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to solve various engineering optimization problems. Most 
use analytical or numerical methods that require gradient 
information to improve initial solutions. However, gradi-
ent-based optimization methods are inadequate to resolve 
the complexities inherent in many of today’s real-world 
structural design problems. Moreover, gradient search in 
problems with greater than one local optimum is difficult 
and unstable [1]. Shortcomings in current gradient-based 
approaches to engineering optimization have thus encour-
aged researchers to develop better optimization methods.

Metaheuristic is a research field which simulates differ-
ent natural phenomena to solve a wide range of optimiza-
tion problems. Researchers had proposed a number of algo-
rithms in the past considering different natural phenomena 
including: genetic algorithm (GA) [2], particle swarm opti-
mization (PSO) [3], differential evolution (DE) [4], symbi-
otic organisms search (SOS) [5, 6], multi-verse optimizer 
(MVO) [7], and jaya algorithm [8]. The teaching–learning-
based optimization (TLBO) algorithm was first introduced 
by Rao et al. to solve various unconstrained [9] and con-
strained problems [10]. It is one of the newest metaheuris-
tic techniques motivated by the school teaching–learning 
process in a classroom. In the TLBO algorithm, a student 
is a member in the classroom, representing a potential solu-
tion to the optimization process and a teacher is defined 
as the best solution in the classroom representing the best 
learner in the society. Each learner of the classroom group 
adjusts search patterns according to the knowledge trans-
fer from a teacher first (teacher phase) and then from inter-
action with other fellow students (learner phase). One of 
the advantages over most metaheuristic algorithms is that 
TLBO uses only common control parameters like popula-
tion size and number of generations, while other algorithms 
require additional algorithm-specific control parameters [9, 
10].

Abstract This paper presents a new optimization algo-
rithm called fuzzy adaptive teaching–learning-based 
optimization (FATLBO) for solving numerical structural 
problems. This new algorithm introduces three new mech-
anisms for increasing the searching capability of teach-
ing–learning-based optimization namely status monitor, 
fuzzy adaptive teaching–learning strategies, and remedial 
operator. The performance of FATLBO is compared with 
well-known optimization methods on 26 unconstrained 
mathematical problems and five structural engineering 
design problems. Based on the obtained results, it can be 
concluded that FATLBO is able to deliver excellence and 
competitive performance in solving various structural opti-
mization problems.

Keywords Optimization · Fuzzy logic · Teaching–
learning-based optimization · Structural design problems

1 Introduction

Structural optimization is a challenging area of study that 
has attracted increasing attention in recent decades. Various 
gradient-based optimization methods have been developed 
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Since its inception, TLBO has been used in various 
applications. Some are applied in data clustering [11, 12], 
mechanical engineering [13, 14], power and energy sys-
tems [15–19], and structural engineering [20, 21]. More 
complete review on applications related to the TLBO can 
be found in the literature [22, 23]. As a new research, many 
studies also have been conducted to improve the perfor-
mance of TLBO [24, 25]. All of these studies have been 
proven to enhance the performance of the original TLBO 
and thus the efforts must be continued to develop a better 
optimization method as many real-world problems become 
increasingly complex.

This paper introduces a novel algorithm based on TLBO 
namely fuzzy adaptive teaching–learning-based optimi-
zation (FATLBO) which offers significant performance 
improvement over its predecessor. Three major modifica-
tions are introduced: status monitor, fuzzy adaptive teach-
ing–learning strategies (FATLS) and remedial operator. 
Status monitor is used to monitor the performance of the 
students in both teacher phase and learner phase. In FATLS, 
a mechanism is deployed to monitor the performance of 
both teacher phase and learner phase then fuzzy set theory 
is employed to emphasize the most productive phase result-
ing in increasing algorithm’s convergence speed. Reme-
dial operator is introduced as a restart mechanism when 
all learners do not make significant progress for a period 
of iteration. FATLBO is compared with a number of algo-
rithms including the original TLBO, and other well-known 
metaheuristic algorithms in several experiments of bench-
mark functions and real case studies in structural engineer-
ing. The results of the experiments show that the proposed 
algorithms outperform the competing algorithms in solving 
most of the function problems considered in this paper.

The rest of the paper is organized as follows: Sect. 2 
describes the standard TLBO algorithm. Section 3 presents 
the proposed FATLBO algorithm. Section 4 presents the 
experimental results. Finally, conclusions are given in Sect. 5.

2  The teaching–learning‑based optimization 
(TLBO) algorithm

The main idea behind TLBO is the simulation of a classical 
school learning process that consists of two stages. During 
the first stage, called teacher phase, a teacher imparts knowl-
edge directly to his/her students. The better the teacher, the 
more knowledge the students obtain. However, the pos-
sibility of a teacher’s teaching being successful during the 
teacher phase, in practice, is distributed under Gaussian law. 
There are only very rare students who can understand all the 
materials presented by the teacher (i.e., the right end of the 
Gaussian distribution). Most students will partially accept 
new learning materials (i.e., the mid part of the Gaussian 

distribution) and, in some cases, the teacher will have almost 
no direct effect on students’ knowledge (i.e., the left end of 
the Gaussian distribution). However, the possibility for most 
students to obtain new knowledge is not completely lost. 
During the second stage, called learner phase, a student may 
learn with the help of fellow students. Overall, how much 
knowledge is transferred to a student does not only depend 
on his/her teacher but also on interactions amongst students 
through peer learning.

