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Abstract

While oceans occupy most of our planet, their exploration and conservation are one of
the crucial research problems of modern time. Underwater localization stands among the
key issues on the way to the proper inspection and monitoring of this significant part of our
world. In this thesis, we investigate and tackle different challenges related to underwater
ranging and localization. In particular, we focus on algorithms that consider underwater
acoustic channel properties. This group of algorithms utilizes additional information
about the environment and its impact on acoustic signal propagation, in order to improve
the accuracy of location estimates, or to achieve a reduced complexity, or a reduced
amount of resources (e.g., anchor nodes) compared to traditional algorithms.

First, we tackle the problem of passive range estimation using the differences in the
times of arrival of multipath replicas of a transmitted acoustic signal. This is a cost-
and energy- effective algorithm that can be used for the localization of autonomous
underwater vehicles (AUVs), and utilizes information about signal propagation. We study
the accuracy of this method in the simplified case of constant sound speed profile (SSP)
and compare it to a more realistic case with various non-constant SSP. We also propose
an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic
propagation via ray models, takes into account the difference between rectilinear and
non-rectilinear sound ray paths. According to our evaluation, this offers improved range
estimation results with respect to standard algorithms that consider the actual value of
the speed of sound.

We then propose an algorithm suitable for the non-invasive tracking of AUVs or
vocalizing marine animals, using only a single receiver. This algorithm evaluates the
underwater acoustic channel impulse response differences induced by a diverse sea
bottom profile, and proposes a computationally- and energy-efficient solution for passive
localization.

Finally, we propose another algorithm to solve the issue of 3D acoustic localization
and tracking of marine fauna. To reach the expected degree of accuracy, more sensors
are often required than are available in typical commercial off-the-shelf (COTS) phased
arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple
COTS arrays may be constrained by array body elements, and lead to breaking the
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optimal array element spacing, or the desired array layout. Thus, the application of
state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We
propose a solution for passive 3D localization and tracking using a wideband acoustic
array of arbitrary shape, and validate the algorithm in multiple experiments, involving
both active and passive targets.
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"Ocean is more ancient than the mountains, and freighted with the memories and the dreams of Time."

H.P. Lovecraft (1890 – 1937)

1 Introduction

The oceans occupy more than two-thirds of our planet, and one of today’s priorities
is learning how to preserve it. Collecting more data about the ocean can help us strike
a balance between human activities and the conservation of marine life, or to prevent
the devastating effects of earthquakes and floods. Besides, the modern world can carry
various threats such as terrorist attacks in ports or on ships, which can be prevented by a
timely detection and localization of the possible threat sources. Despite the importance
of studying the oceans, at the moment we know only a portion of what we would like to
know. The underwater environment is extremely difficult to study: the challenges related
to human diving, the high complexity of special equipment for immersion, and, perhaps
most importantly, the intricacy of underwater communications with which we could collect
data from distributed sensors or navigate remote devices such as autonomous underwater
vehicles (AUVs) still prevent humans from fully interacting with oceanic environments.
Cabling at the bottom of the ocean is very costly and challenging, so when possible,
wireless connections would be preferred.

Today we are so used to fast wireless Internet and easy satellite navigation, that it
can be hard to imagine the world without it. However, these systems are built based on
high-frequency radio waves, that hardly propagate in salty (hence electrically conductive)
ocean waters. It strongly affects the way communication and navigation systems are built
under the surface of the ocean. The creation of cheaper and faster deployment methods
for various distributed underwater systems is limited by the need to localize underwater
devices, as most algorithms employed in terrestrial radio networks cannot be directly
applied in underwater networks.

Currently, most commercial off-the-shelf (COTS) underwater ranging and localization
systems are based on acoustic signals. Depending on the frequency, these signals can
propagate from meters to thousands of kilometers.

In this thesis, various algorithms for underwater ranging and localization are
presented. First, we study the scenario with a single passive receiver and active source.
We investigate the accuracy of a range estimation algorithm based on the time-of-arrival
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differences between multipath replicas of a signal transmitted by an anchor node at a
known location to a silent node that needs to localize itself. Then, we proceed with
an algorithm to localize a source of acoustic signals using only a single receiver and
the difference in the underwater channel induced by a non-homogeneous ocean bottom
profile (or “bathymetry”). Further, we investigate another scenario with an active
transmitter and array of hydrophones. This task was set within the framework of
the SYMBIOSIS project. The SYMBIOSIS platform is an optical-acoustic system for
biodiversity monitoring. In this context, we developed a system for the 3D acoustic
localization of marine fauna based on acoustic arrays consisting of several sub-arrays
combined together into an arbitrary layout.

1.1. Challenges

There exist multiple reasons for the necessity of ranging and localization underwater:
some of these research challenges are listed below.

Slow and non-linear propagation. The speed of sound in water is usually 1450-
1550m/s [12], which is about five orders of magnitude slower than the radio wave
propagation speed in air. Moreover, the speed of sound is changing over depth and
distance. It creates a non-homogeneous environment where the sound propagates
non-linearly. Measuring the local instantaneous speed of sound can be possible with
the help of extra sensors.

Dynamic underwater environment. Properties of the underwater channel
change depending on the weather, surface state, underwater currents with different
salinity and speed, and many other characteristics. Every time a transmission is
made, multiple reflections from environmental features, like waves, rocks or even
water bubbles can create a very different channel.

Difficulties with fine synchronization. Many algorithms coming from
traditional terrestrial wireless networks require a fine synchronization between nodes
or array parts. However, in an underwater scenario, due to the long deployment
time of wireless remote nodes and strong changes in pressure and temperature,
even a good clock suffers from drift. Slow non-linear signal propagation induces the
complexity of synchronization algorithms.

Energy and size constraints Most of the nodes in an underwater network
(including AUV) lack proper power supply, and battery life has to be saved whenever
possible. That includes limitations on signal emission, extra sensors or transmitters,
computational power, etc.
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Accessibility of experimental work Sea trials and deployments are difficult,
long, and expensive. When an experiment is organized, weather and conditions on
board might not allow performing all planned activities.

In this work we try to address most of these challenges and propose a group of
algorithms for underwater ranging and localization that consider properties of underwater
acoustic channel including non-linear propagation and changing nature of environment.

1.2. Contributions

The main contributions of this work have been presented in the following venues.
Three publications were published in journals: one publication in a special issue of The
Journal of the Acoustical Society of America, a second one in the MDPI Sensors journal’s
Special Issue on the Internet of Underwater Things, and a third one was published in the
IEEE Journal of Oceanic Engineering. Additionally, three publications in conferences,
top-known in the field of underwater localization: two of them in IEEE/MTS OCEANS,
one publication in UComms. One more publication was recognized with the “Best Paper
Award” at the IEEE WPNC workshop. In more detail:

Contribution 1. Algorithms for underwater bathymetry-aided passive range estimation
and localization

We have investigated the algorithms that improve the accuracy of ranging by using
additional information about the underwater acoustic propagation environment, and
studied the effects of imprecise environmental knowledge on the accuracy of underwater
localization and range measurements.

Elizaveta Dubrovinskaya, Ivor Nissen, Paolo Casari. On the accuracy of
passive multipath-aided underwater range estimation [UComms 2016].

Elizaveta Dubrovinskaya, Roee Diamant, Paolo Casari. Anchorless
underwater acoustic localization [IEEE WPNC 2017].

Elizaveta Dubrovinskaya, Roee Diamant, Paolo Casari. Bathymetry-aided
underwater acoustic localization using a single passive receiver [The Journal of the
Acoustical Society of America 146 (6), 4774-4789, S.I. on Acoustic Localization].

Contribution 2. Underwater Direction of Arrival Estimation using Wideband Arrays
of Opportunity
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We present a scheme to estimate the direction of arrival of acoustic signals reflected
by underwater targets using wideband hydrophone arrays of opportunity. Such arrays
may be obtained by arranging together multiple smaller sub-arrays that were originally
designed to work independently. The array that results is often affected by spatial
ambiguity due to improper array element spacing. Our proposed scheme solves this issue
by fusing direction-of-arrival information with coarse multilateration outputs. This makes
it possible to eliminate most of the ambiguity, and yields accurate direction-of-arrival
estimates. Our simulation results show that our scheme achieves satisfactory direction of
arrival estimates.

Elizaveta Dubrovinskaya, Paolo Casari. Underwater Direction of Arrival
Estimation using Wideband Arrays of Opportunity [IEEE/MTS OCEANS 2019-
Marseille].

Elizaveta Dubrovinskaya, Veronika Kebkal, Oleksiy Kebkal,Konstantin
Kebkal, and Paolo Casari. Underwater Localization via Wideband Direction-of-
Arrival Estimation using Arrays of Arbitrary Shape [MDPI Sensors, S.I. on the
Internet of Underwater Things].

Additional contributions.

Paolo Casari, Filippo Campangaro, Elizaveta Dubrovinskaya, Roberto
Francescon, Amir Dagan, Shlomo Dahan, Michele Zorzi, Roee Diamant. ASUNA:
A topology data set for underwater network emulation [IEEE Journal of Oceanic
Engineering].
We report the details of ASUNA, a freely shared data set for underwater network
emulation. In this work we analyze logs from previously performed multiple sea
experiments to provide a benchmark database of time-varying network topologies.
This enables researchers to run underwater communications and networking tests
by “replaying” the conditions of the experiments included in our ASUNA database,
instead of facing the costly operations required for sea trials.

Elizaveta Dubrovinskaya, Fraser Dalgleish, Bing Ouyang, and Paolo
Casari. Underwater LiDAR signal processing for enhanced detection and
localization of marine life [2018 OCEANS-MTS/IEEE Kobe Techno-Oceans
(OTO)]. This work presents an algorithm designed for underwater Light Detection
And Ranging (LiDAR) signal processing, and experimental work related to its
validation.
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1.3. Outline of the thesis

The rest of the thesis is organized in chapters that delineate the aforementioned
contributions.

First, Chapter 2, in the next Part, presents background on underwater localization.
Further, work on multipath-aided underwater localization is presented in Part III,

where we study the accuracy of multipath-based ranging (Chapter 3), and propose our
approach for model-based localization (Chapter 4).

Part IV describes an algorithm for underwater localization based on direction of arrival
(DoA) using complex arrays of arbitrary shapes (Chapter 5), and shows the application
of this technique in several experiments (Chapter 6).

Chapter 7 draws conclusions and final remarks related to the work carried out in the
thesis.





Part II

Underwater Acoustic localization:
background and state of the art
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"If you cause your ship to stop and place the head of a long tube in the water and place the outer
extremity to your ear, you will hear ships at a great distance from you."

Leonardo da Vinci, 1490

2 Background on underwater
acoustic localization

At the dawn of life, hearing was developed among the first organs of perception. Fossil
bony fishes got their ability to hear about 350-400 million years ago [13]. Indeed, sound
is one of the main sources of information underwater: light can only penetrate from a few
dozens meters of clear water down to a few centimeters in turbid conditions. Salty water
is a conductive medium, therefore radio waves dampen down after few centimeters, and
up to a few meters away from the transmitter, depending on frequency. Instead, acoustic
waves are able to propagate in the water up to hundreds kilometers.

Sound propagates as a pressure wave. As such, it propagates in water faster and
for longer distances than in air, because the particles of a denser medium are closer to
one another, and can transfer the energy of such a wave easier. However sound is still
significantly slower than radio waves in air – a means that is widely used in conventional
terrestrial communications. The difference between the propagation speed of sound in
water and radio in air in speed propagation is considerable: about 1500 m/s vs about
3 ·108 m/s, respectively. That makes many traditional “in-air” approaches for localization
inapplicable under the surface of ocean.

Initially, specific underwater localization techniques were probably inspired by
biosonars used by toothed whales (e.g., dolphins). These animals developed such ability
about 35 million years ago [14]. Similar mechanisms were independently developed by
bats in air. They produce a specific sound and then listen to its reflections with two ears.
These animals can estimate the distance from the echoing object by measuring the time
that passed from the moment they emitted the sound to the moment they heard it back.
Additionally, they can hear the difference of signal strength and time difference between
two ears to estimate the azimuthal angle of arrival of the reflecting surface relative to
their own body.

2.1. Historical approaches

Learning how sound propagates in water has always attracted scientists and
researchers. From the beginning of navigation, mankind faced a need to measure the
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depth of water bodies, in order to prevent ships from running aground. While this task
was performed manually (with a special person to measure depth with a stick or a lead-line
called lot), a large number of ships still got eventually damaged by unexpected underwater
obstacles.

It is authentically known that, already in the fourth century BC, Aristotle knew that
sound can be heard in water as it does in air [15, p. 6]. About two thousand years
later, in the 15th century, Leonardo da Vinci noted that with sound helped estimate the
distance from a lightning event by calculating the time between the lightning itself and
the ensuing thunder sound. Furthermore, he mentioned the ability of sound to propagate
underwater. Then, over the course of 3 centuries, there was a strong development of the
mathematical apparatus that makes it possible to describe the propagation of sound in
fluids. The law of refraction, also known as Snell-Descartes law and formulated during
the 17th century, is one of the key laws used for modern hydroacoustic channel modelling
based on ray tracing [16, p. 66]: A first documented experiment to measure the speed of
sound in water was performed in 1826 in lake of Geneva by Jean-Daniel Colladon and
his colleague Charles Sturm, during their research work on the compressibility of liquids
(see fig. 2.1). The measured value of 1435 m/s was proved to be relatively accurate by
later experiments, having in mind that the scientists did not have access to any electrical
instrumentation [17].

These and other theories were further developed by Lord Rayleigh in the book "Theory
of sound" (1877). Among the first scientific works specifically on hydroacoustics there is
a paper "Sound signals" (1882) by F.F. Petrushevsky, where the author summarized the
studies of the laws of sound propagation in sea water. He also noticed that sound can
propagate over longer distances in shallow waters due to reflections from the bottom and
surface of the water.

The beginning of the 20th century was a golden age of hydroacoustics. Advances
in piezoelectric instrumentation allowed creation of various remotely controlled sound
transmitting and receiving devices, often called projectors and hydrophones respectively.
At first, they were mostly used for communication between ships (e.g., via morse codes)
and were mostly replaced with radio communications after their invention.

After RMS Titanic catastrophe in 1912, many scientists were inspired to seek a robust
solution to prevent collision with icebergs and other underwater objects. Moreover,
during first World War many countries had a lot of interest in underwater warfare and
submarine detection and localization. At this time multiple scientists invented and tested
various sound-based devices independently at about the same time, including British
meteorologist Lewis Fry Richardson, German physicist Alexander Behm, and French
physicist Paul Langevin, together with Russian emigrant electrical engineer Konstantin
Chilovsky.

First sonar-like devices were based on bulky and unreliable piezo-electric transducers.
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Figure 2.1: Historical experiment: measurement of sound speed in Geneva lake in 1826 [8].
One boat was carrying a remotely controlled submerged bell, that was activated together
with a rocket. The second boat, 13487 m away, was carrying a person with a submerged
ear trumpet. The measured time between the rocket priming and sound signal noted by
the second boat was about 9.4s.
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Throughout the 20th century, the field was rapidly evolving together with the development
of electromagnetic instrumentation. The term sonar was first introduced by American
engineers in 1930s. It was an acronym for "SOund NAvigation and Ranging" and was
inspired by a similar existing acronym RADAR ("RAdio Detection and Ranging"). The
British name asdic for hydrolocation systems stems from the need to classify developments
related to the ultrasound devices. Therefore, "superson-ic" turned into ASD-ic, where
ASD stated for "Anti-Submarine Detection" [15]. Nowadays various echolots, sonars and
acoustic localization systems are used in almost any discipline related to underwater
environment. The possibilities offered by the use of sound for object localization under
the surface of the oceans are very attractive. However, it is crucial to face the special
characteristics of this environment being a media for sound propagation.

2.2. Modeling underwater acoustic channel properties

2.2.1. Sound speed

Sound is a vibration wave that propagates through an elastic medium, such as air or
water. The speed of this propagation (the wavefront’s longitudinal motion) depends on
the medium: in general, the stiffer and the more dense is the media, the faster sound
travels. In fluids this relation is described by Newton-Laplace equation:

c =
√
K

ρ
(2.1)

where c is sound speed in fluids, K is the bulk modulus (defined as the coefficient
of stiffness to volumetric deformation), and ρ is density. When it comes to real sea
environments, both parameters are typically variable throughout the watercolumn and
change with the environment. Measuring these parameters directly can be challenging.
There exist several empirical formulas to estimate the relationship between sound speed
and parameters that can be measured, e.g. [18] or [19]. The formulas are fairly complex,
reaching standard errors of 0.05 m/s and 0.036 m/s respectively. However for many
applications, the high precision of these empirical formulas is neglected by the low
resolution of collected data, for which simpler formulas can already work sufficiently well.

One of the commonly used empirical formulas is the following [12, p. 1]:

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.010T )(S − 35) + 0.016z (2.2)

where T is temperature in degrees Celsius, S is salinity in parts per thousand, and z

is depth in meters. These parameters are often measured using special devices called
conductivity-temperature-depth (CTD) profilers. Conductivity is a good measure of water
salinity, and each quantity can be translated into the other using, e.g., empirical tables
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Figure 2.2: Example of SSP profile calculated using Eq.2.2 and real measured CTD profile
taken at Northern Atlantic (24°29’33.7"N 39°19’43.3"W) [9]

[20].
All these parameters are variable throughout the water column, and the resulting

sound speed for each measurement is called sound speed profile (SSP). Examples of such
measured CTD profile taken at Northern Atlantic and calculated SSP is presented on
figure 2.2.

According to refraction law (2.3), propagation of wave in non-homogeneous medium
will not be linear. The path of the wave can be defined using Fermat’s principle, that
states that the path taken by a ray between two given points is the path that can be
traversed in the least time.

sin θ2
sin θ1

= c2
c1

(2.3)

where θ1 and θ2 are angles of incidence and refraction respectively, c1 and c2 are wave
propagation speed in the 2 mediums (see figure 2.3 b). In case of linear gradient SSP
sound will propagate by a circle trajectory with radius that is defined as:

R = −c2
g

g = c2 − c1
h2 − h1

(2.4)

where g is a slope, c1 and c2 are sound speed values at depth h1 and h2 respectively (see
Figure 2.3 c). However, for many realistic SSP it is difficult to find a straightforward
formula to calculate the trajectory of sound propagation. Instead, there exist various
numerical algorithms for sound propagation modelling and prediction. They will be
presented more in details in the section 2.2.5.
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Figure 2.3: Sound propagation in water with a) straight SSP b) 2-value SSP c) constant
gradient SSP

2.2.2. Variability of natural water basins

Even if it were possible to measure all instantaneous characteristics of the underwater
environment with no error, it would still be difficult to predict the exact sound
propagation, as there many relevant physical properties remain practically unpredictable
and rapidly varying. The full description of these changes is out of scope of this thesis.
However, some of them are mentioned below.

Currents. Examples of such variability are underwater currents, characterized
by the continuous movements of water. Each current may yield differences in
salinity and temperature, affecting sound propagation. Besides, strong currents may
affect bathymetry changes, and even the shoreline. Inflow from freshwater rivers or
drying salty lakes create another source of significant changes in underwater acoustic
channels.

Small-scale turbulence. Turbulence is a chaotic water motion characterized by
changes in pressure and particle velocity, induced by external or internal forces.
In nature, water basins reside under the influence of diverse phenomena, including
wind, temperature variation, anthropogenic motions and others. Each may create
big or small scale turbulence effects.

Air bubbles. Waves may create bubbles of air suspended in water. These
bubbles can seriously affect acoustic channel attenuation due to thermal and
scattering effects, and may resonate at different frequencies dependent on their
size. Various effects of air bubbles was studied e.g. here: [21].

Ice In cold areas, especially at the highest latitudes, water surface may freeze,
partially or completely. Sound speed in ice is significantly higher and is usually above
3650 m/s dependent on salinity and density of ice. Therefore, frozen surfaces, as
well as icebergs, affect sound propagation. An in-depth study of ice effects on sound
propagation is presented in [22].
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2.2.3. Ambient noise

Several factors affect the amount of acoustic noise perceived by an underwater acoustic
device. The main factors are listed below [23].

turbulence Nt. Water turbulence creates noise affecting mainly the lowest
sections of the acoustic spectrum, typically at less than 10 Hz.

sea state Ns. Wind-induced surface waves create a specific noise in the
spectrum between 100 Hz and 100 kHz. The corresponding noise level typically
increases with the wind speed.

weather Nw. Various weather conditions may contribute to ambient noise level.
For example, heavy rain will produce a noise peak at about 15 kHz.

thermal Nt. High frequency transmissions may suffer from thermal noise that
grows linearly with frequency and is notable for frequencies above 10kHz.

human Nh. A serious source of underwater noise is ship motors. According
to study [24], global marine traffic is increasing noise level by 3dB per decade. A
container ship can easily produce a propeller noise having an acoustic level of 180 dB
re 1 µPa, measured at 1 meter of distance from the engine. In areas close to ports
and marine traffic paths, noise may seriously affect underwater communications and
marine life [25]. With the development of sustainable energy installations, wind
turbines can become another growing source of anthropogenic underwater ambient
noise.

animal Na. One of the strongest noise sources in is a tiny creature called
“pistol” or snapping shrimp. They snap their claws with an extremely loud
wideband pop sound up to 220dB. Other sources are various mammals including
whales and dolphins: their vocalizations often lie in the same frequency range as
communication and sonar systems. Some fishes can also produce various sounds
during spawning season or warning predators. Fish sounds are usually low frequency
and rarely exceed 1 kHz.

2.2.4. Other challenges

Doppler shift
While modern terrestrial radio communications have to deal with Doppler shift at
high speeds, acoustic communications are also affected by the same phenomenon at
a broader scale, especially due to the much lower speed of acoustic wave propagation.
This effect can be negative for many applications, especially with limited frequency
spectrum. However, other applications may use this information to estimate the
target speed.
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Synchronization
High pressure and temperature changes below ocean surfaces often cause time drifts
even for high quality quartz clocks. There have been several attempts to limit these
drifts using atomic clocks (e.g. [26]), however these clocks are expensive and not
suitable for many applications.

Deployment issues
Unlike conventional terrestrial deployments, mostly done directly, underwater
deployments require special remote equipment and exact positioning of deployed
nodes is not always possible. Common sources of error in positioning are deployment
issues (e.g. inexact anchor placements), or node displacement/drifts caused by
underwater currents.

2.2.5. Sound propagation modelling

While most of the applications require experimental testing, physical deployments
may be challenging and expensive or even impossible to implement. Preliminary tests
using simulation may often help test various scenarios before implementations and tests
with real devices. Every simulation model has certain assumptions concerning the real-
world, and the complexity of such models depends on the application. A detailed review
of various models and corresponding software can be found in the book [16]. In this part,
commonly used models and corresponding software will be named; some will be used
further in the next chapters.

2.2.5.1. Simplified empirical modeling

In many applications, simple models that consider propagation delay, noise level,
and transmission loss calculated based on empirical methods. An example of such an
application could be calculations of SNR for sonar power adjustments. Similar empirical
models are used in WOSS [27]. The parameters for empirical models are usually estimated
using several sources of experimental data.

For many applications it is not important how exactly sound waves propagate within
the watercolumn. However, it is crucial to understand the approximate intensity received
sound signal and transmission loss (TL). There exist two simplified wave expansion
models: spherical and cylindrical. The first one assumes that sound propagates in a
limitless homogeneous environment and can be applied in case of small point sound source,
deep water and relatively small distances. In this case TL can be calculated as:

TL(dB) = 20 log10(d) (2.5)

where d is the linear distance between sound source and sink. The second one assumes
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a) b)

Figure 2.4: TL models: a) spherical TL, b) cylindrical TL

that the wave propagation is limited by two parallel boundaries (e.g. surface and bottom)
and most of the sound signal’s energy is distributed between them. It is a common
approximation of sound wave expansion in shallow water. Before sound wave reaches
boundaries it will be approximated as spherical, and then converted to cylindrical model
of TL:

TL(dB) = (20 log10(h)− 10 log10(h)) + 10 log10(d) = 10 log10(h) + 10 log10(d) (2.6)

where d is a horizontal distance between sound source and sink, and h is depth [28].

Absorption Previous models for the calculation of transmission loss do not
consider absorption effects. While in the section 2.2.5 it will be considered more
complex models, there exist a simplified formula which can be used for approximate
calculations [28]:

TL(dB) = 10log10(h) + 10log10(dm) + a · dkm (2.7)

where a is absorption coefficient that is usually 0.06-3.5 dB/km, and the quantities
dm and dkm refer to the distance being expressed in meters and kilometers,
respectively.

Sound scattering Other sources of transmission loss can be various turbulence
sources that affect wave propagation. Small scale turbulence and bubbles can even
completely block line of sight (LOS) or introduce extra delays into propagation time.
Boundaries of water is another significant source of TL

• ocean surface Uneven water surface is causing multiple reflections and
partial absorption of acoustic signal.

• deep scattering levels Bottom usually consist of multiple layers of
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sediments with different acoustic properties. It causes various effects on sound
propagation including scattering, absorption and reflection.

2.2.5.2. Stochastic modeling

Since the acoustic channel’s nature is fast-changing and often unpredictable,
probabilistic approaches to acoustic channel modeling may become a trade-off between
the complexity of deterministic approaches and the approximations of simplified empirical
models. They describe a complex acoustic channel with a random distribution function.
Parameters of the stochastic model are usually taken from experimental data. However,
there are examples of models that have been verified with simulation data. These
models can be used in applications that do not consider exact acoustic signal propagation
parameters, but rather communication parameters such as Signal-to-Noise Ratio (SNR),
delay spread, and similar.

2.2.5.3. Deterministic modeling

The underwater environment can be presented as a combination of various physical
phenomena, each of which can be mathematically modeled. The deterministic approach
assumes that the same parameters of the model will induce the same modeled
channel. Theoretically, perfect knowledge about the environment may allow an accurate
deterministic model representation of real physical processes. In practice, it is extremely
challenging to get ideal data about the environment, especially that of small scale and
in high resolution. However, even with imperfect knowledge, it is possible to model the
environment with an accuracy high enough to be used for multiple applications.

Deterministic modeling is based on various ways to solve the wave equation:

∂2s(t)
∂t2

= C2∇2s(t) (2.8)

where s(t) is a signal scalar function of t time, ∇2 is Laplacian operator, and C here
is a fixed non-negative coefficient.

Direct solution of partial differential equation in 3D is complex. Approximate solutions
create a set of various mathematical models, whose classification is difficult: modern
software solutions are using various combinations of these models. Two most common
models will be mentioned here: ray-tracing approach and normal mode approach.

Normal mode based approach
This approach is based on a normal mode solution of Eq.2.13:
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s(t) = φe−iωt (2.9)

φ = F (z)S(d) (2.10)
∂2F

∂z2 + (k2 − ξ2)F = 0 (2.11)

∂2S

∂d2 + ∂S

d∂d
+ ξ2S = 0 (2.12)

where φ is potential function, ω is a phase function, F (z) is a depth function and
S(d) is a distance function. ξ2 is used as a separation constant and k is a wave
number. In contradistinction to ray-based approaches, this model treats signal as
a wave and considers various wave effects such as dispersion, especially noticeable
at low frequencies. However in order to have a good model, wave properties of
boundaries have to be well known, which is unlikely to be possible, especially in
shallow waters. An example of software that is using normal mode based approach
is [29].

Ray-tracing approach
Ray theory is based on Helmholtz equation solution:

∇2s+ k2s = 0 (2.13)

where k is the wave number. Ray-tracing approach models acoustic signal as a
set of ideally narrow rays and traces their paths through given media considering
its various inhomogeneities and partially reflecting boundaries. This approach is
frequency independent as it models sound signal propagation as amplitude and
phase functions of space coordinates:

s = A(x, y, z)ei·ω(x,y,z) (2.14)

where A is an amplitude function of coordinates x, y, z and ω is a phase function
respectively. It considers that media properties (such as bathymetry, sound
speed) are varying with coordinates but the differences are negligible within one
wavelength. Since this approach is geometry-based, wave phenomena such as
interference or diffraction are not considered. A common software that is using
ray-tracing approach is Bellhop [30]. A significant advantage of this approach is
the possibility of obtaining a relatively accurate arrival structure with considerably
less computational efforts than using other methods. For this reason, the ray-based
approach was preferred in this thesis.
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2.3. Overview of existing approaches to underwater
acoustic localization

Nowadays the need of accurate underwater localization and navigation is motivated
by many scientific needs. One of the fastest developing areas is underwater robotics,
which is hardly possible without proper positioning systems. Shallow sea wind electricity
farms and mining platforms require exact installation and maintenance of their submerged
equipment, as well as various ecological, geophysical and other sensors placed in water
column or on the bottom of the sea. Ports and other sea adjacent territories are in
need for an appropriate protection from naval and terrorist threats. Fishing industry
and supervisory authorities would like to know better about the current state of various
underwater animal populations.

