wind Driven Optimization (WDO) 
algorithm to optimize parameters of a single diode and double 
diode models of solar PV. The idea of WDO is developed by 
Zikri Bayraktar for electromagnetic application [28]. It is a 
population based heuristic global optimization technique for 
multidimensional problems. The algorithm contains four 
constants. Optimized values of these constants are generated 
using Covariance Matrix Adaptation Evolution Strategy 
(CMAES) technique [29].  

The accuracy of the proposed optimization technique is 
measured using the value of Root Mean Square Error (RMSE). 
Convergence time is evaluated by the time required for the 
proposed method to reach the optimized value. In order to 
display the potential of the WDO algorithm, its accuracy and 
convergence time is compared with PS, GA, and SA available in 
the MATLAB optimization toolbox. In addition, the parameters 
obtained through WDO is compared with results obtained in 
recent literature like BPFPA [26], FPA [23], ABSO [21], HS 
[20]. All these investigations will provide an evaluation on the 
accuracy and time of convergence of the proposed algorithm for 
parameter estimation of solar PV. 

An outline of the paper is as follows: The mathematical 
modeling of solar PV is presented in next section. Section 3 
presents the problem formulation. The WDO is explained in 
detail for solar PV parameter estimation in Section 4. This is 
followed by the discussion of results in Section 5. Finally, 
conclusions are presented in Section 6. 

2. Mathematical Modelling 

Many models have been proposed and developed by several 
researchers to estimate the solar PV parameters accurately [3]. 
Among them, the most popular and universally adopted models 
are the single diode and double diode models. In our work, both 
diode models are used to represent the behavior of solar PV 
module. In what follows, a description of both models is given. 

2.1. Single Diode Model 

Single diode model is commonly used to represent solar PV, 
because of its reduced complexity [31], [32]. The equivalent 
circuit of single diode model of solar PV is shown in Fig. 1. 

By using Kirchhoff’s current law (KCL), one can check that: 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝐷𝐷 −  𝐼𝐼𝑝𝑝                                                       (1)                                                                                                              

AB STRAC T  
The nonlinear current vs voltage (I-V) characteristics of solar PV make 
its modelling difficult. Optimization techniques are the best tool for 
identifying the parameters of nonlinear models. Even though, there are 
different optimization techniques used for parameter estimation of solar 
PV, still the best optimized results are not achieved to date. In this 
paper, Wind Driven Optimization (WDO) technique is proposed as the 
new method for identifying the parameters of solar PV. The accuracy 
and convergence time of the proposed method is compared with results 
of Pattern Search (PS), Genetic Algorithm (GA), and Simulated 
Annealing (SA) for single diode and double diode models of solar PV. 
Furthermore, for performance validation, the parameters obtained 
through WDO are compared with hybrid Bee Pollinator Flower 
Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), 
Generalized Oppositional Teaching Learning Based Optimization 
(GOTLBO), Artificial Bee Swarm Optimization (ABSO), and Harmony 
Search (HS). The obtained results clearly reveal that WDO algorithm 
can provide accurate optimized values with less number of iterations at 
different environmental conditions. Therefore, the WDO can be 
recommended as the best optimization algorithm for parameter 
estimation of solar PV. 



Here, 𝐼𝐼 is solar PV current,  𝐼𝐼𝑝𝑝ℎ is the photon current 
generated by the incident light, 𝐼𝐼𝐷𝐷 is the diode current and 𝐼𝐼𝑝𝑝 is 
the current flowing through parallel resistance [32- 33]. 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑜𝑜 �𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑉𝑉+𝐼𝐼 𝑅𝑅𝑠𝑠
𝑁𝑁𝑠𝑠 ∗ 𝑎𝑎 𝐾𝐾𝐾𝐾𝑞𝑞

� − 1� −  𝑉𝑉+𝐼𝐼 𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝

            (2) 

𝐼𝐼𝑜𝑜 = 𝐼𝐼𝑆𝑆𝑆𝑆−𝑆𝑆 + 𝐾𝐾𝐼𝐼  ( 𝑇𝑇 − 𝑇𝑇𝑆𝑆 )

𝑒𝑒𝑒𝑒𝑝𝑝 � 𝑉𝑉𝑂𝑂𝑆𝑆−𝑆𝑆 + 𝐾𝐾𝑉𝑉  � 𝐾𝐾 − 𝐾𝐾𝑆𝑆 � 
𝑁𝑁𝑠𝑠 𝑉𝑉𝑡𝑡

� − 1
                                   (3) 

𝐼𝐼𝑝𝑝ℎ = �𝐼𝐼𝑝𝑝ℎ−𝑆𝑆 + 𝐾𝐾𝐼𝐼(𝑇𝑇 −  𝑇𝑇𝑆𝑆)� 𝐺𝐺
𝐺𝐺𝑆𝑆

                                 (4) 

