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Abstract

Dysregulation of biological processes in normal cells can lead to the abnormal growth of
tumours. Oncogenesis requires the acquisition of advantageous mutations to expand in a
fluctuating environment. Cancer cells gain these genetic and epigenetic alterations at different
timing in their development, resulting in the formation of heterogeneous cell populations
which interact and compete with each others inside tumours. At later stages, by escaping
the immune system and acquiring malignant properties, some cancer cells manage to evade
the primary tumour and spread in different organs to form metastases. Hence, tumour
development in healthy tissues endure several biological changes whilst progressing and the
order between these molecular and cellular events may modify prognosis.

This thesis addresses the influence of biological event timing on blood cancer progression
and clinical outcomes. It first investigates the therapeutic efficacy of p53 restoration in a
lymphoma mouse model. While several therapy schedules are tested, all fail due to resistance
emergence. Computational modelling establishes the cell dynamics in these tumours and
how to use it to propose alternative treatment strategies. Data availability leads this work to
explore the impact of molecular evolution in myeloid malignancies. Notably, one study has
found that Myeloproliferative Neoplasms patients with both JAK2 and TET2 mutations have
different disease characteristics with distinct mutation order. My analyses identify HOXA9
as a potential prognosis marker and biological switch responsible for patient stratification in
these patients and in Acute Myeloid Leukemia. Additionally, a molecular network identifies
the hematopoietic regulators involved in the branching evolution of Myeloproliferative
Neoplasms. Further investigations of the Acute Myeloid Leukemia data show the possible
involvement of APP, a gene associated to Alzheimer disease, in early cell fate commitment
in hematopoiesis and in poor survival prognosis in undifferentiated leukemia when lowly
expressed. Finally, this thesis examines the regulatory dynamics behind three clusters of
Acute Myeloid Leukemia patients with distinct levels of HOXA9 and APP expression. By
building a program inferring molecular motifs from biological observations, genes which
may interact with HOXA9 and APP are identified.
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Chapter 1

Introduction

Summary

Dysregulation of biological processes in normal cells can lead to the abnormal growth of
cancerous tumours. Such aberrations alter the basic functions of cells such as apoptosis,
DNA repair or mobility and include a wide range of genetic and epigenetic transformations.
When the first mutant cells appear, they start to expand, can form a lesion and eventually a
tumour. This mass of cancerous cells grows over time by acquiring new abilities enabling
progress and survival in the developing environment. Amongst the challenges faced by
cancer cells, they must find resources to keep proliferating, but also avoid attacks from the
immune system.

Inside the tumour, DNA alterations emerge within individual cells at distinct stages
of disease evolution. These mutational processes result in the formation of various cell
populations called clones which possess their own characteristics, interact and compete
with each other to survive. These genetic and cellular dynamics contribute to intratumour
heterogeneity which is a major barrier for cancer therapies. Simultaneous existence of
heterogeneous clones in tumours often prevents clinicians targeting a mutation present in
all tumour cells and eases the emergence of therapeutic resistant phenotype. It follows
that treating tumours early enables better prognosis by reducing the risk of resistance and
intratumour clinical diversity. Similarly, the sequence of aberrations in cells determine the
morphology, structure and biological properties of tumours. It therefore further influences the
diagnosis of the disease and the optimum treatment protocol. Moreover, different orderings
between alterations require personalised care to temper distinct tumour aggressiveness.
Hence, better understanding of timing in cancer development offers new opportunities
to improve the prognosis of this complex disease. This thesis addresses the influence of
biological event timing on blood cancer progression and clinical outcomes. I approach this
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by applying methods that address different aspects of this broad problem. I first explore
cell dynamics and resistance emergence in a lymphoma mouse model. Then as a result of
data availability, following studies explore the impact of molecular evolution in myeloid
malignancies: notably, mutation order in Myeloproliferative Neoplasms and the effect of
gene interactions in Acute Myeloid Leukemia patient stratification.

In this chapter, I first introduce cancer evolution by explaining what are the main biologi-
cal events in cancer and what are their clinical impact and type of interactions inside tumours.
I finish the section by characterising two contradictory models which illustrate therapeutic
emergence in cancer. In the next section, I give a biological overview of hematopoiesis
and blood cancers. I also provide a literature review of the effect of JAK2 and TET2 gene
mutations in a myeloid malignancy called Myeloproliferative Neoplasm. Finally, I illustrate
how cancer modelling is currently achieved in the mathematical and computer science com-
munity, which techniques are available and how I use them in my thesis to answer important
biological questions.

1.1 Cancer Evolution

Tumour cells face severe environmental changes during their development (Fig 1.1). Studying
how cancer progresses and evolves to adapt to these events can be seen as an ecological
problem. Cancer cells can be represented as evolving individuals interacting and competing
with each other for resources and survival while adjusting to their environment. One of the
dominant models currently used for tumour evolution was introduced by Nowell in 1976 [2].
In this model, tumour evolution is illustrated as a Darwinian process with random mutations
accumulating in cancer. Advantageous mutations result in clonal expansions at the expense
of unfit clones. However, this model is incomplete as it ignores the non-genetic variability
of cancer cells. Genetic, epigenetic and environmental variations as well as their timing
in tumour development make modelling cancer progression quite challenging, but better
insights into the impact of these changes is essential for designing optimal therapies.
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Fig. 1.1 Cancer Progression. Cancer evolves through several stages leading to uncontrolled
tumour growth and immune invasion until it escapes the primary site to invade other tis-
sues. This step-wise progression towards malignancy can be a long process and involve
several alterations in tumour cells and their surrounding. These modifications can be ge-
netic or epigenetic and often respond to new environmental challenges. Cell images from
smart.servier.com, licensed under CC BY 3.0, edited from original.

1.1.1 The major biological events in cancer progression

One of the major cancerous alterations are genetic mutations. Gene mutations determine
the different routes cancer cell populations can take: they can be deleterious, neutral or
advantageous for the cell fitness [3]. While deleterious mutations are capable of driving a
population to its own extinction, advantageous genetic modifications can lead to clonal domi-
nance [4]. They can affect a wide variety of cellular characteristics such as cell proliferation
[5], cell death [6] or cell division [7] with clear implications for tumour growth. Cancer
mathematical models often have a relatively low number of mutations in their equations to
simplify analyses and therefore only include those affecting important cell phenotypes for the
disease progression. These advantageous mutations also called driver mutations alter genes
involved in essential cellular mechanisms and suffice to model and globally interpret how
tumour cells grow and interact [8, 9]. The number of advantageous mutations needed to drive
healthy cells into tumour formation is tissue-specific: some cancers such as acute myeloid
leukemia (AML) requires two or fewer driver mutations while uterine corpus endometrial
carcinoma (UCEC) can accumulate six or more [10]. However, passenger mutations are
also fundamental to capture the heterogeneous complexity of tumours [11]. These genetic
alterations are thought to alter the cell genome with no or little consequences on cell fitness.
However, a recent study [12] demonstrates that mildly-deleterious mutations can impact the
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clinical outcomes of patients due to their higher number in tumours and negative selection
effect. Therefore, such mutations could be used as gene targets for future therapies.

Gene mutations are not the only biological alterations affecting tumour cells. This thesis
defines epigenetics as the genome modifications which do not implicate alterations of the
nucleotide sequence. Epigenetic plays an important role in cancer evolution. For example the
biological process which consists of adding of a methyl group to the DNA (DNA methylation)
has been reported in several cancers. DNA hypomethylation can increase chromosomal
instability [13] while site-specific methylation represses tumour suppressor genes such as the
Retinoblastoma gene [14]. Histone modification is another well-studied epigenetic change.
Disrupted histone acetylation or methylation alter access to chromatin and can result in major
alterations in favour of tumorigenesis [15].

Another challenge cancer cells face in their existence is the developing diversity of their
surrounding microenvironment. The environment can induce challenges and opportunities
for the development of tumours. In crowded tumours, the formation of new blood vessels,
or angiogenesis, is critical to avoid cell starvation and provide vital resources for tumours
to continue to expand [16]. The immune system can also be a mortal enemy as well
as an essential ally in cancer progression [17]. Indeed, immunosuppressive medication
and immunosuppression mechanisms induced by viruses have been shown to increase
cancer incidence [18] while tumour-associated macrophages have demonstrated pro-tumoral
phenotype by stimulating angiogenesis, suppressing NK and T cell response and promoting
metastasis [19]. Treatments also induce new adaptations in cancer cells such as senescence
[20] or phenotypic switch [21].

The timings of these diverse biological events highly affect the disease progression.
Driver mutations are often found in the majority of cancer cells, as they mostly arise in the
early stage of cancers [22]. Detecting early aberrations leading to abnormal cell growth is
crucial to identify markers of disease initiation. Exposure of these markers help clinicians to
recognise patients with higher risk of developing tumours but also to find the appropriate
treatment to target a maximum number of cells. However, early lesions can be challenging
to expose due to their smaller size. Barrett’s esophagus (BE) is a premalignant state of
esophageal adenocarcinoma (EAC). While most of BE cases do not progress to EAC, a
study has carried out genomic analyses on BE and EAC samples from the same patients to
highlight the oncogenic precursor events [23]. They find two pathways for BE oncogenic
transformation, one with accumulation of specific tumour suppressor gene mutations and a
second with TP53 loss followed by whole genome doubling. Sometimes unique sequence
of oncogenic events are decisive for tumorgenesis, for example in a mouse model of soft-
tissue sarcoma, the timing at which TP53 gene is lost after K-rasG12D mutation influences
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tumour formation [24]. Despite the dependence on particular ordering of these events in
the precursor lesions, specific genetic and epigenetic alterations of tumours also modify the
disease progression in later stages [25]. Unlike in most cancers, amplifications of genes
involved in oncogenic cell pathways intervene in the last stages of EAC [23]. Similarly, in the
later stages of cancers, some cells exit primary tumours, travel through blood and penetrate
new tissues and organs to form metastases. Comparing primary tumours with metastases
can reveal metastasis-specific genes and help clinicians to limit tumour spread by targeting
them. Turajlic et al [26] demonstrate the substantial role of chromosomal aberrations in
clear-cell renal cell carcinoma (ccRCC) metastasis in patients samples. Their work also
shows two distinct paths to metastasis among tumours with high or low genetic heterogeneity,
underlining the impact of early evolution on later stages.

1.1.2 Heterogeneity in cancer

The large variety of genetic, epigenetic and environmental variations described in the previous
subsection and observed within tumours and amongst patients is a major barrier to our
full comprehension of tumour progression [27]. Intratumour heterogeneity is caused by
the emergence of various clones with distinct aberrations, sometimes in response to their
environment. While unfit clones are doomed to disappear and become extinct, competition
between subpopulations of cancer cells does not always lead to extinction and several
subclones can coexist [28]. This evolution process is called branched evolution and is
responsible for the diversity observed in tumours [29]. Intertumour heterogeneity refers to
diversity between tumours and is related to intratumour heterogeneity. The major source of
intertumour heterogeneity is the tissue of origin which shape the disease fate as a consequence
of distinct tissue properties such as cell types and tissue structure. For instance, cell death
can be managed by apoptotic or non-apoptotic mechanisms and the chosen mechanism vary
among tissues, which was shown to affect DNA-damaging agent potency in tumours from
distinct tissue [30]. Furthermore, heterogeneity is also observed in tumours with the same
cell type of origin within a tissue. Variations in molecular and cellular processes among
tumours contribute to diverse morphologic, phenotypic and metastatic characteristics. Breast
cancer is a good example of intertumour heterogeneity. Distinct grades are observed in
breast carcinoma and are determined by morphologic parameters such as the mitotic rate
[31]. The grade as well as the expression of fundamental hormonal biomarkers, such as
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) establish the patient profile and guide physicians for relevant therapeutic
protocols [32]. Finally, intertumour heterogeneity also refers the clonal divergence between
a primary tumour and its metastases. Cells need to gain certain properties to invade adjacent
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tissues [33]. Evaluation of 32 clear-cell renal-cell carcinoma metastases has allowed authors
to identify important chromosomal aberrations in metastases which frequency correlates with
the dissemination tissue suggesting the spread of tumour cells in various tissues correlates
with particular molecular alterations [34].

Heterogeneity in tumours manifests alarming clinical consequences in disease progression.
First, as a result of mutation accumulation in cancer cells, subclones of different size coexist
in tumours. We already know that early driver events are detected in most cells of the tumour,
and often are the targets of drug treatments to eliminate a maximum number of cancer cells
and reduce tumour burden [35]. However, some minor subclones initially undetectable can
be resistant to therapies, expand and cause treatment relapses [36]. Genomic follow-up of a
high risk patient with multiple melanoma shows the competitive dynamics of subclones when
therapies are applied, but also reveals that the tumour cell subpopulation responsible for the
patient death was hardly detectable at diagnosis [37]. Secondly, spatial tumour heterogeneity
induces sampling bias and complicate the identification of good prognostic factors. Gerlinger
et al [38] found gene-expression signatures from good and bad prognostic markers in a
same tumour but in different areas. With 63 to 69% of somatic mutations not detectable
across all tumour regions, this study raises the concern about single tumour samples which
might not reflect the full complexity of certain cancers. Finally, despite the importance
of genomic in heterogeneity, the tumour microenvironment and epigenetic fluctuations
also influence tumour organisation. Different environmental conditions between core and
peripheric tumour cells induce phenotypic changes, core cells promoting nutrient flow and
peripheric cells showing invasion and high proliferation traits [39]. Similarly, epigenetic
heterogeneity has been studied in different cancer types, involving distinct DNA methylation,
chromosomal and histone aberrations in tumour subclones [40]. For instance, Pastore et al
[41] analyse methylation and histone modifications across patients with chronic lymphocytic
leukemia (CLL) and identify a large diversity in epigenetic markers resulting in permissive
chromatin states across cells. This acquired property might encourage cells to stochastically
alternate between different gene expression programs to facilitate the emergence of new
cell phenotypes. Overall, it is clear that a better knowledge of tumour heterogeneity will
encourage treatment successes.

Assessing heterogeneity in tumours supports untangling tumour progression and predict-
ing patient clinical outcome. One method to evaluate genetic diversity within and between
tumours as well as among patients is DNA sequencing. Whole-genome, whole-exome and
next-generation sequencing determine the genetic code of individuals by retrieving the order
of nucleotides in the DNA. All these methods also recognise mutated DNA that have acquired
genetic alterations in their sequence such as substitutions, deletions, insertions, duplications
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or copy number changes [42], and are therefore important tools for cancer diagnosis and
treatment design. Sequencing at different time points and/or in diverse tumour areas has
a broad potential of applications from clonal and subclonal evolution history, timing of
aberrations or identification of biomarkers [43–45]. In order to study heterogeneity in large
samples while conserving spatial information, in situ techniques provide a range of methods,
including immunohistochemistry (IHC), immunofluorescence (IF) or hybridization. After
extraction of tumour sections, these techniques identify heterogeneous properties such as
cell morphology, molecular expression or DNA alterations which all can be measured and
quantified using computational methods [46]. Non-invasive imaging methods such as x-ray
computed tomography (CT), magnetic resonance imaging (MRI) and positron emission
tomography (PET) can also be used to evaluate heterogeneity [47]. Those techniques can
currently identify morphologic, vascular and necrosis variations in different regions. New
studies aim at developing imaging methods to analyse additional tumour traits such as hy-
poxia [48]. Finally, statistical methods can also quantify heterogeneity in samples. The
true variant allele frequency (VAF) distribution [49] measures clone frequency. It can be
used to classify tumours based on their evolution modes and how intratumoral heterogeneity
accumulates.

1.1.3 Driver event interactions

The previous subsections identify the numerous biological and environmental players of
tumour progression and how the resulting heterogeneity has clinical consequences in cancer.
Malignancy certainly necessitates several alterations to drive cancer cells to progress and
invade surrounding tissues. Interaction and timing among these events produce specific cell
traits impacting their fitness and induce competition dynamics among clones and subclones.
Genetic and clonal interactions are keys in tumour development from initiation to primary
tumour escape. Better understanding of how they interact will contribute to our ability to
fight tumour progression.

"Epistasis" refers to the mechanism by which the outcome of a given gene on a biological
trait is enhanced or masked by one or several other genes [50]. This phenomenon obscures
our understanding of relationship between gene expression and cell phenotype, encouraging
further studies to categorise genes and their cooperation effect on cellular functions. Three
types of gene interactions are described in tumorgenesis: synthetic lethality, synthetic viability
and synthetic sickness [51]. In cancer, two genes are said synthetically lethal if a mutation in
either one of these gene is harmless to cell survival but both gene mutations are deadly to the
cell. This concept has major consequences in cancer therapies as targeting a synthetic lethal
gene in tumours possessing the other compatible mutation could kill the cancerous cells while
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being inoffensive for healthy cells [52]. A good example of synthetic lethality is the case of
ARID1A mutation in ovarian clear cell carcinomas which mutation was shown to be lethal in
combination with EZH2 inhibition due to their antagonistic role on PIK3IP1 expression, a
negative regulator of cell proliferation and promoter of apoptosis [53]. The opposed gene
interaction to synthetic lethality is synthetic viability, by which the combination of two
gene mutations rescue the lethal effect of each single mutation. Drug resistance is often
caused by these interactions. Melanomas with a BRAF oncogene mutation are frequently
treated with BRAF inhibitors, however, the increased expression of COT reactivates the
MAPK pathway in a RAF-independent manner and therefore save cancer cells from death
[54]. Finally, synthetic sickness defines the combination of gene alterations that result in a
greater reduction of fitness expected by each single event on the cell phenotype. Important
in therapeutic marker research, this gene interaction can increase the drug effect on specific
tumours. For instance, senescence induction by ECT2 was shown to be particularly enhanced
on tumours with a KRAS mutation [55]. Overall, better exploitation of this complex genetic
interaction landscape will help to identify important cross talks between genetic pathways
which will be essential to our comprehension of cell dynamics in clinical settings.

Epigenetic modifiers have also been reported to interact and play an important role in
cancer epistasis. Both DNA methylation and histone modifications have been shown to work
together in diverse cancer contexts by enhancing gene silencing [56]. In colorectal cancer, the
expression of three tumour suppressor genes (P16, MLH1, and MGMT) are silenced through
H3K9 hypermethylation and deletion of DNA methylation can reactivate these genes [56].
Similarly, several studies report epigenetic interactions between miRNA, which are important
post-transcriptional regulators of gene expression [57], and DNA methylation [58, 59].
Finally, epistasis can be observed among genes altering identical epigenetic mechanisms.
DNMT3A and TET2 null mutations were shown to cooperate to accelerate T cell lymphoma
despite their antagonistic role in DNA methylation, indicating complex interactions with a
combination of independent and interdependent roles for DNMT3A and TET2 [60]. These
studies demonstrate the importance of including epigenetics in cancer evolution models to
fully capture the complexity of tumour development.

Cancer treatments are also important driver events in tumour progression, they may
lead to disease curation as well as therapeutic failure. The clinical outcomes of treatments
not solely rely on the drugging protocols and the drug effect on tumour cells. The cell
dynamics with their surrounding contribute greatly to the success or failing of therapies.
Some treatments themselves have been shown to alter the cell functions in unpredictable
ways which can obstruct the primary killing goal of the drug. Jackson et al [61] demonstrate
that chemotherapy induced senescence in cells with a wild-type p53 gene which contribute
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to reduced tumour regression and relapses. Even more alarming, some treatments have been
shown to promote faster regrowth with acceleration of cancerous cell expansion and loss of
any treatment benefit [62, 63]. Cancer therapies can therefore modify tumour progression in
unexpected ways due to the complex dynamics inside and outside heterogeneous tumours. A
good understanding of these mechanisms can prevent therapeutic relapses and failure.

1.1.4 Modelling cancer growth and resistance

I have demonstrated in the previous subsections how interactions between the important
biological events of tumour evolution impact the phenotype of cells and the clinical outcomes
of therapies. A major consequence of these events and tumour heterogeneity is resistance
emergence. A wide range of treatments and therapies is currently available for fighting
tumour progression. While some cancer types have excellent prognosis thanks to efficient
therapeutic protocols, others remain lethal after sequential administration of drugs and/or
radiotherapy due to resistance emergence and relapses. Resistance emergence has distinct
origins and in order to better treat patients, understanding how resistance arises and impacts
tumour growth will facilitate clinical protocol designs. I have identified in the literature two
contradictory scenarios for cancer growth and resistance emergence in tumours, with both
presenting two different therapeutic challenges. Both concepts are used in Chapter 3 of this
thesis, which focus on the dynamics of sensitive and resistant cells in a lymphoma mouse
model.

The first scenario is illustrated by the Luria-Delbruck model. The first biological re-
sistance studies appeared in the 1940s with penicillin and antibiotic resistant bacteria [64].
Despite the slow appearance of antibiotic resistance at that time, some scientists started
studying the underlying mechanisms causing this resistance [65, 66]. From these bacteria
studies, one model is now well used in cancer resistance appearance: the Luria-Delbrück
model [67]. Luria and Delbrück showed in theoretical and experimental work that mutations
conferring antibiotic resistance in bacteria are random and not induced by a selective environ-
ment. In cancer development, a Luria-Delbrück-like (LD-like) model is typically treated as
well-mixed subpopulations of cells, with exponential growth and no competition for resources
or space. Using a LD-like model, Diaz et al [68] study acquired resistance through KRAS
mutation in colorectal cancers treated with EGFR blockade. Results from the model indicate
that the resistance, already present before treatment, repopulates the lesion due to the drug
killing the sensitive clones allowing a fast expansion of resistant cells with a fully regrown
lesion occurring between five to six months after starting the treatment. Later studies have
also expanded LD-like models with various growth dynamics, such as the logistic [69] or
Gompertz growth [70], to capture realistic population dynamics which might be constrained
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by space or resource limitation. For tumours with Luria-Delbrück-like dynamics, resistance
regrowth is a fait accompli, which will, in most cases, end by therapeutic failure due to
resistance emergence. In spite of curing these patients, the best treatment strategy may be to
improve their quality-of-life by increasing their survival while minimising drug toxicity.

The second concept is more recent and is inspired by game theory. In some cancers,
resistance has a fitness cost, as a resistance phenotype might require a higher amount of
resources or might slow cell proliferation due to costly phenotypic changes. This fitness
discrepancy between sensitive and resistant subpopulations triggers competitive behaviours
among populations for space and resource. In the absence of therapy, the fitter sensitive cells
will expand and inhibit the proliferation of resistant cells, while during therapy, resistant
clones will take over and sensitive cells will die due to treatment. Gatenby et al [71] use these
dynamics and propose spatial cancer cell models in which space and resource competition
is included. Based on this model, Gatenby also proposed a new treatment strategy that
could be used called "adaptive therapy". Adaptive therapy differs from the usual maximal
killing therapies, that fails due to resistance, in its intention of not "curing" cancer. Instead,
its objective is to stabilise the tumour over time by permitting a significant proportion of
chemosensitive cells to survive to avoid the rapid proliferation of resistant cells. To do
so, monitoring tumour response to treatment is crucial, dosing/schedule of the next drug
application is defined by the previous responses, which help researchers designing optimal
therapy strategies. Although this is not a curative therapy, this technique demonstrated its
efficiency with an important increased survival for the patients treated with adaptive therapy
[72, 73]. Enriquez et al [72] compare different treatment strategies and conclude that high
drug concentrations injected at the beginning of treatment followed by regular application of
drugs with decreased concentration when the tumour is successfully reacting to treatment
cause the exponential tumour growth to plateau and lead to a no-apparent tumour state with
no treatment necessary in 60-80% of mice. Increasing patient survival is also beneficial for
researchers and clinicians that gain time to search for additional treatment strategies or to
start therapies with longer curative responses such as immunotherapy [74]. LD-like and
Gatenby models have different therapeutic consequences, and determining which dynamics
the tumour belongs to is a first step to optimise treatment strategies.
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1.2 Healthy and abnormal blood development in adults

1.2.1 Hematopoiesis

This thesis use distinct modelling techniques to depict the complexity of blood cancer
evolution. However, first understanding how healthy hematopoiesis works is crucial to
untangle the aberrant dynamics of hematopoietic malignancies. This subsection reviews
the main hematopoiesis biological terms and players. Hematopoiesis is the continuous and
tightly controlled biological process responsible for the production of our blood cells. Blood
has various roles in the human body, from nutrients and hormones transportation, body
temperature regulation, blood clot formation following injuries and pathogen protection.
While definitive hematopoiesis is located in the bone marrow, primitive hematopoiesis which
occurs during early embryogenesis starts in the yolk sac. For the rest of the thesis as our
main focus is adult blood diseases, the term hematopoiesis refers to definitive hematopoiesis.

Fig. 1.2 Hematopoiesis schematic. LT/ST HSC, long-term/short-term hematopoietic stem
cells ; MPP, multipotent progenitors ; CMP, common myeloid progenitors ; CLP, common
lymphoid progenitors ; GMP, granuloctye-monocyte progenitors ; MEP, megakaryocyte-
erythroid progenitors. Cell images from smart.servier.com, licensed under CC BY 3.0, edited
from original.

Hematopoiesis maintains our different blood lineages at a stable level through hematopoi-
etic stem cells (HSCs) [75]. Their ability to self-regenerate, called self-renewal, is responsible
for the preservation of normal blood cell production. HSCs are defined as pluripotent as a
result of their ability to differentiate into any type of blood cells [76]. Lifespan of HSC is
also extremely long. Initially thought to be immortal cells, a recent study shows that HSC
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lifespan varies from 10 to 60 months [77]. This lengthy lifespan is another crucial attribute
of HSC opposed to differentiated cells whose lifespan is much shorter and varies among
lineages [78–80].

Hematopoietic precursors can be grouped into different subpopulations as a result of their
markers and their ability to differentiate: there are long-term HSC (LT-HSC), short-term
HSC (ST-HSC), multipotent progenitor 2–4 (MPP2, MPP3, and MPP4), common lymphoid
progenitor (CLP), common myeloid progenitor (CMP), megakaryocyte-erythroid progenitor
(MEP), and granulocyte-macrophage progenitor (GMP). The Lineage−, Sca-1+ , cKit+

(LSK) cells refers to LT/ST-HSC and MPP, while the LK subset refers to CMP, GMP and
MEP subpopulations [81].

We distinguish LT-HSC from ST-HSC by their different aptitude in regenerating all
lineages after radiation: LT-HSCs are considered as the true stem cells and can sustain
hematopoiesis almost indefinitely while ST-HSCs only produce for several weeks [82].
LT-HSCs committing to differentiation give rise to ST-HSCs which can differentiate into
MPP. The self-renewal ability of these cells decreases linearly, with MPP self-regeneration
being less than two weeks [83]. The multipotent progenitors commit to lymphoid or myeloid
lineage by dividing into common myeloid progenitor (CMP) or common lymphoid progenitor
(CLP) [76]. CLPs can differentiate and produce progenitors for the T, B, and Natural Killer
(NK) cells [84], while granulocyte monocyte committed progenitors (GMP) or megakary-
ocyte erythrocyte progenitors (MEP) derive from the CMPs [85]. Finally, MEP cells are
responsible for megakaryocyte and erythrocyte production and GMPs produce macrophages
and granulocytes including neutrophils, eosinophils, and basophils [86].

Functions of our immune cells can be split between the innate versus the adaptive immune
system [87]. The innate immune system is the first defense mechanism against infections and
cells from both myeloid and lymphoid lineages are involved in this rapid immune response.
This natural immunity is nonspecific, which means that it targets any non-self or foreign
organisms, and includes the granulocytes, the NK cells and finally the monocytes which refer
to macrophages and some types of dentritic cells.

Macrophages are large monocytic cells found in all tissues of the human body and their
main function is phagocytosis which consists of ingesting harmful mechanisms but also dead
cells. They recruit and trigger other hematopoietic cells’ immune response by presenting
foreign antigens to T cells or releasing cytokines [88, 89]. Macrophages can be split into
two types, the M1 and M2 macrophages: M1 macrophages are activated by IFNγ and/or
tumour necrosis factor (TNF) and have antimicrobial properties while M2 macrophages are
activated by IL-4 and/or IL-13 and are associated with tissue repair properties and apoptotic
cell clearance [90, 91].
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Granulocytes are also members of our innate immune system and are named after the
granules present in their cytoplasm. There are three main types of granulocytes: neutrophils,
eosinophils, and basophils. Neutrophils compose the vast majority of our innate immune
system cells as our body produce about 100 billions of them per day [92]. They are therefore
the first cells to arrive on the infection site and as macrophages, phagocytosis is one of
their main action against pathogens. Another microbial killing strategy of neutrophils is
carried out through degranulation. Degranulation process consists of the release of granular
antimicrobial molecules such as myeloperoxidase (MPO) [93] or neutrophil elastase (NE)
[94]. Neutrophils are also capable of neutrophil extracellular traps (NETs) generation,
composed of deoxyribonucleic acid (DNA), histones, and antimicrobial granule proteins.
Those NETs aims to trap and kill invasive bacteria [95]. Finally, neutrophils recruits antigen-
presenting cells (monocytes and dendritic cells) by secreting cytokines. Despite releasing a
lower amount of cytokines than other immune recruiters, the large number of neutrophils
results in an efficient immune cell recruitment during infections [96]. Eosinophils and
basophils are the two other types of granulocytes, and unlike neutrophils they are non-
phagocytic but similarly to neutrophils, eosinophils can trigger invader death by degranulation
[97]. Eosinophils are mostly activated during parasite infections and are associated to allergic
diseases [98]. Finally, basophils form the least abundant immune cell category and are largely
associated to allergic inflammation through secretion of histamine, a known compound
triggering allergic reactions [99].