To make the most of the hydroacoustics capabilities in all of these applications and to
cope with the challenges of the underwater environment, multiple algorithms have been
created for underwater localization. It is very difficult to cover the entire range of possible
technologies within the framework of this thesis, therefore scenarios will be restricted to
those that mainly rely on acoustic-based sensors. Here localization is understood as
finding relative or absolute coordinates of a desired object, called target in the following.
When the algorithms are run at the target, localization can be called self-localization.
Localization is an important step of navigation that is focused on controlling of movement
of various objects, including autonomous underwater vehicles (AUVs).

Most of the methods for underwater localization are basically not different from those
in terrestrial deployments. Among the main differences are the higher probability of
error, the slowness of data communication and the serious restrictions on the reception
and transmission of signals due to the limited spectrum and available energy. How
exactly these characteristics are treated in underwater localization will be discussed in
the subsection. This section focuses on basic localization scenarios.

2.3.1. Scenarios for underwater localization

Most of scenarios for underwater localization can be described using a scheme at
Figure 2.5.

At first, every scenario includes some information about the given equipment to be
deployed, e.g. type of sensors and their mutual arrangement. Then it is needed to define
which information can be obtained using the given equipment and how it is possible to
process it. As a result, in each scenario it is required to estimate the location of the
desired object in a certain way.
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Figure 2.5: Taxonomy of underwater localization scenario, methods and outputs.

2.3.2. Scenario conditions

2.3.2.1. Synchronization

While many localization approaches in terrestrial wireless sensor networks (WSN) rely
on synchronization, in underwater environment synchronization is challenging. There
were many attempts to introduce algorithms for synchronization underwater [31, 32] or
perform localization in presence of synchronization errors [33].

2.3.2.2. Number of anchors

The estimated location of a target can be defined through a relative position to other
nodes in the underwater network, called anchor nodes. In a typical network, there could
be one or more anchor nodes. A classical example of localization using multiple anchor
nodes is long baseline (LBL) (studied, e.g., here [34]). There are also methods to define
the location of the target relative to the environment, e.g., to the bottom profile. The
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latter is sometimes referred to as anchorless localization.

2.3.2.3. Mobility

The scenario may include static and mobile nodes. A static node remains stationary
within the watercolumn, on the surface or bottom. On the contrary, mobile nodes typically
change their location over time.

2.3.2.4. Acoustic sensors

Each node in an acoustic sensor network shall be equipped with a sensor that can
either transmit an acoustic signal (acoustic transmitter), receive it (hydrophone) or both
(e.g., acoustic transceiver). In case a node can produce acoustic signals, it is called an
active node, otherwise it is passive. Additionally, there are some sensors that can measure
extra parameters of acoustic signal such as particles velocity [35,36].

2.3.3. Underwater localization methods

2.3.3.1. Centralization

In some applications, all information from multiple underwater sensors can be collected
at a single place, e.g., a central node. This is quite common for applications with post
processing, or in networks with sensors connected by wires or air wireless communication.
However in other scenarios that do not assume full communications between sensors at
each stage (e.g., AUV swarms or distributed sensor networks with limited connectivity) it
is possible that nodes have to make independent decisions based on collected data. In this
case, the scenario can be called decentralized. An example of decentralized localization
can be found in [37]. Some scenarios may assume both options for different nodes.

2.3.3.2. Number of stages

After exchanging the information prescribed by the localization scheme, it becomes
possible to convert this information directly into coordinates using one the methods
described above. However, due to erroneous or insufficient data, one information exchange
stage may not be enough to estimate the coordinates of a target. Single-stage localization
methods assume that, after each stage, there is a decision about the estimated location
of the target. Multiple-stage methods can require more than one round to estimate the
position and rely on intermediate estimates. While most of algorithms for underwater
localization are single-stage, an example of multi-stage algorithm can be found in [38].
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Figure 2.6: Various localization techniques a) based on Time-of-Arrival (ToA), b) based
on time difference of arrival (TDoA) c) based on angle of arrival (AoA) d) combined ToA
and AoA.

2.3.3.3. Information

Depending on the number of sensors and on the presence or absence of synchronization
between nodes, there could be several methods to estimate the target location. Most of
them are employed in terrestrial WSNs as well, however the accuracy of these methods
is usually significantly lower in underwater scenarios, due to time drifts and sound speed
variability in time and space. This part will cover the classic localization methods. A first
set of methods based on range estimation between anchor nodes and target is presented
in figure 2.7. The general idea of these methods is to measure how much time it takes for
a signal to travel between nodes. These methods in general work both with anchor nodes
as transmitters and as receivers, given a reciprocal channel assumption.

ToA. A first baseline method works as follows. Node 1 can send a signal
to a node 2, and node 2 can measure the traveling time between nodes, ttravel
(see figure 2.7 a). It is often called ToA. In this case only one node needs to be
active, however both nodes need to be synchronized. The acoustic time of flight can
be converted into a range estimate by assuming constant known sound speed and
negligible refraction, leading to a (quasi-) rectilinear shape of acoustic propagation
paths. In this case we can compute:

d = c · ttravel (2.15)

where d is the linear distance between nodes, c is sound speed and ttravel is measured
time between signal emission and signal reception. If there is no synchronization
between two nodes, but both nodes are active, the range can be measured by round
trip time (see Figure 2.7b). In this case node 1 is transmitting the acoustic signal,
node 2 receives the signal, processes it and transmits back.

d = 1
2(ttravel − tservice) · c (2.16)
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Figure 2.7: Graphical representation of various range measurement methods. ToA: a)
Travel time b) Round trip travel time. c) TDoA.

TDoA. Another option for indirect range estimation is to measure TDoA (see
figure 2.7c). In this case, only anchor nodes need to be synchronized. At the target
node, the algorithm measures TDoA. With only 1 TDoA measurement it is not
possible to estimate the range between the target and the anchor nodes, but it is
possible to define a locus (i.e., a geometric description of all possible locations of
target node) as a hyperbolic line in 2D or a two-sheeted hyperboloid in 3D. Multiple
measurements will produce a set of loci, whose intersection will identify the desired
location of target node, assuming no error in measurements (see fig. 2.6b).

received signal strength (RSS). This method is widely used in radio
communications, but its application is limited in the acoustic underwater
environment. In many situations including deep water basins, the TL often does
not have a clear relationship with distance, and is affected by lack of LOS and rich
multipath. However there are some examples of successful localization based on
RSS in shallow water underwater sensor networks (UWSN) [39], or methods where
RSS is used as an auxiliary metric to improve the accuracy of other localization
methods [40].

AoA. If a node has more than one associated acoustic sensor, it may be
possible to estimate the AoA of the acoustic signal (see fig. 2.8). In this case, the
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Figure 2.8: AoA estimation. ∆tij is time difference of arrival between sensors ri and rj ,
dij is linear distance between corresponding sensors, c is sound speed and ϕr is angle of
wavefront incidence. Similarly for sensors ri and rk.

phase difference between different sensors is measured. Dependent on frequency and
sound speed, this information can be converted into a very fine time difference of
arrival even when the latter is less than the sampling time of the acoustic device’s
analog-to-digital converter:

∆tij = ∆φij
2πf (2.17)

where ∆tij is time difference of arrival between i and j sensors. In order to avoid
that the phase difference exceeds one wave period, usually it is recommended to
place nearest receivers within half a wavelength from each other. On Fig. 2.6c we
show an example of localization technique based on AoA information.

Fingerprint or Matched field processing (MFP). MFP or similar fingerprint-
based localization are often used in terrestrial WSN, e.g. based on millimeter-wave
signals [41] or acoustic signals [42]. As discussed in this chapter earlier, underwater
acoustic channel properties are highly time-varying. Therefore, direct methods of
MFP applications can be computationally ineffective.

Combined techniques While each aforementioned technique can be used
separately, often their combination is more effective and suitable for certain
applications. On Fig. 2.6d shows an example of combining ToA and AoA in a
scenario with a single anchor node.
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2.3.3.4. Coordinates

The aforementioned algorithms help find coordinates relative to the anchor nodes.
Relative coordinates can be represented by polar (elevation angle φ, azimuth angle θ and
range ρ), cylindrical (azimuth angle θ, distance d and depth z) or Cartesian (horizontal
plane x, y and depth z) coordinates. For certain applications, it is required to find an exact
geographical position. In this case relative coordinates can be converted to geographical
coordinate system (GCS) if such position of anchor nodes is known. A common convention
for GCS is using latitude, longitude and elevation/depth coordinates or earth-centered,
earth-fixed (ECEF) Cartesian coordinates.

2.3.3.5. Dimensions

Different applications require different dimensionality of localization. Range estimates
enable localization only along a single dimension. Merging range information with angle
of arrival information or depth estimates enables localization in two dimensions. Three-
dimensional localization requires to consider three quantity estimates, e.g., range, angle
of arrival and depth, or range and two angles of arrival (e.g., elevation and azimuth).

2.4. Classical deployment scenarios

While installation technologies are constantly improved, baseline localization methods
can be divided into the three main deployment scenarios presented in Fig. 2.9.

b)a) c)

Figure 2.9: Classic deployment scenarios for underwater localization: a) LBL, b) short
baseline (SBL), c) ultra short baseline (USBL)

LBL. In this scenario, anchor nodes are deployed separately as surface buoys
or anchored nodes in the area of interest, usually on the borders of the area (see
Fig.2.9a) This scenario assumes a challenging deployment. However, if the nodes
are correctly deployed, LBL schemes achieve good accuracy.
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SBL. The relatively small distance between sensors in this scenario allows
deployment directly from a ship or pier. At the same time, the small distance
between the sensors can reduce the accuracy of localization, including inaccuracies
in synchronization and installation, as well as signal processing [43] (see Fig.2.9b)

USBL. If the distance between the acoustic sensors is small enough to meet
the condition of less than half the wavelength, then it becomes possible to estimate
the direction of arrival (DoA) of incoming acoustic signals through array signal
processing techniques (see Fig.2.9c). Such systems are usually easy to install on
any floating craft and are used further as a sub-array to compose larger arrays in
Part IV.

Synthetic arrays If the target to be localized is static (e.g. it is a sea
bottom feature), a similar mathematical apparatus can be used substituting multiple
anchor nodes with a single moving anchor node. Examples of such synthetic array
processing can be found in [44,45].

An in-depth analysis of the state of the art related to each of the topics presented in
this thesis is provided in the following chapters, tailored to their respective contents.





Part III

On multipath-aided range estimation
and localization

As discussed in previous chapters, underwater acoustic localization is required by
various applications of sciences related to the ocean, including marine life monitoring and
conservation of endangered species. For certain applications that consider localization of
sporadic targets it is important to simultaneously observe broad underwater environments.
While most modern localization methods assume the deployment of multiple sensors [46],
the deployment of a large number of active sonars to cover wide areas is often challenging,
and may be cost- and energy-ineffective. Moreover, active acoustic equipment may
introduce various changes in natural habitat of marine animals. autonomous underwater
vehicles (AUVs) can be another key instrument for observation of marine life, their
cost-effective localization that can be relatively easy deployed is another issue. There
were several attempts to solve the issue of underwater localization using a single passive
sensor, by leveraging additional information about the environment, and by modeling
sound signal propagation. A careful analysis of the previous literature in this field is
provided in Sec. 4.1 In this part, we extend the current state of the art by analyzing the
accuracy of multipath-aided underwater range estimation and localization. In Chap. 3,
the performance of acoustic underwater passive multipath-aided range estimation under
imperfect sound speed profile (SSP) knowledge is discussed. In the same chapter, we
also propose a method to improve the accuracy of range estimation by introducing an
auxiliary variable named “effective sound speed,” that takes into account the difference
between rectilinear and non-rectlinear acoustic propagation paths. Chap. 4 is dedicated
to another approach inspired by traditional wireless sensor networks (WSN) fingerprint-
based localization. In this chapter, we utilize the dependence of the acoustic channel on
the spatial diversity of the bathymetry profile. We propose an algorithm that exploits this
diversity in a computationally effective way. By applying a modified Viterbi algorithm to
filter out locations that were unlikely visited, we obtain the most likely path of a mobile
source. We test the accuracy of our algorithm in different simulated conditions, and
validate its performance using data from real sea experiments.
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"For most of history, man has had to fight nature to survive: in this century he is beginning to realize
that, in order to survive, he must protect it"

Jacques-Yves Cousteau

3 On the accuracy of passive
multipath-aided underwater

range estimation

Extended ocean investigation is mandated by several application in the conservation,
ecology, resource prospection and also tactical domains. In particular, AUVs have the
potential to be a key tool for this purpose [47]. However, AUV self-localization remains a
challenge due to the characteristics of the underwater environment and the computational
and energy constraints imposed by the AUVs themselves. A variety of different algorithms
and architectures to overcome these challenges has been proposed over time (e.g. [47,48]).
Still, several challenges remain to be solved. A precise and robust range estimation
process, which possibly does not consume an excessive amount of computational resources
on AUVs is one of the essential steps in many localization algorithms and advanced inertial
navigation systems [49]. Conventional two-way range estimation requires an acoustic
transmitter to be integrated on the AUV, which may sometimes be impossible due to
size or energy consumption constraints. Without a transmitter available on the node to
be localized, range estimation can be performed using one-way algorithms, which often
require a challenging or time-consuming synchronization step [50].

A common technique for underwater localization is based on the computation of time
difference of arrival (TDoA) among the signals emitted by a set of anchor nodes [51].
Anchor nodes send pings or structured signals, whose TDoA can be measured at the
mobile node. The strong aspect of this solution is that it does not require time
synchronization. However, an accurate translation of time differences into distances
requires a detailed environmental model, especially in terms of SSP and capability to
trace the history of signals heard at the receiver. Employing only some average sound
speed value might lead to large ranging errors, and produce results that are valid only as
a first-order approximation.

Additional information on the environment can be factored in by analyzing multipath
sound propagation. For example, this concept has been applied to the localization of
vocalizing mammals in [52], where the authors process the sound recorded by widely
spaced receivers, under the assumption that the SSP and the bathymetry of the area
are fully known. However, obtaining measurements of the SSP via, e.g., conductivity-
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temperature-depth (CTD) equipment may be often impractical or exceedingly expensive.
The idea of using additional information about multipath propagation for passive range
estimation has been proposed in the past (e.g., [53]), and multipath-aided range estimation
has been applied to motion tracking for several types of targets [52,54,55].

In this contribution, we discuss the performance of passive, multipath-aided range
estimation between an anchor node and a second node whose location is unknown. We
argue that obtaining full knowledge of the environment is often infeasible, and discuss
a method to improve the accuracy of ranging by taking into account at least the effect
of refraction on sound propagation. The primary advantage of our method is that it
leverages on the processing of multipath arrivals at the receiver, and therefore it does
not require additional equipment or CTD sensors. However, for the same reason, our
approach works preferably in scenarios offering a rich multipath, e.g., shallow waters, and
in the absence of broad distortions to multipath propagation such as a strongly mixed
surface layer.

In the remainder of this work, we introduce the geometry of the problem and the
basics of the ranging algorithm (Sec. 3.1), we analyze its accuracy in the presence of
different uncertainties (Sec. 3.2) and finally draw concluding remarks in Sec. 3.3.

3.1. Range estimation algorithm

3.1.1. Scenario and assumptions

The TDoA-based algorithm considered in this work is designed to estimate the range
between a single anchor node with known position (e.g., a floating global positioning
system (GPS) [51] or bottom-mounted buoy) and a second node within the coverage
range of the buoy’s signal. We recall that the latter node is assumed to be passive:
therefore, it can only receive the signal from the anchor node, but cannot transmit to it.
For brevity, in the following we will refer to the anchor node as the “Tx” and to the passive
node as the “Rx”. We assume that the signal transmitted by the Tx undergoes multipath
propagation, so that multiple arrivals of the same signal are detected and distinguished
by the Rx. We also assume that the Rx knows the bottom depth and its own depth.
The latter can be estimated, e.g., via a pressure sensor, but we note that in the presence
of a sufficiently rich multipath it would be possible to partially compensate for this by
solving for the depth of the Rx along with its range from the Tx. We also assume that
the surface and bottom are flat, which is a common assumption in several shallow water
scenario. In any event, the algorithm can be easily extended to accommodate for, e.g.,
sea bottom slopes.

At the time a TDoA measurement is taken, the Rx is considered to be static or
moving at a speed that is sufficiently small not to affect the measurement. We will
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now proceed by outlining the range estimation algorithm in a homogeneous (i.e., non-
refractive) environment, where the SSP is constant and sound wave propagation can be
assumed to take place along rectilinear trajectories. We will then extend the algorithm
to the more general case of a non-constant SSP.

3.1.1.1. Constant SSP

In case the SSP can be assumed to be constant throughout the water column, the
geometry of the problem is amenable to a tractable analytical solution. Call d the
horizontal distance between the Tx and the Rx, and let the notation τij indicate the TDoA
between two paths having incurred i and j reflections off the sea surface or bottom. For
clarity, we indicate where the reflections have occurred by appending the indices “s” and
“b” for a surface and a bottom reflection, respectively, For example, τ02sb indicates the
TDoA between the line of sight (LOS) arrival and a second arrival which was reflected
twice, first on the surface and then on the bottom. With reference to Fig. 3.1, we have
the following equations:

d2 = R2
0 − (hRx − hTx)2 (3.1)

d2 = (R0 + cτ01s)2 − (hRx + hTx)2 (3.2)

d2 = (R0 + cτ01b)2 − (2hB − hRx − hTx)2 (3.3)

d2 = (R0 + cτ02sb)2 − (2hB + hRx − hTx)2 (3.4)

d2 = (R0 + cτ02bs)2 − (2hB − hRx + hTx)2 (3.5)

where R0 is the length of the LOS path, c is the constant sound speed value and hRx, hTx
and hB are the depths of the Rx, of the Tx and of the bottom, respectively. The solution
to the range estimation problem is then found by solving the system of equations above
for d. We remark that Eqs. (3.1) to (3.5) require knowledge of the reflection history of
the arrivals. This task is simplified by assuming that the anchor node is deployed either
on the surface or on the bottom, so that reflected paths incur, respectively, at least one
bottom or one surface reflection. We remark that this is not a restrictive assumption, as
anchor nodes for localization systems are likely to be deployed on the surface (to take
advantage of GPS fixes) or on the sea bottom at a fixed location (e.g., to avoid being
damaged by passing ships). In the following, we assume that the Tx is located on the
bottom (left panel in Fig. 3.1).

3.1.2. Inhomogenous environment model

In a realistic environment, the SSP is non constant throughout the water column.
The refraction of the anchor’s signal that ensues leads to non-ideal propagation geometries
where, e.g., reflected arrivals might be detected earlier than the LOS arrival, or where some
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Figure 3.1: Constant SSP scenario: a) anchor node located on the sea bottom; b) anchor
node located on the surface.

arrival (including the LOS one) might not exist even in the absence of barriers. The range
estimation can still be carried out by fixing some approximate value for c and by finding
an approximate solution to (3.1)-(3.5), e.g., via a least squares estimator (LSE). In this
work, we employ the latter as a baseline reference algorithm, by assuming a fixed sound
speed value at 1500m/s. However, the TDoAs between the LOS and the reflected arrivals
can be employed to infer some information about the propagation of sound between from
the Tx to the Rx, and thereby improve the quality of the range estimation.

In order to do so, we define the effective sound speed ceff as a measure of the deviation
between the rectilinear trajectory joining the Tx and the Rx and the actual trajectory
followed by two rays for which we compute a TDoA. By recalling that Ri and Rj are
the lengths of the trajectories of arrivals i and j under the assumption of rectilinear
propagation, we define the effective sound speed as

ceffij = (Ri −Rj)/τij . (3.6)

As we will show in Sec. 3.2, the use of ceff can noticeably improve the range estimation in
a number of non-homogeneous environments. The main drawback related to ceff is that
it must be computed at a moment when the range between the Tx and the Rx is known.
However, in many cases this is a feasible assumption, for example, if a ship is deploying a
bottom node, the measurement can be taken just prior to releasing the node. Similarly,
an AUV could start from a known location, take this measurement, and then begin its
mission.
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Figure 3.2: Difference (in %) between the relative error of the LSE range estimator
with and without the use of ceff for different SSPs: a) synthetic upward refractive SSP;
b) synthetic downward refractive SSP; c) real summer SSP; d) real winter SSP. The
measurement of ceffij for each pair of arrivals i, j was taken once at a range of 600 m and
at a depth equal to 0.5hB, and then used for the estimation of all other ranges.

3.2. Simulation results

In the following we will carry out our sensitivity analysis by modelling acoustic
propagation via the Bellhop ray tracing software [30]. Our results were obtained using
both simplified upward/downward refractive SSPs and actual SSPs taken from the world
ocean database [9], in a scenario with flat bottom and surface, and mixed sand/mud
bottom sediments. The output of Bellhop was preprocessed to compute TDoAs, which
were then employed as an input to the range estimation algorithm. In particular,
we selected three arrivals, corresponding to LOS, one reflection and two reflections,
respectively. If due to specific propagation conditions, one or more of these arrivals
are missing, the algorithm tries to compute an estimate using only the remaining ones,
or fails otherwise.

3.2.1. Performance improvement using ceff

We start by showing the range accuracy improvement achieved by employing effective
sound speed values when finding a solution to Eqs. (3.1)–(3.5). Fig. 3.2 depicts the
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Figure 3.3: Effective sound speed values ceff01 (red), ceff02 (black) and ceff12 (blue) for the
same SSPs considered in Fig. 3.2, and for different depths of the Rx node (solid: 0.1hB;
dashed: 0.5hB; dotted: 0.9hB).

difference between the relative error achieved when using ceff values and the relative
error achieved by a simple LSE that assumes the sound speed to be constant and equal
to c = 1500 m/s. Green hues denote an improvement, whereas red hues a lower accuracy.
In the vast majority of cases, computing ceff values makes it possible to achieve more
accurate results. However, in some cases the accuracy achieved is worse than with a
constant sound speed value. In particular, we observe that the main factors that affect
the accuracy of the estimation are the depth and range of the Rx, and the SSP.

To understand better the reason of this effect, we investigated the variation of ceff

with these three factors. This result is shown in Fig. 3.3. We observe that ceff01 is the most
affected by the range and depth of the Rx, especially when the latter is located close to
the surface: by recalling that we consider the Tx to be located on the bottom, this effect
can be explained by the fact that the LOS and the surface-reflected paths are almost
superimposed. Moreover, we observed that in most cases ceff02 and ceff12 tend to evolve
symmetrically with respect to some intermediate value that depends on the scenario. This
suggested that relying on the TDoA between the corresponding arrival pairs would yield a
solution that is less affected by the range and depth of the Rx node. As shown in Fig. 3.4,
this improved the accuracy of the estimation considerably, as relative errors for realistic
SSPs were below 1% when the node could receive all arrivals (LOS, surface-reflected and
surface-bottom reflected) and was not exceedingly close to the surface or bottom.
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Figure 3.4: Difference (in %) between the relative error of the LSE range estimator with
and without the use of ceff using the 02-12 arrival pairs, for the same SSPs of Fig.3.2.

3.2.2. Sensitivity to erroneous input data

We now focus on the sensitivity of the algorithm to errors affecting the bottom depth,
the Tx location the TDoA and the Rx depth estimates.

As our approach is based on TDoA measurements, a primary requirement is that these
measurements are precise. According to our simulations, quantizing TDoA values down
to a precision of less than 10 µs introduces significant errors in ranging estimation. The
sensitivity of range estimation to errors in TDoA estimates is shown in Fig. 3.5. For this
evaluation, we introduce on each TDoA value a relative error drawn uniformly at random
in the interval [0, y], where y is a tunable parameter. We observe that a random error up
to y = 5 % yields a relative error of about 5% on range estimates.

We now assume that the bottom depth estimate is affected by a random relative error.
Such an error affects the accuracy of the range estimation process in a way that depends
strongly on the position of the Rx. This can be observed from Fig. 3.6, which represents
the relationship between the error affecting hB and the relative range estimation error.
Specifically, when the Rx is not close to the surface or bottom, the effect of a 1% error
affecting hB leads to a relative range estimation error of 2 to 3%. Conversely, if the Rx
is located close to the surface or bottom, TDoAs tend to decrease, causing the ranging
error to increase considerably. In addition, Fig. 3.6 conveys how the ranging error varies
for different Tx-Rx distances via the thickness of the line.

Finally, we consider the performance of range estimation when the value of the Rx
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Figure 3.5: Relative range estimation error (in %) in the presence of errors in TDoA
measurements for the SSPs in Fig. 3.2. The introduced relative error is drawn at random
in the interval [0, y], where y is the value reported on each panel’s y-axis. The depth of
the Rx is 0.4hB.

depth hRx is erroneous or not available. In this case, it is still possible to jointly estimate
the range and hRx. Because in this case there exist two unknowns to be estimated,
ranging can be completed successfully only when at least three arrivals are perceived by
the Rx. Therefore, the error given by the algorithm strongly depends on the SSP and on
the position of the Rx. In turn, the sensitivity of the algorithm to all input data increases,
and errors are typically higher than in the previous cases, even if all input data is exact
and despite the use of ceff . Fig. 3.7 shows the relative range estimation error for the
SSPs considered so far (see Fig. 3.2). We observe that due to the absence of a sufficient
number of arrivals, in several cases (white areas) it is not possible to estimate the range.
For realistic sound speed profiles (bottom panels), the typical relative error was about
3%, and increased up to 15% for the downward refractive profile (top left pane). In any
event, the computation of ceff helped also in this case, as it improved the results by 3-5%
(see Fig. 3.7).

3.3. Conclusions

In this contribution, we studied the accuracy of multipath-aided range estimation
based on TDoA in the presence of errors on different parameters required to compute the
range estimate. We showed that summarizing the propagation history of arrivals via the
computation of an effective sound speed value can significantly improve the accuracy of
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Figure 3.6: Relative range estimation error (in %) as a function of relative error affecting
hB, for the same SSPs of Fig. 3.2. The depth of the Rx is 0.4hB. Thicker lines represent
a larger variation of the error with the range between the Tx and the Rx for the same
error on hB.

Figure 3.7: Relative range estimation error [%] in case the range and hRx are jointly
estimated, for the same SSPs reported in Fig. 3.2.
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the estimate. With a proper choice of arrival pairs, the relative error in range estimation
in our simulations decreased to values below 1% for a number of realistic sound speed
profiles. We evaluated the sensitivity of the algorithm to different uncertainties affecting
the TDoA values, the bottom depth, and considered the case where both the range and
the depth of the node must be jointly estimated.

In the following chapter, we discuss how the multipath propagation of underwater
acoustic signals gives rise to patterns that can be learned and recognized, and that can
help not only find the range between a reference node and another underwater device in
its vicinity, but also infer the location of the device.



4 Underwater acoustic
localization using a single

passive receiver

Estimating the location of an autonomous underwater vehicle (AUV) is a required
step for the operation of these devices for applications like ocean exploration, control
of secure areas, and environmental monitoring. In these applications, the AUV covers
large areas, and its self-navigation system may drift significantly. Localizing the AUV via
non-inertial systems may greatly help reduce such drift and improve the AUV’s location
reckoning. Localization is typically achieved through a set of fixed receiving hydrophones
spread across the AUV deployment area. Yet, due to the wide area covered by the AUV
during its mission, its transmissions tend to be detected very sparsely over both space
and time. This is especially the case if the AUV’s mission area is very large, and would
imply the (expensive) deployment of a significant amount of equipment in order to cover
the intended area with a sufficient density to enable reliable multilateration estimates.
Instead, in order to balance a reasonable target detection probability with long term
deployment constraints and costs, the coverage of large areas is typically achieved through
sparse deployments. As a result, it is often the case that the signals used to detect a target
are practically received only by a single receiver. Most existing algorithms to localize
submerged devices require the presence of several anchor nodes [56], or prescribe message
exchanges between the device and the anchors [57]. Alternatively, range estimates from a
single mobile anchor have been suggested assuming knowledge of the receiver’s movement
between subsequent transmissions through, e.g., acceleration measurements [50]. Yet, this
also requires interaction with the device to be localized.

In this contribution, we offer a solution for the challenge of localizing a non-
collaborative single AUV. As opposed to localization methods that rely on a receiving
array, our method assumes only the presence of a single stationary and passive receiving
element, and the knowledge of the transmitted signal (for example, the structure of the
AUV pinger’s signals), but does not require knowledge of the pinger’s transmission times.
Our approach is inspired by localization algorithms based on fingerprinting [58]: these
algorithms evaluate the correlation between some significant and distinguishable channel
characteristics (e.g., the power-delay profile, the number of distinguishable arrivals,

43
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the angular spectrum of these arrivals, and so forth), and the same characteristics
preliminarily measured at a number of locations, and collected together in a fingerprint
database. Instead, our method hinges on the spatial diversity of the sea bottom
bathymetry to match the measured channel impulse response (CIR) with a set of
CIRs generated through an acoustic propagation model. To that end, we target those
environments where the bathymetry and the sound speed profile (SSP) in the water
column induce different channel impulse responses for different emitter-receiver location
pairs. This is often the case for shallow-water environments with a diverse non-flat
bathymetry, but also for deeper waters where sea bottom hills, mountains, or steep slopes
may exist.