Like many metaheuristic algorithms, TLBO algorithm 
uses a population of students to search the global solution. 
An initial population is randomly generated according to the 
population size and number of design variables. A student 
(Xi) within the population indicates one possible solution to 
a particular optimization problem. Xi is a vector of design 
variables that represents the number of subjects offered to 
the students. Meanwhile, the student’s result is represented 
by the fitness value vector of the optimization problem.

During the teacher phase, the smartest student with mini-
mum fitness value is assigned as the teacher (Xteacher) for that 
iteration. TLBO attempts to improve other students (Xi) by 
shifting students’ mean value (Xmean) towards the Xteacher as 
shown from Eq. (1). It can be seen that the student improve-
ment may be influenced by the difference between the teach-
er’s knowledge and the average knowledge of all students.

where rand ranges between 0 and 1 and TF is a teaching 
factor, which can be either 1 or 2.

During the learner phase, a student (Xi) tries increase the 
knowledge by the interaction between himself and another 
student which is selected randomly (Xj). The student Xi is 
first compared with student Xj. If student Xj is smarter than 
Xi, Xi is shifted towards Xj as shown in Eq. (2). Otherwise, 
it is shifted away from Xj as shown in Eq. (3).

For both teacher and learner phases, a student is only 
updated if the new solution (Xi new) is better than the previ-
ous one (Xi). TLBO then tries to improve certain students 
by changing these students during the teacher and learner 
phases, The algorithm will operate until reaching the maxi-
mum number of iterations. Figure 1 illustrates the flowchart 
of TLBO algorithm.

3  The fuzzy adaptive teaching–learning‑based 
optimization (FATLBO)

In real-life, teaching method plays a critical role in the effi-
ciency of transfer knowledge between teacher and students 

(1)Xi new = Xi + rand× (Xteacher − TF × Xmean)

(2)Xi new = Xi + rand× (Xj − Xi)

(3)Xi new = Xi + rand× (Xi − Xj)

Author's personal copy
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in the classroom. For some materials, it will be more suit-
able to use the teacher-centered approach where the teacher 
dominantly gives a direct instruction to the students. How-
ever, for some topics, it might be more appropriate if the 
students are actively engaged in discussion and cooperative 
learning between themselves. Improper use of the teach-
ing method will produce a negative impact on the learning 
process.

In the basic version, TLBO algorithm forces all stu-
dents to enter both teacher and learner phases. As a 
result, TLBO requires total two function evaluations to 
calculate the fitness of every candidate solution created 
in one iteration. This paper implements the use of real-
life teaching methods by introducing several modifica-
tions on the basic TLBO. In Sect. 3.1, a status monitor 
is developed to keep a track of the progress of students 
in each phase. Status monitor measures the productivity 
of each phase in improving the student’s knowledge for 
a certain period of iteration. In Sect. 3.2, a new strategy 
is developed namely fuzzy adaptive teaching–learning 
system (FATLS) to decide the proper teaching methods 
for optimizing the searching speed and the efficiency of 

the TLBO algorithm. The students are allowed to skip 
teacher phase or learner phase by introducing two new 
parameters called teaching rate (TR) and learning rate 
(LR). TR and LR present the probability rate for a stu-
dent to enter teacher and learner phase. If TR is set to 
0.8, every student will have 80 % possibility to go to the 
teacher phase and 20 % possibility to skip the teacher 
phase. Fuzzy logic is further employed to self-adjust the 
TR and LR based on the information collected from the 
status monitor. Finally, remedial operator is introduced 
to ensure the students not trapped in local optima in 
Sect. 3.3.

3.1  Status monitor

Two new variables are introduced to measure the pro-
ductivity of the students during teacher phase and learner 
phase namely the success rate of teacher phase (SRTP) 
and the success rate of learner phase (SRLP). The value 
of SRTP and SRLP are varied between 0 and 1 where the 
higher value means the more success of the certain phase to 
improve the students’ knowledge.

Fig. 1  TLBO flowchart
Initialization

Calculate the mean of each design 
variables

Identify the best solution (teacher)

Modify solution based on best solution
Xnew = Xold + r (Xteacher  (TF) Mean)

Is new solution better 
than existing?

Select any two solutions randomly Xi

and Xj

Is Xi better than Xj?

Is new solution better 
than existing?

Is termination criterion 
satisfied?

Output the best solution

Yes

Replace Xold with XnewYes

No

No

Replace Xold with Xnew

No

Yes

Xnew = Xold + r (Xj-Xi)YesXnew = Xold + r (Xi-Xj) No

Teacher
Phase

Learner
Phase
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Table 1 illustrates the example of SRTP and SRLP cal-
culation in one iteration. According to the result, the SRTP 
is 0.6 while SRLP is 0.4. From the numbers, it can be 
interpreted that entering teacher phase will approximately 
improve the fitness of six-tenths of total students while 
only four-tenths of students success to improve the fitness 
during the learner phase. Status monitor will track the pro-
gress of the students in every iteration. The information of 
SRTP and SRLP produced by status monitor will be used 
by FATLS to adjust the fittest TR and LR for each student 
in the next step.