Here 𝐼𝐼𝑜𝑜 is the reverse saturation current of diode, 𝑉𝑉 is solar 
PV voltage, 𝑅𝑅𝑝𝑝 is the parallel resistance, 𝑅𝑅𝑠𝑠 is the series 
resistance, 𝑉𝑉𝑂𝑂𝑂𝑂−𝑆𝑆 is the open circuit voltage at standard test 
condition, 𝐾𝐾𝑉𝑉 is open circuit voltage temperature coefficient,  𝑁𝑁𝑠𝑠 
is the number of series cell per module, the temperature at 
standard test condition 𝑇𝑇𝑆𝑆 =  250𝑐𝑐, solar radiation at standard 
test condition 𝐺𝐺𝑆𝑆 = 1000𝑊𝑊/𝑚𝑚2, 𝐾𝐾𝐼𝐼 is the short circuit current 
temperature coefficient,  𝑉𝑉𝑡𝑡  is the thermal voltage of diode which 
depends on junction temperature and is given by: 

𝑉𝑉𝑡𝑡 = 𝑎𝑎 𝐾𝐾 𝑇𝑇
𝑞𝑞

                                                                    (5) 

where 𝑎𝑎 denotes the ideality factor of diode. 𝑇𝑇 expresses the 
junction temperature in Kelvin (K), 𝑞𝑞 is the electron charge 
(1.6021765 × 10−19C) and 𝐾𝐾 is the Boltzmann constant 
(1.38065 × 10−23 𝐽𝐽 𝐾𝐾⁄ ).  

 𝐼𝐼𝑝𝑝ℎ−𝑆𝑆 is the photon current at standard test condition, and it is 
given by 

𝐼𝐼𝑝𝑝ℎ−𝑆𝑆 =  𝐼𝐼𝑆𝑆𝑂𝑂−𝑆𝑆  𝑅𝑅𝑃𝑃 + 𝑅𝑅𝑆𝑆
𝑅𝑅𝑃𝑃

                                                  (6)    

where 𝐼𝐼𝑆𝑆𝑂𝑂−𝑆𝑆 is the short circuit current at standard test 
conditions. 

From Eq. (2), one can see that we require optimum values of 
five parameters 𝐼𝐼𝑝𝑝ℎ, 𝐼𝐼𝑜𝑜, 𝑅𝑅𝑝𝑝,  𝑅𝑅𝑠𝑠, and 𝑎𝑎 in order to be able to 
generate the same I-V characteristic curve as obtained 
experimentally. Finally, it is important to note that Eq. 2 is an 
implicit equation in I.  
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Fig. 1. Single – diode model of solar PV. 
 

2.2 Double Diode Model 

In double diode model, two diodes are connected in parallel 
to the photon current source. The second diode represents the 
recombination in the space charge region. The equivalent circuit 
of double diode model is shown in the Fig. 2. 

By using KCL         

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝐷𝐷1 − 𝐼𝐼𝐷𝐷2 −  𝐼𝐼𝑝𝑝                                                (7) 

𝐼𝐼 =   𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑜𝑜1 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑉𝑉 +𝐼𝐼 𝑅𝑅𝑠𝑠
𝑁𝑁𝑠𝑠 𝑉𝑉𝑡𝑡1

� − 1�  −  𝐼𝐼𝑜𝑜2 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑉𝑉 + 𝐼𝐼 𝑅𝑅𝑠𝑠
𝑁𝑁𝑠𝑠 𝑉𝑉𝑡𝑡2

� − 1� −

 𝑉𝑉 + 𝐼𝐼 𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝

                                                                             (8) 

Here 𝐼𝐼𝑜𝑜1  and 𝐼𝐼𝑜𝑜2  𝑎𝑎𝑎𝑎𝑒𝑒 the reverse saturation currents and  𝑉𝑉𝑡𝑡1 
and  𝑉𝑉𝑡𝑡2 are thermal voltages of diode 1 and diode 2 respectively. 
𝐼𝐼𝑝𝑝ℎ can determined using the Eq. (4) 

 𝑉𝑉𝑡𝑡1 = 𝑎𝑎1  𝐾𝐾 𝑇𝑇
𝑞𝑞

                                                                    (9)   

 𝑉𝑉𝑡𝑡2 = 𝑎𝑎2 
𝐾𝐾 𝑇𝑇
𝑞𝑞

                                                                    (10)                                                                                           

where 𝑎𝑎1 and 𝑎𝑎2 denotes the ideality factor of diode 1 and diode 
2 respectively.  

From Eq. (8), it is clear that it is necessary to obtain optimized 
values of the seven parameters - 𝐼𝐼𝑝𝑝ℎ, 𝐼𝐼𝑜𝑜1, 𝐼𝐼𝑜𝑜2, 𝑅𝑅𝑒𝑒,  𝑅𝑅𝑠𝑠, 𝑎𝑎1and 𝑎𝑎2 – 
in order to have an accurate double diode model of solar PV. 
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Fig. 2. Double – diode model of solar PV. 
 