We base our method on the modeling of expected acoustic CIRs for different possible
locations of an acoustic source around the moored receiver. After measuring the CIR
for each received signal, we correlate it with the pre-computed modeled CIRs in order to
estimate the distance, depth and bearing of the transmitter. This makes it possible to
point the location of the sound-emitting AUV to the position for which the modeled CIR
best fits the measured CIR. We repeat the process as the AUV moves and keeps emitting
signals. The result is a sequence of location estimates whose size equals the number
of detected sound emissions. These location estimates are expected to be noisy, since
there may be several modeled CIRs that are significantly correlated with each measured
CIR. To filter this noise, we create a trellis of possible locations, which are chosen from
the output of the cross-correlation between the modeled and measured CIRs, and which
satisfy a given maximum AUV speed. The final path of the AUV is obtained via an
efficient trellis search process similar to the Viterbi algorithm.

Our contribution is twofold:

A localization approach for an AUV using a single receiving element;

An efficient method to reduce the state space resulting from the cross-
correlation of modeled and measured CIRs, and thereby significantly decrease the
complexity of the AUV path estimation process.

We evaluate our method through both simulations (based on real bathymetry and sound
speed information) and a proof-of-concept sea trial. Our results show that the proposed
approach can estimate the AUV path with an acceptable localization error.

The remainder of this chapter is organized as follows: Section 4.1 provides an
account of related work; Section 4.2 details the localization algorithm; Section 4.3
presents simulation results; Section 4.4 describes our proof-of-concept sea trial; Section 4.5
concludes the chapter.
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4.1. Related Work

4.1.1. Techniques for Underwater Acoustic Localization

A comprehensive survey of underwater acoustic localization is presented in [47,59], and
involves techniques for range estimation, bearing estimation, or both. Typical approaches
to localization include long baseline (LBL) [47] (based on trilateration, and thus requiring
the interaction between the device to be localized and the anchors), short baseline (SBL),
usually operated from a single vessel and ultra short baseline (USBL) systems [60], that
estimate the location of the device via time of arrival ( Time-of-Arrival (ToA)) and angle
of arrival (AoA) measurements. As the accuracy of the angle estimation process directly
depends on the stability of the equipment and is sensitive to strong multipath, range-based
approaches are more typically used.

Typical underwater ranging schemes rely on ToA, time difference of arrival (TDoA)
or received signal strength (RSS), which is translated into distance via an acoustic
propagation model [61]. ToA measurements can be obtained by separately analyzing
the reflection patterns of transmitted signals [62], which can be estimated via matched
filtering or by using phase-only correlation and the kurtosis metric to mitigate channel-
enhanced noise [63]. Still, ToA measurements tend to be noisy due to multipath:
mistaking a non-specular multipath component for the direct path is often regarded as
measurement noise [64], and can be mitigated by transmitting signals having a narrow
auto-correlation [65, 66], or by averaging ToA measurements over different signals [67].
Yet, instead of considering multipath as a distortion, the wealth of multipath arrivals can
be exploited in passive systems in order to improve the localization accuracy, as well as
to find the range of the acoustic source [1] or to localize it with multiple receivers through
a propagation model [52].

In the literature, the closest approaches to our proposed scheme target localization
with less than three reference nodes, often by exploiting some form of knowledge about
the environment. For example, the work in [68] introduced a model-based range-bearing
localization scheme that employs two receiving hydrophones. The method identifies
multipath arrivals at the hydrophones and tracks them using a particle filter. An
ambiguity surface is then constructed based on the expected multipath structure (derived
via a ray model) and used to determine the most likely target location. To localize a
source, the work in [58] proposes to match received signals against a set of fingerprints
measured by an array of receivers. The authors test the feasibility their approach
in a pool, which represents a static environment where fingerprints remain sufficiently
stable over time. However, systematic fingerprint measurements in uncontrolled open
sea environments would be more challenging, due to the rapidly changing nature of
underwater acoustic channels.
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Matched-field processing, a family of array processing-based methods to estimate the
parameters of the ocean waveguide based on the full field structure of acoustic signals, can
also be extended to underwater localization [69]. For example, the work in [70] assumes
the three-dimensional knowledge of the SSP and of the bathymetry over a 600×600 km2

area. The area is further divided in squares of side 5 km and normal mode theory is
employed to predict sound propagation for a hypothetical source located in the center
of each square. The sound field replicas thus obtained are matched to the acoustic
field measurements collected through a 21-element vertical array, in order to infer the
most likely location of the source. Matched-field localization has been recently achieved
using compressed sensing (CS), which has the advantage of providing sparse solutions to
inference problems using convex optimization [71]. Specifically, the proposed approach
employs CS (implemented through the basis pursuit algorithm and the Lasso path) to find
the best matching between field replicas and measurements, and shows that CS reliably
handles coherent sources as well. Earlier, CS was considered to localize an underwater
device by means of ultrawideband radio CIR fingerprinting [72]. Here, CS is implemented
using the orthogonal matching pursuit and Lasso-II algorithms. Although the method
achieves good localization accuracy, it remains suitable only for very short ranges, due to
the strong attenuation of RF waves in salted waters. An approach to estimate the range
of a source with respect to a single receiver is presented in [73]. The authors assume that a
moving source transmits signals with a period ∆t while moving around a hydrophone, and
determine striation patterns in the function relating the signal observation time to ∆t.
These these patterns are then employed to infer the velocity and range of the source, based
on the assumption that the ranging operations take place in a shallow-water environment
with waveguide invariant β = 1. When β is unknown, the Automatic Identification
System (AIS) of nearby vessels can be opportunistically used to estimate it, by relating
their received signal, intensity and frequency to their known position [74].

The presence of an array of transmitters is assumed in [75], where the authors pre-
compute the CIR from each transmitter to at all points of a grid that finely covers
the water column along a given bearing. The location of a receiver is estimated by
comparing the CIRs measured by the receiver against pre-computed CIRs. The system
finally employs the determined location to tune transmit beamforming. In [76], an AUV is
located by fusing AUV heading and velocity information from some external sensor with
acoustic phase information. The phase is measured from a batch of signals transmitted
by a fixed projector of known location and received by a single hydrophone at the AUV.

4.1.2. Differences with respect to Indoor Localization

While fingerprinting is an established localization technique for terrestrial radio
networks [77, 78], one of its key assumptions is that radio measurements are repeatable
and slowly varying in space [79], so that a device can actually afford to compute several



4.1 Related Work 47

statistics of a received radio signal and fuse them into a fingerprint vector [80]. Conversely,
the underwater acoustic channel tends to be much more dynamic, with several arrivals
coming from multiple reflection over the surface, bottom and volume scatterers. Moreover,
the spatial coherence of the underwater channel is very limited, and a transmitter could
experience very different channels when communicating to a static receiver from different
locations. Similar uses of ray tracing to aid indoor localization (e.g., see [81]) typically
do not experience these issue, as they can rely on more stable radio channels. Filtering
multiple sequential measurements through the Viterbi algorithm [82] or other techniques
(such as probability maps reproducing the expected movement of mobile devices [83] or
conditional random fields [84]) makes it possible to eliminate this uncertainty. However,
the number of possible indoor positions to be matched by a terrestrial radio fingerprinting
algorithm is usually very limited, yielding a state space of tractable size. On the contrary,
in our underwater approach the location of the target could be anywhere around the
location of the single receiver, yielding an order-of-107 state space size. This calls for
methods to reduce the complexity of trellis exploration. We also remark that direction-
of-arrival fingerprinting-based localization has been reconsidered in the field of millimeter
wave communications (e.g., see [41, 85]), where however the devices can leverage large
arrays to reliably decouple propagation paths in the received angular spectra. This is
in contrast with our assumption of using a single receiving element, and remains very
different from the rich CIRs usually measured in underwater communications.

4.1.3. Summary

The literature that most closely relates to our contribution is summarized in Table 4.1,
where we report the requirements, description, and shortcomings of each approach. From
this comparison, it becomes clear that the most prominent contribution of our approach is
the localization of a moving AUV in 3D using a single receiver (and assuming only a single
transmitter at the AUV). While our approach has some aspects in common with matched
field processing and fingerprinting, it remains unique in that it reduces the ambiguity of
the matching between measured and pre-computed CIRs through a trellis search approach
similar to the Viterbi algorithm, rather than resorting to fusing information from multiple
transmitters or receivers. Moreover, we only process acoustic data, and do not require
any external sensors to support the localization process.

With respect to the preliminary work in [2], the algorithm presented in this chapter
is much less sensitive to trellises that are not fully connected and to imperfect estimates
of the initial AUV location; in addition, we include a performance verification through a
sea experiment, and compare against benchmark approaches both in the simulations and
in the sea experiment.
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Table 4.1: Summary of the most relevant related work

Ref. Approach Requirements Details Shortcomings

[68]
(2015)

Multipath
tracking

– Two receivers
– Known
environmental
parameters

– Compare multipath vs. ray
model
– Particle filter extracts arrivals
– Ambiguity surface search

– Assumes
isovelocity profile

[58]
(2009) Fingerprinting

– Fingerprint database
– Broadband signal

– Database of modeled CIRs
– Pattern matching of CIR
measurements at different
frequencies

– Multiple receivers
– Maintenance of
fingerprint
database in ocean
environments

[70]
(1990)

Matched
field
processing

– Hydrophone array
– Known
environmental
parameters

– Acoustic field replica
computation
– Gridded virtual source
positioning
– ML or Bartlett processing

– Requires multiple
receivers to
decrease ambiguity

[72]
(2014)

Radio UWB
fingerprinting

– UWB radio
modeling to
pre-compute field
dictionary
– Multiple antennas

– UWB fingerprinting
– CS solution via orthogonal
matching pursuit and Lasso-II

– Multiple
antennas
– Limited to
short-range
localization

[71]
(2017)

Compressed
sensing for
matched
field
processing

– Hydrophone array
– Known
environmental
parameters

– Acoustic field replica
computation
–CS solution via basis pursuit
and Lasso

– Multiple receivers

[73]
(2012)

Range
estimation

– Single receiver
– Known waveguide
invariant

– Source velocity computation
– Identification of point closest
to receiver

– Range-only

[75]
(2018) Fingerprinting

– Known
environmental
parameters

– CIR computation over a fine
2D vertical grid
– Matching with measurements
from multiple transmitters

– Multiple
projectors
– Fixed-bearing
localization

[76]
(2014)

Acoustics-
aided
inertial
tracking

– External
bearing/speed sensor

– Extract phase from train of
sine waves
– Solves inverse problem to
determine AUV location

– Requires accurate
bearing/speed
measurements
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FIG. 1. Block diagram of the AUV location and path estimation algorithm.
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III. ALGORITHM DESCRIPTION174

A. Key Idea175

We summarize the key idea behind our algorithm with the help of the flow chart in Fig. 1.176

We operate the AUV localization algorithm from a single receiver deployed at a known and well-177

explored stationary location. We assume that the sea bottom is diverse around the receiver (e.g.,178
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Figure 4.1: Block diagram of the AUV location and path estimation algorithm.

(a) Map of the San Diego bay area, showing a variable bathymetry, the location of the receiver

and of two transmitters, and the sea bottom profiles between each transmitter and the receiver.
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(c) CIR from transmitter 1 to the receiver.
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(d) CIR from transmitter 2 to the receiver.

Figure 4.2: Illustration of our single-receiver localization method. When the environment
is sufficiently diverse (a), the CIRs differ significantly across different locations (c), (d).
This can be leveraged for localization.

4.2. Algorithm Description

4.2.1. Key Idea

We summarize the key idea behind our algorithm with the help of the flow chart in
Fig. 4.1. We operate the AUV localization algorithm from a single receiver deployed
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at a known and well-explored stationary location. We assume that the sea bottom is
diverse around the receiver (e.g., see Fig. 4.2), leading to a spatially-dependent CIR,
which we exploit in order to estimate the location of the AUV via a fingerprinting-based
location system. Since such a system requires to measure a three-dimensional database of
fingerprints (which is not feasible in underwater scenarios due to the resource- and time-
intensiveness of underwater acoustic measurements), we resort to a database of modeled
CIRs instead. Such database is pre-computed via a numerical sound propagation model,
such as the Bellhop ray tracing simulator (see Ch. 3 in [86] and [30]).

Whenever an acoustic signal is received from the AUV, we estimate the CIR of the
corresponding acoustic channel and correlate it with our database. In order to reduce
the complexity of this step, we first correlate the CIR with specular and surface-reflected
arrivals from the modeled CIRs: this excludes bearing-dependent bottom arrivals, and
allows us to retrieve a set of possible values for the AUV’s depth and distance. We then
compute one further round of cross-correlations, this time with the whole channel impulse
response (thus including bottom reflections), for the selected depths and distances, and
for every bearing value. The result is a number of possible AUV locations. We repeat
the process for several subsequent acoustic signals emitted from the AUV, which may
correspond to the same location, or to different locations in case the AUV is moving.
Finally, we apply an efficient, low-complexity tracking mechanism in order to filter all
matching locations found, and to obtain a source trajectory estimate.

Fig. 4.3 presents an example of the output of four subsequent location estimates.
Each of panels (a) through (d) shows a map of the scenario. Our single receiver is
shown as a centrally located square, whereas the AUV that moves along the trajectory
represented as a black line. At each of the positions marked by two concentric circles,
the AUV emits a signal that is employed by the receiver to compute location estimates
as explained above. In panels (a)-(d), these location estimates are represented as grey
crosses, where a darker grey shade indicates a higher confidence. The algorithm outputs
multiple estimates for each AUV location, each with a different levels of confidence (higher
confidence is represented using a darker grey shade in panels (a)–(d). Note that the the
point of highest confidence may not be the closest to the actual AUV location.

To rule out spurious estimates, we order the computed locations into a trellis (Fig. 4.3),
and run a forward-backward path search procedure similar to the Viterbi algorithm. In
this case, the black path in Fig. 4.3e is selected, corresponding to the trajectory shown in
Fig. 4.3f.

4.2.2. Preliminary Assumptions and Setup

The first step to localize the AUV is to detect is periodic pinger signals. We assume
that no prior information is available about the location, the instantaneous speed, or
the trajectory of the AUV, and that the AUV does not collaborate to the localization
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(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4

Step 1 Step 2 Step 3 Step 4

(e) Trellis (f) Trajectory estimate

Figure 4.3: High-level illustration of the key idea behind our single-receiver localization
process. Panels (a)–(d) show a sound source moving along a straight trajectory. At
four locations, the source emits a signal. The receiver (located at the center of the area)
measures the CIR and compares it against a database of modeled channel responses. This
translates into the location estimates indicated by the crosses, where a darker grey shade
indicates higher confidence. A trellis search algorithm (e) is then applied to find the most
likely source path (panel (f)).

process. Hence, a solution based on updating the parameters of a dynamic model for the
AUV through filtering is not an option in our scenario. We only assume that the emitted
signal’s waveform is either known, or can be reliably estimated, such that the channel
impulse response can be evaluated. By this, we take into account received multipath,
but ignore interference. Hence, our method is geared into the localization of a single
source. We assume that an initial survey has been carried out in order to measure the
bathymetry of the area surrounding the moored receiver with a fine resolution. The 1-
meter resolution obtained by a 400-kHz multibeam sonar (see our experimental results in
Section 4.4) is more than sufficient in this respect. We further require periodic direct or
indirect measurements of the local SSP .

The area explored to localize the AUV is limited by the coverage of the bathymetry
measurements, by the reception capabilities of the receiver, and by constraints on the
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emitter’s source level. This yields a bounded depth range between zs
min and zs

max. We
further assume the AUV is moving at an absolute maximum speed of vs

max, known to
the receiver. This leads to an expectation on the maximum distance traveled by the
AUV between two subsequent emissions. We note that the knowledge of the AUV’s
maximum speed is not strictly required, but the availability of this information improves
the performance and greatly reduces the complexity of our method. At different locations,
indexed by n = 1, . . . , NL, the source emits acoustic signals that are detected by the
receiver along with each significant multipath arrival. The locations are expressed in
terms of a cylindrical coordinate system as xs

n = (us
n, b

s
n, z

s
n) where, at location index

n, us
n ∈ [0, umax] is the great-circle distance in meters between the receiver and the

source, bsn ∈ [0◦, 360◦) is the bearing of the AUV with respect to the receiver (i.e., the
angle at which the receiver sees the source, measured clockwise from due north) and
zs
n ∈ [zs

min, z
s
max]. We define the AUV’s path as the ordered source location sequence

{xs
1, . . . ,xs

NL
}.

The database of modeled CIRs set up by the receiver is computed at all points of a
cylindrical grid designed to span the ranges U = {δu, 2δu, . . . , umax}, the bearing angles
B = {δb, 2δb, . . . 360◦}, and the depth values Z = {zs

min, z
s
min + δz, . . . , zs

max}. The set of
grid points is then defined as G = U ×B ×Z, where we denote guibizi ∈ G as the ith grid
point, i = 1, . . . , |G|. This corresponds to the first box in Fig. 4.1.

4.2.3. AUV Location Estimation

For each grid point guibizi , the receiver models the expected CIR using a propagation
model. For this purpose, we employ the Bellhop ray tracing software (see Ch. 3
in [86] and [30]). Bellhop is an established solution to numerically solve pressure wave
propagation equations by taking into account boundary conditions. In particular, Bellhop
can factor in, among others: the SSP at multiple points throughout the water body
section that joins the transmitter to the receiver; the relevant bathymetry in the area,
including abrupt changes; the shape of surface waves; and the geo-acoustic properties
of the sea bottom sediments. Bellhop has been used to model acoustic channels in
different communication contexts, and served as the basis for more complex models (e.g.,
see [87], [88]). In our context, Bellhop yields accurate time-of-arrival information for
each acoustic path, and sufficiently accurate complex amplitude information, so that
the outcome of correlation operations can be trusted. We will show that Bellhop offers
sufficiently reliable CIR modeling in a sea trial in Section 4.4.

The output of Bellhop includes a list of expected multipath arrivals, along with their
amplitude, phase, delay, and reception angle. Moreover, for each arrival, Bellhop reports
the list of bottom and surface reflections it incurred. This information is employed to
construct two modeled responses, namely a partial CIR h

(1)
uizi(t), containing only the



4.2 Algorithm Description 53

specular and surface-reflected arrivals,1 and the complete CIR h
(2)
uibizi

(t). As the specular
and surface-reflected arrivals are practically independent of the bearing of the AUV
relative to the receiver, and rather depend only on the SSP , on ui, and on zi, the
subscript bi has been dropped in h(1)

uizi(t).
From the modeled CIRs, the receiver obtains two separate fingerprints, h(1)

uizi and
h

(2)
uibizi

. When the source is at location xn, its emitted signal is received as

rn(t) = ĥunbnzn(t)⊗ s(t) + ν(t) , (4.1)

where ĥunbnzn(t) is the CIR estimated from a received signal, s(t) is the emitted signal
waveform, ν(t) is the ambient noise, and ⊗ denotes convolution. The receiver then
computes

f (1)
uizi = h(1)

uizi(t)⊗ s(t) (4.2a)

f
(2)
ujbjzj

= h
(2)
ujbjzj

(t)⊗ s(t) , (4.2b)

and matches rn(t) against the fingerprints f (1)
uizi and f

(2)
ujbjzj

corresponding to the grid
points in G as follows.

For each point (uizi) in the grid, we compute the normalized correlation

C(1)
uizi(n) =

∫ +∞

0
rn(t) f (1)

uizi(t− τ) dt(∫ T

0
rn(t)2dt

∫ +∞

0
f (1)
uizi(t)

2dt
)1/2 , (4.3)

where T is the signal’s duration, and τ is the time epoch corresponding to the correlation
maximum. Note that in (4.3) we perform a normalized correlation to reduce sensitivity to
CIRs characterized by different power attenuation. DefineM(1)(n) as the set of all pairs
(uj , zj) corresponding to those C(1)

uizi(n) that exceed a certain threshold ΘD, ∀ (ui, zi) ∈ G,
where we set ΘD, using the analysis in [89]. We remark that we do not limit setM(1)(n)
to contain just the coordinates of the single grid point yielding the maximum correlation.
In fact, at this point, the estimation of the correct distance and depth may be hindered
by the lack of, e.g., the specular arrival, which can occur in the presence of SSP patterns
with a sufficiently steep gradient and for a sufficiently large distance between the AUV
and the receiver (e.g., see the example on page 46 of Bellhop’s manual [30]). Including
a number of possible matching locations is more robust against such errors. The above
steps correspond to boxes 2 and 3 in Fig. 4.1.

For each (uj , zj) ∈ M(1)(n), and ∀ b ∈ B, we compute the following normalized

1Note that this information is part of Bellhop’s standard output data, and that we do not need to
track any propagation history analysis for any of the components of the measured CIR.
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correlations:

C
(2)
ujbj zj

(n, τ) =

∫ +∞

0
rn(t) f (2)

ujbj zj
(t− τ) dt(∫ T

0
rn(t)2dt

∫ +∞

0
f

(2)
ujbj zj

(t)2dt
)1/2 . (4.4)

Call
ρnxj = max

τ
C

(2)
ujbj zj

(n, τ) , (4.5)

and define M(2)(n) as the set of all triples pk = (uk, bk, zk) corresponding to the R(2)

highest values of ρnpk ∀ (uj , zj) ∈ M(2)(n) and ∀ b ∈ B, where R(2) is a user-defined
parameter (in our performance evaluation, we set R(2) = 70). The above steps correspond
to boxes 4 and 5 in Fig. 4.1.

In ideal conditions, e.g., with an extremely dense grid G, in the absence of noise,
and with perfect environmental information, it would be enough to limit set M(2)(n)
to the coordinates of the point pk = (uk, bk, zk) for which ρnpk is highest. However, in
any practical scenario, the grid point closest to the actual position of the AUV might
not yield the highest correlation due to noise, outdated environmental information, or a
combination of both. In this perspective, it is convenient to set R(2) to some large value.
On the other hand, it is computationally infeasible to have an exceedingly large set G.
For this reason, we reduce the complexity of the search whenever possible by limiting the
location search area through a bound on the distance between the AUV and the receiver.
For example, if the source level is known, this bound can be obtained based on a Received
Signal Strength Indicator (RSSI) as in [40]. Furthermore, in the following we present a
filtering scheme that reduces the complexity of path estimation.

4.2.4. AUV Path Estimation

After determining the possible matching locations M(2)(n) for n = 1, . . . , NL, we
proceed to find the most likely sequence of AUV’s locations among all possible options
using a path estimation algorithm. Without prior information about the AUV motion
pattern, we avoid assuming a dynamic model solved by filtering, but rather work on
a trellis such as the one shown in Fig. 4.4. The trellis has NL stages, one for each
transmission received from the AUV. In each stage, different nodes represent different
estimated locations, so that the first stage of the trellis represents all location estimates
for the first detected signal from the AUV (set M(2)(1)), the second stage contains the
estimates in set M(2)(2), and so forth until the last stage, which contains the estimates
in M(2)(NL). We assign a confidence index to each node in the trellis (the value of the
normalized cross-correlation between the modeled and measured channels, see (4.5)), and
organize them into a R(2) ×NL matrix T (boxes 6 and 7 in Fig. 4.1). Both the nodes in
the ith trellis stage and the entries in the ith column of T are sorted in order of decreasing
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Figure 4.4: Example of trellis employed by the tracking algorithm for the source path
estimation. Each node represents a location estimate. Trellis links exist only among
locations that are closer than the maximum distance dmax covered by the AUV when
traveling at full speed between subsequent signal transmissions.

confidence, i.e., [T]1,i = ρip1 , [T]2,i = ρip2 , [T]R(2),i = ρip
R(2)

, and

ρip1 > ρip2 > · · · > ρip
R(2)

. (4.6)

4.2.4.1. Setting the Path Weights

The objective of path estimation is to find the best sequence of nodes across
consecutive trellis stages. To that end, a link exists between an entry in stage n and
an entry in stage n + 1 if the locations represented by these nodes are closer than the
maximum distance the AUV could cover when traveling at full speed vs

max between the nth
and the (n+ 1)th signal detections (recall that the maximum absolute speed is assumed
to be known). Formally, call e`n`n+1 the edge that connects the `nth node at stage n
in the trellis (entry in column n of T) and the `n+1th entry at column n + 1. Call
A(e`n`n+1) = p`n and S(e`n`n+1) = p`n+1 the ancestor and the successor of edge e`n`n+1 ,
respectively. Define the edge weight as

σ(e`n`n+1) =


1 , if d

(
p`n ,p`n+1

)
≤ dmax

dmax
d
(
p`n ,p`n+1

) , if dmax < d
(
p`n ,p`n+1

)
≤ 1.5 dmax

0 , otherwise

(4.7)

where d(x,y) = ‖x − y‖2 is the Euclidean distance between locations x and y, tn and
tn+1 are the reception epochs of the nth and (n + 1)th detected signals, respectively,
and dmax = vs

max(tn+1 − tn) is the maximum distance that the AUV could have traveled
between time epochs tn and tn+1. Only edges with non-zero weights are considered for



56 Underwater acoustic localization using a single passive receiver

path estimation. To form a continuous path, we require connected edges. In particular, if
for edge e`n`n+1 it occurs that its ancestor p`n is not successor of any edge e`n−1`n , or that
its successor p`n+1 is not ancestor of any edge e`n+1,`n+2 , then the weight of edge e`n`n+1

is set as zero, and the edge is removed from the trellis.
We remark the similarities between the path estimation algorithm and the Viterbi

algorithm for tracking within a trellis (see also [90]). While the Viterbi algorithm would
yield the optimal solution, it would include all grid points in G in each stage of the trellis.
This would require |G| entries in each column of T, which would compound to a huge
state space and imply an exceedingly high computational complexity, especially if |G| is
very large. In addition, solving through the Viterbi algorithm would require an estimation
for the emission and transition probabilities, which involves some hard assumptions on
the CIR and noise models. Instead, our version relies on confidence indices, and makes it
possible to trim the state space according to physical movement constraints. This leads
to a significant performance improvement and to a feasible path estimation complexity.

4.2.4.2. Finding the Best Path

Let E(n) = {e`n`n+1} be the set of edges that link a node in stage n of the trellis to a
node in stage n+ 1, and use (4.7) to define the following metric for each edge

λ(e`n`n+1) = ρnp`nρ
n+1
p`n+1

σ(e`n`n+1) , (4.8)

where the confidence indices are taken from T. Define a generic path on the trellis as

Ψ = {e1, . . . , eNL} , (4.9)

where ei is a shorthand for e`i`i+1 ∈ E(i), and all edges are such that S(ei) = A(ei+1),
i = 1, . . . , NL − 1. Define the overall path metric as

Λ(Ψ) =

NL−1∏
i=1

λ(ei)

NL−2∏
i=1

ρiS(ei)

, (4.10)

i.e., as the product of the confidence metrics for all edges that belong to the path, divided
by the confidence of intermediate nodes in order to avoid accounting for them twice. The
path estimate is finally found as

Ψ̂ = arg max
Ψ

Λ(Ψ) , (4.11)

and we indicate the sequence of locations traversed by Ψ̂ as {x̂1, x̂2, . . . , x̂NL}.
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As a means of measuring the discrepancy between the true and the estimated sequence
of AUV’s locations, we consider the Root Mean Square (RMS) point-wise distance between
corresponding points of the true and estimated paths. Formally,

εdΨ̂ =
( 1
NL

NL∑
n=1

d(x̂n,xs
n)2
)1/2

. (4.12)

We also convey the source bearing estimation effectiveness of our approach via the bearing
error

εaΨ̂ = 1
NL

NL∑
n=1
|b̂n − bsn| , (4.13)

where d(·, ·) denotes the distance between two points in the cylindric coordinate system.

4.2.4.3. Refinement

In this section, we present two refinements to the above algorithm. The first refinement
relates to the possible case that there exists no edge with a non-zero weight connecting
two trellis stages n and n+ 1. This would lead to a partitioning of the trellis. We correct
for these cases by allowing stage n− 1 to directly connect to stage n+ 1. Specifically, the
corresponding edge e`n−1`n+1 will have a weight equal to

λ(e`n−1`n+1) = ρn−1
p`n−1

ρn+1
p`n+1

σ(e`n−1`n+1) , (4.14)

where σ(·) is the same as in (4.7).
The above recovery mechanism is further enhanced to handle cases of broader trellis

partitioning due to bursts of errors. These bursts are caused by strong noise from, e.g.,
a nearby vessel or waves, or due to erroneous bathymetry information at some locations.
The result of such bursts are sets of short paths for which the maximization in (4.11) is
not optimal, i.e., the problem becomes non-convex. Considering this case, we increase the
number of paths in Ψ through our second refinement procedure as follows.

