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ABSTRACT 

 

Indoor Positioning Using Acoustic Pseudo-Noise Based Time Difference of Arrival 

Nicholas Joseph Luong 

 

The Global Positioning System (GPS) provides good precision on a global scale, but is not suitable 

for indoor applications. Indoor positioning systems (IPS) aim to provide high precision position information 

in an indoor environment. IPS has huge market opportunity with a growing number of commercial and 

consumer applications especially as Internet of Things (IoT) develops. This paper studies an IPS approach 

using audible sound and pseudo-noise (PN) based time difference of arrival (TDoA). The system’s 

infrastructure consists of synchronized speakers. The object to be located, or receiver, extracts TDoA 

information and uses multilateration to calculate its position. The proposed IPS utilizes sound waves since 

they travel much slower compared to electromagnetic waves, allowing for easier measurements. 

Additionally, the audible spectrum has a large availability of low directivity speakers and microphones 

allowing for a large coverage area compared to highly directive ultrasonic transceivers. This paper 

experimentally evaluates the feasibility of the proposed IPS. 
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1 INTRODUCTION 

1.1 Statement of Problem 

Position location is vital information that enables a variety of applications. The Global Positioning System 

(GPS) provides good precision on a global scale, but is not suitable for indoor applications. Thus, there is a 

void of high precision coverage for indoor applications. Indoor positioning systems (IPS) aim to provide high 

precision position information in an indoor environment. IPS is a rapidly changing field that is attracting 

interest for its big market opportunity to apply the technology [1]. 

IPS are complex systems that involve all electrical engineering disciplines and requires knowledge of the full 

system to make informed design decisions. There are many factors that affect system performance. Some 

major factors this paper focuses on includes system impulse response, code tracking, sampling frequency, 

transmitter locations, and the positioning algorithm. Studying these problems requires knowledge of 

communications theory, digital signal processing (DSP), analog design, digital design, and programming. 

1.2 List of Terms 

Table 1.1: List of terms  

AC Alternating Current 

ADC Analog to Digital Converter 

AoA Angle of Arrival 

AUX Auxiliary 

CDMA Code Division Multiple Access 

DC Direct Current 

DLL Delay Locked Loop 

DSP Digital Signal Processing 

DSSS Direct Sequence Spread Spectrum 

FIR Finite Impulse Response 

FPGA Field Programmable Gate Array 

GPS Global Positioning System 

HP Hewlett-Packard 

IPS Indoor Positioning System 
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IV Current-Voltage 

KVL Kirchhoff’s Voltage Law 

LFSR Linear Feedback Shift Register 

LMS Least Mean Squared 

LPF Low Pass Filter 

LTI Linear Time-Invariant 

MCU Microcontroller 

MLS Maximum Length Sequence 

m-Sequence Maximum Length Sequence 

PMOD Peripheral Module Interface 

PN Pseudo-noise 

PSD Power Spectral Density 

RAIM Receiver Autonomous Integrity Monitoring 

RF Radio Frequency 

RSS Received Signal Strength 

Rx Receiver 

TDoA Time Difference of Arrival 

ToA Time of Arrival 

TP1 Test Point 1 

TR Time Reversal 

Tx Transmitter 

2D 2-Dimensional 

3D 3-Dimensional 

 

1.3 Purpose of Study 

Studying acoustic IPS advances the field of IPS and adds to the literature. Current literature still studies both 

ultrasonic [2] [3] [4] [5], and audible sound [6] [7] [8] [9] IPS in search of a practical solution to the IPS 

problem. Despite the obvious drawback that humans can hear an acoustic IPS, an acoustic IPS still has great 

potential to achieve sub-centimeter accuracy and provide greater coverage than an ultrasonic system. For this 

reason, the study of acoustic based IPS is very important to the IPS field.  
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2 BACKGROUND 

2.1 Indoor Positioning Systems 

Indoor positioning systems (IPS) aim to provide high precision position information for indoor applications. 

There are a variety of IPS technologies and techniques, each with their own advantages and disadvantages. 

The comparison criteria between IPS is accuracy, coverage and cost.  

In general, positioning requires ranging measurements and a multilateration computation which uses ranging 

measurements to solve for position. The range measurements could be RSS (received signal strength), ToA 

(time of arrival), TDoA (time difference of arrival), or AoA (angle of arrival). Signals for range 

measurements include RF, light, sound, or magnetic field [1].  

Multilateration requires ranging measurements to known locations. The transmitters or receivers at known 

locations is the infrastructure. Brena [1] defines a passive infrastructure as one that generates signals, and the 

object to be located receives the signals and computes position. An active infrastructure is the opposite, where 

the object to be located generates the signals and the infrastructure receives them [1]. In both cases, the 

multilateration computation is the receiver’s job. Positioning algorithms or estimators usually perform the 

positioning computation. 

Each ranging measurement type and method have tradeoffs. This paper focuses on TDoA using audible 

sound. TDoA is advantageous because it does not require receiver and transmitter synchronization. Instead, 

infrastructure node synchronization enables time difference measurements.  

Using sound is advantageous to RF on an indoor scale since the wave speed is lower by 6 orders of magnitude. 

This allows for a much lower clock requirement in an audio system versus RF. A slower clock allows for 

reduced power consumption, computational resources and increased system accuracy. RF indoor positioning 

systems like WiFi and Bluetooth have not been able to achieve sub-centimeter accuracy [6]. 

Ultrasonic is superior to audible sound in applications where discreet1 positioning systems are necessary. 

However, most ultrasonic transceivers are highly directive, which limits system coverage. Using audible 

sound allows for use of low directivity speakers and microphones, which allows for increased IPS coverage. 

                                                           
1 A discreet positioning system refers to a system that operates without obtruding on nearby humans. 
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Additionally, acoustic-based systems allows for modern devices like smartphones to leverage the system 

without any additional hardware. Multipath susceptibility is one disadvantage to low directivity speakers and 

microphones. Section 5.3 discusses methods to combat multipath. 

2.2 Pseudo-Noise Sequences 

Pseudo-noise (PN) sequences are very important to modern communication techniques. Code Division 

Multiple Access (CDMA) is a well-known direct sequence spread spectrum (DSSS) technique that uses PN 

sequences [10]. PN sequences are also popular in range finding applications. A major example is GPS, which 

uses Gold sequences with RF carriers to obtain ranging measurements [11].  

There are three well-known PN sequence families: m-sequence, Gold sequence, and Kasami sequence [12]. 

M-sequences and Gold sequences are used throughout this paper, so their properties are briefly discussed in 

Sections 2.2.1 and 2.2.2.  

 m-Sequences 

m-Sequences or maximal length sequences are the easiest PN sequences to generate and are typically 

generated using linear feedback shift registers (LFSR) [12]. Figure 2.1 shows the Fibonacci configuration for 

m-Sequence generation. Generation polynomials describe the LFSR. Equation (2.1) shows a general 

generation polynomial equation for the Fibonacci configuration. 

𝑓(𝑥) = 𝑐 ∙ 𝑥 + 𝑐 ∙ 𝑥 + ⋯ + 𝑐   (2.1) 

 

 

Figure 2.1: m-Sequence Generator using Fibonacci configuration, where “+” is a logical xor and “x” is a 
logical and [12] 
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The PN sequence generator produces a periodic sequence, where the PN sequence is the periodic sequence. 

The length of the sequence is given by 𝐿 = 2 − 1 , where m is the number of shift registers. The generation 

polynomial 𝑓(𝑥) = 𝑥 + 𝑥 + 1 generates a PN sequence of “1110010” which repeats over time. The most 

important property of PN sequences is its correlation properties. Auto and cross correlation uses a bipolar 

transformed sequence where 0’s become -1. Figure 2.2 shows the autocorrelation of the PN sequence 

“1110010”. For an ideal PN sequence, there is a maximum of L when perfectly aligned and a minimum of -

1 when misaligned. Additionally, good PN sequences have low cross correlation to other signals.  

 

Figure 2.2: Autocorrelation of the sequence 1110010 [12] 

 

The correlation properties are extremely useful for ranging measurements since peaks represent time instants 

when a signal is received. Identifying peaks, and taking the difference between their times yield TDoA 

measurements. 

Many m-sequences have large cross-correlation [12]. If multiple m-sequences are used, this leads to increased 

probability of false TDoA measurements. Orthogonal PN sequences are required to identify multiple 

transmitters. Gold sequences are best for applications with many transmitters. 
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 Gold Sequences 

Gold sequences or Gold codes are sometimes preferred over m-sequences because they provide low cross 

correlation between codes at the expense of a somewhat degraded autocorrelation function. Low cross 

correlation is more suitable for CDMA since many users are using the same band of frequencies [12]. GPS 

also uses Gold codes for a maximum of 32 total satellites, with only 24 currently in orbit [11] [13]. 

Gold sequences are generated by logically adding (xor-ing) two m-sequences [12]. Figure 2.3 shows an 

example Gold sequence generation block diagram. Figure 2.4 shows the autocorrelation of the sequence 

generated by Figure 2.3. The correlation of a misaligned Gold sequence is larger relative to an m-sequence. 

This is the price to pay for low cross correlation between codes. 

 

Figure 2.3: Example Gold sequence generation block diagram, where “+” is a logical xor [12] 

 

 

Figure 2.4: Autocorrelation of Gold sequence generation example [12] 
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2.3 Code Acquisition and Tracking 

Code acquisition and tracking loops are paramount in GPS and CDMA receivers. Demodulation of CDMA 

and GPS signals requires RF carrier and code phase alignment [14] [15]. The purpose of code acquisition 

and tracking is to lock to the carrier and PN code. Of course, the receiver must know the PN code to 

demodulate the signal. It is important to understand the implementation of code tracking to identify 

performance tradeoffs associated with the proposed IPS’s design decisions. Figure 2.5 shows the block 

diagram of a code and carrier tracking loop. The block diagram is reflective of code and carrier tracking for 

a band-pass system, such as GPS. Note that the proposed IPS operates at baseband and does not require 

carrier tracking. Additionally, the proposed IPS may or may not require code tracking depending on the 

sampling frequency of the system. Code tracking is only necessary when there are more than one samples 

per chip. 