Natural killer (NK) cells are cytotoxic lymphocytes which can induce the death of
cancerous and infected cells through different killing processes such as lysis [100]. Lysis
results in membrane destruction and release of the cell cytoplasmic compounds including
the virions if the cell was infected by a virus [101]. NK cells contain of granules which can
release proteins such as perforin that form pores in cell membranes. This process allows
associated proteins such as granzymes to enter the cell and induce apoptosis [102].

Finally, dendritic cells (DCs) cannot be clearly classified as lymphoid or myeloid lineage.
Those cells are important players in the coordination between innate and adaptive immune
system and can be subdivided into three different types: the conventional DCs (cDCs), the
plasmacytoid DCs (pDCs), and the monocyte-derived DCs (moDCs), with the latter being
quite a controversial category due to their ambiguous presence in vivo [103]. The major
role of cDCs is to process and present antigens to T cells [104]. The plasmacytoid DCs are
specialised dendritic cells that produces type I interferons (IFNs) during viral infection and
therefore promote antiviral immune responses [105]. pDCs are generated by a common DC
progenitor (CDP) that also generates conventional DCs and can be derived from the CMP
and CLP cells [86].
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Our second defense barrier is composed of lymphocytes, the T and B cells, which are
part of our adaptive immune system. T and B cells derive their name from the site they both
mature: thymus for the T cells and the bone marrow for the B cells [106]. The adaptive
immune system is a slow but gives a specific immune response against foreign organisms
that our immune cells can recognise and target through response to pathogen antigens. When
an unknown antigen is recognised, the adaptive immune system is in charge of developing an
immunological memory, so that a quicker response can be induced in later infections from
the same pathogen [107].

Lymphocyte B cells secrete antibodies, also known as immunoglobulins, which targets
specific pathogens by antigen recognition [108]. After their development in the bone marrow,
B cells are released to be matured in the spleen and the lymph nodes. Mature B cells are
also called "naive" B cells until they first encounter an antigen that fits its antibodies. After
this exposure, naive B cells become memory B cells or plasma cells [109]. Memory B
cells express the specific antibodies that have initially recognised the pathogens. They are
dormant cells in charge of immunological memory, which will trigger a faster and stronger
response if a second infection from the same pathogen happens. Plasma cells possess the
same antibodies, but are only able to secrete them. They do not proliferate but have a memory
role for later infections [110].

Lymphocytes T, unlike lymphocytes B, do not produce and secrete antibodies, but express
important receptors, such as T cell receptors (TCRs), CD8 and CD4 [111]. These receptors
are essential for the three fundamental functions of T cells: activation of the immune system
after infection, autoimmune disease prevention as well as pathogens and infected cell removal.
All T cells have TCRs, but not all express CD4 and CD8. Cytotoxic T cells only carry the
CD8 receptor, while helper T cells only the CD4 receptor [112]. T cells can detect self and
non-self cells thanks to the Major Histocompatibility Complex (MHC), which is a group of
genes that code for receptor molecules on the surface of individual cells and play a role in
antigen presentation [113]. All healthy human individuals express MHC but two individuals
rarely share identical MHC molecules. Cytotoxic T cells recognise self MHC class I (MHCI)
molecules which are found on our nulceated cells. If a cell presents MHC molecules
not recognised by the T cell, the latter is destroyed and an immune response is triggered.
Cytotoxic T lymphocytes are also activated when their TCR and CD8 co-receptors detect
MHCI presenting mutated or viral proteins [114, 115]. Once activated, these lymphocytes
kill the infected or cancerous cells by releasing perforin and granzyme molecules. On
the other hand, helper T cells activates our immune cells by releasing cytokines during an
infection: they trigger the maturation of B cells and activate cytotoxic T cells [116]. Helper
T lymphocyte stimulation is induced by the recognition with their TCR/CD8 receptors of
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MHC class II (MHCII) presenting cells which are expressed on the membrane of antigen-
presenting immune cells (macrophages, dendritic cells, B cells). These antigens are loaded
on the MHCII of specific immune cells and include proteins, peptides or polysaccharides
that originate from the individual (self-antigen) or from the external environment (non-self
antigen). Finally, regulatory T cells are characterised by both CD4 and CD25 co-receptors
which regulate our other immune cells to reduce autoimmune diseases [117]. They can
suppress the activation, proliferation and cytokine production of helper T cells and cytotoxic
T cells, as well as suppress B cells and dendritic cells.

1.2.2 Blood cancers

Four types of blood malignancies are studied in this thesis: lymphoma in Chapter 3, acute
myeloid leukemia in Chapter 4, 5 and 6, myeloproliferative neoplasm diseases in Chapter 4
and mixed phenotype acute leukemia in Chapter 6. Blood cancers are diseases arising from
any type of our blood cells and dramatically affect hematopoiesis. The maintenance of blood
cell production lies on hematopoietic stem cells. Stem cells after division can differentiate into
two main lineages: myeloid and lymphoid. Perturbation in either the myeloid or lymphoid
lineages can result into three types of hematologic malignancies: leukemia, lymphoma and
myeloma [118]. Leukemia affects the white blood cells of the bone marrow, lymphoma the
lymphocytes in the lymph nodes and finally myeloma the plasma cells [119–121]. In this
classification of blood cancers, leukemia also includes two additional myeloid malignancies:
the myelodysplastic syndromes (MDS) and the myeloproliferative neoplasms (MPNs). MDS
is a group of diseases characterised by an ineffective hematopoiesis producing a low number
of blood cells, which causes anaemia or cytopenia in patients [122]. Myeloproliferative
Neoplasms (MPNs) are chronic diseases of the myeloid lineage characterised by an excessive
production of fully functional terminally differentiated blood cells [123].

Classical MPNs have been classified into 3 entities: polycythemia vera (PV), essential
thrombocythemia (ET), and primary myelofibrosis (PMF) (Fig. 1.3). PV is the most common
MPN and is characterised by JAK2 mutation and erythrocytosis, an abnormal increase of the
number of red blood cells. ET is identified by thrombocytosis, an overproduction of platelets.
Finally, PMF is the least common and most aggressive and is defined by its bone marrow
fibrosis, an excessive fibrous tissue formation. PMF can be primary or be a later stage of PV
and ET.



16 Introduction

Fig. 1.3 Myeloid disorders. MPN diseases can progress to AML with different frequencies.
While secondary AML arise from a previous myeloid malignancy such as MDS or MPN, de
novo AML patients have no clinical history of blood diseases.

Despite the relatively good prognosis of these diseases, MPN patients are at high risk
of thrombosis and can develop blast phase MPN (MPN-BP) [124]; a subtype of the blood
cancer Acute Myeloid leukemia (AML) with poor survival outcomes [125]. The frequency
of MPN transformation to blast phase MPN is highly related to the initial MPN disease type:
PMF has the highest incidence with a risk of 10-20% to develop MPN-BP in the first ten
years [126, 127] against 3% for PV patients [128] and less than 1% for ET patients [129].

AML itself is an aggressive blood and bone marrow malignancy defined by the uncon-
trolled growth of the myeloid progenitor cells along with a myeloid-lineage differentiation
arrest [130]. AML has one of the lowest number of mutations per case among cancer types
[131]. In a study with 200 de novo AML patients, authors found on average 13 coding
mutations per patient with only 5 recurrent mutations in all genomes [132]. Two types of
AML have been described in the literature: de novo AML and secondary AML (sAML)
(Fig. 1.3). The general term secondary AML refers to AML transformation after MDS,
MPN (MPN-BP) or after therapy and represents a high proportion of AML patients [133].
Clinicians and researchers initially believed that secondary AML patients had worst progno-
sis than de novo patients who do not possess any known medical history of blood diseases
[134]. However, several recent studies have shown that age and cytogenetic risk could be the
actual markers for good or bad prognosis in AML [7, 133, 135]. Indeed, secondary AML
patients are on average older than de novo patients [7, 135]. Plus, the spectrum of cytogenetic
abnormalities is similar between de novo and secondary AML, only higher frequency for
complex karyotypes are observed in secondary AML [136]. This shows that AML should be
classified by their genetic characteristics instead of preleukemic history.
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AML patients present a broad range of morphologic, cytogenic and immunologic features
which all are associated with diverse clinical effects. Two AML classification systems are
widely used nowadays: the French–American–British (FAB) classification emerged first
using morphology, cytochemistry and blast percentage, then the World Health Organization
(WHO) added cytogenetics, dysplastic features and AML history (primary or secondary)
[137]. In this thesis, FAB classification and cytogenetics are used for AML patient strat-
ification in various analyses. FAB clusters patients into 8 groups from M0 to M7. M0
is the most undifferentiated subtype, while M3 and M5 display higher number of early
monocytic/granulocytic blasts. M6 and M7 are rare subtypes and are respectively associ-
ated with the erythroid and megakaryocyte lineages. Cytogenic abnormalities such as gene
translocations are common genetic dysregulation in AML [138] and are not included in FAB
classification. Identification of these alterations, as well as FAB subtypes, are essential for
disease diagnosis and the choice of treatment protocol.

In some rare cases, assigning a single lineage of origin in leukemia is difficult. Sometimes,
both lymphoid and myeloid blasts (bilienal) develop in leukemia or some tumours are found
with blasts (biphenotypic) expressing both lymphoid and myeloid markers. These patients
are diagnosed with Mixed Phenotype Acute Leukemia (MPAL) [139]. As reviewed in [140],
research in MPAL is quite sparse for several reasons. The rarity of the disease, estimated
to vary from 1 to 5 % of leukemia cases, but also its subjective diagnostic definitions and
large phenotypic and genotypic diversity among patients make MPAL a complex disease
to diagnose and treat. In a recent study comparing MPAL survival to other leukemia types,
authors found that MPAL patients have the worst prognosis regardless of patient age [141]. It
should be noted that often associated to children, MPAL also exists in adults and the genomic
landscape and prognosis between pediatric and adult MPAL differ. The overall survival
already quite poor of MPAL patients is even poorer in adults [142]. Regarding classification,
two systems have tempted to classify MPAL: the European Group for the Immunological
Characterization of Leukemias (EGIL) [143] and the World Health Organization (WHO) in
2008 and updated in 2017 [144]. Both use immunophenotype characterisation, but diverge
on specific genomic alteration characteristics such as KMT2A rearranged (KMT2Ar) or
BCR-ABL fusions. Finally, regarding MPAL treatment, current methodology is to apply
Acute Lymhphocytic Leukemia (a blood cancer type with an overproduction of immature
lymphocytes) directed therapy which shows better results than AML directed therapy. How-
ever, due to patient heterogeneous characteristics, other treatments may improve clinical
outcomes of diseases with specific aberrations [140].
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1.2.3 JAK2 and TET2 in Myeloproliferative Neoplasms

In Chapter 4, I investigate the impact of mutation order of two genes in MPN diseases:
JAK2 and TET2. JAK2V617F is the most common oncogenic event in MPN and is therefore
well described in the literature [145–147]. It has been shown that a single JAK2 mutation
in an unique hematopoietic stem cell can initiate MPN in a mouse model [148]. JAK2
mutation increases red blood cell production, also called erythropoiesis, by skewing myeloid
differentiation toward the erythroid lineage and by expanding disproportionately megakary-
ocytic/erythroid progenitors (MEP) over other myeloid progenitors [149]. The role of
JAK2V617F in stem cell expansion however remains unclear [150]. In contrast, the interest
for TET2 in blood studies is quite recent. First discovered in MPN in 2008 by Delhommeau
et al [151], TET2 loss has been associated with myelodysplastic syndromes (MDS), chronic
myelomonocytic leukemia (CMML), acute myeloid leukemias (AML) and secondary AML
(sAML) [152–155]. In MPN diseases, mutational frequencies of TET2 loss approximate
16% in PV, 5% in ET, 17% in PMF, 14% in post-PV MF and 14% in post-ET MF [156].
Several studies have shown the importance of TET2 in hematopoiesis as loss of TET2 leads
to increased self-renewal of hematopoietic stem cells (HSC), expansion of the hematopoietic
stem/progenitor cells as well as a skewed differentiation into the monocyte/macrophage
lineage [157–159]. Finally, it has been shown that JAK2/TET2 double mutant cells develop
severe MPN diseases [160] and insights into how these two genes interact will help to
untangle how gene interactions impact on disease prognosis.

Despite some unquestionable roles for JAK2 and TET2 mutations in hematopoiesis,
the functions of both proteins in diverse lineages is highly controversial and contradictory
findings can be found in the literature. These dissimilar results can be explained by distinct
experiment protocols or cells at different differentiated states. In the next subsections, I
review the literature for a better understanding of JAK2 and TET2 role in different blood cell
populations. Conclusions of this literature analysis will be used for the molecular networks
in Chapter 4. Summary of this review is shown in Figure 1.4.
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Fig. 1.4 The effect of JAK2V617F and TET2 loss mutations in the different hematopoi-
etic cell populations. This figure shows in green immune cells that are expanded while red
indicates a decreased number of cells. Arrows are also coloured in green and red to indicate
respectively a positive or negative differentiation. Dotted arrows represent weak skew to-
wards certain lineages. LT/ST HSC, long-term/short-term hematopoietic stem cells ; MPP,
multipotent progenitors ; CMP, common myeloid progenitors ; GMP, granuloctye-monocyte
progenitors ; MEP, megakaryocyte-erythroid progenitors.

TET2 mutation phenotype

The critical role of TET2 in genome stability has been recently highlighted [161]. Moreover,
healthy hematopoietic stem cells have high levels of TET2 expression [162]. It is therefore
not surprising that TET2 loss in hematopoietic stem and progenitor cells is associated
with myeloid malignancies [163]. TET2 role in cancer is uncontroversial, as well as is its
involvement in hematopoiesis and monocyte differentiation [164]. However, its precise
role in the different lineages of hematopoiesis is unclear. Researchers have designed TET2
knockdown mouse models and study the consequences of this mutation in hematopoiesis. I
review in the next paragraphs their different findings.

TET2 has been reported to have different effects on hematopoietic cell populations. Most
papers agree on the increased number and enhanced self-renewal capacity of stem cells
harbouring a TET2 mutation [165, 150, 158, 157, 162, 166–168, 60, 160, 169]. Several
papers mention an upregulation of the c-kit marker [150, 168, 167]. Similarly, Chen et al
[150] observe an elevated self-renewal gene signatures in TET2 mutant mice. However,
few papers found dissimilar results. Kameda et al [160] do not find increased LK and LT
HSC, while Quivoron et al [166] only observe a modest increased of LT HSC compared
to ST HSC. Overall, most paper agree to a larger number of HSC as well as increased
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self-renewal capacity in TET2 mutant models and therefore this is the hypothesis retained for
the computational model.

Regards to the progenitor cells, literature results diverge. Several papers note the increased
number of CMP cells in TET2 deficient mice [158, 157, 166], while other notice the expansion
of immature myeloid precursors such as MPPs [167, 169]. However, not all papers agree
with these findings. Li et al [162] observe no change in blasts and immature myeloblasts and
similarly, Pronier et al [170] found constant levels of immature myeloid precursors. TET2
loss effect on GMP is debatable as well. Several papers indicate an increased number of GMP
[150, 158, 162], while some studies do not see any change [157, 166, 169]. Finally, several
experiments [150, 157, 169] report no increase in megakaryocyte-erythroid progenitors
(MEP), while Quivoron et al [166] notice a significant increase in proerythroblasts and
a decrease in the number of late erythroblasts. Also, erythroid infiltration and increased
CFU-E/BFU-E (cells preceding proerythroblasts) are observed in mutant mice [162].

With respect to differentiated cell populations, the granulocyte-monocyte lineage is
increased by TET2 loss. TET2 mutation enhances both granulocyte and monocyte lineages
[150, 158, 162, 60, 170, 161]. However, Pronier et al [170] observe a higher number of
monocyte compared to granulocyte. For the erythroid lineage, most papers notice a decrease
in the red blood cells [162, 170, 165]. Nonetheless, a couple of papers find an increased
number of erythoblast and erythroid precursors [161, 162].

Finally, for the differentiation status of hematopoietic cells with a TET2 loss mutation,
papers indicate that TET2 loss induces decreased differentiation with less differentiated cells
[158, 157, 166]. Most studies highlight a skew toward the granulocyte-monocyte lineage
[158, 157, 166, 168] and some indicate a preference for monocytes [170, 162]. Impaired
erythroid differentiation with insufficient erythropoiesis and accumulation of erythroblasts
is mentioned in Li et al [162]. However, some experiments observe a predominance of the
erythroid lineage associated with the myeloid expansion generated by TET2 loss [166, 168].

To conclude on TET2 mutation impact on blood cells, myeloproliferation, enhanced
self-renewal of hematopoietic stem cells and immature progenitors, as well as reduced differ-
entiation with a skew towards the granulocyte-monocyte lineage are confirmed phenotypes
in mutant experiments. The role of TET2 in the erythroid lineage remains unclear. One could
however hypothesise that TET2 loss increases myeloid immature precursors and obstructs ery-
throid differentiation which leads to an increase of early erythroid precursors with a reduced
number of erythrocytes as a consequence of the granulocyte-monocyte predominance.
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JAK2V617F phenotype

JAK2V617F mutation is the most frequent aberration in Myeloproliferative Neoplasm dis-
eases [171]. There are several lines of evidence supporting its role in erythropoiesis and
PV/ET diseases, but its exact function in other cell types and lineages is more ambiguous.
In this short review, I describe the outcomes of JAK2V617F knock-in mouse models in the
hematopoietic stem cells and progenitors as well as its potential role in differentiation.

One of the main challenge in JAK2V617F function description is to untangle its role in
hematopoietic stem cells. A broad and contradictory set of phenotypes have been reported.
Distinct studies identify neutral, advantageous or disavantageous function of JAK2V617F on
stem cell survival and proliferation.

Several knock-in mouse models demonstrate neutral change in the number of HSC.
Among them, two papers [149, 172] do not observe any increase in the number of LSK cells.
Similarly, Akada et al [173] observe only a modest increase of HSC number. Finally, a last
study [174] report JAK2V617F as a non-driver mutation for clonal expansion.

On the other hand, some papers suggest a positive role for JAK2 mutants in HSCs.
Despite their initial observation reported above, Mullally et al [175] in a more recent study
notice a gradual clonal advantage for JAK2 mutant cells after one year. Authors interpret the
neutral change in HSC number in their first paper by analyses done over a short period of
16 weeks. Another paper find a cell cycling advantage for JAK2 mutant LSK cells which
results in increased number of LSK cells in spleen and LT HSC and MPP cells in the bone
marrow [150]. Finally, Kubovcakova et al [176] also underline the advantageous competition
of JAK2 mutants with an increased number of LSK cells in mice.

Several studies however support a deleterious effect of JAK2 mutation for HSC growth.
A significant number of papers [177, 172, 148, 178] demonstrate JAK2 role in DNA damage.
As a consequence, HSC have reduced self-renewal and increased senescence properties
[177, 172]. HSC self-renewal is also reduced in in vitro experiments in Kent et al [179].
Authors also demonstrate an increased symmetric HSC cell division with a trend toward
differentiation, which leads to a reduced number of stem cells. Finally, Kameda et al
[160] find that JAK2 mutant mice show over time a reduced number of LSK/LK cells with
decreased competitive advantage and self-renewal. They do not find elevated DNA damage,
but increased cell cycle which can explain the exhaustion of LSK cells.

Finally, some experiments find conflicting results. For example, Lundberg et al [148]
observe increased quiescence gene signatures with increased DNA damage in their JAK2
mutants, however the total number of LSK is two-fold increased compared to wild type
animals due to cell division boost. This finding could be explained by increased DNA repair
mechanisms in which JAK2 could be involved [178]. Another knock-in mouse model [180]
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show that JAK2 mutation gives a competitive advantage to LT HSC with reduced apoptosis
and increased proliferation. Authors note however that the discrepancies in LSK, GMP, CMP
cell numbers between the knock-in and wild type mice models increase with mouse age and
therefore is mostly apparent in older mice, whereas the increased number of MEP in knock-in
mice seemed prematurely established. These results seem to agree with Mullally et al findings
[175] as only older mice showed increased number of HSC. The overall conclusion of their
study is that JAK2V617F might only give a subtle advantage to HSCs which can be detected
after several months in mice and several years in humans [180].

The effect of JAK2 mutation on the granulocyte and macrophage cell lines is unclear.
One evident point is the involvement of JAK2 in increased MEPs [177, 172, 149, 150, 173].
I therefore focus on other lineages in the rest of the subsection.

Some papers find decreased or neutral change in myeloid/granulocyte/macrophage pro-
genitor numbers in their JAK2 knock-in mouse models. For example, Li et al [177] show
a decreased number of myeloid progenitors, while one of their recent paper [172] show no
change in GMP frequency. Finally, Mullally et al [149] found an overall increased myeloid
progenitors number due to MEP increase while GMP number was unchanged.

However, some studies contest these findings. For example, a couple of papers [173, 179]
observe an increased number of GMPs and Chen et al [150] notice a signature increase
from genes involved in myeloid precursors. Increased metamyelocytes (early cells in granu-
lopoiesis) is described in Marty et al [181]. Kameda et al [160] observe highly proliferative
GMPs, while more papers describe an increased number of myeloid progenitors [180, 148].
Overall, most papers agree on the increased myeloid progenitors, indicating an increased
number of GMPs in JAK2 mutant models.

The case of the common myeloid progenitor (CMP) number is also controversial. CMP
numbers can be unchanged [149], decreased [150], or slightly increased [173]. Globally, the
CMP population does not seem highly impacted by JAK2 mutation.

Finally, papers studying differentiation in JAK2 mutants show clashing results. Li et al
[177] do not observe any sign of abnormal erythroid or myeloid differentiation. Neverthe-
less, Kent et al [179] report an increase for differentiation markers in stem cells. Mullaly
et al [149] find that JAK2 mutation directs hematopoietic differentiation within the LSK
compartment into CMP/GMP/MEP, which confirm the results found another paper [148] in
which authors demonstrate an increased expression of genes involved in myeloid/erythroid
differentiation in JAK2 mutant LSK cells. Finally, Kameda et al [160] notice an increased
of pre-erythroid colonies signature genes. Collectively, one can assume that JAK2 mutation
favours differentiation toward myeloid cells, with a main increase for the erythoid lineage.
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In conclusion, JAK2 is essential for MEP and GMP expansion as well as for skewing
differentiation towards myeloid and erythroid lineages. JAK2 role in HSC and early stage of
hematopoiesis most likely is only subtle and noticeable after a long period of time, I therefore
assume in the rest of this thesis that JAK2 mutation has no impact on stem cells or early
myeloid progenitors.

1.3 Computational modelling of cancer progression and
evolution

This thesis interrogates the importance of timing in blood cancers by simulating and analysing
biological computational models. A computational model is a formalisation of fundamental
mechanisms, which can be analysed with computers and compared against data. These
models aim to reproduce the observed characteristics of a biological system by including the
known properties of the different elements [182]. However, biological systems are remarkably
complex. The incorporation of every detail would be computationally highly costly and prone
to error due to uncertainty. Abstraction by capturing only necessary processes is therefore an
ideal option for most systems [183, 184]. While these models cannot replace experiments,
they represent a faster and economical way of reproducing important biological processes by
reducing the number of experiments and avoiding failed experiments which is primordial
when using animal models. Experiments suggest new hypotheses that the model can assess
while making new predictions [185]. Predictions can be verified in experiments which will
determine the next level of model refinement.

Diverse computational models have been used to study hematopoiesis and blood cancers.
In 2008, a paper shows using ordinary differential equations (ODEs) with stochastic simu-
lations and experiments the presence of a dormant population of HSCs which is important
for homeostasis and which can be activated following injuries or biological stimulation
[186]. Another study builds a genetic network of Chronic Myeloid Leukemia progression
and proposes thanks to in silico deterministic simulations new combinatorial therapeutic
targets [187]. Both models find interesting results using different biological scales, simula-
tion features and modelling techniques. This emphasises the great ability of computational
modelling to clarify complex biological dynamics in blood.

However, many questions remain unanswered in blood cancer evolution. The appropriate
models to answer those depend on the biological context and the available data. Different
data origins (primary tumour, mouse model or cell line) induce different dynamics due to
the species characteristics and the spatial set-up of the experiments which also impact on
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how we model biological systems. In order to investigate tumour progression in diverse
hematopoietic malignancies, I must determine the spatial scale, the variable characteristics,
the simulation type and finally how to efficiently parametrise the models.

1.3.1 Space scales in cancer modelling

Four main space scales are typically considered in cancer modelling: the atomic, the molec-
ular, the multi-cellular and the macroscopic scales (Fig. 1.5). While most studies initially
focused on a single level [188], multi-scale models are developed to fully capture tumour de-
velopment complexity [189]. This thesis mainly focuses on the molecular and multi-cellular
scales, but a brief overview of the four scales is given here.

Fig. 1.5 The four scales in cancer computational modelling. Atomic, molecular, multi-
cellular and macroscopic scales focus on distinct biological entities. The length and time
ranges broadly increase from atomic to the macroscopic scale. Some modelling techniques
such as molecular dynamics (MD) are specific to a scale, while ODEs and PDEs can be
applied to most scales. Atomic scale image from VMD [190], molecular network image
from BioModelAnalyzer [191] and cell automaton image from [192]. Cell images from
smart.servier.com, licensed under CC BY 3.0, edited from original.

The smallest scale, called the atomic scale, studies the structure and dynamics of bio-
logical molecules as well as their interaction with their environment. Atoms interact with
each other through a wide variety of interactions such as hydrogen bondings or electrostatic
interactions [193]. The modelling of these systems is mainly carried out with Molecular
Dynamics (MD) simulations. Molecular dynamics simulations capture the position and
motion of every atom at every time point and have helped to untangle many biomolecular
challenges such as protein folding and conformational changes [194]. A major limitation of
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MD is its limited ability to model phenomena occurring over long timescale as a result of
long simulation times [195].

Similarly to MD, the molecular scale focuses on the molecular components of the
cells. However, unlike MD which is limited to nanosecond reactions, molecular modelling
illustrates behaviours and interactions of molecules in their environment occurring over
longer timescale. The predominant methods are gene regulatory networks and protein
interaction networks [196, 197]. They explore important cell signalling mechanisms from
signal transduction to ligand/receptor activity leading to intra-cellular molecule interactions.
These complex cellular pathways converge toward the modification of a cell phenotype
and function. These models are particularly important when searching and designing new
treatment to ensure for example the virtual screening of potential drug compounds prior to
testing [198]. However, the absence of cell interactions in these models limits insights about
how cell phenotype alterations impact tumours with a large variety of cell populations. I
use the molecular scale to build a molecular network in Chapter 4 and investigate important
gene interactions in MPN progression. In Chapter 6, an algorithm inferring small molecular
motifs is applied to explain patient stratification in the TCGA AML dataset.

The next scale integrates cell interactions and is called the multi-cellular scale. As
the name suggests, the main entities of these models consist of cell populations in which
each cell has its own characteristics and can interact with its neighbours. Models include
the features of population dynamics studies such as cell-cell interactions and competition,
cell-matrix interactions, resource distribution and cell phenotypic alterations [199]. Several
techniques are available for these models, such as cellular automaton, rule-based models
or partial/ordinary differential equations (PDE/ODE) [200–202]. Heterogeneity and cell
competition in tumours are the important domains of investigation at this scale [203]. Work
in Chapter 3 explore with rule-based models (described in the Methods chapter) the multi-
cellular scale by looking at sensitive and resistance cell dynamics in lymhpoma.

Lastly, the largest scale is the macroscopic scale where the tumour itself is the main model
entity. Models examine the dynamics of the tumour including its shape and morphology
as well as how it vascularises and spreads to form metastases [204]. The elevated number
of cells constrains modellers to specific modelling techniques such as PDEs which include
continuous spatial characteristics and are optimal to study tumour dynamics and whole
organism models [205].