We start by observing that, from the perspective of path finding, we can calculate
paths by taking sets of estimated locations either in order they occur in time, or by
reversing this order. In other words, the trellis stages in Fig. 4.4 and the corresponding
columns in T can be flipped, such that the first contains location estimates inM(2)(NL),
the second contains the estimates in M(2)(NL − 1), and so forth until the last column,
which contains the samples inM(2)(1). Call ΨF a forward path on the trellis traversing
locations {x1,x2, . . . ,xNL}, and call ΨB a backward path computed on the reversed trellis,
traversing locations {yNL ,yNL−1, . . . ,yN1}. If Ψ̂F and Ψ̂B are the best forward and
backward paths according to (4.11), respectively, we set the final path estimate Ψ̂ = Ψ̂F

if Λ(Ψ̂F ) > Λ(Ψ̂B), and Ψ̂ = Ψ̂B otherwise. In case of significant interruptions in the
trellis structure, the above scheme increases the probability to find the correct path. The
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scheme is also beneficial if the estimate of the initial location on the forward path is
incorrect, making the path search diverge to a mostly wrong sequence of locations. In
case of a well connected trellis, instead, the scheme is likely to find the same path twice,
with no effect on the accuracy of the algorithm.

The complexity of the algorithm relates to the number of correlation operations
and to the trellis search. For each received source signal, the algorithm computes
κ|G|+O(|M(1)(n)|) ≈ κ|G| correlations in order to extract the possible position estimates
in set M(2)(n), where κ is a proportionality factor that account for the search space
reduction enabled, e.g., by RSSI bounding considerations as mentioned in Section 4.2.3.
For a signal of bandwidth–time duration product BT , the complexity of each normalized
cross correlation is O

(
B2). With O(NL|M(2)(n)|) operations for the trellis search, the

overall complexity is O
(
NL|M(2)(n)|+ |G|B2

)
. Comparing this with the complexity of

the Viterbi algorithm, i.e., O
(
NL|G|2

)
(see also [82]), a significant complexity reduction

exists.

4.2.5. Discussion

Our method considers the practical case of observing an unknown target. This target
can move in any dynamic pattern and even irregularly. Hence, we avoid evaluating its
position through filtering, and rather follow a trellis search approach over the confidence
indices. This also means that the path found from all feasible solutions is the one
with maximum overall confidence index, and thus isolated positions associated to a high
confidence value will not be chosen. This is appropriate, since we are looking for a
systematic solution, rather then an individual match. Our solution for the trellis search
takes a suboptimal approach by taking into account sets of only two nodes. This has the
drawback that a single node in the trellis may have a higher impact than it should. Yet,
without prior knowledge of the target and to keep the calculations feasible we avoid other
solutions in the form of, e.g., dynamic programming. Further, we note that the accuracy
of our method depends on the quality of the channel estimation process, which improves
with the bandwidth of the emitted signal.

For channel modeling, we use the bathymetry and the sound speed profile. Without
up-to-date information about instantaneous sea conditions, we avoid a time-varying
propagation model and use instead a static model. Instead, the time-variation of the
channel is taken into account by the AUV’s motion, both by calculating different channels
for different locations, and by using the maximum velocity vs

max. This parameter trades
off complexity with performance, as higher values for the maximum speed corresponds
to additional possible paths in the considered trellis. Another significant assumption is
the ability to estimate the channel from the received signals. Clearly the performance
of our approach depends on the accuracy of such estimation. While channel estimation
is beyond the scope of this work, possible techniques for such an estimation can be rake
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receivers [91], blind source separation [92], or cyclo-stationary analysis [93], to name a
few options.

4.3. Simulation Results

4.3.1. Scenario and Parameters

For our simulations, we consider a portion of the San Diego bay area, off the coast
of US’s southern California, which is a well-explored area. We place the receiver at the
coordinates [32.9390°N, 117.2816°W ]. We take the area’s bathymetry data from the US
Coastal Relief model [94] (revealing that the average depth in the area is about 50 m), and
employ an SSP sample taken at the observed area. The SSP has a downward-refractive
shape, typical of shallow Californian waters during warm seasons, as depicted in Fig. 4.2b.
We assume that the water surface is flat.

In our simulations, we deploy both the receiver and the source at depths of 10 m.
Still, we remark that the receiver is not aware of the source’s depth. The simulation
starts by deploying the emitting source at random in the area at a range of 500 m from
the receiver. The source then chooses a bearing uniformly at random and moves along the
corresponding direction with constant speed chosen at random for the time required to
carry out 10 transmissions. The locations xs

n and xs
n+1, where two subsequent emissions

take place, are chosen uniformly at random such that d(xs
n,xs

n+1) ≤ dmax, and we set
dmax = 50 m.

The fingerprint grid pre-computed by the receiver spans a total range umax = 1.5 km
around the receiver, with a resolution of 1 m. The whole azimuthal plane is considered,
with a resolution of 1°, and the CIRs are computed for all depths between 5 m and 15 m,
also with a resolution of 1 m. This choice leads to a total of about 6 million points in set G,
and emphasizes the need for our path finding algorithm, as it has much lower complexity
than the regular Viterbi algorithm.

The signal transmitted by the source, s(t), is chosen to be a linear chirp signal of
duration 100 ms and bandwidth of 10 kHz, centered at a carrier frequency of 12 kHz.
Based on these signal parameters and using the analysis in [89], for the computation
of (4.3) and the formation of set M(1)(n), we choose ΘD = 0.1 ∀n. For each emission
from a given source-receiver location pairs, the channel impulse response is computed
through Bellhop [30], using as parameters the SSP and the available bathymetry samples
along the direction from the source to the receiver. The ambient noise at the receiver is
modeled as an additive white Gaussian process, whose power is tuned so as to achieve a
prescribed signal-to-noise ratio (SNR).



60 Underwater acoustic localization using a single passive receiver

0.30 0.45 0.60
u [km]

0.0

0.2

0.4

0.6

C
(1
)

u
iz

i

∆z =5m

∆z =0m

∆z =-4m

0 60 150 240 300 360
b [degree]

0.5

1.0

ρ
u
,z
,b

0 60 150 240 300 360
b [degree]

0.5

1.0

ρ
u
,z
,b

(a) Distance-depth estimation (b) Bearing estimation for a wrong (top) and correct

distance (bottom). Key: see Fig. 4a.

Figure 4.5: Example of correlation values for xs = [446m, 150°, 10m] at an SNR of 30 dB,
for different value of the offset ∆z between the actual depth and the tested depth.

4.3.2. Examples

A sample result from (4.3) is shown in Fig. 4.5. We observe a clear peak suggesting
that the source is located at a distance of approximately 450 m from the receiver, at a
depth of 10 m. This is due to the presence of all expected specular and surface-reflected
arrivals in the received signal. If, e.g., the specular arrival were missing, the correlation
peak at 450 m would not be as high. This is why we consider all three significant peaks,
including those at about 300 m and 600 m, and for all depths where such peaks exceed
ΘD.

To populate set M(2)(n), we set R(2) = 70. A sample computation of (4.4) for
some range-depth pairs in M(1)(n) is shown in Fig. 4.5. While in this particular case
a peak stands out corresponding to the correct bearing of about 150°, often such a
favorable result does not occur. The chosen value of R(2) makes it possible to considerably
increase the probability that the actual bearing is included inM(2)(n), while keeping the
computational effort controlled.

An example of the output of the algorithm for a single step n and a whole path is
provided in Fig. 4.6. Each panel shows a view of the area around the receiver, which
is located at the center of panel 4.6a or towards the bottom-right corner in panels 4.6b
and 4.6c. Fig. 4.6a shows the location estimates for the first signal emission, obtained
from the set M(2)(1) as described above; Fig. 4.6b shows the location estimates after
filtering out those that are not part of any edge set E(n− 1) or E(n), ∀n; Fig. 4.6c shows
the final path estimate compared to the actual path of the source. For the numerical
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Figure 4.6: Example of cross-correlation results for model-based range-bearing
localization (distances in [km]). Our method successfully rules out spurious locations
and achieves an accuracy of εd ≈ 160 m and εa ≈= 4.4°.

results discussed in the following, we consider a Monte-Carlo set of 100 source paths,
which corresponds to 1000 signal emissions.

4.3.3. Localization Accuracy Under Varying SNR

We start our performance evaluation by running our algorithm in the presence of
exact environmental data under different SNR values. The complementary cumulative
distribution functions (CCDFs) of the Root Mean Square Error (RMSE) affecting the
distance and bearing estimates are shown in Figs. 4.7a and 4.7b, respectively. Thanks to
the perfect knowledge of both the bathymetry and the SSP in the observed area, neither
result shows a significant dependence on the SNR, even after decreasing it to as low as
3 dB, which tends to make additional peaks appear in the correlation outputs. We observe
that the average RMSE varies from about 120 m for an SNR of 30 dB, up to about 170 m
for an SNR of 3 dB, with a median error around 80 m, which is satisfactory given the grid
resolution employed and the use of a single receiving element. The bearing estimation
results show even higher accuracy, with a mean estimation error εa < 20° even for an
SNR of 3 dB, and a median error of less than 10°.

4.3.4. Localization Accuracy Under Imperfect Bathymetry Data

The above simulation results show accurate localization for different SNR levels.
However, the results are obtained assuming perfect bathymetry and sound speed profile
knowledge. In our setting, the receiver is an anchored station, e.g., a marine observatory,
and thus we argue that accurate sound speed measurements are possible and do often
exist in such marine observatories (e.g., see [95]). Still, while fine-gridded bathymetry
mapping can be made around the observatory, small errors and outdated measurements
in the resulting depth map may exist. We now explore the sensitivity of our localization
method to imperfect bathymetry information.
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Figure 4.7: Accuracy of the path estimation algorithm in the presence of exact
environmental data, for different values of the Signal-to-Noise Ratio (SNR). Even for
low values of the SNR the arrival structure in the CIRs does not change considerably, and
has no significant effects on performance.
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Figure 4.8: Accuracy of the path estimation algorithm in the presence of imperfect
bathymetry data. Erroneous bathymetry significantly affects the algorithm’s performance.
For limited errors (y = 1 m) the results are still viable for several applications.

In the following analysis, to each true bathymetry sample we add an offset drawn
uniformly at random in the interval [−y, y], where y (in m) is a tunable parameter. We
collect a Monte-Carlo set of 100 source paths and compute the CCDFs of the RMSE
for both the distance and the bearing. The results are shown in Figs. 4.8. We observe
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that, as expected, mismatched bathymetry data worsens the path estimation performance.
However, for a limited offset on bathymetry samples, up to y = 1 m, the median RMS
distance error remains below 200 m (or 6% of the total observed area), which is still
a reasonably good result given the presence of a single receiving element. Instead, an
error of up to y = 5 m yields comparatively worse performance. However, we remark
that this is an extreme case, as such an error amounts to about 10% of the average sea
bottom depth in the area, and current sea bottom mapping systems typically ensure
sub-meter bathymetry measurements for depths of less than 200 m (e.g., this is the case
for Kongsberg Maritime’s 400 kHz EM 2040 multibeam sonar system we use in our sea
experiment).

Similar conclusions as for the distance-based sensitivity of the algorithm can be drawn
also for the bearing estimation error. Fig. 4.8 shows that for y = 1 m, the increase in the
median bearing estimation error is roughly 20°, and increases to roughly 55° for y = 5 m.
This result emphasizes the need for accurate bathymetry information. Still, we argue
that even such rough localization estimates can be instrumental for some applications.
For example, security or environmental monitoring systems, where even a rough estimate
can trigger a more accurate investigation by human personnel or more complex detection
mechanisms; or fauna and habitat monitoring applications, where it is often sufficient to
find the approximate path of a vocalizing animal.

4.3.5. Localization Accuracy Under Imperfect SSP Data

In order to evaluate the impact of imperfect SSP data on the performance of our
algorithm, we add an offset drawn uniformly at random in the interval [−c, c] to each true
SSP sample, and carry out Monte-Carlo simulations for different value of c.

The CCDFs of the distance and bearing RMSE are provided in in Figs. 4.9a and 4.9b,
respectively. While the chosen values for c preserve the general downward-refractive
properties of the SSP , even a small value tends to cause significant changes in the
structure of multipath arrivals. For c = 0.25 m/s, we already observe a median distance
error of about 250 m and a median bearing error of about 30◦. It could be argued that
these values are still practical for rough localization applications, where the only need
is to know whether the AUV is practically following a desired trajectory or is falling
significantly off track. As expected, increasing c tends to reduce both the distance and
the bearing estimation accuracy. This emphasizes the need to maintain SSP estimates
updated at the receiver, and to recompute the CIRs in the grid G in the presence of
significant changes.

We finally remark that, besides bathymetry and SSP, high sea states may induce
significant surface waves that would also contribute to modifying surface-reflected
multipath components of the modeled and measured CIRs. Since it is not feasible to
create different modeled CIR sets G for many realizations of the surface waves and for
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Figure 4.9: Accuracy of the path estimation algorithm in the presence of imperfect SSP
data. Increasing deviations from the actual SSP tend to significantly change the multipath
arrival structure. For limited deviations, the median localization and angle error remain
acceptable.

different sea states, in this case it would be appropriate to skip the correlation-based
depth/distance estimation that results in sets M(1)(n). Instead, it would be possible to
populate M(1)(n) with all pairs of depth and distance values that satisfy RSSI bounds,
and then proceed with the computation of the cross-correlations that lead to setM(2)(n).

4.3.6. Comparison against benchmark localization schemes

We conclude our evaluation with a comparison among our algorithm, its preliminary
version in [2], and a benchmark scheme that, for every location index n corresponding to
a signal received by the buoy, chooses the most likely source location as the grid point
inM(2)(n) yielding the largest correlation value (dubbed “best point” in the following).
This is akin to a classical fingerprint-based localization approach, where the fingerprint
is defined as the value of (4.4). Fig. 4.10 shows the CCDFs of the distance and bearing
RMSE for all above approaches carrying out all operations listed in Section 4.2, including
the forward-backward refinement of Section 4.2.4.3.

The results confirm the expectation that our approach achieves a lower estimation
error. This is also due to the forward-backward search refinement, which reduces the
chance that a comparatively low correlation value in the first point of the source’s
trajectory hampers the correct estimation of the whole path. Specifically, the median
distance RMSE decreases from about 100 to about 50 m, in the presence of a comparable
angle RMSE. Although the best point scheme provides a good estimation of the bearing
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Figure 4.10: Comparison among different location estimation schemes: our algorithm, the
preliminary version of our approach in [2], and the best point benchmark (corresponding
to selecting the location that yields the highest cross-correlation value).

in these simulations, its distance error is still very significant, with 80% of the errors being
greater than 100 m. Moreover, while the tail of the error distribution for the best point
scheme is better than for the algorithms in [2] and in this contribution, these tails already
correspond to significant errors (e.g., > 300 m in terms of distance and > 45◦ in terms of
bearing).

4.4. Experimental results

4.4.1. Experiment Setup

In the previous section, we explored the performance of our localization scheme in
simulations. Since these simulations rely heavily on a numerical acoustic propagation
model, we now complete our analysis and show the performance achieved by our algorithm
in a sea trial. The experiment was carried out in February 2017 in northern Israel
(coordinates 33◦01’57.0”N 34◦55’41.2”E), in waters with a maximum depth of 140 m.
The measured sound speed was 1529 m/s with a water temperature of 21◦ Celsius at the
sea surface, and 1521 m/s with a water temperature of 17◦ Celsius at the sea bottom. The
sound speed gradient between the surface and bottom was approximately constant. the
current at the water surface was roughly 0.5 knot, the wave height was roughly 40 cm, and
the sea bottom was sandy. A 5 m-resolution bathymetry was collected using a Kongsberg
EM 2040 400 kHz multibeam sonar. The bathymetry of the explored area is shown in
Fig. 4.11a, and included a steep slope ranging from 60 m to 140 m. The top-left side of
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Figure 4.11: Setup of the sea experiment carried out in Mediterranean Sea waters near
Haifa, Israel, in Feb. 2017.

the figure shows artificial data as no measurements were collected in that region.
The experiment included an 80-feet long vessel, RV EDEN, and a 13 feet rubber boat

dragging a floating buoy from which an acoustic emitter was deployed, see Fig. 4.12. The
rubber boat represented the opportunistic sounds source, and the RV EDEN represented
the single receiver. During the transmissions, the distance between the vessels was roughly
1200 m. The transmissions from the rubber boat included a sequence of 15 linear chirps
at the frequency range of 7 kHz to 17 kHz, each of duration of 1 s. Transmissions were
made with the EvoLogics S2C R 7/17W underwater acoustic software defined modem at a
source level of 170 dB re 1µPa @1m. Receptions at the RV EDEN were made through the
custom uRadar recorder, whose receive sensitivity at the transmissions’ frequency range
is about 190 dBV re 1µPa. Both the transmitter and the receiver were deployed at depth
of 10 m. A time-frequency spectrogram of the received signals is shown in Fig. 4.11b.
Besides the transmitted chirp signals, we observe the signals of the RV EDEN’s own
echo-sounder. To mitigate the ambient noise as well as the signals of the echo-sounder,
we filtered each chirp signal. Synchronization was performed using a normalized matched
filter [89].

4.4.2. Results

We start from Figs. 4.13 and 4.15, which detail the results of the comparison between
the modeled CIRs and the measured one for nine consecutive received signals. The results
are shown as a polar map centered around the location of the RV EDEN, where each
contour line represents a distance of 300 m from the vessel. In Fig. 4.13, each small grey



4.4 Experimental results 67

Figure 4.12: Picture of the buoy and ship from which the transmitter and receiver were
deployed, respectively.

cross represents a possible position for the source, i.e., a comparison output that passed the
detection threshold ΘD (see Section 4.2.3) and was included in setM(2)(i), i = 1, . . . , 9.
The thicker green cross marks the true location of the source. We observe that, for each
of the nine received signals, many possible locations are obtained as a result of the cross-
correlation operations carried out by our method. Fig. 4.14 shows one comparison between
a CIR measured from a received signal and the CIR template constructed starting from
Bellhop’s output (light blue) and corresponding to a location close to the true location of
the source. We observe that although the channel model is imperfect, all significant peaks
in the measured CIR are well represented, leading to a good overall matching. However,
other locations also lead to a similarly strong matching, resulting in several location
estimates being significantly far from the source, and collectively resembling a random
cloud of possible source locations (the small grey crosses). The best point algorithm
(purple triangle), that points to the location yielding the maximum correlation for each
signal, suffers from significant errors in three cases out of nine. These results support
the simulation outcomes, showing that even when the bathymetry is fully known, relying
only on the spatial diversity of the channel impulse response yields significant residual
uncertainty. Processing the outcome of the best point algorithm through a Kalman filter
does not yield significantly better results, even if the filter is fed with the actual velocity
of the AUV (in contrast with our approach, that only requires to know the maximum
AUV velocity, vs

max). The corresponding location estimates are shown in Fig. 4.14 as grey
squares. Conversely, our algorithm (red triangles) exploits the trellis search to achieve
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Figure 4.13: Sequence of location estimates for nine subsequent transmissions from a
drifting source in the sea experiment, showing the true location of the source (green
cross), the estimate of our algorithm (red triangles), the best point benchmark estimates
(purple triangles), the Kalman filter results (grey squares), and the limited-scope Viterbi
estimates (blue triangles).
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Figure 4.14: Comparison between a template CIR obtained from Bellhop (light blue) and
the CIR measured from a signal received during the sea experiment.

a more precise estimation and removes outliers, resulting in a much smaller localization
error.

We also compare the above results against those of the Viterbi algorithm. Given the
size of the state space, in order to be able to run the algorithm we artificially reduce
the search scope to a 90◦ sector centered on the true bearing of the source, and to the
distances ranging from 1000 to 1400 m. While this gives a clear advantage to the Viterbi
algorithm, it is a necessary step to allow the search space to fit in its data structures. The
Viterbi results are shown as blue triangles in Fig. 4.13. We observe that the algorithm
correctly predicts the fact that the source is static, but achieves a slightly worse location
error despite the limitation of the search scope. This outcome is due to systematic, non-
Gaussian errors incurred when modeling real underwater propagation using an acoustic
propagation model under imperfect information (e.g., in this case, the resolution of the
bathymetry and SSP data).

We summarize the path estimation results for the comparison outputs in Fig. 4.13 are
shown 4.15 with the same color coding as above. In this case, the green crosses represent
the average location of the drifting RV EDEN throughout the experiment. The results
show a nice match between the estimated location and the true one for our algorithm
and the Viterbi algorithm, and for only a subset of the location estimates of the best
point algorithm. The Kalman filter results also show that this method is very sensitive
to incorrect estimates of the initial location of the AUV.

The estimated locations predicted by our approach also correctly follow the drifting
direction of the source boat. The total localization error for our algorithm is between
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Figure 4.15: Final drifting source path estimate in the sea experiment, showing the true
location of the source (green cross), the estimate of our algorithm (red triangles), the best
point benchmark estimates (purple triangles), the Kalman filter results (grey squares),
and the limited-scope Viterbi estimates (blue triangles). The total localization error for
our algorithm is between 174 m (5.8%) and 330 m (11%), with a bearing error between 2
and 12 degrees.

174 m and 330 m, with a bearing error between 2 and 12 degrees. While these errors may
seem large, we argue that for the task of localizing an AUV in a long term mission, this
is still acceptable. This is because, first, after a few hours especially in deep water, the
self-navigation system of the AUV completely drifts and thus any localization solution
of limited expected error will benefit the operation [96], and second, compared to the
typical detection range of roughly 5 km for the AUV’s pinger (e.g., [97]), the above
reported localization error as in our experiment is still a good result. Given that this
result was obtained using only one receiver in real sea conditions, it demonstrates well
the applicability of our suggested localization method.

4.5. Conclusions

In this work, we presented a novel approach for the acoustic localization of a non-
cooperating AUV emitting acoustic signals. Our approach relies on a single passive and
stationary receiving element and on the modeling of acoustic propagation given knowledge
of the bathymetry, sound speed profile and bottom sediments in the deployment area.
The method is based on the comparison of a channel impulse response evaluated from a
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received acoustic signal, against a database of channel impulse response fingerprints. As
the latter are modeled instead of measured, we require no periodic channel fingerprint
acquisition in the area around the receiver. To filter noise, locations that show a good
match between the measured and the modeled channels are arranged into a trellis.
A location path is then estimated while limiting transitions between the trellis nodes
according to an assumed maximum velocity for the AUV. Our approach makes it
possible to estimate the path traveled by the AUV with low complexity and with
high accuracy. Such accuracy decreases (but still remains sufficient for a variety of
applications) if the receiver holds outdated environmental data. A proof-of-concept sea
experiment demonstrates the applicability of our method to real sea conditions with a
localization error as low as 5.8%, which is a remarkably good accuracy given the use of a
single stationary receiver and the realistic, imperfect bathymetry and sound speed profile
measurements.





Part IV

Direction of arrival estimation and
localization through 3D acoustic

arrays of arbitrary shape

In search of a balance between localization accuracy and the cost and complexity of
deployment, there could be situations when, for a given accuracy, it is necessary to use
multiple pre-assembled arrays. Fusing information from multiple acoustic sensors can
have a positive effect on the reliability of the results. Despite this, often such design
may not meet the condition of the distance between the elements at half the minimum
wavelength due to design considerations such as cabling, batteries or other construction
issues. In this case, the ability to use information from all the sensors is limited due to the
spatial ambiguity caused by the improper spacing of array elements (see Sec.2.3.3.3). In
the context of the SYMBIOSIS project, we worked on a localization algorithm for pelagic
fish species using a software-defined version of a commercial ultra short baseline (USBL)
array of five elements. Several such sub-arrays were joined together to form a larger
array with better localization capabilities. In Chap. 5, we propose an algorithm for 3D
wideband direction of arrival (DoA) estimation for such “opportunistically” joined arrays.
We provide an in-depth analysis of its performance in various simulated conditions and
validate the results in a preliminary experiment performed in a lake in Germany. Timely
software maintenance and proper assembly of the complex final design was challenged by
the travel difficulties caused by the well-known events of 2020. In this regard, changes were
made to the algorithm that allowed for additional functions and worked in the absence of
key elements. The changes and the results of final experiments are described in Chap. 6.

73





“What is a scientist after all? It is a curious man looking through a keyhole, the keyhole of nature,
trying to know what’s going on”

Jacques-Yves Cousteau

5 Underwater Localization via
Wideband Direction-of-Arrival

Estimation Using Acoustic
Arrays of Arbitrary Shape

Underwater sensing and remote telemetry tasks produce the most valuable results
when they can clearly geo-locate sensed data values. This is especially important when
sensing the presence of acoustic signals coming, e.g., from wildlife or man-made devices:
in these cases, estimating the location of the acoustic source and tracking it over time
typically yields significantly valuable information, and may likely be the ultimate task
of the sensing process. Common solutions for this challenging task include image- and
video-based monitoring [98], LiDAR systems [3], as well as acoustic systems [47].

In underwater scenarios, accurate localization typically requires acoustic arrays. These
pieces of equipment encompass multiple hydrophones or acoustic transceivers. This
enables spatial filtering to increase directivity towards specific directions, and makes it
possible to estimate the DoA of a signal. In several cases, underwater acoustic arrays are
sizeable, and may require complex handling for deployment at sea.

When possible, the shape of an acoustic array is designed to fit the need of some
application. For example, the side-scan sonar of an autonomous underwater vehicle
(AUV) is usually a 2D matrix of acoustic elements [99, 100] designed to cover a given
aperture with a given resolution, expressed in terms of the beamwidth of the main lobe
of the array’s beam patterns. Other relevant examples include linear arrays for DoA
estimation [101] and three-dimensional general-purpose scanners such as tetrahedral and
pyramidal arrays [102].

If arrays are modularly designed, it is typically possible to improve the spatial scanning
performance by joining several arrays into a more complex layout. For example, several
linear arrays could be joined into a 2D matrix, or into a 3D cylindrical configuration
that makes it possible to scan a water volume and discriminate among different directions
of arrival. Tesei et al. [103] showed that fusing the information from multiple arrays
improves localization and ranging, even if these arrays are located far apart, and receive
uncorrelated acoustic signals.

In this chapter, we are interested in “acoustic arrays of opportunity.” As opposed to
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Using Acoustic Arrays of Arbitrary Shape

arrays specifically designed for a given task, acoustic arrays of opportunity are typically
composed of multiple sub-arrays originally designed to work independently, where each
sub-array may contain one or more hydrophones or acoustic transceivers. Sometimes,
sub-arrays come as standalone units: an opportunistic array would merge and co-operate
multiple such units.

The main challenge related to acoustic arrays of opportunity is that each sub-array
may have a physical design or may present mounting constraints that prevent the array of
opportunity from having the optimal structure for a given task. For example, we may have
to ensure some minimum spacing among the sub-arrays in order to preserve connectors,
or to avoid that power and data cables bend in excess of their specifications. Additionally,
the sub-arrays may have pre-defined shapes, and it is typically unfeasible to reconfigure
these shapes into other layouts.

There are at least two important consequences to the above constraints. First, it may
be impossible to construct typical array topologies such as uniform linear arrays (ULAs),
uniform rectangular arrays (URAs), or cylindrical arrays [104]. Second, the resulting
layout may force a larger-than-optimal spacing among closest array elements, e.g., larger
than λ/2, where λ is the wavelength corresponding to the maximum operational acoustic
frequency of the array’s hydrophones. An improper spacing of the array elements
causes spatial ambiguities in beamforming and DoA estimation operations. For example,
multiple, equally strong lobes in the opportunistic array’s beam pattern, or equivalently,
it may become impossible to distinguish among multiple equally likely DoA estimates.
Additional physical characteristics of the array elements, such as a non-omnidirectional
radiation pattern, may be insufficient to remove such spatial ambiguities [105]. When the
purpose of the array is localization through multilateration, larger-than-λ/2 spacing may
also lead to significant errors [106].

The above issues have an even larger impact when employing wideband 3D DoA
estimation algorithms. Notably, most wideband algorithms [105] work with predefined
array shapes, or are limited to 2D, to specific signals, or to a known number of
targets [107]. In some cases, the preferred solution is to directly employ particle velocity
sensors [108–110].

In this work, we propose a wideband DoA estimation scheme based on the delay-
sum algorithm. Our scheme that works with arbitrary array layouts, where both the 3D
arrangement of the array elements and the spacing among them are potentially irregular
or arbitrary. This fits well our assumption that the array opportunistically merges
independent subsystems. To remove spatial ambiguity, we compute rough target location
estimates via multilateration, using time difference of arrival (TDoA) measurements from
the array elements. We then restrict the DoA search space to an area around the target,
using multilateration estimates as side information. This rules out or at least dampens
ambiguous directivity peaks. When the approach is successful, we accrue the additional
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advantage that peaks affected by spatial ambiguity are narrower [105], and thus yield
a more accurate DoA estimate. We observe that such an approach works even if the
array elements are not sufficiently spaced to achieve high resolution [103], and therefore
multilateration estimates are not extremely accurate.