3.2  Fuzzy adaptive teaching–learning strategies 
(FATLS)

To boost the productivity of learning process, a fuzzy sys-
tem is developed. The SRTP and SRLP obtained from the 
status monitor serve as the input variables. As for the out-
put variables, bar controller is developed to adjust the TR 
and LR. The illustration of bar controller can be seen in 
Fig. 2. If the middle bar moves to the left, it will decrease 
the TR. In other words, the FATLS will emphasize the 
learner phase. If the bar moves to the right, it will decrease 
the LR and vice versa. The movement of bar controller will 
be used as the output variable. Then, the movement of bar 
controller is adjusted to tune the TR and LR.

The FATLS consists of three principal components: 
fuzzification, inferencing process, and defuzzification.

3.2.1  Fuzzification

SRTP and SRLP were calculated previously in order to 
measure the productivity of the students during each phase. 
Hence, each SRTP and SRLP from the previous step are 
converted to the membership grade as shown in Fig. 3. The 
membership functions used for each input variable are left-
triangle, triangle, and right-triangle membership functions. 
For output variable, five triangular membership functions 
are used including left-triangle, three triangles, and right-
triangle as shown in Fig. 4. 

3.2.2  Inferencing process

The Mamdani-type fuzzy rule is used to formulate the condi-
tional statements that consist of fuzzy logic. Mamdani’s fuzzy 
inference is used for mapping the given inputs to the output. 
There are nine fuzzy rules which are suggested as follows.

Rule 1  IF success rate of teacher phase is LOW AND 
success rate of learner phase is LOW; THEN bar 
movement is NEUTRAL.

Rule 2  IF success rate of teacher phase is LOW AND 
success rate of learner phase is MEDIUM; 
THEN bar movement is LEFT.

Rule 3  IF success rate of teacher phase is LOW AND 
success rate of learner phase is HIGH; THEN 
bar movement is FAR-LEFT.

Table 1  The example of success rate calculation

The number in italics indicates the updated fitness value

Individual Fitness value from the end of last 
iteration

Fitness value after teacher phase Success? Fitness value after learner phase Success?

1 4.18 3.28 Yes 3.28 No

2 19.97 10.1 Yes 10.1 No

3 78.69 78.69 No 66.79 Yes

4 91.95 35.18 Yes 28.79 Yes

5 94.89 94.89 No 94.89 No

Success rate SRTP = 0.6 SRLP = 0.4

Fig. 2  Bar controller

1.0

1.0

0.90.80.70.6 1.01.01.01.05.0

0.9 0.8 0.7 0.6 0.5

1.0

1.01.01.01.01.0

Teaching Ratio

Learning Ratio
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Rule 4  IF success rate of teacher phase is MEDIUM 
AND success rate of learner phase is LOW; 
THEN bar movement is RIGHT.

Rule 5  IF success rate of teacher phase is MEDIUM 

AND success rate of learner phase is MEDIUM; 
THEN bar movement is NEUTRAL.

Rule 6  IF success rate of teacher phase is MEDIUM 
AND success rate of learner phase is HIGH; 
THEN bar movement is LEFT.

Rule 7  IF success rate of teacher phase is HIGH AND 
success rate of learner phase is LOW; THEN bar 
movement is FAR-RIGHT.

Rule 8  IF success rate of teacher phase is HIGH AND 
success rate of learner phase is MEDIUM; 
THEN bar movement is RIGHT.

Rule 9  IF success rate of teacher phase is HIGH AND 
success rate of learner phase is HIGH; THEN 
bar movement is NEUTRAL.

3.2.3  Defuzzification

This step is a reverse step of fuzzification. Once the infer-
encing process finishes, the defuzzification begins. The 
center-of-sums method is selected as the defuzzification 
method. The output of the fuzzy strategies is the bar move-
ment. Based on bar movement, the TR and LR can be 
adjusted for the next iterations. For example, if bar move-
ment result is +0.26, the bar will move 2.6 step to the right. 
It means the TR and LR will be updated to 1.0 and 0.74, 
respectively (see Fig. 5).

3.3  Remedial operator

In the classroom, there is a situation when entire students 
have made a little improvement in the learning process. 
It might occur due to various things such as teaching 
style, heavy topic, or bad environment. Facing this prob-
lem, teacher might hold evaluation and add perturbation 
or remediation to the class based on the current situation. 
This remediation can be either changing the teaching style, 
applying personal tutoring, or downgrading the lessons 
loads.

As for FATLBO, when premature convergence occurred, 
remedial operator is changing the classroom environment 
by expanding the population using the random move-
ment based on Gaussian distribution with the teacher as 
the center point. In this paper, the premature convergence 
is assumed when no fitness improvement for long times 
or entire population converges in one solution. The corre-
sponding formula is shown below.

Finally, Fig. 6 summarizes the whole procedure of 
FATLS.

(4)

Xi new = Xteacher + N(0, range/2),

where range is equal to upper bound and lower bound
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Fig. 3  Membership function of the SRTP and SRLP
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4  FATLBO validation

This paper considered several numerical optimization 
problems from the literature to validate FATLBO per-
formance. This section is divided into two sub-sections. 

Section 4.1 provides a large set of complex math-
ematical benchmark problems to be tested, with results  
compared against other metaheuristic algorithms. 
Section 4.2 examines five structural engineering design 
problems.

