87 research outputs found

    Fractional variational calculus for nondifferentiable functions

    Get PDF
    We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie's modified Riemann-Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints.Comment: Submitted 13-Aug-2010; revised 24-Nov-2010; accepted 28-March-2011; for publication in Computers and Mathematics with Application

    Anomalous g-Factors for Charged Leptons in a Fractional Coarse-Grained Approach

    Get PDF
    In this work, we investigate aspects of the electron, muon and tau gyromagnetic ratios (g-factor) in a fractional coarse-grained scenario, by adopting a Modified Riemann-Liouville (MRL) fractional calculus. We point out the possibility of mapping the experimental values of the specie's g-factors into a theoretical parameter which accounts for fractionality, without computing higher-order QED calculations. We wish to understand whether the value of (g-2) may be traced back to a fractionality of space-time.The justification for the difference between the experimental and the theoretical value g=2 stemming from the Dirac equation is given in the terms of the complexity of the interactions of the charged leptons, considered as pseudo-particles and "dressed" by the interactions and the medium. Stepwise, we build up a fractional Dirac equation from the fractional Weyl equation that, on the other hand, was formulated exclusively in terms of the helicity operator. From the fractional angular momentum algebra, in a coarse-grained scenario, we work out the eigenvalues of the spin operator. Based on the standard electromagnetic current, as an analogy case, we write down a fractional Lagrangian density, with the electromagnetic field minimally coupled to the particular charged lepton. We then study a fractional gauge-like invariance symmetry, formulate the covariant fractional derivative and propose the spinor field transformation. Finally, by taking the non-relativistic regime of the fractional Dirac equation, the fractional Pauli equation is obtained and, from that, an explicit expression for the fractional g-factor comes out that is compared with the experimental CODATA value. Our claim is that the different lepton species must probe space-time by experiencing different fractionalities, once the latter may be associated to the effective interactions of the different families with the medium.Comment: 15 page

    A Fractional Calculus of Variations for Multiple Integrals with Application to Vibrating String

    Get PDF
    We introduce a fractional theory of the calculus of variations for multiple integrals. Our approach uses the recent notions of Riemann-Liouville fractional derivatives and integrals in the sense of Jumarie. Main results provide fractional versions of the theorems of Green and Gauss, fractional Euler-Lagrange equations, and fractional natural boundary conditions. As an application we discuss the fractional equation of motion of a vibrating string.Comment: Accepted for publication in the Journal of Mathematical Physics (14/January/2010

    On the Zitterbewegung Transient Regime in a Coarse-Grained Space-Time

    Get PDF
    In the present contribution, by studying a fractional version of Dirac's equation for the electron, we show that the phenomenon of Zitterbewegung in a coarse-grained medium exhibits a transient oscillatory behavior, rather than a purely oscillatory regime, as it occurs in the integer case, α=1\alpha=1. Our result suggests that, in such systems, the Zitterbewegung-type term related to a trembling motion of a quasiparticle is tamed by its complex interactions with other particles and the medium. This can justify the difficulties in the observation of this interesting phenomenon. The possibility that the Zitterbewegung be accompanied by a damping factor supports the viewpoint of particle substructures in Quantum Mechanics.Comment: 11 pages, 1 figure. This paper has been published in J. Adv. Phys. 7 (2015) 144

    Non-asymptotic fractional order differentiators via an algebraic parametric method

    Get PDF
    Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations

    No Violation of the Leibniz Rule. No Fractional Derivative

    Full text link
    We demonstrate that a violation of the Leibniz rule is a characteristic property of derivatives of non-integer orders. We prove that all fractional derivatives D^a, which satisfy the Leibniz rule D^(fg)=(D^a f) g + f (D^a g), should have the integer order a=1, i.e. fractional derivatives of non-integer orders cannot satisfy the Leibniz rule.Comment: 6 page

    Fractional Variational Iteration Method for Fractional Nonlinear Differential Equations

    Get PDF
    Recently, fractional differential equations have been investigated via the famous variational iteration method. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. In order to overcome such shortcomings, a fractional variational iteration method is proposed. The Lagrange multipliers can be identified explicitly based on fractional variational theory.Comment: 12 pages, 1 figure

    A Robust Variable Step Size Fractional Least Mean Square (RVSS-FLMS) Algorithm

    Full text link
    In this paper, we propose an adaptive framework for the variable step size of the fractional least mean square (FLMS) algorithm. The proposed algorithm named the robust variable step size-FLMS (RVSS-FLMS), dynamically updates the step size of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problem of system identification is considered. The experiments clearly show that the proposed approach achieves better convergence rate compared to the FLMS and adaptive step-size modified FLMS (AMFLMS).Comment: 15 pages, 3 figures, 13th IEEE Colloquium on Signal Processing & its Applications (CSPA 2017
    corecore