We evaluate our approach by running emulations and by performing a lake experiment.
Emulations provide a controlled environment that simplifies acoustic propagation and
detection, but recreates realistic acoustic background conditions by using real clutter
noise recordings from an in-water experiment. The lake experiment, instead, involves
real hardware and realistic water conditions, including small movements due to currents
and waves. In both cases, our results show that our algorithm effectively estimates DoAs
and 3D target locations. Using the extra freedom allowed by emulation, we also show
that merging together realistic pyramidal arrays (such as those found in off-the-shelf
equipment, e.g., [111]) yields better DoA estimation performance than typical cylindrical
arrays having λ/2 element spacing.

In summary, our approach yields the following advantages: (i) it provides a framework
to merge together smaller arrays into a larger “array of opportunity” to achieve better
DoA estimation accuracy; (ii) it provides a method to rule out the ambiguity that may
result from the suboptimal spacing of the array elements; (iii) it works with wideband
signals and arbitrary array topologies; (iv) it yields good performance in emulated sea
environments as well as in a proof-of-concept experiment. In particular, emulation
results show that, at a Signal-to-Noise Ratio (SNR) of −20 dB, a 15-element array
of opportunity achieves lower average and median localization error (27 m and 12 m,
respectively) than a 30-element array with proper λ/2 element spacing (33 m and 15 m,
respectively). In a proof-of-concept lake experiment, we additionally show that our
algorithm achieves a 90th-percentile DoA estimation error of 4◦ and a 90th-percentile
total location error of 5 m when applied to a real 10-element array of opportunity.
This realistic performance evaluation substantially extends the preliminary simulation
results in our previous work [4]. Moreover, in this chapter, we included additional related
literature, extended the presentation and explanation of our approach with examples of
intermediate steps, and provided evidence that the components of our algorithm that
complement wideband DoA estimation can run in real time on an embedded platform.

The remainder of this chapter is organized as follows. In Section 5.1, we survey relevant
related work. In Section 5.2, we describe our DoA estimation method. We introduce
materials and methods for our performance evaluation in Section 5.3. Sections 5.4 and
5.5 cover the evaluation of our proposed scheme via emulation and via a lake experiment,
respectively. Finally, we discuss our results in Section 5.6, and draw concluding remarks
in Section 5.7.
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5.1. Related Work

The engineering of array processing schemes for underwater detection and
communication spans several disciplines, from sonar systems to communications and
underwater target detection with either passive or active arrays [112]. Recent advances in
this fields include the application of different estimation or signal processing techniques
to classical beamforming algorithms, with the objective of improving their accuracy
and decrease their complexity. For example, using a particle filter to estimate the
DoA of an acoustic source improves the performance of Bartlett and conventional
beamformers [113]. Real data from the SwellEx’96 sea experiment validate the findings
of the study. Chen et al. [114] improve the performance of a blind DoA estimation
algorithm from the literature [115] by exploiting partial knowledge on the structure of
the signal transmitted by an acoustic source. With the aim to reconstruct the DoA of a
wideband underwater signal, Tang et al. [101] use sparse signal representation and provide
further methods to eliminate the aliasing originating from the over-completeness of the
measurement dictionary. The authors prove the effectiveness of their algorithm using
a uniform linear array to detect the breathing sounds of divers equipped with closed-
circuit rebreathers.

Van Kleunen et al. [116] consider a blind node integrating a 4-element linear array
for DoA estimation, and mix DoA with time of flight (ToF) information related to
the signals that the blind node receives from synchronous reference nodes. On a
similar vein, Guo et al. [117] employ a linear array to localize a node emitting acoustic
signals, by leveraging the multipath components appearing at the receiver. Weighed
subspace fitting helps avoid the explicit estimation of the DoA for each multipath arrival.
Tesei et al. [103] discuss sound source localization in 3D using either one or two tetrahedral
arrays deployed at different locations. Despite synchronous sampling in the two systems,
their algorithm does not process the arrays jointly, as the distance between the arrays
decorrelates the received signals.

Multiple works applied compressive sensing and sparse reconstruction techniques to
underwater array processing. For example, Song et al. [118] use compressive beamforming
to estimate the DoA of an underwater acoustic source via a forward-looking sonar,
and validate the system using field experiment data. Sparse reconstruction [104] enables
the estimation of the DoA of sound emitted by underwater vessels. The authors
carry out an experiment using a passive towed linear array sonar that showcases the
performance of their algorithm. Two-dimensional continuous compressive sensing is
used in [119] to estimate the complete set of measurements of a URA starting from
a sparser array. The resulting estimates are then employed to impute the missing
measurements and compute the DoA of a signal impinging on the array. Coherent
signal subspace processing and compressive sensing are jointly considered for wideband
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DoA estimation in [120]. Compared to the conventional minimum variance distortionless
response (MVDR) beamformer, the proposed method yields higher resolution.

Acoustic vector sensors, also known as particle velocity sensors, provide a first estimate
of the direction of arrival of an underwater signal. Owing to this, several works rely on
vector sensors for DoA estimation [121–123]. With a focus on computationally efficient
DoA estimation, Bereketli et al. [110] employ an acoustic vector sensor to estimate the
DoA of an impinging signal in a shallow water scenario, where strong multipath echoes
degrade the quality of DoA estimates. Vector sensors can also be arranged into arrays,
and coherently processing the sensors’ signals improves the resolution of underwater DoA
estimation for wideband coherent sources [124].

Wideband beamforming recently spurred significant interest in the broadband
terrestrial radio communication domain [125–127]: as underwater acoustic systems are
typically wideband, similar techiques find applications for underwater acoustic detection
and communications as well. Liu and Weiss [105] extensively cover classical approaches
and recent research results for wideband array processing with applications to signal
enhancement and DoA estimation. Multichannel processing through diversity combining
and optimal beamforming is the focus of the work in [128], which targets the reception
of high-speed underwater acoustic communication signals. The authors show that
beamforming enables the design of a significantly simpler receiver, which can coherently
extract multipath signal energy in a sea experiment. A similar approach [129] employs
mono-pulse processing to cancel incoherent multipath components that would interfere
with the receiver in a reverberating shallow water acoustic communications scenario.
Bayesian methods (BMs) are also applied to the estimation of the DoA of wideband
linear frequency modulation (LFM) signals using a uniform linear array [130]. The authors
resort to the fractional Fourier transform to extract the wanted signal from a reverberating
background and improve the operating signal-to-noise ratio.

Typically, the development of signal processing algorithms for underwater acoustic
arrays assumes a simple array topology, for which the steering vectors and array manifolds
can be computed in close-form. Often, linear arrays are used [104, 113, 114, 116–118]
or rectangular arrays [119]. A study involving 3D, 4-element tetrahedral arrays is
provided in [103]. Unlike the above literature, in this work, we propose a wideband DoA
estimation algorithm that works on any 3D underwater array layout. Thus, our approach
encompasses imperfect array design occurrences, or the opportunistic combination of
multiple arrays into a larger structure to seek better spatial performance. A key
realistic assumption of our work is that array sensors may not be properly spaced at
a distance of λ/2 from one another, possibly resulting in spatial ambiguity that must be
compensated for.
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5.2. Wideband DoA Estimation Algorithm

We now proceed to introduce and explain our wideband DoA estimation method. We
start by providing the key idea behind the algorithm in Section 5.2.1, and continue with
the details in Section 5.2.2.

5.2.1. Key Idea

We assume to operate an array of known topology, but whose elements are not
necessarily arranged to obey the λ/2 spacing constraint. The array elements are co-
located, and the array control electronics synchronously retrieve acoustic samples from
all elements. The task of the array is to detect the DoA of signals with a known structure,
either emitted by AUVs and other man-made equipment, or emitted by a projector co-
located with the array and reflected back by the target.

Our algorithm mitigates spatial ambiguity via side information in the form of a rough
location estimate derived from TDoA-based multilateration. This information helps filter
the output of a wideband delay-sum DoA estimation algorithm and thus rules out most
of the ambiguous DoA estimates.

5.2.2. Algorithm Description

Call f(t) the signal that the array seeks the DoA of. While this can be any signal,
if the array is co-located with a projector and listens to reflections of the projector’s
signal, a typical solution is to employ linear chirps spanning the frequency interval from
fmin to fmax over a time interval of duration T . Such chirp would have the form f(t) =
cos

(
2π fmax−fmin

2T t2 + fmin t
)
. Let sn(t) be the real-valued signal received by the nth array

element. With reference to Figure 5.1, our scheme proceeds by first detecting f(t) within
the sn(t) signals using a Normalized matched filter (NMF) [89] . For each array element,

Normalized	
match	filter

Clustering	arrivals	
DBSCAN

3D	delay-sum	
DoA	estimation

Multilateration	3D
position	estimation

Gaussian	mask 3D	location

Figure 5.1: Flow diagram of the DoA estimation and localization algorithm.
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the output of the NMF is expressed as

Rn(τ) =

∫ +∞

0
f(t) sn(t+ τ) dt(∫ T

0
f2(t) dt

∫ +∞

0
s2
n(t) dt

)1/2 . (5.1)

We search relevant peaks in Rn(τ) via a sliding window method. In more detail, we
consider a window of length T aligned with the beginning of Rn(τ), and take the highest
peak in the window; then, we slide the window, take again the highest peak, and repeat
the process until we cover the whole of Rn(τ). This filtering step eliminates secondary
peaks that are never the tallest in any window. Call Pn the set of peaks that survived
filtering, where the features that fully define a peak p ∈ Pn are its time of occurrence t,
its amplitude a and the hydrophone n that detects it, i.e., p = (t, a, n) ∈ Pn.

We proceed by applying the DBSCAN algorithm [131] over the whole set of peaks

P = P1 ∪ · · · ∪ Pn . (5.2)

DBSCAN approximates the function

C = D(P) (5.3)

that returns all subsets of arrivals C ∈ C, such that each subset C contains groups of
detections that correspond to the same target. We choose DBSCAN because it works
based on point density, which we found to be a very good indicator of target detection.
In fact, when a signal from a target insonifies the array, no two NMF peaks related to
this detection should be farther in time than the maximum propagation delay between
any two array elements. This allows us to define the density of the NMF peaks in time
across multiple channels. Moreover, DBSCAN executes very fast [132, 133] on our NMF
time series (typically in less than 1 ms) and the algorithm does not need prior information
about the number of points that are part of a cluster, or the number of clusters in the
dataset. As a result, DBSCAN is suitable for multiple target detection in scenarios with
multiple targets.

We configured DBSCAN to seek arrivals detected in at least 70% of the array elements,
and spaced in time no more than the maximum propagation delay between any two
elements. This makes it possible to discard peaks that are not detected reliably by all
elements, or that are separated by a large time delay, enough to suspect that they may
correspond to different emissions from the environment, or to reflections from different
targets. We remark that the threshold on the number of array elements that should detect
target-related peaks configures a trade-off between the probability of missing a detection,
and the probability of wrongly including a detection that pertains to a different target.
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In fact, some array elements may be shadowed by other sensors, cables, or structural
components of the array, and therefore a cluster C may contain peaks from only a subset
of the array elements. Additionally, if a cluster contains multiple arrivals within tmax on
the same channel, we have an option to filter the arrivals depending on the output of the
normalized matched filter.

Using real data from a lake experiment, we show an example of clustering result for
peaks collected by a synchronously-sampled 10-element array in Figure 5.2. The array is
configured to seek linear chirp signals of duration 10 ms spanning the acoustic frequencies
from 7 to 17 kHz. The light-blue time series in the background of Figure 5.2 is the
output of the NMF for one of the ten acoustic channels, namely channel 1, depicted over
time (measured in seconds). The sampling frequency is 62.5 kHz. For this channel,
the peak extraction algorithm described above filters the peaks marked as a large
blue circle. The same algorithm, applied to the NMF output of the remaining nine
channels (whose time series are omitted for clarity), leads to the peaks marked as small,
purple circles. Altogether, these peaks form set P. DBSCAN processes the peak set
to detect the target. Out of all peaks, DBSCAN singles out the orange-colored ones
as being likely associated with the target, due to their density and their appearance in
several acoustic channels. As confirmed by the vertical orange line, these peaks correctly
align with the ground truth of the target’s position, which corresponds to a time of arrival
of about 0.16 s.

Once DBSCAN has detected the target, we are ready to estimate the DoA of the
target’s signal. To do so, we now consider a set of elevation angles Θ and azimuth angles
Φ, and scan the power received by the array along every direction identified by a pair
(θ, φ), for θ ∈ Θ and φ ∈ Φ. We remark that we could set Θ = (0, π) and Φ = (−π, π)
in order to cover all possible DoAs in 3D space, or rather restrict Θ and Φ to a smaller
domain, in case some prior information is available.

For each cluster C, we measure the energy perceived by the array along different
directions through a wideband delay-sum algorithm [105]. We stress that using wideband
algorithms matches the possibly wideband signals detected or projected by the array.
For example, the equipment in [111] operates across the bandwidth from 7 kHz to 17 kHz,
which aligns well with the definition of wideband equipment. In any event, our approach
also works with narrowband signals.

We implement the algorithm in the frequency domain. Specifically, we cut the output
of the matched filter that covers the arrivals in cluster C for each hydrophone, and then
apply an fast Fourier transform (FFT) to this signal chunk. We then apply a different,
frequency-dependent phase shift vector to each frequency bin in order to steer the array
towards the direction (θ, φ). Finally, we convert back to the time domain via an inverse
FFT, and sum up the resulting outputs across all hydrophones.

By carrying out this operation for several 3D DoAs (θ, φ), we obtain a map α(θ, φ) of
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Figure 5.2: Example of successful DBSCAN clustering for peaks collected by a 10-element
array. The light-blue time series is the output of the NMF for channel 1. Large blue
circles represent peak detections for this NMF time series. Smaller dark-purple peaks
represent peak detections from the remaining nine channels. DBSCAN correctly detects
a cluster of target related arrivals around 0.16 s (vertical orange line). Data from a real
lake experiment.

the power received over all scanning directions specified by sets Θ and Φ. As we consider
opportunistic arrays where the elements may be spaced more than λ/2, the delay-sum
map may be affected by ambiguities, hence it may indicate the reception of a significant
amount of power from directions different than the true DoA of the target.

The key to recuse such ambiguity is to mask the above DoA map by roughly localizing
the target in 3D space via a multilateration algorithm. We achieve this through TDoA
measurements carried out across the array elements. Call

u = [x y z]T and un = [xn yn zn]T (5.4)

the Cartesian coordinates of the target and those of hydrophone n, respectively.
Furthermore, call t0 the time of occurrence of the earliest peak in cluster C. Without loss
of generality, assign index 0 to the hydrophone that receives this arrival. Finally, call c
the sound speed near the array. We assume that such speed is known, typically via local
equipment such as a sound velocity profiler or a CTD sensor.

For each peak p = (t, a, n) ∈ C, the corresponding multilateration equation is

x ·Xn + y · Yn + z · Zn +Dn = 0 , (5.5)

where
Xn = 2xn

c t
− 2x0
c t0

, Yn = 2yn
c t
− 2y0
c t0

, Zn = 2zn
c t
− 2z0
c t0

, (5.6)

and
Dn = c (t− t0)− x2

n + y2
n + z2

n

c t
+ x2

0 + y2
0 + z2

0
c t0

. (5.7)
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Collecting one equation such as (5.5) for every peak in cluster C results in an over-
determined system of equations, which we solve through Moore–Penrose’s pseudo-inverse.
The result is a rough estimate of the target location u? = [x? y? z?]T, which we convert
to polar coordinates to yield the estimated location of the target, namely

ū = [r̄ θ̄ φ̄]T . (5.8)

We exploit the above estimate to define a masking function having the shape of a
truncated bi-variate Gaussian kernel

m(θ, φ) = min
{

1; 1
2πσθσφ

e
− (θ−θ̄)2

2σ2
θ e
− (φ−φ̄)2

2σ2
φ

}
, (5.9)

where σθ = π/8 and σφ = π/4. Using m(θ, φ), we mask the output of the wideband delay-
sum beamformer in order to mitigate (and typically fully remove) ambiguities. Finally,
we set the estimated DoA for the received signal as

θ̂, φ̂ = arg max
θ,φ

α(θ, φ)m(θ, φ) . (5.10)

Figure 5.3 (left panel) provides an example of the delay-sum output. Specifically, for a
number of 3D DoAs characterized by a pair of angles φ (azimuthal angle, x-axis) and θ
(elevation angle, y-axis), we steer the array towards each DoA using wideband delay-sum
beamforming, and depict the normalized amount of power at the output of the array.
Yellow hues correspond to a strong signal, green hues to a signal of intermediate power,
and blue hues to a weak or absent signal.

Notably, there exist several local maxima (black dots surrounded by yellow-green
hues), which make the decision ambiguous. In fact, measurement noise in conjunction
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Figure 5.3: Intensity map at the output of the wideband delay-sum beamformer without
(left) and with (right) TDoA multilateration-based masking. The latter mitigates the
ambiguity and makes it possible to correctly estimate the location of the target (red star),
while ruling out the strongest peak (red dot) which would correspond to a wrong target
location. Yellow hues denote a stronger signal.
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with ambiguity would lead to a wrong estimate (red circle) of the target’s actual DoA
(red star).

In the right panel of Figure 5.3, instead, we apply the multilateration-based mask.
As explained above, we employ TDoA information extracted from the peaks that
DBSCAN recognizes as being part of the same target detection (formally, cluster C above).
These peaks come from different acoustic elements within the array: computing the TDoA
values for these peaks makes it possible to roughly localize the target via multilateration,
and to construct the mask in Equation (5.9). This filters out most of the ambiguity and
points to the correct DoA (red star). We note that some local maxima still remain even
after applying the mask (corresponding to the green hues above and below the starred
peak). However, these peaks are now sufficiently mitigated, and do not impede a correct
DoA estimation.

As a final step, we fuse the estimated DoA with ranging information and pass it on
as a valid location only if the position of the target remains within the boundaries of the
water column.

5.3. Materials and Methods

In this section, we summarize the methods and materials used for the performance
evaluation of our proposed DoA estimation algorithm. After a short account of common
assumptions in the two evaluation setups, we present our emulation framework in
Section 5.3.2 and our experiment framework in Section 5.3.3. Sections 5.4 and 5.5 follow
up with the results of the corresponding performance evaluations.

5.3.1. Common Setup and Parameter Configurations

In the following, we assume that our array of opportunity seeks linear chirp signals
in order to localize a nearby target. Each chirp has duration T = 10 ms and spans the
acoustic band from fmin = 7 kHz to fmax = 17 kHz. We also assume that the array can
synchronously sample its elements, and can store the corresponding acoustic samples for
immediate or offline processing.

5.3.2. Emulation

The key idea of the emulation is to employ measurements of noise and acoustic clutter
from a lake experiment, in order to achieve a more realistic representation of the signal
received by the array elements.

Specifically, we consider an experiment performed in the Werbellin freshwater lake,
located 60 km north of Berlin, Germany. During this experiment, we acquired several
underwater acoustic recordings containing environmental noise and clutter. We subdivide
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(a) Array 1 (b) Array 2 (c) Array 3 (d) Array 4 (e) Array 5

Figure 5.4: Array topologies considered in this paper.

these recordings in chunks of 16 ms (equal to 1000 samples at a sampling frequency of
62.5 kHz) and normalize each chunk so that the standard deviation of the noise is equal to
1 throughout all chunks. Finally, we create a Monte Carlo set of emulated noise recordings,
where in each recording we randomly shuffle the order of the 16-ms noise chunks.

Our emulation framework consists of a software written in Python. Here, we assume
that the array of opportunity is located at a depth of 10 m within an isovelocity water body
with flat surface and bottom having maximum depth of 100 m. (The lake experiment
in Section 5.5 serves to test our algorithm in realistic propagation conditions, with a
stratified medium and non-flat bottom.) For the emulation scenario, we assume that the
array insonifies the underwater environment by transmitting the chirp signal, and listens
to reflections from the environment. We thus emulate a received signal by propagating
the chirp to the target, and back to the array. In particular, we shift the phase of the
chirp as a function of the location of the source and of the position of each acoustic array
element. We then scale a noise sequence from the Monte Carlo set to yield a desired
SNR level, and superimpose the received signal to the noise. Finally, we apply our DoA
estimation algorithm to the signal. We repeat the experiment for 270 different locations of
the target, chosen to represent all array lookout directions. For each location, we repeat
the estimation for ten different underwater noise realizations.

We consider five different array layouts, as illustrated in Figure 5.4:

Array 1 is composed of two 5-element pyramidal arrays having a base side
length of 10 cm and an height of 7.07 cm. The sub-arrays are stacked at a distance
of 27 cm, and the bottom one is rotated by 45◦. This is typical in the case in which
each 5-element pyramidal array actually comes as a separate unit, whose connector
mounting and cable bending constraints prevents placing the units closer than a
given maximum distance;
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Array 2 is similar to array 1 but is composed of three pyramidal arrays stacked
at a distance of 27 cm. In this case, the second array is rotated by 30◦ and the third
by 60◦;

Array 3 is a cylindrical array composed of 6 circular sub-arrays of 5 elements
each (the same number of elements as in the pyramidal arrays of Array 1 and
Array 2). The distance between closest elements along the same ring and across
different rings is 4.4 cm;

Array 4 is composed of two circular sub-arrays of radius 3.5 cm, placed at a
distance of 27 cm from each other. Each sub-array embeds 5 elements. The elements
are equally spaced along the ring and closest elements are 4.4 cm apart;

Array 5 is similar to array 4 but is composed of three rather than two rings.

We chose the topologies of acoustic arrays 1 and 2 above as they resemble closely
the arrays of opportunity attached to the underwater fauna detection platform described
in Section 5.3.3.1, and used for the lake experiment in Section 5.5. Array 3 is a typical
cylindrical array. Its shape enables spatial scanning along both the azimuthal plane and
the elevation plane; moreover, the spacing between closest array elements is less than or
equal to λ/2 up to a frequency of 17 kHz. Finally, arrays 4 and 5 are also cylindrical arrays,
but the distance between subsequent circular 5-element sub-arrays is 27 cm, in order to
emulate the performance of Array 3 in case it had the same number of elements and
mounting constraints as arrays 1 and 2.

We remark that assuming a sound speed of 1500 m/s, a distance of 4.4 cm corresponds
to λ/2 spacing up to a frequency of ≈17 kHz. Because array 3 is designed with proper
λ/2 spacing throughout the whole bandwidth of the chirp signal, we do not apply the
m(θ, φ) mask to the wideband delay-sum output in this case.

The ambiguity of DoA estimation originates primarily from the 27-cm spacing between
subsequent pyramidal arrays, as such distance is about 7 times the appropriate λ/2
spacing of 4.4 cm. In Sections 5.4 and 5.5, we show that our algorithms still obtain
meaningful location estimates even when using the equipment in the above configuration.
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(a) Acoustic array part of the SYMBIOSIS
platform (courtesy of EvoLogics GmbH).

(b) Sagittal and top sections of EvoLogics’s SDM-USBL
unit (courtesy of EvoLogics GmbH).

Figure 5.5: (a) rendering of part of the upper portion of SYMBIOSIS platform, showing
the acoustic array of opportunity employed in our experiment (two cylindrical SDM-
USBL units, facing right); (b) internal configuration of an SDM-USBL unit. Each sphere
denotes a receiving acoustic element (5 in total, arranged into a pentahedral, square-base
pyramid). The unit includes a transducer (the large cylindrical element in the sagittal
C-C section), not used in our setting.

5.3.3. Lake Experiment
5.3.3.1. Equipment and Software

The acoustic array we deployed for this experiment is a part of the opto-acoustic
system built in the scope of SYMBIOSIS project [134] for the non-invasive monitoring of
coastal and deep waters. The purpose of the platform is to detect, localize, and monitor
fish stock from different target pelagic fish species, using a chain of acoustic and
optical detection systems and algorithms. Figure 5.5a shows a rendering of the acoustic
components in the upper portion of the SYMBIOSIS instrumentation. The top and
bottom cylinders host control hardware and batteries to operate the platform, whereas the
two cylindrical pieces of equipment facing right constitute the acoustic array considered
in our experiment. Each cylinder contains a software-defined USBL with modem
capabilities (SDM-USBL). Figure 5.5b shows the internal geometry of the unit via one
sagittal and one longitudinal section. Each SDM-USBL consists of a modem transducer
(at the geometric center of the USBL grid) and five receive hydrophones that surround it.
The hydrophones form a pentahedral, square-base pyramid having side length of 10 cm,
with one hydrophone per vertex. A set of commands enables the control of each SDM-
USBL. Relevant capabilities include: (i) storing a user-defined signal with a duration of
1024 samples (two bytes per sample) with a sampling frequency of 62.5 kHz; (ii) setting
the unit into a listening mode, where each hydrophone digitizes its received sound signal
synchronously and stores the corresponding samples into a buffer holding 51,200 samples
per channel; the sampling rate is user-defined, although the default rate of 62.5 kHz
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perfectly suits our deployment; (iii) reading acoustic data from the buffers; and (iv)
transmitting the stored signal through the central transducer.

Each SDM-USBL can operate in an “active” or “passive” mode. By triggering the
“active” mode, the SDM-USBL sends the stored user-defined signal and then stores 51,200
samples per acoustic channel; in the “passive” mode, instead, the unit does not transmit
any signal, but rather starts recording immediately. A sync-in signal allows us to trigger
the two units at the same time, thus sampling synchronously from both of them (10
channels in total).

While each stand-alone USBL would natively work as a fully capable localization
device, the SDM-USBL option and the external sync-in signals implemented by EvoLogics
in the context of SYMBIOSIS disable the USBL firmware, and rather make it possible to
collect acoustic samples synchronously from all channels. Therefore, each unit can double
as an acoustic array, and the synchronous use of multiple SDM-USBL units effectively
results in an array of opportunity, whose arrangement makes it equivalent to array 1 in
Section 5.4.

The setup of the SYMBIOSIS platform includes an NVidia Jetson TX2 board, mainly
used to control the optical components and run image recognition algorithms, which are
outside the scope of this work. In our setting, we performed all signal processing steps
offline. Through one of the Jetson’s general purpose input/output (GPIO) pins, we issued
the sync-in signal periodically in order to synchronously start recording from all of the
10 array hydrophones, while at the same time transmitting from the active target. This
resulted in one acoustic time series of 0.7 s per acoustic channel. We measured the
accuracy of the sync-in signal to be on the order of 200 ns, which is sufficiently accurate,
given the sampling frequency of 62.5 kHz.

With reference to the scheme in Figure 5.6, we control the equipment from the laptop
ashore (see also Figure 5.7b) using custom Python software. Once we issue the sync-in
signal, the Jetson board collects data in real time, and uploads them to the laptop ashore.
The software then processes the acoustic time series through the procedure of Section 5.2
to obtain DoA estimates.
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Figure 5.6: Conceptual organization of the experiment.

(a) SYMBIOSIS acoustic array on
the jetty of the Werbellin lake
marina.

(b) Real-time data acquisition and
offline processing on the jetty.

Figure 5.7: Photos of the deployment: (a) acoustic array of the SYMBIOSIS platform on
the jetty, before deployment; (b) ongoing experiment, showing a snapshot of a captured
signal on the laptop’s screen.

5.3.3.2. Experiment Setup

We performed our experiment on 13 June 2019. The weather remained mostly sunny
throughout the day, with little wind. The water temperature ranged from 19.4 ◦C at the
bottom, up to 21.5 ◦C near the lake’s surface.

Figure 5.8 sketches the deployment configuration: we lowered the SYMBIOSIS unit
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in the water near the jetty of the Werbellin lake marina (Figure 5.7a), and placed it on
the lake bottom at a depth of 7.5 m, so that the two units that constitute the array of
opportunity remained submerged at a depth of 6.7 m and 7.1 m, respectively. The red
arrow in Figure 5.8 denotes the location of the equipment and the reference (i.e., 0◦)
direction of the acoustic array. Additionally, we deployed a small motorboat carrying
an active target, namely a software-defined modem emitting linear chirp signals with a
duration of 10 ms in the 7–17 kHz band. The target transmitted one such signal every
2 s. The objective of this setup is to mimic the behavior of autonomous underwater
vehicles that issue heartbeat signals at fixed intervals, in order to signal their presence
and operational status. The task of the array is thus to estimate and track the bearing of
the chirp source. In our experiment, the depth of the active target is assumed to be known,
and is fixed to approximately 8 m. This is coherent with, e.g., the detection of underwater
vehicles or similar equipment, which typically embed accurate depth sensors, and can
communicate the corresponding data. An operator paddled the boat with the target
towards the acoustic array and slightly to the side throughout the experiment, as also
seen from the ground-truth trajectory of the target (the solid blue line in Figure 5.8), and
the reference orientation of the array (the red arrow in the same figure).