Fig. 5  Bar controller after 
applying FATLS
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Fig. 6  FATLBO flowchart
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4.1  Mathematical benchmark problems

This section compares the performance of FATLBO 
to the performance of other metaheuristic algorithms 

including GA, DE, PSO, BA, and the hybrid PSO-BA 
[particle bee algorithm (PBA)] using 26 benchmark func-
tions described by Cheng and Lien [26]. Functions 1–11 
are two-dimensional; functions 12 and 13 are four- and 

Table 2  The detailed of benchmark functions (D: dimensions, M: multimodal, N: non-Separable, U: unimodal, S: separable)

Number Function Range D Type Formulation Min

1 Beale [−4.5, 4.5] 2 UN f (x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2 0

2 Easom [−100, 100] 2 UN f (x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2) −1

3 Matyas [−10, 10] 2 UN f (x) = 0.26(x21 + x22)− 0.48x1x2 0

4 Bohachevsky1 [−100, 100] 2 MS f (x) = x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2)+ 0.7 0

5 Booth [−10, 10] 2 MS f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 0

6 Michalewicz2 [0, π] 2 MS
f (x) = −

D
∑

i=1

sin(xi)(sin(ix
2
i /π))

20 −1.8013

7 Schaffer [−100, 100] 2 MN
f (x) = 0.5+

sin2(

√

x21+x22 )−0.5

(1+0.001(x21+x22 ))
2

0

8 Six Hump  
Camel Back

[−5, 5] 2 MN f (x) = 4x21 − 2.1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42 −1.03163

9 Boachevsky2 [−100, 100] 2 MN f (x) = x21 + 2x22 − 0.3 cos(3πx1)(4πx2)+ 0.3 0

10 Boachevsky3 [−100, 100] 2 MN f (x) = x21 + 2x22 − 0.3 cos(3πx1 + 4πx2)+ 0.3 0

11 Shubert [−10, 10] 2 MN
f (x) =

(

5
∑

i=1

i cos(i + 1)x1 + i

)(

5
∑

i=1

i cos((i + 1)x2 + i)

)

−186.73

12 Colville [−10, 10] 4 UN f (x) = 100(x21 − x2)
2 + (x1 − 1)2 + (x3 − 1)2 + 90(x23 − x4)

2

+ 10.1(x2 − 1)2 + (x4 − 1)2 + 19.8(x2 − 1)(x4 − 1)

0

13 Michalewicz5 [0, π] 5 MS
f (x) = −

D
∑

i=1

sin(xi)(sin(ix
2
i /π))

20 −4.6877

14 Zakharov [−5, 10] 10 UN
f (x) =

D
∑

i=1

x2i +
(

D
∑

i=1

0.5ixi

)2

+
(

D
∑

i=1

0.5ixi

)4 0

15 Michalewicz10 [0, π] 10 MS
f (x) = −

D
∑

i=1

sin(xi)(sin(ix
2
i /π))

20 −9.6602

16 Step [−5.12, 5.12] 30 US
f (x) =

D
∑

i=1

(xi + 0.5)2
0

17 Sphere [−100, 100] 30 US
f (x) =

D
∑

i=1

x2i
0

18 SumSquares [−10, 10] 30 US
f (x) =

D
∑

i=1

ix2i
0

19 Quartic [−1.28, 1.28] 30 US
f (x) =

D
∑

i=1

ix4i + Rand
0

20 Schwefel 2.22 [−10, 10] 30 UN
f (x) =

D
∑

i=1

|xi| +
D
∏

i=1

|xi|
0

21 Schwefel 1.2 [−100, 100] 30 UN
f (x) =

D
∑

i=1

(

i
∑

j=1

xj

)2 0

22 Rosenbrock [−30, 30] 30 MN
f5(x) =

D−1
∑

i=1

100(xi+1 − x2i )
2 + (xi − 1)2

0

23 Dixon-Price [−10, 10] 30 UN
f (x) = (x1 − 1)2 +

D
∑

i=2

i(2x2i − xi − 1)2
0

24 Rastrigin [−5.12, 5.12] 30 MS
f (x) =

D
∑

i=1

(x2i − 10 cos(2πxi)+ 10)
0

25 Griewank [−600, 600] 30 MN
f (x) = 1

4000

(

D
∑

i=1

(xi − 100)2
)

−
(

D
∏

i=1

cos( xi−100√
i

)

)

+ 1
0

26 Ackley [−32, 32] 30 MN
f (x) = −20 exp

(

−0.2

√

1
n

D
∑

i=1

x2i

)

− exp

(

1
n

D
∑

i=1

cos(2πxi)

)

+ 20+ e
0
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five-dimensional; and functions 16–26 are 30-dimen-
sional. All functions may be separated into the type cat-
egories of multimodal/unimodal and separable/non-sepa-
rable. Table 2 provides benchmark function details.

Cheng and Lien [26] previously conducted experiments 
on all algorithms with a 500,000 maximum number of func-
tion evaluations for each benchmark functions. Any value 
less than 1E−12 was reported as 0. To maintain compari-
son consistency, FATLBO was also tested using these same 
conditions and number of function evaluations. Table 3 lists 
control and specific parameter settings for each algorithm.

