On the Tailoring of CAST-32A Certification
Guidance to Real COTS Multicore Architectures

Irune Agirre*T, Jaume Abella*, Mikel Azkarate-askasua* and Francisco J. Cazorlat$
* IK4-Ikerlan Technology Research Centre, Mondragén, Spain

T Universitat Politécnica de Catalunya, Barcelona, Spain
Barcelona Supercomputing Center, Barcelona, Spain
§ Spanish National Research Council (IITA-CSIC)

Abstract—The use of Commercial Off-The-Shelf (COTS) mul-
ticores in real-time industry is on the rise due to multicores’
potential performance increase and energy reduction. Yet, the
unpredictable impact on timing of contention in shared hard-
ware resources challenges certification. Furthermore, most safety
certification standards target single-core architectures and do
not provide explicit guidance for multicore processors. Recently,
however, CAST-32A has been presented providing guidance for
software planning, development and verification in multicores. In
this paper, from a theoretical level, we provide a detailed review
of CAST-32A objectives and the difficulty of reaching them under
current COTS multicore design trends; at experimental level, we
assess the difficulties of the application of CAST-32A to a real
multicore processor, the NXP P4080.

Keywords—Timing analysis, COTS multicore, certification.

I. INTRODUCTION

COTS multicore processors are the preferred industry
choice to deal with the increasing integration demands in the
embedded domain. Their outstanding benefits in performance
and power efficiency are very attractive to consolidate multiple
applications into a single silicon die, reducing the overall costs,
size, weight and power overhead. In addition, the usage of
readily available and tested COTS components considerably
shorten the development time and associated costs.

Many embedded applications have safety and real-time
requirements and must follow strict certification processes.
Embedded applications often present functions of different lev-
els of safety-criticality, widely referred to as mixed-criticality
systems. The safety certification of such systems requires
providing guarantees of the correct temporal behaviour of
the applications and to demonstrate that the applications are
isolated among them. In this line, although COTS multicore
processors present great opportunities for mixed-criticality
integration, their timing unpredictability and temporal inter-
core (contention) interferences in the access to shared re-
sources, seriously limit providing guarantees on timing, which
remains as an open research issue. Single-core solutions do not
scale well for multicores and safety standards do not provide
satisfactory enough guidance yet for multicore architectures.

On the road to addressing this limitation, recently, cer-
tification authorities in the Airbone domain have published
a position paper for multicore processors (CAST-32A) [1].
CAST-32A lists a set of objectives to help addressing multicore
certification challenges. However, COTS multicores are, in-
general, non amenable for timing analysis and applying those
measures can still be very challenging. As a consequence,
several limitations arise for providing sufficient evidence to
confirm that timing requirements are met in the access to
hardware shared resources hindering certification. In the scope
of CAST-32A, this paper makes two contributions.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

@® We provide a deep analysis of CAST-32A objectives and
discuss the feasibility of achieving them with current COTS
multicore designs. We show potential limitations that the
embedded system designers may face in achieving those goals.
@ We tailor some of the generic principles in CAST-32A
to a specific COTS multicore processor, the P4080 [2]. In
particular, we show the main stumbling blocks we have found
to reach CAST-32A goals in this architecture.

We show that, despite CAST-32A is a step forward for
software planning, development and verification on multicore
systems, the application of its objectives is not straightforward
and requires in-depth analysis of the architecture and appro-
priate hardware support to deal with interference channels.
Further, we highlight the importance that measurements may
have for an embedded system designer (not only time mea-
surements but also architectural events through mechanisms
such as Performance Monitoring Counters (PMC)). Despite the
participation of experts in real embedded systems development
and in multicore hardware design in this work, our analysis
shows that, for the P4080, the conformance of some features
with CAST-32A can only be assessed by the chip vendor.

The rest of this paper is structured as follows. Section II
provides some background. Section III presents our analysis
of CAST-32A. Section IV introduces the P4080 and the
challenges of achieving CAST-32A objectives on such proces-
sor, together with some quantitative results that support our
claims. Some related work is provided in Section V. Finally,
Section VI presents the main conclusions of this work.

II. BACKGROUND AND PROBLEM STATEMENT

The main challenges that hinder the adoption of multicores
in safety-critical domains stem from their inherent complexity,
not proven temporal predictability, interferences coming from
the access to shared resources, lack of previous experience and
weak guidance on current safety standards. These challenges
are absorbing considerable research efforts in both real-time
industry and academic community [3], [4].

A. Exploratory Research

A vast amount of research works target to enable the use
of multicores. In this paper we provide illustrative references
of works in the main research lines, while a detailed summary
of existing works can be found in [3], [4].

Several hardware designs are proposed to favour time
predictability [5], [6]. However, COTS multicore architectures
very slowly incorporate time-predictable features, requiring
software solutions to handle contention.

Scheduling techniques usually build on simplifying as-
sumptions about the contention suffered by the tasks in a

multicore. Others assume that the tasks are derived a Worst-
Case Execution Time (WCET) estimate before the scheduling
is carried out [7]. However, the latter only holds when all
resources can be partitioned so that the load that co-runner
tasks put on a resource does not increase a task’s execution
time (i.e. there are not interference channels in CAST-32A
terms). Other works prevent read/write phases of tasks to
simultaneously use shared resources (e.g. interconnect) to
prevent contention [8]. Intuitively, as the core counts increase,
this type of solutions will find scalability issues.

Approaches relying on static analyses to derive contention
bounds entail many limitations in COTS architectures due to
the complexity of modelling high-performance features and the
lack of hardware details to do so. As an illustrative example,
the authors in [9] propose a novel approach for estimating
an upper bound of multicore interferences and enforce it at
runtime for guaranteeing isolation. Even if they base their
approach in static timing analysis techniques, the evaluation
of their approach on a real processor (the P4080) exposes
the need for measurements to quantify the access latencies
in which their interference model is based on [10].