Multi-scale models integrate distinct biological levels to simulate natural processes which
involve various range of space and/or time [206]. Cancer progression solicits various genetic
signalling and cell interactions which may take minutes or hours, but also activates complex
phenomena such as angiogenesis and metastasis which may occur over months or years.
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Hence, multi-scale models are crucial to simulate these spatio-temporal ranges observed
in tumour development [207]. They are particularly important and well-used in cancer
therapeutic research for the discovery of new molecular drug targets to associate molecular
dynamics to cell phenotype alterations [208] or to measure treatment effectiveness on distinct
cell traits and microenvironment [209]. Despite the undeniable appeal of multi-scale models,
they are also confronted to several technical challenges, a major one being their mathematical
complexity. The construction of the biological levels must be well-organised as all levels
influence each other and might not use the same abstraction (discrete or continuous, stochastic
or deterministic), therefore keeping the model consistent might prove to be a difficult task
[210]. The diversity of techniques for the distinct stages can also require different domain of
expertise and encourage collaborations [211]. Finally, the large number of biological entities
composing these models can also lengthen simulation time and therefore force models to be
simplified or to reduce the number of cells for example [212].

1.3.2 Model abstraction: discrete or continuous variables? Stochastic
or deterministic simulations?

Discrete Continuous Deterministic Stochastic
Advantages • Model • Large systems • Large systems • Include biological

interpretability • Numerical and • Fast simulations randomness
• Biologically Analytic Analyses • Simpler analyses • Explore stochastic
heterogeneous • Computationally outcomes
individuals Inexpensive
• Biological
tracking

Limitations • Computationally • Biologically • Ignore biologi- • Slow simulations
expensive if homogeneous cal randomness • Complex analyses
many entities populations • Small systems
• Small number • Parameter and
of individuals model structure

dependence
Table 1.1 Overview of the advantages and limitations of discrete/continuous and deter-
ministic/stochastic model resolution.

The scale of the model can impact on the variable characteristics and the level of abstraction:
how should the biological elements of a model be represented? Should they have discrete
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or continuous values? How is time treated at different scales? Broadly, studies focusing
on molecular interactions tend to choose discrete models such as Boolean networks while
atomic, multi-cellular and macroscopic models use continuous or hybrid models [213]. Hy-
brid models combine discrete and continuous variables. Discrete modelling techniques such
as agent-based models, cellular automata or discrete networks are attractive methods to
track each biological entity. Update of variable states are determined with simple transition
rules, which are interpretable to any scientists with or without mathematical/computational
background and makes those models easy to visualise. Plus, the model execution is inde-
pendent of algorithms. However, the major drawback of these methods is that they can be
computationally lengthy if the number of variables is high due to the storage of all biological
entity properties [214]. Model reduction of discrete models can help to simplify compu-
tations by reducing the number of reactions for example [215], which is unachievable in
non-discrete models. On the other hand, continuous models such as ODEs and PDEs perform
efficiently for larger biological systems, as biological entities are viewed as a population with
similar characteristics. Differential equations can be solved analytically or numerically and
their analyses are often computationally inexpensive. The trade-offs compared to discrete
models are their lack of interpretability and biological diversity within cell populations [216].
Consequently, continuous models are often inappropriate to describe the full heterogeneous
capacity of tumours. They also often require complex mathematical functions to represent
biological systems which can complicate communication with non-mathematical expert.
A study also demonstrates the limitations of continuous approximations which sometimes
fail to reproduce the dynamics of a system due to its parameter value and model structure
dependability [217]. To avoid drawbacks from both methods, several hybrid models have
emerged. For example, a cellular automaton for cell interaction and migration combined
with PDEs describing chemical and matrix dynamics was built to demonstrate the role of
cell adhesion in solid tumour invasion [218]. Finally, mathematical models such as ODEs
and PDEs describe quantitative variables and are opposed to computational methods such as
networks or petri nets which can include qualitative relationships, that is values represent the
state of an entity and not a quantity [219].

Qualitative modelling is particularly attractive when some biological details are missing
or when the number of variables grows and requires qualitative relationships like thresholds.
For this reason, discrete modelling is favoured in this thesis. Some biological details are
unknown in the studied systems and therefore Boolean networks and rule-based models
are appropriate modelling techniques to answer cancer progression questions. Moreover,
by choosing these approaches, I show that computational modelling is accessible to most
scientists and simple models can generate reliable predictions.
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Once the scale and the variable characteristics have been defined, one should determine
how the output simulations are generated. If the modeller desires to reproduce identical
output simulations for a given initial condition and a set of parameter values then, the model
should be built as deterministic [213]. Deterministic models in biological systems have
been developed to study the dynamics of populations in which individual characteristics
can be averaged over time, for example, tumour growth when behaviours of cells inside
tumours can be averaged [220]. Their main advantages are their ability to represent large
systems and the ease for scientists to analyse them. However, this simulation method
ignores the environmental noise and the uncontrollable factors that affect cell proliferation
and death. The alternative is to construct a stochastic model. Stochastic models include
uncertainty and probabilistic events and as a result, the output vary for identical initial states
and parameter values [221]. These models can mimic biological fluctuations in tumour
progression, for example, a recent study has developed a stochastic model with immune and
cancer cells with random birth and death to demonstrate the important role of random events
in immunotherapy outcomes [222]. Stochasticity is particularly important in early stage
cancer where the number of cells is low and therefore the impact of random events is strong
[223]. A striking example is when a stochastic model is capable of showing clonal extinction
in some simulations for a system for which a deterministic model could not [224]. However,
including stochastic events in larger systems can be computationally expensive [225], as one
gram of tumour contains in on average about 109 cells [226]. Often large tumours can be
averaged using deterministic methods, especially as stochastic models are also often more
difficult to analyse as a result of the randomness [227]. However, new stochastic simulation
algorithms emerge and improve simulation times [228]. Information on parameter values also
greatly impacts the choice between deterministic and stochastic simulations. As deterministic
model outcomes are greatly affected by its parameter values, wrong values could false the
results and therefore stochastic models should be preferred.

To simplify simulations of a large system, deterministic simulations are applied to the
lymphoma model in Chapter 3. However, as mentioned in the previous paragraph, stochastic
events have a greater impact during tumour initiation. Thus, in addition to the deterministic
algorithms, stochastic simulations are performed to investigate the degree of variability of
resistance emergence before the treatment is applied.

1.3.3 Parameter estimation as a barrier to cancer modelling

One of the central work of Chapter 3 is to find the appropriate parameter values for the
lymphoma rule-based model. Parameter estimation of biological systems faces diverse chal-
lenges nowadays. Several methods can be applied to find parameter values such as literature
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searching or statistical inference. Literature can be a fast and convenient technique to obtain
parameter values from already published experiments. For example, prostate cancer growth
kinetics including cell loss and growth rate have been determined in a recent paper to evaluate
the influence of tumour stages on these parameters [229]. Various computational models
have demonstrated the reliability of such methods with good biological predictions [230–
232]. However, despite the evident appeal for literature-based parameters, many parameters
have not yet been evaluated experimentally, or even cannot be determined experimentally.
Moreover, most parameter values are tissue-dependent. For example, cell division rates or the
number of stem cells in a tissue are radically divergent between cancer types with different
origins [233]. Therefore, papers used to find parameter values should be chosen cautiously.

Alternatively, Bayesian parameter inference is a well-used method as it reduces the risk
of overfitting by giving the full parameter distribution [234]. The main feature but highly
controversial matter of this technique is that parameters are not defined as constants but as
probability distributions. However, by considering parameter as random variables, Bayesian
techniques avoid fixing parameter values which can considerably affect the outcomes of a
model [235]. The choice of priors has also been described as subjective as different individu-
als might specify different prior distributions for the same model which will impact on the
posterior distributions [236]. Furthermore, Bayesian methods such as Approximate Bayesian
Computation (ABC) simulate data with the proposed parameters instead of calculating the
likelihood which is much faster but does require to know the likelihood function, however,
ABC can be computationally intensive if many parameters are unknowns [237]. Despite some
drawbacks, Bayesian methods still offer traceable computations and interpretable answers.

There exists another type of statistical inference opposed to Bayesian inference and
which does not require a prior distribution named frequentist inference. Frequentist inference
searches for constant values for unknown parameters using relative frequency of occurrence
and confidence intervals. A common hypothesis test method is the use of the null hypothesis
and its p-value, which is the probability to obtain the observed results or more extreme
outcomes when the null hypothesis is true. The advantage of frequentist methods is the lack
of prior knowledge, plus they tend to be less computationally intensive. However, their high
reliance on how data are sampled due to the absence of priors and the misinterpretation of
confidence intervals are major drawbacks [238]. The 95% confidence intervals contain the
true mean of the estimated parameter in 95% of cases, however, it is incorrect to assume that
confidence intervals represent a probability of 95% to cover the true mean. Generally, diverse
options currently exist for parameter estimation, most if not all have limitations, however,
it should be noted that imprecise parameter values still can address challenging biological
problem and give reliable qualitative conclusions [239].
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Chapter 3 combines literature and Bayesian inference to estimate parameter values of
our lymphoma model. Bayesian inference is preferred over frequentist approaches as it
requires no prior knowledge and can be easily implemented with the program used in this
work (ProPPA, described in Methods). The mutation rate heavily studied in cancer research
is estimated thanks to literature [240].

1.4 Thesis goals and plan

The main purpose of this work is to determine how the timing of different biological events
shape blood cancer evolution and alter their clinical outcomes. Computational modelling of
biological systems facilitate our comprehension of complex mechanisms by formalising and
recreating the dynamics of entities composing these systems with fast and easily reproducible
simulations. In this thesis, I use various computational models to study the abnormal
development of hematopoiesis leading to blood malignancy. Blood cancers can be sampled
non-invasively which allow a relatively easy access to tumour information, encouraging
experimental and computational modelling of these diseases. The longitudinal sampling
informs about clonal diversity and therefore makes blood disorders an ideal system to study
cancer heterogeneity and evolution. To explore and answer these questions about blood
cancer evolution, I first describe in chapter 2 the tools and methods used in my work. Chapter
3 first focuses on timing and cancer evolution at the cellular scale. For data availability
reasons, the following chapters examine the molecular scales to explain the impact of timing
at larger scales. These chapters are organised as follows:

In chapter 3, I demonstrate how multi-cellular models with simple cancer population
growth dynamics can be applied to study complex dynamics in lymphoma. Using rule-based
models and parameter inference, I focus on resistance emergence in a lymphoma mouse
model treated with p53 restoration therapy to highlight the effect of treatment schedules
on resistance. Further in silico treatment simulations help to improve existing treatment
schedules and to propose new ones to increase survival.

In chapter 4, I explore the underlying mechanisms below branching evolution in two
blood diseases, AML and MPN. I suggest HOXA9 acts as a biological switch leading to
AML patient stratification and MPN clinical variations when JAK2 and TET2 mutations
have different orders. I implement a molecular network describing MPN progression with
both mutations. The model recapitulates the disease symptoms, brings to light the genes
responsible for the branching evolution and helps to clarify observed clinical characteristics
with molecular explanation.
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In chapter 5, I further study AML patient stratification by the identification of patient
clusters with distinct HOXA9 and APP expression. While HOXA9 is a well-studied gene in
AML, the poor characterisation of APP in hematopoiesis leads further analyses to investigate
its function in leukemia clinical prognosis. I find that this gene, well-known for its involve-
ment in Alzheimer disease, could play an important role in leukemia as a prognosis marker,
but also for cell fate commitment.

Finally, in chapter 6, I focus on the molecular dynamics underlying the HOXA9/APP
patient cohorts found in Chapter 5. To determine how these patients can present distinct gene
expression levels and which genes are responsible for this clustering, I build a motif inference
algorithm which can generate from biological observations small molecular networks. This
work allows users to find for complex molecular and cellular phenomena the responsible
gene/protein motifs. This tool used on the AML data is able to select gene candidates
associated with the identified relevant molecular motifs reproducing HOXA9/APP clusters.
These findings demonstrate the algorithm ability to identify important disease markers that
might have a role in AML patient classification and stratification. This program can be
applied to various biological data and explain diverse cellular evolution mechanisms.





Chapter 2

Methods

2.1 Introduction

Methods used in this thesis are described in this chapter (summarised in Figure 2.1). I start
by giving a brief description of the different datasets used in the chapters. Then, I introduce
the tools applied to the rule-based models to describe lymphoma growth in mice. Specifically,
I present two software BioPEPA and ProPPA, as well as their underlying algorithms to
simulate and analyse models. I finish the section by comparing evaluation metrics which are
employed to compare different lymphoma models. In the third section, I define qualitative
networks and illustrate the software used in this thesis to analyse them, BioModelAnalyzer
which permits their construction and stability analysis. In the following section, I introduce
XGBoost a machine learning program used in this work to rank and identify JAK2 correlated
pathways in leukemia. Finally, I give a brief overview of what are satisfiability modulo
theories (SMT) and how they work in model checking.
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Fig. 2.1 Overview of the datasets and methods used in each chapter. Except for Chapter
3, all analyses in this thesis are carried out using my own R and python scripts. Datasets are
underlined. ABC: Approximate Bayesian Computation, RMSE: Root Mean Squared Error,
AML: Acute Myeloid Leukemia, BMA: BioModelAnalzer, LTL: Linear Temporal logic,
SHAP: SHapley Additive exPlanations, ALAL: Acute Leukemia of Ambiguous Lineage,
MPAL: Mixed phenotype acute leukaemia, SMT: Satisfiability Modulo Theories.

2.2 Dataset description

This thesis uses a range of datasets to explore the theme of cancer progression in blood
diseases. A brief description of each set is given in the following subsections.

2.2.1 In-vivo lymphoma tumour growth in mouse models

Almost 50% of human cancers have a mutant p53 protein which has lost its tumour protective
effect as a result of its transcriptional activity depletion through multiple mechanisms [241].
Restoration of p53 functions in tumours has legitimately been proposed as an effective cancer
therapy, however resistance development currently obstruct treatment efficiency and its
process remains unclear. Understanding how this resistance arises would have considerable
implications for existing p53 based treatments, such as Nutlin based MDM2 inhibition
[242] and p53 gene therapy [243]. Martins et al [1] studied p53 restoration therapy with
a reversibly switchable p53 knockin in Eµ −myc lymphoma mouse model. These mice
develop clonal B cell lineage lymphomas after being injected with a transgenic cell line
which overexpresses Myc oncoprotein. Administration of a drug called tamoxifen makes the
p53 protein functional again for about 30h. Whilst restoration of p53 is initially effective,
rapid tumour regrowth with tamoxifen resistance is observed.
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An interesting question arising from this study is: can we improve treatment strategies
to avoid or delay this resistance emergence while increasing patient survival? Martins
et al attempt to answer this question by developing additional experiments with in vivo
quantification of tumour growth through fluorescent markers. To do so, Eµ −myc lymphoma
tumour cells were harvested from mice with the reversibly switchable p53 knockin and
modified to include the fluorescent marker MSCV-Luciferase-Puro. Those cells were grown
in cultures and re-injected in four new cohorts of mice (day 0). Each cohort consisted of
four mice and followed a different treatment schedule: no tamoxifen injection (control),
daily injections for 14 days (continuous), injection every 3 days (periodic3) and every 5
days (periodic 5). The first injection was done at day 10 and experiments concluded at day
35. Using imaging and luciferin techniques, the relative size of the tumours was assessed
as photon counts which are translated into cell numbers in this thesis. Mice survival varies
among groups, with lowest survival for the control group and highest for the continuous and
periodic treatment schedules (Table 2.1). I study this lymphoma growth dataset in Chapter
3 to determine how to use cancer cell dynamics to delay resistance growth and improve
treatment strategies to increase survival.

Treatment Survival (days)
Control 22, 22, 26, 26
Continuous 14 days 32, 35, 35, alive at 35
Every 3 days for 13 days 32, 32, 32, 32
Every 5 days for 16 days 25, 26, 30, 31

Table 2.1 Mouse survival for each p53 restoration treatment procedure in lymphoma
mice cohorts. Except for one mouse from the continuous treatment regime which survived,
all mice succumbed to the disease regardless of the treatment procedure. As expected,
survival is the lowest in the control group that did not receive any treatment. Mice in
the continuous regime display the longest survival. However, the periodic schedule with
tamoxifen injection every 3 days also leads to good survival outcomes.

2.2.2 RNAseq of AML patients

To study timing in human blood malignancies, I use in the next chapters (Chapter 4, 5
and 6) an AML public dataset. Data is available on The Cancer Genome Atlas (TCGA)
project website [132]. Initiated in 2005, the TCGA project aims to regroup in a single
platform patient samples and genomic studies of different cancer types. Data includes patient
characteristics, their diagnosis and prognosis as well as their genetic mutational profile and
gene expression profiling.
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The data used in this work consists of 200 patients with de novo AML, among which
173 have RNA sequencing (RNAseq) information. RNA sequencing is a next-generation
sequencing (NGS) technique which provides an overview of the transcriptome (mRNA, tRNA,
sRNA) state of a sample at a given time point. This information is important to highlight
which genes are turned on or off and what is their level of expression. The main advantage
of RNAseq is that it does not require any prior sequence information (unlike microarrays)
and it can detect structural variations such as gene fusions and alternative splicing events.
Its drawbacks are its cost and more complex bioinformatic analyses compared to methods
such as microarrays. However, RNA sequencing cost has been decreasing over the years
with improving modern technologies and a large amount of packages and tutorials are now
available to study RNAseq data [244].

AML RNAseq data obtained from TCGA is a gene expression matrix with the patients
as the matrix columns and the genes as the rows. Each cell gives the raw counts of each
gene of each patient. Data contains 20531 genes. As raw counts are not comparable between
samples and genes due to experimental and gene length variations [245], it is necessary to
normalise the gene raw counts to compare samples. I therefore choose to normalise raw
counts into Transcripts Per Million (TPM). TPM is a well-used technique which was shown
to be the best normalisation method to analyse RNAseq data thanks to its preservation of
the biological signal [246]. All analyses are performed with the normalised data except for
the DESeq2 differential analysis in Chapter 6. Using python programming, I filter unknown
genes and genes with low expression (more than 50 patients have the gene expressed at less
than 1 TPM). Outcome file contains 11832 genes for 173 patients.

Fundamental for the clinical analyses, TCGA provides a file containing the clinical fea-
tures of each patients. Data contains: sex, race, age, FAB subtype (M0-M7), the percentage
of blasts in the bone marrow and in the peripheral blood, the white blood cell count (WBC),
the cytogenetics, the gene fusions and rearrangements, the cytogenetic and molecular classi-
fication, the cytogenetic and molecular risk, the single variants, the event free and overall
survival as well as each patient mutation profile and some clinical details.

2.2.3 Microarrays of MPN mouse cohorts

To validate the predictions of the MPN computational model in Chapter 4, I work with a pub-
licly available dataset from a recent study on MPN [150]. In this paper, authors compare the
effect of JAK2V617F and TET2 loss mutations in different cohorts of genetically engineered
mice. Experiments start with a JAK2 knockin mouse model in which JAK2V617F is ex-
pressed from its endogenous promoter and which can reproduce human MPN characteristics
[149]. Using similar experiment settings, mice with four distinct genotypes are generated:
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wild-type (no mutation), JAK2 single mutant, TET2 single mutant and a double mutant (both
genes are mutated). From these mice, LSK cells are isolated to perform gene expression
profiling. Detailed experimental protocols can be found in [150, 149].

To compare the different genotypes, authors use microarray data set, an high-throughput
technology. Data has been deposited in the ArrayExpress repository at European Molecular
Biology Laboratory–European Bioinformatics Institute and is accessible through the Array-
Express accession number E-MTAB-2986 (http://www.ebi.ac.uk/arrayexpress/). Microarrays
are relatively cheap and reliable tools to detect gene expression (as a signal) in a sample
using fluorescence [247]. However, one of the main drawbacks of microarrays compared to
RNAseq is the need of probes (fragments of DNA or RNA) which are necessary to detect
gene expression. When using microarrays, a limited number of gene expression levels can be
assessed. It is therefore crucial before using microarrays to select the appropriate probes for
the genes of interest. Microarray experiments from [150] contain all the genes included in
the MPN molecular network. Comparison of their expression in the different mouse cohorts
can validate our model findings in Chapter 4 (section 4.2.3).

Data contains 4 mice with a wild-type (WT) genotype, 3 with a single JAK2V617F
mutation, 2 with a TET2 loss mutation, and 4 with a double mutant (JAK2V617F/TET2)
genotype. Using a R script, genes that have a low detection signal (p-value ≤ 0.05) are
removed as they represent poorly detected genes and might introduce errors. However, all
gene probes are kept (one gene can have several probes for distinct isoforms). Finally, to
exclude potential technical variations in the analyses, quantile normalisation, a popular and
robust technique when appropriately performed is applied [248].

2.2.4 RNAseq of pediatric ALAL patients

In the prospect of establishing a link between a gene of interest APP and MPAL, two datasets
from two different studies are analysed in Chapter 5. Both are publicly available RNA
sequencing data from published papers on mixed phenotype/undifferentiated leukemias. The
first study focuses on pediatric acute leukemia of ambiguous lineage (ALAL) patients [249]
while the second described in the following subsection 2.2.5 examines adult MPAL [250].

In their paper, Alexander et al [249] gather the gene expression information of 115 pedi-
atric ALAL patients: 35 are diagnosed with B-Myeloid MPAL, 49 with T-Myeloid MPAL, 16
with KTM2Ar MPAL and the 15 remaining have other subtypes of ALAL. ALAL consists of
mixed phenotype acute leukemia (MPAL) and acute undifferentiated leukemia (AUL) [251].
The normalised gene expression matrix as well as the raw counts of each patient can be found
on the National Cancer Institute website (https://target-data.nci.nih.gov/Public/ALL/mRNA-
seq/Phase3/L3/expression/StJude/). The gene expression matrix has been normalised us-
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ing the rlog transformation by DESeq2 [252]. To be able to compare those data with
AML, I combine using python programming all patient raw counts into one matrix without
gene filtering which has already been done by authors. Gene annotation is performed
using the BiomaRt R package [253]. As identically implemented in AML data, raw
counts are normalised using TPM. Outcome file contains 50635 genes for 89 patients.
Clinical information of patients can be downloaded on the same website (https://target-
data.nci.nih.gov/Public/ALL/clinical/Phase3/harmonized/). In the file, gender, survival,
WBC, diagnosis and disease classification characteristics are available.

2.2.5 RNAseq of adult MPAL patients

The second dataset I use in Chapter 5 consists of adult MPAL patients [250]. The paper gives
a summary of the clinical characteristics of 31 patients. Among those, RNA sequencing
information of 24 patients diagnosed with B-Myeloid or T-Myeloid MPAL are publicly
available in the Gene Expression Omnibus repository with the following accession numbers:
GSE113601. Raw counts and specific patient clinical details are unavailable. Analyses
in Chapter 5 are carried out with the accessible gene expression matrix which has been
processed and normalised by DESeq2 [252]. This file contains 57773 genes. Absence of the
original count information prevents the required transformation of these data into TPM for
AML/MPAL comparison.

2.3 Computational tools to simulate and evaluate lymphoma
rule-based models

2.3.1 Rule-based models

Rule-based models are used to describe the in vivo tumour growth of lymphoma mouse
models in Chapter 3. This modelling technique simulate the behaviour and interactions
between "species". The interest for such models is still emerging, but their application
to diverse biological systems is currently growing thanks to their ease of use [254–256].
Species can be any biological components such as proteins and molecular complexes, as
well as cells or living organisms. In rule-based modelling, rules refer to conditions for the
reaction/interaction to happen and include the reaction rate, which means how often the
reaction happens, and what the outcome of the reaction is. The main advantage of this method
is that not all the different model states need to be specified, meaning that a single rule can
be applied to several different reactants but all have to possess the required conditions for the
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reaction to happen. This characteristic is particularly attractive for large and complex systems
which cannot be described by traditional methods such as ordinary differential equations due
to combinatorial explosion [255].

An example of rule-based model for a population of cells C that divide at rate α and die
at rate β can be written as follows:

C α−→ C+C

C
β−→ ⊘

(2.1)

2.3.2 BioPEPA for the time-series and distribution analyses

BioPEPA is a language for describing, modelling and analysing biochemical networks.
BioPEPA is an extension of PEPA which is a process algebra defined for the performance
analysis of computer systems. A comprehensive description of BioPEPA language can
be found here [257]. One of the main feature of Bio-PEPA is the possibility to represent
explicitly the characteristics of biochemical models, such as stoichiometry and the role of
biological species in diverse reactions. The software enables the user to apply different
mathematical and statistical analyses on the same biochemical model. However, I mostly
use BioPEPA time series simulations for the lymphoma rule-based models. Simulations in
this thesis are performed using the Tau-Leaping algorithm when stochastic simulations are
desired, and the Implicit-Explicit Runge Kutta ODE solver for deterministic simulations.
This Bio-PEPA functionality enables to study the evolution and proportion of the sensitive
and resistant populations in the lymphoma model during treatment administration.

2.3.3 ProPPA for the parameter inference

ProPPA (Probabilistic Programming Process Algebra) is a process algebra that allows uncer-
tainty in the model description [258, 259]. By using Bayesian inference, a machine learning
method, and "observation datasets" compatible with a defined model, ProPPA can be used
to infer the parameters of this model. This tool is particularly useful for biological models
in which parameter values could not be found, are uncertain or when current techniques
are not accurate enough to have a precise idea of some parameter values. This software is
used to infer most parameters in the lymphoma computational model as additional biological
experiments were not available to obtain parameter values experimentally.

To infer parameter values, the choice of the algorithm is crucial and depends on the
model and the data (details on how to choose the algorithm can be found in Chapter 5 of
Georgoulas [259]). Each algorithm uses either stochastic or deterministic approaches, but all
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start with a proposed sample of parameter values. The algorithm will accept or reject this
sample according to input criteria. The next proposed sample is chosen through a function
depending on the last accepted sample. ProPPA output is a text file with the set of accepted
parameters.

Parameter inference are first carried out using the Approximate Bayesian Computation
(ABC). This algorithm is chosen as it explicitly takes into account stochastic effects and does
not use likelihood calculations which can be computationally expensive. A more detailed
description of the method and pseudo code of the ProPPA ABC algorithm can be found in the
subsection 2.3.5. However, as a result of the Gillespie algorithm and the large number of cells,
simulation times of the lymphoma rule-based models with ABC are long (see the stochastic
simulation algorithm subsection 2.3.4 for Gillespie algorithm). Unfortunately, switching
Gillespie to Tau-Leap algorithm did not improve much simulation timing, and as the ABC
method is highly dependent on configuration values, I opt for a deterministic approach called
the fluid approximation algorithm which is faster to run (details and pseudo code in the
subsection 2.3.6). As the models contain a large number of cells, continuous simulations can
be considered as a good average of stochastic simulations. However, with this approximation,
the variability property of tumour growth and random resistance emergence are ignored.

2.3.4 Stochastic simulation algorithms

For the ABC parameter inference, ProPPA uses the Gillespie algorithm to simulate the
model with the proposed parameters. Gillespie generates exact stochastic trajectories for a
system and has originally been designed to stochastically simulate chemical reactions [260].
However, Gillespie is now applied to many other biological fields such as epidemiology [261]
or ecology and evolutionary dynamics [262]. Pseudo-code of the algorithm is found below.
The first step of this algorithm consists in evaluating all the possible reactions of the system
among which each reaction has a corresponding rate, for instance division, differentiation
or death rates in the case of cellular models. The probability for this reaction to happen as
a next event is proportional to its rate and the number of input variables affected by this
reaction. Then, two numbers are randomly generated: one will determine the next reaction
and the other the time interval at which it will happen. Next, the new time and number of
variables are updated accordingly to the picked reaction and interval. A new iteration can
then start and randomly pick new numbers until the system reaches a time threshold initially
defined by the user. The outcome is a trajectory describing the evolution of all the variables
of the system. Generation of a large number of trajectories gives all possible solutions for
the final states of the model. Gillespie is therefore a useful and accurate tool to simulate
biological models, however, reactions with a lot of input variables or happening at a fast rate
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considerably slow the simulations by generating very small time intervals and the algorithm
can therefore become ineffective.

Result: Gives the model trajectories of each variable xi

Initialisation of the variables xi(0) and time t = 0;
while t < tmax do

Generate two uniform random numbers u1 and u2;
Determine the next time step dt using u1;
Compute each reaction probability;
Determine the next reaction using reaction probabilities and u2;
Calculate the new system state xi(t +dt);
Set t = t +dt;

end
Algorithm 1: Gillespie pseudo code

with i = 0,1, ..,N, xi the N variables of the model and tmax the time threshold.

To overcome slow simulations in larger systems, Gillespie proposed an approximate
algorithm called Tau-Leaping in which the time interval is constant and therefore the system
is less often updated [263]. For a defined time step called τ , Tau-Leaping generates for each
reaction a random number from a Poisson distribution giving the number of times each event
happens. Similarly to Gillespie, the number of reactions per time step is proportional to its
probability to happen. By doing so, Tau-Leaping is less accurate than Gillespie, however, this
approximation applied to systems that does not change much in a time step can considerably
improve simulation time with a relatively low impact on the accuracy of the trajectories [264].
The time step should therefore be small enough that the system does not substantially change
during this interval.