 

Figure 2.5: Code and carrier tracking loop [14] 

 

The code and carrier tracking loop is a version of a delay locked loop (DLL). Integrate and dump blocks 

integrate for the PN code symbol period and dump the correlation result. The result is dumped to the next 
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stage for use and the integrator is cleared to start the accumulation process again. Figure 2.6 shows early, 

prompt, and late correlations visually. Recall the autocorrelation of PN sequences takes on a triangle shape 

within one chip of alignment. As seen, early, prompt, and late correlations are samples of the correlated 

waveform. 

 

Figure 2.6: Early, prompt, and late correlation for code tracking [14] 

 

The code discriminator uses early, prompt, and late correlations to align to the PN code phase. Similarly, the 

carrier discriminator uses I and Q prompt correlations to align to the carrier. Carrier tracking is only necessary 

in band-pass implementations like GPS. The proposed IPS transmits PN codes at baseband, so carrier tracking 

is not required. 

Note the DLL can only find the peak when early, prompt, and late correlations are within one chip of the 

peak. When early, prompt, and late correlations are outside one chip, their correlations are equal in the ideal 

case and so the DLL does not know which direction to move to find the peak.  

Code acquisition aims to find the code phase within one chip. Code acquisition precedes code tracking in all 

cases. There are a variety of code acquisition techniques that include serial, parallel and hybrid search 

approaches [16] [17] [18]. In general, the tradeoff is computation resources and acquisition time.  

A GPS receiver tracks one code per visible satellite, and uses differences in code phases from the DLL for 

TDoA measurements. So, tracking error leads to TDoA measurement error. Multipath is one of the major 
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issues that leads to phase alignment error in GPS. Some methods to combat multipath include special 

antennas, special DLL and discriminator designs, and receiver autonomous integrity monitoring (RAIM) to 

identify erroneous measurements [14]. Special DLL and discriminator designs are most applicable to the 

proposed IPS [19] [20]. 

2.4 TDoA Positioning Algorithms 

TDoA positioning algorithms, also known as hyperbolic positioning algorithms or estimators, use TDoA 

measurements and infrastructure node locations to calculate position. The positioning algorithm is an 

essential step in a positioning system and directly impacts system performance and accuracy.  

The solution to the problem is by no means trivial. Equation (2.2) shows the hyperbolic equation for the range 

difference between the ith node and first node [21]. If there are n nodes in the infrastructure, then there are 

n-choose-2 nonlinear hyperbolic equations to solve for position. Even with no error in the ranging 

measurements, a unique solution may not exist.  Multiple intersection points in the hyperboles determined 

from TDoA measurements cause position ambiguity [21].  

𝑅 , = 𝑅 − 𝑅  

= (𝑋 − 𝑥) + (𝑌 − 𝑦) + (𝑍 − 𝑧) − (𝑋 − 𝑥) + (𝑌 − 𝑦) + (𝑍 − 𝑧)  

(2.2) 

 

 

The literature includes a variety of methods to solve the set of nonlinear equations [21] [22] [23] [24] [25] 

[26] [27] [28]. Iterative methods like the Taylor-Series method are computationally intensive and usually 

requires a good initial guess. Chan and Ho’s method [29] provides a non-iterative closed-form solution to the 

problem and is an approximation to the maximum likelihood estimator when TDoA measurement error is 

small [21]. Current literature studying positioning algorithms typically propose new or modified methods to 

reduce computational intensity or increase accuracy and coverage. Algorithm performance and accuracy is 

highly dependent on infrastructure node locations. Diez-Gonzalez et. al. recently proposed a method to solve 

the 3D TDoA problem with 4 sensors. Optimizing infrastructure node location is part of their solution [28].  
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3 PROPOSED INDOOR POSITIONING SYSTEM 

Figure 3.1 shows an overview of the proposed IPS. The system utilizes audible sound waves and TDoA 

measurements to locate the user. The infrastructure consists of synchronized speakers at anchor locations that 

transmit orthogonal Gold codes. The user receives the signals with a microphone, acquires TDoA 

information, and computes the user’s location. 

RX 
(Mic)

Gold Code 1

Gold Code 3 Gold Code 4

Gold Code 2

Synchronized TX, RX is object to be located

Code 
Acquisition 
& Tracking

TDoA 
Positioning

 

Figure 3.1: Overview of proposed IPS 

Using audible sound provides several advantages including inexpensive implementation, larger location 

service coverage area, and compatibility with existing devices. Off the shelf speakers are largely available 

and inexpensive. Stereo Logitech S120 AUX inputs speakers are $8.49 on Amazon [30]. Many consumer 

devices like smartphones and computers already have both microphones and speakers. Additionally, working 

with the speed of sound compared to speed of light allows for much slower sampling frequency, saving 

analog and digital hardware expenses. An advantage to using audible sound over ultrasonic is the availability 

of low directive speakers and microphones. Low directivity eliminates receiver and transmitter orientation 

constraints and increases location service coverage. Finally, using audible sound allows the possibility of old 

devices to leverage the system. For example, smart phones and laptops already meet the hardware 

requirement of a speaker or microphone and processor. To demo this, some of the experiments discussed in 

Section 4 and Section 5 were conducted with a laptop as the receiver. 
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3.1 Gold Codes 

The Gold codes used for ranging determine the speed, range and noise immunity of the system. A longer 

Gold code results in a slower system, but extends the range and increases noise immunity. The Gold code 

generation polynomials  match GPS [13]. The system’s bandwidth constraint defines the chipping and 

symbol period used to transmit the codes. The frequency response of the speakers and microphones defines 

the system’s bandwidth constraint. The best case assumes a 20 Hz – 20 kHz bandwidth constraint. Modeling 

the Gold code as a square wave with a frequency equal to the chipping rate gives the worst case Gold code 

bandwidth requirement. Figure 3.2 shows the worst case model. The maximum chipping frequency is double 

the bandwidth constraint of 20 kHz. This ensures the fundamental frequency of the square wave model is 

within the bandwidth constraint. Multiplying the symbol period by the speed of sound yields range without 

ambiguity. Objects located outside the symbol period radius requires a priori information to properly scale 

the time of flight measurements for accurate positioning. Table 3.1 shows the calculated values. 

Tchip min

fmax=20 kHz  

Figure 3.2: Worst case Gold code bandwidth requirement time domain model 

 

Table 3.1: Proposed IPS PN characteristics summary 

PN Type Gold 

𝑓 (𝑥) 𝑥 + 𝑥 + 1 

𝑓 (𝑥) 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 + 1 

# chips 1023 

Tchip 0.025 ms 

Tsymbol 25.575 ms 

Bit rate 39.1 bps 

Range w/o ambiguity 8.77m (28.77 ft) 
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3.2 Receiver Requirements 

The receiver is the user of the positioning service and requires a microphone and processor to calculate 

position. Ideally, the microphone is omnidirectional and has flat frequency response up to 20 kHz. Nyquist 

theorem requires a sampling frequency of at least 40 kHz. A faster sampling frequency improves overall 

system accuracy. The processor should be fast enough to perform code acquisition and tracking. Serial 

acquisition approaches can lower the computation resource necessity in situations where computation 

resources are scarce. A serial acquisition approach is slower than parallel acquisition, but requires less 

resources [16] [17] [18].  

Inexpensive hardware requirements for receivers is a huge advantage for audible sound positioning systems. 

Microphones being common on consumer devices leaves opportunity for existing devices to leverage an 

audible sound positioning system via software development.  

 

3.3 Infrastructure Requirements 

The transmitters are the infrastructure of the positioning service. The transmitters are synchronized and 

placed at known locations so the receiver can calculate its position based on TDoA measurements. Note that 

each transmitter plays a unique Gold code. Orthogonality is desirable for low cross correlation between codes, 

regardless of time shift. Recall that cross correlation between codes is not zero, even in the ideal case. A 

single correction filter on the receiving end requires identical transmitting speakers. Section 4.4 discusses 

correction filters. Additionally, each transmitter should only have a single speaker; no tweeter and woofer 

pairs or stereo used as mono pairs. Section 5.2.1 discusses this requirement. Full range 20-20 kHz speakers 

maximize correlation performance. Inexpensive, low quality off the shelf speakers and a microcontroller to 

generate the Gold codes are sufficient hardware to implement the infrastructure. Again, a major advantage 

of an audible sound positioning system is the inexpensive infrastructure requirement. Section 5.5.1 simulates 

positioning performance, but note that increasing the number of transmitting nodes generally increases 

overall system positioning. 
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3.4 Variations 

In the case where it is too computationally intensive for a device to be a receiver which requires code 

acquisition and tracking and TDoA positioning, one variation is a flipped system where the user transmits 

and the anchors receive. In the flipped system, the intensive computation moves to the infrastructure and 

requires additional channel to communicate to the user its location. Additionally, with multiple users the 

flipped system is more prone to the near-far problem. Section 6.1.1 discusses the near-far problem. The 

flipped system is not directly studied in this paper, however both systems share the same fundamentals. Other 

variations include using longer or shorter PN sequences to improve system speed or noise immunity. PN 

variations are also not studied in this paper. 

 

3.5 Limitations 

Using audible sound also comes with the obvious and major disadvantage that humans would have to hear 

the pseudo-noise signals. This makes the system impractical for discreet2 positioning applications.  A low 

transmitter duty cycle could decrease the annoyance to humans. Similarly, the flipped system could also be 

less annoying as the user would be triggering the audible noise. The disadvantage could be irrelevant in 

applications where a discreet positioning service is not required. Some robotics, mapping or tracking 

applications may not require a discreet IPS. For example, a warehouse that uses moving autonomous robots. 

Nakashima et al. and Suzuki and Ogiso studied an acoustic IPS that digitally watermarks audio with PN 

sequences [9] [7]. In theory, watermarked music could provide indoor location services without disturbing 

humans. This modification expands the practical applications of an acoustic IPS.  

 

 

  

                                                           
2 A discreet positioning system refers to a system that operates without obtruding on nearby humans. 
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4 PRELIMINARY TESTING 

This section details all preliminary testing prior to testing the proposed IPS. Preliminary tests include 

characterizing the channel, experimenting with channel correction techniques, and adjusting receiver and 

transmitter parameters. The purpose of the preliminary testing is to determine if an IPS using acoustic PN 

based TDoA is possible. Section 5 studies a 4 node infrastructure implementation.  

