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AbSTrACT

This article is focused on the analytical solution of a Time Difference of Arrival (TDOA) localization method, 
including analysis of accuracy and unambiguity of a target position estimation in 2D space. The method is processed 
under two conditions - sufficiently determined localization system and an overdetermined localization system. It is 
assumed that the TDOA localization system operates in a LOS (Line of Sight) situation and several time-synchronized 
sensors are placed arbitrarily across the area. The main contribution of the article is the complete description of the 
TDOA localization method in analytical form only. It means, this paper shows a geometric representation and an 
analytical solution of the TDOA localization technique model. In addition, analyses of unambiguity and solvability 
of the method algorithm are presented, together with accuracy analysis of this TDOA technique in analytical form. 
Finally, the description of this TDOA method is extended to an overdetermined TDOA system. This makes it 
possible to determine and subsequently optimize its computational complexity, for example increase its computational 
speed. It seems that such a description of the TDOA localization technique creates a simple and effective tool for 
technological implementation of this method into military localization systems.
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1. InTrODuCTIOn
The localization of emitter of a non-cooperative signal 

is a common task in many security and military surveillance 
systems. These systems can be applied to a wide variety of 
areas, such as electronic warfare applications1, target tracking, 
electronic intelligent systems, perimeter protection systems2 or 
location-based services3. The most commonly used approaches, 
or techniques, for measuring a target position are Time of 
Arrival (TOA)4, Time Difference of Arrival5-6, Received 
Signal Strength (RSS)7, Doppler Difference (DD)8, Angle of 
Arrival (AOA)9 and combinations of these techniques10-11. 
The localization techniques can be described by a number 
of different characteristics, such as accuracy, implementation 
complexity, cost, etc. The TDOA localization systems belong 
to the group of complex techniques. 

In this paper, we focus on the TDOA localization 
system. The principle of operation of such system is based on 
measuring the Time Difference of Arrival (Standard TDOA) 
or the Time of Arrival (Leading Edge TDOA, LE – TDOA) of 
the received signal on different receiver positions. The LE – 
TDOA system will be considered in this article. Specifically, 
the system will contain N sensor nodes (receiving stations) 
whose positions are known, and each sensor node will be able 
to measure time of arrival of the target signal and all sensors 
will be time-synchronized. If the number of sensors is greater 
than N+1 in N dimensional space, then the TDOA system is so-

called overdetermined. Once the measured data is obtained, the 
range difference between the target and two different receiving 
stations can be calculated. In this connection, a set of equations 
can be obtained and the coor dinates of the target in the Cartesian 
coordinate system are the solution of these equations. It is 
clear that determination of an accurate target location requires 
an effective algorithm for its calculations. Many processing 
algorithms, with different complexity and restrictions, have 
been proposed for location calculation based on TDOA 
measurement. A group of methods that are commonly used to 
simplify the location computation is based on a linearization 
of these equations, for example Taylor Series expansion. The 
main idea of the Taylor Series Method is to expand the first 
Taylor Series by nonlinear equations at the initial estimation of 
the target position, and then, solve the equations by iteration12-

13. In many cases, this linearization does not introduce errors 
in the position determination. However, the linearization 
can introduce significant errors when an initial position is 
wrongly estimated. Modifications of these techniques are 
the Least Squares Method (LS) or Weighted Least Squares 
(WLS) Method14-15. These techniques can achieve Maximum 
Likelihood (ML) estimate that maximizes the probability of 
each particular position estimate being a true position location. 
A second group of methods, used to solve nonlinear equations, 
includes “closed-form” methods. These methods don’t need 
an initial estimation of the target’s location and iterations are 
not necessary either. For example, the technique16-17 transforms 
nonlinear equations into pseudo-linear equations by introducing 
auxiliary variables. Then, the equations are solved by two-step 
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WLS or Least Squares (LS) Method. An exact solution of 
nonlinear equations has been provided for arbitrarily placed 
receiving stations in a sufficiently determined system18-19. 

There are a large number of different analytical methods 
solving these equations. They can be divided into three main 
groups. One group are methods using trigonometric functions20, 
second group is using matrix operations21 and third group 
uses direct algorithm with coordinate system transformation. 
Unfortunately, they are quite complicated to completely 
describe all the properties of the TDOA method. Therefore, it 
is necessary to develop a robust tool for a complete analytical 
description of the TDOA localization technique. This goal can 
be accomplished using the last-mentioned algorithm, i.e. a 
direct algorithm. This paper is organized as follows: Section 2 
introduces a geometric representation of the TDOA method, a 
basic model of TDOA measurement and its analytical solution. 
Section 3 shows accuracy analysis of the method and analysis 
of unambiguity and solvability of the TDOA algorithm. Section 
4 describes analytical solution of hyperbolic equations for 
an overdetermined TDOA system. Section 5 briefly presents 
advantages of the proposed method in practical applications.