2.3.5 Approximate Bayesian Computation (ABC) method and pseudo-
code

Bayesian analysis gathers methods to find unknown parameters and requires three main
inputs: some data, a model and priors [265]. Priors are the information one already has on
the model and the parameters and constitute one of the main assets of using such methods.
Inputs combined with the application of the Bayes theorem generate an output solution for
the unknown parameters called the posterior probability distribution. The Bayes theorem is
defined as follows:
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P(θ |D) =
P(θ)×P(D|θ)

P(D)

with D the data, θ the unknown parameters, P(θ |D) the posterior distribution, P(θ) the
prior distribution for the unknown parameters, P(D|θ) the likelihood of observing the data
with a sample of parameters and finally P(D) the model evidence which can be interpreted
as the probability that randomly selected parameters from the prior would generate D.

The Approximate Bayesian Computation (ABC) method uses model simulations to
approximate the likelihood of the proposed parameter values and a rejection algorithm for the
parameter selection [266]. Parameter values are accepted or rejected by comparing the model
simulations to the data. If the distance between both is too large, values are rejected. The set
of accepted samples constitute the desired posterior distribution. This Bayesian technique
can however be computationally costly [267].

ProPPA uses a Markov Chain Monte Carlo algorithm for sampling parameter values.
Unlike the standard ABC which picks up randomly parameter values from the prior dis-
tributions, Markov Chain Monte Carlo algorithms create samples of parameters by first
picking up values from the prior distributions while the next samples are generated using the
previous simulation [268]. The appearance of combinations of parameters is proportional to
the probability of these parameter values in the prior distribution. The pseudo code of the
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ABC algorithm is the following:

Result: Gives the accepted samples for the inferred parameters
Initialisation of the inferred parameters x(0);
for i = 0 to imax do

Sample the parameters x∗ from q(x∗|x(i));
Run model with x∗ using Gillespie algorithm ;
Compute Euclidean distance dx∗ between the simulated trace and observation data ;
if dx∗ < eps then

Sample k using an uniform distribution of interval (0,1) ;

if k < min(1, p(x∗)
p(x(i))) then

x(i+1) = x∗;
else

x(i+1) = x(i);
end

else
x(i+1) = x(i);

end
end

Algorithm 2: ProPPA ABC algorithm for inference parameters
with p the prior distribution of the inferred parameters and q is the distribution that

suggests the next candidate for the parameter sample with a mean x(i) (the previous accepted
sample) and a variance named ’proposal’. eps is the accepted tolerance threshold and imax

the maximum number of samples. imax, eps and proposal are configuration constants that
the user can define in an input text file, which allows a large flexibility for the outcomes
of the algorithm. It should be noted that if the prior p is a uniform distribution, then p(x∗)

p(x(i))
always equals one and thus if dx∗ < eps, the sample x∗ will always be accepted.

2.3.6 Fluid approximation algorithm

As the number of cells is large enough to consider continuous approximation for the sim-
ulation of the lymphoma models, the fluid approximation sampler is chosen over ABC for
parameter inference analyses. Also known as mean field approximation, the fluid approx-
imation algorithm estimates the stochastic dynamics of a system by deterministic ones by
generating for each variable an ordinary differential equation (ODE) [269]. ODEs give
the average number of variables at each time point. Once generated, the ODE solution is
compared to the data. The likelihood L of the proposed parameter values is calculated using
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the distance between the generated simulation and the data assuming a Gaussian noise. A
Gaussian noise is a random variable with a normal distribution and is a useful addition to
deterministic approaches that do not take into account noise in the data experiments. Adding
a noise to the likelihood is therefore an accurate way to include noisy measurements into the
algorithm. The proposed parameter sample is accepted or rejected by comparing a randomly
picked number between 0 and 1 and a ratio r which is a function of the prior distribution p
and the likelihood L between the previous and the proposed sample. The pseudo code of the
fluid approximation defined in ProPPA is as follows:

Result: Gives the accepted samples for the inferred parameters
Initialisation of parameters to infer x(0);
for i = 0 to imax do

Sample the parameters x∗ from q(x∗|x(i));
Solve the model with parameters x∗ using an ODE solver ;
Compute the difference dx∗ with observation data ;
Compute the likelihood L of the parameter values x∗ which is a function of dx∗ and
some noise ;

Compute the ratio: r = p(x∗)
p(x(i))

L(x∗)
L(x(i)) ;

Sample k a random number between 0 and 1;
if k < min(1, r) then

x(i+1) = x∗;
else

x(i+1) = x(i);
end

end
Algorithm 3: Fluid approximation algorithm in ProPPA

with p the prior distribution of the inferred parameters and q is the distribution that
suggests the next candidate for the parameter sample with a mean x(i) (the previous accepted
sample) and a variance named ’proposal’. Similarly to ABC, the Gaussian noise, imax, and
proposal are constant configurations that the user can define in a text file.

2.3.7 Scoring system for ProPPA inference results

Once parameter values have been evaluated, work in Chapter 3 aims to find the simplest
model which can best fit and explain the lymphoma mouse models. A scoring system is
designed to compare the in vivo experiments against the BioPEPA simulations with the
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ProPPA inferred parameters. Scores are computed with the root mean square error (RMSE)
which is defined as follows:

RMSE =

√
∑i(Yi −Y ′

i )
2

N

with for this work, Y the log10 of mouse experiment values, Y ′ the log10 of BioPEPA
simulation values and N the number of observations in one experiment. The lowest the score
the closest the simulation is from the experimental data.

Many evaluation metrics are available to compare observations against simulations,
among which the most popular are the mean absolute error (MAE), the mean squared error
(MSE), the root mean square error (RMSE) and the root mean square log error (RMSLE)
[270]. However, MAE and RMSE are the most commonly used metrics and therefore are
subject to many debates and comparison [271]. While RMSE computes the square root of
the average of squared differences between simulations and actual data, MAE is the average
of the mean difference between both, that is:

MAE =
1
N ∑

i
|Yi −Y ′

i |

Both RMSE and MAE lower values predict a greater similarity between observations
and simulations and both neglect the direction of the errors (Yi −Y ′

i ). However, by squaring
the errors instead of taking their absolute value, RMSE penalises samples with large errors
and outliers. Despite its sensibility to outliers which can be removed before calculating the
RMSE and some criticisms about its ambiguity, the RMSE by giving high weights to large
errors is better for comparing model performance [272]. I therefore decide to use this scoring
metric to compare different rule-based models against the in vivo mouse experiments.

2.4 Construction and analyses of the MPN network

2.4.1 Qualitative Networks

To understand the regulatory dynamics of MPN patients with JAK2 and TET2 mutations,
I build a qualitative network including important hematopoietic regulators. Qualitative
networks are an extension of Boolean networks with two major modifications [273]. First,
discrete instead of Boolean variables are assigned to the nodes representing molecular
expression. This means higher resolution in expression levels. The second change is the
addition of more complex interactions between nodes along with the usual activation and
inhibition.
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First, the formal definition of a Boolean network can be defined as follows: a Boolean
network B(C,F) can be seen as a variant of a graph G(V,E) with V the set of nodes and E
the set of edges. In Boolean networks, C is similar to V and includes all the components of
the Boolean networks, while F is a list of Boolean functions fi assigned to each component
ci ∈C. A Boolean function fi computes the next state of a component at time t +1 using the
current state s of the network at time t:

ci(t +1) = fi(s(t))

As all the components have Boolean values, then fi : {0,1}k →{0,1} with k the number
of components in the network. Boolean network interactions includes activation and inhi-
bition. The connection between two components ci and c j in these networks is attached to
a weight αi j which can be positive or negative for an activation or inhibition respectively.
Therefore, the Boolean function fi of a component ci can be defined as follows:

fi(s) =



0 if ∑
c j∈C

α jic j < 0

1 if ∑
c j∈C

α jic j > 0

ci if ∑
c j∈C

α jic j = 0

(2.2)

Here the term ∑
c j∈C

α jic j gauges the overall effect of all components of the network on

ci. If this effect is positive, the next value for ci is 1, and if it is negative, the next value is 0.
Finally, if the effect is neutral, the component keeps its current value.

Components of a qualitative network are discrete variables, and therefore can express
a higher range of expression. A qualitative network Q(C,T,N) consists of components in
C which can take values in {0,1, ..,N}. N is a constant integer with any possible values
above one, and is called the node granularity. If N is one, the model is a Boolean network.
T is the set of target functions, which are the functions that determine the level toward
which each component moves at the following time step. At each time step, each component
moves by a maximum of one level. The update of each component ci ∈C can therefore be
mathematically defined as:

ci(t +1) =


ci(t)+1 if targeti(s(t))> ci(t)
ci(t)−1 if targeti(s(t))< ci(t)

ci(t) if targeti(s(t)) = ci(t)
(2.3)

with s(t) the current state of the network and targeti ∈ T the target function of ci. targeti
returns a value in {0,1, ..,N}. The default target function is the difference between the
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amount of activation acti and the amount of inhibition inhi a component ci is subject to. Both
are averaged by the total number of activating/inhibiting components and are defined as
follows:

acti =

∑
α ji>0

α jic j

∑
α ji>0

α ji

inhi =

∑
α ji<0

α jic j

∑
α ji<0

α ji

The definition of the default target function for ci ∈C is:

targeti =

{
max(0,acti(s)− inhi(s)) if max(α ji)> 0

N − inhi(s) if max(α ji)≤ 0
(2.4)

where max(α ji)≤ 0 represents the specific scenario when only inhibition interactions
are applied to ci. In this case, the component returns to its maximum value N in absence
of any activity in the inhibitors. However, target functions can also be customised by the
users to represent more complicated biological connections. They include in their formula
mathematical operators such as the addition and multiplication, but also additional functions
such as the floor and ceiling functions which respectively take the value of the closest largest
or smallest integer of the input variable.

2.4.2 BioModelAnalyzer

The BioModelAnalyzer platform (BMA) is a graphical tool for the construction and analysis
of biological systems [191]. Any users can generate simple to complex biological models
which are internally translated into qualitative networks that can be automatically analysed.
The appeal of such method is the absence of required computer science knowledge back-
ground, while advanced users can still make the most of qualitative network features such as
Linear Temporal Logic (LTL) model checking (see LTL section 2.4.3 for more details). I
use BMA to construct and analyse attractors of the MPN network in Chapter 4, but also to
verify that the motifs found by the inference algorithm in Chapter 6 can reproduce the input
observations.

BMA is a visual tool where models are built by dragging and dropping the different
elements into a gridded canvas (Fig. 2.2). The graphical items of BMA are the cells, the
proteins and the edges. Cells make the model visually comprehensible and allow users
to copy and paste motifs, but they have no role in the underlying network and analysis.
Proteins are respectively illustrated by three icons for the receptors, extra and intra-cellular
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proteins. Interactions between proteins have an arrow edge shape for the activations or a
bar-arrow edge shape for the inhibitions. The granularity of the components as well as their
target function are also directly accessible on the interface. The default granularity is one
which generates a Boolean network. Default target functions are as in equation (2.4), that
is the weighted average of activations minus the weighed average of inhibitions that act on
a component. When no activation is present, the variable value stays null. However, these
variable features can be customised by the user by right-clicking on the desired element. A
small window opens with the possibility to add a name, description and target function to the
component as well as change its granularity. Customised target functions includes constants,
other components and simple mathematical operators such as addition (+), substraction (-),
multiplication (*) and division (/). The user can make more complex functions using the
minimum, maximum and average operations. Finally, BMA also includes the ceiling and
floor functions. The target functions simply return, respectively, the closest greatest or lowest
integer when their input is a real number.

Fig. 2.2 BMA interface. All model elements are grouped at the middle top of the screen
and are, in the right order: the cell, the extra-cellular protein, the intra-cellular protein, the
receptor, the activation edge, the inhibition edge and finally the last icon allows the user to
change colours of elements. On the side at the top right, the three icons are for the model
analyses. They are in order from top to bottom: the stability analysis (described in section
2.4.4), the model simulation and the LTL model checking tool (described in section 2.4.3).

Once the model is built and translated into a qualitative network, the next step is the
stabilisation analysis (see [274] and Stabilisation analysis section 2.4.4 for details). BMA
models are discrete and deterministic, therefore the number of states a model can reach is
finite. As part of the possible network analyses, BMA tries to prove the stability of the
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model for different initial conditions. We say a model is stable if, for any initial condition,
all simulations reach a single fixed point attractor. An attractor is a numerical valued solution
the system progresses to. A fixed point is reached if and only if s = T (s) with s a state of the
model, here the fixed point, and T the set of target functions. If the model does not stabilise,
another possible attractor is a cycle of states. In this case, we say the states are recurring and
are defined by s = Tn(s). Here, n defines the size of the cycle, in other words, the number of
recurring states. Finally, the stabilisation analysis can also find bifurcations. BMA performs
the stabilisation analysis for all initial conditions, and different attractors can be reached for
different initial states.

2.4.3 Linear Temporal Logic (LTL) in BMA

Temporal logics are concise languages in the form of mathematical logics, more specifically
modal logics, where one appends temporal modalities to a proposition to add information
about its evolution in time. This means a proposition can be false at a certain moment
and become true later on. Temporal logics include the classic logical operators as well as
temporal operators. We refer logical operators as "OR", "AND", "NOT" and "IMPLIES"
which are all available in BMA Linear Temporal Logic (LTL) analyses. I use the LTL tool in
BMA to analyse the stability of the network and verify that the specifications for all JAK2
and TET2 mutants match the literature.

LTL is one of the most popular temporal logic language and it was introduced by
Pnueli [275]. Its syntax includes two temporal operators written X for next and U for until,
respectively called "NEXT" and "UPTO" in BMA. X implies that a proposition should hold
in the next step while U verifies that a proposition is true up to another becomes true. Derived
from the "UPTO" operator, F eventually and G always respectively specify that a proposition
should be eventually true and that a proposition should forever hold ("EVENTUALLY" and
"ALWAYS" in BMA). Using LTL in biological modelling studies is essential to untangle
patterns in the biological events [276, 277]. LTL can be applied to search for different
temporal properties in models such reachability, liveness, invariance, stability and oscillation
[278].

As LTL queries are model dependent, it has to be manually performed. However,
LTL syntax can be challenging for users with no computer science and formal verification
background. To facilitate LTL queries, BMA includes in its functionalities a graphical
interface for LTL analyses using visual icons representing different LTL operators and
formulas. Users can drag and drop different elements and form formulas for LTL analyses.

LTL queries can be performed following two simple steps: first by defining the network
states of interest and second by adding the temporal and logic operators to these states.



50 Methods

State definition can be carried out by adding value constraints on the different components
of the network. This is achieved through a drop down menu as illustrated in Figure 2.3A.
The second step consists in including the newly created states into the logic and temporal
operators to create new queries. Each operator includes the right number of sockets for the
addition of operands that can be states or formulas made of states and operators. Some default
states have also been included to simplify query production. Self-loop and oscillations can be
added to the formulas. These added features enable users to quickly check the stability of its
model, for example, by simply creating a query with the icons Self-loop (state), Always
(operator) and Eventually (operator) as shown in Figure 2.3B.

(A) (B)

Fig. 2.3 LTL interface in BMA. The two steps to create LTL queries is shown in this figure
with (A) the generation of the LTL state A and (B) the addition of the logic and temporal
operators "ALWAYS" and "EVENTUALLY" to manually perform a stability analysis.

After a query is submitted, three possible outcomes can be obtained: the query is true for
all traces, for some or for none. Respectively, the colour of the query indicates the outcome
and will be either blue, stripes of blue and pink or pink. BMA includes in its LTL analysis
examples and/or counterexamples of simulations demonstrating the outcome of the query.

2.4.4 Stabilisation Analysis in BMA

Stabilisation analysis in BMA is based on the algorithms described in [274]. As mentioned
in the previous section 2.4.2, BMA models have three possible outcomes. The system is
said stable if all simulations reach a unique attractor that is a fixed point. A bifurcation is
observed if the simulations attain a fixed point but there exist at least two different fixed
points for different initial conditions. If none of the above occurs, we can deduce that the
model reaches a cycle of length greater than one.

To prove stabilisation in BMA, the algorithm generates small lemmas on the components
of the network that are solvable through their target function. For example, if a component ci
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is induced by another component c j with a target function targeti = 1+ c j, one can deduce
that ci is always greater than 1 and lower than N, with N the node granularity. This can
be defined using LTL language such that FG(0 ≤ c j ≤ N) ⇒ FG(1 ≤ ci ≤ N). In LTL
language, "F" means eventually and "G" always [275]. In other words, "FG" determines
how components behave in the long term in simulations. Iterative generation of lemmas on
the all components can be therefore described in the general form:

FG(p1)∧FG(p2)∧ ...FG(pm)⇒ FG(q)

where pis are the lemmas of the m input variables associated to a component ci and q is
the resulting lemma defining ci. All lemmas are of the form m ≤ c ≤ M with c a component
of the model, and m and M two constants in {0, ..,N}. All lemmas pi are initially generated
using target functions defined in the BMA models to find m and M. Additional lemmas can
be found using lemmas found with the target functions. The algorithm computes lemmas
until no new ones can be found. Stabilisation is proved if for all the component ci its lemma
entails FG(ci = ki) with ki a constant.

If stabilisation cannot be proved using lemma generation, the algorithm searches for
counterexamples until exhaustion. If no counterexamples can be found, stabilisation is
then proved. To find multiple fixed points (bifurcation) and prove unstability, the algorithm
encodes a problem of existence using a formula satisfiability problem. Let (x1, ...,xN) and
(y1, ...,yN) be two different states of the network such that ∃i ∈ {0, ..,N} ⇒ xi ̸= yi and
∀i ∈ {0, ..,N}, (xi(t + 1) = xi,yi(t + 1) = yi) where xi(t + 1) and yi(t + 1) are determined
via Eq. (2.3). If the problem is unsatisfiable, the algorithm searches for cycles using model
checking [279] and the encoding of liveness to safety [280]. Briefly, the algorithm first
determines the length of the longest path of the network to limit the cycle search. Then, for
all paths of the network, it iteratively verifies if the i-th state of the state sequence defining
a path is different from state 0 (Fig. 2.4). State 0 is formerly certified as not in a self loop
or equal to state 1, in other words, the algorithm check that state 0 is not a fixed point. If
the i-th state of the sequence is identical of state 0, then this means a cycle of length i is
found. Procedures for finding counterexamples is a fast process thanks to the previous lemma
generation that bounded the components and therefore limits the search. Further details on
the algorithm can be found in [274].
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Fig. 2.4 Cycle search in BMA. Cycle search steps are: 1) The longest path of the network is
defined as the algorithm simulation threshold. 2) Check and confirm that state 0 is not a fixed
point. 3) Are state i (i ≥ 2) and 0 equal? If so, cycle has a length i, else, we look at state i+1.

2.5 XGBoost to rank and identify JAK2 correlated path-
ways in AML patients

XGBoost (eXtreme Gradient Boosting) is a machine learning algorithm using gradient tree
boosting to learn from large structured data [281]. In this section, I first define supervised
machine learning and tree ensembles which are two important concepts to understand
Gradient Boosting algorithms. I then give an overview of the essential steps of the XGBoost
algorithm and describe how I customise it for the pathway correlation analyses of Chapter
4. I finish the section by explaining how SHAP scores can help to identify genes correlated
with JAK2.

2.5.1 Tree Ensembles

Supervised learning is a set of Machine Learning techniques that uses information from some
training data to create a learned function which can be applied to new data in order to make
new predictions. For example, supervised machine learning algorithms can be used to classify
pictures of lions and zebras. A first step consists in feeding the algorithm with different
pictures of lions and zebras (the training set) paired with their correct output value "lion" or
"zebra". From these pictures, the algorithm learns how to split the two types of pictures in a
learned function, for example, by using the main colour of the picture as a classifier. If the
picture mainly contains the colour yellow, the algorithm can predict that it is most likely a
picture of lion, but if it is mainly black and white, it can assume it should be a zebra. The final
stage is to feed the algorithm with new pictures without annotations (the testing set) and score
the new predictions the algorithm made. The more lions and zebras correctly detected in the
new pictures and the higher the score will be, scaling the performance of the algorithm and
its learned function. Supervised learning is opposed to unsupervised learning methods which
look for patterns in data, and do not require human supervision. A well-known example
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of unsupervised learning is clustering analysis which aims at grouping data into subgroups
based on the presence or absence of common characteristics.

Also called classification and regression trees (CART), decision trees are supervised
machine learning algorithms mainly used for classification and regression analyses. Classifi-
cation tree analysis is used when the prediction is a discrete variable, as for the lion/zebra
example. When the predictions are continuous values, decision trees are called regression
trees. The goal of both algorithms is to predict the value of a target variable based on several
observations (or input variables). Decision trees can be seen as tree-shaped flowchart, where
each internal node represents a test, each branch is the outcome of the test and each leaf
(terminal node) is the prediction (Fig. 2.5). In the previous example, a test could be "is
the main colour in this picture yellow?" and the two output branches would be "yes" and
"no". From the "no" branch, a new node/test could be added "are the main colours white and
black?". Leaves for this same example would be the values "lion" and "zebra" linked to the
correct branches.

Fig. 2.5 Basic structure of a decision tree.

Accuracy in these models is dependent on the approach used by trees to decide how to
split nodes. The decision criteria will be different for regression and classification trees.
The tree first split the nodes using all available input variables and then selects the split that
generates the most homogeneous subnodes (data are from the same class inside nodes). To
obtain homogeneity, different algorithms are available. Popular algorithms for splitting nodes
include the Gini Impurity and the Information Gain (IG) for quantitative variables [282] and
the variance reduction for continuous variables [283].

CART have many advantages, starting by the simplicity to visualise, understand and
interpret them. Plus as mentioned before, it can handle both continuous and quantitative
variables and does not require any normalisation while many other techniques usually do. The
main disadvantages, however, are issues with overfitting and robustness. Decision trees can
create complex trees that will not represent well general data and depend on the training data.
Consequently, a small change in the training data could impact the tree and its predictions. A
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recognised way to cope with these issues is the use of boosting algorithms that sequentially
build a tree ensemble and where each new model learns from the errors of the previous one.

2.5.2 XGBoost

XGBoost success amongst the research community can be mostly explained by its execution
speed. The scalability of this algorithm lies on its parallel and distributed computing which
offers efficient memory usage. In addition to its interesting speed feature, XGBoost model
performance has been demonstrated by many developers in Kaggle competitions, a well-
known worldwide competition for the data science community. Chen et al [281] reported
that among the 29 challenge winning solutions in 2015, 17 used XGBoost.

XGBoost is a gradient boosting algorithm. Boosting algorithm technique resides in
combining weak learners (here a decision tree) while weighting the outcomes of each
classifier. The algorithm sequentially builds trees in order to build a new stronger model by
untangling the misclassification error of the previous tree and try to reduce it. In my work,
the target variable is JAK2 and is the binary variable I want to predict values from. It takes
only two values: "low" and "high" (translated to 0 and 1 in the code) which represent both
groups of patients with low and high expression level for JAK2.

The first step of XGBoost algorithm consists in calculating the initial prediction for every
observation. The default initial prediction for regression or classification is 0.5. For this
work, this means that it initially assumes that each new individual has 50% chance of being
in the high or low cohort for the gene JAK2. In Gradient Boosting, trees are built to predict
the residuals of the data, which are found by calculating the difference between the last
predicted values minus the observed values. XGBoost starts by computing the first residuals
with the initial prediction and builds a first tree. The first leaf of the tree always contains
all the residuals. The next step consists in computing a quality score, also called similarity
score. Similarity scores allow XGBoost to compare different nodes and their homogeneity.
If residuals with similar values are in the same node, the residual sum will be high while
residuals with very different values (positive and negative) will cancel each other out and the
score will be low.

The next step consists in determining the best way to split the residuals into two groups
for a certain input variable. To do so, several threshold values from the desired input variable
are defined by calculating the means between two consecutive measurements. For example,
if the input variable is [0,2,5,7], the threshold values are 1, 3.5 and 6. These thresholds
separate the residuals into two nodes. Similarity scores of both nodes are estimated and for
each threshold the algorithm computes another score called Gain. XGBoost compares the
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gains between the thresholds and chooses the split with the highest gain (as this is the split
that has best separated the residuals homogeneously).

Then, XGBoost repeats the same workflow for each node when there are more than one
residual. The default number of levels per tree is 6, but this parameter can be customised as
most parameters. Once splitting is achieved, XGBoost avoids model overfitting by deciding
if nodes must be pruned (removed) based on its gain and a parameter γ . The final step for
building an XGBoost tree consists in calculating the output value that the algorithm use to
make the predictions. Once these new predictions are found, new residual values can be
computed and a new tree is built starting by the root node with all the updated residual values.
The algorithm stops building new trees if the number of trees has reached its maximum or
residuals are small enough.

2.5.3 Ranking pathway association for gene expression level using XG-
Boost

Work in Chapter 4 applies XGBoost algorithm to rank gene pathways well-described in cancer
studies to identify which pathways and genes have the highest correlation with JAK2 in AML
patients. Input of the algorithm is the TCGA AML data which is a gene expression matrix,
where columns represent patients and rows the genes. Patients are split into two groups: one
with the highest expression for JAK2 and another with the lowest expression. The goal is to
determine which pathways are the best to classify patients between these two cohorts. This
approach is called binary classification as the target variable JAK2 is quantitative and takes
only two values "low" and "high". The input variables for the classification are the rows of
the matrix, the genes.

Analyses are programmed in python using the XGBoost package. The Matthew Corre-
lation Coefficient (MCC) is used to score the competence of each pathway to classify the
patients into the right cohort. The MCC is currently considered as the most reliable measure
to rate binary classification, as it takes into account the four classes of the confusion matrix
(True Positive, True Negative, False Positive and False Negative) while accuracy and F1
scores only uses True Positive and True Negative:

MCC =
T P×T N −FP×FN
T P+T N +FP+FN

True Positive (TP) and True Negative (TN) are counts representing how many times a
pathway have correctly classified a patient into the high or low cohort respectively. False
Positive (FP) represents the number of times a pathway have classified a patient with low
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expression into the high cohort, and vice versa for the False Negative (FN). MCC score varies
between -1 and 1, but is translated into percentage in the figures.

Evaluation metrics are scores to quantify the quality of a statistical or Machine learning
model. The default evaluation metric in XGBoost is the error rate for binary classification,
which is calculated as the ratio of the number of wrongly classified observations over the total
number of observations. This default function is changed for the logarithmic loss (logloss)
function. The Logloss is thought to be the best evaluation metric for binary classification as
it heavily penalises classifiers (trees) that are confident about a wrong classification [284].

In this work, the colsample_bytree parameter is set to 0.3 instead of 1 (default value).
A pathway can be identified by XGBoost as a good classifier because one of its gene is
highly correlated to JAK2 although the other genes in this pathway are not as good for
clustering patients. The column sampling parameter is a solution to reduce the accuracy of
such models. By setting its value to 0.3, XGBoost builds trees with randomly picked 30%
genes per pathway. Therefore, it excludes in some iterations the genes that could be highly
correlated to the gene of interest, JAK2, and therefore reduces the classifier score if the other
genes of the pathway are not good.

2.5.4 SHAP score

SHAP is used to explain the output of the XGBoost models for JAK2. SHAP (SHapley
Additive exPlanations) aims to ease the interpretability of complex models by representing
the importance of model features with shapley values [285]. Complete documentation on
SHAP and how to use it can be found on github (http://github.com/slundberg/shap).

The Shapley value is a solution concept of cooperative game theory. Cooperative game
theory uses games in which players are forming coalitions (group of players) due to the
possibility of external enforcement of cooperative behaviour. Analysis of such games includes
predicting how players will form coalitions. Each coalition obtains an overall gain from the
cooperation, but each player does not contribute equally to this gain. Shapley values allows
one to determine the importance of each player in the overall cooperation and its expected
pay off.

In machine learning, the coalition can be interpreted as a subset of input variables of
the model, also called features, and the gain of the coalition as the predicted value of the
model for those input variables. Some feature values have a large impact on the prediction,
while others have a small impact. The Shapley value is the average marginal contribution of
a feature value across all possible coalitions. In other words, in a first step, the algorithm
takes different coalitions, or subsets of input variables, and computes the predicted value for
each subset. Then, the algorithm takes these same subsets and adds the feature we wish to
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evaluate. Then, it computes the difference for each subset between the two predicted values
to determine the contribution of the feature to this subset. The average of all contributions
gives the Shapley value for this feature. SHAP scores are part of XGBoost package and
enable in my work to determine in the tested pathways which genes contribute the most to
the good clustering of patients with distinct expression levels of JAK2. Genes with a high
SHAP scores are most likely correlated to JAK2.

2.6 Model checking using satisfiability modulo theories (SMT)

To infer molecular network motifs from biological observations in Chapter 6, I use Z3
theorem prover, a SMT solver by Microsoft [286]. This section aims to present SMT, which
are model checking methods. In the following paragraphs, I first define what is model
checking, then I introduce Boolean satisfiability problems (SAT) to finally explain what are
SMT.

