2,132 research outputs found

    Can Systems Biology Advance Clinical Precision Oncology?

    Get PDF
    Precision oncology is perceived as a way forward to treat individual cancer patients. However, knowing particular cancer mutations is not enough for optimal therapeutic treatment, because cancer genotype-phenotype relationships are nonlinear and dynamic. Systems biology studies the biological processes at the systems’ level, using an array of techniques, ranging from statistical methods to network reconstruction and analysis, to mathematical modeling. Its goal is to reconstruct the complex and often counterintuitive dynamic behavior of biological systems and quantitatively predict their responses to environmental perturbations. In this paper, we review the impact of systems biology on precision oncology. We show examples of how the analysis of signal transduction networks allows to dissect resistance to targeted therapies and inform the choice of combinations of targeted drugs based on tumor molecular alterations. Patient-specific biomarkers based on dynamical models of signaling networks can have a greater prognostic value than conventional biomarkers. These examples support systems biology models as valuable tools to advance clinical and translational oncological research

    Microarray Data Mining and Gene Regulatory Network Analysis

    Get PDF
    The novel molecular biological technology, microarray, makes it feasible to obtain quantitative measurements of expression of thousands of genes present in a biological sample simultaneously. Genome-wide expression data generated from this technology are promising to uncover the implicit, previously unknown biological knowledge. In this study, several problems about microarray data mining techniques were investigated, including feature(gene) selection, classifier genes identification, generation of reference genetic interaction network for non-model organisms and gene regulatory network reconstruction using time-series gene expression data. The limitations of most of the existing computational models employed to infer gene regulatory network lie in that they either suffer from low accuracy or computational complexity. To overcome such limitations, the following strategies were proposed to integrate bioinformatics data mining techniques with existing GRN inference algorithms, which enables the discovery of novel biological knowledge. An integrated statistical and machine learning (ISML) pipeline was developed for feature selection and classifier genes identification to solve the challenges of the curse of dimensionality problem as well as the huge search space. Using the selected classifier genes as seeds, a scale-up technique is applied to search through major databases of genetic interaction networks, metabolic pathways, etc. By curating relevant genes and blasting genomic sequences of non-model organisms against well-studied genetic model organisms, a reference gene regulatory network for less-studied organisms was built and used both as prior knowledge and model validation for GRN reconstructions. Networks of gene interactions were inferred using a Dynamic Bayesian Network (DBN) approach and were analyzed for elucidating the dynamics caused by perturbations. Our proposed pipelines were applied to investigate molecular mechanisms for chemical-induced reversible neurotoxicity

    Clinical Decision Support with Guidelines and Bayesian Networks

    Get PDF

    Integrative Modeling of Transcriptional Regulation in Response to Autoimmune Desease Therapies

    Get PDF
    Die rheumatoide Arthritis (RA) und die Multiple Sklerose (MS) werden allgemein als Autoimmunkrankheiten eingestuft. Zur Behandlung dieser Krankheiten werden immunmodulatorische Medikamente eingesetzt, etwa TNF-alpha-Blocker (z.B. Etanercept) im Falle der RA und IFN-beta-Präparate (z.B. Betaferon und Avonex) im Falle der MS. Bis heute sind die molekularen Mechanismen dieser Therapien weitestgehend unbekannt. Zudem ist ihre Wirksamkeit und Verträglichkeit bei einigen Patienten unzureichend. In dieser Arbeit wurde die transkriptionelle Antwort im Blut von Patienten auf jede dieser drei Therapien untersucht, um die Wirkungsweise dieser Medikamente besser zu verstehen. Dabei wurden Methoden der Netzwerkinferenz eingesetzt, mit dem Ziel, die genregulatorischen Netzwerke (GRNs) der in ihrer Expression veränderten Gene zu rekonstruieren. Ausgangspunkt dieser Analysen war jeweils ein Genexpressions- Datensatz. Daraus wurden zunächst Gene gefiltert, die nach Therapiebeginn hoch- oder herunterreguliert sind. Anschließend wurden die genregulatorischen Regionen dieser Gene auf Transkriptionsfaktor-Bindestellen (TFBS) analysiert. Um schließlich GRN-Modelle abzuleiten, wurde ein neuer Netzwerkinferenz-Algorithmus (TILAR) verwendet. TILAR unterscheidet zwischen Genen und TF und beschreibt die regulatorischen Effekte zwischen diesen durch ein lineares Gleichungssystem. TILAR erlaubt dabei Vorwissen über Gen-TF- und TF-Gen-Interaktionen einzubeziehen. Im Ergebnis wurden komplexe Netzwerkstrukturen rekonstruiert, welche die regulatorischen Beziehungen zwischen den Genen beschreiben, die im Verlauf der Therapien differentiell exprimiert sind. Für die Etanercept-Therapie wurde ein Teilnetz gefunden, das Gene enthält, die niedrigere Expressionslevel bei RA-Patienten zeigen, die sehr gut auf das Medikament ansprechen. Die Analyse von GRNs kann somit zu einem besseren Verständnis Therapie-assoziierter Prozesse beitragen und transkriptionelle Unterschiede zwischen Patienten aufzeigen