2.   GeOMeTrIC repreSenTATIOn AnD AnALyTICAL 
SOLuTIOn Of The TDOA LOCALIzATIOn 
TeChnIque MODeL
First, a typical scenario for using the TDOA localization 

method is given in this section. Furthermore, there is a 
mathematical model of the method and its proposed an 
analytical solution. 

Assumed is a network composed of a set of fixed position 
and time-synchronized receiving sensors. In this example, 
there are three sensors S1 ... S3, and one target T. The number 
of sensors N+1 = 3 represents sufficiently determined system 
in 2D. The arrangement of such a network is shown in Fig. 1.
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This set of non-linear equations (2), (3) and (4) represents 
the model of the TDOA localization method. 

Generally, in a standard coordinate system {x, y}, the 
arrangement of the sensors and the target can be arbitrary. In 
order to simplify the analytical solution of these nonlinear 
equations, it is advisable to transform this arrangement into a 
new coordinate system {x*, y*} by translation and rotation via 
the following transformation equations:

( ) ( ) ( ) ( )*
1 1.cos .sint tx x x y ya a= - + -

           
(5)

( ) ( ) ( ) ( )*
1 1.sin .cost ty x x y ya a= - - + -

        
(6)
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Then, the new sensor coordinates are *
1  0, 0é ùë ûS , *

2  , 0aé ùë ûS , 

*
3  , b cé ùë ûS  and the new target coordinates are * * *  , t tx yé ù

ê úë ûT . This 
situation is shown in Fig. 2.

Then, a new system of hyperbolic equations is obtained 

figure 1. Sensor network and target arrangement.
The time of arrival (TOAi) for the received signal measured 

by the sensor i is
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where t0 is the unknown initial transmission time (time 
of transmitting the signal by the target), xi, yi are the sensor 
coordinates, xt, yt are the target coordinates and cl is the speed of 
electromagnetic waves. Then, the measured TOAs to particular 
sensors are written according to (1) as:

that is equivalent to (2), (3), (4) after the transformation:
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where 2 *2 *2
t tK x y= + .

By subtracting equation (7) from equations (8), and (9) 

and by entering substitutions ( )2 1 . ,lL TOA TOA c= -  

figure 2. Sensor network and target arrangement in the new 
coordinate system.
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( )3 1 . lR TOA TOA c= -  we get the following formulas:

( )2* *2
t tL a x y K= - + -

                                    
(10)

( ) ( )2 2* *
t tR b x c y K= - + - -                           (11)

 
 By algebraic reduction, the formula for the x*t target 
coordinate is following:
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Similarly, the formula for the y*

t target coordinate is 
following:

* .ty C D K= + (13)

where 
2 2 2b c 2.a.A R

C
2.c

+ - -
=  and R b.B

D
c

- -
=

.
Substituting equations (12) and (13) into K2 leads to:

( ) ( )2 22 *2 *2 . .t tK x y A B K C D K= + = + + +    (14)

Then, the roots of quadratic equation (14) K1,2 are:

2
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where . .N AB C D= + , 2 2 1M B D= + -  and 
2 2P A C= + .

Finally, the target coordinates xt*, yt* in the transformed 
coordinate system {x*, y*} can be determined by substituting 
the roots of equation (15) back into formulas (12) and (13). 
The transformation of the target position back into the 
standard coordinate system {x, y} is provided by the following 
formulas:

( ) ( )* *
1.cos .sint t tx x y xa a= - +                           (16)

( ) ( )* *
1.sin .cost t ty x y ya a= + +                           (17)

From a practical point of view, the derived algorithm of 
the TDOA method is implemented in the following way. Firstly, 
the TOA1 to TOA3 are measured. Secondly, the parameters L 
and R are determined. Then, all the variables A, B, C, D, M, 
N and P are computed. Consequently, the roots of quadratic 
equation K1,2 can be determined. Note, the roots K1,2 represent 
distances of the possible targets T to the sensor S1. Finally, the 
target coordinates xt, yt are found.

