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We here propose to extend the concept of helicity to include it in a fractional scenario and we write down the left- and the right-
handed Weyl equations from first principles in this extended framework. Next, by coupling the different fractional Weyl sectors
by means of a mass parameter, we arrive at the fractional version of Dirac’s equation which, whenever coupled to an external
electromagnetic field and reduced to the nonrelativistic regime, yields a fractional Pauli-type equation. From the latter, we are able
to present an explicit expression for the gyromagnetic ratio of charged fermions in terms of the fractionality parameter. We then
focus our efforts to relate the coarse-grained property of space-time to fractionality and to the (𝑔 − 2) anomalies of the different
leptonic species.

1. Introduction

The electron’s gyromagnetic ratio, 𝑔
𝑒
, is a dimensionless

parameter that appears in the spin-orbit interaction and leads
to a splitting in the atomic energy levels, giving rise to the
so-called fine structure. The 𝑔

𝑒
-factor appears in the Zeeman

effect, by means of the electron’s magnetic dipole moment,
in the description of the interaction of atoms with external
magnetic fields.

It is now known that the anomalous magnetic moment
(AMM) of the muon is considered to be one of the most
promising observables that can unveil effects of some new
physics beyond the Standard Model [1]. One also claims that
themuon’s AMM is one of themost preciselymeasured quan-
tities in particle physics, reaching a precision of 0.54 ppm [2].
This statement is also reinforced in view of the relatively large
value of the muon’s mass [3]. The tau-lepton gyromagnetic
ratio is not very well known experimentally and for this
reason it does not provide yet a good test of the Standard
Model (SM) and for physics beyond the Standard Model [3].

Nonrelativistic quantum mechanics predicts the remark-
able result, 𝑔

𝑒
= 2. Experimentally, the electron’s 𝑔-

ratio has been measured with high precision and the
“2010 CODATA value” [4] for this parameter is 𝑔

𝑒,exp =

2.00231930436153(53), which is supported by the theoretical
calculations of Quantum Electrodynamics (QED), slightly
different from that of Dirac’s theoretical prevision in the
realm of Quantum Mechanics (QM). A good review on the
introduction and history of the 𝑔-ratios, up to 2007, may
be found in [5]. For a nonperturbative approach, the reader
could consult [6]. An update of the electron’s and muon’s 𝑔-
ratios can be found in [3].

In this paper, we investigate the fractional coarse-grained
aspects of the electron’s anomalousmagnetic𝑔-ratio, showing
the possibility of mapping its experimental value into some
theoretical parameter that accounts for fractionality, so that
we take the viewpoint that fractionality could be responsible
for the deviation from the 𝑔

𝑒
= 2 relativistic quantum-

mechanical result. This claim highlights that our motivation
to adopt the fractional calculus (FC) is more physical than
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a simple mathematically motivated extension of classical
calculus. This becomes more explicit once we argue that the
possible justification for the experimental difference from the
theoretical Dirac’s value 𝑔

𝑒
= 2 is imputed to the complexity

of the interactions of the electrons, taken as a pseudoparticle
“dressed” by the interactions and the medium. Here, we look
at a dynamical system as an open system that can interact
with the environment and we argue that FC may become an
important tool to study open classical and quantum systems
[7].

FC is one of the possible generalizations of classical
calculus. It provides a redefinition of a number of math-
ematical concepts and it seems very useful to deal with
anomalous and frictional systems [8–13]. Several applications
of FC may be found in the literature [14–17]. Presently,
areas such as field theory and gravitational models demand
new conceptions and approaches which might allow us to
understand unexplored systems and could help in extending
well-known results. Interesting problems may be related to
the quantization of field theories for which new approaches
have been proposed [18–21]. In connection with our work, it
is worthy tomention here that a fractional Riemann-Liouville
Zeeman effect, an attempt to implement gauge invariance in
fractional field theories and, an angular momentum algebra
proposedwith the Riemann-Liouville formalism are reported
in the paper [22]. Low-energy nuclear excitations have been
studied in terms of a fractional symmetric rigid rotor with the
purpose of calculating baryonic excitations [23].

Fractional systems are described as being dissipative [24,
25]. The use of FC is also justified here on the basis of our
proposition that there exists an intimate relationship between
dissipation, coarse-grained medium, and a limit energy scale
for the interactions. Since we are dealing with open systems,
as we already commented, particles should in fact be seen
as dressed entities or pseudoparticles that exchange energy
with other particles and the environment. Depending on the
energy scale, a particular interaction may affect the geometry
of space-time. The system composed by particles and their
surroundings may be considered nonconservative due to
the possible energy exchange. This energy exchange may be
responsible for the resulting noninteger dimension of space-
time, giving rise then to an effective coarse-grained medium.
This is quite reasonable since even standard field theory
comes across a granularity in the limit of Planck scale. Also, if
we consider a nonstandard geometry, such as the space-time
of a cosmological black hole or the space in the surroundings
of a region of pair creation, a coarse-grained view of the
dynamics of open systemsmay become a sensible description.
Here, we argue that FC allows us to describe and emulate this
kind of dynamics without explicit many-body contributions,
dissipation, or geometrical terms in the dynamical equations
of the system. In some way, FC may yield an effective theory,
with some statistical average without imposing any specific
nonstandard statistics. So, FC may be the tool that could
describe in a consistent way the connections between coarse-
grained medium and dissipation at a certain energy scale.

It is worthy to point out here the significant work by
Svozil and Zeilinger [26] in view of the arguments they adopt
to explain the differences between the (𝑔 − 2) theoretical

and experimental results via a nonstandard geometry. They
propose that such a deviation could also be explained by
changes of the dimension of the measure and thus the
Hausdorff dimension of space-time, which is closely related
to our assumptions here.

Here, we claim that the use of an approach of FC based on
a sequential form of the modified Riemann-Liouville (MRL)
fractional calculus [27] is more appropriate to describe the
dynamics associated with field theory and particle physics
in the space of nondifferentiable solution functions, or in a
coarse-grained scenario for space-time.

It seems that a reasonable way to probe the classical
framework of physics is to highlight that, in our real world,
the generic point is not infinitely small (or thin); it rather has
a thickness. In a coarse-grained space, a point is not infinitely
thin, and, here, this feature is modeled by means of a space
in which the generic differential is not 𝑑𝑥, but rather (𝑑𝑥)

𝛼,
likewise for the time variable 𝑡. It is noteworthy to emphasize
that the notion of fractal space-time was introduced in the
70 s with the seminal work by Stillinger [28], where the
axiomatic basis for spaces with noninteger dimension was set
up. Later, the concepts associated to a possible noninteger
dimension were reinforced with the work by Zeilinger and
Svozil [29], where they take into account the intrinsically
unavoidable finite resolution of any physical experiment;
also the works [30–32] should be quoted here. Along this
line, we recommend the work by Nottale [33], where the
notion of a fractal space-time is reassessed. Noninteger
differentiability and randomness [34] are mutually related
in their nature in such a way that studies on fractals on
the one hand and fractional Brownian motion on the other
hand are often parallel in the work [33]. A function which is
continuous everywhere, but nowhere integer-differentiable,
necessarily exhibits random-like or pseudorandom features,
in that various samplings of these functions, on the same
given interval, will be different. This may explain the huge
amount of literature extending the theory of stochastic dif-
ferential equations to describe stochastic dynamics driven by
fractional Brownian motion [27, 35, 36]. In connection with
the anomalous properties of space-time with multifractal
structure, we recommend the reader to consult the interesting
work by Calcagni et al. [37] and references therein. Also, we
draw special attention to the efforts in building up a solid
foundation for the construction of a suitable geometry and a
consistent field theory in fractional spaces [25], multifractals
[38], and multiscale [39] space-times.