3. Problem Formulation 

Any solar PV module can be modeled by using the single 
diode or double diode models. The main objective of this 
modeling is to enable the solar PV model to predict the I-V 
characteristics of the PV module. In order to minimize the error 
between predicted and actual I-V characteristics of PV module, 
one has to find the optimized parameters of the solar PV model. 
This can be done by using optimization algorithms. 

As mentioned above single diode and double diode models of 
solar PV model have five and seven parameters respectively. In 
this paper, we determine the values of resistances 𝑅𝑅𝑝𝑝,  𝑅𝑅𝑠𝑠 and 
ideality factor 𝑎𝑎 using algorithm where as 𝐼𝐼𝑝𝑝ℎ and 𝐼𝐼𝑜𝑜 using Eqs. 
(3) and (4) in order to reduce the computational complexity. 

The objective function is Root Mean Square Error (RMSE) 
between the measured and estimated current. The objective 
function will aggregate the absolute error and gives the measure 
of predictive power. The absolute difference between measured 
and estimated output current is the Individual Absolute Error 
(IAE). The error function of a single diode and double diode 
model is given in Eq. (11) and Eq. (12) respectively. The Sum of 
Squared Error (SSE) function is given in Eq. (13). 

𝑓𝑓𝑠𝑠�𝑉𝑉(𝑚𝑚), 𝐼𝐼(𝑚𝑚),𝑋𝑋� = 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑎𝑎𝑎𝑎𝑎𝑎 �𝐼𝐼(𝑚𝑚) − �𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝐷𝐷(𝑚𝑚) −  𝐼𝐼𝑝𝑝(𝑚𝑚)��   
(11)                    
𝑓𝑓𝑑𝑑�𝑉𝑉(𝑚𝑚), 𝐼𝐼(𝑚𝑚),𝑋𝑋� =  𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑎𝑎𝑎𝑎𝑎𝑎 �𝐼𝐼(𝑚𝑚) − �𝐼𝐼𝑝𝑝ℎ −  𝐼𝐼𝐷𝐷1(𝑚𝑚) − 𝐼𝐼𝐷𝐷2(𝑚𝑚) −

𝐼𝐼𝑝𝑝(𝑚𝑚)��                                                                            (12)                                 
𝑆𝑆𝑆𝑆𝐼𝐼 =  ∑ 𝐼𝐼𝐼𝐼𝐼𝐼2𝑁𝑁

𝑖𝑖=1                                                          (13) 



In Eq. (11) and Eq. (12) the vector X represents the model 
parameters, for single and double diode model of solar PV 
respectively and 𝑁𝑁 is the number of experimental data. 

The RMSE function is defined as follows: 

RMSE = �1
𝑁𝑁

 𝑆𝑆𝑆𝑆𝐼𝐼                                                       (14) 

The proposed WDO algorithm finds the optimized solar PV 
model parameter by minimizing the objective function. 

4. Wind Driven Optimization 

Wind driven optimization is a new nature inspired 
optimization technique [33]. The idea was developed by Zikri 
Bayraktar for electromagnetics application [28]. The motivation 
for WDO algorithm was based on the motion of microscopic air 
parcels in a multidimensional space. In earth’s troposphere, the 
solar radiation varies based on the location. So, heating the 
surface of the earth varies according to the location, type of the 
region (water body, soil, cloudy), and rotation of earth [29]. The 
air pressure will be high at low-temperature area than high-
temperature area. This difference in air pressure leads horizontal 
motion of air. The change in pressure is the pressure gradient 
[33], and is given as follows: 

𝛻𝛻𝛻𝛻 = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 �                                                      (15) 

Here the air parcel is assumed to be dimensionless and 
weightless to reduce the computational complexity. Newton’s 
second law states that total force (𝐹𝐹𝑡𝑡) applied on air parcel causes 
the air parcel to accelerate with an acceleration  𝑎𝑎 in the same 
direction of the force: 
𝜌𝜌 .  �⃗�𝑎 =  ∑𝐹𝐹𝑡𝑡���⃗                                                                    (16) 

The four forces that create movement of air parcel are 
pressure gradient force (𝐹𝐹𝜕𝜕𝐺𝐺), frictional force (𝐹𝐹𝐹𝐹), gravitational 
force (𝐹𝐹𝐺𝐺) and Coriolis force (FC).  

Assuming that air has finite volume (𝛿𝛿V), the force due to 
pressure gradient can be expressed as Eq. 17. The friction force 
opposes the air parcel motion started by  𝐹𝐹𝜕𝜕𝐺𝐺 .. The gravitational 
force pulls the air parcel to the center of the coordinate system 
from all dimensions. The rotation of the earth causes deflection 
in the motion of air parcel and named as Coriolis force. This 
force will work in such a way that velocity in one direction is 
influenced by velocity in another direction. All these forces can 
be expressed as: 

𝐹𝐹𝜕𝜕𝐺𝐺������⃗ =  − 𝛻𝛻𝛻𝛻 . 𝛿𝛿𝑉𝑉                                                       (17) 
𝐹𝐹𝐹𝐹����⃗   =  − 𝜌𝜌 𝛼𝛼 𝑢𝑢�⃗                                                           (18) 
𝐹𝐹𝐺𝐺����⃗   =  𝜌𝜌. 𝛿𝛿𝑉𝑉.𝑔𝑔                                                          (19) 

𝐹𝐹𝑂𝑂����⃗   =  − 2𝜃𝜃 ×  𝑢𝑢�⃗                                                      (20) 
Here 𝜌𝜌 is the air density of a small air parcel, 𝛼𝛼 is frictional 

coefficient, 𝑢𝑢�⃗  wind velocity vector, 𝑔𝑔 is the gravitational 
constant, 𝜃𝜃 represents the rotation of earth.  