A fundamental step in the network modelling process involves the addition of specifica-
tions. A specification is the formal definition of an observation. For example, a specification
can be the loss of DNA repair mechanisms when the gene TP53 is not functional [287]. The
validation that a network satisfies all specifications can be challenging as a result of the
numerous possible outcomes some model execution can provide.

Model checking is an automatic verification of the model correctness given a specification
in a finite state system [288]. Model checking is a formal verification technique initially
designed to verify hardware circuits [289], now applied to many different fields such as
executable cell biology [219] and communication [290]. Several model checking tools have
now emerged. Among them, SPIN (Simple Promela INterpreter) was released to the public
in 1991 but originally designed in the 80s and first applied by Holzmann et al [290] to
diverse problems such as controlling telephone exchanges or leader election. SPIN includes
a graphical interface called Xpsin which allows users to run simulations and do model
checking. Another tool widely used in model checking is NuSMV [291]. NuSMV is an
extension of Symbolic Model Verifier (SMV), another tool for model checking, which uses
binary decision diagrams (BDDs) to compactly represent sets of states in symbolic model
checking [292]. Boolean functions can be represented by truth tables in which every state
and outcome of the system is included in a table. However, such representation is only
adequate for small systems as the number of states grow exponentially with the number of
variables [293]. BDDs are compressed representations of truth tables which can be reduced
by removing unnecessary states. One of the main applications of BDDs is model checking,
and can be used in many fields such as biochemical networks [294]. Extension of BDDs to
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non-binary discrete systems is achieved with multivalued decision diagrams (MDDs) where
variables take values between 0 and max with max as an integer [295].

Another model checking method consists in solving Boolean satisfiability problems
(SAT). SAT solvers reduce a problem to a Boolean formula and ask whether this formula is
solvable via mathematical proofs. A formula in SAT is built with Boolean variables taking
TRUE or FALSE values and 3 operators: AND (conjunction), OR (disjunction) and NOT
(negation) which mathematical representations are ∧, ∨ and ¬ respectively. SAT formulas
are generally written in the conjunctive normal form (CNF - also called AND of ORs), that is
a conjunction (a sum) of one or several clauses written with disjunctions of literals. Literals
are Boolean variables and their negation and clauses are finite expression formed with literals.
An example of formula in CNF is (x∨y)∧(¬x∨¬y)∧x, with (¬x∨¬y) an example of clause
and x, ¬x, y and ¬y the literals. CNF is opposed to disjunction normal form (DNF - OR OF
ANDS). SAT solvers ask if a formula is satisfiable or unsatisfiable. After assigning TRUE or
FALSE values to all variables, the solver determines if the formula returns TRUE (satisfiable)
or FALSE (unsatisfiable). The main advantage of SAT is that they are NP-problems, that is
they are in general relatively quick to solve [296].

The main application areas of SAT solvers are computer science and machine learning
[297–299]. However, recently, few papers studying cancer and regulatory gene networks
have used SAT solvers on biological models. Lin et al [300] use SAT solvers to optimise drug
therapies with driver gene mutations defined as ’faults’. Optimisation using these solvers
are extremely fast (one second) and predict optimum combination of drugs for different
mutational profiles. More recently, a new study succeeded using SAT to design an improved
method for drug therapy optimisation with a reduced number of constraints and increased
number of results [301]. If no drug is available for a set of mutations, the algorithm predicts
a potential target for new drug design. Both studies demonstrate the fast solving property of
SAT solvers for complex biological problems.

SAT can be extended for the more powerful satisfiability modulo theories (SMT) problem
which consists of a SAT solver with complex non-binary variables. Similarly to SAT, a
SMT problem consists of variables and the three operators AND, OR and NEG. However,
in SMT, Boolean variables are predicates which contain a large range of possible operators
and functions. Predicates are Boolean-valued function, that is they are functions whose
binary outcome, TRUE or FALSE, depends on the values of non-binary predicate variables.
"P(x,y) : x > y" is a predicate with x and y the predicate variables. SMT solvers ask whether
a problem is satisfiable or unsatisfiable by reducing it to a SAT formula. It therefore first
transforms predicates of a problem into Boolean variables and then uses a SAT solver to
solve the problem.
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In Chapter 6, I use the SMT solver Z3 to infer molecular motifs from biological observa-
tions. Z3 uses DPLL(T) to solve problems [302]. This framework uses the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm to solve the Boolean formula generated from the problem and a theory
solver to verify the consistency of the values attributed to the predicates by DPLL algorithm.
For example, the SMT problem (x− x2 ≤ 2)∧ (exp(x) ̸= y)∧ (sin(x) ≥ 0∧ x+ y = 1) can
be written as r∧ s∧ (p∧q) with r, s, q and q the predicates. DPLL will define if the later is
satisfiable while the theory solver will check if the assigned values TRUE and FALSE to r, s,
q and q are consistent among all the predicates.

The DPLL algorithm starts by assigning a value to an unassigned variable. If there are
none, it returns SAT. Otherwise, it simplifies the formula by removing all clauses that are
TRUE with this assigned value. From the remaining clauses, DPLL assigns values to the
unassigned literals so that all clauses become TRUE. If the current assignment cannot satisfy
the formula, then it takes the negation of the first assigned value and tries the simplification
again. If it cannot simplify it, the algorithm chooses another variable for the assignment. The
algorithm ends when it has assigned values to all literals so that all clauses are TRUE (SAT)
or when there is no variable left to assign a value to (UNSAT). In the case of SAT, the theory
solver then evaluates the "feasibility" of the assigned value of each predicate, and determines
if the problem is satisfiable or not. Detailed mathematical background about DPLL(T) can
be found in [302].





Chapter 3

Modelling therapeutic resistance
dynamics of lymphoma mice cohorts.

Abstract

The stochastic evolutionary process of mutations in cancer leads to the development of drug
resistance and often to inefficient therapies. Insights about these processes can lead to better
predictions of tumour growth and with that improved treatment strategies. To this end, I
have developed computational models describing the evolution of sensitive and resistant
subpopulations of a tumour with Luria-Delbrück-like growth, under different treatment
regimes. Using rule-based modelling and parameter inference, this work recapitulates
biological experiments depicting resistance emergence with a p53 restoration model in Eµ-
myc lymphoma under daily drug administration or in the absence of treatment. However,
the calculated growth parameters appear to contradict in vitro experiments and alternative
periodic treatment regimes do not fit our model. The addition of a "regrowth" process is
necessary to fix this issue and identify correct parameters, indicating increased competition
between cells in some treatment strategies. This competitive regrowth process suggests a
counterintuitive response to the removal of drugs, where the substantially larger sensitive
cell population is able to regrow faster than the resistant population despite their apparently
similar relative fitnesses. Further in silico simulations of alternative drugging strategies
demonstrate that maximal survival can be obtained with shorter daily drug administration.
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3.1 Introduction

Tumour heterogeneity plays a key role in tumour development and often complicates treat-
ment strategies due to resistance emergence [303]. Despite this, less than 1% of published
cancer clinical trials cited evolutionary principles [304], which potentially alter interpre-
tations of therapeutic complications. Knowledge about tumour dynamics and resistance
evolution then represents a major advantage when designing treatment strategies to eradicate
cancer, increase patient’s survival and/or decrease treatment toxicities. These dynamics
can also explain the stratification of patient treatment outcomes and help to improve drug
administration.

Here, I present how rule-based models (Methods sections 2.3.1 for details) and parameter
inference can help to describe sensitive and resistant population dynamics in a lymphoma
mouse model receiving p53 restoration therapy [1] (data description in Methods subsection
2.2.1). Parameter inference is achieved on computational tumour growth models with the
help of BioPEPA and ProPPA, two computational languages that perform stochastic and
deterministic analysis using a single model syntax (Methods sections 2.3.2 and 2.3.3 for
details). In particular, analyses show that lymphoma tumours in these experiments have a
Luria-Delbrück-like (LD-like) growth. Despite the weak competition between clones, the
addition of a "regrowth" process is necessary to fully capture the dynamics of cancerous cells.
Thanks to these insights, additional simulations help to optimise a treatment strategy in silico.
Notably, reduced drug dosage and regular injections could significantly improve survival.

3.2 Results

3.2.1 A simple rule-based model can describe lymphoma growth in
mice.

Rule-based models are very effective and succinct way to study complex biological systems
using a simple language. I therefore choose rule-based modelling to describe and understand
clonal evolution and resistance emergence in lymphoma tumours. This first section aims
to depict the framework for the lymphoma model construction. The presented model is
inspired by traditional cancer growth models from the literature [240, 305, 306] and from the
Luria-Delbrück paper [67] for the mutation emergence. The model assumes that resistance
arises from sensitive cell division where a sensitive cell can give birth to one sensitive cell
and one resistant cell. Reverse mutations are ignored as expected to be rare events [307].
Cancer cells divide and die which are often associated to distinct death and birth rates in
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computational models. However, the inference of the death and birth rates in the first model
describing lymphoma growth in absence of treatment gives a straight line suggesting that both
parameters are correlated (Fig. 3.1). Hence, to reduce the number of unknown parameters
and simplify inference, the birth and death rates are combined in one single parameter called
proliferation rate or viability rate in the rest of this chapter.

Fig. 3.1 Inference of the birth and death rates in the control lymphoma model. Accepted
parameters for the birth and death rates of the lymphoma model form a straight line, indicating
a correlation between both values.

In this model, A represents the sensitive cells and M the resistant cells. Resistant and
sensitive cells have different proliferation rates, as this study investigates a potential fitness
cost for the resistant phenotype which can be interpreted as a decreased proliferation rate
compared to sensitive cells. When the treatment is applied, an additional death rate is
included to the proliferation rate of the sensitive cells. The treatment used on the lymphoma
tumours activates p53 thanks to the administration of tamoxifen [1]. The activation is fully
competent 1 or 2h after administration and reverts back to null state at 30h. To simplify the
model, I assume that the treatment is fully efficient for 24h after administration. Considering
all previously described assumptions, the rule-based model for the lymphoma system can be
written as follows:

A
AA−→ A+A

A
AM−−→ A+M

M
MM−−→ M+M

A d−→ ⊘ when treatment is applied

(3.1)

with AA the sensitive proliferation rate, MM the resistant proliferation rate, d the treatment
killing rate for sensitive cells, and AM the mutation rate. The unit for all parameters is day−1.
All parameters are inferred by ProPPA, except for AM which gives poor inference results in
some analyses. When the inference of AM value is not possible, I set the mutation rate at
AM = 5×10−5, which is the rate used by Iwasa et al [240] for their cancer growth model
that shares many similar characteristics with this model.
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3.2.2 Quantitative analysis of in vitro experiments of [1] is used to eval-
uate some parameters.

To validate subsequent inference results and minimise the risk of fitting, I approximate the
values of some parameters using in vitro experiment results described in Martins et al paper
[1]. I first attempt to find the treatment killing ratio d using the Annexin V/PI staining data
plot from the paper (Figure 3.2). Authors observed that six hours after treatment only 6.5%
of the harvested cells are viable against 52% in the control assays indicating an elevated
killing rate. Using those values and the exponential decay equation N(t) = N0e−Kt , I find
a 0.35 per hour decay rate difference between cells that had tamoxifen and the ones that
did not. Therefore, if the treatment efficiency is the same for 24h, the killing rate d should
equal 8.3 cells per day. However, this value seems excessively high. If d was this high, I
should observe in the mice experiments a faster tumour reduction right after the first injection
(assuming resistance is underdeveloped at that time). A first explanation for this excessive
value is that the apoptosis induced by the treatment is not constant during 24h, and 0.35
would be the average decay rate for the first 6h, while it would decrease for the remaining
18h. Another explanation is that harvesting and extracting cells from their environment could
be lethal to cells and induce a higher apoptotic rate, which either way falsify the computation
for d.

Fig. 3.2 in vivo impact of p53 restoration on lymphoma tumours. Lymphoma cell analy-
ses by flow cytometry for DNA content (left) or viability using Annexin V/PI staining (right)
from control mice (Oil) and mice treated with tamoxifen (Tam). Annexin V/PI staining is a
technique to determine cell death rate. Percentage of viable cells in each sample is given in
the right upper corner while the left lower corner gives the percentage of dying cells. Mice
are sacrificed 6 hours post injections. More details about specific experimental settings can
be found in [1].

To confirm the unrealistic high value found for d, I use the mice experiments describing
in vivo lymphoma growth to compute how many cancer cells survived 24h after the first
tamoxifen injection. On average, 29.9% of the cells present at day 10 survived at day 11.
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This average however does not include two mice in which treatment had no effect. In these
mice, in vivo experiments reveal an increased number of tumour cells between day 10 and 11.
If I include all the mice, cell survival after the first injection is 61.8%. Therefore, a sensitivity
ratio close to 8.3 seems improbable, except if the overall growth rate of lymphoma cells is
about 9. This would imply that these cells divide every three hours which is biologically
unrealistic. I conclude that d has to be inferred by ProPPA.

Fig. 3.3 Resistance emerges in lymphoma tumours treated with tamoxifen. Cells har-
vested from mice previously treated with oil (Oil) or tamoxifen (Tam) are cultured in absence
(Ctrl) or presence (4-OHT) of tamoxifen. The proliferative rate (upper panels) and viability
(lower panels) of tumor cells was determined by Trypan Blue exclusion. This figure demon-
strates that cells from mice that had received tamoxifen injections are not responsive to new
injections, while control cells show an important decrease in cell viability. Tamoxifen or
oil were added to the cultures at day 1, indicated by arrowhead. More details about specific
experimental settings can be found in [1].

An approximation of the sensitive and resistant cell proliferation rates can be deduced
thanks to Figure 3.3 from [1]. The software Engauge Digitizer [308] is used to extract data
from the picture. Considering that cells have an exponential growth of shape A0eAAt and
M0eMMt , a linear regression is performed on the logarithmic data using the "stats" R package
[309] to find AA and MM in the different tumours (see Table 3.1). The non-treated tumour 6
helps to recover the sensitive proliferation rate, as I assume that resistant cells are present in
significant lower proportion when no treatment is applied. Mutant proliferation rate is found
thanks to the treated tumour (Tam). However, Tam curves most likely also include the death
of the remaining sensitive cells still present in the tumours and therefore can slightly decrease
the resistant proliferation rate. As in vitro experiments are used to find AA and MM which are
in vivo proliferation rate and as the extraction of figure points and the regression might bring
some imprecision, these values only serve for comparison purpose with the ProPPA inferred
parameters.
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Tumour 6 Tumour 6 Tam Tumour 29 Tam
AA = 0.93±0.12 MM = 1.12±0.02 (ctrl) MM = 1.14±0.02 (ctrl)

MM = 0.91±0.03 (Tam) MM = 0.92±0.06 (Tam)
Table 3.1 Values of cell proliferation rates calculated from the in vitro experiments of Martins
et al paper [1]. Sensitive AA and resistant MM proliferation rates are found using regression
on data extracted by Engauge Digitizer from the result figures in Martins et al [1].

3.2.3 Logistic LD model reproduces lymphoma growth under control
and continuous treatment regimes.

Once the lymphoma model and the parameters to infer have been defined, I start tumour
dynamics analyses by examining the most common treatment strategies, typified by Martins
et al [1]. The first approach is a control regime with no drug applied, while a second
strategy consists of a daily drug administration regime, dubbed "continuous treatment" due
to the treatment 30h efficacy. In their paper, Martins et al present in vitro experimental
data showing tumour growth and treatment efficacy for the control and continuous regimes,
alongside in vivo measurement of survival. In additional unpublished experiments given by
Martins personal communication, in vivo tumour growth dynamics in mice are quantified by
fluorescence for various treatment strategies. The mean survival in the control group equals
24 days post tumour infection and as expected, is the lowest of all treatment regimes. When
tamoxifen is daily administrated for 7 or 14 days at day 10 post tumour injection, survival is
extended to 34-35 days.

I first want to validate or refute the hypothesis that lymphoma in these quantified in
vivo tumour growth experiments possesses LD-like growth characteristics. To do so, I build
rule-based models with LD-like growth characteristics for each treatment schedule and infer
unknown parameters with ProPPA. To simplify parameter inferences, the proliferation of
sensitive cells AA inferred with the model without tamoxifen is not inferred again in the
other models. I assume low resistance in this model as a result of the high tamoxifen killing
efficacy in these control tumours [1]. The treatment killing rate d, the mutation rate AM and
the proliferation rate of the resistant cells MM are therefore only inferred for the continuous
schedule. I first apply approximate Bayesian computation to infer parameters from the
data (Methods section 2.3.5 for details). However, due to slow stochastic inferences and
the high number of cells, I decide to change for a deterministic approach, called the fluid
approximation algorithm (Methods section 2.3.6 for details). ProPPA identifies parameter
values that satisfy the input criteria defined by the user so that model simulations with
sampled parameter values are the closest from the observations. As such, the output from
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each inference is a set of accepted parameter values for the computational model. Accepted
parameter values which appear at the highest frequency in the set are considered the ones
describing better the experiments.

Using BioPEPA, I simulate the control and continuous models with the inferred parameter
values found by ProPPA for different initial number of sensitive cells. I compare the inference
results using the root mean squared errors (RMSE) which help to identify the best fitting
parameters and initial condition (Methods section 2.3.7). These simulations highlight that
the rule-based model with LD growth is incomplete. Figure 3.4A and 3.4B show that while
simulated cells grow exponentially all along, cancer cells in experiments have a reduced
growth the days immediately preceding the mouse death. This phenomenon is observed for
both control and continuous regimes. I decide to modify the exponential growth described in
standard LD models and add a carrying capacity K to the tumour proliferation rates AA and
MM. K represents the maximum number of cells a mouse can support before it dies due to
the tumour invasion. This modified growth function is referred as logistic and is commonly
used in cancer growth models to depict space and resource limitation [310]. For a range
of initial numbers of cells in the tumours (A(t = 0)), I infer in the control regime AA the
sensitive population proliferation rate and K the carrying capacity for the logistic growth,
before inferring the rest of the parameters in the continuous model. Tables of parameter
values and scores for both models can be found in Table 3.2 and Table 3.3. As shown in
Figure 3.4C and 3.4D, the growth update improves data fitting with the simulations of the
new model.
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(A) (B)

(C) (D)

Fig. 3.4 Best fit of the standard (A,B) and logistic (C,D) Luria-Delbrück models for the
control (A,C) and continuous (B,D) simulations and experiments. I use the root mean
squared error, RMSE, to compare the inferences. The RMSE scores and visualisation of
the plots confirm that logistic LD growth better captures lymphoma tumour growth in the
mice. Therefore, high tumour burden in later stages reduces the growth rate in vivo. Black
lines show the simulation of the model and initial conditions with the highest RMSE. Dots
represent the quantified in vivo lymphoma growth in the four mice.

The RMSE scores for the control and continuous regimens indicate that the LD-like
model with a carrying capacity better describes the experiments. The observed logistic
growth suggests that carrying capacity and tumour burden for mortality are related. However,
whilst simulations of this model correctly describe the tumour growth in both treatment
regimes, the parameter values for the logistic LD model appear incompatible with in vitro
experiments from Martins et al [1]. In particular, Figure 2C from Martins et al [1] emphasises
that the drug is very efficient at killing sensitive cells. This experiment indicates that I should
find in the inference a lower value for the sensitive proliferation rate AA compared to the
killing ratio d, which is not what I observe (Tables 3.2 and 3.3). Similarly, as shown by Table
3.1, resistant and sensitive cells have similar proliferation rates in experiments which is not
what I find in the inferences. Therefore, this data in isolation is not sufficient to resolve the
tumour dynamics between different experimental measures of lymphoma growth.
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3.2.4 Competitive regrowth is selected in alternative treatment regimes
with parameter values matching in vitro experiments

Toxicity in chemotherapy is a major concern for researchers and clinicians [311, 312].
Cancer patients often endure heavy treatments with many side effects. Clinicians first aim to
prolong survival but also increase their patient quality-of-life by reducing treatment toxicity.
Periodic treatments have been designed for this purpose, to avoid daily treatment and increase
intervals of drugs intake. In addition to control and continuous regimes, Martins et al also
examine two periodic regimes: drug injection every 3 and 5 days (referred to as periodic3 and
periodic5). Survival in the periodic5 regimes vary from 25 to 31 days, with a mean at 28 days
post infection, whilst periodic3 has a mean survival of 32 days. Using the same inference
technique as in the previous section 3.2.3, I examine if the same logistic LD model can
explain alternative treatment regimes such as periodic regimes. By doing so, robustness of
the parameter inference method is tested while these new analyses allow further investigation
on the contradicting parameter values found in the previous section.

As shown in Figures 3.5A and 3.5B, BioPEPA simulations of the rule-based model with
the logistic LD growth underestimate tumour growth during periodic3 treatment, suggesting
that the model lacks some biological mechanisms to fully explain the lymphoma growth in
these mice. Alongside the low treatment death rate d found for the continuous regime by
ProPPA, this result suggests a link between the growth and the treatment death processes and
that a growth process is missing in the model.
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(A) (B)

(C) (D)

(E) (F)

Fig. 3.5 Addition of a replacement process is necessary for the model to fit the data.
(A,B) The underestimated growth in periodic3 with logistic LD model is improved by the
addition of a replacement process (C-F). The simulations of the new model fit periodic3 (C)
and periodic5 (D) treatment data as well as the control (E) and continuous (F) regimens.

To address this underestimated growth, an additional mechanism needs to be included to
the model. Dying cancer cells release nutrients and modify their microenvironment which
enable surviving cells to boost their proliferation and repopulate tumours after cytotoxic
therapies [313]. We therefore decide to include a new "replacement" process in our model:
when treatment kills sensitive cells, the proliferation of neighbouring resistant M and sensitive
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A cells is induced to fill the empty spaces R or use the nutrients released after cell death. The
updated rule-based model is as follows:

A
AA−→ A+A

A
AM−−→ A+M

M
MM−−→ M+M

M+R
rMM−−→ M+M

A+R
rAA−−→ A+A

A d−→ R when treatment is applied

(3.2)

with R the empty space left by a dying sensitive cell A and r the replacement rate. This
additional competitive regrowth improves the fit of simulations for the periodic experiments
as shown in Figures 3.5C and 3.5D, but also for the control and continuous regimens (Figure
3.5E and 3.5F). Another beneficial consequence of the addition of this regrowth process is
that new inferred parameter values for this replacement model match the in vitro experiments
of Martins et al [1]. As shown by the parameter values of the replacement model (Table 3.4),
treatment efficacy d is now significantly superior to the sensitive proliferation rate AA. Also,
the proliferation rate of the resistant cells is very close to the proliferation rate of the sensitive
cells suggesting that the resistant phenotype does not have a fitness cost to the cells, which
can explain the absence of strong competition between populations during tumour growth.

Name Value (days−1)
Sensitive proliferation rate AA 0.82
Resistant proliferation rate MM 0.75

Mutation rate AM 5×10−5

Carrying capacity K 2.6×1010

Sensitive death rate due to treatment d 2.0
Replacement rate r 0.7

Table 3.4 Inferred parameter values for the replacement model with a logistic LD
growth. All parameter values are inferred, except for the mutation rate AM and the re-
placement r which could not be inferred by ProPPA. AM is taken from Iwasa et al study [240]
and r is found by comparing and scoring BioPEPA simulations to experiments with RMSE
for a range of r values.

An interesting finding with this competitive regrowth model is the addition of the Heavi-
side function for the replacement rate in the model. The Heaviside function is a discontinuous
function such that it equals zero when the argument is negative and one when it is positive. In
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the rule-based model, each death of a sensitive cell due to treatment creates an empty space
or available resource called R. The Heaviside function acts on R such that the proliferation of
neighbouring cells is only activated when R is positive, that is when additional space/resource
is available. Different replacement processes with and without the Heaviside function were
tested and visually compared, but only the use of the Heaviside on R produces a close match
with the experiments. This finding suggests that the tumours are not well-mixed, and an
increase of available space or resource will not increase the proliferation rates (except if
the resource R goes from 0 to any positive number which activates the regrowth process).
However, it should be noted that the discrimination between the tested functions was also
dependent on the limited number of data of this study.

Simulations of the replacement model with BioPEPA shown in Figure 3.6 give supple-
mentary information about resistance dynamics in the different regimes. Increased drug
administration induces a higher proportion of resistant cells when the mouse dies. Conse-
quently, the proportion of resistant cells in periodic5 regimes is almost nonexistent while
continuous treatment kills most sensitive cells. Also, even if periodic treatments have de-
creased drug intake compared to the daily treatment, the frequency of the intake still plays a
role in resistant emergence and evolution. Periodic3 selects resistant population more than
periodic5 and mice in periodic3 die with a higher proportion of resistant cells in their body
(Fig. 3.6C). These insights are crucial for the design of potential new treatment regimes.
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(A) (B)

(C) (D)

Fig. 3.6 Time series analyses with BioPEPA of all the treatment regimes with the replacement
model. (A) In the control model, only sensitive cells are growing as the absence of treatment
does not select for resistant clones. (B) The continuous regime kills almost all sensitive
cells leaving the space and resources to the resistant population which quickly takes over
the tumour. (C) Periodic3 does not select for a particular cell population which creates a
competitive regrowth process between resistant and sensitive clones. In this regime, mice
die with high proportion of both populations. (D) Despite the low drug intake, periodic5
still allows the growth of the resistant cells, however when the mice die, tumours are mostly
composed of sensitive cells. Black arrows give the days of the tamoxifen injections in the
periodic regimens.

Lastly, I want to use this model to estimate the initial number of resistant cells in the
experiments. I find that mice have fewer than 1 in 1000 resistant cells at the start of the
experiment. Simulations of tumours with higher initial resistance (1 in 100 resistant cells)
have an earlier resistant regrowth which do not fit the in vivo lymphoma data points.

3.2.5 Continuous regime can be improved with adaptive treatment regimes.

Next, I hypothesise whether I can use the replacement model to find a better treatment
strategy alternative to increase mice survival. A major advantage of in silico cancer models
is the fast and cheap execution of simulations of potential new treatment regimes. Although
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biological experiments are necessary to validate computational models, this can considerably
speed up treatment designing processes. Using the replacement model, I therefore investigate
simulations of different treatment regimes to see if a new treatment schedule can improve the
survival of the continuous regime.

As illustrated in the previous section 3.2.4, continuous regime kills all the sensitive cells
before the end of the treatment (Fig. 3.6B), suggesting that past a certain time, treatment is
inefficient. Daily drug administration can be harmful for patients, thus reducing the drug
intake can improve patient’s quality-of-life. I design several in silico continuous regimes
with different treatment period length, and compare them to the 14-day continuous treatment
used in experiments. In silico simulations demonstrate that once the resistant population has
overtaken the sensitive one, any further drug administration becomes ineffective. When the
drug is given daily, resistance overtakes sensitive cells at about 5 day post first treatment
injection. For this reason, a 5-day continuous treatment regime has a very similar curve
and survival than the 14-day continuous regime (Fig. 3.7A). Surprisingly, 6-day continuous
regime overlaps the original 14-day continuous curve, indicating that the last 8 days of
treatment have no impact on survival while increasing toxicity for the mice.

As described in section 1.4.2, adaptive therapy aims to stabilise tumours and increase
patient survival by promoting competition between sensitive and resistant populations [71].
Despite the lack of a resistance cost in our lymphoma model, the existence of a competitive
regrowth process suggests an interaction between both population which could be used in
treatments. Inspired by the concept of adaptive therapy, a rule-based model in which sensitive
population is kept constant is designed as a thought experiment. I find that keeping sensitive
clones to a stable state considerably increase the survival which could potentially be extended
from 35 days, mean survival of mice in continuous regime in experiments, to 40 days (Fig.
3.7B).

The competitive regrowth process potentially offers an opportunity to extend survival
times. Additional in silico simulations suggest that daily injections with reduced drug
efficacy could in principle extend life (Fig. 3.7C). The lower efficacy treatment leads to a
transient but potentially long lasting equilibrium between cell populations which is reached
below carrying capacity. This is enabled by the effective first-mover advantage [314] of the
sensitive population. Due to its relative higher number, the larger sensitive population is
able to quickly reuse available resources and thereby effectively suppress the growth of the
resistant population.
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(A) (B)

(C) (D)

Fig. 3.7 Additional in silico simulations help to identify strategies which reduce treat-
ment toxicity and improve survival. (A) Reducing treatment length in continuous regime
gives similar survival with diminished drug intake. (B) Keeping the sensitive cells A to a
constant level with a theoretical treatment regime increases the survival by five days. (C)
Additional simulations with new drugging strategies suggest that reducing the efficacy of
treatment may allow a temporary restriction of tumour growth due to competition between
sensitive and resistant cell populations. (D) Survival can vary by two days between a patient
with high resistance profile and another with initial low resistance.