B. Safety Standards

Certification authorities are extremely wary about cer-
tifying any multicore based solution, which would require
to provide trustworthy guarantees of the correctness of the
system’s both functional and temporal behaviour. This requires
a robust system design and development process that involves
high efforts even for single-core processors. As a consequence,
safety-related industry has adopted the trend of employing
simple, predictable and proven-in-use processors, features that
are absent in modern multicore platforms.

In addition, for mixed-criticality integration, standards re-
quire to certify all components (including the non safety-
related software) for the highest criticality level present in the
system unless enough evidence of independence among the ap-
plications is demonstrated. Proving independence is thus cru-
cial to considerably reduce development and certification costs
and effort. Standards provide some guidance for achieving such
independence based on the concept of partitioning [11]. A
partition encapsulates the physical resources both spatially and
temporally to avoid interferences. In single-core approaches,
space partitioning is typically guaranteed by segregating the
memory space and protecting it with mechanisms such as
Memory Management Units (MMU). For time, partitioning
is usually achieved by a static cyclic scheduler where each
partition is assigned an exclusive time interval as suggested
in different domain standards (IEC-61508-3 Annex F, ISO-
26262-6 Annex-D, ARINC-653, DO-175 6.3.3f). However,
usually it is not feasible to ensure complete temporal indepen-
dence in multicores where partitions access to shared resources
in parallel causing inter-partition contention delays.

In this respect, current safety standards are still in their
infancy to provide guidance on addressing these multicore
challenges. For instance, IEC-61508 [12] does not explicitly
mention multicore architectures and the references the standard
makes to modern integrated circuits (e.g. IEC-61508-2 Annex
E) is oversimplified. Modern multicore processors fall into a
“highly complex” category according to the European Aviation
Safety Agency (EASA) [3],[13]. In 2014, the Federal Aviation
Administration (FAA) and the EASA presented the conser-
vative view of the aviation community with respect to the
certification of multicore processors in a position paper (CAST-

32) [14]. CAST-32 focuses on the certification of multicore
processors with only two active cores. Recently, FAA/EASA
published an update of this paper, called CAST-32A [1],
extending its applicability by removing the “only two active
cores” restriction. CAST-32A provides certification guidelines
based on approaches accepted by certification authorities in
projects using multicore technology in airbone systems.

III. ON THE ANALYSIS OF CAST-32A
Before tailoring CAST-32A objectives to a real processor,
we first provide an introduction to its requirements with
particular emphasis on multicore timing considerations.

A. General Definitions

CAST-32A analyses multicore processor (MCP) elements
potentially impacting the safety, performance and integrity of
a software airborne system. It is partially motivated by the
fact that current standards in civil avionics cover single-core
systems, since those standards are previous to MCPs usage in
civil avionics. In providing additional guidance to cover MCP-
specific aspects, CAST-32A builds on several definitions that
classify MCPs based on the type of support they provide to
reach its goals. Emphasis is put on hardware/software elements
that create ‘coupling’ among software running on the MCP,
and hence may lead to interference among them. Below we
introduce those definitions related to timing.

Robust Resource Partitioning (RRP) requires (i) software
partitions not to manipulate the code, I/O or data of other
software partitions; (ii) software partitions not to consume
more than their assigned portion of shared resources; and (iii)
hardware failures unique to a software partition not to affect
other software partitions.

Robust Time Partitioning (RTP) requires identifying and
mitigating inter-partition interferences such that no software
partition exceeds its deadline even in the presence of software
executing simultaneously in other cores.

Robust Partitioning encompasses both, Robust Resource
Partitioning and Robust Time Partitioning. CAST-32A clas-
sifies multicore processors into two categories depending on
whether or not they provide Robust Partitioning.

An Interference Channel refers to a platform property that
may cause interference between independent applications (i.e.
with no explicit data or control flow between them).

Configuration Settings of the MCP cover any software-
configurable element that affects software timing behaviour,
e.g., frequency and cache partitioning. Special care is required
to prevent the inadvertent changes of those settings that affect
planned application’s timing behaviour.

Table I lists some CAST-32A objectives, their identifiers
refer to whether the objective relates to planning (PL), resource
usage (RU) or software verification (SWV) activities. We only
focus on those CAST-32A requirements that relate to interfer-
ence analysis and WCET determination'. These objectives can
be grouped into three high level principles:

Determining the Final Configuration. The designer shall
determine which the intended final configuration is that will
enable to satisfy system requirements (RU_I). This configu-
ration is protected against unintended modification at runtime

ICAST-32A has three additional objectives that are not considered in
this paper: one for inter-partition communication, another for runtime error
management and the last one for reporting compliance with CAST-32A.
Some definitions mostly related to these objectives (e.g. safety net for error
management) are not discussed in this paper.

TABLE I: Summary of CAST-32A Objectives [1]

ID Description
PL_1 Include MCP specific planning details in the SW plan doc.
Specific processor, number of active cores, software
architecture, dynamic software features, whether it hosts
an IMA-like system (with applications from different
systems) or not, Robust Partitioning supported or not,
methods and tools for development and verification.

Software
Planning

RU_1 Determine configuration settings that enable to satisfy
the functional, performance and timing requirements.

RU_2 Critical configuration settings shall be static and
protected against unintended modifications.

PL_2 Include a high level description of shared resource usage
and active dynamic hardware features in the hardware
and software planning documents.

Intended shared resource allocation and verification to
prevent resource capabilities from being exceeded.