The great majority of actual classical systems are non-
conservative but, in spite of that, the most advanced for-
malisms of classical mechanics deal only with conservative
systems [40, 41]. Dissipation [42], for example, is present
even at the microscopic level. There is dissipation in every
nonequilibrium or fluctuating process, including dissipative
tunneling [43–45] and electromagnetic cavity radiation [46,
47], for instance. In [42], we adopt that a way to suitably treat
nonconservative systems is through FC, since it can be shown
that, for example, a friction force has its form stemming
from a Lagrangian that contains a term proportional to
the fractional derivative, which may be a derivative of any
noninteger order [40, 41, 48, 49].
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Field theory aspects of nonlinear dynamics are today an
important subject of study in different subareas of physics
and mathematics, but the real success and radically new
understanding of nonlinear processes have acquired body
over the past 40 years. This understanding has been inspired
by the discovery and insights of chaotic dynamics, where the
randomness of physical processes is considered and more
precisely when particle trajectories are indistinguishable for
random process [50].

In [51] we have argued that the modeling of TeV-physics
may demand an approach based on fractal operators and
FC, and we claim that, in the realm of complexity, nonlocal
theories and memory effects are connected to complexity.
We also adopt that FC and the nondifferentiable nature of
microscopic dynamics may be connected with time scales.

Here, to achieve our goals, we carefully build up a
fractional Dirac equation from underlying fractional Weyl
equations written down in terms of the helicity operator.
We begin by discussing the fractional angular momentum
algebra in a coarse-grained scenario in order to understand
the fractional spin operator used to set up the helicity opera-
tor. Also, a gauge-covariant fractional derivative is proposed
so that, from the gauge transformation of charged matter
fields, the gauge transformation of the fractional vector
potential can be read off. Then, minimal coupling to the
electromagnetic field is naturally achieved by writing down
fractional Lagrangian densities in terms of fractional gauge-
covariant derivatives of the matter fields. It is important to
stress that we are not proposing the matter transformation
from the very start [22]; we rather get it as an output,
from the matter-gauge coupling together with the gauge field
transformation. After all, gauge symmetry is actually intrinsic
to vector bosons from which we need to decouple spurious
degrees of freedom.Matter fields should feel gauge symmetry
indirectly, through their coupling to the gauge fields. This
is the line of thought we advocate here. Finally, by working
out the nonrelativistic approximation of the fractional Dirac’s
equation, the fractional version of the Pauli’s equation is read
off and this yields an explicit expression for the fractional
𝑔-ratio if an external magnetic field is switched on. We
point out that fractional Dirac’s equation has been the object
of interst of several authors over the past decade [52–
54].

Our paper is outlined as follows. In Section 2, we consider
the mathematical backgrounds, with some expressions of
the fractional coarse-grained calculus and the modified
Riemann-Liouville fractional derivative. Section 3 contains
the fractional angularmomentum algebra in a coarse-grained
scenario. We should clarify that our Sections 2 and 3 contain
no original proposal. They are introduced to settle down
definitions and conventions and to prepare results that will
be used in the subsequent sections. Section 4 is devoted
to the fermionic fractional field equations: Weyl and Dirac
fermions are studied and the results for the 𝑔-ratios of
the charged leptons are discussed. In Section 5, we focus
on the Gordon Decomposition associated to the Fractional
Dirac’s equation aiming at identifying the fractional spin
current. Finally, in Section 6, we cast our discussions and
conclusions.

2. Mathematical Backgrounds

In the sequel, we adopt an alternative approach by consid-
ering a fractional coarse-grained space-time instead of frac-
tional space functions,meaning that neither the space nor the
time is infinitely thin but has instead some “thickness”. As the
use of certain calculation rules is essential to our approach, we
briefly comment on this point, before presenting these rules.

The Riemann-Liouville and Caputo approaches for FC
are well known and have their rules rigorously proved, as
the reader may find in the standard textbooks [55–59]. These
well-tested definitions for fractional derivatives, referred to as
Riemann-Liouville andCaputo, have been frequently used for
several applications. In spite of their efficacy, they have some
dangerous pitfalls. For this reason, an interesting definition
for fractional derivative [60, 61], the so-called modified
Riemann-Liouville (MRL) fractional derivative, has been
proposed which is less restrictive than other definitions. Its
basic expression is as follows:

𝐷
𝛼

𝑓 (𝑥) = lim
𝑥→0

ℎ
−𝛼

∞

∑

𝑘=0

(
𝛼

𝑘
) [𝑓 (𝑥 + (𝛼 − 𝑘) ℎ) − 𝑓 ((𝛼 − 𝑘) ℎ)]

=
1

Γ (1 − 𝛼)

𝑑

𝑑𝑥
∫

𝑥

0

(𝑥 − 𝑡)
−𝛼

(𝑓 (𝑡) − 𝑓 (0)) 𝑑𝑡;

0 < 𝛼 < 1.

(1)

But, by strictly referring to the context of modified
Riemann-Liouville (MRL) formalism, it seems to us worthy
to notice that the chain rule, as well as the Leibniz product
rule, has had their validity mathematically proven only
recently [62]. To be more precise, in the MRL approach the
fractional Taylor expansion [62] is the mathematical basis for
the validation of the fractional Leibniz product rule and the
modified chain rule. We point out that the fractional Leibniz
rule used here is a good approximation that comes from the
first two terms of the fractional Taylor series development,
which holds only for nondifferentiable functions [60–62]. In
a recent article [63], the authors show that the Leibniz rule
for fractional derivatives in a coarse-grained medium treated
as a Hölder-Space yields a modified chain rule. The latter can
be safely applied, in agreement with alternative versions of
fractional calculus in this class of spaces or even in the local
versions of FC.

Following the the MRL definition, we find that the
fractional derivative of a constant is zero; and, next, we can
use it for both classes of differentiable as nondifferentiable
functions. They are cast as follows [61]:

(i) simple rules:

𝐷
𝛼

𝐾 = 0, 𝐷𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛾 + 1 − 𝛼)
𝑥
𝛾−𝛼

, 𝛾 > 0, (2)

(𝑢 (𝑥) V (𝑥))
(𝛼)

= 𝑢
(𝛼)

(𝑥) V (𝑥) + 𝑢 (𝑥) V(𝛼) (𝑥) , (3)

where the last rule equation (3) holds only for nondifferen-
tiable functions 𝑢(𝑥) and V(𝑥);
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(ii) simple chain rules:

𝑑
𝛼

𝑑𝑥𝛼
𝑓 [𝑢 (𝑥)] =

𝑑
𝛼

𝑓

𝑑𝑢𝛼
(

𝑑𝑢

𝑑𝑥
)

𝛼

. (4)

Here 𝑓 is 𝛼-differentiable and 𝑢 is differentiable with respect
to 𝑥 and

𝑑
𝛼

𝑑𝑥𝛼
𝑓 [𝑢 (𝑥)] =

𝑑𝑓

𝑑𝑢

𝑑
𝛼

𝑢

𝑑𝑥𝛼
, (5)

which holds when 𝑢 is not differentiable with respect to 𝑥

and 𝑓(𝑢(𝑥)) is not differentiable with respect to 𝑥 (but it is
differentiable with respect to 𝑢).

For further details on the MRL formalism, we suggest
the readers to follow [60, 61, 64] which contain all the
foundations for the formulation of a fractional differential
geometry in a coarse-grained space.