    Computational Hybrid Systems for Identifying Prognostic Gene Markers of Lung Cancer

    Get PDF
    Lung cancer is the most fatal cancer around the world. Current lung cancer prognosis and treatment is based on tumor stage population statistics and could not reliably assess the risk for developing recurrence in individual patients. Biomarkers enable treatment options to be tailored to individual patients based on their tumor molecular characteristics. To date, there is no clinically applied molecular prognostic model for lung cancer. Statistics and feature selection methods identify gene candidates by ranking the association between gene expression and disease outcome, but do not account for the interactions among genes. Computational network methods could model interactions, but have not been used for gene selection due to computational inefficiency. Moreover, the curse of dimensionality in human genome data imposes more computational challenges to these methods.;We proposed two hybrid systems for the identification of prognostic gene signatures for lung cancer using gene expressions measured with DNA microarray. The first hybrid system combined t-tests, Statistical Analysis of Microarray (SAM), and Relief feature selections in multiple gene filtering layers. This combinatorial system identified a 12-gene signature with better prognostic performance than published signatures in treatment selection for stage I and II patients (log-rank P\u3c0.04, Kaplan-Meier analyses). The 12-gene signature is a more significant prognostic factor (hazard ratio=4.19, 95% CI: [2.08, 8.46], P\u3c0.00006) than other clinical covariates. The signature genes were found to be involved in tumorigenesis in functional pathway analyses.;The second proposed system employed a novel computational network model, i.e., implication networks based on prediction logic. This network-based system utilizes gene coexpression networks and concurrent coregulation with signaling pathways for biomarker identification. The first application of the system modeled disease-mediated genome-wide coexpression networks. The entire genomic space were extensively explored and 21 gene signatures were discovered with better prognostic performance than all published signatures in stage I patients not receiving chemotherapy (hazard ratio\u3e1, CPE\u3e0.5, P \u3c 0.05). These signatures could potentially be used for selecting patients for adjuvant chemotherapy. The second application of the system modeled the smoking-mediated coexpression networks and identified a smoking-associated 7-gene signature. The 7-gene signature generated significant prognostication specific to smoking lung cancer patients (log-rank P\u3c0.05, Kaplan-Meier analyses), with implications in diagnostic screening of lung cancer risk in smokers (overall accuracy=74%, P\u3c0.006). The coexpression patterns derived from the implication networks in both applications were successfully validated with molecular interactions reported in the literature (FDR\u3c0.1).;Our studies demonstrated that hybrid systems with multiple gene selection layers outperform traditional methods. Moreover, implication networks could efficiently model genome-scale disease-mediated coexpression networks and crosstalk with signaling pathways, leading to the identification of clinically important gene signatures

    Prognostic modelling of breast cancer patients: a benchmark of predictive models with external validation

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaThere are several clinical prognostic models in the medical field. Prior to clinical use, the outcome models of longitudinal cohort data need to undergo a multi-centre evaluation of their predictive accuracy. This thesis evaluates the possible gain in predictive accuracy in multicentre evaluation of a flexible model with Bayesian regularisation, the (PLANN-ARD), using a reference data set for breast cancer, which comprises 4016 records from patients diagnosed during 1989-93 and reported by the BCCA, Canada, with follow-up of 10 years. The method is compared with the widely used Cox regression model. Both methods were fitted to routinely acquired data from 743 patients diagnosed during 1990-94 at the Christie Hospital, UK, with follow-up of 5 years following surgery. Methodological advances developed to support the external validation of this neural network with clinical data include: imputation of missing data in both the training and validation data sets; and a prognostic index for stratification of patients into risk groups that can be extended to non-linear models. Predictive accuracy was measured empirically with a standard discrimination index, Ctd, and with a calibration measure, using the Hosmer-Lemeshow test statistic. Both Cox regression and the PLANN-ARD model are found to have similar discrimination but the neural network showed marginally better predictive accuracy over the 5-year followup period. In addition, the regularised neural network has the substantial advantage of being suited for making predictions of hazard rates and survival for individual patients. Four different approaches to stratify patients into risk groups are also proposed, each with a different foundation. While it was found that the four methodologies broadly agree, there are important differences between them. Rules sets were extracted and compared for the two stratification methods, the log-rank bootstrap and by direct application of regression trees, and with two rule extraction methodologies, OSRE and CART, respectively. In addition, widely used clinical breast cancer prognostic indexes such as the NPI, TNM and St. Gallen consensus rules, were compared with the proposed prognostic models expressed as regression trees, concluding that the suggested approaches may enhance current practice. Finally, a Web clinical decision support system is proposed for clinical oncologists and for breast cancer patients making prognostic assessments, which is tailored to the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the NPI, Cox regression modelling and PLANN-ARD. For a given patient, all three models yield a generally consistent but not identical set of prognostic indices that can be analysed together in order to obtain a consensus and so achieve a more robust prognostic assessment of the expected patient outcome