 

4.1 Custom Receiver Board 

Development of a custom receiver board provides flexibility during testing, and allows the option to develop 

a real time IPS with an FPGA dev board. This alleviates the “black box” of DSP employed by laptop or smart 

phone microphones and ensures accurate test results. “Black box” DSP includes optimization for voice 

applications and noise and echo reduction which is not suitable for testing the proposed IPS. Additionally, 

laptop and smart phone microphones typically only have set sampling frequencies of 44.1 kHz and 48 kHz. 

 

 

Figure 4.1: Custom receiver board with CMC-6015-42P microphone and MAX1285 ADC 
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 Requirements 

Functionally, the board is an analog front end to a digital receiver. Figure 4.2 depicts the high level block 

diagram of the analog front end. Table 4.1 outlines the requirements for each block in the design. 

 

Microphone Anti-alias 
filter ADCPreamp Output 

Interface

  

Figure 4.2: High level block diagram of the custom receiver board 

 

Table 4.1: Custom receiver board design requirements 

Block Requirement Justification 

Microphone Omnidirectional Proposed IPS requires low 
directivity microphone 

Analog Provide ability to adjust analog 
gain, probe waveform with a 
scope 

Preamp Low noise Maximize receiver performance 

Adjustable analog gain Provides testing flexibility, not 
expensive to include 

Anti-alias filter 4th order Butterworth, 20 kHz 
cutoff 

Magnitude distortion in the 
passband is undesired 

Low noise Maximize receiver performance 

ADC Internal reference Eliminate design need for stable 
reference voltage 

ADC with variable sampling 
frequency up to 400 kHz 

Provide testing flexibility  

Output Interface PMOD compatible Ability to use Rx board with 
FPGA or MCU dev board for 
real time system development 
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 Component Selection 

The design calls for a microphone, op amps, and an ADC to be selected.  

Table 4.2 shows the components selected to meet the design requirements outlined in Table 4.1. 

 

Table 4.2: Custom receiver board component selection 

Component required Selected Component Specs 

Microphone CMC-6015-42P Omnidirectional, -42dB 
sensitivity, Ø6.0 x 1.5 mm 

Op amp LT1677 Rail-to-rail, 7.2MHz GBW, 
low noise 

ADC MAX1285 12 bit, 400ksps, 2.5V internal 
reference 

  

 

 Analog Front End Design 

Figure 4.3 shows the schematic of the analog front end. This section details the design associated with each 

block of the analog front end. 

 

 

Figure 4.3: Custom receiver schematic 
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4.1.3.1 Microphone Biasing 

Figure 4.4 shows the CMC-6015-42P measurement circuit. RL determines the voltage terminal 1 sits at. The 

terminal should sit at half the supply voltage to maximize voltage swing. Proper RL sizing requires 

microphone IV characteristic measurements. Figure 4.5 shows the measured IV characteristics of the two 

CMC-6015-42P microphones. 

 

Figure 4.4: CMC-6015-42P measurement circuit [31] 

 

Applying KVL to the measurement circuit yields Equation (4.1). Solving Equation (4.1) for RL yields 

Equation (4.3). To maximize voltage swing, Vmic should sit at the midpoint between the microphone on 

voltage and supply voltage. Equation (4.2) describes Vmic. A standard value bias resistor of 5.6k is a 

compromise between the two CMC-6015-42P microphone IV characteristics. 

The PMOD interface requirement constraints the supply voltage to 3.3V. Figure 4.5 shows the CMC-6015-

42P has a Von of 0.5V. Calculating and rounding RL to a standard value yields of 5.6kΩ. 

 

𝑉 − 𝐼 ∗ 𝑅𝐿 − 𝑉 = 0 𝑉 

 

(4.1) 

𝑉 =
𝑉 − 𝑉

2
+ 𝑉 =

3.3𝑉 − 0.5𝑉

2
+ 0.5𝑉 = 1.9𝑉 

(4.2) 

𝑅𝐿 =
𝑉 − 𝑉

𝐼
=

3.3𝑉 − 1.9𝑉

236.4𝜇𝐴
= 5.922𝑘Ω → 5.6𝑘Ω 

(4.3) 
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Figure 4.5: CMC-6015-42P measured IV characteristics 

4.1.3.2 Preamp 

The preamp design uses a Texas Instruments single-supply, electret microphone pre-amplifier reference 

design, shown in Figure 4.6. Note that the AC coupling network in the reference design (R5, C5 and R6) was 

not used since the a 4th order Butterworth follows the preamp stage. 

 

Figure 4.6: Texas Instruments single-supply, electret microphone pre-amplifier reference design [32] 
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The following Texas Instruments equations are used to select C3 and C6:  

𝐶 =
1

2𝜋𝑅 𝑓
=

1

2𝜋 ∗ 5.6𝑘Ω ∗ 100𝐻𝑧
= 0.284𝜇𝐹 → 0.27𝜇𝐹 

(4.4) 

𝐶 =
1

2𝜋(𝑅 ∥ 𝑅 )𝑓
=

1

2𝜋(𝑅 ∥ 𝑅 )𝑓
= 𝜇𝐹 → 2.2𝜇𝐹 

(4.5) 

 

The reference voltage of the ADC is 2.5V, so a 1.25V preamp bias voltage maximizes voltage swing. An 

exhaustive search script finds standard R3 and R5  to achieve bias voltage of 1.25V from a 3.3V supply with 

minimum squared error. R2 is a 200kΩ potentiometer. Section 4.1.4 sizes C2 through simulation. 

4.1.3.3 4th Order Butterworth LPF 

Figure 4.7 shows two cascaded Sallen-Key low pass architectures implementing a 4th order Butterworth LPF. 

Equation (4.6) gives the second order transfer function of a single Sallen-Key low pass stage [33]. Setting 

R1=R2 simplifies Equation (4.6) to Equation (4.7). The normalized pole and zeros of a 4th order Butterworth 

are given in Table 4.3 by Maxim [33]. 

 

Figure 4.7: 4th order Butterworth Sallen-Key LPF architecture 

 

 

𝑉

𝑉
=

1

𝑠 (𝑅1𝑅2𝐶1𝐶2) + 𝑠𝐶1(𝑅1 + 𝑅2) + 1
 

(4.6) 

𝑉

𝑉
=

1

𝑠 (𝑅1 𝐶1𝐶2) + 𝑠(2𝑅1𝐶1) + 1
 

(4.7) 
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Table 4.3: 4th order normalized Butterworth pole locations [33] 

Poles (a ± jb) Quadratic Expression 

-0.9239 ± 0.3827 𝑠 + 1.8478𝑠 + 1 

-0.3827 ± 0.9239 𝑠 + 0.7654𝑠 + 1 

 

Selecting a 20 kHz cutoff frequency and setting R1=R2, R3=R4 the design equations become: 

𝐶1𝑅1 =
1.8478

2 ∗ 2𝜋 ∗ 20𝑘𝐻𝑧
 

(4.8) 

𝐶2𝑅1 =
2

1.8478 ∗ 2𝜋 ∗ 20𝑘𝐻𝑧
 

(4.9) 

𝐶3𝑅3 =
0.7654

2 ∗ 2𝜋 ∗ 20𝑘𝐻𝑧
 

(4.10) 

𝐶4𝑅3 =
2

0.7654 ∗ 2𝜋 ∗ 20𝑘𝐻𝑧
 

(4.11) 

 

An exhaustive search script finds standard resistor and capacitor values that minimize squared error. Table 

4.4 shows error introduced to the design equations, by using standard value components. Figure 4.8 shows 

the standard value 20 kHz cutoff, 4th order Butterworth circuit. Figure 4.9 shows the simulated AC response 

to the circuit.  

Table 4.4: 4th order Butterworth ideal and standard value RC product 

Product Ideal (μs) Standard Value (μs) % Error 

𝐶1𝑅1 7.352 7.260 1.25% 

𝐶2𝑅1 8.613 8.580 0.39% 

𝐶3𝑅3 3.045 3.003 1.39% 

𝐶4𝑅3 20.794 20.460 1.60% 
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Figure 4.8: Standard value 20 kHz cutoff, 4th order Butterworth circuit 

 

 

Figure 4.9: 4th order Butterworth frequency response LTSpice simulation 

 

 Analog Front End Simulation 

Figure 4.11 shows the noise analysis simulation of the complete front and confirms proper resistor sizing. R5 

as the dominant noise source is desirable since the microphone IV characteristics strictly determines R5 with 

no possible variation. Figure 4.12 shows the analog front end response to a 0.05ms pulse, simulating the 

fastest pulse the front end could receive. The feedback capacitor, C7, compensates for potential instability 

introduced by the op amp’s parasitic capacitance at the inverting input. C7 is selected by visual inspection to 

minimize ringing, while not affecting the transfer function within the bandwidth. 
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Figure 4.10: Analog front end LTSpice simulation schematic 

 

 

Figure 4.11: Analog front end LTSpice noise analysis 

 

Figure 4.12: Analog front end 0.05ms transient pulse response LTSpice simulation 
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4.2 Fabrication 

A 2 layer board was designed using Eagle and the board was fabricated using Oshpark. Figure 4.13 shows 

the full custom receiver board schematic. Figure 4.14 and Figure 4.15 show the top and bottom layers of the 

board respectively. Test points after the preamplifier and 4th order Sallen-Key LPF allow for easy probing. 

 

Figure 4.13: Custom receiver Eagle schematic 

 

 

Figure 4.14: Custom receiver Eagle top board layout 
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Figure 4.15: Custom receiver Eagle bottom board layout 

 

 

Figure 4.16: 4th order Butterworth measured frequency response 
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4.3 System Impulse Response 

Figure 4.17 shows the LTI model of the proposed IPS. Each stage distorts the original PN signal and degrades 

code acquisition and tracking performance. Applying a correction filter before code acquisition and tracking 

can improve performance. Correction filter design requires a system impulse response measurement.  