Finally, survival times are prone to variations due to the stochastic emergence of the
resistant population in tumours. This is particularly true for the periodic5 mouse cohort
which has the highest survival variation of all regimes. Due to the high number of cells in
tumours, models have been simulated deterministically. Consequently, these deterministic
models ignore the variability in patient resistance profiles. To determine this variability and
how it impacts survival, I compute using stochastic simulations of the lymphoma rule-based
model the resistance distribution at day 10, that is just before the first injection of tamoxifen.
From this distribution, the lower quartile, the median and the upper quartile are defined as the
new initial numbers of resistant cells before the treatment is applied. Then, using these new
initial conditions, deterministic simulations of the continuous regime model are performed.
Simulations show that tumours with higher or lower resistance reach the same maximal
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tumour burden with a difference of two days (Fig. 3.7D). In periodic regimes, no survival
difference is observed between different levels of initial resistance.

3.3 Discussion

In this work, I develop rule-based models and apply Bayesian inference to find parameter
values to describe the growth dynamics in different treatment regimes of an in vivo lymphoma
mouse model from Martins et al [1]. To my knowledge, this is the first study using such
approach to propose alternative treatment schedules. Alongside a logistic LD-like model
that explains tumour growth in control and continuous treatment regimes, a replacement
process, defined as a competitive regrowth induced by sensitive death release of nutrients
and space, is necessary to fully describe all treatment regimes including periodic treatments.
Addition of a regrowth process also enables to find compatible inferred parameters with
in vitro experiments. Model simulations confirm that applying daily tamoxifen injections
quickly kills all sensitive cells, which leaves space and resources for a rapid proliferation of
the resistant clone. In contrast, periodic treatments with longer intervals between injections
do not promote such a strong resistance invasion. Finally, additional in silico treatment
simulations suggest three potential improvements for therapy schedule. First, reducing
the 14-day continuous treatment by 8 days should give similar survival with less drug
administration. Secondly, aiming at keeping a constant proportion of sensitive cells should
increase survival. Lastly, daily injection with a reduced drug efficacy can temporarily stabilise
tumours before reaching the maximal tumour burden, and potentially increase mice survival.
However, the broader utility of this approach depends on both the treatment type and the
relationship between the tumour size and animal death, but it suggests that competitive
processes even in liquid cancers may be generally exploitable.

Models in this study reveal interesting biological mechanisms. First, despite the similar
proliferation rates of sensitive and resistant cells, this competitive regrowth shows that
sensitive cells use their substantially higher population size after drug removal as a fitness
advantage to repopulate the tumour faster than the resistant clone. Therefore, a short gap
between injections allows the sensitive cells to still outnumber resistant cells and take
advantage of the remaining space and resources. Secondly, the logistic behaviour of the
tumours suggests that growth is slowed down when approaching the mouse death, probably
due to the organ dysfunctions involved in the killing process. Thus, with further studies,
estimating the tumour growth rate could predict patient survival as growth rate gradually
decreases with tumour burden. Finally, the periodic3 treatment regime leads to a higher
competition between cancer cells and increases survival to a similar level as observed with
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the continuous treatment. This finding agrees with adaptive therapy models described by
Gatenby et al [71] in which triggering high competition between populations in tumours
capable of such competitive behaviours increases patients’ survival without requiring daily
drug injections. However, as demonstrated by the theoretical treatment in which sensitive
cells are kept to a constant state, triggering competition in these lymphoma tumours is
inefficient for a complete recovery as resistance always takes over sensitive cells. This
suggests that due to the LD-like behaviours of this particular cancer cell line, competition
cannot contribute to extreme survival increase like the one observed in adaptive therapies.

Another interesting finding is the use of the Heaviside function for the replacement
rate in the rule-based model. This function implies poorly-mixed tumour populations.
Experiments with their few number of mice might have also biased this particular function
choice. However, this idea of poorly-mixed populations despite tumour heterogeneity
has been described in several papers, among which Lloyd et al [39] describe two distinct
populations in the core and edge of the tumours due to microenvironment pressure and Raz
et al [315] which show that hypoxia induces resistant phenotypes in the core of tumours. A
plausible explanation for the good match of the Heaviside function is that treatment kills
sensitive cells in some specific and easy-to-access areas creating a large space of resources R
with only the outlying resources/spaces accessible to neighbouring cells while further central
resources R become accessible once the outlying ones have been consumed.

I run parameter inference in ProPPA using a deterministic approach. However, I first
started with a stochastic method called Approximate Bayesian Computation (ABC). Due to
the high number of cells (reaching up to 1010 cells), simulations with this approach were
extremely time consuming. Changing the Gillespie algorithm used by ABC to Tau-Leap, an
algorithm which is faster, did not improve simulation times. Moreover, ABC outcomes can
vary substantially with the input configuration values. For these reasons, I decided to switch
to a deterministic algorithm and ignore stochasticity in the models for faster simulations.
However, as illustrated with simulations of patients with distinct resistant profiles (Fig. 3.7D),
the survival varies only by one day if the resistance is low or high compared the median
and deterministic behaviour. Therefore, I believe that ignoring the stochastic resistance
emergence does not considerably alter the results of this study.

Some comments about the models should be pointed out. First, further biological
experiments to validate findings should be performed. In particular, testing the continuous
low dose regimen on a new cohort of mice could confirm the increased survival we observe
in silico. Secondly, quantified tumour growth by photon counts was translated into number
of cells using Figure 3.8 from Sweeney et al paper [316]. This necessary conversion could
have introduced errors. To explore this possibility, further inference work on the photon
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count data was performed. Inference and model fit results were unchanged which therefore
invalidate potential errors caused by the conversion.

Fig. 3.8 Mean photon counts per cell number. Mean photon counts quantified using
the signals of the entire abdominal region of distinct mouse cohorts. More details on
experimental settings can be found in [316]. All variations are < 0.01% except for 2.5×105

which variation is < 5%. Copyright (1999) National Academy of Sciences, U.S.A.

Finally, this work suggests that tools and approaches used to describe lymphoma growth
could be exploited for other types of cancer with different growth dynamics. Rule-based
models and ProPPA parameter inference have helped to better understand Eµ −myc lym-
phoma dynamics, and propose treatment strategies which could improve currently existing
continuous regimes. The same protocol could be applied on more complex biological cancer
models, for example which use multiple drugs, or have drug processes that require several
steps to kill the cells.





Chapter 4

HOXA9 acts as an epigenetic switch in
blood malignancies.

Abstract

Blood malignancies arise from the dysregulation of haematopoiesis. The type of blood
cell and the specific order of oncogenic events initiating abnormal growth determine the
ultimate cancer subtype and subsequent patient clinical outcome. HOXA9 plays an important
role in leukaemia prognosis by promoting blood cell expansion and altering differentiation.
However, the function of HOXA9 in other blood diseases is still unclear. Here, I demonstrate
the importance of this gene in Myeloproliferative Neoplasms and highlight the biological
switch and prognosis marker properties of HOXA9 in AML and MPN. This switch function
can explain the branching evolution of these two blood disorders. First, I establish the
ability of HOXA9 to stratify AML patients with distinct cellular and clinical outcomes. Then,
modelling MPN as a qualitative network, I show that the self-activation of HOXA9 and its
relationship to JAK2 and TET2 can justify the branching progression of JAK2/TET2 mutant
MPN patients towards divergent clinical characteristics. Finally, I predict a connection
between RUNX1 and MYB genes and a suppressive role for the NOTCH pathway in MPN
diseases.
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4.1 Introduction

AML and MPN diseases are hematologic malignancies affecting the myeloid lineage and
resulting in blood cell overproduction. Despite these similarities, genetic alterations, symp-
toms and prognosis differ between both diseases. For example, the JAK2 mutation is the
main driver event of MPN diseases yet is rarely found in AML [317]. However, myeloid
lineage dysregulation by both MPN and AML as well as the ability of MPN to evolve
to AML indicate that both diseases may share dysregulated biological mechanisms. The
identification of these processes will help identify aberrant genes and pathways in blood
malignancies that could be ideal targets for new drugs. It is known that the frequency of MPN
transformation to secondary AML is highly related to the initial MPN disease type [126–129].
Therefore, a better understanding of the molecular events driving the different subtypes of
MPNs is essential to help clinicians diagnose patients with higher risk of thrombosis and
AML progression.

Better understanding of the patterns of genetic alterations in cancer cells can be used for
the classification of analogous blood diseases and evaluation of the risk of developing severe
later stage diseases [318]. Mutations may occur multiple times in a clone over a lifetime,
and therefore modelling how one mutation affects another is important to understand how
the cancer progresses for a better classification. How different combinations and orders
of mutations lead to different subtypes of cancer remains a major open question [319]. In
adrenocortical tumours for example, the order between RAS and TP53 mutations leads
to either highly malignant or benign tumours [320]. Yet whilst it is now possible using
experimental and genomic data to infer the order of mutation in neoplasm evolution[321–
323], the interaction between different mutations as the tumour evolves, how this determines
the future of the tumours, and the influence of order is relatively poorly characterised [324].
The importance of mutation order has been demonstrated in MPN by Ortmann et al [325]
who show that two subpopulations of patients with MPN can be determined by the order of
mutation acquisition between TET2 and JAK2 genes. Further analyses of these cohorts show
that patients with JAK2 mutated before TET2 are younger at presentation of the disease in
clinics, are more likely to present PV, have a higher risk of thrombosis and respond better to
Ruxolitinib, a JAK2 inhibitor drug. However, the molecular interplay between both mutations
within cancer cells and how their order rather their combination triggers dissimilar clinical
characteristics have not been investigated.

Overexpression of a single homeobox gene, HOXA9, has been reported as sufficient to
quickly induce myeloproliferation, gradually followed by AML progression after a period of
time [326]. Homeobox genes or HOX genes were first identified in the fruit fly Drosophila
melanogaster as essential regulators of early embryogenesis [327], and are thought to have a
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critical role in cancer development [328]. Among these homeoproteins, the HOXA cluster is
essential to normal human haematopoiesis [329] and is often involved in leukemogenesis
[330]. In the HOXA family, HOXA9 is the most described gene in literature as its expression
was shown to be the single most highly correlating factor, out of 6817 genes tested, for poor
prognosis in AML [331]. The importance of HOXA9 in AML has been widely explored.
However, this has mainly focused on specific AML subtypes such as MLL-rearranged
leukaemia [332] and NUP98-HOXA9 induced leukaemia [333], while its role in other blood
malignancies such as MPN or other AML subtypes is poorly characterised. Recently, the
oncogenic property of HOXA9 has been associated with its self-positive feedback loop in
myeloid precursor cells as a result of its ability to bind its own promoter [334]. This study
investigates the hypothesis that this specific biological skill can help stratify patients with
blood cancers affecting the myeloid lineage.

A biological switch is defined in this thesis as a molecule producing distinct cellular
phenotype when its expression is activated or inhibited. Using public datasets from AML
patients and MPN studies, the work presented here demonstrates the biological switch func-
tion of HOXA9 by splitting data into two distinct cohorts of patients/mice with antagonistic
expression for this gene. The bimodal expression of this homeobox protein induces a branch-
ing evolution in these blood diseases by separating individuals into two clinically divergent
populations. Clinical heterogeneity includes distinct prognosis outcomes, but also specific
disease type classification. First, HOXA9 bimodal expression affects the clinical features
such as age and white blood cell counts as well as the stratification of AML patients into
specific FAB or molecular subtypes. This stratification is supported by the genetic profile
of each cohort. Next, a molecular network model is designed to describe MPN progression
in patients with JAK2 and TET2 mutations. HOXA9 in this model forms with JAK2 and
TET2 a memory motif, causing a phenotypic switch in double mutant cells with different
mutation order and producing distinct types of diseases. Finally, the network also predicts a
suppressive role for the NOTCH pathway in MPN and a new interaction between RUNX1 and
MYB. Overall, this work shows the significant influence of HOXA9 in two distinct myeloid
blood disorders, MPN and AML, all subtypes included, and establish new essential properties
for HOXA9 in blood cells.
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4.2 Results

4.2.1 HOXA9 expression separates distinct cohorts of AML patients
with distinct clinical features.

Ectopic expression of HOXA9 in AML has been widely demonstrated, but few studies have
investigated the biological attributes of this transcription factor contributing to leukemogene-
sis. Zhong et al [334] have shown that HOXA9 in murine myeloid cell lines can potentially
induce its own expression thanks to a positive feedback loop, which promotes a contin-
uous differentiation block and self-renewal increase of hematopoietic stem cells leading
to leukaemia development. To validate HOXA9 self-activation and its oncogenic role in
leukaemia in general, I study its expression in AML patient RNAseq data from The Cancer
Genome Atlas (TCGA) [132] (data description in subsection 2.2.1). Data show that HOXA9
has bimodal expression in these patiens (Fig. 4.1A). This bimodality separates patients into
two cohorts: 31 patients in the low expression peak, and 80 patients in the high expression
peak. Survival analyses are performed for both groups using Kaplan-Meier survival curves
and the log-rank test (R package survival [335]) and confirm that HOXA9 can be used as a
marker of poor prognosis in AML (Fig. 4.1B). Kaplan-Meier curves estimate the percentage
of survival at each time point taking into account censored data such as patients withdrawn
before the end of the study. The log rank test is a statistical test checking if survival curves
differ significantly. The survival probability for AML patients with high HOXA9 expression
is 0.19 after 3 years versus 0.60 for patients with low expression. This patient stratification
based upon HOXA9 expression supports the reported positive feedback loop characteristic of
this gene and suggests that once activated or inhibited, the gene would have the ability to
keep its expression as is and create a branching evolution in the disease progression.
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(A) (B)

(C) (D)

(E)

Fig. 4.1 HOXA9 low and high expression stratify patients in AML. (A) HOXA9 ex-
pression in AML patients is significantly bimodal (ACR unimodality test rejected with
p < 2.2× 10−16, using the R package multimode [336]), suggesting a role as a genetic
switch. (B) HOXA9 high and low cohorts have divergent AML prognosis, consistent with
known HOXA9 biology in AML. HOXA9 expression also partially explains (C) FAB and
(D) molecular classifications of AML patients. Using Sankey diagrams, I find that the
M3 FAB subtype as well as the PML-RARα and CBF translocations (CBFB-MYH11 and
RUNX1-RUNXT1) are solely linked to low expression of HOXA9. Similarly, the high cohort
possesses specific AML subclasses: FAB M0, FAB M5, MLL/NUP98 translocations and
complex cytogenetics. (E) HOXA9 cohorts show distinct clinical characteristics: high cohort
patients are older, display a higher white blood cell counts (WBC) and tend to have higher
percentage of blasts in the bone marrow.
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To investigate how the switch role property of HOXA9 impacts AML subtypes, I look at
the distribution of French-American-British (FAB, named M0-M7), and molecular classifica-
tions among the two HOXA9 cohorts. Distributions show that different HOXA9 expression
cohorts exclude specific FAB subtypes (Fig. 4.1C). In this dataset, none of the 10 M0 and 15
M5 AML patients are found in the low-HOXA9 cohort while all 10 patients with M3 AML
are observed in the low-HOXA9 cohort. This specific distribution among cohorts suggests the
important role of HOXA9 expression in the clinical characteristics of blood disease patients.

In light of these findings, I looked to characterise the common features of HOXA9
expression cohorts. Cytogenic aberrations and gene rearrangements are frequent in AML
and are known to alter the disease morphology as well as the clinical features and prognosis
[136, 132]. I find that HOXA9 stratifies patients with different molecular classification
(Fig. 4.1D). The 10 patients with PML-RARα translocation and the 9 with core binding
factor (CBF) translocations, RUNX1-RUNXT1 and CBFB-MYH11, are all found in the
low-HOXA9 cohort. Within the high cohort, the specific cytogenic subtypes are complex
cytogenetics and the MLL/NUP98 translocation. MLL-induced leukaemia has been linked to
high HOXA9 [332], while M3 AML subtype is characterised by PML-RARα translocation
and low HOXA9 in the literature [337]. Low HOXA9 expression in AML with RUNX1-
RUNXT1 and CBFB-MYH11 abnormalities, which constitute the core binding factor (CBF)
AML, was also established but unexplained in literature [338]. The work presented here
further establishes the correlation between high HOXA9 expression and the M0 and M5 FAB
subtypes as well as complex cytogenetics. Finally, HOXA9 stratification effect is expanded
to other clinical features such as age, white blood cell count (WBC) and blast percentage in
the bone marrow (Fig. 4.1E). Patients within the high-HOXA9 cohort are significantly older
and have a higher WBC. They also tend to display higher percentage of blasts in the bone
marrow.

PML-RARα , RUNX1-RUNXT1 (AML1-ETO) or CBFB-MYH11 chromosomal ab-
normalities confer good prognosis in AML patients [138, 339]. All these aberrations are
linked to low HOXA9 expression which also exhibits good survival prognosis among patients
compared to high expression. To confirm that high HOXA9 is a poor prognosis marker
independently of its associated molecular aberrations or FAB subtypes, I look at survival
outcomes within FAB classes. M0, M3 and M5 being all specific to one cohort, I examine
the survival of patients within the M2 and M4 subtypes for high and low HOXA9 expression.
Survival curves and log rank tests within both subtypes (p = 9×10−4 for M2 patients and
p = 0.051 for M4 patients) confirm the poor prognosis marker function of high HOXA9 (Fig.
4.2). These results as well as the diverging clinical features among patient cohorts support
the switch role of HOXA9 within AML diseases.
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(A) (B)

Fig. 4.2 HOXA9 high and low cohorts of M2 and M4 AML patients show distinct sur-
vival probabilities. (A) None of the 13 M2 patients with high expression for HOXA9 survive
past 20 months while three among the 10 patients with low expression reach 25 months
(p = 9× 10−4). (B) The Kaplan Meier curves for the survival of M4 patients indicates a
trend towards lower survival probability for patients with high HOXA9 expression compared
to the low-HOXA9 cohort (p = 0.051).

The relationship between HOXA9 expression and clinical characteristics among HOXA9
cohorts suggests that this HOXA gene would be expected to lead to wide-ranging gene
expression changes within blood cancer cells. To explore this, I study differentially expressed
genes between low and high HOXA9 AML cohorts ranked by the absolute value of the mean
expression difference. From the 30 most differentially expressed genes, the majority can be
classified into 5 functional groups (Fig. 4.3). When a gene has several known biological
functions including haematopoiesis, the gene is associated with haematopoiesis. Genes from
the HOX family obtain the highest differential expression values and their expression follows
HOXA9 expression. The second top group is composed of markers for the stem/progenitor
cells and are all up-regulated with high HOXA9 expression. Other identified genes are
involved in hematopoietic differentiation or are markers for the innate immune system and
T cells. Those genes are all down-regulated when HOXA9 is highly expressed. These
observations are consistent with known HOXA9 behaviours from the literature. This is
consistent with the previously identified roles of HOXA9 in proliferation and repopulating
ability of hematopoietic stem cells [340] and with suppression of differentiation [341].
Overall, these results suggest that HOXA9 bimodality in blood cells acts as a switch in
AML, controlling key blood development phenotypes involved in haematopoiesis and the
determination of specific lineages, and ultimately the clinical features of the disease.
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Fig. 4.3 Top 30 most differentially expressed genes for HOXA9 cohorts in AML sepa-
rated by gene family or biological function. The HOX family is the most represented
group, followed by upregulation of the genes involved in stem and progenitor cells and
downregulation of genes involved in hematopoietic differentiation and more mature cells.
All 30 genes have a significantly different mean between the two cohorts.

4.2.2 The JAK2/TET2/HOXA9 motif explains divergent clinical outcomes
in MPN.

JAK2 is the main driver mutation found in all MPN patients, but different subtypes of the
disease with distinct clinical traits are observed [146]. I showed in the previous section 4.2.1
that HOXA9 can induce clinical stratification in AML thanks to its positive feedback loop.
This raises the question whether HOXA9 expression can also explain the divergent clinical
symptoms among MPN patients with both JAK2 and TET2 mutations in different orders.

To address this question, I construct a qualitative network in a multistep process. First,
I identify the fundamental network features required to achieve branching [342, 343]. The
mutation order described in Ortmann et al [325] shows that the first mutation between JAK2
and TET2 in the cell sets up the biological background for the second mutation. Therefore,
the history of a cell mutational profile impacts its current state. This “memory” property can
be induced by a positive feedback loop in cells [344]. A first simple gene motif is designed
with JAK2 and TET2 genes and a third hypothetical gene target that can provide this memory
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property (Fig. 4.4). The gene target must possesses a self-activation loop and is necessarily
downstream of JAK2 and TET2 in order to respond to mutations. Furthermore, as JAK2
and TET2 mutations have constitutive activation and loss of function effects respectively,
each must have the same signed interaction with the gene target. This motif recapitulates
the fundamental properties of mutation ordering; unmutated and single-mutant models are
stable (i.e. they have a unique fixpoint attractor and no cycles - methods section 2.4.4 for
details on stabilisation analysis), whilst the double mutant has no cycles and two fixpoints
that arise from different mutation orders and subsequent activity of the gene target. The
cellular phenotypes are determined by their interaction and relationship with the three genes
and their mutation combination. The resulting bifurcation provides a potential explanation
for the dependence upon order of mutation of the phenotypes observed by Ortmann et al
[325].

Fig. 4.4 JAK2/TET2 double mutant bifurcation illustrated by a simple gene motif. The
different clinical characteristics of MPN patients with JAK2/TET2 can be explained by a
simple gene motif including a memory property. Model starts from a healthy state on the left
(wild type) and sequentially acquire mutations in JAK2 and TET2 genes. The first mutation
affects the gene target expression (middle networks) which remains stable when the second
mutation appears (networks on the right). The order in which mutations occur impacts on the
gene target expression but also the phenotypes, CMP expansion and erythroid differentiation.
Despite the identical final mutational state, the cell shows different hematopoietic behaviours.
The value 1 represents the healthy state, 0 the lowered/inactive state and 2 the overactive
state.
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Once the core motif was defined, I then sought to confirm HOXA9 as a candidate for the
gene target. TET2 and JAK2 have been indirectly and directly linked to HOXA9 activity (Fig.
4.5A). STAT5 is a well-known downstream target of JAK2 [345], and it is also established that
STAT5 and HOXA9 act as binding partners in hematopoietic cells [346, 347]. Furthermore,
it was recently shown that tyrosine phosphorylation of HOXA9 is JAK2-dependent [348].
This JAK2/HOXA9 observation mirrors the finding, a decade earlier, of HOXA10 tyrosine
phosphorylation by JAK2 [349]. Moreover, HOXA9 and HOXA10 share many similarities
[350]. In the case of HOXA9, this tyrosine phosphorylation seems to increase HOXA9 effect
on its downstream targets [348]. Regarding the interaction of TET2 with HOXA9, Bocker
et al found a significant reduced expression of HOXA genes when TET2 expression is lost
[351]. In particular HOXA9 expression in kidney is significantly decreased by TET2 lost.
TET1 was also found to positively target HOXA9 in Mixed Lineage Leukaemia [352], and
despite the rare involvement of TET1 in leukaemia compared to TET2 [353], both TET1 and
TET2 expression disruptions share many clinical similarities such as increased hematopoietic
stem cells and alterations of both the lymphoid and myeloid lineages [354]. There is evidence
that HOXA9 is activated by both JAK2 and TET2 and possesses a self-positive feedback loop
property [334]. Therefore, the JAK2/TET2/HOXA9 motif shares all the required properties
for observing a branching evolution in blood diseases. I therefore propose that HOXA9 acts
as the "memory" of JAK2 and TET2 mutation order in MPN. It should be noted that in the
complete MPN network of this work, HOXA9 requires both JAK2 and TET2 expression to be
active (Table 4.3). Upregulation of either JAK2 or HOXA9 results in the increased expression
of HOXA9 while TET2 loss decreases its expression, and once in either mutant states, HOXA9
expression retains its activity level as a result of its feedback loop.

Based on this JAK2/TET2/HOXA9 motif, the MPN model is extended to reproduce the
observed biological differences between patients with different combinations of JAK2 and
TET2 mutations. To do so, six phenotypes relevant to cancer development are included in the
model: stem cell self-renewal, common myeloid progenitor (CMP) expansion, granulocyte-
monocyte progenitor (GMP) expansion, GMP differentiation, erythroid differentiation and
megakaryocyte-erythroid progenitor (MEP) expansion (Fig. 4.5B).
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(A)

(B)

Fig. 4.5 JAK2/TET2/HOXA9 molecular network for MPN progression. (A) HOXA9 is
downstream of both TET2 and JAK2 and acts as a developmental switch through its self-
positive feedback loop. Direct interaction drawn as continuous arrows and post translation
modification as dotted arrows. (B) The JAK2/TET2/HOXA9 molecular network is built with
the BioModelAnalyzer (BMA) tool [191] and integrates six phenotypes considered as the
model outputs. Using the Linear Temportal Logic (LTL) model checking tool available in
BMA (Methods section 2.4.3), a bifurcation is observed after simulation of the double mutant
state. The bifurcation analysis identifies two stable states with different phenotype values
that fit the mutation order characteristics observed in MPN patients with JAK2 and TET2
mutations.

To capture the wider biology of MPN progression, important hematopoietic markers are
incorporated to the molecular network (Table 4.1 and Fig. 4.5B). As shown in Table 4.1,
all interactions are found in studies with distinct experimental settings but all focusing on
hematopoietic cells. For the stem cell self-renewal, I assume TET2 is the only gene that can
modify stem cell properties as in all the genes in the network, it is the only potential genetic
regulator having a clear and undoubted role in early stem cells [158, 162]. I then search for
transcription factors involved in the myeloid lineage. SPI1 and CEBPα are identified as
important markers of the monocyte and macrophage lineages [355]. SPI1 activates CEBPα

in early progenitors [356, 357] and CEBPα helps the transition from CMP to GMP [358].
Both genes are essential for myeloid differentiation and are downregulators of progenitor
proliferation. The process of differentiation requires a reduced cell proliferation [359], there-
fore, genes involved in downregulating cell proliferation are essential for haematopoiesis
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daily cell production. MYB and E2F1 are found as upstream effectors for CMP and GMP
expansion [360, 361] and both are inactivated by SPI1 and CEBPα [362–364]. For the
erythroid lineage, GATA1 is added to the network and the JAK2 pathway is extended. Both
have been shown to be important players in MEP progenitor production and erythropoiesis
[365, 366]. GATA1 is required for KLF1 activation, which is a marker of erythroid differen-
tiation [367]. KLF1 is also a downstream target of phospholyrated TET2 in erythroid cell
lines and TET2 phosphorylation is induced by JAK2 [368]. JAK2 is an important upstream
regulator of GATA1 via AKT [369], but also plays an important role in MEP expansion with
STAT5 and MAPK activation of BCL2L1 anti-apoptotic gene [370, 371]. Despite JAK2 role
in driving erythroid differentiation, it can also give to the myeloid lineage an advantage via
STAT3 activation of SPI1 [372]. Another essential feature of the model is the SPI1/GATA1
inhibition loop with GATA1 repressing SPI1 and SPI1 repressing GATA1 expression [373].
This cross talk between two important hematopoietic transcription factors is crucial in the
erythroid/myeloid lineage commitment [374]. Finally, RUNX1 links those hematopoietic
genes to the JAK2/TET2/HOXA9 motif thanks to RUNX1 activation by HOXA9. RUNX1
upregulation has been associated to HOXA9 upregulation in early stem and progenitor cells
[375, 376] and therefore is an ideal candidate to link the motif with the hematopoietic genetic
regulators. RUNX1 is found in the earliest stages of haematopoiesis and is essential for a
fully functional haematopoiesis [377]. I connect this gene to the rest of the network using its
downstream targets SPI1 for the myeloid lineage [346] and GATA1 for the erythroid lineage
[378, 379].