Here, another comment is pertinent and concerns certain
definitions called local fractional derivatives, as the ones
introduced by Kolwankar and Gangal [65–67], with several
works related to this approach, for example, the works [68–
70] or the approaches with a Hausdorff derivative and also
the treatment with the so-called fractal derivative [71, 72].
All of the mentioned approaches seem to be applicable to
power-law phenomena. There is also the recently developed
𝛼-derivative by Kobelev [73]. Our comment now relates to
the similarities between the approaches mentioned above on
the one hand and the fractional MRL formalism on the other
hand. For nondifferentiable functions, similar rules follow.
Also, a definition of local fractional derivative by means of a
mathematical limit operation is comparable to the differential
form of MRL approach and exhibits similar rules. Then, it
seems to us that the MRL formalism is an integral version of
the fractal derivatives just mentioned and all of them deserve
to be more deeply investigated, under a mathematical and a
physical point of view [72, 74, 75]. A better understanding of
the exact differences and similarities between the traditional
fractional calculi based on Riemann-Liouville or Caputo
definitions and those with local fractional calculus or even
with fractional 𝑞-calculus [15, 74, 76] is necessary to also
determine the scope of applicability of each one.

Now that we have set up these fundamental expressions,
we are ready to carry out the calculations of our main
concern.

3. Fractional Angular Momentum Algebra

Here, we will derive the commutation algebra for spin-1/2
particles in a coarse-grained medium.

Since in the MRL approach the chain and Leibniz rules
hold, it is not difficult to obtain the commutation relation
between position andmomentum operators and to define the
fractional angular momentum components [22, 23]; we can
write

�̂�
𝛼

𝑧
:= [𝑥
𝛼

, 𝑝
𝛼

𝑦
] , �̂�

𝛼

𝑦
:= [�̂�
𝛼

, 𝑝
𝛼

𝑥
] , �̂�

𝛼

𝑥
:= [𝑦
𝛼

, 𝑝
𝛼

𝑧
] ,

(6)

where𝑥
𝛼,𝑦𝛼, and �̂�

𝛼 stand for the position operators, whereas
𝑝
𝛼

𝑥
, 𝑝
𝛼

𝑦
, and 𝑝

𝛼

𝑧
refer to the corresponding momentum

operators. An important warning is worthy at this stage: we
should confuse the 𝛼-parameter that is simply a label, as in
the set of equations above, with the case where it is a true
fractional power, as when it appears in some constants like
in the factor ℏ

𝛼.
Again, one can obtain the commutation relations using

the definitions given above and the chain (4), (5), and Leibniz
(3) rules for MRL as

[�̂�
𝛼

𝑥
, �̂�
𝛼

𝑦
] = 𝑖Γ (𝛼 + 1) ℏ

𝛼

𝑀
𝛼
�̂�
𝛼

𝑧
,

[�̂�
𝛼

𝑧
, �̂�
𝛼

𝑥
] = 𝑖Γ (𝛼 + 1) ℏ

𝛼

𝑀
𝛼
�̂�
𝛼

𝑦
,

[�̂�
𝛼

𝑦
, �̂�
𝛼

𝑧
] = 𝑖Γ (𝛼 + 1) ℏ

𝛼

𝑀
𝛼
�̂�
𝛼

𝑥
,

(7)

where 𝜎
𝜇

= (𝜎
0
, 𝜎
1
, 𝜎
2
, 𝜎
3
) = (𝐼

2
, 𝜎
𝑥
, 𝜎
𝑦
, 𝜎
𝑧
) and the factor

𝑀
𝛼
is not an operator; it is simply a multiplicative factor

introduced for the sake of ensuring the right dimensionality
of these commutators.

Let us now draw the reader’s attention to the different
character of the 𝛼-parameter. In ℏ

𝛼, 𝛼 is a true power. In
the factor 𝑀

𝛼
, 𝛼, it is simply a label. In the position, linear

momentum and angular momentum operators, 𝛼 stands for
a label that denotes the fractionality. To build up the algebra,
we define a set of operators, as in the sequel.

The square of fractional angular moment operator is
defined as in [23]: (�̂�𝛼)2 = �̂�

𝛼

�̂�
𝛼

= (�̂�
𝛼

𝑥
)
2

+ (�̂�
𝛼

𝑦
)
2

+ (�̂�
𝛼

𝑧
)
2. We

also define the fractional angularmomentumoperator �⃗�
𝛼 and

the fractional raising and lowering operators, 𝐿
𝛼

+
, and their

hermitian conjugates 𝐿
𝛼

−
, respectively, as

�⃗�
𝛼

≡ �̂�
𝛼

𝑥
�̂� + �̂�
𝛼

𝑦
𝑗 + �̂�
𝛼

𝑧
�̂�,

�̂�
𝛼

+
≡ �̂�
𝛼

𝑥
+ 𝑖�̂�
𝛼

𝑦
, 𝐿

𝛼

−
≡ �̂�
𝛼

𝑥
− 𝑖�̂�
𝛼

𝑦
.

(8)

The commutation relations then follow as below:

[�̂�
𝛼

+
, �̂�
𝛼

−
] = 2Γ (𝛼 + 1) ℏ

𝛼

𝑀
𝛼
�̂�
𝛼

𝑧
,

[�̂�
𝛼

𝑧
, �̂�
𝛼

+
] = Γ (𝛼 + 1) ℏ

𝛼

𝑀
𝛼
�̂�
𝛼

+
,

[�̂�
𝛼

𝑧
, �̂�
𝛼

−
] = −Γ (𝛼 + 1) ℏ

𝛼

𝑀
𝛼
�̂�
𝛼

−
,

[�̂�
𝛼

�̂�
𝛼

, �̂�
𝛼

+
] = [�̂�

𝛼

�̂�
𝛼

, �̂�
𝛼

−
] = [�̂�

𝛼

�̂�
𝛼

, �̂�
𝛼

𝑥
]

= [�̂�
𝛼

�̂�
𝛼

, �̂�
𝛼

𝑦
] = [�̂�

𝛼

�̂�
𝛼

, �̂�
𝛼

𝑧
] = 0.

(9)

The commutation relations written above indicate that
the ordinary integer angular momentum algebra does not
change. This implies that the raising (lowering) operator,
acting on an eigenstate |𝑗, 𝑚⟩ of the �̂�

𝛼

𝑧
-operator, raises

(lowers) the eigenvalue of the latter by the amount Γ(𝛼 +

1)ℏ
𝛼

𝑀
𝛼
. That is, upon the action of the raising (lowering)

operator, the eigenvalue of �̂�
𝛼

𝑧
is raised (lowered) by Γ(𝛼 +

1)ℏ
𝛼

𝑀
𝛼
.

Another important conclusion is that, for the ordinary
Pauli spinmatrices, the representation for the basis of (�̂�

𝛼

)
2 is

the same as the integer case.This allows us to rewrite all usual
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relations from ordinary quantum mechanics spin algebra in
a coarse-grained scenario. The only difference is that, instead
of ℎ, we have to replace it in all relations by an effective factor
ℎeff = Γ(𝛼+1)ℏ

𝛼

𝑀
𝛼
.There is no fractional number of particles

but there exists an effective Planck constant.

4. Fractional Field Equations:
Weyl and Dirac Fermions

This section sets out to show our proposal for building
fractional versions of Weyl and Dirac equations on the basis
of fundamental principles. Rather than adopting a fraction-
alized version for these equations from the very beginning,
we propose to extend the concept of helicity to account
for fractionality and, once the suitable helicity operators are
written down, we adopt them to propose the fractional Weyl
equation for left- and the right-handed fermions. Next, by
coupling the different fractional Weyl equations by means of
a mass parameter, we will end up with what we propose to be
the fractional Dirac equation.

Weyl’s equation is a relativistic wave equation to describe
massless spin-1/2 particles. Recalling that helicity is the
projection of the spin onto the direction of momentum, we
proceed to write down Weyl’s equations as statements on
the helicity of the left- and right-handed fermions, since,
in the case of massless fermions, chirality and helicity are
equivalent.

The projection of spin onto the linear momentum is
written as follows:

𝜆
𝛼

= ⃗𝑆𝛼 ∘

⃗𝑝𝛼


⃗𝑝𝛼


, 𝜆
𝛼

= ±1, (10)

with the spin vector, ⃗𝑆
𝛼
, obtained from the angular momen-

tum algebra, which reads

⃗𝑆𝛼 =
ℏ
𝛼

2
Γ (𝛼 + 1) 𝑀

𝛼
�⃗�. (11)

Here the Pauli matrices are the same since the structure of the
algebra is not modified, as shown in Section 3.