 

Transmitter
x(t)

X(ω)

Channel
c(t)

C(ω)

Receiver
r(t)

R(ω)

Code 
Acquisition 

and Tracking

PN 
Sequence

 
 

Figure 4.17: Proposed IPS LTI model 

 

 Measurement Method 

A maximum-length-sequence (MLS) signal can be used to measure the impulse response of a room [34]. Let 

h(t) represent the system impulse response, depicted in Equation (4.12) where * represents convolution. Let 

p(t) represent an ideal PN sequence input to the LTI system and y(t) represent the received waveform used 

in code acquisition and tracking. So, y(t) is p(t) convolved with h(t) shown in Equation (4.13). Correlating 

p(t) with y(t) yields Equation (4.14). Since p(t) is a MLS, the autocorrelation of p(t) is approximately equal 

to a Dirac delta function. Equation (4.14) becomes Equation (4.15). Therefore, correlating the ideal MLS 

with the received, filtered MLS yields the system impulse response, h(t). 

 

ℎ(𝑡) = 𝑥(𝑡) ∗ 𝑐(𝑡) ∗ 𝑟(𝑡) (4.12) 

𝑦(𝑡) = 𝑝(𝑡) ∗ ℎ(𝑡) (4.13) 

𝑝(−𝑡) ∗ 𝑝(𝑡) ∗ ℎ(𝑡) = 𝑝(−𝑡) ∗ 𝑦(𝑡) (4.14) 

ℎ(𝑡) = 𝛿(𝑡) ∗ ℎ(𝑡) ≅ 𝑝(−𝑡) ∗ 𝑦(𝑡) (4.15) 
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 Measurements 

The system impulse response is measured by transmitting a single, nonrepeating MLS. The MLS uses a 

chipping rate of 40 kHz, as detailed in section 3.1. The transmitter is the Samsung Galaxy Prime smart phone 

and the receiver is the custom receiver board. Figure 4.18 shows the received MLS waveform on TP1 of the 

custom receiver board. The received waveform does not resemble a square wave due to significant filtering 

from the system impulse response.  

 

Figure 4.18: Received PN waveform, probed at TP1 on custom receiver board 

 

Five measurement trials are used to observe the system impulse response variation from trial to trial. Table 

4.5 shows the received waveform statistics of the trials.  Figure 4.19 shows the normalized correlation of the 

trials with the ideal MLS and their average. There is minimal variation in the measured impulse response 

between trials temporally close to the peak. The impulse response lasts about 0.8 ms. Note the ringing after 

0.8 ms is due to an MLS autocorrelation without wrapping. Figure 4.20 shows there is noise 1 symbol period 

on each side of the peak. Another interesting artifact in Figure 4.20 is reverb due to the room, caused by 

delayed and decayed versions of the transmitted MLS arriving at the microphone. The impulse response 

continues ringing even 1 symbol period after the peak. 
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Table 4.5: Received PN waveform statistics 

Trial Vrms (mV) Vpkpk (mV) 

1 65.1 463 

2 71.1 454 

3 66.4 486 

4 73.7 542 

5 86.7 646 

 

 

Figure 4.19: Galaxy Prime, custom receiver board measured system impulse response 

 

Recall that code acquisition aims to find the phase within one chipping period and tracking uses early, prompt, 

and late samples of the correlated waveform to find the peak. The odd symmetry of the impulse response 

poses an issue to code acquisition and symbol decoding. The negative and positive peak are close in 

magnitude and very close to each other in time, making symbol decoding difficult. Section 4.4 presents 

correction method to improve code acquisition and symbol decoding. 
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Figure 4.20: System impulse response zoomed out 

 

 

Figure 4.21: Samsung Galaxy Prime, Snowball Ice system impulse response when receiving at 0 degrees, 
with respect to its cardioid radiation pattern [35] 

 

Figure 4.21 shows the measured impulse response between the Samsung Galaxy Prime and Snowball Ice 

microphone using two different chipping rates. The Snowball Ice microphone has a sampling rate of 44.1 kHz 
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[35]. Note the negligible difference between the two measured impulse responses. This confirms that 

upsampling on the processing end has minimal impact on the response. The impulse response is about 1.2 

ms. Figure 4.21 also shows significant ringing compared to Figure 4.19. Significant ringing reduces code 

acquisition performance, as it may not lock to the global peak, thereby introducing measurement error. 

Section 4.4 discusses methods to correct the impulse response. 

4.4 System Impulse Response Correction 

Odd symmetric impulse responses with lots of ringing, as seen in Section 4.3.2 yields poor code acquisition 

and symbol decoding performance. Correcting the system impulse response improves code acquisition and 

symbol decoding performance. This section details three methods to correct the channel impulse response. 

 Adaptive Filter 

One equalization technique for FIR systems uses adaptive filters to design a correction filter [36] [37] [38]. 

Figure 4.22 shows the block diagram for the technique. The adaptive filter weights are updated via the LMS 

(Least Mean Square) Algorithm to minimize distortion caused by the plant. Figure 4.23 shows a summary of 

the LMS Algorithm, where W is the adaptive filter weights and X is the system input. The adaptive filter 

length is set equal to the length of the measured impulse response. The delay is set equal to the length of the 

plant and adaptive filter combined, or twice the length of the plant or adaptive filter since they are equal. The 

step size, μ, is set to 0.009 and run for 30000 iterations. Figure 4.25 shows the corrected impulse response. 

 

Figure 4.22: Adaptive filter architecture for channel equalization [37] 
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Figure 4.23: Summary of LMS algorithm corresponding to Figure 4.22 [37] 

 

 

Figure 4.24: LMS correction filter, Fs = 240 kHz 

 

  

Figure 4.25: LMS corrected system impulse response, Fs = 240 kHz 
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There is significant improvement in the post-correction system impulse response. The impulse response is 

now even symmetric and ringing is within 30%. Interestingly, Figure 4.24 shows the LMS correction filter 

converged to a filter that resembles a time revered system impulse response before correction. This caused 

some research into time reversal.  

 Time Reversal 

Time reversal (TR) filtering is an inverse filter that only compensates for phase distortions. TR dates to 1957 

as an automatic technique to correct for delay-distortion of transmission networks [39]. There has also been 

research into using TR with wireless communications and wave focusing applications [39] [40] [41]. 

The phase correction filter works by creating a causal, time reversed version of the system impulse response. 

Assume signal, x, is input to a system with impulse response h. Equation (4.16) gives the time domain TR 

phase corrected output, y. The Fourier Transform of Equation (4.16) yields Equation (4.17) [10]. As seen, 

the TR filter successfully corrects the phase response introduced by the system. 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) ∗ ℎ(𝑇 − 𝑡) (4.16) 

𝑌(𝜔) = 𝑋(𝜔) ∙ |𝐻(𝜔)| ∙ 𝑒  (4.17) 

 

Figure 4.26 shows the TR correction filter derived from Galaxy Prime, custom receiver board system 

impulse response.  

 

Figure 4.26: Time reversal system impulse response correction filter, Fs = 240 kHz 
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Figure 4.27: Samsung Galaxy Prime, custom Rx board time reversal corrected system impulse response, 
Fs = 240 kHz 

 

Figure 4.28: Samsung Galaxy Prime, Snowball Ice system impulse response at 0 degrees, 90% power 
truncated time reversal filter corrected 

 

As seen in Figure 4.27 and Figure 4.28, a time reversal correction filter makes the impulse response even 

symmetric. A performance improvement is especially seen in Figure 4.27 where the ringing reduces to less 

than 40% of the peak. This particular impulse response would thrive in a serial code acquisition approach 

since selecting a false phase is unlikely. Figure 4.28 becomes even symmetric, however significant ringing 

over 80% of the peak occurs. Despite even symmetry, it is hardly an improvement since uncorrected 

maximum ringing is also approximately 80%. 
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Figure 4.29: Samsung Galaxy Prime, custom Rx board and Snowball Ice system PSD 

 

Figure 4.29 shows the PSD of the two systems. Note the system using the CMC-6015-42p has a flatter 

frequency response compared to the Snowball Ice. Note both PSD’s have significant attenuation and do not 

take full advantage of the 20 kHz bandwidth. The CMC microphone performs well with less than 40% 

ringing, despite only using about 7 kHz of bandwidth. The Snowball Ice microphone has significant ringing, 

but has a small 3 dB bandwidth centered around 6 kHz. A relation between ringing and bandwidth is apparent. 

Section 4.4.5 will explore how to further correct the impulse response using magnitude correction. 
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 Effect of Truncating the Correction Filter, h(t) 

Truncating the correction filter minimizes computation resources. Figure 4.30 shows the 90% energy 

truncated time reversal correction filter for the Samsung Galaxy Prime and custom receiver board pair. This 

truncation reduces the filter length from over 200 to 72. Recall the original TR correction filter shown in 

Figure 4.26. 

 

Figure 4.30: 90% energy truncated TR correction filter 

 

Figure 4.31 shows the normalized corrected system impulse response at different truncation lengths. 100% 

energy is the full TR correction while 0% energy is no correction filter. Notice how as the correction filter 

gets shorter, the impulse response moves back to odd symmetry. Visually, the point of diminishing returns 

is at around 90% energy; increasing the filter length to 100% energy hardly improves performance. Equation 

(4.18) gives the equation to calculate correction filter energy. 

𝐸 =  ℎ(𝑡) 𝑑𝑡 
(4.18) 
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Figure 4.31: Corrected system impulse response using a truncated correction filter 
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 Correction Filter on Tx vs Rx 

It is important to note that placing the Rx designed correction filter on the Rx side is not equivalent to placing 

it on the Tx side.  Rx designed correction filters refers to correction filters that are designed for the Rx side. 

Sections 4.4.1 and 4.4.2 discusses methods to design Rx correction filters. Figure 4.32 shows the LTI model 

between the two. Placing a digital correction filter on the Tx inherently samples the PN analog waveform. 