Finally, four cancer genotypes are defined: the wild type (no mutation), the TET2 single
mutant, the JAK2 single mutant and the double mutant (Table 4.2). The wild type model
illustrates haematopoiesis in its healthy state. When the system contains no mutation, all
variables and phenotypes are equal to 1. It should be noted that in the network all variables
and phenotypes can take values between zero and two, with one being the normal state, zero
a reduced expression state and two an increased expression state. The second specification is
the TET2 single mutant. TET2 mutation results in loss of its function with increased stem
cell self-renewal [168], elevated CMP expansion [169] and diminished overall differentiation
[157] with a skew towards the granulocyte-monocyte lineage [158]. I include this skew in
TET2 mutant state by increasing the GMP expansion and leaving the MEP expansion at its
wild type state. The third specification is the JAK2 single mutant, where JAK2 mutation
results in JAK2 constitutive expression. As a consequence, erythroid differentiation and
MEP expansion are both increased [388, 150]. Myeloid lineage being advantaged when
JAK2 is overexpressed, GMP expansion is also increased, but not GMP differentiation as
erythroid lineage is preferred [173]. A detailed review of single mutant phenotype is given
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Upstream Interaction Downstream Reference Experiments
TET2 Activates HOXA9 [351] in vitro/in vivo murine
JAK2 Activates HOXA9 [348] in vitro human
HOXA9 Activates HOXA9 [334] in vitro murine and human
HOXA9 Activates RUNX1 [375, 376] ex vivo /in vivo murine
RUNX1 Activates SPI1 [380] in vitro human
RUNX1 Activates GATA1 [378, 379] in vitro human/ in vivo murine
SPI1 Inhibits GATA1 [373] in vitro/in vivo human
GATA1 Inhibits SPI1 [373] in vitro/in vivo human
SPI1 Activates CEBPα [356] in vitro murine and human
CEBPα Inhibits E2F1 [363] in vivo/ in vitro murine
CEBPα Activates GMP differentiation [358] in vivo murine
E2F1 Activates GMP expansion [361] in vivo murine
RUNX1 Inhibits MYB Prediction
MYB Activates CMP expansion [360] in vivo murine
TET2 Activates SC self renewal [168] in vitro/vivo mice/human PDXs
GATA1 Activates KLF1 [367] in vitro/in vivo murine
GATA1 Inhibits MYC [381] in vitro murine
MYC Activates MEP expansion [381] in vitro murine
KLF1 Activates Erythroid differentiation [367] in vitro/vivo murine
TET2 Activates TET2p [368] in vitro human
JAK2 Activates TET2p [368] in vitro human
TET2p Activates KLF1 [368] in vitro human
JAK2 Activates STAT3 [382, 383] in vitro/vivo murine and human
JAK2 Activates STAT5 [382, 383] in vitro/vivo murine and human
STAT3 Activates SPI1 [372] in vitro murine
STAT5 Activates AKT [369] Human PV transplantation (mice)
AKT Activates GATA1 [369] Human PV transplantation (mice)
STAT5 Activates MAPK [370] in vivo murine
MAPK Activates BCL2L1 [370] in vivo murine
BCL2L1 Activates MEP expansion [371] in vitro human
TET2 Activates MEP expansion [158] in vivo murine
MAPK Activates JNK1 [384] in vitro human
JNK1 Activates ITCH [385] in vitro human
ITCH Inhibits NOTCH [386] in vitro human
NOTCH Inhibits GMP expansion [387] in vivo murine

Table 4.1 Gene interaction table for JAK2/TET2 BMA model. PDX: patient derived
xenograft.
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in section 1.3.3. The final genotype is the double mutant which can lead to one of two
fixpoint attractors. Each fixpoint represents either TET2 first or JAK2 first double mutants
and are defined from results presented in Ortmann et al’s paper [325]. Both double mutants
share four identical phenotype values and only CMP expansion and erythroid differentiation
differ between the two fixed points. The model as shown in Figure 4.5B with the defined
target functions (Table 4.3) reproduces the specifications described in Table 4.2 and therefore
the branching evolution observed in [325]. The increased differentiation in the JAK2 first
double mutants can partly explain the divergent clinical behaviours between the two groups
of patients, including the increased risk of thrombosis and the faster diagnosis as a result of
the abnormally high number of differentiated cells in these patients.

WT TET2 JAK2 TET2 first JAK2 first
Stem Cell Self Renewal 1 2 1 2 2
CMP expansion 1 2 1 2 1
GMP expansion 1 2 2 2 2
GMP differentiation 1 0 1 1 1
Erythroid differentiation 1 0 2 1 2
MEP expansion 1 1 2 2 2

Table 4.2 JAK2/TET2 mutant specification table for BMA model. In order from the left
to the right columns, the specifications are: the wild type state, the TET2 single mutant, the
JAK2 single mutant and finally the double mutants, which consists of a bifurcation with
two state attractors that represent the case where TET2 is mutated before JAK2 (TET2 first)
and the alternative case where JAK2 is mutated first (JAK2 first). Phenotype values are
determined using literature for the single mutants (reviewed in the Introduction chapter) and
the Ortmann et al paper [325] for the double mutants. The value 1 represents the healthy
state, 0 the lowered/inactive state and 2 the overactive state.

The model identifies new interactions as part of the MPN disease progression. Whilst
building single mutant specifications, I discovered a path between JAK2 and GMP expansion
is required to match the increased number of myeloid progenitors observed in JAK2 first
patients. To explore possible downstream pathways of JAK2 that could contribute to this
observation, a machine learning approach (XGBoost - see Methods section 2.5) is applied to
AML TCGA data, AML being a relevant and closely related blood disease. AML patients
are split for high and low levels of JAK2 expression. XGBoost then ranks a set of 14 classical
cancer pathways on their ability to cluster patients into the right JAK2 expression level group.
Analyses show that JAK2 is highly correlated with the NOTCH pathway (Fig. 4.6A), which
has been found to act as a tumour suppressor in leukaemia due to the great expansion of
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GMP cells after loss of NOTCH signalling [387]. From the SHAP scores (see Methods
section 2.5.5) of NOTCH genes plotted in Figure 4.6B, ITCH is identified as among the
genes with the highest score in the NOTCH pathway for JAK2 expression. ITCH controls the
degradation of NOTCH [386] and is found to be induced by JNK1 [385] from the MAPK
pathway which is a well-known downstream pathway of JAK2/STAT5 [389, 390, 383]. I
therefore hypothesise that JAK2 path to GMP expansion upregulation could be MAPK and
NOTCH dependent.

(A)

(B)

Fig. 4.6 The MPN network predicts NOTCH could be a downstream regulator of JAK2
for GMP expansion. (A) Ranking of major cancer pathways in JAK2 analyses determine the
RTK-RAS pathway as the most correlated to JAK2. This pathway contains JAK2 and so this
result is as expected. The second pathway is NOTCH. The overall accuracy of the pathway is
computed with the Matthews Correlation Coefficient. (B) SHAP scores are computed for the
NOTCH pathway to determine which genes of the pathway have been important classifiers,
that is genes with an important expression correlation with JAK2. Among them, PSEN1 and
ADAM10 are involved in the cleavage of NOTCH membrane receptors. NUMB activates
ITCH which degrades NOTCH.

Another new interaction predicted from the network is the inhibition of RUNX1 on MYB.
Common myeloid progenitors (CMP) are found to be differentially expanded between JAK2
and TET2 first patients in Ortmann et al [325]. The initial model integrates an inhibition
interaction between SPI1 and MYB, the model CMP expansion marker, a connection which
has been found experimentally [362]. This inhibition and the stable SPI1 expression in



96 HOXA9 acts as an epigenetic switch in blood malignancies.

the double mutant states prevented the known bifurcation in CMP expansion in double
mutants. Further investigations lead to the hypothesis that the bifurcation could be obtained
by replacing SPI1 by RUNX1 for the MYB inhibition which is supported by different studies.
RUNX1 activates SPI1 and GATA1, and both are found to be inhibitors of MYB [362, 391].
Additionally, conditional knockout of RUNX1 in mice results in enhanced CMP frequencies
[392, 393]. All together, these findings suggest that RUNX1 can be linked to CMP expansion
via MYB inhibition.
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4.2.3 Analyses of public MPN datasets validate NOTCH role in MPN
as well as HOXA9 bimodality and prognosis role in blood diseases

Fig. 4.7 Model validation using public MPN transcriptomic data. The heatmap of the
NOTCH pathway and HOXA family generated using MPN microarray datasets from [150]
validate NOTCH expression in the MPN model highlighting the importance of this path-
way in MPN disease progression. HOXA heatmap confirms HOXA bimodality but show
different levels of expression to what is found in the model. Heatmap is generated using the
ComplexHeatmap R package [394]. For the transcriptomic data, a red/blue colour scale (red:
high; blue: low) illustrates gene expression levels normalised with quantile normalisation
on raw gene expression expressed in RFU (Relative Fluorescence Units). For the model
prediction, blue depicts the value 0, grey the value 1 and red the value 2, which represent
decreased, unaltered and increased expression respectively. "JAK2" and "TET2" refer to the
single mutant mouse models, and "DM" is the double mutant with JAK2 mutated first. "WT"
designates the wild type (no mutation) genotype.

To validate the predictions arising from the MPN model, the network findings are compared
to public MPN data not used for model construction. Chen et al [150] compare MPN with
different JAK2 and TET2 mutational profiles using transcriptomic mouse data. The authors
use microarrays to carry out gene expression profiling of the different mouse genotypes: WT,
JAK2 single mutant, TET2 single mutant and JAK2/TET2 double mutant (JAK2 being mutated
first). The gene expression of pathways/gene subsets are compared to those included in the
network to determine if the MPN model fits their data. Heatmap reveals that the NOTCH
pathway behaves as predicted (Fig. 4.7): its expression is lowered in JAK2 and the double
mutant mouse models while WT and TET2 mutant mice show a higher expression. Further
analyses show that the trend in the expression of RUNX1, MYC and MYB support the model
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(Fig. 4.8A,B and C). Confusingly HOXA9 expression displays a “switching” behaviour in
this mouse model, but heatmap associates a low expression of HOXA9 with JAK2 mutations
and high expression with TET2 mutations.
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(A)
(B)

(C)

Fig. 4.8 RUNX1, MYC and MYB expression in public MPN data share the same trend
than the MPN model. Despite the lack of significance, some genes in the microarray
experiments support what is observed in the model. (A) The MPN network predicts RUNX1
to be higher in the JAK2 single and JAK2 first double mutants and lower in TET2 single
mutant compared to the wild type. Despite the low number of data points, the trends for
RUNX1 expression in the different phenotypes exactly fit the model findings. (B) The
network predicts MYB expression to be higher in TET2 single mutant while JAK2 single and
JAK2 first double mutants have a similar MYB expression compared to the wild type state.
Boxplot figures highlight that the trends for MYB expression in the different genotypes fit the
model predictions. (C) Finally, the model expects MYC expression to show similar levels of
expression than MYB in the different genotypes. Trends for MYC expression in the different
mutants fit the model results for at least the TET2 single mutant and the JAK2 first double
mutant.

Jeong et al [368] have shown direct activation of TET2 by JAK2 in a combination of
in vitro human/murine hematopoietic cell lines with erythroid characteristics, and that in a
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murine cell line JAK2 mutation leads to HOXA9 upregulation. These findings are consistent
with the JAK2/TET2/HOXA9 motif but are opposed to Chen’s microarray experiments where
HOXA9 expression is lowered in JAK2 single and double mutants (Fig. 4.7). Given the
downstream genes follow the expected expression, this raises the question of whether the
interactions in the original motif should be replaced by a pair of inhibitions rather than
activations if the Chen data is correct. Whilst there exist possible routes to connect TET2
and HOXA9 through an inhibition, I am however unable to find evidence of inhibition of
HOXA9 by JAK2. It should be further noted that as the Jeong data is human derived, it may
be a more representative experimental model system. Moreover, data on individual genes
presented in [368] is consistent with the model: RUNX1, ITCH, GATA1, KLF1 and BCL2L1
are overexpressed in MPN patients with a JAK2 mutation in our network as well as in [368].
Both datasets however support the role of HOXA9 as a switch in MPN.

4.3 Discussion

Out of 6817 genes tested HOXA9 is the single most highly correlated factor for poor prognosis
due to treatment failure in AML [331]. This finding has made HOXA9 the most studied gene
in the HOXA family. The work presented here demonstrates that this gene may act in AML
as a discrete switch rather than a spectrum, which impacts AML clinical characteristics such
as classification and survival. This study further suggests that the prognosis marker role
of the HOXA9 gene could be extended to another blood disorder, MPN. In MPN diseases
with JAK2/TET2 mutations, HOXA9 high expression is found in the JAK2 first patients while
TET2 first patients display lower HOXA9 expression. JAK2 first patients have a higher risk of
developing thrombosis compared to TET2 first patients. As thrombotic events are the main
causes of death in MPN patients [395], this suggests again a deleterious influence of HOXA9
high expression on patient clinical outcomes in another myeloid disease and emphasises the
role of HOXA9 as a poor prognosis marker in blood malignancies.

This work presents the first molecular network showing and proposing an explanation
for the impact of mutation order in a blood disease. In addition to insights into the epige-
netic control of cancer cell fate through HOXA9, the MPN model recapitulates the disease
symptoms using well-known hematopoietic transcription factors such as GATA1 and CEBPα

but also the NOTCH pathway. Further investigations of these genes could benefit clinicians
by designing new drugs or applying already existing treatments to reduce symptoms and
the risk of developing blast phase MPN. In addition to the specific claims of the model,
several other clinical implications arise. One key feature of TET2-first MPN patients is
their reduced sensitivity to Ruxolitinib, a JAK2 inhibitor drug [325]. It is intriguing to note
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based on the model that after TET2 loss, most common JAK2 targets are unchanged by JAK2
activation mutation due to the “memory” property exerted by HOXA9 self-loop. It follows
that JAK2 inhibition is therefore inefficient for those genes. Also, whilst JAK2 is the main
driver mutation found in all MPN patients, different diseases with distinct clinical traits can
be observed [146]. Until now, the source of this clinical diversity following JAK2 mutation
was unclear. Here, the network predicts that patients who first had a TET2 mutation have a
reduced number of erythroid cells as a result of TET2 indirect downregulation of GATA1 and
KLF1 which explains the reduced number of PV diseases in TET2 first patients despite the
presence of JAK2 mutation [325]. While JAK2 dysregulation may be the principal driver of
MPNs, other mutations shape the disease clinical type by altering the normal development
of distinct hematopoietic subpopulations. Finally, our work assumes the involvement of the
NOTCH pathway in MPN diseases. NOTCH shows both oncogenic and tumour suppressor
roles in different tissues and in the hematopoietic system: NOTCH favours cancer growth in
T acute lymphoblastic leukaemia (T-ALL) through its MYC activation but is also found to
augment the host immune response against cancer by activation of M1 macrophages [396].
The role of NOTCH in hematopoietic stem and progenitor cells is still an on-going debate,
however, it seems that a certain level of NOTCH signalling is required to protect individuals
from hematological malignancies [397]. The MPN model suggests that JAK2 increases GMP
expansion through its inhibitory effect on NOTCH via the MAPK pathway and ITCH and so
predicts a tumour suppressor role for NOTCH in the GMP cell population. This molecular
network offers a novel mechanism for understanding how cancer fate can be determined
through epigenetic switches, and highlights several new areas for further study.



Chapter 5

APP determines cell fate in blood
diseases.

Abstract

Personalised medicine combines patient genome information and clinical characteristics
to make precise diagnoses and predict disease outcomes. Patient stratification is therefore
essential for choosing the appropriate treatment protocol. I find that AML patients can be
clustered into three clinically distinct groups for different HOXA9 and APP gene expression
levels. Further investigation of APP expression in these patients highlights the important
role of this gene in AML patient stratification and survival prognosis. Despite the substantial
number of medical studies for APP involvement in brain and Alzheimer disease, its role in
blood has been overlooked. This work investigates the unexpected poor survival feature of
leukemia patients with low APP expression using genetic information and computational
tools. Data from various leukemia malignancies show reduced myeloid marker expression
and increased lymphoid characteristics in low APP patients. Similarities between AML
patients expressing low APP and Mixed Phenotype Acute Leukemia (MPAL) support the
potential implication of APP in the lymphoid versus myeloid differentiation. I therefore
extend with this work the importance of APP in other medical disorders and point out its role
in cell fate commitment and patient stratification in blood malignancies.
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5.1 Introduction

The amyloid precursor protein (APP) is a transmembrane protein expressed in many tissues,
but particularly well-characterised in brain studies due to its critical implication in Alzheimer
disease (AD). APP undergoes complex processing which generates among other molecular
fragments the β -amyloid peptide which is produced in excess in AD patients and might
cause neurodegeneration [398]. Two pathways have been described in the literature for
APP cleavage by secretases: the amyloidogenic and non-amyloidogenic pathways [399].
First, the secreted extracellular domain of APP can be cleaved by the α- or β -secretase
producing the soluble APP-α for the non-amyloidogenic pathway and the soluble APP-β
for the amyloidogenic pathway [400]. Further APP cleavage by the α-secretase leads to
the generation of the p3 segment in the non-amyloidogenic pathway, the β amyloid (βα)
fragment in the amyloidogenic pathway and the APP intracellular domain (AICD) which is
released in the cytosol in both pathways and translocated to the nucleus to regulate the gene
expression of many important biological pathways [401].

The precise biology behind AD pathology remains currently uncertain, however, one
hypothesis called the amyloid hypothesis implicate the βα segment [402]. Once released
in the extracellular space, βα can aggregate to form oligomers and generate β plaques
[403]. Formation of those plaques would cause synaptic and neuritic injury and lead to major
neuronal dysfunctions, cell death and transmission deficit [404].

APP expression is not restricted to the brain [405]. APP is ubiquitously expressed in
human tissues, and its function in skin, intestine and muscle among many other biological
systems have been well studied [406]. For example, APP is highly expressed in adipose
tissues and was shown to be upregulated in obese patients with the development of insulin
resistance and adipose tissue inflammation [407]. APP plays a central role in various diseases
among which many different cancer types [408]. In melanoma, downregulation of APP
induces proliferation reduction, melanocyte pigmentation/differentiation marker increase,
and higher sensitivity to chemotherapy drugs [409]. Studying APP biological function in
non neuronal tissues is therefore a compelling approach against oncogenesis.

Despite the extensive research on APP, its function in the immune system and blood
cancers is relatively poorly characterised although few studies have highlighted a role for
APP in several hematopoietic populations [410, 411, 406]. For example, Sondag et al
[411] illustrate the activation of peripheral monocytic cells by APP as well as its adhesion
involvement in monocytes to type I collagen. The importance of APP in blood malignancies
originally arises with two studies investigating acute lymphoblastic leukemia (ALL) and
lymphoma [412, 413]. In B-precursor ALL, APP is found underexpressed among patients
bearing an MLL translocation compared to those who do not [412], while APP overexpression
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characterises Epstein-Barr virus-negative Burkitt’s lymphoma [413]. In their work, Baldus
et al [414] highlight the role of APP in AML. Authors find APP as the most overexpressed
gene in a subset of AML patients with complex karyotypes compared to patients with normal
cytogenetics. These studies collectively establish the critical role of APP in hematopoiesis
and blood cancers, but the exact biological function of APP in blood development and lineage
differentiation remains unclear. Therefore, insights into APP biological role in blood could
establish its precise implication in liquid tumours and aid patient classification.

This study focuses on APP expression in different blood malignancies. APP is first
identified in chapter 4 as differentially expressed in HOXA9 low and high cohorts. Deeper
investigation of the TCGA AML data (data description in subsection 2.2.1) highlights the
bimodality of APP expression and the presence of patient clusters with clinically divergent
characteristics and distinct levels of expression for HOXA9 and APP. Analyses also show that
AML patients with opposed APP expression exhibit different clinical and genetic characteris-
tics. Notably, I identify a cohort of AML patients with extremely low APP expression and
poor survival probability. Data from various leukemia malignancies show reduced myeloid
marker expression and increased lymphoid characteristics in patients with very low APP
expression. The potential role of APP in myeloid versus lymphocyte differentiation as well
as the upregulation of poor prognosis markers in these patients indicate a substantial effect
of APP reduced expression on blood malignancies. This study therefore highlights the
imperative need to investigate APP function in blood in order to treat patients with aberrant
APP expression. Finally, APP involvement in Mixed Phenotype Acute Leukemia (MPAL)
is also proposed. MPAL being a rare and difficult to diagnose disease, the identification of
marker involved in this cancer could fasten diagnosis.

5.2 Results

5.2.1 HOXA9 and APP form patient clusters with distinct clinical fea-
tures.

APP is first identified as a gene of interest in the work on HOXA9 in blood malignancies.
As shown by Figure 4.3 in chapter 4, APP is among the most differentially expressed genes
between the high and low HOXA9 cohorts. Investigation of APP expression in AML patients
shows that similarly to HOXA9, APP expression is bimodal (Fig. 5.1A). Further exploration
of the TCGA data uncovers the presence of clusters in AML data for HOXA9 and APP
expression (Fig. 5.1B). Patients can be classified into three groups with distinct HOXA9/APP
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levels of expression: High/High, High/Low and Low/High. The Low/Low cases are ignored
due to their high sparsity in the data.

To explore how clinically similar these patients are, I look for the classification distribution
of the HOXA9/APP cohorts. First, histograms show that the French-American-British (FAB)
classification of AML is unevenly distributed among patients (Fig. 5.1C). To confirm this
observation, a chi-squared test of independence is performed on the data and is found to
be significant (p = 9.5× 10−13). This statistical test examines if it exists a relationship
between two categorical variables. As the p-value is significant, the null hypothesis stating no
relationship between the variables is rejected and therefore FAB and HOXA9 cohorts are not
independent variables. While the M1, M2 and M4 subtypes do not show any particular pattern,
M3 characterises the Low/High group, M0 the High/High group and M5 the High/Low
cohort. AML is defined by the uncontrolled growth of the myeloid progenitor cells along
with a myeloid-lineage differentiation arrest [130]. However, malignancy can originate from
different types of blood cells and stop the maturation at separated stages. The High/High
cohort with high expression of both HOXA9 and APP is characterised by M0 which has
minimal differentiation compared to other AML subtypes. Strikingly, the Low/High and
High/Low patients are discriminated by two opposite subtypes: M3 the Acute Promyelocytic
Leukemia have mostly progranulocytic cells and M5 the Acute Monocytic Leukemia possess
essentially monocytic blasts. The granulocyte and monocyte lineages seperate quite early in
hematopoiesis and both have their own characteristics. Thus, the antagonistic HOXA9/APP
expression levels leading to opposite differentiated blood precursors seem to indicate a role
for these genes in myeloid maturation mechanisms.

AML classification includes molecular grouping of patients with distinct fusion or translo-
cation aberrations [415]. Similarly to FAB subtypes, the fusion and translocation distributions
show significant unequal repartition in the distinct HOXA9/APP patient cohorts (chi-squared
test, p = 1.4× 10−21). As expected, the PML-RARα specific to the M3 FAB subtype is
solely found in the Low/High patients. The core binding factor (RUNX1-RUNXT1 and
CBFB-MYH11) translocations [416] are also particular features of the Low/High patients.
Regarding the other cohorts, all patients with complex cytogenetics belong to the High/High
cluster. Lastly, the High/Low cohort possesses all NUP98 and MLL translocations. These
findings indicate a strong categorisation effect of combined HOXA9 and APP markers which
could help AML diagnoses and clinical outcome prediction. This also supports the well-
known role of HOXA9 in blood diseases, as well as the important APP role in other diseases
than brain disorders.
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(A) (B)

(C) (D)

Fig. 5.1 HOXA9 and APP cluster characteristics in AML patients. APP and HOXA9
expression stratify patients and their clinical characteristics. (A) Similarly to HOXA9, APP
has a bimodal expression in AML (ACR unimodality test rejected with p = 0.004 [336]).
(B) Bimodality of both genes generates three different HOXA9/APP clusters of patients,
referred as the High/High, the Low/High and the High/Low cohorts. Due the high sparsity
in the patients with low expression for both genes, I ignore these patients in the rest of the
analyses. Each cohort show distinct (C) FAB and (D) molecular classifications. (C) The M3
AML subtype also called Acute Promyelocytic Leukemia (APL) is uniquely characterised
by low HOXA9 and high APP expressions. Patient diagnosed with M0 (undifferentiated)
AML have high expression of HOXA9 and APP while M3 patients have high expression
of HOXA9 but low expression of APP (chi-squared test, p = 9.5× 10−13). (D) Similarly,
molecular classification is stratified among cohorts: CBFB-MYH11 and RUNX1-RUNXT1
translocations, part of the core binding factor (CBF) complex, characterise the Low/High
cohort, while complex cytogenetics are observed in the High/High group and NUP98/MLL
translocations in the High/Low patients (chi-squared test, p = 1.4×10−21).
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5.2.2 APP stratifies AML patients and is an important prognosis marker.

The observed clinical differences between patients with different levels of HOXA9 and APP
suggest that APP could be involved in hematopoiesis and liquid malignancy development.
To explore the biological functions of APP in blood, I extract patients in the two peaks
of APP expression (Fig. 5.1A). 66 patients constitute the cohort for high APP expression,
called the "high APP" cohort, and 32 for the low peak, referred as the "low APP" cohort
(Fig. 5.2). Next, I compare survival (Fig. 5.3A), age, WBC, bone marrow blast percentage
(Fig. 5.3B), molecular aberrations (Fig. 5.3C) and FAB subtypes (Fig. 5.3D) between
both cohorts and find that they exhibit distinct clinical characteristics. Patients in the
low peak have worse survival probability (p = 0.043) and higher number of white blood
cells (p = 1.9×10−6). Chi-squared tests find a significant relationship between FAB and
APP cohorts (p = 2.8×10−3) as well as between molecular distribution and APP cohorts
(p = 3.3×10−6). The M5 FAB subtype, NUP98/NLL translocations and normal karyotype
are mainly observed in the low cohort, while the M0 FAB subtype, complex and intermediate
cytogenetics are specific to the high cohort. These results support the role of APP in patient
stratification even in absence of HOXA9.

Fig. 5.2 APP cohorts in AML. The 173 AML patients are separated into groups with
different APP level of expression. As APP is bimodal, the first split distinguishes the low and
high peaks and are respectively composed of 32 and 66 patients. The second split divides
equally patients in the low peak into two groups of 16 patients.

The poor survival in the low peak patients is unexpected. A recent paper studying the
role of APP in AML1-ETO-positive AML shows after dividing patients into two cohorts
with high and low expression of APP that the low APP cohort has a better overall survival
probability compared to the high cohort [417]. Their finding contradicts the APP survival
findings in the TCGA AML dataset, however, TCGA data includes all subtypes of AML.
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To confirm the poor survival of low APP patients, individuals with a reported AML1-ETO
translocation are extracted from the TCGA data and their survival between APP peaks is
compared (Fig. 5.4). Seven patients possess this translocation in the data among which only
two have low APP expression. However, these two patients seem to have a poorer survival
probability compared to the other patients (p = 0.046). This is consistent with previous
findings.
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(A)

(B)

(C) (D)

Fig. 5.3 APP peaks stratify patients and their clinical characteristics. (A) Low APP is a
poor prognosis marker in AML (log rank test, p = 0.043). (B) Low peak APP cohort displays
a higher number of WBC (Mann–Whitney U test, p = 1.9×10−6), but no difference in age or
blast number is observed with the high peak. (C) MLL and NUP98 translocations are specific
to the low peak patients while the core binding factor (CBF) translocations including RUNX1-
RUNXT1 and CBFB-MYH11 are specific to the high peak. Complex and intermediate
cytogenetics tend to be mostly present in the high cohort while the normal karyotype
repartition is skewed towards the low peak patients (chi-squared test, p = 3.3×10−6). (D)
M0 FAB subtype characterises high peak patients while M5 is unique to the low peak patients
(chi-squared test, p = 1.9×10−6).
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Next, I explore the clinical features which could explain the poor prognosis of patients
within the low APP peak. To do so, the 32 patients within the low APP peak are split into
two new subsets of patients with low and high expression for APP. Survival analysis shows
that patients within the low peak with a low APP expression have poor survival probability
(p = 0.0018) with a median overall survival time of 6 months against 24 months for the
patients within the same peak but with higher APP expression (Fig. 5.5). In the rest of the
chapter, I refer to the 32 patients the low peak of APP as the "low APP" patients as opposed
to the "high APP" group (Fig. 5.2). I define the 16 patients within the low peak with low
expression for APP as the "low-low APP" cohort and the patients in the low peak with high
expression for APP as the "low-high APP" patients.

Fig. 5.4 Survival of AML1-ETO patients within the low and high APP peaks. The
patients with AML1-ETO present in the low APP peak seem to present poorer survival than
the patients in the high peak (log rank test, p = 0.046).

The poor prognosis of low-low APP patients supports the critical effect of reduced APP
expression in AML. I compare the available clinical characteristics of low-low and low-high
APP cohorts to find an explanation. I find that age, sex, WBC, blast number, molecular
and FAB classifications are not significantly different between the two groups. In following
analyses studying APP biological functions in blood, I compare low-low and low-high APP
cohorts which have similar clinical classifications and ignore the 66 patients in the high peak
due to their divergent disease characteristics. By removing this cohort, results are not biased
by disease subtypes.
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Fig. 5.5 Survival comparison between low-low and low-high APP cohorts. The two
groups of patients in the low APP peak have distinct survival probabilities (log rank test,
p = 0.0018). With an average survival time of 6 months, patients with extreme low APP
expression succumb to the disease much faster than the high APP group.