Table 4 delineates the respective performance of FATLBO 
and other algorithms in solving benchmark functions. Perfor-
mance values for all algorithms except for FATLBO reference 
Cheng and Lien [26]. The mean value and standard devia-
tion for FATLBO were obtained after 30 independent runs, in 
line with standards followed in the previous work. In Table 4, 
bolded numbers represent the comparatively best values. 
FATLBO found the global optimum value for 23 of the 26 
functions and outperformed all other algorithms tested. Fur-
ther, FATLBO was the only algorithm able to solve Dixon-
Price (function 23) and produced the best result of all on the 
exceptionally difficult Rosenbrock (function 22).

4.2  Structural design problems

This section examines FATLBO performance using five 
structural design optimization problems from the structural 
engineering field, with FATLBO optimization results com-
pared to data published in the literature. FATLBO used 30 
individuals and 30 independent runs for all cases. Different 
maximum numbers of function evaluations were used for 
each problem, with smaller function evaluation numbers 
used for smaller number of design variables and moderate 
functions and larger function evaluation numbers used for 
larger design variable numbers and complex problems. As 
for constraint handling method, Deb’s feasibility rules is 

considered in this paper [27]. Because FATLBO is param-
eter-free, only common control parameters (population 
size and maximum number of function evaluations) were 
adjusted. Therefore, FATLBO performance was consistent 
across different problems.

4.2.1  Cantilever beam

The cantilever beam problem was adopted from Chicker-
mane and Gea [28]. The cantilever beam shown in Fig. 7 
comprises five elements. Each element has a hollow cross 
section of a fixed diameter. The beam is rigidly supported 
as shown, and a vertical force acts at the free end of the can-
tilever. The problem presented is to minimize beam weight. 
The design variable is the height (or width) xi of each beam 
element. Bound constraints are set as 0.01 ≤ xi ≤ 100. The 
problem is formulated using classical beam theory as:

Minimize

Subject to:

Table 5 lists the best solutions obtained by FATLBO and 
various methods [28, 29]. FATLBO achieved a solution 
superior to all other methods.

4.2.2  Tubular column

A uniform column of tubular section is designed with 
hinge joints installed at both ends (see Fig. 8). The column 
must carry a compressive load P = 2500 kgf at the lowest 
cost [30]. The column is made of a material with a yield 
strength (σy) of 500 kgf/cm2, modulus of elasticity (E) of 
0.85 × 106 kgf/cm2, and weight density (ρ) of 0.0025 kgf/
cm3. Column length (L) is 250 cm. Column stress should 

(5)f (X) = 0.0624 (x1 + x2 + x3 + x4 + x5)

(6)g(X) =
61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
≤ 1

Table 3  Parameter settings of 
the algorithms

n population size/colony size/ecosystem size, m mutation rate, c crossover rate, g generation gap, f scaling 
factor, w inertia weight, v limit of velocity, e elite bee number, b best bee number, r random bee number, n1 
elite bee neighborhood number, n2 best bee neighborhood number, Pelite PSO iteration of elite bees, Pbest 
PSO iteration of best bees

GA DE PSO BA PBA TLBO FATLBO

n = 50 n = 50 n = 50 n = 50 n = 50 n = 50 n = 50

m = 0.01 c = 0.9 w = 0.9 ~ 0.7 e = NP/2 e = NP/2

c = 0.8 F = 0.5 v = Xmin/10 ~ Xmax/10 b = NP/4 b = NP/4

g = 0.9 r = NP/4 r = NP/4

n1 = 2 w = 0.9 ~ 0.7

n2 = 1 v = Xmin/10 ~ Xmax/10

Pelite = 15

Pbest = 9
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Table 4  Comparative results of FATLBO with GA, DE, PSO, BA, and PBA