So, by including 𝐹𝐹𝜕𝜕𝐺𝐺 , 𝐹𝐹𝐹𝐹 , FG, FC and ideal gas equation in 
total force Eq. 16, the latter can be rewritten as: 

𝛻𝛻𝑢𝑢�����⃗ =  𝑔𝑔 +  �− 𝛻𝛻𝛻𝛻. 𝑅𝑅 𝑇𝑇
𝜕𝜕𝑐𝑐𝑐𝑐𝑐𝑐

 �  +  ( − 𝛼𝛼 𝑢𝑢 ���⃗ )  + � −  2 𝜃𝜃 × 𝑢𝑢 ���⃗ 𝑅𝑅𝑇𝑇
𝜕𝜕𝑐𝑐𝑐𝑐𝑐𝑐

�    (21)  

In Eq. 21 velocity of air parcel depends on pressure value. 
Consequently, if pressure value increases the velocity gets 
updated impractically. For that, Eq. 21 is modified based on the 
rank of the pressure. After every iteration, the air parcels are 
ranked in descending order based on their pressure values. If 𝑖𝑖 is 
the rank of the air parcel, velocity and position will be updated 
using the Eq. 22 and Eq. 23 respectively. 

𝑢𝑢𝑛𝑛𝑒𝑒𝑛𝑛���������⃗  =  ( 1 −  𝛼𝛼 ) 𝑢𝑢�⃗ 𝑐𝑐𝑢𝑢𝑐𝑐  −  𝑔𝑔 𝑒𝑒𝑐𝑐𝑢𝑢𝑐𝑐  +  � � 1 −  1 
𝑖𝑖
 �  . � 𝑒𝑒𝑜𝑜𝑝𝑝𝑡𝑡 −

𝑒𝑒𝑐𝑐𝑢𝑢𝑐𝑐  � 𝑅𝑅𝑇𝑇 �  +  �  𝑐𝑐  .𝑢𝑢���⃗ 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑐𝑐𝑑𝑑𝑖𝑖𝑐𝑐𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖
𝑖𝑖

 �                                        (22) 
𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛���������⃗  =  𝑒𝑒𝑜𝑜𝑜𝑜𝑑𝑑  ���������⃗ +  𝑢𝑢𝑛𝑛𝑒𝑒𝑛𝑛���������⃗                                                            (23) 

Here 𝑢𝑢𝑛𝑛𝑒𝑒𝑛𝑛���������⃗  is the velocity of next iteration, 𝑢𝑢𝑐𝑐𝑢𝑢𝑐𝑐��������⃗  is the velocity 
of current the iteration, 𝑒𝑒 is the position of the air parcel in 
search space, 𝑒𝑒𝑜𝑜𝑝𝑝𝑡𝑡 is optimal position, 𝑒𝑒𝑐𝑐𝑢𝑢𝑐𝑐  = current position, 
𝑐𝑐 =  −2𝑅𝑅𝑇𝑇, and  𝑢𝑢�⃗ 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑐𝑐𝑑𝑑𝑖𝑖𝑐𝑐𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 =  𝐹𝐹𝑂𝑂����⃗  .  

In this parameter estimation problem, each dimension of an 
air parcel is the parameters of solar PV. So, in single diode 
model, the air parcel is in a three-dimensional space whereas, in 
the double diode model it is in four-dimensional space. The 
pressure of air parcels in a search space is evaluated using the 
objective function. Next, air parcels are ranked based on their 
objective function value. So, the velocity of air parcels is 
modified using their ranks and move to another position with 
that velocity. The air parcels continue their movement to find the 
lowest objective function value. The last step is to find the air 
parcel with lowest objective function value and their 
corresponding parameters. 

 For each dimension the WDO allows air parcel to travel in a 
bound of [-1, 1]. The actual maximum and minimum limits of 
the problem are normalized to [-1, 1]. To obtain the optimized 
objective function value, the coefficients 𝛼𝛼, 𝑔𝑔,  𝑅𝑅𝑇𝑇, 𝑐𝑐 in Eq. 22 
play an important role. In order to find the optimized values of 
these constants Covariance Matrix Adaptation Evolution 
Strategy (CMAES) technique is used. It does not require any 
inputs other than population size [28]. Hence, CMAES is easy to 
implement for WDO application. The flow chart of wind the 
driven optimization algorithm is shown in Fig. 3. 
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Fig. 3. Flowchart of Wind driven optimization 

 
5. Results and Discussion 

5.1. Results of WDO is compared with PS, GA, and SA. 

Wind Driven Optimization algorithm is used to find the 
optimized parameters of a single diode and double diode solar 
model. In order to validate the accuracy of the proposed 
optimization algorithm, the result of WDO is compared with 
results obtained from PS, GA, and SA available in MATLAB 
optimization tool box. 