Without an anti-alias filter, sampling and reconstruction on the Tx end introduces distortion to the ideal PN 

analog waveform. This extra distortion leads to degraded correction performance, not to mention 

complicating the transmitters and reducing the power efficiency. Using an anti-alias filter adds another block 

to the LTI model, and requires re-characterization of the system impulse response for correction filter design. 
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Figure 4.32: Correction filter on Rx side (top) vs Tx side (bottom) model 

 

Figure 4.33 and Figure 4.34 confirm that it is not equivalent to place the Rx designed correction filter on the 

transmitter side when considering implementation. Both figures show the corrected impulse response 

between the Samsung Galaxy Prime and custom receiver board. As expected, the performance degrades when 

placing the Rx designed correction filter on the Tx side. More ringing occurs with the Rx designed correction 

filter on the Tx side, therefore a Rx designed correction filter should not be on the Tx side. Additionally, 

since placing the correction filter on the Tx side complicates the transmitter and adds hardware, the correction 

filter should only be placed on the Rx side. 
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Figure 4.33: Corrected system impulse response with correction filter on Tx side 

 

 

Figure 4.34: Corrected system impulse response with correction filter on Rx side 
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 Magnitude Correction 

Magnitude correction explores the effect of leveling out the PSD. The intuition comes from viewing the 

system impulse response and PSD of the Samsung Galaxy Prime with the custom receiver board and 

Snowball Ice microphone. Those plots are shown in Figure 4.28 and Figure 4.29. The Snowball Ice 

microphone had an impulse response with significantly more ringing and also a narrower 3 dB bandwidth 

centered around 6 kHz. 

Magnitude correction uses a linear phase FIR filter designed by the frequency sampling method [42] [43]. 

The FIR filter is first designed to level out the PSD, then small incremental changes are made through trial 

and error and visual inspection to optimize performance. Table 4.6 shows the final FIR filter coefficients. 

Figure 4.37 shows the FIR filter magnitude and phase frequency response. Figure 4.36 shows the uncorrected 

and corrected PSD. The corrected PSD has a flatter response, as desired. 

Figure 4.35 shows the original system impulse response, the TR phase corrected impulse response, the 

magnitude corrected impulse response, and phase and magnitude corrected impulse response. With 

magnitude correction alone, the time duration of ringing reduces. After applying phase correction to the 

magnitude corrected impulse response, the results are astounding. The duration and magnitude of ringing is 

significantly reduced. The ringing magnitude has dropped from approximately 75% of the peak down to 

approximately 30% of the peak. Also note the delay introduced by applying a correction filter. This delay is 

not an issue for TDoA measurements as long as all transmitters are corrected by the same correction filter. 

This constraint is the source of the requirement for identical transmitting speakers. 

Figure 4.38 shows the phase, magnitude, and phase and magnitude correction filters. The phase and 

magnitude correction filter is the convolution of the phase with the magnitude correction filter. Adding a 

magnitude correction increases the filter length by 20%. This extra length is well worth the cost to reduce the 

ringing from 75% down to 30%.  

Both phase and magnitude correction are also essential to improving the system impulse response. In some 

cases, magnitude correction is necessary for accurate code acquisition and symbol decoding. 
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Figure 4.35: Samsung Galaxy Prime, HP Spectre x360 system impulse response with phase and magnitude 
correction 
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Figure 4.36: Samsung Galaxy Prime, HP Spectre x360 PSD 

 

Table 4.6: Samsung Galaxy Prime, HP Spectre x360 FIR correction filter design by frequency sampling 

Digital Frequency F (cyc/sample) Magnitude 

0/19 1 

1/19 1 

2/19 0.3 

3/19 0.8 

4/19 4 

5/19 5 

6/19 5 

7/19 5 

8/19 5 

9/19 5 
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Figure 4.37: Samsung Galaxy Prime, HP Spectre x360 magnitude correction filter frequency response 
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Figure 4.38: Samsung Galaxy Prime, HP Spectre x360 phase and magnitude correction filters 
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4.5 Simulated Infrastructure Tests 

Two simulated infrastructure tests are run before implementing the infrastructure. The simulated 

infrastructure consists of 4 Gold codes transmitted from the same source. In the “Stacked Gold Codes” test, 

all 4 gold codes are aligned on top of each other. In the “345 Gold Code” test, Gold codes 2, 3, and 4 are 

spaced out to emulate 3, 4 and 5 meter path differences with respect to Gold code 1. The purpose of these 

tests is to confirm separation of multiple orthogonal Gold codes transmitted over the air. The correlated 

waveforms are only phase corrected for simplicity. 

Figure 4.39 shows the “Stacked Gold Codes” test with phase correction. The correlated peaks of each code 

are aligned as expected. Figure 4.40 shows “345 Gold Codes” test is with phase correction. Gold codes 2, 3, 

and 4 emulated 3, 4 and 5 meter path differences with respect to Gold code 1, as expected. The simulated 

infrastructure tests are the final tests necessary to prove an IPS using acoustic PN based TDoA is possible. 
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Figure 4.39: Stacked Gold codes test, after phase correction 

 

  

 

Figure 4.40: “345 Gold Code” test, after phase correction 
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4.6 Preliminary Testing Takeaways 

Measuring the system impulse response allows for the design of a correction filter to optimize code 

acquisition and symbol decoding performance. The discussed MLS impulse response measurement method 

is accurate and also directly represents the waveform used during code acquisition and tracking. The pre-

corrected system impulse response is odd symmetric and not suitable for code acquisition and symbol 

decoding. An LMS designed filter and TR correction filter phase corrects the system impulse response, 

making it even symmetric. Since both filters have similar performance, the TR filter is advantageous for its 

design simplicity. Finally, a linear phase FIR filter designed by frequency sampling magnitude corrects the 

system impulse response and reduces the ringing by flattening the PSD. The proposed IPS should always use 

phase and magnitude correction, as it is paramount to code acquisition and symbol decoding performance. 

Results of preliminary testing prove the custom receiver board was and is well worth the effort.  Discovery 

of magnitude correction and TR phase correction is largely due to testing with the custom receiver board. 

Comparison between Snowball Ice and custom receiver board pre and post corrected impulse responses 

provided key observations about correction filters; mainly that an even symmetric minimal ringing impulse 

response is possible. Moving forward the custom receiver board is useful for a real-time FPGA receiver 

implementation. Additionally, the custom receiver board impulse response serves as a “control” device with 

no black box behavior.  
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5 PROPOSED IPS TESTING 

5.1 Test Setup 

This section discusses the infrastructure, receiver and the testing environment for a four speaker 

implementation of the proposed IPS. The infrastructure consists of four synchronized transmitters at known 

locations. The receiver is the object to be located. 

TX1 TX2

Logitech S120

Arduino

TX4TX3

Logitech S120

Synchronized 
Transmitter

Receiver

HP Spectre 
x360

 

Figure 5.1: Required hardware for proposed IPS testing 

 

 Infrastructure 

Logitech S120 stereo speakers, shown in Figure 5.2, are used as transmitters. The speakers are selected for 

its frequency response, AUX input capability, single speaker per channel topology, and low price. As seen 

from preliminary testing, larger bandwidth improves correlation performance. The Logitech S120 stereo 

speakers claim a 50 Hz – 20 kHz response bandwidth [30]. AUX input capability is desirable so a 

microcontroller can generate the Gold codes and drive the speakers directly without any amplification or 

power circuitry. The Logitech S120 stereo speakers also have volume control knobs, which provides 

flexibility during testing. Accurate infrastructure calibration requires a single speaker used on left and right 

channels. Section 5.2 discusses the calibration requirement. The stereo speakers are $8.49 on Amazon with 

Prime shipping [30]. 
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Figure 5.2: Logitech S120 stereo speakers 

 

An Arduino Uno generates the Gold sequences by toggling pins high and low. The output voltage of the 

Arduino is 0-5V, so a series 260kΩ resistor and 0.47μF capacitor AC couples the signal and limit the current 

to protect the Arduino and Logitech S120 speakers. An Arduino Uno is $21.90 on Amazon [44]. Figure 5.3 

shows the Arduino wired up to Logitech S120 speakers. 

Four speakers are used to simplify the test setup. This fulfills the transmitter requirement to position an object 

using TDoA measurements on a 2D plane [25] [28]. Table 5.1 shows the PN generation polynomials and tap 

points for each Gold code used with the transmitters. Refer to the Appendix for Gold code generation with 

tap points. 

Table 5.1: Tx Gold code PN gen polynomials and tap points 

𝑓 (𝑥) 𝑥 + 𝑥 + 1 

𝑓 (𝑥) 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 + 1 

TX1 [2 6] 

  TX2 [3 7] 

TX3 [4 8] 

TX4 [5 9] 
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Figure 5.3: Infrastructure signal wiring 

 

 Receiver 

The receiver is the object to be located and is the user of the positioning system. The receiver only requires 

a microphone and recording capability. For simplicity, a real time receiver is not implemented. Instead, the 

received signals are recorded and post-processed in Mathlab. 

The HP Spectre x360 laptop is selected as the receiver for its portability, omnidirectional microphones, and 

availability. Figure 5.4 shows the HP Spectre x360. The custom receiver board has an omnidirectional 

microphone, but requires a portable oscilloscope to probe TP1 or hardware to read from the ADC to record 

data. Due to resource and time constraint, the custom receiver board is not a practical option during proposed 

IPS testing.  The Snowball Ice microphone is portable, but has a cardioid radiation pattern [35].  

Note that proposed IPS testing only uses one of the HP Spectre x360 stereo microphones. Additionally, HP’s 

noise cancellation is turned off. HP’s noise cancellation attempts to cancel the PN ranging signals and throws 

off results. 
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Figure 5.4: HP Spectre x360 microphone locations 

 

 System Characterization and Correction 

Methods discussed in Sections 4.3.1 and 4.4 are used to measure the system impulse response and design a 

correction filter for the Logitech S120 speakers and HP Spectre x360. Figure 5.5 shows the phase and 

magnitude corrected impulse response. Notice how the uncorrected impulse response has less ringing 

compared to the CMC and Snowball system impulse responses. This is largely due to a flatter PSD. The 

Logitech speakers have a broader frequency response compared to the Samsung Galaxy Prime. The impulse 

response of the Logitech speakers is further improved after phase and magnitude correction.  