Planning and
Setting Resources

RU_3 Identify interference channels and verify the chosen
means of mitigation.
Interferences caused by shared memory, shared cache,
interconnect, shared I/O or any other shared resource.

RU_4 Identify available resources in the intended final
configuration, allocate them to the applications and
verify that the demands do not exceed the available
resources (under worst-case scenarios).

Interference Channels
and Resource Usage

SWV_1 Verify that all software components function correctly
and have sufficient time when all the software is
executing in the intended final configuration.

Depends on the platform classification:

1. Platforms with Robust Partitioning: SW verification and
WCET analysis can be done separately for each SW app.
2. All Other Platforms: If interference is mitigated for any
software component or set of requirements, the
verification of such components can be done separately.
Otherwise, verification and WCET analysis shall be done
with all software components executing together.

Software
Verification

(RU_2). The decisions taken at this phase should be docu-
mented as required in objective PL_1.

Managing Interference Channels. It is required to identify
interference channels in the intended final configuration and
to define the means to either avoid interference by design
or upper-bound it so that timing deadlines are not exceeded
(RU_3). Upper-bounding interference involves analysing the
use of shared resources and designing the means to control
multicore contention. This should be documented in the ap-
propriate certification deliverables (PL_2).

Verifying the use of Shared Resources. Resource usage
shall be verified by guaranteeing that in the chosen final
configuration the software does not exceed the use of available
resources even in worst-case scenarios (RU_4).

In this paper we focus on these three principles and,
following CAST-32A, assume that software configuration is
static (e.g. dynamic scheduling and dynamic partition to core
allocation are not allowed) and hardware configuration is
protected by the OS/hypervisor at runtime (RU_2).

B. Interpretation and Achievability of the Objectives

The safety argumentation of CAST-32A is based along the
partitioning line of reasoning: guaranteeing Robust Partitioning
is crucial at the time of meeting the objectives of CAST-
32A, specially for allowing incremental verification of different
software components integrated in the MCP system as stated
in objective SWV_I.

B.1. Robust Resource Partitioning (RRP)

We interpret RRP as i) spatial partitioning, ii) resource
quota monitoring and enforcement, and iii) fault containment
at (software) partition level, which may also (indirectly) refer
to resource partitions as discussed next.

Spatial partitioning can be achieved with MMU/MPU
support in most current COTS multicore architectures.

Quota monitoring and enforcement, however, involves
many more difficulties. For each shared resource it should
be identified which events provide more accurate information
about resource usage.

In terms of quota monitoring, intuitively, while access
counts can provide a good approximation, different type of ac-
cesses use the shared resource for different time. This does not
just require deriving this information from available manuals,
but also checking whether the target platform provides support
for monitoring architectural events (e.g. by Performance Mon-
itoring Counters, PMCs) that allow tracking the desired type
of accesses. For instance, in the LEON4 architecture, the last-
level (L2) cache is write-back. L2 cache misses not evicting
dirty data take shorter than those evicting dirty data. However,
the L2 miss count PMC only captures non-dirty misses [15].
While authors [15] manage to upper-bound the number of dirty
misses with existing counters, for other scenarios PMCs cannot
provide enough support for access tracking, hindering a tight
quota monitoring. Furthermore, some shared resources, like
AMBA - one of the most used interfaces for communication —
buses, allow a single request to hold the bus for an unbounded
duration [16]. This poses new challenges, since additional
means are required to determine whether hardware masters
(i.e. resources allowed to start transactions on the bus) use
this unbounded-duration feature for requests. This, however,
requires deep hardware understanding, which might not be
possessed by end users. Moreover, PMCs counting access
types might not suffice. Instead, PMCs counting the time each
core uses the shared resource (hence potentially delaying the
other cores) may also be required.

The difficulty of implementing quota enforcement depends
on the target resource and the hardware support provided.

First, for space resources, like the data array in a cache,
some processors provide partitioning so that one task cannot
evict the data of another. However, despite cache space parti-
tioning, some tasks can still impact others. This may happen if
partitioning is not implemented at the cache bank level. That
is, tasks share the same bank though the cache ways in that
bank are split among tasks. This may make cache accesses of
one task delay the accesses of another task [5]. Further, caches
may have queues to hold cache miss requests, which, if shared,
can create huge contention among tasks despite cache ways
are split [17]. This extremely low-level type of information
about hardware requires the involvement of a hardware expert
with proper access to manuals and also making experiments
to empirically determine whether this situation can happen
(analysed in the experimental section).

And second, bandwidth resources, like buses, can be split
in time and space. For instance, a task can be given 50% of
the bus bandwidth over a period of 10,000 cycles. This can
be implemented with alternative full-access/no-access periods
of 1,000 cycles, 2,500 cycles, 5,000 cycles, etc. Each of
these ways to implement partitioning affects tasks’ execution
time. Further, given task 7, and 7,, where task 7, makes
a given number of accesses, how those overlap with 7,’s

requests has an impact on 7,’s execution time. Moreover,
request overlap can change drastically from run to run with
different or even the same inputs. In practice, determining
how tasks’ requests overlap during operation is unaffordable
(in the final configuration), so existing approaches build on
the assumption that tasks overlap their requests in the worst
possible manner [18], [9]. Worst overlapping occurs when each
request of the task under analysis has the lowest arbitration
priority and it becomes ready when all other tasks in other
cores have pending requests.