Single diode and double diode models of solar PV is 
developed in MATLAB/Simulink to test the optimization 
techniques. The results obtained through PS, GA, and SA are 
compared with the proposed WDO algorithm results. The 
experimental data of multi-crystal PV module Kyocera – 
KC200GT 215 given in [30] is used to find the objective 
function. The objective function is calculated based on the 18 set 
of experimental data.  

Here the ideality factor 𝑎𝑎 has a value between 1 and 2. The 
value of series resistance 𝑅𝑅𝑠𝑠 is between 0.01Ω to 0.5Ω, whereas 
the parallel resistance 𝑅𝑅𝑝𝑝 has value between 100Ω and 1000Ω. 
The 𝐼𝐼𝑝𝑝ℎ and 𝐼𝐼𝑜𝑜 values are calculated using Eqs. (3) and (4). The 

data sheet values of Kyocera – KC200GT 215 module is given 
in Table 1. 

5.1 .1 .  Case s tudy1: S ingle  d iode model .  
In this section, the validity of the proposed method is tested 

for single diode model. Table 2 indicates the values of 𝑎𝑎,
𝑅𝑅𝑠𝑠, 𝑅𝑅𝑝𝑝, 𝐼𝐼𝑝𝑝ℎ ,  𝐼𝐼𝑜𝑜 ,𝑎𝑎𝑎𝑎𝑎𝑎 RMSE for WDO, PS, GA, and SA 
optimization techniques at standard test condition. It clearly 
exhibits that, the WDO gives very less RMSE value compared to 
other techniques. So, in terms of accuracy WDO is the best 
technique.  

The Fig. 4 shows the convergence characteristics of four 
optimization techniques. From the fitness function curve, it is 
evident that the best fitness function value of 0.0008401 is 
obtained for WDO with less number of iterations. This clearly 
reveals that WDO algorithm performs well in terms of accuracy 
and computation time. The time required for the WDO to find 
the optimized values is 5.6ms while PS and GA are 0.8ms 
whereas SA required 0.02s. 

The experimental data in [30] gives solar PV voltage and 
current at different irradiance and temperature values. Using the 
experimental data and WDO estimated data I-V characteristics 
of Kyocera – KC200GT 215 Solar PV module is plotted for 



1000W/m2, 800W/m2, 600 W/m2, 400 W/m2 and 200 W/m2 in 
Fig. 5. Similarly, I-V characteristics for different temperature 
250C, 500C and 750C is plotted in Fig. 6. Both Figures reflects 
the fact that the values estimated by the WDO algorithm give out 
accurate I-V characteristics which exactly replicate the 
experimental data. 

5.1 .2 .  Case s tudy2: Double  d iode model .  
In this section, double diode model is used to represent the 

solar PV. The optimized values of parameters such as 
𝑎𝑎1,𝑎𝑎2,𝑅𝑅𝑠𝑠,𝑅𝑅𝑝𝑝, and the derived values of 𝐼𝐼𝑝𝑝ℎ , 𝐼𝐼𝑜𝑜 , RMSE at 
standard test condition is presented in Table 3. The I-V 
characteristic at different irradiance and temperature are plotted 
in Fig. 7 and Fig. 8 respectively. 

Table 1 
Datasheet values of Kyocera – KC200GT 215 module. 
Maximum power (𝛻𝛻𝑚𝑚𝑎𝑎𝑒𝑒) 200W (+10% / -5%) 

Voltage at maximum power point 
(𝑉𝑉𝑚𝑚𝑝𝑝𝑝𝑝) 

26.3 V 

Current at maximum power point 
(𝐼𝐼𝑚𝑚𝑝𝑝𝑝𝑝) 

7.61 A 

Open circuit voltage (𝑉𝑉𝑂𝑂𝑂𝑂) 32.9 V 

Short circuit current (𝐼𝐼𝑆𝑆𝑂𝑂) 8.21 A 

Temperature coefficient of 𝑉𝑉𝑂𝑂𝑂𝑂 -1.23× 10−1 

Temperature Coefficient of 𝐼𝐼𝑆𝑆𝑂𝑂  3.18× 10−3 

Number of cells (𝑁𝑁𝑠𝑠) 54 

From I-V characteristics curves it is observable that the 
parameter values obtained through WDO produce the accurate 
curve with insignificant RMSE value for an entire range of 
voltage in all irradiance and temperature conditions.  Hence, 
both these case studies clearly substantiate that, the WDO 
technique can generate more accurate results in all weather 
conditions with a minimal time of computation. 
Table 2 
Estimated single diode model parameters of Kyocera – KC200GT 215 
module. 