The corrected Logitech S120 speakers and HP Spectre x360 system outperforms the Galaxy Prime and 

Snowball Ice corrected in Section 4.4.5 by approximately 10%. The Logitech corrected impulse response 

limits ringing to less than 20% of the peak compared to 30% in the Snowball Ice system. Recall that ringing 

will increase when Gold codes are used. Figure 5.9 shows the correlated waveforms when only transmitter 4 
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is transmitting. The Logitech system’s ringing increases to approximately 30%.  Also, as expected, 

correlating to orthogonal Gold codes yield a small cross correlation. 

 

   

  

Figure 5.5: Logitech S120, HP Spectre x360 system impulse response phase and magnitude corrected 
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Figure 5.6: Logitech S120, HP Spectre x360 PSD 

 

Table 5.2: Logitech S120, HP Spectre x360 correction filter design by frequency sampling 

Digital Frequency F (cyc/sample) Magnitude 

0/21 2 

1/21 1.8 

2/21 1 

3/21 3 

4/21 0.4 

5/21 8 

6/21 8 

7/21 8 

8/21 8 

9/21 8 

10/21 8 
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Figure 5.7: Logitech S120, HP Spectre x360 magnitude correction filter frequency response 
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Figure 5.8: Logitech S120, HP Spectre x360 phase and magnitude correction filters 

 

Figure 5.9: Received correlated waveform when only TX4 is transmitting 
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 Testing Room 

Figure 5.10 shows the room used during proposed IPS testing. It is a 12x12 ft living room with tile floor. The 

exposed hard surface was intentionally selected to test reflection and multi-path issues. Note each tile is 

approximately 1x1 ft. The room is not large enough for ranging ambiguity due to the symbol period. Recall 

Section 3.1 and Table 3.1, where Gold code length, and chipping period set a 28.77 ft range without 

ambiguity. 

 

Figure 5.10: 12x12 ft room used for proposed IPS testing 
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5.2 Calibration Requirement 

TDoA positioning algorithms require the position of infrastructure Tx node locations. Calibration refers to 

the measuring of the Tx node locations. The location of an object suffers from quantization error. Error in 

calibration measurements leads to ranging error which leads to object positioning error. Figure 5.11 shows 

Euclidian distance error due to quantization. Euclidian distance error due to quantization determines the 

calibration requirement. 

εy1

εy2

(x1, y1)

(x2, y2)

 

Figure 5.11: Euclidian distance error due to quantization 

 

Equation (5.1) represents the actual Euclidian distance, d, between two 3D Cartesian coordinates. Calibration 

measurement error, ε, in the x, y and z components introduces a distance error, Δd, to the left side of the 

equation. Equation (5.2) represents this relation. 

𝑑 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )  (5.1) 

𝑑 + ∆𝑑 = (∆𝑥 + 𝜀) + (∆𝑦 + 𝜀) + (∆𝑧 + 𝜀)  (5.2) 
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Solving for Δd, Equation (5.2) becomes Equation (5.3). Assuming small ε, Equation (5.3) becomes Equation 

(5.4). Finally, using a Taylor first order approximation, Equation (5.4) simplifies to Equation (5.5). 

∆𝑑 =
−2𝑑 ± 4𝑑 + 4(2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧) + 3𝜀 )

2
 

(5.3) 

∆𝑑 ≈
−𝑑 ± 𝑑 + 2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧)

1
 

(5.4) 

∆𝑑 ≈
𝜀(∆𝑥 + ∆𝑦 + ∆𝑧)

𝑑
 

(5.5) 

Euclidian distance error, Δd, is at a maximum when ∆𝑥 = ∆𝑦 = ∆𝑧. Equation (5.6) solves for worst case 

Euclidian distance error, Δd, from Equation (5.5). The Appendix shows the full Euclidian distance error due 

to quantization derivation. 

max (∆𝑑) ≈ ±√3𝜀 (5.6) 

 

Figure 5.12 shows the actual Euclidian distance error, Δd, and the approximated Euclidian distance error by 

Equations (5.5) and (5.6). In the plot Δy and Δz are held constant at 1m, ε is 0.1m, and Δx sweeps from 

0.1m-2m. Note that the approximation is more accurate with smaller ε. The plot proves Equations (5.5) and 

(5.6) are good approximations to the actual error. Worst case Euclidian distance error occurs when 

 ∆𝑥 = ∆𝑦 = ∆𝑧. Conversely, axis aligned points minimize error. 
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Figure 5.12: Approximated vs actual Euclidian distance error due to measurement calibration error 

 

ToF ranging resolution, ΔR, is a function of wave speed and sampling frequency, shown in Equation (5.7) 

[45]. 

±∆𝑅 =
1

2
∗

𝑐

𝐹
 

(5.7) 

The ranging error due to quantization, Δd, should not overpower ranging resolution, ΔR. This requirement 

yields Equation (5.8). Substituting Equations (5.6) and (5.7) into (5.8) and solving for epsilon yields Equation 

(5.9). 

max(∆𝑑) < ∆𝑅 (5.8) 

𝜀 < ±
1

2√3
∗

𝑐

𝐹
 

(5.9) 

 

When the wave speed is 343 m/s and sampling frequency is 44.1 kHz, 𝜀 < ±0.22𝑐𝑚. 
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 Speaker Impact on Calibration 

Proposed IPS testing in this paper models speakers as a point source centered at the diaphragm of the speaker 

for calibration purposes. This paper does not study the validity of the model across various speaker shapes 

and sizes. However, measurements in Section 5.3 and 5.4 prove the model is valid with the Logitech S120 

stereo speakers. 

Note that multiple speakers per Gold code throws off calibration, correction filters and code acquisition. So, 

the IPS should not use woofer, tweeter speaker pairs or stereo speakers used as mono. Stereo speakers used 

as mono causes a multipath effect, since both speakers are spatially separated and transmit the same signal. 

Similarly, a spatially separated tweeter, woofer pair causes a variable phase shift dependent on receiver to 

transmitter geometry. In addition to being a requirement, a single speaker per Gold code also reduces 

implementation expenses.  
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5.3 Multipath 

Multipath occurs when the transmitted signal takes two or more paths to reach the receiver. Reflections in 

the propagation environment cause multipath. Figure 5.13 shows a 2D multipath example where d1 and d2 

are path distances between the Tx and Rx. The path difference poses a problem to code acquisition, as it 

results in a second peak in the correlation.  

h1

h2

L

θ θ 

 

Figure 5.13: 2D multipath model 

 

Multipath tests verify the 2nd peak is due to multipath and not from a faulty correction filter. Figure 5.14 

shows the multipath test setup. The Logitech S120 speakers and HP Spectre x360 are on the ground. The Tx 

and Rx locations are measured to a precision of 0.5cm, as determined by the calibration requirement. 

Additionally, Tx and Rx are x-aligned to further minimize ranging error due to quantization. 

The multipath test consists of measuring the time between peaks at various Tx and Rx spacing. The spacing 

sweeps from 2-6ft in increments of 1 foot. Figure 5.15 shows the overlaid correlations, aligned to the first 

peak. Each plotted correlations is the average of 10 trials. Table 5.3 shows the calculated expected and 

measured time differences between peaks. 
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Figure 5.14: Multipath test setup 

 

 

Figure 5.15: Multipath test magnitude and phase corrected correlation, h1=4in, h2=8.5in 

 

Table 5.3: Multipath test calculated vs measured peak time differences, h1=4in, h2=8.5in 

L (ft) 
Calculated 

(ms) 
Measured 

(ms) Error (ms) 
2 0.1956 0.2041 0.0085 
3 0.1354 0.1361 0.0007 
4 0.1030 0.1134 0.0104 
5 0.0829 0.0907 0.0078 
6 0.0694 0.0680 -0.0013 
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The error between calculated and measured time differences are less than half the sampling period. So, the 

error between the measured and calculated distance is within an acceptable range of error. Matching 

measured and expected time differences confirms the second peak is due to multipath. This also confirms 

that meeting the calibration requirement result derived in Section 5.2 yields accurate ranging measurements. 

Figure 5.15 also shows that multipath time difference decreases as Tx, Rx spacing, L, increases. When the 

path difference is small, the second peak is close in magnitude to the first peak. The second peak becomes 

stronger relative to the first peak as the path difference decreases. This relates to acoustic attenuation, which 

refers to energy loss in a propagating sound wave. When the spacing is 5 and 6ft, the multipath delay is so 

small that the first and second peak side lobes are merged. Multiple peaks of equal magnitude is undesirable 

for code acquisition, as it may lock to the wrong peak leading to ranging error. 

 

 

Figure 5.16: Multipath test magnitude and phase corrected correlation, h1=28in, h2=26.5in 

 

Maximizing Tx height normal to flat surfaces is one method to combat multipath. This maximizes the path 

difference, and minimizes the height of the second peak. Figure 5.16 shows the same multipath test with the 

height increased to 28 in and 26.5 in for Tx and Rx and respectively. At the new Tx and Rx heights, the 

maximum path delay happens at a 2ft spacing and is equal to 2.6ms. Figure 5.16 shows the correlated 
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waveforms up to 3ms to look for multipath peaks. The multipath peaks have diminished and are buried in the 

noise floor of the correlation. Special DLL and discriminator designs in code acquisition and tracking can 

also combat multipath [14] [19] [20]. 

 

5.4 TDoA Measurements 

Accurate TDoA measurements is the final proof of concept step for the proposed IPS. Figure 5.17 shows the 

TDoA measurement test setup. The infrastructure is equally spaced on the y axis by 10cm, for ease of 

calibration. The transmitters are elevated so multipath is not an issue and the HP Spectre x360 is on the 

ground to enable accurate microphone position measurements. Tx and Rx locations are accurate within 

0.5cm, which is within 0.6mm of the calibration requirement derived in Section 5.2. 

(90.5, 19.6, 21.5)   
± 0.5cm

y

xRX

z

10cm

(-2, -2, 72.5)  
± 0.5cm

 

Figure 5.17: TDoA measurement test setup coordinate system 

 

Figure 5.18 shows the received correlated waveforms. As expected, TX3 and TX2 have smaller peaks since 

they are further away from the Rx. Table 5.4 shows the measured time differences vs the calculated time 

differences. The error is less than half the sampling period, which is acceptable. 
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Figure 5.18: Phase and magnitude corrected TDoA measurement correlation result corresponding to 
Figure 5.17 test setup 

 

Table 5.4: TDoA measured vs calculated results 

  Calculated (μs) Measured (μs) Error (μs) 
t2-t1 42 45 -4 
t3-t1 7 0 7 
t4-t1 20 23 -2 

 

The proposed IPS produces accurate TDoA measurements when properly calibrated. So, it is possible to 

position an object using the proposed method. Note that increasing the sampling frequency yields finer 

ranging resolution and TDoA measurements [45]. Per Section 5.2, increasing sampling frequency imposes a  

stricter calibration requirement. 

