126 research outputs found

    Navigation with Limited Prior Information Using Time Difference of Arrival Measurements from Signals of Opportunity

    Get PDF
    The Global Positioning System (GPS) provides world-wide availability to high-accuracy navigation and positioning information. However, the threats to GPS are increasing, and many limitations of GPS are being encountered. Simultaneously, systems previously considered as viable backups or supplements to GPS are being shut down. This creates the need for system alternatives. Navigation using signals of opportunity (SoOP) exploits any signal that is available in a given area, regardless of whether or not the original intent of the signal was for navigation. Common techniques to compute a position estimate using SoOP include received signal strength, angle of arrival, time of arrival, and time difference of arrival (TDOA). To estimate the position of a SoOP receiver, existing TDOA algorithms require one reference receiver and multiple transmitters, all with precisely known positions. This thesis considers modifications to an existing algorithm to produce a comparable position estimate without requiring precise a priori knowledge of the transmitters or reference receiver(s). Using Amplitude Modulation (AM) SoOP, the effect of erroneous a priori data on the existing algorithm are investigated. A proof-of-concept for three new estimation algorithms is presented in this research. Two of the estimators successfully demonstrate comparable performance to the existing algorithm. This is demonstrated in six different transmitter environments using four different receiver configurations

    The Complete Analytical Solution of the TDOA Localization Method

    Get PDF
    This article is focused on the analytical solution of a TDOA (Time Difference of Arrival) localization method, including analysis of accuracy and unambiguity of a target position estimation in 2D space. The method is processed under two conditions - sufficiently determined localization system and an overdetermined localization system. It is assumed that the TDOA localization system operates in a LOS (Line of Sight) situation and several time-synchronized sensors are placed arbitrarily across the area. The main contribution of the article is the complete description of the TDOA localization method in analytical form only. It means, this paper shows a geometric representation and an analytical solution of the TDOA localization technique model. In addition, analyses of unambiguity and solvability of the method algorithm are presented, together with accuracy analysis of this TDOA technique in analytical form. Finally, the description of this TDOA method is extended to an overdetermined TDOA system. This makes it possible to determine and subsequently optimize its computational complexity, for example increase its computational speed. It seems that such a description of the TDOA localization technique creates a simple and effective tool for technological implementation of this method into military localization systems

    Realization Limits of Impulse-Radio UWB Indoor Localization Systems

    Get PDF
    In this work, the realization limits of an impulse-based Ultra-Wideband (UWB) localization system for indoor applications have been thoroughly investigated and verified by measurements. The analysis spans from the position calculation algorithms, through hardware realization and modeling, up to the localization experiments conducted in realistic scenarios. The main focus was put on identification and characterization of limiting factors as well as developing methods to overcome them

    Contributions to the security of cognitive radio networks

    Get PDF
    The increasing emergence of wireless applications along with the static spectrum allocation followed by regulatory bodies has led to a high inefficiency in spectrum usage, and the lack of spectrum for new services. In this context, Cognitive Radio (CR) technology has been proposed as a possible solution to reuse the spectrum being underutilized by licensed services. CRs are intelligent devices capable of sensing the medium and identifying those portions of the spectrum being unused. Based on their current perception of the environment and on that learned from past experiences, they can optimally tune themselves with regard to parameters such as frequency, coding and modulation, among others. Due to such properties, Cognitive Radio Networks (CRNs) can act as secondary users of the spectrum left unused by their legal owners or primary users, under the requirement of not interfering primary communications. The successful deployment of these networks relies on the proper design of mechanisms in order to efficiently detect spectrum holes, adapt to changing environment conditions and manage the available spectrum. Furthermore, the need for addressing security issues is evidenced by two facts. First, as for any other type of wireless network, the air is used as communications medium and can easily be accessed by attackers. On the other hand, the particular attributes of CRNs offer new opportunities to malicious users, ranging from providing wrong information on the radio environment to disrupting the cognitive mechanisms, which could severely undermine the operation of these networks. In this Ph.D thesis we have approached the challenge of securing Cognitive Radio Networks. Because CR technology is still evolving, to achieve this goal involves not only providing countermeasures for existing attacks but also to identify new potential threats and evaluate their impact on CRNs performance. The main contributions of this thesis can be summarized as follows. First, a critical study on the State of the Art in this area is presented. A qualitative analysis of those threats to CRNs already identified in the literature is provided, and the efficacy of existing countermeasures is discussed. Based on this work, a set of guidelines are designed in order to design a detection system for the main threats to CRNs. Besides, a high level description of the components of this system is provided, being it the second contribution of this thesis. The third contribution is the proposal of a new cross-layer attack to the Transmission Control Protocol (TCP) in CRNs. An analytical model of the impact of this attack on the throughput of TCP connections is derived, and a set of countermeasures in order to detect and mitigate the effect of such attack are proposed. One of the main threats to CRNs is the Primary User Emulation (PUE) attack. This attack prevents CRNs from using available portions of the spectrum and can even lead to a Denial of Service (DoS). In the fourth contribution of this the method is proposed in order to deal with such attack. The method relies on a set of time measures provided by the members of the network and allows estimating the position of an emitter. This estimation is then used to determine the legitimacy of a given transmission and detect PUE attacks. Cooperative methods are prone to be disrupted by malicious nodes reporting false data. This problem is addressed, in the context of cooperative location, in the fifth and last contribution of this thesis. A method based on Least Median Squares (LMS) fitting is proposed in order to detect forged measures and make the location process robust to them. The efficiency and accuracy of the proposed methodologies are demonstrated by means of simulation