For a massless particle, the relativistic relation between
energy and momentum reads as given below [77]:

𝐸
𝛼

=


⃗𝑝𝛼

𝑐
𝛼

, (12)

where, in the 𝑐
𝛼 factor, the 𝛼-parameter plays the role of a

power; it is not just a superscript. As before, the 𝛼 appearing
in ⃗𝑝𝛼 and in the energy operator 𝐸

𝛼 corresponds to a label.
Let us consider a 2 × 1 component fermionic field 𝜒

𝐿,𝛼

that transforms under a spinor representation of the space-
time group. Taking into account the equations above, we can
write

(ℏ
𝛼

/2) Γ (𝛼 + 1) 𝑀
𝛼
�⃗� ∘ ⃗𝑝𝛼𝜒

𝐿,𝛼
= (ℏ
𝛼

/2) Γ (𝛼 + 1) 𝑀
𝛼
𝜒
𝐿,𝛼

or 𝑐
𝛼

�⃗� ∘ ⃗𝑝𝛼𝜒
𝐿

=


⃗𝑝𝛼

𝜒
𝐿,𝛼

= 𝐸
𝛼

𝜒
𝐿,𝛼

.

(13)

To get a quantum wave equation, we invoke the corre-
spondence principle and we propose the fractional operators
that represent energy and momentum to be given by the
equations that follow:

𝐸
𝛽

= 𝑖(ℏ)
𝛽

𝜕
𝛽

𝜕𝑡𝛽
, (14)

𝑝
𝛼

= −𝑖(ℏ)
𝛼

𝑀
𝛼

𝜕
𝛼

𝜕𝑥𝛼
, (15)

where the constant 𝑀
𝛼
is included for dimensional reasons,

as before. We remark here that if, in the definition of the
fractional moment operator (15), the complex 𝑖 is replaced by
an 𝑖
𝛼, the canonical commutation relations change.
By virtue of the correspondence principle, (13) can be

rewritten as

𝑖(ℏ)
𝛼

�⃗� ∘ 𝑀
𝛼

𝜕
𝛼

𝜕𝑥𝛼
𝜒
𝐿,𝛼

+ 𝑖(ℏ)
𝛼

𝑀
𝑡,𝛼

𝑐𝛼

𝜕
𝛼

𝜕𝑡𝛼
𝜒
𝐿,𝛼

= 0, (16)

𝑀
𝑡,𝛼

is included for dimensional reasons, as already stated
above. Here, we are considering space and timewith the same
fractionality.

The Weyl equation above can be cast in a covariant form
as it follows below:

𝑖(ℏ)
𝛼

𝜎
𝜇

𝜕
(𝛼)

𝜇
𝜒
𝐿,𝛼

= 0. (17)

Here, 𝜎
𝜇

= (𝜎
0

, 𝜎
𝑖

) = (𝜎
0

, 𝜎
1

, 𝜎
2

, 𝜎
3

) = (𝐼
2
, 𝜎
𝑥
, 𝜎
𝑦
, 𝜎
𝑧
)

are the usual Pauli-spin matrices and we define the space-
time fractional derivative in Minkowsky space as 𝜕

(𝛼)

𝜇
=

((𝑀
𝑡,𝛼

/𝑐
𝛼

)(𝜕
𝛼

/𝜕𝑡
𝛼

); 𝑀
𝛼
(𝜕
𝛼

/𝜕𝑥
𝛼

)).
Also, defining the conjugated Pauli-spin matrices as 𝜎

𝜇

=

(𝜎
0

, −𝜎
𝑖

), the following properties hold:
tr (𝜎
𝜇

𝜎
]
) = tr (𝜎

𝜇

𝜎
]
) = 2𝜂

𝜇]
, (18)

or
𝜎
𝜇

𝜎
]

+ 𝜎
]
𝜎
𝜇

= 2𝜂
𝜇]1, (19)

𝜎
𝜇

𝜎
]

+ 𝜎
]
𝜎
𝜇

= 2𝜂
𝜇]1. (20)

Inserting 𝜎
]
𝜕
(𝛼)

] in (17), we obtain

𝑖(ℏ)
𝛼

𝜎
]
𝜕
(𝛼)

] 𝜎
𝜇

𝜕
(𝛼)

𝜇
𝜒
𝐿,𝛼

= 0. (21)

Next, we symmetrize in (𝜇, ]) and make use of (20).
The last equation can be rewritten, with the help of the

properties of 𝜎
𝜇 as 𝑖(ℏ)

𝛼

𝜂
𝜇]

𝜕
(𝛼)

] 𝜕
(𝛼)

𝜇
𝜒
𝐿,𝛼

= 0 which yields
the propagating fractional wave equation for left-helicity
fermion 𝑖(ℏ)

𝛼

◻
(𝛼)

𝜒
𝐿,𝛼

= 0. The notation for the box symbol
is not to be confused with the fractional power operator in
distribution theory. Here, the box symbol is defined as ◻

(𝛼)

≡

(𝑀
𝑡,𝛼

/𝑐
𝛼

)(𝜕
𝛼

/𝜕𝑡
𝛼

)(𝜕
𝛼

/𝜕𝑡
𝛼

) − 𝑀
2

𝛼
(𝜕
𝛼

/𝜕𝑥
𝛼

)(𝜕
𝛼

/𝜕𝑥
𝛼

).

Right-Helicity. A similar procedure can be used to build up a
projection for right-chirality fermion by taking in (10) 𝜆

𝛼
=

−1.
Now, the spinor field is noted as 𝜉

𝑅
and belongs to a group

representation such as 𝜉
𝑅

∈ (0; 1/2). We are then ready to
write downWeyl’s equation for the right-handed sector:

𝑖(ℏ)
𝛼

𝜎
𝜇

𝜕
(𝛼)

𝜇
𝜉
𝑅,𝛼

= 0, (22)
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which also conducts us to the equation

𝑖(ℏ)
𝛼

◻
(𝛼)

𝜉
𝑅,𝛼

= 0. (23)

In compact notation, the fractional derivative is given by
𝜕
𝛼

𝜇
= ((𝑀

𝑡,𝛼
/𝑐
𝛼

)𝜕
𝛼

𝑡
; 𝑀
𝛼
∇
𝛼

).
The twoWeyl equations can bewritten in amore compact

form in terms of a four-dimensional spinorial field Ψ
𝛼
as

𝑖ℏ
𝛼

(
0 𝜎

𝜇

𝜕
𝛼

𝜇

𝜎
𝜇

𝜕
𝛼

𝜇
0 ) (

𝜒
𝐿,𝛼

𝜉
𝑅,𝛼

) = 𝑖ℏ
𝛼

𝛾
𝜇

𝜕
𝛼

𝜇
Ψ
𝛼

= 0, (24)

where 𝛾
𝜇 are the usual Dirac gamma-matrices.