No Functions Min GA DE PSO BA PBA TLBO FATLBO

1 Beale Mean 0 0 0 0 1.88E−05 0 0 0

StdDev 0 0 0 1.94E−05 0 0 0

2 Easom Mean −1 −1 −1 −1 −0.99994 −1 −1 −1

StdDev 0 0 0 4.50E−05 0 0 0

3 Matyas Mean 0 0 0 0 0 0 0 0

StdDev 0 0 0 0 0 0 0

4 Bohachevsky 1 Mean 0 0 0 0 0 0 0 0

StdDev 0 0 0 0 0 0 0

5 Booth Mean 0 0 0 0 0.00053 0 0 0

StdDev 0 0 0 0.00074 0 0 0

6 Michalewicz 2 Mean −1.8013 −1.8013 −1.8013 −1.57287 −1.8013 −1.8013 −1.8013 −1.8013

StdDev 0 0 0.11986 0 0 0 0

7 Schaffer Mean 0 0.00424 0 0 0 0 0 0

StdDev 0.00476 0 0 0 0 0 0

8 Six Hump Camel Back Mean −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

StdDev 0 0 0 0 0 0 0

9 Boachevsky 2 Mean 0 0.06829 0 0 0 0 0 0

StdDev 0.07822 0 0 0 0 0 0

10 Boachevsky 3 Mean 0 0 0 0 0 0 0 0

StdDev 0 0 0 0 0 0 0

11 Shubert Mean −186.73 −186.73 −186.73 −186.73 −186.73 −186.73 −186.73 −186.73

StdDev 0 0 0 0 0 0 0

12 Colville Mean 0 0.01494 0.04091 0 1.11760 0 0 0

StdDev 0.00736 0.08198 0 0.46623 0 0 0

13 Michalewicz 5 Mean −4.6877 −4.64483 −4.68348 −2.49087 −4.6877 −4.6877 −4.6877 −4.6877

StdDev 0.09785 0.01253 0.25695 0 0 0 0

14 Zakharov Mean 0 0.01336 0 0 0 0 0 0

StdDev 0.00453 0 0 0 0 0 0

15 Michalewicz10 Mean −9.6602 −9.49683 −9.59115 −4.00718 −9.6602 −9.6602 −9.6172 −9.6602

StdDev 0.14112 0.06421 0.50263 0 0 4.52E−02 0

16 Step Mean 0 1.17E+03 0 0 5.12370 0 0 0

StdDev 76.56145 0 0 0.39209 0 0 0

17 Sphere Mean 0 1.11E+03 0 0 0 0 0 0

StdDev 74.21447 0 0 0 0 0 0

18 Sum Squares Mean 0 1.48E+02 0 0 0 0 0 0

StdDev 12.40929 0 0 0 0 0 0

19 Quartic Mean 0 0.18070 0.00136 0.00116 1.72E−06 0.00678 7.49E−03 3.52E−04

StdDev 0.02712 0.00042 0.00028 1.85E−06 0.00133 1.99E−03 1.61E−04

20 Schwefel 2.22 Mean 0 11.0214 0 0 0 7.59E−10 0 0

StdDev 1.38686 0 0 0 7.10E−10 0 0

21 Schwefel 1.2 Mean 0 7.40E+03 0 0 0 0 0 0

StdDev 1.14E+03 0 0 0 0 0 0

22 Rosenbrock Mean 0 1.96E+05 18.20394 15.088617 28.834 4.2831 1.04E−07 3.80E−07

StdDev 3.85E+04 5.03619 24.170196 0.10597 5.7877 2.95E−07 4.84E−07

23 Dixon-Price Mean 0 1.22E+03 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667

StdDev 2.66E+02 E−9 E−8 1.16E−09 5.65E−10 0 3.34E−15

24 Rastrigin Mean 0 52.92259 11.71673 43.97714 0 0 0 0

StdDev 4.56486 2.53817 11.72868 0 0 0 0
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be less than the buckling stress (constraint g1) and yield 
stress (constraint g2). Mean column diameter is restricted 
to between 2 and 14 cm, and columns with thicknesses out-
side the range 0.2–0.8 cm are not available in the market. 
The cost of the column includes material and construction 
costs. The cost is the objective function and expressed as 
5W + 2d. W is the weight in kilograms-force and d is the 
mean diameter of the column in centimeters.

The optimization model for this problem is given as 
follows:

Minimize:

Subject to:

Table 5 compares FATLBO-obtained results with those 
of other methods reported previously in the literature [29–
31]. Table 6 shows that, although other methods obtained 
the best objective value, they did so in violation of con-
straint g2. FATLBO, however, generated the best result 
within all constraints provided. FATLBO also identified the 
best result using a significantly lower number of evalua-
tions than CS.

(7)f (d, t) = 9.8dt + 2d

(8)g1 =
P

πdt
≤ σy

(9)g2 =
P

πdt
−

π2E(d2 + t2)

8L2
≤ 0

(10)g3 = −d + 2 ≤ 0

(11)g4 = d − 14 ≤ 0

(12)g5 = −t + 0.2 ≤ 0

(13)g6 = t − 0.8 ≤ 0

Table 4  continued

No Functions Min GA DE PSO BA PBA TLBO FATLBO

25 Griewank Mean 0 10.63346 0.00148 0.01739 0 0.00468 0 0

StdDev 1.16146 0.00296 0.02081 0 0.00672 0 0

26 Ackley Mean 0 14.67178 0 0.16462 0 3.12E−08 0 0

StdDev 0.17814 0 0.49387 0 3.98E−08 0 0

Count of algorithm found global minimum 9 18 17 18 20 21 23

The number in italics indicates the best value

Fig. 7  Cantilever beam problem

Table 5  Best solution for the 
cantilever beam design

a Not converge

Chickermane and Gea Gandomi et al. Present Study

CONLIN MMA GCA(I) GCA(II) CS FATLBO

x1 6.0100 6.0100 6.0100 6.0100 6.0089 6.01601

x2 5.3000 5.3000 5.3000 5.3000 5.3049 5.30917

x3 4.4900 4.4900 4.4900 4.4900 4.5023 4.49435

x4 3.4900 3.4900 3.4900 3.4900 3.5077 3.50147

x5 2.1500 2.1500 2.1500 2.1500 2.1504 2.15267

fmin N.C.a 1.3400 1.3400 1.3400 1.33999 1.33996

Average N.A. N.A. N.A. N.A. N.A. 1.33996

Standard deviation N.A. N.A. N.A. N.A. N.A. 4.56E−5

No. evaluations N.A. N.A. N.A. N.A. N.A. 15,000
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4.2.3  Three‑bar truss design

This case considers a 3-bar truss design problem [32], as 
shown in Fig. 9. The objective of this case is to minimize 
the volume of a statistically loaded 3-bar truss subject to 
stress (s) constraints. The problem involves two decision 
variables: cross-sectional areas (A1, A2). The problem may 
be stated as:

Minimize:

Subject to:

where 0 ≤ A1, A2 ≤ 1; l = 100 cm, P = 2 KN/cm2, and 
σ = 2 KN/cm2.