Fault containment at the resource partition. For physical
faults, any MCP shall be considered to form a single fault con-
tainment region, that is, it is not possible to guarantee that the
immediate effects of any possible fault are limited to a single
software partition in a MCP unless it is specifically addressed
in the design [19]. This occurs because, as a consequence of
sharing the same silicon die, a number of shared elements be-
come a single point of failure for all partitions simultaneously,
such as the power supply or clock source. Thus, it cannot
be claimed that different software partitions will fail always
independently. CAST-32A addresses this issue by providing
the concept of safety net. The external safety net aims at
ensuring continuous safe operation of the system by detecting
MCP failures and handling them preventing propagation to
other components (e.g. physical fault containment).

Furthermore, for achieving RRP, CAST-32A requires that
failures of hardware unique to a software partition do not
propagate to other software partitions. While partitioning tech-
niques (e.g. hypervisor) have been commonly used to avoid
the propagation of design faults (e.g. deadline misses) among
software partitions (i.e. design fault containment), they do not
usually account for hardware faults. Obviously, a failure in a
time-shared (e.g. bandwidth) resource extends to all software
partitions using it. For space resources, hardware partitioning
techniques provide some degree of isolation but (physical)
fault containment at the resource-partition level is challenging,
which is better illustrated taking a way-partitioned shared
cache as example. While it is possible to prevent a fault in
a cache bitcell to propagate to partitions not using that bitcell,
some hardware resources, such as sense amplifiers and data
output buffers (used to read/write the data in cache), may
be independent or silently shared, thus making a permanent
or intermittent fault affect all software partitions in the latter
case. Therefore, it is hard to draw the line between hardware
unique to a software partition and the features shared on the
underlying MPC platform. As a consequence, in general, end
users do not have the means to sustain or validate this claim.
Hence, the only way it can be deployed is that it comes
provided by the hardware vendor.

B.2. Robust Time Partitioning (RTP)

From the previous discussion, it follows that MCP will
usually have some form of interference channels due to the
difficulties of implementing RRP. Note that we consider that
interference channels arise when RRP cannot be achieved and
hence, tasks have interactions in the time domain.

In this scenario, the RTP goal of “no software partition
exceeds its deadline even in the presence of software exe-
cuting simultaneously in other cores”, translates into deriving
contention bounds for a task that hold for any load that the
contender tasks can put on the shared resources. That is, the
increment in time a task is assumed to experience (in the
WCET estimate) due to contention through that interference

channel, upper-bounds the actual interference it can suffer
in the presence of any task. This type of bounds, which
are referred to as fully-time composable [18], can be very
pessimistic. For instance, let assume that 7, generates n,
accesses to a round-robin bus of a given type ¢; that uses the
bus a single cycle. Further, assume that there are another type
of accesses t, that holds the bus for 10 cycles. For 7, access,
the worst situation is that a second contender 7, generates
accesses of type to and that arrive at the same time of 7,
requests but are served first. Under a fully-time composable
scenario 7, is assumed to suffer an execution time increase of
10 x ng X T cycles. That is, each request is assumed to suffer
a 10x increase in its access time due to contention.

To reduce this overhead, a partially-time composable ap-
proach [18] can be followed. This approach accounts for the
worst overlap of the actual requests of the contenders. This
requires to determine i) the number and type of requests to the
shared resources of all tasks [9]; and ii) the time each request
type holds the shared resource [18]. The WCET estimate for
a task is derived under a given template that describes the
number and type of accesses performed by its contenders. That
WCET estimate holds under any workload for which the actual
number and type of requests performed by the contenders is
smaller or equal to that assumed in the template. Coming
back to the previous example, 7, can be derived a WCET
bound for a template that assumes K; access of type ¢; and
K5 of type to. It is valid for any contender 7, that fulfils
(ni! x 1) + (ni? x 10) < (K; x 1) + (K2 x 10).

B.3. Individual Objectives

CAST-32A introduces new objectives in the different
phases of the lifecycle to analyse and mitigate interferences,
and control shared resource usage (i.e. limit MCP contention)
in a given platform configuration. To that end, CAST-32A
resource usage objectives (RU_I, RU_2, RU_3 and RU_4)
impose new requirements in the design.

RU_I is hard to achieve a priori in processors without
RRP. This occurs because the impact of interference channels
on software timing can be significant. Further, simply assuming
the worst-contention (i.e. fully-time composable bounds) is in
general impractical. In this situation, the configuration achiev-
ing software’s timing requirements cannot be determined, until
the final configuration is consolidated. With the partially-time
composable approach [18], WCET estimates are derived under
different templates and hence the work at integration reduces
to check the template that upper-bounds contenders’ request
count (see example above).

RU_2 in general can be achieved with proper hypervisor
and/or Operating System support.

RU_3. Some interference channels can be determined from
the processor manuals. Others, however, are not properly
documented and hence, require an expert performance analyst
that can create a set of micro-benchmarks [20] to deter-
mine whether further interference channels can exist. Micro-
benchmarks are a set of specialized programs that put high load
on some shared resources and help (among others) determining
the existence of some interference channels and derive bounds
to the impact of interference.

RU_4. This generic objective encompasses the successful
achieving of those above, with their associated challenges.

Further, in terms of the general approach, it must be
understood that objectives cannot be achieved in a sequential

mamamamm Bl
1(1(B|B

|MMU ||MMU Il MMU | MMU | MMU ||MMU | MMU Il MMU] -

‘ CoreNet |
CPC2 Main
1MB CTRL2 Memory
CPC1 Main
(1MB) CTRL1 Memory

Fig. 1: Block diagram of the P4080 blocks we analyse

manner, as a first read could suggest. Instead, strong depen-
dences exist among them, that require considering all (or some)
of them simultaneously.

IV. CAST-32A oN THE P4080
In this section we evaluate CAST-32A principles on a real
COTS multicore, both in qualitative and quantitative terms. We
select the P4080 [2] multicore processor as a representative of
the complexity in modern multicore architectures relevant for
real-time industry [9],[21].

