1,220 research outputs found

    On the tailoring of CAST-32A certification guidance to real COTS multicore architectures

    Get PDF
    The use of Commercial Off-The-Shelf (COTS) multicores in real-time industry is on the rise due to multicores' potential performance increase and energy reduction. Yet, the unpredictable impact on timing of contention in shared hardware resources challenges certification. Furthermore, most safety certification standards target single-core architectures and do not provide explicit guidance for multicore processors. Recently, however, CAST-32A has been presented providing guidance for software planning, development and verification in multicores. In this paper, from a theoretical level, we provide a detailed review of CAST-32A objectives and the difficulty of reaching them under current COTS multicore design trends; at experimental level, we assess the difficulties of the application of CAST-32A to a real multicore processor, the NXP P4080.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Requirements Analysis of a Quad-Redundant Flight Control System

    Full text link
    In this paper we detail our effort to formalize and prove requirements for the Quad-redundant Flight Control System (QFCS) within NASA's Transport Class Model (TCM). We use a compositional approach with assume-guarantee contracts that correspond to the requirements for software components embedded in an AADL system architecture model. This approach is designed to exploit the verification effort and artifacts that are already part of typical software verification processes in the avionics domain. Our approach is supported by an AADL annex that allows specification of contracts along with a tool, called AGREE, for performing compositional verification. The goal of this paper is to show the benefits of a compositional verification approach applied to a realistic avionics system and to demonstrate the effectiveness of the AGREE tool in performing this analysis.Comment: Accepted to NASA Formal Methods 201

    The SAE Architecture Analysis & Design Language (AADL) A Standard for Engineering Performance Critical Systems

    Get PDF
    International audienceThe Society of Automotive Engineers (SAE) Architecture Analysis & Design Language, AS5506, provides a means for the formal specification of the hardware and software architecture of embedded computer systems and system of systems. It was designed to support a full Model Based Development lifecycle including system specification, analysis, system tuning, integration, and upgrade over the lifecycle. It was designed to support the integration of multiple forms of analyses and to be extensible in a standard way for additional analysis approaches. A system can be automatically integrated from AADL models when fully specified and when source code is provided for the software components. Analysis of large complex systems has been demonstrated in the avionics domain

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications

    From Formal Requirements to Highly Assured Software for Unmanned Aircraft Systems

    Get PDF
    Operational requirements of safety-critical systems are often written in restricted specification logics. These restricted logics are amenable to automated analysis techniques such as model-checking, but are not rich enough to express complex requirements of unmanned systems. This short paper advocates for the use of expressive logics, such as higher-order logic, to specify the complex operational requirements and safety properties of unmanned systems. These rich logics are less amenable to automation and, hence, require the use of interactive theorem proving techniques. However, these logics support the formal verification of complex requirements such as those involving the physical environment. Moreover, these logics enable validation techniques that increase con dence in the correctness of numerically intensive software. These features result in highly-assured software that may be easier to certify. The feasibility of this approach is illustrated with examples drawn for NASA's unmanned aircraft systems

    Development and certification of mixed-criticality embedded systems based on probabilistic timing analysis

    Get PDF
    An increasing variety of emerging systems relentlessly replaces or augments the functionality of mechanical subsystems with embedded electronics. For quantity, complexity, and use, the safety of such subsystems is an increasingly important matter. Accordingly, those systems are subject to safety certification to demonstrate system's safety by rigorous development processes and hardware/software constraints. The massive augment in embedded processors' complexity renders the arduous certification task significantly harder to achieve. The focus of this thesis is to address the certification challenges in multicore architectures: despite their potential to integrate several applications on a single platform, their inherent complexity imperils their timing predictability and certification. Recently, the Measurement-Based Probabilistic Timing Analysis (MBPTA) technique emerged as an alternative to deal with hardware/software complexity. The innovation that MBPTA brings about is, however, a major step from current certification procedures and standards. The particular contributions of this Thesis include: (i) the definition of certification arguments for mixed-criticality integration upon multicore processors. In particular we propose a set of safety mechanisms and procedures as required to comply with functional safety standards. For timing predictability, (ii) we present a quantitative approach to assess the likelihood of execution-time exceedance events with respect to the risk reduction requirements on safety standards. To this end, we build upon the MBPTA approach and we present the design of a safety-related source of randomization (SoR), that plays a key role in the platform-level randomization needed by MBPTA. And (iii) we evaluate current certification guidance with respect to emerging high performance design trends like caches. Overall, this Thesis pushes the certification limits in the use of multicore and MBPTA technology in Critical Real-Time Embedded Systems (CRTES) and paves the way towards their adoption in industry.Una creciente variedad de sistemas emergentes reemplazan o aumentan la funcionalidad de subsistemas mecánicos con componentes electrónicos embebidos. El aumento en la cantidad y complejidad de dichos subsistemas electrónicos así como su cometido, hacen de su seguridad una cuestión de creciente importancia. Tanto es así que la comercialización de estos sistemas críticos está sujeta a rigurosos procesos de certificación donde se garantiza la seguridad del sistema mediante estrictas restricciones en el proceso de desarrollo y diseño de su hardware y software. Esta tesis trata de abordar los nuevos retos y dificultades dadas por la introducción de procesadores multi-núcleo en dichos sistemas críticos: aunque su mayor rendimiento despierta el interés de la industria para integrar múltiples aplicaciones en una sola plataforma, suponen una mayor complejidad. Su arquitectura desafía su análisis temporal mediante los métodos tradicionales y, asimismo, su certificación es cada vez más compleja y costosa. Con el fin de lidiar con estas limitaciones, recientemente se ha desarrollado una novedosa técnica de análisis temporal probabilístico basado en medidas (MBPTA). La innovación de esta técnica, sin embargo, supone un gran cambio cultural respecto a los estándares y procedimientos tradicionales de certificación. En esta línea, las contribuciones de esta tesis están agrupadas en tres ejes principales: (i) definición de argumentos de seguridad para la certificación de aplicaciones de criticidad-mixta sobre plataformas multi-núcleo. Se definen, en particular, mecanismos de seguridad, técnicas de diagnóstico y reacción de faltas acorde con el estándar IEC 61508 sobre una arquitectura multi-núcleo de referencia. Respecto al análisis temporal, (ii) presentamos la cuantificación de la probabilidad de exceder un límite temporal y su relación con los requisitos de reducción de riesgos derivados de los estándares de seguridad funcional. Con este fin, nos basamos en la técnica MBPTA y presentamos el diseño de una fuente de números aleatorios segura; un componente clave para conseguir las propiedades aleatorias requeridas por MBPTA a nivel de plataforma. Por último, (iii) extrapolamos las guías actuales para la certificación de arquitecturas multi-núcleo a una solución comercial de 8 núcleos y las evaluamos con respecto a las tendencias emergentes de diseño de alto rendimiento (caches). Con estas contribuciones, esta tesis trata de abordar los retos que el uso de procesadores multi-núcleo y MBPTA implican en el proceso de certificación de sistemas críticos de tiempo real y facilita, de esta forma, su adopción por la industria.Postprint (published version