Recall that multiple intersection points in the hyperboles determined from TDoA measurements cause 

position ambiguity [21]. Collinear transmitters, such as the test setup in Figure 5.17, have many ambiguous 

solutions. Section 5.5.1 discusses the impact of Tx location on system accuracy and the coverage map. 
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5.5 Positioning Accuracy and Coverage Area 

Positioning accuracy depends upon TDoA measurement accuracy, the number of transmitters and their 

location, and the positioning algorithm used. Proved in Section 5.2, TDoA measurement accuracy depends 

upon ranging accuracy which itself depends upon sampling frequency and calibration accuracy. In general, 

as TDoA measurement accuracy increases, so does positioning accuracy. Increasing the number of 

transmitters can also increase positioning accuracy. Recall that position ambiguity exists when there are 

multiple intersections in hyperbolic equations obtained from TDoA measurements [21]. A minimum of 4 Tx 

are required for 2D positioning and a minimum of 5 Tx are required for 3D positioning to determine the 

unequivocal position of an object [25] [28]. However, there are still methods to estimate 3D location with 4 

transmitters [28], or even 3 transmitters [24].  

 2D Positioning Simulation 

A positioning simulation explores the practicality of the proposed IPS by viewing the coverage map with 

various infrastructure, receiver parameters. Thorough positioning algorithm comparison is outside the scope 

of this paper. For general observations, the positioning simulation only requires a well-known, easy to 

implement positioning algorithm. A well-known positioning algorithm allows for easy comparison with 

novel positioning methods since most literature compares results to well-known methods. An easy to 

implement algorithm allows quick development and research into the problem. Chan and Ho’s 2D positioning 

method is both well-known and easy to implement since it provides a closed form solution [29]. 

The 2D simulation uses Chan and Ho’s method with theoretical proposed IPS TDoA measurements to 

generate positioning accuracy and coverage maps for given implementations of the proposed IPS. Adjustable 

simulation parameters include Tx position, grid size, and sampling frequency. The appendix includes the 

pseudocode for this simulation. Several simulations are shown below. 

Each plot has a 1x1cm resolution. Positioning error is plot on a log scale for a more meaningful plot. Note 

points with positioning error less than 1mm are clipped to show a 1mm positioning error. Points with 

positioning error greater than 10cm are represented with white points and are considered to have unacceptable 

error. The coverage maps are binary images where black represents points that can achieve at least 1cm 

accuracy and white represents points that cannot. 
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Figure 5.19: Positioning accuracy (left) and 1cm accuracy coverage map (right) using 4 transmitters in 3 
different patterns 
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Figure 5.20: Positioning accuracy (left) and 1cm accuracy coverage map (right) using 4, 5, and 6 
transmitters 
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Figure 5.21: Positioning accuracy (left) and 1cm accuracy coverage map (right) with sampling frequency 
44.1 kHz (top), increased by factor of 2 (middle) and increased by factor of 10 (bottom) 
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Figure 5.22: Positioning accuracy (left) and 1cm accuracy coverage map (right) when the object has a 
height, z, of 0m (top), 0.3m (middle) and 0.5m (bottom) 
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Figure 5.23: Positioning accuracy (left) and 1cm accuracy coverage map (right) using 4 transmitters 
spaced on an 8x8m grid 

 

5.5.1.1 Transmitter Structure 

Square Transmitter Structure 

Figure 5.19 shows the simulated impact of different transmitter structures to the coverage map. The top row 

of Figure 5.19 shows the positioning accuracy and coverage map when four transmitters are placed on the 

corners of a 4x4m grid. Regions inside the transmitter array obtains consistent 1cm accurate coverage. 

Outside the enclosed region obtains spotty 1cm accurate coverage. Note that points on the crosshair running 

through the grid have ambiguous solutions. This is due to the symmetry of the transmitter structure. Moving 

transmitter positions moves the blind spots.  

Arc Transmitter Structure 

The middle row of Figure 5.19 shows the transmitters placed on an arc shape and the bottom row shows the 

transmitters in a triangle formation. The arc has poor performance since many ambiguous solutions exist. 

Again, the structure performs best within the transmitter array. Interestingly, the region of consistent 1cm 

coverage also extends outside the region enclosed by the transmitters. The structure still suffers from a 

crosshair of blind spots that runs through the consistent 1cm coverage region.  

Triangle Transmitter Structure 

The triangle formation, shown in the bottom row of Figure 5.19, moves the top right transmitter to the center 
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of the grid to form a right triangle. Moving the far transmitter to the center significantly improves the 

consistent 1cm coverage area. The crosshair of blind spots that used to run through the grid is no longer there. 

Instead, blind lines radiate from the corners of the triangle pointing into unenclosed space. This behavior is 

favorable since unenclosed space is likely outside the physical room where the object to be located exists. 

Additionally, the consistent 1cm coverage area is not split anymore like it was in the arc and square formation. 

Note that the triangle formation is more susceptible to the near-far problem. Section 6.1.1 discusses the near-

far problem. 

There may be more optimum four transmitter structures not presented in Figure 5.19. In many cases, the 

optimum transmitter formation is likely application dependent. The main factors include possible transmitters 

mounting locations and the location of desired region of consistent coverage. 

5.5.1.2 Number of Transmitters 

Figure 5.20 shows the simulated impact of additional transmitters on the coverage map. Again, the top row 

shows the positioning accuracy and coverage map when 4 transmitters are placed on the corners of a 4x4m 

grid. In the middle map, a 5th transmitter is placed on the y-axis at the 2m mark halfway between the other 

two transmitters on the y-axis. In the bottom map, a 6th transmitter is placed on the right edge of the 4x4m 

grid halfway between the other two transmitters on the right edge. 

Five Transmiters 

With five transmitters, the crosshair of blind spots that ran through the enclosed region disappears. The 5th 

transmitter disrupts the structure’s symmetry and provides sufficient TDoA information so points on the 

crosshair are no longer ambiguous. Additionally, the 1cm consistent coverage area extends closer to the left 

edge and corners of the 4x4m grid, but moves away from the right edge and corners. 

Six Transmiters 

Adding the 6th transmitter gives marginal improvement. The 1cm consistent coverage area moves closer to 

the right edge, which was not covered in the 5-transmitter structure. It loses some coverage towards the top 

left corner, however.  
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As seen previously in Figure 5.19, the coverage map is sensitive to transmitter location. Similarly, it was just 

seen in  that adding transmitters can also reshape the coverage map. The biggest improvements came after 

adding a 5th transmitter, which eliminated ROI blind spots. 

5.5.1.3 Sampling Frequency 

Figure 5.21 shows the impact of sampling frequency on the coverage map. Recall that increasing the sampling 

frequency decreases the ranging resolution, which generally increases positioning accuracy [45]. Again, the 

top row shows the positioning accuracy and coverage map when 4 transmitters are placed on the corners of 

a 4x4m grid. The middle row and bottom rows show the coverage map when increasing the sampling 

frequency by a factor of 2 and 10 respectively. 

Increasing by Factor of 2 

As seen in the middle row, increasing the sampling frequency by a factor of 2 to 88.2 kHz significantly 

increases positioning accuracy and the coverage map. The consistent 1cm coverage map area extends to the 

corners of the grid, which outperforms the 5 and 6 transmitter structures presented in Figure 5.20. The square 

transmitter structure is still susceptible to the crosshair of blind spots that runs through the square. However, 

increasing the sampling frequency thins the crosshair. 

Increasing by Factor of 10 

Again, increasing the sampling frequency by a factor of to 10 to 441 kHz significantly increases positioning 

accuracy and the coverage map. The map is rescaled to show where the coverage begins to break down. The 

consistent 1cm coverage area extends 4m beyond the edges of the enclosed transmitter square. Additionally, 

the crosshair blind region is further thinned. 

Figure 5.21 demonstrates that increasing sampling frequency and ranging resolution can lead to excellent 

positioning accuracy and coverage map gains. Recall from Section 5.2 that a higher sampling frequency 

imposes a stricter calibration constraint. Increasing the sampling frequency by a factor of 10 to over 400 kHz 

yields a calibration constraint of less than 0.5mm. Such a calibration constraint is not practical to measure 

manually, nor is it an easy task when transmitters are spaced by multiple meters. 
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Another important note is a sampling frequency of 44.1 kHz only requires code acquisition. Code tracking is 

not necessary when the sampling frequency corresponds to one sample per chip. Increasing the sampling 

frequency also increases computational resources and power consumption. Doubling the sampling frequency 

also doubles the integrate and dump correlator in the code tracking DLL for each transmitter the receiver is 

tracking. So, increasing the sampling frequency is extremely computationally costly. 

5.5.1.4 Introducing Variation in z Direction 

A 2D simulation with no variation in the z direction does not accurately model all IPS. When the transmitter 

locations are close together, object z coordinate variation is not negligible. Object variation in the z direction 

introduces ranging error on the 2D scale. This ranging error leads to increased 2D positioning error. Figure 

5.22 shows the impact of object z height variation from the 2D transmitter plane on positioning accuracy. 

The top middle and bottom row show the positioning error and coverage map when the object has a z height 

of 0m, 0.3m and 0.5m respectively. 

A general trend seen is that as z increases, positioning accuracy and coverage map performance decreases. 

The consistent 1cm coverage area shrinks towards the center of the transmitters. This effect is representative 

of the small angle theorem. Small z variation relative to xy Euclidian distance to transmitters minimizes 

coplanar ranging error. 

Despite the reduced performance as z increases, a majority of the region enclosed by the transmitters is still 

solvable and gives an accuracy of 10cm. This means object variation in the z direction is tolerable, within 

reason. So, a 2D positioning algorithm is still valid for some IPS applications. A priori application 

information about object z height to select transmitter z height can help minimize error. 