Figure 5.8: Geographical map of the experiment site near the Werbellin lake marina,
Germany. The red arrow on the jetty represents the location and the reference (i.e.,
0◦) direction of the acoustic array; the blue line and arrow represent the trajectory and
movement direction of the target throughout the experiment.

5.4. Emulation-Based Performance Evaluation

We now evaluate the performance of our algorithm in an emulated underwater
environment, according to the emulation setup described in Section 5.3.2.

Considering a target located at a distance of 100 m and a receive SNR of −20 dB,
Figure 5.9 shows the cumulative distribution function (CDF) of the azimuthal angle
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estimation error (left panel), of the depth estimation error (central panel) and of the
global location error (right panel) for the five array layouts introduced above. The most
interesting result is that array 2 (opportunistic 3 × 5-element pyramidal arrays) achieves
at least the same global location accuracy as array 3 (6 × 5-element rings with λ/2
spacing at 17 kHz), and rather shows better median and 80th percentile results, even if
array 3 has 30 elements, and array 2 has only 15. We can conclude that our technique
effectively coalesces the receptions of all elements in an array of opportunity, and yields
good location performance by filtering out spatial ambiguities.

In more detail, we observe that array 3 achieves the best azimuth estimates as
expected: e.g., it outperforms arrays 1 and 2, owing to the larger number of elements
placed along the azimuthal plane. It also yields a lower maximum depth estimation error,
but the rest of the CDF is better for the other arrays, which are vertically longer and
favor the multilateration approach. Array 2 also achieves a marginally but noticeably
lower azimuth error than array 1 because its 5-element pyramidal arrays are rotated
by 30◦ and 60◦, respectively, which yields a better discrimination capability over the
azimuthal plane.

The results suggest that arrays with elements at different heights typically perform
better than shorter arrays. For example, arrays 2 and 5 (having elements at 5 and 4
different heights, respectively) outperform arrays 1 (four vertical elements) and 4 (three
vertical elements). Array 2 also achieves the best 90th-percentile error (12.5 m). The good
azimuth and depth estimation accuracy of array 2 makes it a very good replacement of
array 3. Arrays 1, 3, and 4 show a larger maximum error, but the performance up to
the third quartile is comparable with that of array 3: this is remarkable, considering that
arrays 1, 3, and 4 have only 10 or 15 elements.

We analyze the performance of arrays 1 and 2 in more depth in Figures 5.10 and 5.11,
respectively. Here, we consider three different SNR levels of 0, −10 and −20 dB.
For array 1, we observe that the accuracy decreases significantly only for the SNR level
of −20 dB, for which the azimuthal angle and the depth estimation errors concur to yield
a large 90th-percentile error of about 130 m. The case is different for array 2: with
respect to array 1, the better multilateration performance yields comparably accurate
azimuthal angle estimates for all SNR values and slightly better depth estimates even at
an SNR of −20 dB. Altogether, these improvements drive the global location error to a
90th percentile of about 60 m, which is significantly lower than array 1’s.
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Figure 5.9: Localization error results for arrays 1 to 5, at an SNR of −20 dB: azimuthal
angle error (left); depth error (center); and total location error (right).
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Figure 5.10: Localization error results for array 1 at different SNRs of 0, −10 and −20 dB:
azimuthal angle error (left); depth error (center); and total location error (right).
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Figure 5.11: Localization error results for array 2 at different SNRs of 0, −10 and −20 dB:
azimuthal angle error (left); depth error (center); and total location error (right).
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From the above results, we conclude that the triple pyramidal structure of array 2
yields the best trade-off between azimuthal and elevation angle estimation capabilities
among the tested array layouts, provided that side information is available to correct the
ambiguity arising from the spacing larger than λ/2 (such as our TDoA-based mask). More
broadly, we also conclude that our algorithm is a promising solution to achieve satisfactory
array performance when multiple smaller sub-arrays are opportunistically combined into
a larger array.

5.5. Lake Experiment Results

In this section, we present the results of the lake experiment whose configuration and
setup are described in Section 5.3.3.

We start with Figure 5.12, which shows azimuthal angle estimates for different array
processing techniques applied to the acoustic array of opportunity that is part of the
SYMBIOSIS platform. We recall that we assume the depth of the target to be fixed and
equal to 8 m throughout the experiment. We apply our algorithm to different parts of
the array, and specifically: (i) only to the top sub-array (light blue triangles facing up),
(ii) only to the bottom sub-array (dark-grey triangles facing down), and (iii) to the full
array of opportunity (purple diamonds). Grey “+” markers show the angle estimates
yielded by multilateration. Throughout the experiment, the target transmits 20 signals,
numbered from 0 to 19 in Figure 5.12. Each marker thus indicates the azimuthal angle
of arrival estimate (x-axis coordinate) for each transmission and for the corresponding
array. We also depict a solid blue line to denote the ground truth of the target’s angle of
arrival as inferred from the GPS tracker’s readings (cf. Figure 5.6).

We observe that our method estimates the angle of arrival from the target very well.
On the one hand, it avoids the sometimes largely erroneous estimates that would be
computed by using only either of the two pyramidal sub-arrays (e.g., the erroneous
estimates around 50 and 210–240 degrees). On the other hand, our technique fuses
information from the two sub-arrays, achieving a more accurate estimate, even when each
sub-array would already be satisfactorily accurate. For example, the latter is the case
of the sets of readings corresponding to transmissions 0, 1, 18, and 19 in Figure 5.12.
Notably, resorting only to multilateration would not yield accurate results, as observed
from the several markers located off the ground truth line. Still, multilateration is a good
source of side information for ambiguous peak removal, and helps discriminate among
different equivalent peaks even when the estimate is slightly off, as for transmissions 3, 5,
16, and 17. Only for transmission 10 does the inaccurate multilateration estimate offset
the DoA estimate.

We summarize the statistics of the experimental results in Figure 5.13, which shows
the CDF of the azimuth estimation error (left panel) and of the total location error
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(right panel) for all configurations considered in Figure 5.12. Operating the full array of
opportunity with 10 elements consistently yields the most accurate results. In particular,
the 90th percentile of the azimuth error (also shown in the legend for clarity) is only
4◦, as opposed to 16◦ when operating only the top array, 106◦ when operating only
the bottom array, and 135◦ when resorting to pure multilateration in order to localize
the target. The only large outlier for the full array of opportunity corresponds to
transmission 10’s wrong multilateration estimate, which induces a wrong masking of the
delay-sum estimator’s output and offsets the angle estimate.

As expected, accurate azimuthal angle estimates translate into more accurate total
location error estimates. In our experiment, we achieved a 90th percentile of the location
error of 5 m using the full array of opportunity. This value is 5 to 16 times less than the
error yielded by operating only the top and bottom sub-arrays, respectively, and 12 times
less than the error yielded by multilateration.
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Figure 5.12: Results of the target localization experiment in the Werbellin lake using the
SYMBIOSIS array of opportunity (cf. Section 5.3.3.1). While moving, the active target
transmits every 2 s for 20 times. Each marker represents the azimuthal angle of arrival
estimate (x-axis coordinate) for each transmission and for the corresponding array (light
blue triangles: top sub-array; dark-grey triangles: bottom sub-array; purple diamonds:
full array of opportunity). Grey “+” markers show the azimuth estimate yielded by
multilateration. Our algorithm enables the opportunistic use of two pyramidal arrays,
and makes it possible to improve the azimuth estimation accuracy with respect to using
a single sub-array or multilateration per se.
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Figure 5.13: CDF of the azimuthal angle estimation error (left) and of the total location
error (right) achieved in the lake experiment, showing the performance of our method as
applied to different portions of the array of opportunity, as well as multilateration.

5.6. Summary of Results and Discussion

The results presented in Sections 5.4 and 5.5 show that our solution is a viable
underwater observation and telemetry approach. Our key proposition revolves around the
concept of acoustic array of opportunity: our algorithm is designed to exploit multiple
acoustic sub-arrays or sets of acoustic receivers operating together, and rules out spatial
ambiguity issues by leveraging side information from rough location estimates.

The most important implication is that an array of opportunity achieves similar
performance as other standard arrays having a larger number of receiving elements and
a properly designed topology. This is shown in Section 5.4, where a 15-element array of
opportunity is shown to outperform or yield equivalent results as a 30-element cylindrical
array. Besides this advantage, our technique may obtain extra value from underwater
reception equipment that would otherwise be impossible to merge into an array, yielding
economical benefits.

Our experiment results also show that relying only on multilateration would not yield
results as good as our algorithm (e.g., our scheme yields a 90th-percentile location error
of 5 m, whereas multilateration yields 60 m). Our approach, therefore, can harvest the
value of multilateration as side information to improve the accuracy of wideband DoA
estimation.

As a final remark, our scheme embeds a wideband delay-sum DoA estimator, which
lower-bounds our complexity and running time. However, all additional components, such
as DBSCAN and the multilateration step, complete their execution in a negligibly small
time. For example, the Julia [135] implementations of the bandpass filter, normalized
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matched filter, clustering, and multilateration steps complete in approximately 3.7 ms,
10.8 ms, 0.6 ms, and 0.05 ms, respectively, when run on the CPU of the Jetson TX-2
board employed in our experiments. We note that the Jetson’s CPU is much slower than
the CPU of the laptop we used to process acoustic receptions.

5.7. Conclusions

In this chapter, we presented a wideband DoA estimation algorithm for arrays of
opportunity that coalesce smaller sub-arrays into a larger array, possibly not respecting
optimal spacing constraints. We proposed to solve the spatial ambiguity issues that affect
such arrays by augmenting a delay-sum DoA estimation algorithm with side information
from multilateration.

Our results show that the proposed scheme yields low 3D DoA estimation errors and
therefore good localization results. We test our algorithm both emulating real signal
reception with the help of actual clutter and noise recordings and in a lake experiment
using real underwater arrays in a realistic setting. In both cases, our results show that our
algorithm is robust and achieves consistently good estimation performance, often requiring
a lower number of elements than typical array topologies with proper λ/2 spacing.

Future work along the lines of this contribution includes a real-time implementation
and test of our algorithm on embedded computers. We also plan sea experiments with
different types of targets as well as with larger arrays.





6 Localization and tracking of
pelagic fish: the SYMBIOSIS

sea trials

6.1. Introduction

In this chapter, we describe a relevant application of the algorithm presented in
Chap. 5, namely the localization and tracking of pelagic fish. An opportunity to test
the algorithm in this specific setting came in the context of the experimental campaigns
carried out under the umbrella of the EU H2020 SYMBIOSIS project [134]. This project
targets the long-term, single-location monitoring of underwater environments, with the
objective of detecting and measuring the presence, density, and variety of marine fauna
species. The SYMBIOSIS platform is a hybrid optical-acoustic system: its design revolves
around a chain of progressively more accurate detection, localization, tracking and image
acquisition steps. The main stages are as follows:

Coarse detection: the platform emits a 10-ms narrowband signal and processes
it through a neural network, attempting to understand whether or not there exists
some possible target in the surroundings.

Accurate detection: the platform transmits a sequence of 20 linear chirp signals,
in the bandwidth from 7 to 17 kHz, where each chirp signal has a duration of
10 ms, and transmissions happen every 1.7 s. This phase confirms the presence of
a target with greater accuracy than the coarse detection step, using a combination
of clustering, neural network, and signal processing algorithms.

Localization and tracking: in parallel to the accurate detection step, we run
our localization and tracking algorithm. For the specific case of the SYMBIOSIS
platform, we adapt our algorithm as described in Section 6.2. The overarching
objective of this step and of our contribution to SYMBIOSIS is to enable the
prediction of fish trajectories in the vicinity of the platform. As the algorithm
infers that one or more specimens are getting closer to the platform, it signals
the platform controller to start image and video acquisitions from the underwater

99
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cameras attached to the platform.

Optical acquisition and processing: if detections are successful, the system
records and processes images and videos: recorded images and frames are processed
to detect the presence of fish specimens, extract bounding boxes that identify the
specimens’ position within the image or frame, and classify them using neural
networks.

Several experiments were organized throughout the duration of the SYMBIOSIS
project: an early-stage experiment is described in Chap. 5; subsequent experiments carried
out in the context of real longer-term deployments of the whole SYMBIOSIS platform
are described in this chapter. These experiments made it possible for us to test the
capabilities of our localization and tracking algorithm in relevant scenarios.

Before delving into the results of the SYMBIOSIS experiments, we would like to
thank the SYMBIOSIS project partners and collaborators that made the realization
of these experiments possible. We especially thank the University of Haifa personnel,
that materially carried out the largest majority of the scheduled activities at sea, and in
particular the project coordinator, Dr. Roee Diamant.

6.2. Summary of the main extensions for the localization
algorithm

The 3D localization of underwater marine fauna requires to accurately estimate the
range and bearing underwater objects. The SYMBIOSIS platform enabled this capability
by providing recorded acoustic information from a total of ten hydrophones, grouped
into two units of five hydrophones each. Each unit is a commercial off-the-shelf (COTS)
ultra short baseline (USBL) pyramidal array having a square base with 10 cm of side
length, and a height of 7.07 cm. The manufacturer of the USBL arrays and SYMBIOSIS
project partner EvoLogics GmbH reconfigured each unit to disable pre-programmed USBL
functionalities, and just output recorded acoustic samples.

In order to provide a full solution for the detection, localization and tracking of
underwater fauna, we extended and updated the algorithm presented in Chapter 5. The
extended version of the algorithm includes the detection of possible targets, the removal of
stationary acoustic arrivals (that typically result from reflections of transmitted signals off
environment features and platform parts), and the tracking of detected targets. Therefore,
the algorithm has to consider historical information from different acoustic records taken
over time.

To cover an area with about 500 m radius around the platform, in each cycle the
system records 0.7 s of acoustic data. Additionally, it takes about 1 s to save it and pass
it to the algorithm, thus each record cycle takes about 1.7 s. Given the time constraint,
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working on a very large acoustic dataset covering a long time span would imply that
output location information will be likely outdated. However, the modified algorithm
requires a sufficiently large number of acoustic records in order to achieve the desired
level of accuracy. In order to find a good tradeoff between the above constraints, it was
decided to process data with batches of 20 consecutive records. In the following, we detail
how we extended and modified the localization algorithm presented in Chap. 5.

Target detection
As discussed in Sec. 5, the basic detection step of the localization algorithm works
by clustering peaks from a Normalized matched filter (NMF) output from multiple
channels, where we recall that each acoustic channel is the output of a different
array hydrophone (see Fig. 5.2). Each target detection is recorded into a database of
target detections. Due to the multipath nature of the underwater acoustic channel
and to the multiple reflections from environmental features, the algorithm may
output multiple detections even when there is no fish around the platform. These
detections correspond to stationary reflections from the water surface, or from parts
of the platform itself.

Stationary arrival removal
Stationary arrivals are expected to be very stable and consistent over time. In order
to remove such detections, we propose a conservative stationary arrival definition:
if a detection is present in all 20 records and the speed of the moving target is below
0.01m/s, we consider the object as a stationary one and remove it from further
processing. In order to do so, we present the target detections information as a 3D
space matrix (range of detected arrival, time of record and total NMF value of all
peaks clustered in previous step). Then, we perform another clustering step based
on DBSCAN, where we set the algorithm’s cluster radius parameter to fit the speed
limit, and we impose that the minimum number of points in each cluster should be
equal to the minimum number of records in which the detection is present. Our
stationary arrival definition is inspired by several experimental results. For example,
in Fig. 6.1 we present two seemingly stationary arrivals which were, instead, slowly
moving targets. Results like this confirm that the choice of a maximum speed
of 0.01 m/s is appropriate, as larger speed would mistakenly label slowly moving
targets as stationary.
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Figure 6.1: Detections related to two seemingly stationary targets over a window of 20
transmissions.

Path tracking After stationary arrivals are removed, there are still multiple
detections that do not fit into our requirements (e.g., single random reflections from
bubbles, or targets moving too fast, such as motor boats). In order to filter these
targets out, and leave only targets with speed that fit to desired parameters, one
more clustering step is performed.

Once the target is tracked, we run the localization algorithm. As an output, the
algorithm provides information whether any target with desired parameters was detected.
If true, it calculates the average speed, the 3D coordinates of the target of interest (using
the direction of arrival (DoA)-based approach in Chap. 5) and estimates the time when
the target may approach the platform and become visible to underwater cameras. The
outcome of the algorithm serves as a trigger to start a camera recording at the estimated
time of arrival (ETA).
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Figure 6.2: Extended version of 3D localization algorithm with tracking. The new parts
of algorithm with respect to the one presented in Chap. 5 are colored in green.
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6.3. Experiments at the deep-water THEMO mooring

THEMO is a marine observatory that was designed and installed in the eastern
Mediterranean sea, in the context of a collaboration between the Texas A&M University,
USA, and the University of Haifa, Israel. The observatory consists of two moorings: the
shallow THEMO mooring, located in an area with about 120 m of depth, comparatively
close to the Israeli coastal zone, and the deep THEMO mooring, located about 50 km
away from the shore, where the sea depth reaches about 1500 m. The full description
of the THEMO moorings can be found in [95]. During the development stage of the
SYMBIOSIS project, several experiments were performed near THEMO deployments.

(a) (b) (c)

Figure 6.3: THEMO SYMBIOSIS deployment: a) THEMO marine observatory b)
SYMBIOSIS platform with 2 USBL units during the deployment process c) Scheme of
SYMBIOSIS’s acoustic array with three USBL (courtesy of EvoLogics GmbH).

Our experiment took place near the deep THEMO mooring [136]. Here, SYMBIOSIS
personnel used a boat to release a rehabilitated turtle. The acoustic part of the
SYMBIOSIS platform that consisted of 2 USBL elements with 5 hydrophones each. An
underwater transmitter sent a chirp signal every 0.11 s, and each USBL unit record
one acoustic file per channel. Each file contains 20 segments of 0.7s each, with a small
technical pause in between segments and a slightly bigger pause between file records,
required to save file on a storage unit. This technical feature explains the uneven time
spacing between transmissions and causes interruption in detected path segments. We
synchronize different recordings using the first arrival as a reference.



104 Localization and tracking of pelagic fish: the SYMBIOSIS sea trials

Figure 6.4: Deep THEMO dataset. a) NMF output with relevant peaks b) Azimuthal
plane localization c) path tracking

Fig. 6.4a shows a comprehensive view of all relevant normalized matched filter peaks
from both USBLs. Each peak represents a reflection from environment or target registered
at one of the channels of receiver array. The x-axis represents the peak observation time
relative to the start of a given transmission, whereas the y-axis reports the transmission
count for each signal sent by the SYMBIOSIS platform (earliest transmissions at the
bottom).

The strongest peaks are clearly earliest in the figure, and related to strong reflectors
in the environment. Yet, a cluster of peaks starting just before transmission 300 suggests
a target getting farther from the ship (as inferred from the increasing observation time
of the corresponding peaks). This is compatible with the turtle’s release, as the animal
swam linearly away from the releasing ship. We note that the trajectory of the animal is
composed of two sets of points, one showing a linear movement, and a second set composed
of detected target reflections around such a linear trajectory. This is due to some elements
of the SYMBIOSIS array being shadowed by other construction components of the array,
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and showing a slight jitter in the sampling times. Still, the matched filter peaks are very
well connected and compatible with a trajectory of a moving target.

While our algorithm can operate with multiple sub-arrays joined together, one of the
key assumptions for this is that element sampling is synchronous. In SYMBIOSIS, this
was realized through a sync-in signal sent by the central embedded system to all software-
defined sub-arrays. Unfortunately, this signal experienced a malfunctioning during the
experiment. Therefore, we employed the rest of the data from the deep THEMO site to
also refine the capabilities of the localization algorithm. We tuned the parameters of the
detection steps (and in particular, of the clustering step) in order to localize targets
independently from each software-defined USBL array mounted on the SYMBIOSIS
platform. In the worst case, this would allow us to use a single USBL unit to localize
targets by choosing the one with the best output in terms of signal-to-noise ratio.

The deep THEMO deployment represented a perfect opportunity to verify and tune
the capabilities of the algorithm to discriminate between static and slowly moving targets.
Fig. 6.4c represents automatic isolation of relevant target reflections and target tracking.
We observe a stationary arrival detected (blue dots at about 0.01 s) that is probably a
reflection from parts of the deployed platform. It was successfully removed from further
processing by our algorithm. For each trajectory segment, our algorithm reports three
values corresponding to the movement speed, to the average distance throughout the
detection, and to the number of transmissions in which the target was identified. We
show such values close to each trajectory segment in the figure for clarity. Fig. 6.4b
shows the result of fine localization algorithm in azimuthal plane. The algorithm shows
consistent and slowly changing bearing angle estimates as the turtle swims away.

6.4. Eilat deployment

The Eilat deployment was performed during November 2020 in the Israeli Red sea,
and lasted about 2 weeks. The deployment involved the whole SYMBIOSIS platform,
including surface Radio Frequency (RF) communication units to enable a radio link to
the platform from a shore location. The platform was deployed at about 5 m of depth, and
500 m away from the shore. The area where the platform was deployed is an extremely
challenging acoustic environment. In contrast with the deep THEMO deployment, where
reflections from bottom are barely noticeable, the relatively small depth of the Eilat
deployment (below 30 m), and the many coral reefs on the bottom of the Red sea create a
very rich multipath acoustic channel. Reflections from environmental features are usually
stronger than those from small fish, which makes the detection task particularly complex.
Moreover, fish detections are rare in this area at this time of the year, as confirmed by
biologists collaborating with the SYMBIOSIS project.

For this deployment, we analyse a part of the dataset that consist of about 1 working
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Figure 6.5: Eilat dataset. NMF peaks from over 4600 transmissions. Each peak is
represented with a light blue transparent dot. The opaqueness of the dots represents the
density of NMF peaks.

day of records. The relevant NMF peaks are presented in Fig. 6.5. The opaqueness of
the dots represents the density of peaks in the area of interest. This picture confirms our
hypothesis that the peak density is a good indicator of the presence of a reflecting object.
We remark that several attempts to tune the sensitivity of the platform were performed
initially, as shown by the greater level of noise at the beginning of the data set, as well
as by the stationary arrivals (that appear as vertical lines in the figure), whose intensity
increases and decreases between transmissions 800 and 4500. We will now focus on the
last 1650 transmissions.

Fig. 6.6 shows a closer look at the waterfall of acoustic sample values for one acoustic
channel of one software-defined USBL unit. In the figure, green hues represent the noise
level, whereas yellow hues convey a stronger signal. The figure shows once more that array
processing is paramount for underwater target detection even before accurate localization:
the signal corresponding to the target is buried in noise, it remains invisible to manual
inspection, and needs to be matched with additional acoustic channel outputs in order
to improve the signal-to-noise ratio. In fact, simple signal thresholding would not enable
reliable target detections. The Fig. 6.7 shows results from our proposed algorithm. After
applying all clustering steps, the algorithm could detect multiple target (depicted in
orange) and stationary arrivals (depicted in blue). We note that some arrivals did not
fit the conservative conditions of stationary arrival definition, however most of them are
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Figure 6.6: Eilat dataset. Waterfall matrix that represents raw acoustic data from one of
the USBL channels for transmissions 3000-4600.

removed from further processing. Then the algorithm tracked several segments of path
of some moving target.

As a final summary, Fig. 6.8 provides the statistical distribution of target detection
features throughout the Eilat deployment. The three panels show the distribution of the
azimuthal angles of arrival of all target detections (Fig. 6.8a), the distribution of the
speed in m/s for each path tracked (Fig. 6.8b), and the distribution of the distance of
the targets found (Fig. 6.8c). In line with previous results, we observe that there was a
cluster of detections at about 100°, and a second cluster at 330°. Considering only the
paths tracked, most of the detected targets were moving slowly, at less than 0.1 m/s.
Most targets were detected at a distance of more than 250 m from the platform.

6.5. Conclusions

In this chapter, we summarized our work on the validation of the localization and
tracking algorithm of Chap. 5 in real sea environments, where the task of the algorithm is
to detect and track marine fauna specimens, in order to establish when fishes would come
sufficiently close to an underwater platform. The algorithm forecasts when fish targets
approach the platform and triggers image acquisitions from the platform’s cameras.

To seize the opportunity of these deployments and validate the localization
algorithm, we adapted several aspects of it, in order to tackle some specific challenges
of the project. With respect to the version of Chapter 5, the extended version
presented in this chapter can not only localize, but also to successfully detect and
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(a) Results of detection and tracking algorithm.
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(b) Localization in depth plane
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(c) Localization in azimuthal plane

Figure 6.7: Eilat dataset. a) NMF relevant peaks. Each dot represents a cluster of
peaks with a possible target detection. Blue dots represent clusters that are defined
as stationary. Lines represent clusters that are detected as possible target tracks
with relevant speed. b) Depth plane localization of relevant target tracks limited by
environment boundaries c) Azimuthal plane localization. Orange points represent all
relevant target tracks. Other colors represent corresponding parts of relevant target tracks
after filtering out detections with depth out of boundaries.
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(a) Distribution of the
azimuthal angles of arrival for
each detected target

(b) Distribution of the speed
for each targetpath tracked;

(c) Distribution of the average
distance throughout eachtarget
path tracked

Figure 6.8: Eilat dataset: Statistics of detections.

track underwater targets. We adapted the software to work in the presence of
various challenges including lack of synchronization, changing number of acoustic
channel recordings and various transmission parameters.

We have tested the proposed algorithm in various natural water basins. Besides
sweet water lake experiments in Chap. 5, we were able to test it in various salty water
deployments. In this chapter, we consider two different tests environments: one in
relatively deep waters in the Mediterranean sea, and another in very shallow waters
in the Red sea. The results of both tests proved that the algorithm discriminates
the environmental features of acoustic reflections from other target reflections of
interest. In both cases the estimated information of target movements corresponds
to the expected ones.

Summarizing the results of these tests, the outcomes show that the algorithm can
localize not just highly reflective or active targets as in the tests of Chapter 5, but also
smaller and weaker targets such as the fish species of interest for the SYMBIOSIS project.
The algorithm works as expected in different environments. Further work in this area
may consider further improvements of real-time signal processing performance through
embedded graphical processors.





“How inappropriate to call this planet "Earth," when it is clearly "Ocean".”

Arthur C. Clarke (1917 - 2008)

7 Conclusions

Accurate, energy-efficient and minimally invasive underwater localization is an
important step for many ocean sciences. In this thesis, we have tackled various aspects of
underwater ranging and localization. We have identified several research challenges posed
by the underwater acoustic propagation environment, and proposed algorithms to deal
with these challenges. The key outcomes of this work are the following:

1. We studied the accuracy of range estimation based on time difference of arrival
(TDoA) of multipath replicas under different conditions, and proposed a cost- and
energy-efficient solution to improve range estimates in the presence of non-linear
propagation without using additional equipment. Future extension of this problem
may include an in-depth analysis of arrival history, in order to improve the matching
between measured data and the geometry of the environment.

2. We proposed and evaluated a non-invasive and computationally effective algorithm
for the localization of acoustically active underwater objects including vocalizing
marine animals or autonomous underwater vehicles (AUVs). The proposed solution
relies on a single hydrophone receiver. Further improvements in the computational
effort may be achieved by optimizing the grid of locations used to characterize the
environment (e.g., making the mesh finer at increasing distance and more coarse
closer to the single receiver.

3. We designed an algorithm for the 3D localization and tracking of underwater targets
that works with wideband acoustic arrays of arbitrary shapes, including those
that do not obey proper array element spacing constraints. We demonstrated
its effectiveness in several experiments and sea trials. Further extensions of this
algorithm can tackle cases with imperfect array assembly and synchronization issues.

Overall, this work has shown the effectiveness of using additional information about
acoustic signal propagation and its benefits in further application of this approach in
similar problems.
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A ASUNA: A topology data set
for underwater network

emulation

Underwater communication devices have been steadily improving over time in terms
of both reliability and bit rate [137], and can be arranged into underwater acoustic
communication networks (UWANs) to support a broad variety of applications [138].
A multitude of protocols have been designed for UWANs to date, providing different
functionalities at different layers of the ISO/OSI protocol stack [139–141].

Sea trials are considered a good option to test the performance of UWAN protocols.
However, organizing and performing a sea experiment is usually time-consuming, effort-
intensive, and implies high costs in terms of materials, rental of ship time, purchase,
transport and deployment of underwater transceivers, etc. Moreover, sea experiment
results are related to a local set of environment and channel conditions, which makes it
difficult to extrapolate the results to different environments. Finally, a single experiment
does not allow a fully fair comparison between algorithms.