We go ahead now by introducing a mass parameter that
mixes up the two chiral components to obtain an equation
that describes the dynamics of a chargedmassive fermion. To
achieve that, we present the two fractional Weyl equations as

𝑖(ℏ)
𝛼

𝜎
𝜇

𝜕
(𝛼)

𝜇
𝜒
𝐿,𝛼

+ 𝑢
𝛼

𝑐
𝛼

𝜉
𝑅,𝛼

= 0,

𝑖(ℏ)
𝛼

𝜎
𝜇

𝜕
(𝛼)

𝜇
𝜉
𝑅,𝛼

+ �̃�
𝛼

𝑐
𝛼

𝜒
𝐿,𝛼

= 0,

(25)

where 𝑢
𝛼 and �̃�

𝛼 are parameters which, as we will show
below, will combine to give the mass of the charged fermion.
Imposing that the equations above be compatible with the
fractional energy-momentum relationship [77], we are led to

𝐸
2𝛼

= 𝑝
2𝛼

𝑐
2𝛼

+ 𝑚
2𝛼

𝑐
4𝛼

. (26)

From the second of (25), we obtain

𝜒
𝐿,𝛼

= −
𝑖ℏ
𝛼

�̃�𝛼𝑐𝛼
𝜎
𝜇

𝜕
(𝛼)

𝜇
𝜉
𝑅,𝛼

, (27)

which, once replaced in the first of those equations, yields

ℏ
2𝛼

𝜎
𝜇

𝜕
(𝛼)

𝜇
𝜎
]
𝜕
(𝛼)

] 𝜉
𝑅,𝛼

+ 𝑢
𝛼

�̃�
𝛼

𝑐
2𝛼

𝜉
𝑅,𝛼

= 0, (28)

or

◻
(𝛼)

𝜉
𝑅,𝛼

+
𝑢
𝛼

�̃�
𝛼

𝑐
2𝛼

ℏ2𝛼
𝜉
𝑅,𝛼

= 0. (29)

This equation indicates, upon comparison with a frac-
tional Klein-Gordon [77] equation, that 𝑢

𝛼

= �̃�
𝛼

= −𝑚
𝛼.

With these observations, the fractional Dirac equation can
finally be written, from (25), in the general case 𝛼 ̸= 1 as

(𝑖ℏ
𝛼

𝛾
𝜇

𝜕
𝛼

𝜇
− 1𝑚
𝛼

𝑐
𝛼

) Ψ
𝛼

= 0. (30)

4.1. Field Transformation, Minimal Coupling, and the Gauge-
Covariant Fractional Derivative. We start off with the conju-
gated Dirac’s equation:

Ψ
𝛼

(−𝑖ℏ
𝛼

𝛾
𝜇

𝜕
𝛼

𝜇
− 1𝑚
𝛼

𝑐
𝛼

) = 0. (31)

Now, multiplying (30) by Ψ and (31) by Ψ and then
subtracting them, we obtain

𝜕
𝛼

𝜇
Ψ
𝛼
Ψ
𝛼
𝛾
𝜇

+ Ψ
𝛼
𝛾
𝜇

𝜕
𝛼

𝜇
Ψ
𝛼

= 𝜕
𝛼

𝜇
(Ψ
𝛼
𝛾
𝜇

Ψ
𝛼
) = 0. (32)

The quantity in the bracket can be identified as a con-
served current and this equation is interpreted as a fractional
continuity equation. From standard electromagnetism cou-
pling with matter, we now take that 𝑗

𝜇
𝑗
𝜇, the electromagnetic

current, is coupled to the electromagnetic field, 𝐴
𝜇, where

𝑗
𝜇
is of the form 𝑗

𝜇
= 𝑒
𝛼
Ψ𝛾
𝜇

Ψ, 𝑒
𝛼
is the electron charge

measured in the coarse-grainedmedium, and𝛼 is here simply
a label.

For the fractional case, we can think of a minimal
coupling term as 𝑒

𝛼
Ψ
𝛼
𝛾
𝜇

Ψ
𝛼
𝐴
𝛼

𝜇
, where 𝐴

𝛼

𝜇
= (𝜙
𝛼

; − ⃗𝐴𝛼) is the
fractional potential tensor transform under Gauge transform
as (𝐴
𝛼

𝜇
)


= 𝐴
𝛼

𝜇
+ 𝜕
𝛼

𝜇
𝜒.

Following the Lagrangian for the model with integer
dimensions, we can write down the Lagrangian with electro-
magnetic coupling in the fractional case as given by

L = Ψ
𝛼

(𝑖ℏ
𝛼

𝛾
𝜇

𝜕
𝛼

𝜇
− 1𝑚
𝛼

𝑐
𝛼

) Ψ
𝛼

− 𝑒
𝛼
Ψ
𝛼
𝛾
𝜇

Ψ
𝛼
𝐴
𝛼

𝜇
, (33)

which can be re written as

L = Ψ
𝛼
𝑖ℏ
𝛼

𝛾
𝜇

(𝜕
𝛼

𝜇
+

𝑖𝑒
𝛼

ℏ𝛼
𝐴
𝛼

𝜇
) Ψ
𝛼

− 1𝑚
𝛼

𝑐
𝛼

Ψ
𝛼
Ψ
𝛼
. (34)

In order that the theory remains covariant, we take the
spinor field transformation as follows:

Ψ


𝛼
= 𝑅 (𝜒) Ψ

𝛼
, (35)

where 𝑅(𝜒) is taken to be unitary, but its explicit form will
be determined in the sequel.The Lagrangian density with the
electromagnetic coupling term suggests the definition of the
fractional gauge-covariant derivative to be of the form

𝐷
𝛼

𝜇
= 𝜕
𝛼

𝜇
+

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝑘𝐴
𝛼

𝜇
, (36)

where the tensor field 𝐴
𝛼

𝜇
is considered to have a fractional

Gage symmetry and transforms by

(𝐴
𝛼

𝜇
)


= 𝐴
𝛼

𝜇
+ 𝜕
𝛼

𝜇
𝜒. (37)

The fractional covariant derivative of the field Ψ
𝛼
obeys,

as usually done in the approach of gauge theories, the same
transform rule as the matter field:

(𝐷
𝛼

𝜇
Ψ
𝛼
)


= 𝑅 (𝜒) 𝐷
𝛼

Ψ
𝛼
. (38)

In more details,

𝜕
𝛼

𝜇
Ψ


𝛼
+

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝑘𝐴
𝛼

𝜇



Ψ


𝛼
= 𝑅 (𝜒) 𝜕

𝛼

𝜇
Ψ
𝛼

+
𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝑘𝐴
𝛼

𝜇
Ψ
𝛼

(39)

which turn into a fractional differential equation of the form

𝜕
𝛼

𝜇
𝑅

𝑅
= −

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝜕
𝛼

𝜇
𝜒. (40)

The solution to the equation above reads

𝑅 = exp(−
𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝜒) . (41)
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This can be readily proven bymeans of the following the steps:
fractionally deriving the above equation, with the use of (5),
we get that

𝜕
𝛼

𝜇
𝑅 = −

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
exp(−

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝜒) 𝜕
𝛼

𝜇
𝜒 = −

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝑅𝜕
𝛼

𝜇
𝜒, (42)

and this proves our assertion.
The fractional Dirac equation, in a coarse-grained sce-

nario, may now be written with the minimal electromagnetic
coupling as

𝑖ℏ
𝛼

𝛾
𝜇

(𝜕
𝛼

𝜇
+

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝐴
𝛼

𝜇
) Ψ
𝛼

− 1𝑚
𝛼

𝑐
𝛼

Ψ
𝛼

= 0. (43)

Splitting the space and time components, multiplying by
𝛾
0 and using the properties of the Dirac gamma-matrices, we

obtain

𝑖ℏ
𝛼

𝛾
0

𝛾
0

1

𝑐𝛼
𝜕
𝛼

𝑡
Ψ
𝛼

+ 𝑖ℏ
𝛼

𝛾
0

𝛾
𝑖

𝑀
𝑥,𝛼

𝜕
𝛼

𝑥
Ψ
𝛼

+ 𝑖ℏ
𝛼

𝛾
0

𝛾
0

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
𝜙
𝛼

Ψ
𝛼

+ 𝑖ℏ
𝛼

𝛾
0

𝛾
𝑖

𝑖𝑒
𝛼

𝑐𝛼ℏ𝛼
(− ⃗𝐴𝛼) Ψ

𝛼
− 𝛾
0

𝑚
𝛼

𝑐
𝛼

Ψ
𝛼

= 0

(44)

or

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
Ψ
𝛼

= 𝑐
𝛼

𝛾
0

𝛾
𝑖

(−𝑖ℏ
𝛼

𝑀
𝑥,𝛼

𝜕
𝛼

𝑥
Ψ
𝛼

−
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼Ψ
𝛼
)

+ 𝛾
0

𝛾
0

𝑒
𝛼
𝜙
𝛼

Ψ
𝛼

+ 𝛾
0

𝑚
𝛼

𝑐
2𝛼

Ψ
𝛼
,

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
Ψ
𝛼

= 𝑐
𝛼

𝛾
0

𝛾
𝑖

(−𝑖ℏ
𝛼

𝑀
𝑥,𝛼

𝜕
𝛼

𝑥
Ψ
𝛼

−
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼Ψ
𝛼
)

+ 1𝑒
𝛼
𝜙
𝛼

Ψ
𝛼

+ 𝛾
0

𝑚
𝛼

𝑐
2𝛼

Ψ
𝛼
.