    Modelling Embedded Systems with AADL: A Practical Study

    Get PDF
    In today’s world, embedded systems can be seen everywhere around us. These systems range from consumer electronics such as mobile phones, cameras and portable music players to sophisticated devices such as planes and satellite systems. In either form embedded systems are designed to perform specific tasks with constraints on their qualities and available resources. These constraints can either be soft or hard depending on the nature of the system: a satellite system, for example, has hard safety constraints. Some of the major constraints for embedded systems are high reliability, performance, safety and dependability, small memory size, low power and low processing capabilities. Designing systems with such constraints is a challenge. Developing system architectures during system development has gained importance as it helps in analyzing the system before its implementation. A system architecture is a formal description of a system that describes its building blocks, their properties and the interactions among them. System architectures can be used to analyze various properties of a system such as memory consumption and system safety. For embedded systems, this is of extreme importance since a well described system architecture allows us to predict whether any of the previously mentioned constraints can be met, without requiring the construction of an often expensive prototype implementation. Description of system architectures can be achieved using the formal notations offered by Architecture Description Languages (ADLs). Such ADLs often also provide tool support for the modelling and analysis of the system architecture. Many ADLs for embedded systems are available in both academic and industrial communities, such as Rapide, MetaH, AADL and Wright. Among the available ADLs, the best known and most actively used language is the Architecture Analysis and Design Language (AADL). Standardized by the Society of Automotive Engineers, AADL was originally developed for modelling and analysis of systems in the domain of avionics. However, because of its rich modelling and analysis capabilities, it is widely used for embedded systems in other domains as well. AADL provides a modelling formalism accompanied by a toolset to support modelling activities and system analyses. AADL models can be used to perform various analyses such as flow latency, resource consumption, real-time schedulability, security and safety analysis. Because of its history in the avionics domain, AADL does not address each and every modelling and analysis requirement of other embedded domains. However, during its design, it was foreseen that use of AADL in other domains could require additional modelling concepts and analyses. To meet potential needs AADL was designed as an extensible ADL. This chapter is intended to provide insight into the design needs of embedded systems and the formalisms available to address those needs.status: publishe

    Novel ATM and avionic systems for environmentally sustainable aviation

    Get PDF
    Large-scale air transport modernisation initiatives including the Single European Sky Air Traffic Management Research (SESAR), Next Generation Air Transportation System (NextGen) and Clean Sky Joint Technology Initiative for Aeronautics and Air Transport aim to improve the operational efficiency, safety and environmental sustainability of aviation. Scientific advances in Air Transport Management (ATM) and avionic systems are required to achieve the ambitious goals set by national and international aviation organisations. This paper presents the recent advances in ATM and avionic system concepts, integrated architectures and trajectory generation algorithms, to be adopted in Next Generation Avionics Flight Management Systems (NG-FMS) and ground-based 4-Dimensional Trajectory Planning, Negotiation and Validation (4-PNV) systems. Current research efforts are focussed on the development of NG-FMS and 4-PNV systems for Four Dimensional (4D) Trajectory/Intent Based Operations (TBO/IBO), enabling automated negotiation and validation of aircraft intents and thus alleviating the workload of operators. After describing the NG-FMS/4PNV concept of operations, the overall system architecture and the key mathematical models describing the 4DT optimisation algorithms are introduced. Simulation case studies utilising realistic operational scenarios highlight the generation and optimisation of a family of 4DT intents by the NG-FMS corresponding to a set of performance weightings agreed between Air Navigation Service Providers (ANSP) and Airline Operation Centres (AOC). The savings on time, fuel burn and gaseous emissions (CO2 and NOx) associated with the globally optimal 4DT intents are presented. The developed optimisation and negotiation/validation loops meet the timeframe requirements of typical online tactical routing/rerouting tasks
    corecore