As a result, simulations are often preferred when evaluating the performance of newly
designed protocols against competing approaches in the literature. Simulations make it
possible to approximately evaluate communication protocols and schemes by abstracting
from specific hardware issues. However, on the one hand there are no statistical models
of the underwater acoustic channel that are broadly agreed upon, so that a realistic
simulation often has to rely on complex numerical propagation modeling (e.g., [30]); on
the other hand a full-fledged evaluation must take into account the many practical issues
that occur in actual underwater scenarios. This includes the time-dependency of the
acoustic channel, the conditions of actual underwater environments, and possibly the
behavior of hardware devices.

Hardware-in-the-loop systems are one of the means to improve the agreement
between simulated protocol performance and actual performance at sea, at least in
terms of the peculiarities of underwater transceivers. Examples of frameworks offering
hardware-in-the-loop capabilities include DESERT Underwater [142], SUNSET [143],
UNetStack [144], Aqua-Net-Mate [145], NETSIM [146], as well as the software-defined
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cognitive communications architecture presented in [147]. These capabilities are made
possible by interchanging the procedures that simulate underwater propagation and
compute link budgets with software drivers for specific underwater modems. However,
even the hardware-in-the-loop concept can reproduce actual underwater propagation and
the variation thereof over time only to a limited extent.

The above discussion leads to the conclusion that, in the absence of both a fully
detailed simulation model of an underwater acoustic communication system and of the
resources to organize a sea experiment, a reliable performance evaluation method should
preferably involve recordings from a real sea environment.

For the design and test of point-to-point underwater communication systems in
realistic conditions, the community often resorts to publicly shared communication
datasets in order to reproduce the broadest possible span of underwater channels (e.g.,
long or short delay spread, heavier or milder Doppler spread, single or multiple receivers,
etc.). Examples include the measurements presented in [148], the SPACE08 and the
KAM11 datasets, employed among others in [149–152]. More recently, the release
of the Watermark benchmark [153] makes it possible to reproduce the distortion of
acoustic waveforms transmitted through underwater channels that are either measured
or stochastically replayed.

In the following, we propose a similar solution for the testing of underwater network
protocols, named ASUNA, for “A shared underwater network emulation dataset.” ASUNA
is a collection of measurements from multiple sea experiments, and aims to be the first
freely shared database that enables the replay of underwater acoustic networking trials,
often referred to as emulation. To the best of our knowledge, this is the first attempt
to assemble a dataset for the direct evaluation of the performance of network protocols.
ASUNA provides a collection of time series of link quality indicators, collected over time
during several sea experiments at different locations around Europe, Israel and West
Africa. These experiments are representative of a broad set of conditions: different
numbers of nodes, different deployments resulting in multiple network topologies, different
transceivers, and multimodal setups (where communications are realized through a set of
orthogonal technologies). Once this data has been loaded into a network emulator, the
link quality time series can be used to reproduce the same realistic performance that could
be experienced at the same location and time each experiment had been carried out. As
a result, the user can evaluate networking solutions with a degree of accuracy that stands
in between a simulation and a full-fledged sea experiment, in a fully reproducible setting,
without having to actually go to sea.

In total, ASUNA includes 22 network topologies from 7 different sea experiments, for
a total of more than 10 hours of underwater data packet transmissions. We make the data
available in an Octave/Matlab format, so that it can be easily manipulated, converted to
other formats, as well as integrated into existing Octave/Matlab code. For each dataset,
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we document the experiment it is extracted from, so that the user knows the experiment’s
location and time; the location of the nodes; the conditions of the water body at that
time; and the types of link quality measurements available for that experiment. The
metrics provided by the dataset so far include received signal strength, bit error ratios,
and “1/0” indicators conveying whether a given packet would be received correctly or
not if transmitted at a given time. Different metrics may be embedded in the future as
additional datasets are added to the collection.

Along with the database, we provide a network emulation code as an example of
how to use ASUNA. The emulator runs a simple time-division-multiple-access (TDMA)
protocol over the recorded topologies. Yet, by no means is the usage of ASUNA confined
to such a solution.

While there is some novelty in our approach and it has been recently endorsed that
reproducible and interactive research results bear significant value for the underwater
community [154], the focus of this appendix is on the tool per se, rather than on novel
results obtained through it. In the following, Section A.1 provides an account of related
work; Section A.2 describes the ASUNA dataset; Section A.3 discusses the emulator
provided with the dataset and some results obtained with it; Section A.4 concludes the
work.

This work is a collaboration among several researchers and institutions. Our
contribution involved the processing of sea trial data, the harmonization of the datasets
throughout different experiments, and the programming of a demonstration code that
exploits the dataset for emulation purposes. The code has been used to provide the
results in this appendix.

A.1. Related Methods

In terrestrial radio networks, it is customary to evaluate the performance of wireless
networking protocols by means of simulations, supported by different types of channel
models [155–157]. Initial studies on channel modeling for underwater networks followed
the same approach. For example, [158] modeled packet errors from the SubNet09
campaign using Markov and hidden Markov models. Typical statistical distributions
of large-scale underwater channel gain [87,159,160] have been observed to be valid across
a number of channel measurements.

Besides simulation, network performance can be evaluated through emulation or trace-
based simulation. Emulation refers to the use of realistic networking hardware, or to
the execution of actual applications on top of hardware components that reproduce the
behavior of wireless networking equipment. For example, this implies running complex
channel models in real-time in some dedicated hardware. Trace-based simulation [161–
163], also described as channel replay-based, relies on the recording of the time series
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(or “traces”) of link quality metrics [164]. This makes it possible to exactly reproduce
the same wireless channel conditions repeatedly, and to test different protocols in fully
comparable scenarios. For tests that do not require to learn the channel evolution over
time, the evaluation can be extended by suitably scrambling the measurements so that
channel properties remain statistically coherent [165,166].

In the underwater community, several works have tackled the reliable and
validated reproduction of the communications performance measured during experimental
campaigns. These studies mainly focused on the physical layer. For example, [148]
proposed to collect underwater channel recordings in order to reproduce the impact of
the acoustic channel on underwater modulation schemes. The collected dataset includes
channel estimates from several sea experiments. More recently, Watermark [153] has been
released as a benchmark for underwater modulation schemes. Watermark is based on
the validated MIME tool, which enables both direct and stochastic underwater channel
replay [151, 167]. In some cases, channel estimates can be directly obtained through
deployed infrastructure that is shared with the community at large, typically for limited
periods of time and under some form of collaboration agreement. This includes the NATO
CMRE LOON [168], the equipment of Ocean Networks Canada [169], the SUNRISE
testbed federation [170], as well as permanently online infrastructure such as the THEMO
observatory [171].

Besides direct and stochastic channel replay, other methods have been considered to
enable model-based channel reproduction. For example, in [172] the authors propose to
evaluate the reliability of underwater communications through the multipath structure of
previously measured underwater channels, which can be evaluated using numerical models
rather than sea experiments. Realistic channel simulations obtained through the Bellhop
ray tracing software [30] have been incorporated in the World Ocean Simulation System
(WOSS) [27], a framework that automatically retrieves the environmental information
required by Bellhop in order to compute attenuation figures and channel impulse
responses. A similar integration of models based on parabolic equations in network
simulations is discussed in [173]. Like many other channel simulators, both Bellhop
and a parabolic equation solver present the issue that their output is deterministic
for fixed boundary conditions. This was addressed, e.g., in [87], which provides time-
varying channel realizations as would result from the movement of the transmitter and
receiver around their nominal locations. When numerical models or stochastic replay
are not sufficient, hardware-in-the-loop systems offer one additional degree of realism
by allowing network protocol code (typically written for simulations) to run on actual
underwater transceivers. Examples of this approach include DESERT Underwater [174],
SUNSET [143], UNetStack [144], Aqua-Net-Mate [145] and NETSIM [146].

Replicating a real underwater communication experiment in network simulations is
often challenging and necessarily leads to approximations. Typical approaches include:
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placing nodes at random in an area and using acoustic models to predict the success of
packet transmissions [10, 175–178]; simulating node motion, especially in the presence of
autonomous underwater vehicles (AUVs) or other types of mobile nodes [179–182]; letting
nodes drift, e.g., by using water current models [183–185]; and injecting the acoustic noise
generated by ships and AUVs navigating near the network deployment [186].

While the above methods approximate realistic scenarios to some degree, only in
sea experiments can all the details of actual underwater communications be taken
into account. Experiments with a large number of nodes were demonstrated by large
organizations or collaborations. Relevant examples include the joint TNO/FFI tests
on the NILUS node [137] (7 nodes); the collaborative experiments promoted by the
NATO STO CMRE, such as CommsNet13 [187] (up to 9 nodes); the MISSION 2013
campaign [144] (10 nodes); the final sea trial of the RACUN project [188] (15 nodes); as
well as the Jaffe lab sub-mesoscale ocean sampling experiment, featuring 5 static pingers
and 13 passive drifters [189].

Besides their complex logistics and cost, underwater networking experiments still
capture only the local conditions of the underwater channel at a single location and time:
such conditions are not easily extrapolated to different times and scenarios. Through
ASUNA, we provide a number of experiment traces, each conveying recorded time series
of link quality metrics for all links of several networking experiments. Our objective is to
grow ASUNA into a rich and significant benchmark tool through contributions from the
community: however, the experiments initially provided already represent a number of
different conditions. ASUNA enables “network replay” in a form similar to [10] and [190],
which employed previously recorded time series of the signal-to-noise ratio (SNR) or of
successful packet receptions in order to test the performance of underwater scheduling and
routing protocols, respectively. There are also similarities with the physical layer replay
capabilities of the architecture in [147]. However, while the focus of the above approaches
is on the performance evaluation of specific protocols or communication architectures, our
objective here is to provide a growing collection of network communication traces. In doing
so, we aim at making available a tool that remains positioned between pure simulation
and pure experimentation, and that joins the repeatability of trace-based simulation with
the rich representation of environments and contexts provided by a sea trial database.

A.2. Description of the Dataset

A.2.1. Overview and link reliability measurements

The ASUNA database is available for download at https://sites.google.com/marsci.
haifa.ac.il/asuna/. ASUNA’s databases are basically constructed as time series of link
reliability metrics opportunistically collected from UWAN experiments at sea. In each

https://sites.google.com/marsci.haifa.ac.il/asuna/
https://sites.google.com/marsci.haifa.ac.il/asuna/
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experiment, one or more network topologies were tested.
Link reliability signifies the integrity of the communications between adjacent nodes.

It enables hard decisions about the existence of a link (e.g., by setting a threshold on the
metric) or, alternatively, soft decisions (e.g., tying the bit error ratio to the probability of
packet error). The link reliability is typically a time-varying property. This is especially
true for underwater acoustic communications, where the channel impulse response and the
ambient noise tend to change rapidly. While emulating physical layer reliability requires
a fine time resolution (at least matching the symbol rate), the resolution constraint can
be relaxed for the evaluation of underwater networks, where the most important aspect
is typically the average (rather than instantaneous) link performance throughout the
duration of a packet. In our experiments, we either (i) collected data on a per-packet
rather than per-symbol basis, or (ii) relied on link metrics returned by the modems. The
latter are derived either from a packet’s preamble, or by observing whether packets are
successfully received. We remark that such phenomena as flickering (a condition by which
a link appears and disappears at a fast rate in the network’s topology) are still present
in our topologies at packet transmission time scales, and still enable the evaluation of
adaptive protocols that specifically react to such phenomena.

We employ both physical layer and network layer metrics to characterize the link’s
reliability. Depending on the experiment, we provide: bit error rate (BER) values
computed as the ratio of correctly received bits over the total number of bits in a received
packet; Received Signal Strength Indicator (RSSI) values related to voltage readings at
the receiver upon packet reception, or 1/0 flags that convey whether a link is available
or not at a given time epoch. While these metrics can serve for experiment replay,
future contributors of ASUNA are welcome to also record quality indices that are more
specific to the setup of their experiment including, e.g., the packet error rate (PER)
packet error ratio (PER) or the link throughput.1 We remark that the datasets of
ASUNA are opportunistically extracted from experiments originally designed to test
specific communication protocol and schemes. As a consequence, the availability of link
metrics depends on the logs collected from the experiment, and may vary across different
sea trials. Moreover, the experiments were not necessarily focused on collision modeling.
We leave the collection of collision-specific datasets to future extensions of ASUNA. In
the meantime, it is still possible for ASUNA users to model collisions approximately by
assuming that concurrently transmitted packets are always lost or that they are recovered
with a given probability (e.g., as in the case of frequency-hopping schemes, where the
recovery probability can be determined based on the hopping pattern).

1Providing fine-grained information about the packet transmission and reception times as well as
about multipath propagation would be very convenient and would convey additional details about acoustic
propagation at the time of the experiment. Unfortunately such accurate information is not available for
the current version of ASUNA. We still plan to include it for any future datasets we will integrate, provided
that these datasets can demonstrate sufficiently accurate time reckoning and multipath measurements.
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A.2.2. Topology matrix information (TMI) structure

For each experiment, our database includes a description of the experiment’s setup,
an Octave/Matlab .mat file grouping link quality time series into a matrix for (called
topology matrix information in the following, or TMI for short), and a reference to the
publication(s) that convey the context of each experiment. The basic building block of
each TMI is an instantaneous snapshot of the quality of all links. This can be seen as
an N × N matrix, whose entry (i, j) reflects the link quality between nodes i and j as
measured from the experiment, and where N is the number of nodes in the network.2

The time variation of the TMI is captured by adding a time dimension to each
topology matrix. The sampling time depends on the context of the experiment and
on the configuration of the communication protocols. For example, for an experiment
based on a time-division-multiple-access (TDMA) schedule, the topology information is
obtained for each time frame. Conversely, in experiments focusing on the physical layer,
we update the topology information once for every transmitted packet. Still, the sampling
time is sufficiently frequent to enable the interpretation of the topology information as
a continuous process.3 During replay processes it is then possible to, e.g., check the
quality of a link at the time of each transmission in order to determine which data
packets are correctly received, and how many useful application bits they carried, so
as to compute the goodput (defined as the rate of reception of useful information bits
over time); alternatively, it is possible to provide the communicating nodes with a noisy
version of the TMI to emulate some form of topology instability.

In some experiments, the time variation of the TMI was achieved through the dynamic
relocation of one or more nodes in the same area. In this case, we provide link data for each
topology separately in the same .mat file, with the understanding that the duration of the
experiments may be different for each topology. The ASUNA dataset is generally obtained
from static deployments. Some of these deployments include drifting nodes (e.g., the REP
and Haifa Harbor datasets), which leads to limited mobility. To improve the possibilities
for the user to simulate some form of mobility, as well as to emulate underwater networking
scenarios where abrupt link quality changes occur, we also provide a global time series that
covers a whole experiment across all tested topologies. This is obtained by concatenating
the link measurements of each TMI. In fact, between subsequent topologies in a given
dataset, some links typically disappear, some new links appear, and those that persist
experience significant quality changes. Additionally, we remark that mobility can be
approximately emulated by rotating the position of the nodes throughout the locations

2Note that the TMI may be asymmetric. This is the case when the SNR is location- or depth-
dependent, and in scenarios involving near-far conditions, where interference blocks one end of the
communication link.

3We remark that the link sampling time is a feature of the data provided in the dataset, and depends
on the structure of the experiment from which we derived the link quality measurements. For this reason,
it is not possible to configure this parameter.
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indicated in each dataset.
In case several communication technologies are involved in an experiment, as is the case

for multimodal network setups, a further dimension is added to the TMI. In this case, the
time-varying TMI is provided per-technology. This makes it possible to have simultaneous
or very close samples of the link quality perceived by different communication technologies.
We remark that different technologies often have different transmission capabilities. For
example, this is the case for the SC2R high-frequency (80-120 kHz) EvoLogics modem,
which has a much higher nominal bit rate than the EvoLogics modem working in the
7-17 kHz band. Such different bit rates cause asynchronous channel sampling at unequal
rates. Details about the sampling time are provided in the companion document of each
dataset in ASUNA.

A.2.3. Analysis of TMIs

The resulting TMIs that create the heart of the database can be analyzed in different
ways. For example, by setting a threshold over the link measurements, one may create
an emulation system that avoids a physical layer and only uses realistic binary topologies
to form time-varying communication links. This may become relevant when testing
scheduling and routing protocols. The user can also treat the soft link quality measures
to form a time-varying statistical model that generates links based on measured link
reliability information. While some of our reported TMIs are small in terms of the number
of nodes or short in terms of the testing time, the network size can be virtually increased
by duplicating parts of it, and the time duration can be extended cyclically. In this
manner, larger networks and longer deployment scenarios can be tested more reliably
than using models, although such an extension to the network cannot be considered as a
replay.

An illustration of the emulation process is given in Fig. A.1. The process begins with
link quality data collection during a single sea experiment to form a matrix of time-
varying TMIs. The experiment may include several arrangements of the network nodes
into different topologies. The link quality data is used for network replay, where the
time-varying link quality information determines the success of each data transmission.
Similar to channel realizations used for channel replay [167, 191], the result is a reliable
representation of the network performance in the sea conditions that occurred during the
recorded network topology.

A.2.4. Structure and variety of the shared datasets

In this section, we describe the structure of the network TMIs currently available in
ASUNA. When downloading ASUNA from the web site, TMIs come organized in separate
folders. For a given TMI, call N the number of nodes, P the number of (physical layer)
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Figure A.1: Illustration of the network emulation process.

transmission technologies available to each node, and T the total number of link quality
sampling epochs. Normally, these epochs are separated by an interval ∆t = 1 second,
unless otherwise stated in the experiment description. The .mat files of the TMIs have
the same structure, and contain the following data:

a TopMat matrix of size T ×N ×N × P , where each entry TopMat(t,i,j,p)

(using Octave/Matlab notation) conveys the link quality for the link between nodes
i and j through physical layer technology p at time t;

a LocMat matrix of size T ×N × 3, where the three entries LocMat(t,i,1:3)

represent the two UTM coordinates and the depth of node i, respectively;

a TechMat matrix of size T × N × P , where each of the k = 1, . . . , P entries
TechMat(t,i,1:P) is 1 if node i has technology k at epoch t, and 0 otherwise;

an AdjMat matrix of size T ×N ×N , where each entry AdjMat(t,i,j) is 1 if
nodes i and j are linked by any technology, at time t, and 0 otherwise.

A single experiment may contain measurements either for a single or for multiple
TMIs. In the latter case, we provide the above matrices for each TMI separately, and
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name them, e.g., TopMat1, TopMat2, etc. We also provide four matrices resulting from the
concatenation of all matrices over the time dimension. The latter are called FullTopMat,
FullLocMat, FullTechMat and FullAdjMat, respectively. This enables the emulation of
abrupt link connectivity changes, as is often the case in UWANs. In particular, such
changes may serve to emulate the performance of adaptive protocols.

The experiments from which the dataset has been retrieved were performed for
a number of different purposes and applications, including the design of scheduling
protocols, physical layer tests, and underwater communications security. As a result,
each experiment has peculiarities which make it different from others in our database,
and contributes to increasing the coverage of a variety of scenarios. In fact, there exist
broad differences among the tests: from relatively large networks of 10 modems, to small
link tests with 3 modems; from experiments of long duration (up to a few hours) to
short experiments of a few tens of minutes; from tests including one type of modems
to multimodal tests including multiple acoustic communication transceivers operating in
orthogonal bands; and from tests involving commercial modems to tests that include
custom modems and offline processing.

A.3. Example of results

We now present the results of a network emulator built upon the ASUNA database.
We remark that these are just meant to serve as an example, and that the applications
are by no means limited by the scope of our results. In Section A.3.1 we describe the
structure of the emulator, whereas in Section A.3.2 we provide its results.

A.3.1. Structure of a network emulator

Our example of emulator is a discrete-event system written in an Octave/Matlab-
compatible code, and comes with all datasets currently shared. These datasets are already
placed in the right subdirectory structure to make it possible to load them correctly in
the simulator. In this way, the user can open the main file, TDMAsim.m, and run it upfront
to obtain some first results. The emulation code is freely provided along with the dataset
on the ASUNA web site, and the users may employ, extend or modify it to suit their
purposes. The code has also been uploaded to the Code Ocean platform [192], from
where the results provided below can be reproduced.

The baseline emulator implements an interference-free TDMA scheduling protocol,
where each node is assigned an exclusive time slot to transmit a unicast packet to any
of its neighbors. The parameters of the protocol can be tuned via a configuration script
named setGlobals.m. In the main file TDMAsim.m, a marked section instructs the user
how to choose their desired dataset by commenting/uncommenting specific lines. After
importing the data from the corresponding .mat files into the structures of the simulator,
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the emulation sets up the TDMA schedule and arranges a periodic computation of network
metrics.

The TDMA schedule is computed based on the distances among the nodes as derived
from the LocMat matrix. For a given sound propagation speed (system parameter), the
emulator computes the time slot length as the sum of the packet duration (also a system
parameter) and of a guard interval as long as the maximum propagation delay in the
network. For each TDMA transmission, the emulator uses the instantaneous TMI in order
to infer the one-hop neighbors of the transmitter (through the AdjMat matrix). The unique
destination is then chosen at random out of this list. In case a multi-modal communication
dataset is chosen, the emulator also checks which communication technologies are in use
both by the transmitter and by its receiver (through the TechMat matrix) and chooses
one of them at random. The transmission outcome is finally determined by comparing the
link quality from matrix TopMat to a threshold (system parameter). In the provided code,
such threshold is pre-set in order to make it easier for the user to immediately operate
with the data, but can be changed in order to obtain different results.

At tunable intervals, the emulator collects relevant metrics for post-processing. This
includes a count of the transmitted and correctly received packets, as well as the network
throughput. The metrics are plotted at the end of the emulation, and the resulting figures
are saved as images. Next, we show results obtained from our TDMA emulation.

A.3.2. Results

A.3.2.1. Haifa Harbor

We first discuss results obtained for the “Haifa Harbor” dataset. The experiment
was carried out in Israel, and included four boats carrying custom modems. The boats
moved to different locations in the harbor at designated times. Due to the structure of
the harbor, no communication between docks was possible in the absence of line of sight.
Hence, the change in the boats’ locations created a time-varying network topology. A map
of the experiment location is shown in Fig. A.2a, and the formed topologies are illustrated
in Fig. A.2b. The recorded dataset includes the per-link time-varying BER measurements
arranged in a single TMI and in per-topology TMIs. The experiment included roughly
six hours of data collection.

In order to obtain the longest possible emulation, we resort to the FullTopMat matrix,
which contains the concatenation of the datasets corresponding to each TMI. In our
emulation, we consider a successful packet delivery only if the instantaneous BER value
is less than 10−2. Considering this threshold,4 the packet delivery ratio (PDR) and the

4This value has been chosen for demonstration purposes. However, we note that this BER regime
may be easily related to PER regimes depending on the employed modulation and coding scheme. For
example, a BER of 10−2 yields a PER of about 0.5 for 64-bit, uncoded packets transmitted using BPSK.
In the same conditions, applying a convolutional code of rate 1/3 and soft Viterbi decoding would yield a
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(a) Experiment map.
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(b) Tested network topologies.

Figure A.2: Information about the “Haifa Harbor” experiment. (From [10].) The letters
indicate subsequent locations at which the nodes were moved to form the six deployments
in Fig. A.2b. For example, node 1 was moved from location 1A to 1B, 1C, and finally 1D.

per-link throughput are shown in Fig. A.3. Metrics are collected every 120 seconds and
plotted against the collection epoch. Vertical dashed lines mark the instant where the
switch between different subsequent topologies occurs, and the TMI enumeration fits the
number of topologies in Fig. A.2b.

We observe that the PDR changes over time due to both the topology configuration
and the link quality measurements. The former is mostly observed when there is a
transition between TMIs, while the consequences of the latter are observed when the TMI
remains the same. We also remark that the node deployment affects the throughput,
as the maximum propagation delay in the network determines the TDMA slot length,
and therefore the packet transmission rate. In all topologies, the maximum propagation
delay is about 1 s (corresponding to a maximum distance of about 1500 m), except in
topologies 1 and 4, where the maximum propagation delay is 0.88 s and 0.55 s, respectively.
For example, in topology T4, this means that the TDMA frame has a significantly shorter
duration, which accommodates about 45% more transmissions than in topologies 2, 3, 5,
and 6. For this reason, the throughput is larger for topology T4, despite a similar or lower
PDR than in topology T3.

A.3.2.2. Berlin Multimodal

We now discuss network emulation results based on the “Berlin Multimodal”
dataset, which provides a set of simultaneous measurements from three different acoustic
communication technologies. The communication technologies used in the experiment
are the EvoLogics SC2R 18-34 kHz (5×), 48-78 kHz (3×) and the 80-120 kHz (2×)

BER of 10−5, which enables the transmission of 1024-bit packets with a PER of 0.01 [193, Section 8.2.8].
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(b) Throughput.

Figure A.3: Results for the full “Haifa Harbor” dataset. All topology data has been
concatenated: dashed red lines indicate the transition between subsequent topologies.

modems, respectively named LF, MF, and HF in the following, as a shorthand for low-
frequency, medium-frequency, and high-frequency. The TDMA emulator assumes that
the transmission rates of each modem are 4 kbit/s, 16 kbit/s, and 32 kbit/s, respectively.
The setup of the experiment and the tested topologies are shown in Fig. A.4.

The results are given in Fig. A.5. Each point along the curves corresponds to average
values taken over windows of 30 s. The most significant difference between the TMIs
is the performance of the HF modem, which requires a low-noise, short-distance link,
in order to operate at its maximum efficiency. Since the distance between the only two
nodes with an HF modem was smaller in topologies T3, T4, and T5 than in topologies T1
and T2, the HF throughput is much higher and stable for T3, T4, and T5. We also
observe that the success ratio for the LF and MF links is similar, and slightly lower for
MF in topologies T4 and T5. Since the deployment includes a total of 3 MF and 5 LF
modems, this explains the similar throughput achieved by LF and MF in Fig. A.5b.

The area plot in Fig. A.5c shows that the number of packets sent is about the same in
each measurement window. The absolute values tend to remain stable over each window
and depend on the connectivity of the sub-networks formed by each technology. For
example, in topology T3, the nodes transmit fewer MF packets than in all other topologies.
The reason is that, in topology T3, all nodes with MF also have LF. More specifically, we
recall that in our tested TDMA scheduling protocol, a neighbor is chosen at random, and
only then the transmission technology is determined. Since there are more LF modems,
a node with both LF and MF is likely to have additional neighbors, and thus it is less
likely to transmit using MF in T3 than in any other topology.

Finally, we demonstrate the flexibility of ASUNA by testing the optimal multimodal
scheduling (OMS) scheme in [194]. OMS is an adaptive TDMA-based algorithm that
exploits multimodal links in order to schedule transmissions that obey a number of
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(a) Topology 1 (b) Topology 2

(c) Topology 3 (d) Topology 4 (e) Topology 5

Figure A.4: Setup and tested topologies for the “Berlin Multimodal” dataset. (From [11].)

constraints. These include network topology structure, bounds to interference, and
measures to favor multihop routing. OMS was already tested at sea via a dedicated
experiment [194] (also part of ASUNA), hence here we rather test OMS using the “Berlin
Multimodal” dataset. This also enables a direct comparison against the baseline TDMA
protocol considered above.

As before, we concatenate all topologies of the dataset, in order to obtain longer
link quality time series, exhibiting significant connectivity changes across subsequent
topologies. Figure A.6 shows the average throughput per technology. We observe that the
OMS protocol adapts well to the characteristics of the topology by allowing simultaneous
transmissions over different technologies and by balancing channel access throughout the
network. By setting a slot length of 2.5 s, it adapts the packet length to fill this slot
length minus the maximum propagation delay. This results in a slightly smaller number
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(c) Number of transmitted packets.

Figure A.5: Results for the full “Berlin Multimodal” dataset. All topology data has been
concatenated: dashed lines indicate the transition between subsequent topologiess.

of transmissions being made, constantly equal to 12 packets per measurement interval of
30 seconds. However, OMS enables transmissions through multiple technologies at the
same time, and additionally the above settings yield longer packets than for the baseline
TDMA case of Fig. A.5. As a result, the throughput achieved by all technologies is higher
(see also Fig. A.5c).

A.4. Conclusions

We presented ASUNA, a shared database containing recorded time-varying link
quality measurements from various sea experiments. ASUNA serves as a tool to
test underwater acoustic communication network algorithms through emulations or
experiment replay. The ASUNA database includes an ensemble of time-varying link
quality measures arranged as topology information matrices. The datasets cover different
network configurations measured through a variety of acoustic communication devices,
and using different network protocols. To demonstrate the use of ASUNA, we described
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Figure A.6: Throughput for the OMS protocol tested over the “Berlin Multimodal”
dataset. All topology data has been concatenated: dashed lines indicate the transition
between subsequent topologies.

the details and results of an emulation system built to test a time-division multiple-
access scheduling protocol over all collected topology matrices. For a multimodal
communications dataset, we also test the optimal multimodal scheduling approach
in [194]. We freely share ASUNA as well as the emulation code with the underwater
communications community, with the hope that ASUNA will constitute a benchmark to
test underwater acoustic networking solutions including, but not limited to, scheduling,
routing, and automatic repeat query schemes. ASUNA is open to future contributions.
With the expansion of the database that would result, we believe that this benchmark has
the potential to greatly contribute to establishing and standardizing UWAN research.