(45)

Using the correspondence principle, we have

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
Ψ
𝛼

= 𝑐
𝛼

�⃗� ∘ ( ⃗𝑝𝛼 −
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼) Ψ
𝛼

+ ℏ
𝛼1𝑒
𝛼
𝜙
𝛼

Ψ
𝛼

+ 𝛾
0

𝑚
𝛼

𝑐
2𝛼

Ψ
𝛼
.

(46)

Now, we write the Dirac spinor as a column-vector in the
coarse-grained scenario as

Ψ
𝛼

= (
𝜓
𝛼,𝑠

𝜓
𝛼,𝑤

) , (47)

where we have named the strong (𝑠) and weak (𝑤) com-
ponents as the bispinors: 𝜓

𝛼,𝑠
= (
𝜓
𝛼,1

𝜓
𝛼,2

), 𝜓
𝛼,𝑤

= (
𝜓
𝛼,3

𝜓
𝛼,4

),
respectively. In a symplectic form, we can write

𝜓
𝛼,𝑠

= 𝜓
𝛼,1

+ 𝑖𝜓
𝛼,2

,

𝜓
𝛼,𝑤

= 𝜓
𝛼,3

− 𝑖𝜓
𝛼,4

.

(48)

4.2. The Nonrelativistic Regime of Fractional Dirac’s Equation
and the Fractional 𝑔-Ratio. In order to work out the non-
relativistic limit of the fractional Dirac’s Equation, we have
to consider that the dominant term in the Hamiltonian is

the rest energy, given by 𝑚
𝛼

𝑐
2𝛼. We then propose an ansatz

for the solution to the fractional Dirac’s equation as

Ψ


𝛼
= 𝑒
(−𝑖(𝐸
𝛼

/ℏ
𝛼

)𝑡
𝛼

)

(
𝜓
𝛼,𝑠

𝜓
𝛼,𝑤

) , 𝐸
𝛼

≅ 𝑚
𝛼

𝑐
2𝛼

. (49)

Inserting this ansatz into the fractional equation (30),
with the help of the chain rule (4) and the Leibniz rule (3),
we obtain

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
(

𝜓
𝛼,𝑠

𝜓
𝛼,𝑤

) = (

𝑐
𝛼

�⃗� ∘ ( ⃗𝑝𝛼 −
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼)

𝑐
𝛼

�⃗� ∘ ( ⃗𝑝𝛼 −
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼)

) (
𝜓
𝛼,𝑤

𝜓
𝛼,𝑠

)

+ 𝑒
𝛼
𝜙
𝛼

(
𝜓
𝛼,𝑠

𝜓
𝛼,𝑤

) + 𝑚
𝛼

𝑐
2𝛼

(
𝜓
𝛼,𝑠

−𝜓
𝛼,𝑤

)

− 𝑚
𝛼

𝑐
2𝛼

Γ (𝛼 + 1) (
𝜓
𝛼,𝑠

𝜓
𝛼,𝑤

) ,

(50)

which yields two equations as cast below:

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
𝜓
𝛼,𝑏

= 𝑐
𝛼

�⃗� ∘ ( ⃗𝑝𝛼 −
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼) 𝜓
𝛼,𝑤

+ 𝑒
𝛼
𝜙
𝛼

𝜓
𝛼,𝑠

+ (1 − Γ (𝛼 + 1)) 𝑚
𝛼

𝑐
2𝛼

𝜓
𝛼,𝑠

,

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
𝜓
𝛼,𝑤

= 𝑐
𝛼

�⃗� ∘ ( ⃗𝑝𝛼 −
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼) 𝜓
𝛼,𝑠

+ 𝑒
𝛼
𝜙
𝛼

𝜓
𝛼,𝑤

− (1 + Γ (𝛼 + 1)) 𝑚
𝛼

𝑐
2𝛼

𝜓
𝛼,𝑤

.

(51)

We now consider that themass term is dominant over the
electrostatic interaction energy, that is, 𝑒

𝛼
𝜙
𝛼

⋘ 𝑚
𝛼

𝑐
2𝛼

(1 +

Γ(𝛼 + 1)), and that the weakly relativistic component 𝜓
𝛼,𝑤

has slow evolution whenever compared to the rest energy,
𝑖ℏ
𝛼1𝜕
𝛼

𝑡
𝜓
𝛼,𝑤

< 𝑚
𝛼

𝑐
2𝛼

(1+Γ(𝛼+1))𝜓
𝛼,𝑤

.With these approxima-
tions, we can write that the second equation takes the form

0 ≅ 𝑐
𝛼

�⃗� ∘ ( ⃗𝑝𝛼 −
𝑒
𝛼

𝑐𝛼
⃗𝐴𝛼) 𝜓
𝛼,𝑠

+ 𝑒
𝛼
𝜙
𝛼

𝜓
𝛼,𝑤

− (1 + Γ (𝛼 + 1)) 𝑚
𝛼

𝑐
2𝛼

𝜓
𝛼,𝑤

,

(52)

which leads to the relation between the relativistic weak and
strong components as

𝜓
𝛼,𝑤

≅
𝑐
𝛼

�⃗� ∘ ( ⃗𝑝𝛼 − (𝑒
𝛼
/𝑐
𝛼

) ⃗𝐴𝛼)

(1 + Γ (𝛼 + 1)) 𝑚𝛼𝑐2𝛼
𝜓
𝛼,𝑠

. (53)

The expression above readily gives that the weak com-
ponent is, within the approximations carried out above,
suppressed with respect to the strong bispinor, 𝜓

𝛼,𝑤
⋘ 𝜓
𝛼,𝑠
.

Now, inserting this result into the first equation (51), the
equation for the strong component turns out to be

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
𝜓
𝛼,𝑠

=
�⃗� ∘ ( ⃗𝑝𝛼 − (𝑒

𝛼
/𝑐
𝛼

) ⃗𝐴𝛼) �⃗� ∘ ( ⃗𝑝𝛼 − (𝑒
𝛼
/𝑐
𝛼

) ⃗𝐴𝛼)

(1 + Γ (𝛼 + 1)) 𝑚𝛼
𝜓
𝛼,𝑠

+ 𝑒
𝛼
𝜙
𝛼

𝜓
𝛼,𝑠

+ (1 − Γ (𝛼 + 1)) 𝑚
𝛼

𝑐
2𝛼

𝜓
𝛼,𝑠

.