This design is a nonlinear fractional programming 
problem. Table 7 represents solutions obtained by several 
researchers [29, 32, 33]. The solution obtained by FATLBO 
is (A1,A2) = (0.78868, 0.40825) with an objective value 
equal to 263.8958. Although Tsai reported the best objec-
tive value, the result is not feasible due to its violation of 
the first constraint. Results obtained by FATLBO are thus 
superior to those of previous studies. FATLBO also is the 
most efficient method to solve this problem, as it required 
only 6000 evaluation cycles compared with the 15,000 
required by CS.

4.2.4  Reinforced concrete beam structure

Amir and Hasegawa presented a simplified optimization of 
total reinforced concrete beam cost, shown in Fig. 10 [34]. 
The beam is assumed simply supported with a span of 30 
ft and subjected to a live load of 2.0 klbf and a dead load 

(14)f (A1,A2) = (2
√
2A1 + A2)× l

(15)g1 =

√
2A1 + A2√

2A2
1 + 2A1A2

P ≤ σ

(16)g2 =
A2√

2A2
1 + 2A1A2

P ≤ σ

(17)g3 =
1

A1 +
√
2A2

P ≤ σ

Fig. 8  Tubular column problem

Table 6  Best solution for the 
tubular column example

a Represents violated sets

Hsu and Liu Rao Gandomi et al. Present study

Fuzzy PD controller Mathematical programming CS FATLBO

d (cm) 5.5407 5.44 5.45139 5.45116

t (cm) 0.292 0.293 0.29196 0.29197

g1 499.9827 499.2564 499.9879 499.9919

g2 0.0001a 0.0026a −0.0001 −0.0001

g3 −3.4507 −3.44 −3.45139 −3.45116

g4 −8.5493 −8.56 −8.54861 −8.54224

g5 −0.092 −0.093 −0.09196 −0.09197

g6 −0.508 −0.507 −0.50804 −0.50803

fmin 26.4991 26.5323 26.53217 26.4995

Average N.A. N.A. 26.53504 26.49964

Standard deviation N.A. N.A. 1.9E−3 2.2E−4

No. evaluation N.A. N.A. 15,000 2500
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of 1.0 klbf, including beam weight. Concrete compressive 
strength (σc) is 5 ksi and the yield stress of the reinforcing 
steel (σy) is 50 ksi. The cost of concrete is 0.02/in2/linear 
ft and the cost of steel is $1.0/in2/linear ft. Reinforcement 
area (As), beam width (b), and beam depth (h) must be 
determined to minimize total structure cost. In this paper, 
the cross-sectional area of the reinforcing bar (As) is taken 
as a discrete type variable that must be chosen from the 
standard bar dimensions listed in ref [34]; concrete beam 

width (b) is assumed to be an integer variable; beam depth 
is a continuous variable; and effective depth is assumed to 
be 0.8 h.

The structure should be proportioned to attain a strength 
required under ACI building code 318-77 as follows:

in which Mu, Md, and Ml, respectively, are the flexural 
strength, dead load, and live load moments of the beam. In 
this case, Md = 1350 in kip and Ml = 2700 in kip. Beam 
depth ratio is restricted to be less than or equal to 4. The 
optimization problem may be stated as:

Minimize:

Subject to:

The variables bound are As: [6.0, 6.16, 6.32, 6.6, 7.0, 
7.11, 7.2, 7.8, 7.9, 8.0, 8.4] in2, b: [28, 29, 30, 31 … 38, 
39, 40] in, and 5 ≤ h ≤ 10 in. This paper also used the 
constrained functions of g1(x) and g2(x) derived by Lieb-
man et al. [35].

Table 8 presents the optimum designs of this problem 
and parameters used, including several comparisons with 
prior research on SD-RC [34], GHN-ALM and GHN-EP 
[36], GA and FLC-AHGA [37], CS [29], FA [38]. In this 
case study, FATLBO found the same optimum solution 
identified by FA with a better consistency in mean and 
standard deviation.

(18)

Mu = 0.9Asσy(0.8)

(

1.0− 0.59
Asσy

0.8bhσc

)

≥ 1.4Md + 1.7Ml

(19)f (As, b, h) = 29.4As + 0.6bh

(20)g1 =
b

h
≤ 4

(21)g2 = 180+ 7.375
A2
s

h
≤ Asb

Fig. 9  Three-bar truss problem

Table 7  Best solution for the 
three-bar truss design

a Represents violated sets

Ray and Saini Tsai Gandomi et al. Present Study

Swarm strategy Nonlinear programming CS FATLBO

A1 (cm2) 0.795 0.788 0.78867 0.78868

A2 (cm2) 0.395 0.408 0.40902 0.40852

g1 1.9966 2.0016a 1.9994 2.0000

g2 0.5191 0.5364 0.5365 0.5361

g3 1.4775 1.4652 1.4629 1.4637

fmin (cm3) 264.36 263.68 263.9716 263.8958

Average N.A. N.A. 264.0669 263.8959

Standard deviation N.A. N.A. 9E−5 3.29E−5

No. evaluation N.A. N.A. 15,000 6000

Fig. 10  Reinforced concrete beam problem
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4.2.5  Minimize I‑beam vertical deflection

This case study, using a design problem with four variables, 
was modified from an original problem reported in [39]. 
Figure 11 illustrates the goal of this case-minimizing the verti-
cal deflection of an I-beam. The cross-sectional area and stress 
constraints must be simultaneously satisfied under given loads.