5.5.1.5 Positioning Simulation Takeaways 

The simulation proves the proposed IPS can achieve sub-centimeter accuracy with Chan and Ho’s method. 

The simulation also shows that the positioning accuracy and coverage map is highly infrastructure and 

receiver dependent. Studying novel positioning algorithms will further enhance the positioning accuracy and 

coverage map of the proposed IPS. 

Figure 5.23 shows a larger square grid of 8x8m. The 8x8m grid shows the same coverage pattern as the 4x4m 

grid. So, observations made with the 4x4m grid are scalable to different grid sizes reasonably. 
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6 FUTURE WORK 

 Near-Far Problem 

The near-far problem occurs when a strong signal from a near source makes it difficult to decode a weak 

signal from a distant source. This problem is especially relevant in CDMA networks [10]. The proposed IPS 

uses a CDMA approach, so is also prone to the near-far problem. Because of the near-far problem, there may 

be additional blind areas in the coverage map close to transmitters. Increasing the PN sequence length 

increases noise immunity, but slows down the system. It also increases computational resources required for 

correlation. 

The problem would be less of an issue in a flipped version of the IPS where the infrastructure consists of 

receivers. Note, this is only true with a small number of users and is only practical in certain applications. 

Nonetheless, the near-far problem was not studied in this paper. Section 5.5.1 simulated the coverage map 

assuming theoretical TDoA measurements at every location. The simulation does not consider locations that 

suffer from the near-far problem. Studying the near-far problem will reveal the “true” coverage map of the 

proposed IPS.  

 3D Implementation 

Many indoor positioning applications are more of a 3D problem, than a 2D problem. For that reason, a 3D 

implementation is vital to the practicality of the system. A high precision 3D IPS will open the door to many 

applications including mapping, robotics control and tracking, as well as unforeseen applications with big 

market potential. A 3D implementation will require an in-depth literature review on the latest positioning 

algorithms and infrastructure node location optimizations. This paper cites three 3D TDoA positioning 

algorithms [28] [24]. 

 Real-Time Systems 

Real time implementations of the proposed IPS will likely be application dependent. A universal 

implementation of the proposed IPS does not exist largely due to variable indoor environments. The 

application defines the infrastructure, which defines the desired positioning accuracy. 
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The proposed IPS is still quite modular despite the requirement for application dependent implementations. 

A receiver to be located only needs to know the PN codes and infrastructure node locations to leverage a 

system. Communication via Bluetooth, WiFi, etc. could easily transfer the information. Seamless transition 

between IPS similar to handover between cell towers and satellites is conceivable. The use of Bluetooth or 

WiFi could also allow for receiver, transmitter synchronization in ToA measurements, opening the door to 

more IPS opportunities 

Note that the author has a parallel acquisition and tracking design partially implemented in HDL. The design 

would work with the custom receiver board and allow for real-time TDoA measurements. Developing a 

software receiver with the Galaxy Prime is an alternative to the hardware implementation as a real-time 

receiver. Either implementation brings opportunity to study the proposed IPS with a moving object.  
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7 CONCLUSION 

This paper studies an acoustic PN based TDoA IPS solution. The proposed IPS uses an infrastructure of 

synchronized transmitters, that each transmit a unique and orthogonal Gold code. The user of the system, or 

object to be located makes TDoA measurements and calculates its position. One major advantage of the 

proposed IPS is that infrastructure and receiver hardware requirements are inexpensive and allow existing 

devices to leverage the system. The proposed IPS is a large and complex system, where many factors affect 

overall system performance. Some major factors include the system impulse response, code tracking, 

sampling frequency, the calibration requirement, transmitter locations, and the positioning algorithm. 

Studying the proposed IPS is important to the fast growing field of IPS. 

The proposed IPS requires a phase and magnitude correction filter to correct the system impulse response so 

accurate code acquisition is possible. As seen in Section 4.3.2, the pre-corrected system impulse response is 

odd symmetric and has significant ringing, which would lead to code acquisition errors. A TR filter corrects 

the phase and a linear phase FIR filter corrects the magnitude of the system impulse response. Phase 

correction is important to achieve an even symmetric impulse response, and magnitude correction is 

important to reduce impulse response ringing. As seen in Section 4.4.5, correcting the magnitude of a system 

to achieve a flat PSD significantly reduced impulse response ringing. In the Snowball Ice microphone case, 

magnitude correction reduced ringing from approximately 75% of the peak, to below 30% of the peak. Both 

phase and magnitude correction filters are vital to code acquisition and symbol decoding performance. An 

even symmetric impulse response with minimal ringing is ideal for code acquisition and symbol decoding 

performance. 

This paper also proves the proposed IPS can achieve accurate ranging measurements. The calibration 

requirement determines the ranging accuracy between a transmitter and receiver. The calibration requirement 

is directly related to the system sampling frequency which also determines the resolution of ranging 

measurements. The calibration requirement is important because it directly impacts the resolution and 

accuracy of ranging measurements. Increasing the sampling frequency may not improve system accuracy if 

the system is not calibrated to the given sampling frequency. TDoA and multipath measurement tests used 

the calibration requirement and obtained results accurate within half the sampling period. This level of 



76 
 

accuracy is acceptable and proves the proposed IPS can extract accurate TDoA information and can therefore 

locate an object. 

The 2D Chan and Ho’s positioning simulation proves the proposed IPS can achieve sub-centimeter accuracy 

with a sampling frequency of 44.1 kHz and a 4-transmitter square structure. Adding a 5th transmitter 

eliminates ambiguous solutions that runs through the square in a crosshair shape. Increasing the sampling 

frequency significantly improves the coverage map and system accuracy. However, recall that increasing the 

sampling frequency also requires more computational resources in the correlators and requires code tracking. 

A system with a 44.1 kHz sampling frequency only has one sample per chip, and only requires code 

acquisition. The simulation shows that system accuracy is sensitive to transmitter locations, and sampling 

frequency. Using a 2D positioning algorithm limits coverage to a 2D plane, and positioning accuracy 

diminishes when the receiver has 3D variation off the plane. Studying 3D positioning algorithms in future 

works will improve the coverage map and system accuracy. Note that the near-far problem was not taken 

into account in the simulation. Studying the near-far problem with the proposed IPS will reveal the true 

coverage map of the system. Nonetheless, the Chan and Ho’s 2D positioning simulation provides a strong 

foundation for future work with the proposed IPS. 

This paper experimentally proves the fundamental theory behind an acoustic PN based TDoA IPS. The 

sub-centimeter accuracy achieved in simulation makes the proposed IPS look promising for high precision, 

inexpensive IPS applications. Future work involves studying improvements to the proposed IPS coverage 

map and real-time implementations. It is important to note that the proposed IPS reuses many existing 

techniques that have already been extensively studied, but not necessarily applied to IPS yet. This is a major 

advantage, since there is an abundance of available literature for researching issues associated with the 

proposed IPS and future works.  
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APPENDICES 
 
I – GPS Gold Code Generation 
 
Figure 8.1 shows a GPS C/A code generator. Note that Coarse/Acquisition (C/A) codes are Gold codes. The 

generator uses two MLS generators, G1 and G2. Equations (8.1) and (8.2) represent the generation 

polynomials for G1 and G2 respectively. Xoring the 10th bit of G1 with the xor product of two tap points in 

G2 yields the C/A code. Figure 8.1 uses tap points at the 2nd and 6th bit indexes. The tap points determine the 

satellite ID [11]. 

 

Figure 8.1: GPS C/A code generator where “+” is logical xor [11] 

 
 

𝑓 (𝑥) = 𝑥 + 𝑥 + 1  (8.1) 

𝑓 (𝑥) = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 + 1 (8.2) 
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II – Euclidian Distance Error Derivation Due To Quantization 
 

𝑑 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )   

𝑑 + ∆𝑑 = (∆𝑥 + 𝜀) + (∆𝑦 + 𝜀) + (∆𝑧 + 𝜀)   

𝑑 + ∆𝑑 = (∆𝑥) + (∆𝑦) + (∆𝑧) + 2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧) + 3𝜀   

𝑑 + 2𝑑∆𝑑 + ∆𝑑 = ∆𝑑 + 2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧) + 3𝜀   

∆𝑑 + 2𝑑∆𝑑 − (2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧) + 3𝜀 ) = 0  

∆𝑑 =
−2𝑑 ± 4𝑑 + 4(2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧) + 3𝜀 )

2
 

Quadratic Equation 

2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧) + 3𝜀 ≈ 2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧) For small 𝜀 

∆𝑑 ≈
−𝑑 ± 𝑑 + 2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧)

1
 

 

∆𝑑

𝑑
≈ −1 ± 1 +

2𝜀(∆𝑥 + ∆𝑦 + ∆𝑧)

𝑑
 

 

√1 + 𝑥 ≅ 1 +
𝑥

2
 Taylor Approx. 

∆𝑑

𝑑
≈ −1 ± 1 +

𝜀(∆𝑥 + ∆𝑦 + ∆𝑧)

𝑑
 

 

∆𝒅 ≈
𝜺(∆𝒙 + ∆𝒚 + ∆𝒛)

𝒅
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𝑀𝑎𝑥 𝑤ℎ𝑒𝑛 ∆𝑥 = ∆𝑦 = ∆𝑧  

𝑑 = 3(∆𝑥)   

max (∆𝑑) ≈
𝜀(3∆𝑥)

3(∆𝑥)
 

 

max (∆𝑑) ≈
3

√3
𝜀 

 

𝐦𝐚𝐱 (∆𝒅) ≈ √𝟑𝜺  
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III – 2D Positioning Coverage Map Simulation Pseudocode 
 

1. Initialize grid size, resolution, infrastructure node locations, sampling frequency 

2. For each point in the grid 

a. Calculate Euclidian distance in meters to each node  

b. Convert distances to time (assume 343 m/s speed of sound) 

c. Get time differences between each measurement 

d. Quantize time difference measurements according to sampling frequency 

e. Use Chan’s method to compute 2D location 

f. Calculate Euclidian distance error between Chan’s method and actual position 

g. Label point with the error 

3. Display errors as an image 