(54)
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We define the fractional momentum operator as ⃗𝜋𝛼 ≡

⃗𝑝𝛼−(𝑒
𝛼
/𝑐
𝛼

) ⃗𝐴𝛼, and we use the well-known propriety of Pauli
matrices (�⃗� ∘ 𝜋

𝛼

)(�⃗� ∘ 𝜋
𝛼

) = 𝜋
𝛼

∘ 𝜋
𝛼

+ 𝑖�⃗� ∘ (𝜋
𝛼

∧ 𝜋
𝛼

) and also
(𝜋
𝛼

∧ 𝜋
𝛼

) = −(𝑒
𝛼
/𝑐
𝛼

) ⃗𝑝𝛼 ∧ ⃗𝐴𝛼. Now, with the definition ⃗𝑝𝛼 =
𝑖ℏ
𝛼

𝑀
𝑥,𝛼

∇⃗
𝛼

, ∇⃗
𝛼

≡ �̂�(𝜕
𝛼

/𝜕𝑥
𝛼

) + 𝑗(𝜕
𝛼

/𝜕𝑦
𝛼

) + �̂�(𝜕
𝛼

/𝜕𝑧
𝛼

) and in
analogy with the integer case, ∇⃗

𝛼

∧ ⃗𝐴𝛼 = ⃗𝐵𝛼, we can write
down

𝑖ℏ
𝛼1𝜕
𝛼

𝑡
𝜓
𝛼,𝑏

=
( ⃗𝑝𝛼 − (𝑒

𝛼
/𝑐
𝛼

) ⃗𝐴𝛼)
2

(1 + Γ (𝛼 + 1)) 𝑚𝛼
𝜓
𝛼,𝑏

−
ℏ
𝛼

𝑀
𝑥,𝛼

(𝑒
𝛼
/𝑐
𝛼

) �⃗� ∘ ⃗𝐵𝛼

(1 + Γ (𝛼 + 1)) 𝑚𝛼
𝜓
𝛼,𝑏

+ 𝑒
𝛼
𝜙
𝛼

𝜓
𝛼,𝑏

+ (1 − Γ (𝛼 + 1)) 𝑚
𝛼

𝑐
2𝛼

𝜓
𝛼,𝑏

.

(55)

Equation (55) is the fractional version of the Pauli
equation in a coarse-grained scenario.

Recalling that the spin term is ⃗𝑆
𝛼

= (ℏ
𝛼

/2)Γ(𝛼 + 1)𝑀
𝑥,𝛼

�⃗�,
the second term in the r.h.s. of the above equation can be
written as

−
𝑒
𝛼

2𝑚𝛼𝑐𝛼
(

4

(1 + Γ (𝛼 + 1)) Γ (𝛼 + 1)
) ⃗𝑆
𝛼

∘ ⃗𝐵𝛼𝜓
𝛼,𝑠

. (56)

The factor into the bracket can be identified as the
fractional gyromagnetic ratio or 𝑔-factor 𝑔frac:

𝑔frac =
4

(1 + Γ (𝛼 + 1)) Γ (𝛼 + 1)
. (57)

Notice that (57) has a universal form in that it is the same
for a general𝛼. However, as wewill be discussing in Section 6,
𝛼 is species-dependent: electron, muon, and the tau will
exhibit different fractionality, that is, different 𝛼-parameters.
In this sense, we may say that (57) is species-dependent. This
remark will be very important for a relationship that will
be proposed in Section 6 between the mean life time of the
lepton and the 𝛼-parameter. Notice that, whenever 𝛼 = 1,
𝑔frac = 𝑔 = 2, the equation turns into the usual Pauli equation.

We canmap a fractional parameter with the CODATA [4]
known value of 𝑔exp for electrons and muons and according
to [78] for the lepton tau. The mapping can be achieved by
numerically solving the equation

𝑔frac =
4

(1 + Γ (𝛼 + 1)) Γ (𝛼 + 1)
= 𝑔exp. (58)

Since we expect the 𝛼-parameter to be very close to 1

(low fractionality), we could write that 𝛼 = 1 − 𝜀, 𝜀 being
a deviation from 1 as an effect of the fractionality; then, we
could write 𝑔frac = 2 + 𝛿(𝜀), where 𝛿 is a small deviation.
Then, by expanding the gamma functions in the denominator
of (58) around 𝜀 = 0, 𝛿(𝜀) it could be readily computed.
However, our option is to avoid the expansion in 𝜀 in order
to have a result that includes all orders in 𝜀 so that it can be
compared with a better precision with the experimental value
of 𝑔, written here as 𝑔exp. In our Discussion and Conclusions
section (Section 6), we will elaborate more on this result and

we will show how we make use of it to fit the 𝑔-ratios of the
charged leptonic particles.

We believe that, for the sake of completeness, it would
be instructive to present the Gordon decomposition for
the electronic current in its fractional form. The Gordon
decomposition readily manifests themagnetic dipole piece of
the relativistic current. So, after we have studied the effect of
the fractionality on the𝑔-factor, it is worthy to show explicitly
that the spin contribution couples to the electronmomentum
transfer. We will do that in the next section and we choose
to work it out in the configuration space, rather than in
momentum space, as one usually does.

5. The Gordon Decomposition
and the Fractional Dirac’s Equation:
A Fractional Spin Current

From (32), we can define the fractional current density as

𝑗
𝜇

𝛼
= 𝑒
𝛼
Ψ𝛾
𝜇

Ψ
𝛼
, (59)

where 𝛼 here does not stand for the spinor index, as it might
appear; 𝛼 refers to fractionality, as in the previous sections.

The above equation may be rewritten as

𝑗
𝜇

𝛼
=

1

2
𝑒
𝛼

(Ψ
𝛼
𝛾
𝜇

Ψ
𝛼

+ Ψ
𝛼
𝛾
𝜇

Ψ
𝛼
) . (60)

From the Dirac equation (30) and its Dirac-conjugated
version, (31) we may write, respectively,

Ψ
𝛼

=
𝑖ℏ
𝛼

𝑚𝛼𝑐𝛼
𝛾
𝜇

𝜕
𝛼

𝜇
Ψ
𝛼
,

Ψ
𝛼

= −
𝑖ℏ
𝛼

𝑚𝛼𝑐𝛼
𝜕
𝛼

𝜇
Ψ
𝛼
𝛾
𝜇

.

(61)

Now, inserting these results in the first and second terms
of (60), respectively, we can write for the fractional current

𝑗
𝜇

𝛼
=

𝑖ℏ
𝛼

𝑒
𝛼

𝑚𝛼𝑐𝛼
((Ψ
𝛼
𝛾
𝜇

𝛾
]
) (𝜕
𝛼

] Ψ
𝛼
) − (𝜕

𝛼

] Ψ
𝛼
) (𝛾

]
𝛾
𝜇

Ψ
𝛼
)) . (62)

For the gamma-matrices, we can write that

𝛾
𝜇

𝛾
]

=
1

2
(𝛾
𝜇

𝛾
]

+ 𝛾
]
𝛾
𝜇

) +
1

2
(𝛾
𝜇

𝛾
]

− 𝛾
]
𝛾
𝜇

)

= 𝜂
𝜇]

1 + Σ
𝜇]

,

𝛾
]
𝛾
𝜇

= 𝜂
𝜇]

1 + Σ
]𝜇

= 𝜂
𝜇]

1 − Σ
𝜇]

,

(63)

where Σ
𝜇]

= (1/2)(𝛾
𝜇

𝛾
]

− 𝛾
]
𝛾
𝜇

) = (1/2)[𝛾
𝜇

, 𝛾
]
] and 𝜂

𝜇] is the
metric tensor.

Using the definitions above and inserting them into (62),
we obtain for the current a suitable form, where we split the
contribution due to the spin:

𝑗
𝜇

𝛼
=

𝑖ℏ
𝛼

𝑒
𝛼

2𝑚𝛼𝑐𝛼
(Ψ
𝛼

(𝜕
𝛼

] Ψ
𝛼
) − (𝜕

𝛼

] Ψ
𝛼
) Ψ
𝛼
)

+
𝑖ℏ
𝛼

𝑒
𝛼

2𝑚𝛼𝑐𝛼
(Ψ
𝛼
Σ
𝜇]

(𝜕
𝛼

] Ψ
𝛼
) + (𝜕

𝛼

] Ψ
𝛼
) Σ
𝜇]

Ψ
𝛼
) .