A. Platform Description: P4080

The P4080 [2], depicted in Figure 1, embeds eight Power-
Architecture e500mc processor cores interconnected through
the ‘CoreNet Coherency Fabric’. Each core has private first
level instruction (IL1) and data (DL1) caches (32 KB each)
and a backside L2 cache (128 KB). The interconnect is able
to perform several concurrent transactions in parallel and man-
ages cache coherency. In addition to the core-local caches, the
platform includes a shared L3 on-chip cache (1 MB) between
the CoreNet and each memory controller, called CoreNet
Platform Cache (CPC). The P4080 has two independent DDR3
memory controllers with interleaving support. As there are
two memory controllers, there are also two CPC (a total of 2
MB) shared among all processors. Additionally, the platform
includes multiple peripheral interfaces.

B. Identifying Configuration Options

Some hardware resources of the P4080 platform can be
adjusted to applications’ requirements by several configuration
settings. Below we list the most relevant customizable features
that may influence performance, or partitioning, identified with
a qualitative analysis of processor specifications [2], [22].

B.1. Private Resources Settings

The eight cores are logically independent, each core has its
own boot and reset control. The user can select which specific
cores to activate while others remain dormant. Similarly, each
core can be set to a different operation frequency. First level
caches can be enabled or disabled. The second level backside
cache can be either disabled or configured as data only,
instruction only or unified (data and instruction) cache.

B.2. Shared Resources Settings

CoreNet Interconnect: The interconnect can be configured
in up to 32 address windows (Local Access Windows, LAWs)
to route transactions. Each LAW serves to define the internal
connections by mapping different address regions to specific
target devices (such as DDR controllers or peripheral inter-
faces). In addition, the configuration of each LAW includes

a coherency subdomain identifier that allows to define which
cores and caching elements should be maintained coherent.

CoreNet Platform Cache (CPC): It supports flexible
configurations on a per-way granularity. Each CPC has 32
ways (32KB per way) that can be configured as L3 cache
or as static SRAM. For ways configured as L3 cache, cache
partitioning is supported to assign each way to a logical
partition. The ways configured as SRAM are mapped to
a configurable physical address range. With the appropriate
LAW and Memory Management Unit (MMU) configuration,
the SRAM address space can also be segregated into different
logical partitions.

Main Memory: The two memory controllers have inter-
leaving support. When enabled, interleaving can be configured
to switch between memory controllers for every cache line
transfer, every page line transfer or at every bank transfer. If
disabled, the two memory controllers operate independently.
Like for the SRAM, main memory can be divided into different
MMU-restricted physical regions for each of the cores.

Peripheral devices: I/O transactions can be controlled with
the Peripheral Access Management Unit (PAMU) that acts as
a MMU for I/O devices.

Interrupts: They can be routed to any of the eight cores
separately or to more than one core simultaneously.

C. Defining Hardware Configuration Settings

We evaluate the first CAST-32A principle, RU_I, of se-
lecting a suitable platform configuration by exploring different
possible hardware setups (HWS) in the P4080 platform. Based
on the configuration options listed above, we define several
different HWS, see Figure 2. To that end, we establish a
baseline configuration, common across all HWS, for the core
local resources and we rather focus on the different possible
setups for shared resources. To evaluate isolation, we narrow
down to only one (safety critical) application that needs to be
strongly independent from the other seven and assume that
each core hosts at most one software application. Taking this
into account, in Figure 2, the resources used by the critical
application (executed in c0) are grey shadowed.

Baseline configuration: All cores are activated with high-
est supported frequency and local caches enabled (DL1, IL1
and unified L2) for increasing performance. We focus on the
memory hierarchy as shared resource and therefore we assume
that the same peripheral is not shared among multiple cores.

C.1. HWS 1: Maximum HW Isolation

HWS 1 (Figure 2a) seeks to achieve the highest possible
level of resource privatization (maximum partitioning) with the
following configuration: 1) Memory controller interleaving is
disabled and DD R3_1 is exclusive for c0. DDR3_2 is shared
among the remaining seven cores (cl — c7); 2) as each CPC
corresponds to a memory controller, C PC'1 is also restricted
to c0 and can be configured either as (private) SRAM, L3
cache or both. CPC2 may or may not be partitioned across
the non-critical partitions. In particular, we use both CPCs in
cache mode; and 3) main memory is segregated in at least two
MMU-protected memory regions, one for cO and the rest for
cores cl — c7. If required, the latter can be further partitioned
to have a separate address range for each core.

C.2. HWS 2: Limited HW Isolation (1)
This setup, shown in Figure 2b, provides better balance
between resource privatization and sharing (and hence, ef-

c1 d c3 c4 c1 rz c3 <:4
[(MMU] [MMU] [MMU] [(MMU] [MMU] [MMU] [MMU] GoreNet [MMU] [MMU] [MMU] [MMU] [MMU] [MMU] [MMU] [MMU] GoreNet

c1 d d c4 c7
[MMU] [MMU] [MMU] [MMU] [MMU] [MMU] [MMU] [MMU] GoreNet

E“‘W“ LAW3ODDR32 '-AW3lDD"31 LAW3ODD"32 o LAW31DDR31 LAW3ODDR32
=+ Main Menmory Main Memory Main Mermory
@Cc2 5 @C2 R -
(1MB) DORCRL2 <= | d-o (mB) [PRARL2|—> @-a DDRCTRL2 <—>{ A-c
@Cc1 m:m c-a >C1 cl-c3
| @amp) [|PRORLL<— - MB DERCTREE ‘[= gy | PORERLL[— -

(a) HWS 1: Maximum HW Isolation. ¢O (b) HWS 2: Limited HW Isolation. C PC'1 (c) HWS 3: Limited HW Isolation. CPC'1

uses a private CPC/mem controller.

shared and c0O receives some private ways. shared among c0 and cl — c3.