    Design and theoretical analysis of advanced power based positioning in RF system

    Get PDF
    Accurate locating and tracking of people and resources has become a fundamental requirement for many applications. The global navigation satellite systems (GNSS) is widely used. But its accuracy suffers from signal obstruction by buildings, multipath fading, and disruption due to jamming and spoof. Hence, it is required to supplement GPS with inertial sensors and indoor localization schemes that make use of WiFi APs or beacon nodes. In the GPS-challenging or fault scenario, radio-frequency (RF) infrastructure based localization schemes can be a fallback solution for robust navigation. For the indoor/outdoor transition scenario, we propose hypothesis test based fusion method to integrate multi-modal localization sensors. In the first paper, a ubiquitous tracking using motion and location sensor (UTMLS) is proposed. As a fallback approach, power-based schemes are cost-effective when compared with the existing ToA or AoA schemes. However, traditional power-based positioning methods suffer from low accuracy and are vulnerable to environmental fading. Also, the expected accuracy of power-based localization is not well understood but is needed to derive the hypothesis test for the fusion scheme. Hence, in paper 2-5, we focus on developing more accurate power-based localization schemes. The second paper improves the power-based range estimation accuracy by estimating the LoS component. The ranging error model in fading channel is derived. The third paper introduces the LoS-based positioning method with corresponding theoretical limits and error models. In the fourth and fifth paper, a novel antenna radiation-pattern-aware power-based positioning (ARPAP) system and power contour circle fitting (PCCF) algorithm are proposed to address antenna directivity effect on power-based localization. Overall, a complete LoS signal power based positioning system has been developed that can be included in the fusion scheme --Abstract, page iv

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell

    Indoor Positioning Using Acoustic Pseudo-Noise Based Time Difference of Arrival

    Get PDF
    The Global Positioning System (GPS) provides good precision on a global scale, but is not suitable for indoor applications. Indoor positioning systems (IPS) aim to provide high precision position information in an indoor environment. IPS has huge market opportunity with a growing number of commercial and consumer applications especially as Internet of Things (IoT) develops. This paper studies an IPS approach using audible sound and pseudo-noise (PN) based time difference of arrival (TDoA). The system’s infrastructure consists of synchronized speakers. The object to be located, or receiver, extracts TDoA information and uses multilateration to calculate its position. The proposed IPS utilizes sound waves since they travel much slower compared to electromagnetic waves, allowing for easier measurements. Additionally, the audible spectrum has a large availability of low directivity speakers and microphones allowing for a large coverage area compared to highly directive ultrasonic transceivers. This paper experimentally evaluates the feasibility of the proposed IPS

    On aspects of indoor localization

    Get PDF
    One of the key issues of emerging mobile computing and robotics is to obtain knowledge of the position of persons, vehicles and objects in an indoor environment. In order to enable a pervasive coverage, this must be achieved at low cost. Due to the importance of this problem, numerous solutions have been proposed. In this thesis two important localization techniques are discussed and major improvements are developed to address their weaknesses. A common approach for the position estimation problem is hyperbolic localization. This method is based on time difference of arrival (TDOA) measurements of signals transmitted from the mobile unit, i.e. the unit that is to be located, to a set of fixed reference units. A key requirement of this technique is that the clocks of the reference devices are synchronized. Unfortunately, if electromagnetic signals are used that travel at the speed of light even a very small clock deviation results in a tremendous inaccuracy of the computed location. Therefore, a highly precise time measurement and synchronization is mandatory for these systems. However, clocks operating at the required resolution and precision are complex and thus expensive. In this thesis, a localization approach based on TDOA measurements that implies clock synchronization is proposed and discussed. It allows for the usage of low cost oscillators that operate at a moderate frequency in the order of 100 MHz. The impact of short and long term instabilities like jitter or clock drift are inherently delimited. The approach can be applied to radio or infrared as well as ultrasound based systems. The main advantage of this approach is that common synchronization mechanisms that require a significant amount of processing and/or hardware resources can be neglected. Hence, this method is well suited for applications where the mobile unit must be very low cost and thus, of low complexity. An alternative to hyperbolic localization is triangulation, which requires the measurement of angles among fixed reference units and the mobile target. In this work, an infrared detector array for angle of arrival measurement is presented. The array consists of multiple sensing elements that are orientated in different directions. First, the arrangement is described by a sampling system. However, it is shown that low cost integrated receivers yield various aberrations, and thus the sampling approach fails. Subsequently, a new approach named virtual filter interpolation is proposed and discussed. This approach can handle individual sensitivity characteristics of each sensor element and therefore outperforms the sampling approach. The proposed technique is qualified for extremely low cost localization, e.g. for robot navigation
    corecore