(64)
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Defining 𝜎
𝜇]

= 𝑖Σ
𝜇], the second term in the equation

above may be identified with the spin contribution to the
fractional current and reads as

𝑗
𝜇

𝛼,spin =
ℏ
𝛼

𝑒
𝛼

2𝑚𝛼𝑐𝛼
𝜕
𝛼

] (Ψ
𝛼
𝜎
𝜇]

Ψ
𝛼
) . (65)

Therefore, we are here giving the Gordon decomposition
carried out in configuration space rather than presenting it in
Fourier space. We choose to do so because we are not dealing
with generalized functions, but with nondifferentiable func-
tions.

6. Discussions and Conclusions

With the help of (58), we are able to compare the the
fractional 𝛼-parameter for electrons, muons, and taus. The
numerical results show that the fractionality, 𝛼, exhibits a
hierarchy; that is, 𝛼 (electron) > 𝛼 (muon) > 𝛼 (tau).
(In what follows 𝑔

𝑒-exp is the 𝑔-factor for electrons given by
experimental CODATAreference. Analogously, for𝑔

𝜇-exp, the
𝛼
𝜇-exp parameter is the corresponding one for the fermion

species.)
For the electron (CODATA), we have that 𝑔

𝑒-exp =

2.00231930436146. This yields, in our approach, 𝛼
𝑒-exp =

0.9981697906061296726, indicating a system with low frac-
tionality (𝛼 near 1).

Analogously, for the muon (CODATA),
𝑔
𝜇-exp = 2.00233184182, which gives 𝛼

𝜇-exp =

0.9981598882409105161 and for the tau-lepton (data
from QED; see e.g., [78]), 𝑔

𝜏
= 2.00235442, such that our

𝛼
𝜏

= 0.998142055249517567.
Notice the hierarchy for the 𝑔-factors: 𝑔

𝜏
> 𝑔
𝜇-Exp >

𝑔
𝑒-exp: an inverted hierarchy with respect to the values of 𝛼-

parameters.
We can interpret these results as follows: the higher is

the 𝑔-ratio, the farther is the 𝛼-parameter from 𝛼 = 1

(𝑔-factor is a decreasing function with alpha, as it can be
seen numerically from (57)). A larger 𝛼-parameter means
obviously fractionality closer to 1. Moreover, if this parameter
deviates significantly from 𝛼 = 1, it may indicate that
the system is more sparse, or equivalently, roughness is
larger. This may suggest that there is a smaller variety of
different types of interactions (particles and fields) in the
surroundings of the pseudoparticle. In other words, if a
particle interacts less or has a lower mean life than another
particle, its corresponding𝛼-parameter would be a littlemore
distant (downwards) from 𝛼 = 1, which indicates a lower
complexity of interactions and also that the medium “seen”
by the particle is more rugged. We understand that a value of
alpha closer to 1 suggests an enhacement in the complexity of
the interactions. By this we mean that the particle interacts
more significantly with more structures in its neighborhood.
An 𝛼-parameter equal to 1 means one type of total mixing
memory (providing an idealized integer model, which is not
natural), with the pseudoparticles feeling the interactions of
all kinds, so that, in average, these fluctuations are vanishing
(a statistical average). We can speculate that the medium
seen by this kind of particle is less rugged or closer to the
continuum.

Now, in terms of mean life, muon decays in 10
−6 s and

tau decays in 10
−15 s, while the electron is stable. The relation

between mean life, the 𝛼-parameter, and the coarse-grained
character can be understood as follows: the lower is the mean
life; this means that the particle does not have sufficient
time to interact with the surrounding environment and with
other particles, implying that the 𝛼-parameter departs from
the value 1. The overall interaction felt by those particles is
limited to the closer interacting particles and the neighbor
environment. Thinking this way, the medium appears more
rugged for this particle. Stable particles, like electrons, can
experience the entire environment; therefor it interacts more,
justifying a fractional parameter closer to 1. So, this medium
could be considered less rugged for the electrons than for
the other leptonic species. The time scale of the interaction
expressed by the mean life can give clues on the fractionality.

From QED calculations [3, 4], we also have for electron,
muon, and tau (in what follows, 𝑔

𝑒-QED is the 𝑔-factor for
electrons given by QED; analogously, for 𝑔

𝜇-QED and 𝑔
𝜇-QED,

the 𝛼
𝜇-QED parameter is the corresponding one for the

fermion species):

𝑔
𝑒-QED = 2.00231930436364,

𝛼
𝑒-QED = 0.9981697906044078681;

𝑔
𝜇-QED = 2.002331694362,

𝛼
𝜇-QED = 0.9981600047070900225.

(66)

Comparing the parameters above from QED with those
from the measured anomalies [4], we can see that 𝑔

𝑒-QED =

2.00231930436364 > 𝑔
𝑒-exp = 2.00231930436146. This

leads to 𝛼
𝑒-QED = 0.9981697906044078681 < 𝛼

𝑒-exp =

0.9981697906061296726.
We can see the opposite behavior for muon: 𝑔

𝜇-QED =

2.002331694362 < 𝑔
𝜇-exp = 2.00233184182, what

leads to 𝛼
𝜇-QED = 0.9981600047070900225 > 𝛼

𝜇-exp =

0.9981598882409105161.
We can interpret these results as follows: for the electron,

the results may be indicating that the complexity of the inter-
actions taken into account in the QED calculation may be
lower than it would be in the reality seen by the experiment.
That is, the electron, as a pseudoparticle, keeps hidding other
interactions or even structures that are not well described or
are incomplete in the SM description. Thus, this may justify
the deviation from the QED calculations as compared to the
experimental results. In other words, in the experimental
reality for electrons, we may think that the complexity is
larger than that considered in the QED calculations based
on the SM and the fractionality should indicate that the SM,
although very good, may not be providing all information
necessary to describe the interactions in a more complete
view, either at high energies or in granular or fractal space-
time. Thus, the FC may give evidences that the SM could
require corrections (or higher order calculations by QED).

For the muon, an opposite behavior in terms of fractional
parameter could be observed and indicates that the QED
calculations might be taken into account with more inter-
actions and a consequent complexity than the particle really
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experience, suggesting that the SM may not be complete to
describe the whole interaction scenario.

In summary, in the present work, we have built up a frac-
tional Dirac equation in a coarse-grained scenario by taking
into account a fractional Weyl equation, a fractional angular
momentum algebra, by introducing a mass parameter and
imposing that the equations be compatible with the fractional
energy-momentum relation. Considering then a fractional
gauge-covariant derivative, we could minimally couple the
charged fermion to an external electromagnetic field. The
step further consisted in working out the nonrelativistic limit
of the Dirac’s equation to obtain a fractional version of the
Pauli’s equation. We have then investigated the anomalous
magnetic moment for the charged leptons: electrons, muons,
and taus. With the fractional approach to a coarse-grained
scenario, we were able to get the fractionality associated to
each leptonic species.

We have shown that a mapping of the anomalous mag-
netic𝑔-ratio is possible in terms of a fractional parameter that
could be used to give some insight about the precision of the
QED calculations necessary to better emulate reality.

Defining a fractional current density, we have also per-
formed a fractional Gordon decomposition and identified the
spin contribution to the fractional electromagnetic current
density.

We also suggested that the understanding of the results
comparatively for electrons, muons and taus may be thought
in the realm of complexity,mean life, coarse-grainedness, and
pseudoparticle concepts.

We have finally shown that the fractionalities, 𝛼, exhibit
a hierarchy 𝛼 (electron) > 𝛼 (muon) > 𝛼 (tau). We
established a connection between mean life of the particle,
fractionality, and roughness, showing that a small mean life
can lead to a fractional parameter more distant from 𝛼 = 1 if
compared with more stable particles. Consequently, a small
mean life means less interaction, less complexity related to
interactions and to the effective medium felt by the particle.
This means more roughness.
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