    Development of Artificial Intelligence systems as a prediction tool in ovarian cancer

    Get PDF
    PhD ThesisOvarian cancer is the 5th most common cancer in females and the UK has one of the highest incident rates in Europe. In the UK only 36% of patients will live for at least 5 years after diagnosis. The number of prognostic markers, treatments and the sequences of treatments in ovarian cancer are rising. Therefore, it is getting more difficult for the human brain to perform clinical decision making. There is a need for an expert computer system (e.g. Artificial Intelligence (AI)), which is capable of investigating the possible outcomes for each marker, treatment and sequence of treatment. Such expert systems may provide a tool which could help clinicians to analyse and predict outcome using different treatment pathways. Whilst prediction of overall survival of a patient is difficult there may be some benefits, as this not only is useful information for the patient but may also determine treatment modality. In this project a dataset was constructed of 352 patients who had been treated at a single centre. Clinical data were extracted from the health records. Expert systems were then investigated to determine the optimum model to predict overall survival of a patient. The five year survival period (a standard survival outcome measure in cancer research) was investigated; in addition, the system was developed with the flexibility to predict patient survival rates for many other categories. Comparisons with currently used prognostic models in ovarian cancer demonstrated a significant improvement in performance for the AI model (Area under the Curve (AUC) of 0.72 for AI and AUC of 0.62 for the statistical model). Using various methods, the most important variables in this prediction were identified as: FIGO stage, outcome of the surgery and CA125. This research investigated the effects of increasing the number of cases in prediction models. Results indicated that by increasing the number of cases, the prediction performance improved. Categorization of continuous data did not improve the prediction performance. The project next investigated the possibility of predicting surgical outcomes in ovarian cancer using AI, based on the variables that are available for clinicians prior to the surgery. Such a tool could have direct clinical relevance. Diverse models that can predict the outcome of the surgery were investigated and developed. The developed AI models were also compared against the standard statistical prediction model, which demonstrated that the AI model outperformed the statistical prediction model: the prediction of all outcomes (complete or optimal or suboptimal) (AUC of AI: 0.71 and AUC of statistical model: 0.51), the prediction of complete or optimal cytoreduction versus suboptimal cytoreduction (AUC of AI: 0.73 and AUC of statistical model: 0.50) and finally the prediction of complete cytoreduction versus optimal or suboptimal cytoreduction (AUC of AI: 0.79 and AUC of statistical model: 0.47). The most important variables for this prediction were identified as: FIGO stage, tumour grade and histology. The application of transcriptomic analysis to cancer research raises the question of which genes are significantly involved in a particular cancer and which genes can accurately predict survival outcomes in a given cancer. Therefore, AI techniques were employed to identify the most important genes for the prediction of Homologous Recombination (HR), an important DNA repair pathway in ovarian cancer, identifying LIG1 and POLD3 as novel prognostic biomarkers. Finally, AI models were used to predict the HR status for any given patient (AUC: 0.87). This project has demonstrated that AI may have an important role in ovarian cancer. AI systems may provide tools to help clinicians and research in ovarian cancer and may allow more informed decisions resulting in better management of this cancer

    Methods for Extrapolating Survival Analyses for the Economic Evaluation of Advanced Therapy Medicinal Products

    Get PDF
    There are two significant challenges for analysts conducting economic evaluations of advanced therapy medicinal products (ATMPs): (1) estimating long-term treatment effects in the absence of mature clinical data and (2) capturing potentially complex hazard functions. This review identifies and critiques a variety of methods that can be used to overcome these challenges. The narrative review is informed by a rapid literature review of methods used for the extrapolation of survival analyses in the economic evaluation of ATMPs. There are several methods that are more suitable than traditional parametric survival modeling approaches for capturing complex hazard functions, including, cure-mixture models and restricted cubic spline models. In the absence of mature clinical data, analysts may augment clinical trial data with data from other sources to aid extrapolation, however, the relative merits of applying methods for including data from different sources is not well understood. Given the high and potentially irrecoverable costs of making incorrect decisions concerning the reimbursement or commissioning of ATMPs, it is important that economic evaluations are correctly specified, and that both parameter and structural uncertainty associated with survival extrapolations are considered. Value of information analyses allow for this uncertainty to be expressed explicitly, and in monetary terms
    • …
    corecore