3.  ACCurACy AnD SOLvAbILITy AnALySIS 
Of The TDOA TeChnIque

3.1 TDOA Solvability and unambiguity Analysis
The model of the TDOA localization technique, expressed 

by the set of equations (2), (3) and (4), unambiguously assigns 
an arbitrary point (target) from the Cartesian coordinate 
system {x, y} to the hyperbolic coordinate system {(TOA2 – 
TOA1), (TOA3 – TOA1)}. However, a reverse mapping from 
the hyperbolic plane to the {x, y} plane is ambiguous. It is 
clear from the quadratic term (15) appearing in the analytical 
solution of TDOA equations. Thus, the proposed algorithm can 
generally lead to four different solutions:
• Both roots K1,2 of the quadratic equation (15) are real 

positive numbers, i.e. we can compute coordinates of 
two different real targets (a real target is a target with real 
coordinates in {x, y} plane);

• The two roots K1,2 of the quadratic equation are two 
identical real positive numbers, i.e. we can compute 
coordinates of one real target;

• The two roots K1,2 of the quadratic equation are two 
complex numbers, i.e. we cannot determine coordinates 
of the target. This is an example of a non-real target; 

• One root is positive and the other root is negative, i.e. we 
can compute only coordinates of a real target (K > 0). The 
target with K < 0 is physically meaningless as K can never 
be negative (due to it represents a distance).
The following simulation provides an example of 

unambiguity and solvability analysis of the proposed technique. 
The following sensor network is assumed. It composed of 3 
receiving sensors with coordinates S1[0,0], S2[-7000m,0], 
S3[7000m,5000m] and the target at position T[10000m,50000m]. 
If the TOAs are determined and subsequently used as inputs for 
the proposed algorithm, then, the algorithm returns two target 
positions T1[10000m,50000m] and T2[-14995m, 42538m], 
where T1 is “true” real target position and T2 is “false” real 
target position. This result shows that the algorithm works 
from the un-ambiguity point of view.

Next, the TDOA algorithm can be analysed from the 
solvability point of view. Taking into consideration the 
proposed algorithm derived in Section 2, it can be easily stated 
that it does not have any solution under the three following 
conditions:
• a = 0, in Equation (12),
• c = 0, in Equations (13),
• M = 0, in Equation (15).

The first condition is satisfied only when the receiving 
sensor S2 has the same coordinates as the sensor S1. It means 
that the TDOA system has only two receiving stations and the 
coordinates of the target cannot be determined. 

The second condition is met only if the receiving station 
S3 has coordinates [b,0]. This means that all three sensors are 
collinear, i.e. they are all in alignment. However, this situation 
can be solved by a relatively simple modification of the proposed 
algorithm. Analysis of the third condition is more complicated 
than the previous analyses. Thus, the following approach 
should be implemented. The condition 2 2 1 0M B D= + - =  can 
be expressed, using substitutions A, B and D, as a function R 
= f(L). Then,

2 2
2 2 . .

1 1 0
.

L a R b L
M B D

a a c

æ ö æ ö+÷ ÷ç ç= + - = - ÷ + - ÷ - =ç ç÷ ÷ç ç÷ ÷è ø è ø
    (18) 

By algebraic simplification, the equation (18) can be 
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expressed as
2. . 0aa R bb R cc+ + =                                       (19)

where 
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Finally, the solutions of equation (19) are computed for all 
the possible variables L.  Note that the variable L is restricted 
by the coordinate a of the sensor S2. Thus, 

, L a aÎ -   or ( )2 1
l l

a a
TOA TOA

c c
- £ - £

       
(20) 

Figure 3 shows a curve covering all the points meeting the 
condition M = 0 in the hyperbolic plane.

3.2. TDOA Accuracy Analysis
In estimation theory, the Cramér-Rao Lower Bound 

(CRLB) expresses a lower bound on the variance of unbiased 
estimators of a deterministic parameter Eqn.(22). The approach 
which is based on CRLB theory is used for analyzing accuracy 
of the TDOA method. According to Eqn. (23), Eqn. (24) and 
Eqn. (25), it is possible to determine the covariance matrix 

( )C T  of the TDOA method as 

( ) ( ) ( ) ( ) ( ). .
T

p= =CRLB T C T J TOA C TOA J TOA                            (21)

where ( ) J TOA is Jacobian Matrix (it consists of real 

partial derivatives of the function ( )1..3,  f TOA S with respect 

to the variables TOA1 to TOA3 for the measured vector TOA ) 
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1 2 3
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1 2 3