The objective description of this study is to minimize the 
vertical deflection f(x) = PL3/48EI where beam length (L) 
and elasticity modulus (E) are, respectively, 5,200 cm and 
523,104 kN/cm2. Thus, the objective function of the prob-
lem is considered to be:

Minimize:

Subject to a cross-section area less than 300 cm2

If allowable bending stress of the beam is 56 kN/cm2, 
the stress constraint is:

(22)
f (b, h, tw, tf) =

5000

tw(h−2tf)
12

3
+ bt3f

6
+ 2btf

(

h−tf
2

)2

(23)g1 = 2btf + tw(h− 2tf) ≤ 300

(24)

g2 =
18h× 10

4

tw(h− 2tf)3 + 2btw(4t
2

f
+ 3h(h− 2tf))

+
15b× 10

3

(h− 2tf)t3w + 2twb3
≤ 56

where initial design spaces are 10 ≤ h ≤ 80, 10 ≤ b ≤ 50, 
0.9 ≤ tw ≤ 5, and 0.9 ≤ tf ≤ 5.

For this case study, 5000 completed function evalua-
tions were set as the stopping criterion. Table 9 presents 
results obtained by FATLBO and other algorithms. This 
case study has been previously solved using other meth-
ods such as adaptive surface method (ARSM), improved 
ARSM [40], and CS [29]. FATLBO performance sur-
passed ARSM and improved ARSM in terms of both mini-
mum obtained value and solution average. Although CS 

Table 8  Result of the reinforced concrete beam example

Amir and Hasegawa Shih and Yang Yun Gandomi et al. Gandomi et al. Present study

SD-RC GHN-ALM GHN-EP GA GA-FL CS FA FATLBO

As (in
2) 7.8 6.6 6.32 7.2 6.16 6.32 6.32 6.32

b (in) 31 33 34 32 35 34 34 34

h (in) 7.79 8.4952 8.6372 8.0451 8.75 8.5 8.5 8.5

g1 −0.0205 −0.1155 −0.0635 −0.0224 0 0 0 0

g2 −4.2012 0.0159 −0.7745 −2.8779 −3.6173 −0.2241 −0.2241 −0.2241

fmin (in
2) 374.2 362.2455 362.0065 366.1459 364.8541 359.2080 359.2080 359.2080

Average N.A. N.A. N.A. N.A. N.A. N.A. 460.706 359.7726

Standard deviation N.A. N.A. N.A. N.A. N.A. N.A. 80.7387 1.2832

No. evaluation 396 N.A. N.A. N.A. 100,000 N.A. 25,000 1000

Fig. 11  I-beam design problem

Table 9  Best solution for I-beam design

a Represents violated sets

Wang Gandomi et al. Present study

ARSM Improved 
ARSM

CS FATLBO

h (cm) 80.00 79.99 80.000000 80.00000

b (cm) 37.05 48.42 50.000000 50.00000

tw (cm) 1.71 0.90 0.900000 0.90000

tf (cm) 2.31 2.40 2.3216715 2.32179

fmin (cm) 0.0157 0.0131 0.0130747 0.0130741

Average N.A. N.A. 0.01353646 0.0130884

Standard devia-
tion

N.A. N.A. 1.3E−4 2.56E−5

No. evaluation N.A. N.A. 5000 5000
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matched the results obtained using FATLBO, FATLBO 
was still slightly better in terms of mean and standard 
deviation.

5  Conclusion

This paper presents a new optimization algorithm called 
fuzzy adaptive teaching–learning-based optimization 
(FATLBO). FATLBO introduces three new modifications 
to improve the performance of original TLBO namely sta-
tus monitor, fuzzy adaptive teaching–learning strategies 
(FATLS), and remedial operator. Its application to sample 
problems demonstrated the ability of FATLBO to gener-
ate solutions at a quality significantly better than other 
metaheuristic algorithms. Based on mathematical bench-
mark function results, FATLBO precisely identified 23 
of 26 benchmark function solutions, surpassing the per-
formance of GA, DE, BA, PSO, and PBA. FATLBO was 
also tested with five practical structural design problems. 
Results demonstrated FATLBO was able to achieve bet-
ter results with fewer evaluation functions than algorithms 
tested in previous works. The three new improvements 
of the FATLBO algorithm are simple to operate. Thus, it 
can be concluded that the novel FATLBO algorithm, while 
robust and easy to implement, is able to solve various 
numerical optimization problem.

This paper also presents a new paradigm to parameter 
adaptation and can be understood as one of possible ways 
for fuzzy parameter setting of TLBO. Applying the cur-
rent fuzzy adaptive paradigm to another new metaheuristic 
algorithm, e.g., jaya algorithm, is an interesting direction 
for further research.
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