Fig. 2: Examples of P4080 Hardware setups. HWS4, without any control of contention, is not shown for space constraints.

TABLE II: Identified P4080 Interference Channels

Interference Mitigation
Effect
Channel Setup Measure
CoreNet Contention \vs1.4 None
(parallel requests)
HWS 1 Exclusive CPC for cO
L3 cache space: e
. . HWS 2 L3 Partitioning
cache line evictions
HWS 3-4 None
HWS 1 Exclusive CPC for cO
SRAM space: data xclusive ore
CPC e . HWS 2-3 MMU
modification
HWS 4 n/a
L3/SRAM: HWS 1 Exclusive CPC for cO
Contention HWS 2-3 Limited to 4 cores
(parallel requests) HWS 4 None
. HWS 1 Exclusive CPC for cO
Memory Contention o
controller (parallel requests) HWS 2 Limited to 4 cores
P q HWS3-4 None
) Memory space: s 1.4 MMU
Main data modification
memor i
' Contention WS1-4 None

(parallel requests)

ficiency): 1) memory controller interleaving is disabled and
applications are distributed across the two memory controllers
(e.g. DDR3_1 for c0 — ¢3 and DDR3_2 for c4 — c7); 2)
CPC1 is partitioned by assigning one or more 32 KB ways
to c0. As in HWS 1, these ways may be setup as SRAM, L3
cache or both. The remaining ways of C PC'1 and C PC2 may
or may not be partitioned across the non-critical partitions. In
particular, in C PC; we give 8 ways to c0 and 24 ways (shared)
to cl — ¢3; and 3) main memory is segregated as in HWS 1.

C.3. HWS 3: Limited HW Isolation (2)
This setup matches HWS 2, but CPC1 is not way
partitioned but shared by c0 — ¢3, see Figure 2c.

C.4. HWS 4: Minimum HW Isolation

Most resources are shared across all cores for evaluating
the impact of shared resources in the worst-case (omitted
in Figure 2 due to space constraints): 1) memory controller
interleaving is enabled so both memory controllers are inter-
changeably accessed by all cores; 2) CPC1 and CPC?2 are
configured as L3 cache and shared across all cores; and 3)
main memory is segregated as in HWS 1.

D. Identifying Interference Channels (Qualitative Analysis)
CAST-32A requires identifying interferences in the in-
tended final configuration. However, selecting a configuration

involves determining a hardware partition setup, which in turn
determines the interference channels. In Table II we list some
of the potential interference channels we identified from our
analysis of the P4080 and we describe how they are addressed
by each HWS. Note that other interference channels may exist.
In fact, the challenge for the end user is to combine information
in the manuals and previous experience to derive potential
interference channels.

CoreNet. The information about CoreNet is scarce, which
prevents us from concluding whether it is an interference
channel since it may contain buffers or queues to hold pending
requests. This would make it a stateful resource and hence a
source of interference.

CPC and memory. In the CPC, we can have contention
for space, i.e., software partitions can evict each other’s data.
Further, depending on how they are implemented, the CPC
can have access contention, in which — despite tasks use
different cache parts — they impact on each other access time
to the cache. The memory controller and main memory are
other well-known sources of contention. Finally, the coherence
method in place can also impact tasks execution time.

PMC support. The high complexity of the architecture and
the presence of features that lead to unexpected behaviour,
as exposed later, render it very difficult to characterize the
architecture and find interference channels by relying only
on time measurements. Therefore, the PMCs present in many
modern architectures play a key role. However, the PMC
infrastructure poses many limitations for end users. Often,
there are many different configurable events but a limited
number of counters (i.e. 4 counters per core in the P4080).
Thus, several runs might be needed to extract the required
information. Moreover, typically, not all interesting events
are accessible through counters and each event is not often
described in detail.

Fault Containment at the RRP. Some interference chan-
nels may exist only under the presence of faults. Thus, assess-
ing whether they exist is simply impossible until faults occur,
which may be too late to take any action. For instance, some
logic may exist to drive memory accesses to either C'PC'1
or C'PC?2. Further, such logic, despite shared, may not have
any impact in performance if the CoreNet serializes accesses.
However, a fault in such logic might affect any subset of the
cores in non-obvious ways.

E. Quantitative Analysis

Next we provide quantitative evidence on some interference
channels and undocumented features. Note that the goal of
this section is not to provide a characterization of the timing

1,20840 -+
1,20835
1,20830
1,20825
1,20820
1,20815
1,20810
1,20805 5
1,20800

Processor Cycles / Accesses

A T VR 1 Bl Gl) 1 1151 B v i1 A

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951
Execution Run

Fig. 3: DL1 Hit Latency variation across cores and runs.

behaviour of the P4080, which would be an extensive technical
report. Instead, we provide the result of specific experiments
providing key insights about achieving CAST-32A objectives.
It is worth noting that authors in [9] focus on a setup with
expected interferences: all caches disabled, branch prediction
switched off and with all cores sharing the same memory
controller. In this paper, instead, we show that even the most
conservative partitioning setups can be subject to the impact
of interference channels.