, , , 
,

, , , 

x x x
f TOA TOA TOA

y y y

TOA TOA TOA

é ù¶ ¶ ¶ê ú
ê úé ù¶ ê úê ú ¶ ¶ ¶ê úê ú= = ê úê ú¶ ¶ ¶ ¶ê úê úë û ê ú
ê ú¶ ¶ ¶ë û

TOA S TOA S TOA S
TOA S

TOA
TOA TOA S TOA S TOA S

  (22) 
 
 

and ( )pC TOA  is the covariance matrix of the vector 
TOA . If the time of arrivals on particular sensors are measured 
independently, as in the considered TDOA method, the matrix 

( )pC TOA  becomes a diagonal matrix in the following form:

 (23) 
 
 

A representation of all points that satisfy the condition  
M = 0 directly in the plane {x, y} isn’t possible as there 
are points where the algorithm doesn’t provide a solution. 
However, it is possible to use the following approach which is 
shown in Fig. 4.  

This approach is based on an idea of finding all the areas in 
the coordinate system {x, y} where both roots K1,2 of Eqn. (15) 
are positive. It means the TDOA algorithm provides two “real” 
target positions. The areas marked Area 2 and Area 3 in Fig. 4 
satisfy this condition. Strictly speaking, the first target lies in 
Area 2 and the second target in Area 3 or vice versa. Then, the 
border between these areas represents the M = 0 condition. In 
terms of physical interpretation, it has the following meaning. 
The targets that would lie at this border would be at an infinite 
distance from the sensor S1. For completeness, the following 
should be noted: Firstly, Area 1 shows the area where the 
TDOA equations have one “real” solution (K > 0) and one 
“non-real” solution (K < 0). Secondly, the border between Area 
1 and Area 2 represents situations where Eqn. (15) has only one 
root, i.e. the determinant of (15) is equal to zero. It means the 
TDOA algorithm provides only one solution and it is “real”. 

figure 3.  representation of the condition M = 0 in the hyperbolic 
plane.

figure 4. representation of the condition M = 0 in the plane 
{x, y}.
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An example of finding partial derivatives of the function 

( )1..3,f TOA S  is shown in Appendix A. 

Thus defined covariance matrix ( ) C T represents a 
confidence region which includes “true” target position with 
a certain probability level26. From physical point of view the 
covariance matrix expresses an error ellipse with a given 
probability of “true” target occurrence27. The computation of 
parameters of the error ellipse, i.e. lengths of axes and their 
directions are detailed described in28. 

The following simulation is performed to verify the 
accuracy of the TDOA method. We assumed the same sensor 
arrangement as in the previous simulation. Next, we suppose 
the TOAs are measured at each sensor independently and all 
the sensors are time-synchronized. Standard deviation of the 
time of arrival measurement is equal to 10 ns for each sensor. 

Then, the covariance matrix ( ) C T is computed for all the 
possible target locations within area 50km, 50kmx Î -  and 

50km,50kmy = -  with a step of 500m. This creates an 
“accuracy map” of the TDOA method. The lengths of major 
axis of the corresponding error ellipses are shown in Fig. 5.

4.  AnALyTICAL SOLuTIOn Of TDOA TeChnIque 
fOr An OverDeTerMIneD SySTeM
The assumed scenario for the target localization in this 

section is an overdetermined TDOA system, where the number 
of the measured TOAs is greater than the number of the 
unknown. In other words, it consists of one target and more 
than three known receiving sensors in TDOA 2D situation or 
more than four sensors in TDOA 3D situation. Overdetermined 
TDOA systems are quite often used in technical applications 
for some of their advantages, such as better coverage of the 
area of interest, elimination of solution ambiguity problem, 
etc. On the other hand, determination of a target position is 
more complicated in such systems. Usually, methods based on 
an iterative approach of solving nonlinear equations are used. 
Taylor-Series Estimation Method or Gauss (or Gauss-Newton) 
Interpolation Method is one of the best-known representatives 
of these iterative methods29-30. The performance of these 
methods is based on an iterative scheme to find a solution for 
a set of algebraic position equations (nonlinear equations), 
starting with a rough initial guess and improving the guess at 
each step by determining the local linear least sum squared 
error correction. 

Assumed is a network composed of a set of N fixed positions 
and time-synchronized receiving sensors. There are sensors S1 
... Sn, and one target T. The number of sensors N>3 represents an 
overdetermined system in 2D. This situation is shown in Fig. 6. 
 