B Underwater LiDAR signal
processing for enhanced

detection and localization of
marine life

Detecting and tracking marine wildlife in its natural habitat is of interest for many
fields of science, including behavioral ecology and sociobiology, and can help explain
the social dynamics of different marine fauna species, as well as measure the impact
of human interference [195]. A specific, important application is the prevention of
harmful interactions with various types of human-made underwater equipment, such as
marine hydro-kinetic devices [196]. However due to the challenging characteristics of the
underwater environment, such as insufficient illumination, attenuation and scattering, it
may be arduous to observe marine wildlife using conventional surface approaches, such as
optical surveillance in the visible light spectrum. Extra lighting does not solve the issue,
as it creates flares, and may also induce behavioral changes in the animals (e.g., many
species are attracted by visible light sources [197]).

Available active acoustics technologies for fisheries monitoring can be categorized as
either acoustic cameras or sounders. Active acoustic cameras, such as Dual Frequency
Identification Sonar (DIDSON) use an acoustic lens technology which forms images with
greater detail than found in conventional sonars. While reasonably good estimates
of feature dimensions can be extracted from DIDSON images, that level of detail is
only available at relatively short ranges and with an angular field of view where image
resolution is highest. Consequently, data bandwidth and storage become problematic.
2D imaging sonars (e.g., Teledyne BlueView products), likewise provide a video-rate
output, but with a limited angular field of view and range. Acoustic profilers such as
echosounders, on the other hand, are a standard instrument of fisheries hydro-acoustics.
These instruments can reach a long distance (hundreds of meters) but lack the resolution
and evaluation intuitiveness of traditional optical imagery [198].

Therefore, the design of non-invasive systems for marine life observation remains an
interesting research problem. A possible solution is provided by marine Light Detection
And Ranging (LiDAR): using a portion of the light spectrum which is invisible to most
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underwater species, LiDARs can image via serial laser scanning based on the received
intensity of reflected light, with an additional layer of time of flight (ToF) data, which
reflects the distance to the object (depth map). Therefore such systems may work without
additional light sources, and due to the low average power of the emitted light, they do
not affect underwater fauna [199]. In contrast to conventional optical systems, LiDARs
can count on the depth map to improve the image quality, to perform accurate ranging
and scaling, as well as to separate objects from one another and from the background.
Beyond the single pulse per pixel type of LiDAR system that is described in this appendix,
modulated-pulse versions of the serial-scanning underwater LiDAR imager have been
tank-tested to study the improved ranging and intensity imaging performance in turbid
environments by using radar waveforms and decoding techniques [200,201].

The low average power system that is being developed at the Florida Atlantic
University (FAU) Harbour Branch Oceanographic Institute (HBOI) is called Unobtrusive
Multistatic Serial LiDAR Imager (UMSLI). The configuration of UMSLI described in this
appendix consists of one laser transmitter, and one to three receivers. It has two working
modes: the detection mode, when the laser does a sparse spatial scan, and the dense mode,
when the scan area is reduced to the point of detection, so that the LiDAR can produce
a detailed image of the scanned underwater object. The data collected by this system is
further used for fish detection, localization and identification that has to be performed
on the go. For the complete description of this project, we refer the interested reader
to [202]. This particular LiDAR system uses relatively inexpensive components, and its
overall price is foreseen to be about one order of magnitude lower than other systems
available on the market. It uses low average power red laser diodes with a wavelength
of 638 nm, which suffer from higher attenuation in water, but are unobtrusive for fish
vision. Together with a relatively low sampling frequency, these and other aspects of
UMSLI require a targeted approach to the processing of the obtained data.

The UMSLI prototype was developed and validated at the optical test facility at HBOI.
The serial scanning technique on which the LiDAR design hinges has been employed
in near-monostatic [203, 204] and bi-static [205] configurations. Serial scanning can be
instrumental to help detect individuals within a cluster of animals better than by using
a regular camera system. Furthermore, it can enable the formation of images even when
the line-of sight between the target and the detector is occluded [206].

In the following sections we provide further details about the UMSLI design and
experimental setup (Section B.1), we describe our data processing pipeline (Section B.2),
and provide concluding remarks in Section B.3.
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B.1. System Description and Experiment Setup

B.1.1. Description of the LiDAR system

The integrated system adopts a multi-tiered design that consists of the sensing
hardware, of image enhancement, detection, and classification, as well as of data archiving.

The UMSLI sensing front end consists of six receivers (Rx), six transmitters (Tx),
and a digital signal processor [202]. The transmitters scan a water volume in a bi-
directional raster pattern. The scan field can be configured to be either sparse (with fewer
pulses over a wider angle, used mainly for detection purposes), or dense (concentrating
a higher pulse density through a narrower range of angles, typically after the detection
of an object has been confirmed). On the one hand, the depth of field for each channel
depends on the depth of the overlapping region between the laser beam and the receiver’s
field of view. On the other hand, the image resolution depends on the diameter of the
pulsed laser beam as it intersects a hard target. The receivers consist of a high-speed
photomultiplier relying on focusing optics and on a spectral bandpass filter, designed
to efficiently collect time-resolved back-irradiated light from the emitted laser pulses.
Depending on the conditions of the water, such light may consist of either reflections from
objects or from backscattering. The signals received by the photomultipliers are digitized
at a rate of one sample every 0.5 ns, before they are conveyed to digital processing elements
that reconstruct the areas of interest in the water volume.

Given its unobtrusiveness with respect to marine fauna vision and behavior, the
UMSLI system can be used in the proximity of marine installations to ensure the
monitoring of endangered/threatened species, and to assess the impact of the installation
on marine wildlife. The image formation approach has been demonstrated to be especially
suitable for turbid or low-light applications. This makes the UMSLI more convenient than
traditional camera solutions, potentially achieving persistent surveillance through day and
night, while still providing the operational advantages of optical solutions.

B.1.2. Test scenario and data sets

In this appendix, we consider two data sets from previous experiments taken in a
controlled test tank environment at HBOI. One data set contains experimental results
from a system with a single light emitter and a single receiver, which captured images of
a static fish model in different poses, with 200×200 pulse resolution, at 128 samples per
128-ns pulse record. The frames are taken in clear water, as well as by controlling the
turbidity such that the total attenuation coefficient at 638nm ranges up to c = 0.75 m–1

(turbid water) using sparse and dense mode scans. Altogether, the data set contains
79 frames.

The second data set has a similar structure, but is obtained from another version
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Figure B.1: Photo of the test tank environment, showing the location of the laser
transmitter and of the three receivers, as well as the model fish target (in this case,
an amberjack model).

of UMSLI with three receivers having a higher sampling resolution of 256 samples per
128-ns pulse record. A picture of the test tank with this configuration of the LiDAR is
shown in Fig. B.1. The laser occupies a central position, whereas the three receivers are
deployed to the side of the laser and below it. Fig. B.1 also shows part of the model fish
target (an amberjack in this case). Seven different scenes were taken for each turbidity
setting, with moving and static fish models, as well as with a calibration board. Each
scene was taken 15 times, hence the data set contains altogether over 500 frames per
receiver. These challenging data sets provide an interesting test platform to seek an
optimal solution for the enhancement of LiDAR data under power and computational
complexity constraints. The following section explains our proposed processing pipeline
to produce classifier-friendly images and depth maps for further post-processing stages.

B.2. LiDAR Data Processing Pipeline and Results

In this section, we present the steps of the LiDAR data processing pipeline. We
start with water turbidity estimation in Section B.2.1. The following steps include image
enhancement via backscattering removal (Section B.2.2), and contrast enhancement for
2D visualization (Section B.2.3). Finally, the LiDAR scan is transformed into a 3D cloud
of points. Those that are not part of the target are identified and removed via a clustering
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Figure B.2: Backscattered light intensity over time for different turbidity values.

algorithm; the remaining points are then employed to construct a 3D model of the target,
which can be employed for biomass evaluation (Section B.2.4).

B.2.1. Turbidity estimation

An important preliminary step to achieve good-quality LiDAR imaging is to estimate
environmental parameters, and specifically turbidity, which is expressed in terms of the
total light intensity attenuation coefficient of the water c [m–1]. In the current setup for
test tank experiments, additional equipment is used for precise turbidity measurements,
which is advantageous for further image processing. However, once the LiDAR is deployed
at sea, it might be challenging to measure the ocean water’s turbidity without such
additional equipment, especially in the presence of mixing phenomena that may induce
turbidity variations over time. In these cases, the backscattering intensity can be a good
measure for turbidity [207]. Several parameters of the LiDAR affect backscattering. These
include the wavelength, power and gain of the incident laser beam, the scan area, and the
relative position of the transmitter and receiver [208]. By including these parameters in a
backscattering model, the LiDAR can be calibrated to infer turbidity from backscattering
measurements.
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Figure B.3: (Top) Estimated linear fit of the average backscattering peak value against the
total attenuation coefficient of the tank water. (Bottom) Residual errors in the estimation
of the turbidity value.
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Figure B.4: Backscattering peak amplitude heatmaps for the three receivers.

We employed the FAU test tank to carry out several backscattering calibration
measurements in different water turbidity conditions. The results can be observed in
Fig. B.2, which presents a superposition of several backscattered light intensity signals
sampled at intervals of 0.5 ns. For the same value of c, the signals show approximately
the same backscattering peak value. However, this peak varies significantly by varying c.
As observed in Fig. B.3, the relationship between the backscattering intensity peak value
and the turbidity level expressed through c is roughly linear. A least-squares fit (top
panel in Fig. B.3) is in fact sufficient to achieve very low residual error (bottom panel),
on the order of ±0.02 m–1 or less, which is sufficiently accurate to inform the subsequent
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processing steps.

B.2.2. Backscattering removal

As backscattered light from particles suspended in water can strongly corrupt the
quality of the LiDAR imaging process, it becomes important to compensate for, at least,
the backscattering intensity peak. To achieve this, we consider the same calibration data
set employed to estimate the relationship between the total attenuation coefficient c and
the backscattering peak intensity. We recall that a LiDAR scan comprises a matrix of
200×200 received pulses, and that 256 samples are extracted for every channel of each
pulse at a sampling interval of 0.5 ns. We employ this data to generate an average
backscattering pulse to be employed for calibration. This pulse is obtained by summing
the detected light intensity samples both over all 200×200 pulses in a frame and over
several frames, and by finally normalizing the pulse so that it has a maximum value of 1.
We then consider a Gamma probability density function (PDF) of the form

f(x; k, θ) = xk−1 e−x/θ

θk Γ(k) , x > 0, k > 0, θ > 0 , (B.1)

where Γ(k) is Euler’s Gamma function, and we employ least-squares fitting to estimate
the parameters of the function that best approximate the shape of the pulse.

Before we can actually compensate backscattering, we need to create another average
map that conveys the peak backscattering intensity, and that will be used to scale the
Gamma function approximation. We obtain these maps from the calibration frames,
by recording the average backscattering peak intensity for each of the 200×200 signals
of a frame. In Fig. B.4, we present three heatmaps that show, for each signal, the
amplitude of the backscattering peak. The values are normalized with respect to the
digital counts corresponding to the maximum expected backscattering value. Such digital
counts are the output of the digitizer of the photomultiplier output, and are proportional
to the instantaneous detector current, which in turn is proportional to the time-resolved
scene irradiance (in W/m2) at 638 nm. After scaling each signal in accordance with
the heatmap, the backscattering component of the signal can be subtracted in order to
enhance the contrast of any other peaks reflected by a target, if present.

In Fig. B.5, we provide an example of backscattering removal from light intensity
signals. The blue line is the detected signal before backscattering removal, whereas the
grey line is its approximation through a Gamma pdf. The red curve is obtained after the
subtraction of modeled backscattering. We observe that the red curve already contains
a distinguishable component related to the target, located between samples 145 and 180.
In order to remove residual noise, as a last step we apply a Savitzky-Golay (SG) filter.
The resulting smoothed signal is shown using a black line.

The main advantage of the above processing method is that the residual backscattering
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Figure B.5: Example of pulse backscattering removal based on the estimated turbidity
and the backscattering model of Figs. B.2 and B.4.

intensity is now significantly smaller that the target reflection peak, so that a simple
maximum search operation suffices to identify the signal coming from the target. At
the cost of a simple preliminary calibration step, this method does not require to
average multiple LiDAR frames, and requires fewer LiDAR scans, besides having very
low complexity.

B.2.3. 2D image enhancement and visualization

In order to visualize the effect of the backscattering removal, the intensity of the target
peak for each receiver is coded using a red/green/blue (RGB) color vector. Each color
channel conveys the intensity of one receiver: with reference to the circles in Fig. B.1,
we use red for receiver 1 (to the top right of the laser when facing towards the water
in the tank setup), green for receiver 2 (bottom-central position in the tank), and blue
for receiver 3 (top left position). The three panels on the top of the figure refer to low
turbidity conditions (c = 0.36 m–1), whereas the three bottom panels refer to relatively
high turbidity (c = 0.75 m–1). The left panel in Fig. B.6 shows the RGB coding for
unprocessed signals which have not undergone any backscattering compensation. Due to
the location of the receivers, the top-left corner is dominated by blue hues, the top-right
corner by red hues, and the bottom side by greener hues. A pixel color turning towards
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Figure B.6: Example of the RGB representation of a LiDAR image after pulse
backscattering removal, compared to a simpler gating solution. (Top) c = 0.36 m–1

(Bottom) c = 0.75 m–1. The distance between the transmitter and the fish is 5.7 m
(4.272 beam attenuation lengths at c = 0.75 m–1)

Figure B.7: Contrast enhancement for 2D image representation using peak heatmaps.
c = 0.75 m–1.

white represents a high intensity detected by all receivers.
For the clear water case, the image produced by the system without any processing

(Fig. B.6 top-left) is clear enough for further processing. However even here backscattering
removal (top-middle) improves the visibility of features towards the far side of the tank.
The results are better than a manual gating procedure focusing on the target-reflected
light portion (top-right). In the bottom-left panel of Fig. B.6, in relatively high turbidity
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conditions, the shape of the fish target can be observed from the purple hues in the center
of the image, whereas the near-field calibration target is barely seen along the left side
of the image. After backscattering removal, we obtain the image in the bottom-middle
panel. Here we observe that the fish target is the brightest element, and its characteristic
biological features (e.g., the shape and the fins) are much easier to distinguish. For
comparison, zeroing out the backscattering component of the received signal through
manual gating would not be as effective in enhancing the image. An example of a gated
image is shown in the bottom-right panel: here, the overall image is more noisy, and the
sharpness of the fish contours and biological features is greatly reduced.

We finally derive a black and white version of the target image by fusing the data from
the three receivers of the LiDAR as follows. Starting from the image with backscattering
removed (bottom middle panel of Fig. B.6), we sum the output intensities over all
channels, and normalize the intensity values to occupy the whole interval [0, 1]. The
resulting image for the c = 0.75 m–1 case is plotted in gray scale in the left panel of
Fig. B.7. While both the fish target and the calibration target on the left already stem
clearly from the darker bottom, it is often useful to generate an image with better contrast.
We do so by producing a peak heatmap where, for each pixel in the image, we count the
number of peaks in the corresponding LiDAR signal. The result is shown in the middle
panel, where we can observe that the target and its surroundings indeed present a higher
number of intensity peaks per pixel. By performing a pixel-wise multiplication of each
pixel’s intensity value by the corresponding number of peaks from the heatmap, and by
rescaling the resulting grey intensity values back to the interval [0, 1], we obtain the image
in the right panel of Fig. B.7. Here light intensity differences due to the shape of the fish
model are amplified, and the fish contours stem more clearly out of a darker background.
The same conclusion applies to the calibration panel on the left.

Figure B.9: Sets of points corresponding to the fish target after clustering. The color of
each point corresponds to the receiver (see also Fig. B.1 for reference), whereas the size
of marker is proportional to intensity. The coordinates are expressed in meters. (Left)
low turbidity, c = 0.36 m–1); (Center) medium turbidity, c = 0.57 m–1); (Right) high
turbidity, c = 0.75 m–1).
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Figure B.8: Example of result obtained by applying the DBSCAN clustering algorithm to
a LiDAR frame. The shape of the fish target (orange) can be clearly distinguished in the
image, along with the calibration target (dark red) and with the backscattering residual
(light yellow on the right).

B.2.4. Derivation of a 3D target model

Besides image processing for the enhancement of 2D images, it is also of interest to
create a 3D model of the target. To do so, further processing is required to separate
the light reflected by the target from backscattered or background light. To achieve this
separation, we employ the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [131].

The DBSCAN algorithm is commonly used for clustering spatial data with density
constraints: its run time is almost linear with the number of points to be clustered,
which makes it amenable to real-time applications. Moreover, DBSCAN enables clustering
without any prior knowledge about the number of clusters to be formed. As an input,
the algorithm requires a definition of the meaning of “dense” clusters, conveyed by the
parameters ε and Nmin. Specifically, ε is the maximum distance between two samples that
still allows both of them to belong in the same neighborhood, and Nmin is the minimum
number of samples in any cluster.

The data passed to DBSCAN is formatted as a set of samples with four features: three
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(a) Delaunay triangulation applied to the points of
the identified fish cluster

(b) α-shape of the identified fish cluster, c =
0.36 m–1.

(c) α-shape of the identified fish cluster, c =
0.57 m–1.

(d) α-shape of the identified fish cluster in a
more complex pose facing towards the LiDAR’s
receivers. In this case, the pole mount of the fish
model becomes visible. c = 0.36 m–1.

Figure B.9

coordinates (to identify the location of the point in space) and an intensity value. The
coordinates are expressed as sample indices, or “units:” the x- and y-coordinates can take
values in 0, 1, . . . , 199 (since the scanning grid contains is 200×200 points), whereas the
z-coordinate can take values in 0, 1, . . . , 255 (as there are 256 samples in each received
signal). Since the LiDAR transmitter and receivers are synchronized, the depth of each
point can be derived from the coordinates towards which the transmitter is pointed, and
the round-trip time required for the light to irradiate back to each receiver. For our
results, we set the parameters of DBSCAN to be ε = 4 units and Nmin = 30.

An example of the output of the clustering algorithm applied to a LiDAR frame
is shown in Fig. B.8. We observe that the cluster of points identifying the fish shape
clearly stands out (orange cluster), along with the near-field calibration target (dark red
cluster), whose border on the right side is interrupted due to the shadowing of the fish
target. Spurious clusters are also present (e.g., a reflective element on the bottom of the
tank (dark yellow) and a large planar cluster near the transmitter (light yellow, on the
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right of the picture) which corresponds to residual backscattering intensity that could not
be completely canceled via the method described in Section B.2.2. Still such spurious
clusters are typically well separated, so that it is possible to at least distinguish the shape
and size of the fish.

Fig. B.9 shows three different point clusters pertaining to the fish target, in three
different turbidity conditions: low turbidity (c = 0.36 m–1, left panel), intermediate
turbidity (c = 0.57 m–1, middle panel), and high turbidity (c = 0.75 m–1, right panel).
In each figure, the size of each point is proportional to the intensity of the signal received
from that location, whereas the red, green and blue colors encode the receiver of the
signal from which the point was estimated. As expected, in the presence of low water
turbidity, several fish features can be already distinguished directly from the cloud of
points. In the left panel of Fig. B.9, this includes all fins, and the shape of the open
mouth. As turbidity increases, the weakest reflectors of the fish (e.g., the fins) mix up
with backscattered light, resulting in an overall increase of the fish size, with less sharp
transitions along the contour of the fish’s body. In the highest turbidity conditions, the
blurring of the borders becomes even worse, although it is still possible to distinguish
the shape of the fish from the most reflective components of its body (in this case, the
side facing the LiDAR’s receivers and the caudal fin). Still, we remark that even in high
turbidity conditions the backscattering compensation and the subsequent processing of
the LiDAR signals make it possible to create sufficiently separated sets of points, from
which the target-related points can be successfully singled out by DBSCAN.

As a last processing step, we are interested in forming a 3D model of the imaged
target, which is typically useful for classification and biomass evaluation purposes. In
order to achieve this, we start from the clustered samples derived from the previous step
and obtain a first 3D model via Delaunay triangulation. For c = 0.36 m–1, the result is
shown in Fig. B.9a. The plain application of the triangulation algorithm creates triangular
simplices that altogether enclose the fish figure within a convex hull. However the outer
simplices tend to connect much farther points, and thus have larger sides, compared to the
simplices that connect the denser points of the cloud corresponding to the body and fins of
the fish. This makes it possible to create an alpha-shape [209] by ruling out the simplices
of the Delaunay triangulation that have a circumscribing sphere of radius greater than
α. The value of α can be chosen to strike a balance between the accuracy of the 3D fish
model and the need to achieve a connected complex of simplices. In this work, we set
α = 17, which corresponds to eliminating simplices which have a circumscribed sphere of
radius larger than about 6 cm.

Fig. B.9b shows the alpha-shape computed for the low turbidity point set in the left
panel of Fig. B.9. The shade of grey on each face encodes the intensity of the samples at
the corner of the respective simplices. We observe that besides having a good model of
the features of the fish, its length can be estimated quite reliably from the figure to a total
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head-to-tail extension of 1.14 m. While the actual length of the fish model is 1.3 m the
difference can be explained by the relatively low sampling frequency, which translates to a
coarse depth sensing where a displacement of one sample corresponds to a length of about
11 cm in the tank. Part of the error is also due to the slight smoothing of protruding
features, such as the fish nose and tail. In the presence of higher turbidity (e.g., as in the
middle panel of Fig. B.9), the alpha-shape is more noisy as can be observed in Fig. B.9c,
and some fish details are lost after the execution of the triangulation algorithm. In any
event, the shape and size of the fish are still recognizable, and the length can be measured
with a sufficient degree of accuracy for biomass assessment. To conclude, we consider the
imaging of the fish target rotated counter-clockwise by an angle of about 60◦ with respect
to the horizontal pose of Figs. B.9a and B.9c. The result of the LiDAR scan in low
turbidity conditions is shown in Fig. B.9d. Interestingly, in this case the anchoring pole
to which the fish target is attached is included in the fish point cluster singled out by
DBSCAN, due to its greater proximity to the rest of the fish samples. Even in this case,
the fish is rendered correctly, with several visible biological details, and the grey scale
intensity coding reveals that the tail of the fish is farther from the LiDAR receiver than
the head and pole.

B.3. Conclusions

In this work, we presented the design of the FAU HBOIs Unobtrusive Multistatic
Serial LiDAR Imager. This LiDAR system can scan its surrounding using a low average
power red laser at a wavelength of 638 nm, which makes it non-invasive for fish vision and
behavior. The LiDAR is based on inexpensive components. We presented several in-tank
measurements carried out both in the absence and in the presence of a model fish target.
Our results show that a simple calibration step is sufficient to estimate near-field water
turbidity and thus inform the following image processing steps. These steps include both
2D image contrast enhancement, and further processing to extract the LiDAR samples
related to the target from the background as well as from backscattering residuals, and
construct a 3D sensed target model. The relatively low complexity of such processing
makes the system amenable to be implemented in real time.



C Dissemination andcommunication activities

During the time I have been working on this thesis, I had several chances to share the
progress with other specialists from academy and industry.

Annual Harbor Branch Summer Intern Symposium August 5, 2016
The 43rd Annual Harbor Branch Summer Intern Symposium Johnson Education
Center is an annual symposium I attended at the end of my summer internship
at Florida Atlantic University. The symposium unites about 20 students and their
mentors from various fields related to marine science. I presented the preliminary
results of my work on “Underwater Lidar Signal Processing for Enhanced Detection
and Localization of Marine Life.”

Symposium on Hydroacoustics May 23-26, 2017
XXXIV Symposium on Hydroacoustics May 23-26, 2017 (SHA’17) in Jastarnia,
Poland. An annual international event organized in Poland that brings together
people from different scientific fields related to hydroacoustics. I gave a talk
reporting preliminary results of multipath-aided range and depth estimation and
received feedback on possible applications and improvements.

Workshop on Positioning, Navigation and Communications 25-26 October
2017
This workshop was held at Jacobs University in Bremen, Germany, and proved to
be a great opportunity to unite industry and academic researchers that work on the
very specific field of positioning and navigation. In this workshop, I was chairing a
session and presenting our work "Anchorless underwater acoustic localization." The
work was recognized with the “Best paper award.”
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Figure C.1: WPNC’2017 Best paper award ceremony

OCEANS conference and exposition
This bi-annual conference organized by the IEEE Ocean Engineering Society and the
Marine Technology Society (MTS) is one of the top known conferences in the field of
ocean sciences. It gathers over 750 registrants, engineers and scientists from all over
the world, and over 7k visitors. Serving as a session chair and presenting our work
"Underwater LiDAR signal processing for enhanced detection and localization of
marine life" (Kobe, Japan, 2018) and "Underwater Direction of Arrival Estimation
using Wideband Arrays of Opportunity" (Marseille, France, 2019), I was able to
reach many contacts working in the same field and discuss further work.

Breaking the surface (BTS) October 2019
This event is an international multidisciplinary workshop and field training program
that enables participants to share experience and knowledge in maritime robotics
and related fields of research. During this workshop, I had a chance to present our
ongoing work on the EU H2020 SYMBIOSIS project during the demo program. I
also co-organized and held a tutorial together with the team of Evologics GmbH on
the topic “Software Defined USBL-Modem.”



147

Figure C.2: BTS’19. Preparing a tutorial together with Evologics GmbH team.

Publications in news media
Our work on “Anchorless underwater acoustic localization” was covered by multiple
publications in several scientific news portals including [210], [211], [212], [213]. We
would like to thank IMDEA Networks’s operations team, and especially to Rebeca
de Miguel, for the help with the dissemination of these scientific results to the press.
Numerous articles also covered the overall SYMBIOSIS project, e.g., [214], [215].
The full list of publications about the project can be found on project website [216].
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D Experimental activities

Experimental activities are one of the key challenges in research related to underwater
localization. Sea trials are complex to organize, and usually expensive to implement.
Various issues including harsh weather or failure of key equipment during deployments
may prevent researchers from completing the planned activities. Taking part in a sea trial
therefore provides the participants with a lot of experience about what can fall outside
the researchers’ control, how to mitigate risks, and how to foresee and/or compensate for
events that slow down or impede experimental activities.

While working on this thesis, I had the chance to take part in the organization and/or
execution of several experimental campaigns and field trial, often in collaboration with
other universities and research centers. A brief list of these opportunities follows.

FAU premises
Lab experiments at FAU. During my internship at FAU HBOI, I had the chance to
take part in experiments executed in a controlled environment provided by a test
tank (changing turbidity conditions), as well as design an experiment for calibration
of LiDAR working in different turbidity conditions. This work led to the publication
from Append. B
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Figure D.1: Lab experiment at FAU Harbor branch.

Haifa University
During the 3 month of my internship at Haifa University and later during several
visits to Israel, thanks to Dr. Roee Diamant, I had a chance to take part in multiple
sea trials of different scale, as well as some laboratory experiments. Sea trials
included 1-2 days boat trips to THEMO observatories [171].

Figure D.2: Experiment near North coast of Israel

Sea trial in Eilat, Israel, 1-4 July 2018
A first experiment related to Symbiosis project. Despite the temperature reaching
up to 50°C and the damage to hydrophones due to overheating, we were able to
successfully perform a first localization experiment.
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Figure D.3: Sea trial in Eilat, Israel

Large pool experiment (Berlin, Germany) 25-27 May 2019
A preliminary work on software control of ultra short baseline (USBL) Software
defined modem (SDM) from SYMBIOSIS platform and calibration of acoustic
equipment installation.

Figure D.4: Lab experiment at Evologics GmbH premises

Werbellin lake, Germany May-June 2019
Several experiments at Werbellin lake near Evologics GmbH’s premises to test the
SYMBIOSIS acoustic platform. The results of these experiments are presented in
Chap. 5
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Figure D.5: SYMBIOSIS platform acoustic tests at Werbellin lake in May and June 2019

BTS’19, Biograd Na Moru, Croatia, October 2019
This workshop was a unique opportunity to work on the SYMBIOSIS platform and
test it in real conditions. We performed multiple experiments in a test pool, as well
as in a sheltered shallow sea environment, accessible from a pier and a boat.

Figure D.6: SYMBIOSIS platform acoustic tests preliminary tests at Biograd na Moru

SYMBIOSIS platform test near the Deep THEMO site, Israel, November 2019
This experiment is one of the final sea trials performed in the context of the
SYMBIOSIS project. Besides having the opportunity to test localization algorithms
for a full-day cycle of about 24 hours, I could perform further tests on the localization
of a rehabilitated turtle while it was set free at sea.
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Figure D.7: SYMBIOSIS platform first test near deep THEMO deployment
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