E.l. Heterogeneous behaviour

We start by reporting some undocumented features impact-
ing time. In a first experiment, we execute a simple micro-
benchmark in each of the cores (ct) of the P4080 in isolation
(benchDLI)?. BenchDLI traverses a data array of 24KB with
a sequence of load instructions. Such array fits in DL1. We
execute BenchDLI 1000 times and use the PMCs available
in each core of the P4080 to monitor processor cycles and
memory related events (number of accesses, DL1 misses, L2
accesses, etc.) after traversing the array once, so that it is
present in DL1. From this information we derive the average
DL1 hit latency on each core ct as depicted in Figure 3 across
runs. The result of this simple experiment reveals that there are
small systematic deviations from core to core. Our analysis of
the data sample of 1000 runs on each core reveals that the
central quantiles (Q1-Q3) of c0 (thus discarding outliers) are
below the minimum value across all other cores.

Even if the order of magnitude of this difference makes
the variation negligible, its systematic nature reveals some
heterogeneity in the physical design of the cores of the P4080
that is not reported in the (public) documentation. Thus, it
is unknown whether the source of this difference may have
noticeable (relative or absolute) impact in some programs.

E.2. Coherence

The coherence protocol is a potential interference channel.
Apart from of its impact in execution time for concurrent
memory accesses (evaluated by Nowotsch et al. in [10]), our
evaluation results show execution time variations even when
one core is running benchDLI in isolation (with the rest of the
cores dormant), so only accessing local caches. We conclude
that those variations are related to snoop overheads: as depicted
in Figure 4a, the core under analysis receives unexpected snoop
requests, that correlate with execution time variation. As for
core-to-core differences, execution time impact is negligible,
but uncontrolled. Thus, an interference channel exists and its
potential magnitude is unknown.

In a second experiment, we run benchDLI in c0 against
an increasing number of contenders in the other cores (also

2We execute the benchmarks on top of a real-time hypervisor.

1,20834 —1

1,20824 }

ol el

Observed Execution Time ==+++= Snoops ’7

Processor Cycles/
Accesses

w
o
5}

200

100

sisanbay
doous jo Jaquiny

0

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001

Execution Run

(a) Impact of coherence on execution time in isolation.

1,28 [msmDLIH_2H = — Slowdown (%) w.r.t.Isol. | 6%
1,27
1,26
1,25
1,24
1,23
1,22
1,21
12
1,19
1,18
1,17 +

Processor Cycles/Accesses

Isol. 1Cont 2 Cont 3 Cont 4 Cont 5 Cont 6 Cont 7 Cont
Number of Contenders

(b) DL1 Hit Latency with parallel execution.

Fig. 4: Impact of coherence

running benchDLI). Thus, all cores only exercise core local
resources (i.e. DL1). Therefore, one would expect no impact
of the other cores. However, as shown in Figure 4b, DL1 hit
latency increases noticeably with 1, 3, 5 and 7 contenders,
but negligibly with 2, 4 and 6 contenders. While we suspect
that this behaviour is produced by the coherence protocol, the
snoop counter does not reveal any specific trend, so all we
can state is that an unknown interference channel exists with
non-obvious impact across cores.

E.3. Contention in Shared Resources

Due to space constraints we analyse few configurations
and interference channels. In particular, Figure 5 compares the
execution time of a micro-benchmark performing sustained L3
(CPC) hits (benchL3H) by using 256KB of the IMB C'PC'1
with 1, 2 and 3 contenders that perform all of them either
sustained CPC hits (benchL3H) or CPC misses (benchL3mem).
This comparison is performed in HWS 2 and HWS 3, hence,
with and without CPC partitioning.

‘= HWS2_L3H_L3H HWS3_L3H_L3H
m— HWS2_L3H_L3M m— HWS3_L3H_L3M 400%
= = Slowdown (%) w.r.t. Isol. 350%

300%
250%
200%
150%
100%

@
S

w
S

IS
S

N
S

Processor Cycles/Accesses
. w
15 8

o

1Cont 2 Cont 3 Cont
Number of Contenders

Fig. 5: L3 Contention under HWS 2 and HWS 3

As shown, whenever all cores perform CPC hits
(HWS2_L3H_L3H and HWS3_L3H_L3H) cache partitioning
makes no difference and CoreNet and CPC port contention
have very low impact (1% slowdown per additional contender).

When contenders perform CPC misses, then benchL3H
experiences a significant slowdown in HWS 2 with 2 and

3 contenders (15% and 110% respectively) despite its cache
behaviour is not affected. Although it cannot be proven based
only on measurements, we suspect that the CPC has some
internal buffers that get filled with CPC miss requests, which
delay new requests. In any case, our experiment reveals the
existence of severe interference channels despite CPC parti-
tioning. If CPC space is shared (HWS 3), the same trend is
observed but at a larger scale since contenders start evicting
data from the task under analysis, whose performance degrades
due to both, internal CPC buffers and additional CPC misses.

V. RELATED WORK

Literature on multicore certification is mainly concerned
with ensuring timing guarantees without incurring undue re-
source over provisioning [3], [14], [23], [24]. The design of
time deterministic processors and hardware-based separation
is considered in [6], as a means to simplify the collection
of evidence required for a certification process by providing
predictable timing guarantees by design. However, these ap-
proaches require new hardware architectures that often render
difficult their deployment. As a result, the literature on timing
analysis of COTS multicores is abundant [3], [4], [9], [25]. The
authors in [9] propose an interference delay analysis technique
on top of regular single-core WCET analysis. The approach
requires computing shared resource usage bounds, and moni-
toring and enforcing them at runtime. The authors rely on static
analysis techniques for the computation of both, timing and
resource usage, bounds. Nevertheless, their evaluation on the
P4080 platform reveals the limitations of static timing analysis
on COTS multicores due to the unavailability of a detailed
architecture model. A common alternative that is absorbing
considerable research efforts is measurement-based timing
analysis [26], [27], [28]. In this line, synthetic benchmarks
are often used to stress hardware features and characterize the
timing of the architecture [10], [20] or to upper-bound the
interference that applications may suffer, and ensure that the
maximum interference is captured during measurements [18],
[21], [29]. To the best of our knowledge, this paper is the first
work evaluating current COTS multicore designs and practices
with respect to recent certification guidelines for addressing
multicore certification challenges such as CAST-32A [1].