 WDO PS GA SA 

𝑎𝑎 1.4172 1.7 1.4819 1.6118 

𝑅𝑅𝑠𝑠(Ω) 0.1132 0.0339  0.1067 0.0796 

𝑅𝑅𝑝𝑝(Ω) 747.41 624.382 728.58  713.110 

𝐼𝐼𝑝𝑝ℎ (𝐼𝐼) 8.1812 8.2104 8.2112 8.2109 

𝐼𝐼𝑜𝑜 (µ𝐼𝐼) 0.4423 7.1836 0.9220 3.3484 

RMSE 0.00084 0.001796 0.00188 0.001875 

 
Table 3  
Estimated double diode model parameters of Kyocera – KC200GT 215 
module. 
 WDO PS GA SA 

𝑎𝑎1 1.9667 1.01 1.17 1.12 
𝑎𝑎2 1.5370 1.9 1.4324 1.5631 

𝑅𝑅𝑠𝑠(Ω) 0.99 0.031  0.0691 0.01783 
𝑅𝑅𝑝𝑝(Ω) 784.4062 793.215  763.3564  862.97 
𝐼𝐼𝑝𝑝ℎ (𝐼𝐼) 8.1914 8.2107 8.2103 8.2102 
𝐼𝐼𝑜𝑜1 (𝐼𝐼) 4.746×10−5 5.22×10−10 1.29×10−11 5.24×10−9 
𝐼𝐼𝑜𝑜2 (𝐼𝐼) 1.632×10−6 3.12×10−10 5.3×10−7 2.12×10−9 
RMSE 0.00106 0.0029 0.0029 0.003 

 

 
Fig. 4. Convergence characteristics of WDO, PS, GA, and SA. 

 
Fig. 5. Comparison of experimental data and WDO estimated data of 
Kyocera – KC200GT 215 module at different irradiance (single diode 
model). 

 
Fig. 6. Comparison of experimental data and WDO estimated data of 
Kyocera – KC200GT 215 module at different temperature (single diode 
model). 

 
Fig. 7. Comparison of experimental data and WDO estimated data of 
Kyocera – KC200GT 215 module at different irradiance (double diode 
model). 
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Fig. 8. Comparison of experimental data and WDO estimated data of 
Kyocera – KC200GT 215 module at different temperature (double diode 
model). 
 
 
5.2. Results of WDO is compared with recent literature. 

In order to further verify the performance of the WDO 
algorithm, the latter is examined with the experimental data of 
57 mm dia RTC France silicon solar cell at 1000W/m2 irradiance 
and 330C temperature presented in [34]. The parameters of a 
single diode and double diode model of the cell is estimated 
through WDO algorithm. The lower and upper boundaries of  𝑎𝑎, 
𝑅𝑅𝑠𝑠, and  𝑅𝑅𝑝𝑝  are assigned as (1 to 2), (0.01 to 0.08), and (25 to 
75) respectively. The optimized values of solar PV parameters 
along with RMSE for single diode and double diode models are 
presented in Table 4 and 5. It shows the comparison of results 
obtained through the optimization techniques presented in recent 
research papers such as BPFPA [26], Generalized Oppositional 
Teaching Learning Based Optimization (GOTLBO) [27], FPA 
[23], ABSO [21], HS [20] with WDO algorithm. From Table 4 
and 5 it is clear that WDO algorithm provides the least RMSE 

value (0.08664×10−4and 0.065237×10−4 ) while comparing 
with other optimization techniques. 

The convergence curve of WDO algorithm for the single 
diode and double diode model is shown in Fig. 9 and 10 
respectively. They prove that convergence time for WDO is very 
less. In parameter estimation of single diode model, WDO 
reaches a RMSE value of 8.664e-6 after 100 iterations. Whereas, 
BPFPA and FPA took more than 500 iterations to obtain RMSE 
values of 0.0008456 for same environmental conditions. 
Similarly, for double diode model, WDO algorithm reached a 
RMSE value of 6.5237-6 after 750 iterations, whereas BPFPA 
and FPA reach 7.917e-4 after 500 iterations. 

In order to verify the accuracy of WDO determined parameter 
values, the I-V characteristics at 1000W/m2 and 330C for single 
diode model and double diode model of solar PV are plotted in 
Fig. 11 and 12 respectively. They clearly show that the I-V 
characteristic curve accurately replicates the experimental data 
provided in [34]. In order to validate the accuracy of curve fit 
between measured and estimated values, error analysis is used. 
So, relative error (RE) between measured and estimated values 
of PV current for the single diode and double diode models are 
calculated using the below-mentioned formula. 

𝑅𝑅𝐼𝐼 =  
𝐼𝐼𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑢𝑢𝑐𝑐𝑒𝑒𝑑𝑑  −   𝐼𝐼𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑  

𝐼𝐼𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑢𝑢𝑐𝑐𝑒𝑒𝑑𝑑
 

The RE value obtained using WDO for the single diode and 
double diode is compared with BPFPA [26], and HS [20] and 
tabulated in Table 6 and 7. From Tables, it is obvious that 
relative error for WDO is low while comparing the other 
optimization techniques considered for comparison. 