Note: The length of major axis of the error ellipse is used 
here due to high eccentricity of the error ellipses, and therefore, 
the CEP (Circular Error Probability) wasn’t significant. Next, 
the logarithmic scale (to 0.1m) is used for better graphical 
interpretation of results. 

Generally, this way of calculating the covariance matrix 
provides a detailed description of the TDOA method accuracy 
for both the arbitrary sensors network arrangement and the 
arbitrary target position in the area of interest. In addition, 
the Fig. 5 shows that there are places where the error of the 
method increases significantly. These areas are located around 
the lines intersecting the positions of sensors. In comparison 
with solvability analysis it can be stated that there are just 
the areas where the M = 0 condition is satisfied. This finding 
corresponds to the physical significance of the condition M = 0 
(i.e. the method has no real solution).   

figure 5. The “accuracy map” of the TDOA method

Then, the position of the target can be found as 

follows. From the overall number of N sensors, 
3

N
M

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
  

 
combinations of sufficiently determined TDOA systems TS1, 
.. ,TSM can be created. Then, the target position Ti and its 
covariance matrix Ci can be calculated by TSi TDOA system 
using algorithms mentioned in sections above. Finally, the 
target position T is calculates as31

11 1 1 1 1 1
1 1 1. . . .i i M M i M

-- - - - - -é ù é ù= +¼+ +¼+ +¼+ +¼+ê ú ê úë û ë ûT T C T C T C C C C     
            

(24)

where 1
 
-é ùë û  indicates inverse matrix. 

figure 6. Arrangement of the overdetermined TDOA system.
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Equation (24) represents a weighted arithmetic mean 
of particular target positions, where the weights are the 
corresponding covariance matrices. Figure 7 shows a graph 
of target position calculation in an overdetermined system. 
A sensor network composed of four receiving sensors with 
coordinates S1[0,0], S2[-7000m,7000], S3[7000m,7000m] 
and S4[0,-10000m] was assumed for this simulation. The 
target position was T[10000m,50000m]. All the TOAs were 
measured independently at all the sensors and they were 

expressed as a vector of TOAs estimations TOA  (the vector 
TOA  corresponds to the target position T that was burdened 
with a measurement error σTOA = 10ns). Then, the four different 
target positions T1, T2, T3 and T4 were provided by the TDOA 
algorithm. At the same time, the corresponding covariance 
matrices C1, C2, C3 and C4 were calculated. Finally, the position 
of the target Te = [9984m, 49940m] using (27) was determined. 
The absolute difference between T and Te was ΔR = 62.1m. 

Note, an overall covariance matrix Ce of an overdetermined 
TDOA system can be calculated as 

C C C C
11 1 1

1.e e i Mk
-- - -é ù= +¼+ +¼+ê úë û

 (25) 

where ke is the correction factor.

e

4433 17936

17936 75890

é ù
ê ú= ê ú
ê úë û

C . 

If all the individual subsystems are mutually 
independent, then ke = 1. 

5.  benefITS Of The TDOA AnALyTICAL 
SOLuTIOn In prACTICAL AppLICATIOnS
The core of the presented analytical method allows to find 

a target position for both the overdetermined TDOA systems 
and for the sufficiently determined systems. The presented 
analytical solution of the TDOA technique also allows a clear 
evaluation of the accuracy of this method and the unambiguity 
of its solution. Thus, the main contribution of the presented 
paper is a complete analytical description of the TDOA method 
in 2D space (this limitation is only for the sake of clarity of the 
mathematical derivation), which is an essential condition for 
the practical application of this method. It is clear this method 
can be simply extended for 3D application which is very useful 
for all the TDOA systems. The proposed analytical solution 
of the TDOA localization technique (extended to 3D space) 
is computed many times per second in these 3D applications. 
The number of computation cycles depends on the number 
of targets, signal parameters (especially pulse repetition 
frequency), etc. Then, time optimization of the computational 
algorithm is important and for that a thorough analysis of 
the analytical solution of the TDOA technique is necessary. 
The proposed method, as well as its matrix form description, 
always (for all the measurements of the target positions) has 
the same number of elementary mathematical operations, and 
thus, the same computational time. This is the key condition 
for performing time optimization of this algorithm. 

Analysis of the mathematical complexity and the 
computational speed of this algorithm in 3D space, 
based on a 3D extension of the proposed algorithm, and 
its matrix form description was already performed32. 
The results of this analysis showed that the analytical 
algorithm (proposed above) needed approximately 26% 
less mathematical operations than the matrix solution and 
that it eliminated problems of solving inverse matrices.   