VI. CONCLUSION

CAST-32A provides a step forward in terms of guidance
for multicore software verification. CAST-32A guideline, as
many safety-related standards, is abstract enough to have a
broad application. However, a practical application of CAST-
32A is challenging. In this paper, we analyse the difficulties
to apply CAST-32A to real processor designs qualitatively.
Then, through a particular case study, the P4080 processor,
we practically and quantitatively assess those difficulties.

Our work shows that appropriate hardware configurations
and smart experimentation can reduce the degree of uncer-
tainty. However, for the studied processor, the uncertainty can
be neither removed nor deemed as irrelevant due to the non-
obvious interactions of tasks at hardware level. It turns out
that even the most conservative partitioning measures can be
subject to execution time variations in complex COTS archi-
tectures due to shared resources and hidden undocumented
features. As a consequence, this requires an in-depth analysis
of the architecture which, in many COTS platforms, due to
the limited documentation, can only be provided by the chip
vendor. We also show that some knowledge can be gained by

executing experiments on the real platform, but quantitative
evidence can only mitigate uncertainty to some extent, thus
leaving several open questions to fully adhere to CAST-32A.

ACKNOWLEDGEMENTS
This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness (MINECO) under grant
TIN2015-65316-P and the HIPEAC Network of Excellence.
Jaume Abella has been partially supported by the MINECO
under Ramon y Cajal grant RYC-2013-14717.

REFERENCES

[1] Certification Authorities Software Team, “Multi-core Processors - Po-
sition Paper,” CAST-32A, Tech. Rep., November 2016.

[2] NXP Semiconductors, “P4 series P4080 multicore processor.”

[3] M. Paulitsch et al., “Mixed-Criticality Embedded Systems - A Balance
Ensuring Partitioning and Performance,” in DSD, 2015.

[4] G. Fernandez et al.,, “Contention in multicore hardware shared re-
sources: Understanding of the state of the art,” in WCET, 2014.

[S] M. Paolieri et al., “Hardware support for WCET analysis of hard real-
time multicore systems,” in ISCA, 2009.

[6] C. El Salloum et al., “The ACROSS MPSoC — a new generation of
multi-core processors designed for safety-critical embedded systems,”
in DSD, 2012.

[71 C. Rochange, “Parallel real-time tasks, as viewed by WCET analysis
and task scheduling approaches,” in WCET Workshop, 2016.

[8] M. Becker et al., “Contention-free execution of automotive applications
on a clustered many-core platform,” in ECRTS, 2016.

[9] J. Nowotsch et al., “Multi-core Interference-Sensitive WCET Analysis
Leveraging Runtime Resource Capacity Enforcement,” in ECRTS, 2014.

[10] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing
architectures in avionics,” in EDCC, 2012.

[11] R. John, “Partitioning in Avionics Architectures: Requirements, Mech-
anisms, and Assurance,” NASA Langley, Tech. Rep., 1999.

[12] “IEC-61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems,” 2010.

[13] EASA, “Certification memorandum - development assurance of air-
borne electronic hardware,” Tech. Rep., 09th of March 2012.

[14] Certification Authorities Software Team, “Multi-core Processors - Po-
sition Paper,” CAST-32, Tech. Rep., May 2014.

[15] 7. Jalle et al., “Bounding Resource Contention Interference in the Next-
Generation Microprocessor (NGMP),” in ERTS?, 2016.

, “AHRB: A high-performance time-composable AMBA AHB
bus,” in RTAS, 2014.

[17] P. Valsan et al., “Taming non-blocking caches to improve isolation in
multicore real-time systems,” in RTAS, 2016.

[18] G. Fernandez et al., “Resource usage templates and signatures for COTS
multicore processors,” in DAC, 2015.

[19] H. Kopetz, On the Fault Hypothesis for a Safety-Critical Real-Time
System, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006, vol. 4147, book section 3, pp. 31-42.

[20] M. Fernandez et al., “Assessing the Suitability of the NGMP Multi-core
Processor in the Space Domain,” in EMSOFT, 2012.

[21] J. Bin et al., “Studying co-running avionic real-time applications on
multi-core COTS architectures,” in ERTS2, 2014.

[22] E. Bost, “Hardware Support for Robust Partitioning in Freescale QorlQ
Multicore SoCs (P4080 and derivatives), White Paper ,” 2013.

[23] L. M. Kinnan, “Use of multicore processors in avionics and its potential
impact on implementation and certification,” SAE Tech. Rep., 2009.

[24] P. Huyck, “ARINC 653 and multi-core microprocessors-considerations
and potential impacts,” in DASC, 2013.

[25] D. Dasari and V. Nelis, “An Analysis of the Impact of Bus Contention
on the WCET in Multicores,” in HPCC-ICESS, 2012.

[26] 1. Wenzel et al., “Measurement-based timing analysis,” in ISOLA, 2008.

[27] ——, “Measurement-based worst-case execution time analysis,” in
SEUS Workshop, 2005.

[28] R. Wilhelm et al., “The worst-case execution-time problem-overview of
methods and survey of tools,” Transactions on Embedded Computing
Systems, vol. 7, no. 3, 2008.

[29] S. Girbal et al., “Using monitors to predict co-running safety-critical
hard real-time benchmark behavior,” in ICITES, 2014.

[16]