 
Table 4 
Comparison between estimated single diode model parameters of RTC France solar cell using WDO and other recent optimization techniques. 

 WDO BPFPA [26] GOTLBO [27] FPA [23] ABSO [21] HS [20] 

𝑎𝑎 1.4808 1.4774 1.48382 1.47707 1.47583 1.47538 
𝑅𝑅𝑠𝑠(Ω) 0.036768 0.03666 0.036265 0.0365466 0.03659 0.03663 

𝑅𝑅𝑝𝑝(Ω) 57.74614 57.7156 54.115426 52.8771 52.2903 53.5946 

𝐼𝐼𝑝𝑝ℎ (𝐼𝐼) 0.7608 0.76 0.76078 0.76079 0.7608 0.7607 

𝐼𝐼𝑜𝑜 (𝜇𝜇𝐼𝐼) 0.3223 0.3106 0.3315 0.3106 0.3062 0.30495 

RMSE (×10−4) 0.08664 7.27 9.8744 7.7301 9.9124 9.951 
 
Table 5 
Comparison between estimated double diode model parameters of RTC France solar cell using WDO and other recent optimization techniques. 
 WDO BPFPA [26] GOTLBO [27] FPA [23] ABSO [21] HS [20] 

𝑎𝑎1 1.51162 1.4793 1.99973 1.4777 1.46512 1.49439 
𝑎𝑎2 1.38434 2.00 1.448974 2 1.98152 1.49439 

𝑅𝑅𝑠𝑠(Ω) 0.037433 0.0364 0.036783 0.0363342 0.03657 0.03545 
𝑅𝑅𝑝𝑝(Ω) 52.6608 59.624 56.075304 52.3475 54.6219 46.82696 

𝐼𝐼𝑝𝑝ℎ (𝐼𝐼) 0.7606 0.7600 0.7607 0.760795 0.76078 0.76176 
𝐼𝐼𝑜𝑜1 (𝜇𝜇𝐼𝐼) 0.2531 0.3211 0.800195 0.3008 0.26713 0.12545 
𝐼𝐼𝑜𝑜2 (𝜇𝜇𝐼𝐼) 0.04827 0.04528 0.220462 0.166157 0.38191 0.2547 

RMSE (×10−4) 0.065237 7.23 9.83177 7.8425 9.8344 12.6 
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Fig. 9.  Convergence curve of WDO algorithm for optimizing the parameters 
of single diode model 

 
Fig. 10.  Convergence curve of WDO algorithm for optimizing the 
parameters of double diode model 

 
Fig. 11.  Comparison of experimental data and WDO estimated data of RTC 
France solar cell at 1000 W/m2 and 330C for single diode model. 
 

 
Fig. 12.  Comparison of experimental data and WDO estimated data of RTC 
France solar cell at 1000 W/m2 and 330C for double diode model. 

 
Table 6 
The comparison of relative error values of WDO, BPFPA, HS for single diode model  

Data Vmeasured Imeasured  WDO  BPFPA [26]  HS [20] 
Iestimated RE Iestimated RE Iestimated RE 

1 -0.2057 0.764  0.764 0.00016  0.764 0.00012  0.764 -0.00036 
2 -0.1291 0.762  0.763 -0.00072  0.762 0.00032  0.762 -0.00109 
3 -0.0588 0.761  0.761 -0.00109  0.761 -4.9e-5  0.761 -0.00133 
4 0.0057 0.760  0.760 0.00037  0.759 0.00142  0.760 0.000272 
5 0.0646 0.760  0.759 0.00106  0.758 0.00210  0.759 0.001078 
6 0.1185 0.759  0.758 0.00098  0.757 0.00203  0.758 0.001113 
7 0.1678 0.757  0.757 -0.00048  0.757 0.00057  0.757 -0.00025 
8 0.2132 0.757  0.756 0.00069  0.755 0.00174  0.756 0.001015 
9 0.2545 0.755  0.755 4.08e-5  0.754 0.00108  0.755 0.000441 