6. COnCLuSIOn
In summary, a complex description of a TDOA localization 

method was presented, including accuracy and solvability 
analysis. This approach for a comprehensive analytical 
description of the TDOA method was chosen due to its 
possible further use in practice, as already indicated in Section 
5. An overall summary of all the benefits of this comprehensive 
TDOA localization technique approach is described below.

The Time Difference of Arrival localization technique 
is one of the very efficient transmitter localization methods 
used for long and short ranges. The principle of the method is 
based on a transformation from so-called Time Delay Space 
(i.e. Hyperbolic Layer in 2D or Hyperbolic Space in 3D 
application) to Cartesian Space in which the coordinates of the 
transmitter position are required. This transformation may be 
accomplished by using an iterative or an analytical method. 

The correction factor ke expresses the degree of 
independence of the system. In other words, it describes 
mutual independence of the individual subsystems in the 
overdetermined systems. The factor ke is calculated from the 
following formula

.
e

M r
k

s
=        

                                                                  (26)
where M is the number of combination of sufficiently 

determined systems, r is the number of mutually dependent 
sensors, and s is the minimum number of sensors of sufficiently 
determined systems. 

In the example above, ke was . 4.2
2.66

3e
M r

k
s

= = =  
and the overall covariance matrix was

figure 7. The example of target position calculation in the 
overdetermined TDOA system.
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Both of these methods can perform this transformation 
even in a specific configuration of sensors, where their 
number corresponds to a spatial dimension (N+1) or to an 
overdetermined configuration. 

This article was focused on an analytical method mainly 
for its advantages such as its constant speed, the ability to 
compute exact number of solutions including their values, the 
ability to estimate exact error, the possibility to derivate the 
target ambiguity and its pure geometrical representation of 
results. As mentioned above, there are three basic analytical 
solutions of the TDOA localization method – via trigonometric 
functions, via matrix solution and the presented method. 
The core of the presented method is free of trigonometric 
functions or inverse matrix solutions, and instead of several 
basic mathematical operations it needs only one square root 
operation. This was also the reason why the above presented 
method was the focus of this paper.

In contrast to the analytical methods, the main disadvantage 
of an iterative method is its dependency on the starting guess. 
An incorrect guess could lead to finding an incorrect target 
position due to the inherent ambiguity of the TDOA method. 
This is hard to handle especially at places close to borders 
of the discussed ambiguous areas. A second disadvantage is 
convertibility of the iteration method generally. However, 
these disadvantages of iteration TDOA methods are not 
connected to the overdetermined TDOA systems, and it may 
even be faster than analytical solutions based on a combination 
of non-overdetermined analytical algorithms and weighting. 
Of course, the main advantage of analytical solutions relates 
to the possibility to detect inaccurate TOA measuring and the 
ability to find an appropriate target position instead of cycling 
convergence with high error of iteration method.

The presented algorithm is one of the fastest methods due 
to its direct approach for both the stationary and the mobile 
receiver configurations and is able to visualize its solvability and 
ambiguity. It is also able to directly express an error estimation 
of the TDOA method, is free of numerous iterations, free of 
inverse matrix solution problems and free of trigonometric 
functions as shown above.
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AppenDIx A
The Jacobian matrix J is defined as:
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An example of a calculation of partial derivatives is 
described below. For example, the xt target coordinate is 
obtained by equation
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 Then, the partial derivate of xt with respect to TOA1 
is
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here the partial derivatives of substitutes A and B with 
respect to TOA1 are

( )2 1

1 1
1

if  .  
. .

then 

l

l
l

L TOA TOA c
A L L L

cL
cTOA a TOA a

TOA

= -
¶ ¶

= - = =¶
= -¶ ¶

¶

     (A-4)

1 1

1 1
. . l

B L
c

TOA a TOA a

¶ ¶
= - =

¶ ¶
                     (A-5)

If K is expressed as

2 4. .
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- ± -
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where . .N AB C D= + , 2 2 1M B D= + -  and 
2 2P A C= + . Then, the partial derivative of K with respect 

to TOA1 is 
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must be solved taking into account the fact that variables (or 
substitutes) C, D, N, M and P are depended on TOA1 too. That 
means that it is necessary to calculate their partial derivatives 
with respect to TOA1 too. The remaining partial derivatives of 
the Jacobian matrix can be derived in the same way.
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