10 0.2924 0.754  0.754 -0.00011  0.753 0.00090  0.753 0.000353 
11 0.3209 0.750  0.751 -0.0017  0.751 -0.000  0.751 -0.00126 
12 0.3585 0.746  0.747 -0.0017  0.747 0.0008  0.747 -0.0012 
13 0.3873 0.738  0.740 -0.0028  0.739 -0.0019  0.740 -0.00221 
14 0.4137 0.728  0.727 0.0003  0.727 0.00090  0.727 0.000802 
15 0.4373 0.706  0.707 -0.0010  0.706 -0.0006  0.706 -0.00066 
16 0.459 0.675  0.675 0.00024  0.675 0.00014  0.675 0.000293 
17 0.4784 0.632  0.630 0.00231  0.631 0.00150  0.630 0.001744 
18 0.490 0.573  0.571 0.0028  0.572 0.00126  0.572 0.001553 
19 0.5119 0.499  0.498 0.00051  0.499 0-0.0013  0.499 -0.00108 
20 0.5265 0.413  0.412 0.0011  0.413 -0.00171  0.413 -0.00134 
21 0.5398 0.316  0.316 0.00070  0.317 -0.00302  0.317 -0.00248 
22 0.5521 0.212  0.210 0.0047  0.212 -0.00183  0.212 -0.00076 
23 0.5633 0.103  0.102 0.01047  0.103 0.003957  0.102 0.007188 
24 0.5736 -0.010  -0.009 0.01  -0.008 0.12410  -0.009 0.075 
25 0.5833 -0.123  -0.124 -0.00821  -0.123 -0.00596  -0.124 -0.01171 
26 0.59 -0.210  -0.209 0.003904  -0.208 0.007587  -0.209 0.003333 
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Table 7 
The comparison of relative error values of WDO, BPFPA, HS for double diode model  

Data. Vmeasured Imeasured  WDO  BPFPA [26]  HS [20] 
Iestimated RE Iestimated RE Iestimated RE 

1 -0.2057 0.764  0.764 3.912e-5  0.764 9.65e-5  0.764 0.00011 
2 -0.1291 0.762  0.762 -0.00067  0.762 0.000361  0.762 0.0007 
3 -0.0588 0.761  0.761 -0.00089  0.760 -3.9e-5  0.761 0.001 
4 0.0057 0.760  0.759 0.00071  0.759 0.0014  0.760 0.0004 
5 0.0646 0.760  0.758 0.00153  0.758 0.002  0.759 0.0011 
6 0.1185 0.759  0.757 0.001575  0.757 0.0019  0.758 0.00107 
7 0.1678 0.757  0.756 0.000214  0.756 0.0004  0.757 0.0003 
8 0.2132 0.757  0.755 0.00148  0.755 0.0016  0.756 0.0008 
9 0.2545 0.755  0.754 0.00089  0.754 0.00098  0.755 0.0003 

10 0.2924 0.754  0.753 0.00077  0.753 0.0008  0.753 0.0002 
11 0.3209 0.750  0.751 -0.00094  0.751 -0.0008  0.751 0.0012 
12 0.3585 0.746  0.747 -0.00104  0.747 -0.0008  0.747 0.0010 
13 0.3873 0.738  0.740 -0.00233  0.739 -0.0019  0.739 0.0019 
14 0.4137 0.728  0.727 0.00036  0.727 0.0010  0.727 0.0011 
15 0.4373 0.706  0.707 -0.0015  0.706 -0.0045  0.706 0.0002 
16 0.459 0.675  0.676 -0.00095  0.675 0.0004  0.675 0.0005 
17 0.4784 0.632  0.631 0.00041  0.630 0.0016  0.630 0.00186 
18 0.490 0.573  0.572 0.00026  0.572 0.0016  0.572 0.00157 
19 0.5119 0.499  0.500 -0.00257  0.499 -0.0010  0.499 0.0011 
20 0.5265 0.413  0.413 0.00413  0.413 -0.00137  0.413 0.0014 
21 0.5398 0.316  0.317 -0.00283  0.317 -0.00266  0.317 0.0024 
22 0.5521 0.212  0.211 0.00424  0.212 -0.00126  0.212 0.0005 
23 0.5633 0.103  0.102 0.0073  0.102 0.00560  0.102 0.0078 
24 0.5736 -0.010  -0.009 0.0100  -0.009 0.09727  0.009 0.0706 
25 0.5833 -0.123  -0.125 -0.0020  -0.124 -0.00932  0.124 0.011 
26 0.59 -0.210  -0.208 0.0095  -0.208 0.004979  0.209 0.0040 

6. Conclusion 

Accurate modeling of solar PV is necessary before designing 
the entire PV system. The optimized parameter of single and 
double diode models plays an important role for accurate 
modeling. This paper presented a new Wind Driven 
Optimization (WDO) algorithm for parameter estimation of solar 
PV. The performance of WDO algorithm was verified by 
comparing its results with PS, GA, and SA algorithms 
(MATLAB optimization tool box). Results of WDO clearly 
shows a better performance in terms of accuracy and 
convergence. In addition, in order to further validate the 
proposed algorithm, the WDO is compared with the optimization 
techniques presented in recent literature. Compared to recent 
optimization algorithms presented in literature such as hybrid 
Bee Pollinator Flower Pollination Algorithm (BPFPA), Flower 
Pollination Algorithm (FPA), Generalized Oppositional 
Teaching Learning Based Optimization (GOTLBO), Artificial 
Bee Swarm Optimization (ABSO), and Harmony Search (HS) 
WDO shows better results. As a result, WDO algorithm is 
recommended as the accurate and fastest optimization algorithm 
for parameter estimation of solar PV modules. 
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