5.2.3 Differential gene expression analyses suggest a role for APP in
the lymphoid/myeloid differentiation process.

As none of the clinical features seems to justify the observed poor prognosis of patients with
very low APP expression, I hypothesise that gene expression could point out dissimilarities
between APP cohorts. Comparing gene expression levels can indicate which hematopoietic
markers are poorly or highly expressed in patient groups with different APP expression.
These markers can be lineage or prognosis markers. Finding such genes can highlight how
APP expression modify clinical characteristics. I look at the 30 most differentially expressed
genes (DEGs) between low-low and low-high APP patients by computing the absolute
difference and the fold change between gene expression. DEGs based on the absolute
difference includes important markers of the mature B cell population such as FCGR2C
[418], LY86/MD-1 [419] and CD200 [420] which are all upregulated in low-low APP (Fig.
5.6). Absolute difference analysis also shows the downregulation of many myeloid genes
such as CPA3 [421], HBG1/2 [422], PRNT3 [423] and EREG [424]. Finally, high HGF
[425], STAB1 [426], KYNU [427] and DDIT4 [428] have been found to be poor prognosis
markers in AML and are all upregulated in the low-low APP group.
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Fig. 5.6 30 first DEGs between low-low and low-high APP patients based on the abso-
lute difference. DEGs include important regulators of hematopoiesis such as LY86 and
CD200 for the lymphoid lineage, but also CPA3 and HBG1/2 for the myeloid cells. Poor
prognosis markers are upregulated in the low-low APP cohort: HGF, STAB1, KYNU and
DDIT4.

DEGs in the fold change analysis also display the upregulation of important B lymphocyte
genes such as CD200 [429], FZD6 [430] and PAX5 [431] (Fig. 5.7). FGFR1 found to be
involved in Mixed Phenotypic Acute Leukemia (MPAL), a blood malignancy characterised
by mixed lymphoid and myeloid traits, is upregulated in low-low APP [432]. For the myeloid
lineage, downregulation of PF4 expressed in platelet granules [433] is observed. Finally,
increased expression of BAALC [434] and ZNF667 [435], which are both poor prognosis
markers in blood malignancies, characterise the low-low APP cohort. BAALC expression has
also been found to be increased in biphenotypic acute leukemia (BAL), a subtype of MPAL,
compared to acute T-lymphoblastic leukemia (T-ALL) and AML [436].
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Fig. 5.7 30 first DEGs between low-low and low-high APP patients based on the fold
change. Similarly to the absolute difference analysis, DEGs based on fold change show a
pattern with increased B-lymphoid marker (FZD6, PAX5) and myeloid gene downregulation
(PF4). Poor prognosis marker (BAALC, ZNF667) and genes associated with Mixed Phe-
notypic Acute Leukemia (MPAL) such as BAALC and FGFR1 are upregulated in the low
cohort.

Both DEGs analyses highlight the upregulation of genes involved in B lymphocyte
development and genes with poor prognosis features, but also the downregulation of myeloid
lineage markers. Interestingly, DEGs also include genes associated with MPAL. To further
investigate the biological functions in hematopoiesis of identified DEGs, I perform a Gene
Set Enrichment Analysis (GSEA) on curated gene sets associated with hematopoietic studies.
GSEA is a computational method which identifies gene sets that show statistically different
expression among two samples [437]. A large number of gene sets are available, but
customised groups of genes can also be added to compare samples. Genes of each set share
common features, such as their biological functions for example but also their connection to
a particular signalling process and many other possibilities. Users include in the analyses
as many sets they desire according to the question they want to answer. Here I include
gene sets associated to blood development and lineage markers to identify the hematopoietic
features that distinguish both APP patient groups. I find that the two first upregulated gene
sets for each cohort derive from the same study [438] (Fig. 5.8). In this paper, authors
compare genes that are either upregulated or downregulated between a common lymphoid
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progenitor (CLP) cell and a multipotent progenitor. GSEA results suggest that the low-low
APP group is associated with genes upregulated in CLP while genes downregulated in CLP
are specific to the low-high APP cohort. Collectively, differential gene expression studies in
AML data support a role for APP in the myeloid/lymphoid cell fate commitment, with low
APP expression skewing cells towards the B lymphocyte lineage.

Fig. 5.8 First GSEA gene sets associated with the APP cohorts. GSEA for the DEGs
identified by fold change between the two low-low and low-high APP cohorts finds that the
two most upregulated gene set for each group is from the same study which study common
lymphoid progenitor cells [438]. Low-low APP is characterised by the upregulation of
genes involved in the lymphoid progenitors while low-high APP is defined by genes that are
downregulated in those progenitors.

5.2.4 Investigation of APP as a biomarker for MPAL.

AML patients with low APP expression show common characteristics with MPAL dis-
ease.

The lack of studies on APP function in the immune system encourages further exploration
of the role of APP in other blood cancers. In particular, the poor survival as well as the
lymphoid skewing of low-low APP patients lead to the investigation of papers studying
MPAL which is a blood malignancy with poor survival prognosis and the cytochemical
and/or immunophenotypic characteristics of both myeloid and lymphoid lineages [439].
Following previous gene expression analyses, I hypothesise that APP could be a marker of
B-Myeloid MPAL whose patients display high expression of markers of the myeloid and B
lymphoid lineages and generally a M1/M5 cell morphology when first diagnosed as AML
[439]. More than half of low APP peak patients in the TCGA AML data are diagnosed with
M1 or M5 AML (Fig. 5.3). This is consistent with our hypothesis.
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To assess the potential of the low-low APP cohort to be diagnosed as MPAL, I use a
combination of lineage markers defined by the European Group for the Immunological
Characterization of Leukemias (EGIL) classification [440] as well as gene markers defined
in the literature [441]. In the 2008 WHO classification scheme (included in the EGIL
classification), three sets of markers are defined for each lineage: myeloid, B and T cells.
A patient is diagnosed as biphenotypic acute leukemia if its leukemic blasts express MPO
or at least two other monocytic markers for the myeloid lineage, cytoplasmic or surface
CD3 for T cells and finally strong CD19 as well as strong expression of another B cell
marker or weak CD19 and two other markers for the B lineage. I compare the expression of
these markers between the low-low and low-high APP cohorts, but cannot find two myeloid
markers significantly overexpressed in the low-low APP cohort. However, as all cohort
patients are initially diagnosed as AML, all should express myeloid markers (Fig. 5.9). For
the lymphoid lineage, none of the T lineage markers is significantly upregulated but several
B lineage genes such as CD19 and CD40 are significantly overexpressed in the low-low APP
cohort, supporting the initial assumption of B-Myeloid MPAL diagnosis for the low-low
APP patients. It should be noted that CD40 is not included in the EGIL criteria, however,
its expression in B cells is well known [442]. In addition to the significant upregulation of
CD19 and CD40, the higher expression of CD24 (another important B cell marker) [443]
seems sufficient to assume a B lineage preference in low-low APP blood cells.
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Fig. 5.9 Analysis highlights the upregulation of B lineage markers in the low-low APP
cohort. Comparison of the expression of the myeloid, T and B lineage markers between the
low-low and low-high APP cohorts shows the significant upregulation of CD19 and CD40
for the B lineage in the low-low APP patients. Conversely, no marker of the T lineage is
significantly increased. Pie charts indicate the proportion of significantly and insignificantly
upregulated and downregulated markers for each lineage in the low-low APP cohort. Myeloid
markers: MPO, ENO2, ITGAX, CD14, FCGR1A and LYZ. T cell markers: CD3E, CD3G,
CD3D, CD2, CD5, CD8A, CD8B and CD7. B cell markers: CD19, CD79A, CD22, CD40,
MS4A1 and CD24.

Pediatric MPAL data support the poor prognosis role of APP in leukemia and its in-
volvement in lymphoid versus myeloid differentiation process.

To test the hypothesis that low APP expression could be a B-Myeloid MPAL specificity,
I examine APP expression in MPAL public datasets. First, I use the RNAseq data from
Alexander et al [249] (see section 2.2.4 for data description). To compare APP expression
between ALAL subtypes, patients are separated into two groups, B-Myeloid versus other
subtypes (Fig. 5.10A). APP expression is significantly higher in patients with B-Myeloid
MPAL compared to other patients. This result clashes with the findings in AML data in which
patients with low APP expression have increased expression of important B cell markers such
as PAX5 and CD40. However, a possible explanation for this discrepancy is that pediatric
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blood cancers might display different genetic and immunologic profiles compared to adults,
which is discussed at the end of this chapter.

(A) (B)

Fig. 5.10 APP expression in pediatric ALAL. (A) APP expression is higher in B-Myeloid
MPAL versus other ALAL patients. (B) As observed in AML, APP expression in the pediatric
ALAL data is bimodal.

Despite the unexpected result of increased APP expression in B-Myeloid MPAL patients,
I further investigate APP expression in pediatric ALAL. I find that APP has a bimodal
expression as observed in AML patients (Fig. 5.10B). Clinical characteristics between
patients in these two peaks are explored. Unlike AML patients, no difference in survival
is observed between pediatric ALAL patients in the high and low APP peaks (Fig. 5.11A).
However, in line with AML, within the low peak, patients with the lowest APP expression
tend to have worse survival probability despite the insignificant p-value (p = 0.11, Fig.
5.11B). Age and WBC are not significantly different between patients in the two peaks.
Finally, I explore ALAL subtype distribution between peaks (Fig. 5.11C). As found in AML,
low APP peak patients are characterised by MLL translocation while high peak patients have
the highest proportion of B-Myeloid MPAL which is consistent with Figure 5.10A. Within
the low peak patients, B-Myeloid MPAL is exclusively found in the low-high APP cohort
(Fig. 5.11D).
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(A) (B)

(C) (D)

Fig. 5.11 Pediatric ALAL clinical characteristics for different level of APP expression.
Survival between APP peaks (A) and within the low peak (B) is not significant (p = 0.21
and p = 0.11 respectively). Despite insignificance, as found in AML, I observe poorer
survival probability for patients with the lowest APP expression. ALAL subtype distribution
between peaks (C) and within the low peak (D) confirm that high APP expression correlates
with B-Myeloid subtype in pediatric MPAL. Molecular distribution also shows that MLL
translocation is specific to the low peak cohort. AUL: acute undifferentiated leukemia, B/M:
B-Myeloid MPAL, MLL: patients with MLL translocation, NOS: not other specified, Ph+:
Philadelphia Chromosome positive ALAL, T/B: T-B MPAL, T/B/M: T-B-Myeloid MPAL,
T/M: T-Myeloid MPAL.

To further explore the possible roles of APP in blood malignancies, gene expression
is compared between the high and low APP pediatric ALAL patients within the low peak.
First, I look at gene markers defined by EGIL for MPAL diagnosis (Fig. 5.12) and find an
upregulation of T lineage markers in the low-low APP cohort. This result suggests that T



120 APP determines cell fate in blood diseases.

lineage is preferred in pediatric MPAL patients with very low APP expression and therefore
explains the absence of B-Myeloid MPAL in this cohort.

Fig. 5.12 T cell markers are upregulated in the low-low APP cohort in pediatric ALAL.
EGIL genes for the T lineage are all significantly upregulated at the exception of CD8A
in low-low APP patients compared to the low-high APP group. The expression patterns
for the myeloid and B lineage are more ambiguous. Pie charts indicate the proportion of
significantly and insignificantly upregulated and downregulated markers for each lineage in
the low-low APP cohort. Myeloid markers: MPO, ENO2, ITGAX, CD14, FCGR1A and LYZ.
T cell markers: CD3E, CD3G, CD3D, CD2, CD5, CD8A, CD8B and CD7. B cell markers:
CD19, CD79A, CD22, CD40 and MS4A1.

Finally, I search for DEGs between the same two APP ALAL cohorts and plot the
distribution of the 30 most differentially expressed genes (Fig. 5.13). Genes associated
with T cells such as CD3D [444], CD7 [445], SH2D1A [446] and TRBC2 [447] are all
upregulated in the low-low APP cohort. Upregulation of PROM1 a stem cell marker [448] is
identified in low-low APP while genes affiliated with the myeloid lineage such as CD300E
[449], IL1B [450], MPEG1 [451], and MAFB [452] are all downregulated in low-low APP.
Finally, BAALC, a poor prognosis marker in leukemia already identified in AML analyses,
is also upregulated in the low-low APP cohort. KLF4, one of BAALC known repressed
gene target [453], is downregulated in the same cohort. To conclude on these pediatric
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ALAL data analyses, some findings such as upregulation of T cell markers in low-low APP
patients contradict the observed B lineage skewing in AML patients with low APP expression.
However, these data support the poor prognosis property of low APP expression and its skew
towards lymphoid at the expense of the myeloid lineage.

Fig. 5.13 30 first DEGs between low-low and low-high APP patients in pediatric ALAL.
DEGs analysis in the pediatric ALAL patients within the low APP peak confirms the repressed
myeloid marker expression in patients with poor APP expression, but also shows increased T
cell markers such as CD3D, CD7 and TRBC2.

Adult MPAL data support APP involvement in lymphoid versus myeloid differentia-
tion process and suggest that in adults, low APP expressing cells are biased towards
the B lineage.

To compare APP role in adult MPAL against pediatric MPAL and AML, I investigate APP
expression in a new dataset which contains RNA sequencing information of 24 adult patients
diagnosed with B-Myeloid or T-Myeloid MPAL [250] (see section 2.2.5 for data description).
In this study, B-Myeloid MPAL patients express the B lineage marker CD19, while none of
the T-Myeloid cases do. As patient clinical diagnosis and characteristics are missing in the
data, the seven patients expressing high CD19 are defined as B-Myeloid patients. High PAX5
expression is also found in this group, which supports the B-Myeloid diagnosis. By splitting
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patients into two cohorts of high and low CD19 expression, I can compare APP expression in
B-Myeloid versus other MPAL patients (Fig. 5.14). Though this is not significant, analysis
shows that APP expression tends towards lower values in the B-Myeloid cohort (high CD19)
compared to other MPAL (p = 0.12). This result differs from the findings in pediatric MPAL
where B-Myeloid patients have higher APP expression level, however it supports the AML
analyses in which B cell markers are increased in the low-low APP cohort.

Fig. 5.14 APP expression in adult MPAL with high or low CD19. Reduced APP ex-
pression is found in high CD19 cohort which represents the B-Myeloid MPAL patients
(p = 0.12).

Next, APP expression is tested for bimodality in adult MPAL. Unlike to what is observed
in AML and pediatric ALAL, APP expression is not bimodal in this dataset. To further
examine the effect of low APP in blood malignancies, patients with the lowest and highest
APP expression are gathered into two groups of six patients. Comparison of EGIL marker
expression levels between these patients show that most myeloid markers (ITGAX, CD14,
FCGR1A and LYZ) are significantly downregulated in the low APP patients, while half of
T lineage (CD3E, CD3G, CD3D, CD2) and two B lineage (CD19 and PAX5) genes are
significantly upregulated (Fig. 5.15). In agreement with AML and pediatric ALAL data,
these results suggest that blood cells expressing low APP are biased in favour of a lymphoid
phenotype at the cost of the myeloid lineage.
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Fig. 5.15 T and B lineage markers are upregulated in the low APP cohort in adult
MPAL. Most myeloid markers (ITGAX, CD14, FCGR1A and LYZ) have reduced expression
in the low APP cohort, while many lymphoid markers are significantly increased from both T
and B lymphocyte lineages (CD3, CD2, CD19 and PAX5). Pie charts indicate the proportion
of significantly and insignificantly upregulated and downregulated markers for each lineage
in the low APP cohort. Myeloid markers: MPO, ENO2, ITGAX, CD14, FCGR1A and LYZ.
T cell markers: CD3E, CD3G, CD3D, CD2, CD5, CD8A, CD8B and CD7. B cell markers:
PAX5, CD19, CD79A, CD22, CD40 and MS4A1.

Finally, I examine the DEGs between patients with lowest and highest APP expression.
As observed in previous DEG analyses of other blood malignancies, many genes involved in
myeloid development are downregulated in the low APP cohort such as CTSS [454], MPEG1
[451], LYZ [455], and CYBB [456], but I also notice the downregulation of genes associated
with T cell lineage such as AHNAK [457], LCP1/L-plastin [458], PTPRC/CD45 [459] or
TXNIP/VDUP1, an essential gene for natural killer cell development [460]. Surprisingly, a
subset of genes involved in motility and cell adhesion shows a decreased expression in the
low APP cohort: VCAN [461], ITGB2/CD18 [462], RHoA [463] and IQGAP1 [464]. Lastly,
MALAT1, CDK6 and NPM1 are also increased in patients with low APP. MALAT1 has been
described as a poor prognosis marker in acute monocytic leukemia [465] and in many other
cancer types [466–468]. CDK6 is a negative regulator of myeloid differentiation [469], while
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NPM1 mutations are frequent in AML (between 25-41%) and confer good prognosis if no
FLT3 mutation is present [470]. To summarise, results from adult MPAL validate the role
of APP in the lymphoid/myeloid differentiation ramification. Furthermore, AML and adult
MPAL datasets support that in adults, low APP expression skews hematopoiesis development
towards the B lineage. This work also suggests that the poor survival of blood malignancies
with low APP expression could be explained by the upregulation of several poor prognosis
genes, but also the mixed and most likely undifferentiated lineage characteristic of tumour
cells expressing low APP.

Fig. 5.16 30 first DEGs between low and high APP patients in adult MPAL. DEGs
analysis in the adult MPAL patients with lowest and highest APP expression identifies the
downregulation of myeloid genes such as CTSS, MPEG1, LYZ and CYBB, but also several T
lineage genes like AHNAK, LCP1 and PTPRC. A subset of genes involved in cell motility
and adhesion is also found to have reduced expression in the low APP cohort: VCAN, ITGB2,
RHoA and IQGAP1.

BAALC, a poor prognosis marker in leukemia, is found upregulated in the low APP
patients of two distinct datasets (Fig. 5.7 and 5.13). I therefore wonder if low APP poor
survival could be explained by a potential direct or indirect interaction between APP and
BAALC. To investigate this possibility, I search for BAALC downstream targets in literature
[471, 472] and compare their expression in the APP cohorts of all three previously studied
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leukemia data. The expression of BAALC downstream target genes is not significantly
different between the APP cohorts in any datasets (Fig. 5.17). Thus, it can be assumed that
low APP poor survival is not linked to BAALC.

(A) (B)

Fig. 5.17 APP is not correlated to BAALC downstream target expression. Expression of
BAALC upregulated (A) and downregulated (B) downstream genetic targets in the low-low
versus low-high APP AML patients do not show any significant trend that could validate
a potential connection between BAALC and APP to explain the survival diagnosis of these
patients. Similar results are found in the pediatric and adult MPAL datasets.

5.2.5 Exploring the degree of similarity between the low-low APP AML
cohort and MPAL.

To further explore the possibility of low APP expression to be a marker of MPAL, I investigate
the degree of similarity between the low-low APP AML cohort and MPAL. I assume that if
the low-low APP AML patients share MPAL characteristics, the number of genes that are
differentially expressed between MPAL patients and low-low APP AML patients should be
lower than against AML patients with higher APP expression. Due to format issues, the adult
MPAL data [250] cannot be compared to the AML patients. Further analyses therefore use
pediatric MPAL sequencing data [249] despite the few dissimilarities already observed.

Gene expression matrices from both diseases are compared by performing a differential
gene expression analysis with the R package DESeq2 [252]. This package uses a negative
binomial model and gene count data of patient samples with different characteristics to do
pairwise differential expression tests. In the following analyses, the MPAL dataset [249] is
set as the reference group to compare the number of differentially expressed genes against
the three AML subgroups: low-low, low-high and high APP patients. In standard DESeq2
analyses, DEGs are selected using the log2 fold change (LFC) and the adjusted p-value
(pad j), that is a transformed p-value accounting for multiple comparison testing. The log2
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fold change can be improved by using a LFC shrinkage method that reduce the LFC of genes
with low information such as low counts or high dispersion values. For these DEG analyses
using DESeq2, I choose the Approximate Posterior Estimation for generalized linear model,
apeglm, as the shrinkage estimator [473]. This method uses an adaptive Cauchy prior instead
of the default normal distribution, which results in reduced variances for LFC estimates, but
also protects true large LFCs.

Moreover, there exists an alternative to the default Wald statistical test used by DESeq2
to evaluate differential expression. While Wald tests if the estimated standard error of a
log2 fold change between two conditions is equal to zero, the likelihood ratio test (LRT)
identifies genes that show different gene expression across multiple factors. LRT compare
two models based on the gene expression count matrix, a full and a reduced model. The full
model contains all the parameters to explain the counts while some have been removed in
the reduced model. LRT tests if the increased likelihood of the full model with the extra
terms is significant and therefore if the removed terms are necessary to explain the data.
LRT in combination with the R package DEGreport [474] and its degPattern function can
determine clusters of genes with similar patterns. I therefore choose this test to find and
analyse DEGs between our datasets (Figure 5.18 and 5.19).

To select the appropriate parameter values to filter differentially expressed genes (DEGs),
volcano plots are used to establish the pad j and LFC that allow a decent number of DEGs
between MPAL and AML groups (Fig. 5.18A,B,C). I first set pad j < e−80 and LFC > 0.58
and plot the Venn diagram (Fig. 5.18D). However, the number of specific DEGs between the
low peak cohorts and MPAL patients is almost null. To further distinguish low peak subgroups
with MPAL, DEG filtering is reduced by defining pad j < e−20. After this modification,
analyses show that the low-low APP cohort have the lowest (50) number of DEGs against
MPAL, while high peak patients obtain the highest (1207) number (Fig. 5.19A). These
findings indicate a greater similarity between the low-low AML cohort and MPAL patients
than between the other AML and MPAL patients.
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(A) (B)

(C)
(D)

Fig. 5.18 Volcano plots (A,B,C) and Venn Diagram (D) of DEGs between AML cohorts
and MPAL. Representation of DEGs with volcano plots helps to choose pad j and LFC
values to filter DEGs between MPAL and the three AML cohorts: (A) Low-Low, (B) Low-
High and (C) High APP cohorts. Here, pad j < e−80 and LFC > 0.58. The resulting Venn
Diagram (D) identifies a high number of DEGs for the high AML cohort against MPAL.

An elevated number of genes are differentially expressed between MPAL and all AML
patients. This finding could be explained by different experimental conditions between both
studies as well as adult and children distinct biology. To test this hypothesis and link these
genes to biological functions, the degPattern function is carried out to identify groups of
genes with similar gene change patterns across cohorts. To do so, samples are first gathered
into their condition groups and the mean of each gene is calculated. Then degPattern
creates a distance matrix from all pair-wise gene expression correlation. DIANA (DIvisive
ANAlysis) [475], a hierarchical clustering algorithm, builds a hierarchical tree which is cut by
degPattern to generate groups of genes with similar expression profiles. For the 1384 DEGs
shared between MPAL and AML, the analysis detects two clusters of genes: the first cluster
with 680 genes consists of genes upregulated in AML and the second cluster with 704 DEGs
upregulated in MPAL (Fig. 5.19B). Using the clusterProfiler R package [476], a functional
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analysis of these two clusters is performed (Fig. 5.19C, D). Except for the neutrophil
pathways found in genes upregulated in AML, ClusterProfiler [476] identifies in both gene
cohorts biological pathways correlated to general cell functions such as transcription and
protein modifications but unrelated to blood malignancies. This finding supports that genes
differentially expressed between the AML groups and MPAL can be explained by different
experiment protocols or by distinct cellular processes adult and children possess.

(A) (B)

(C) (D)

Fig. 5.19 Low-low APP AML patients have more genetic similarity with MPAL patients
compared to the two other AML groups. (A) The Venn diagram of DEGs among MPAL
and AML cohorts for pad j < e−20 and LFC > 0.58 identifies more DEGs in the low-high
(147) and high (1207) AML groups than in the low-low (50) group. (B) The degPattern
function finds two DEG expression patterns for the 1384 DEGs that are shared between AML
and MPAL patients. Gene set 1 defines all genes upregulated in AML versus MPAL while
group 2 the downregulated genes. A gene ontology (GO) analysis of both groups is performed.
(C) The GO specific to the list of genes upregulated in AML and downregulated in pediatric
MPAL contain neutrophil characteristics, but also autophagy and glycan biosynthesis. (D)
For the genes upregulated in MPAL and downregulated in AML, the GO analysis identifies
many pathways correlated to transcription and translation.
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5.3 Discussion

In this chapter, three clusters of AML patients with distinct expression levels of HOXA9
and APP are identified. Each group shows distinct clinical characteristics supporting a
potential role for APP in blood development and malignancies. Further exploration of the
AML data leads to the unexpected poor survival feature of patients with very low APP
expression. These patients also present upregulated expression of B cell lineage markers
such as PAX5 and CD40. Upregulation of lymphoid markers and downregulation of myeloid
markers in patients with low APP expression are found in public data of two other leukemia
malignancies. Collectively, these findings in distinct liquid cancers suggest a function for
APP in early blood cell fate commitment. As a result of the poor survival of AML patients
with low APP expression and its potential role in lymphoid versus myeloid differentiation,
I wonder if APP could be a marker of MPAL, a blood disease with lymphoid and myeloid
characteristics and poor survival prognosis. To explore this possibility, I compare genetic
expression between MPAL and three AML cohorts with different levels of APP. The lowest
number of differentially expressed genes is found between the AML patients with very
low APP expression and MPAL. Hence, this study is the first to propose that low APP
could be a characteristic in MPAL patients explained by its involvement in early blood cell
differentiation.

In the scientific literature, the role of APP in the lymphoid lineage is poorly characterised.
Despite the lack of recent research on this subject, several papers between 1990 and 1996
report the important function of APP in white blood cells and more particularly in T cells
[477–480]. Monning et al [477, 478] suggest that APP is secreted by T cells and plays a role
in the immune system activation. In another paper, authors show that granulocytes do not
express any level of APP unlike monocytic, T and B cells and speculate APP as a cell surface
receptors in immune cells [480]. To my knowledge, no further study looked at APP role in
the lymphocyte lineage until a paper about the alteration of T cell development in autism
was published in 2012 [481]. As autism patients express elevated secreted soluble APP α

(sAPPα) and have aberrant T cell development, Bailey et al [481] conceive a transgenic
mouse overexpressing sAPPα to observe changes in the immune system. They find increased
levels of cytokines involved in T cell activation, but also an elevated number of CD8+ T cells
at the expense of B and CD4+ T cells compared to control mice. This study further supports
the AML analyses presented here in which low APP expression correlates with higher
expression of B lineage markers and lower expression of T cell gene markers. Generally,
the role of APP in blood cell fate commitment suggests that this gene could be a marker for
leukemia classification and prognosis.
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In this chapter, divergent immune phenotypes typify low APP expressing blood cells
from distinct liquid cancers. While adult AML and MPAL show an upregulation of B cell
markers, pediatric ALAL is characterised by T cell marker increase. Patient age difference
could explain these findings. Abnormal processing of APP and accumulation of βα plaques
are associated to dementia in the elderly [482]. Additionally, APP processing has been shown
to be downregulated during aging of normal human fibroblasts as a result of the modified
expression of secretases involved in APP cleavage [483]. Another study demonstrates that
at older ages, the soluble APPα neuroprotective role is blocked by βα oligomers [484].
Moreover, even without any change in APP gene expression, age-related changes in APP
protein processing in neurons can affect the cell phenotype as observed by Burrinha et al
[485]. Authors show that despite the unchanged cellular levels of APP, accumulation of
βα in aged brains is partly explained by increased APP endocytosis. Endosomes are the
principal site of interaction between APP and its secretases which perform APP processing.
Therefore, even if no changes are observed in APP expression between adult and pediatric
blood cancers, APP might be diversely processed and have modified functions in different
age groups.

Many biological mechanisms are differentially processed between adults and children
[486]. In the immune system, cytokine production is altered in healthy children compared to
adults, which explains their higher susceptibility to infections [487]. A recent study have
explored the immune system and more particularly the different lymphocyte subsets of five
groups of individuals clustered by age from infants to elderly [488]. In this paper, authors
examine the dynamics of the T, B and NK cell populations in the different cohorts and show
that except for B cells which have a negative correlation, all other lymphocyte numbers are
positively correlated with age. B cell overall decline with age is consistent with another
study [489]. Authors in this paper demonstrate a reduced number of naive B population in
growing populations with a stable count of memory B lymphocytes in adulthood. Therefore,
age is undoubtedly an important parameter to consider when comparing APP expression in
pediatric against adult blood diseases. Fluctuations in hematopoietic populations as well as
distinct APP processing could differentially impact results. In particular, B and T cells seem
to demonstrate opposite trend with ageing, supporting the T versus B cell skew in low-low
APP cohort in pediatric versus adult MPAL datasets. APP being differentially processed with
age further investigations on its potential involvement in lymphocyte differentiation could
explain the B cell decrease with ageing.

DEGs analysis in adult MPAL data from [250] highlights the reduced expression of
several genes involved in cell motility and cell adhesion in the low APP cohort. APP
increases cell migration in several cancers. For example, APP knockout in keratinocytes
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leads to reduced migration velocity as a result of damaged cell substrate adhesion [490]. This
study is therefore consistent with the DEGs analysis. However, reduced migration should be
a good prognosis property, which is not what is observed in the low APP cohorts of AML and
pediatric ALAL patients. A possible explanation is that in liquid cancers, increased motility
does not give a fitness advantage to cells. Leukemic cells already circulate in blood and are
therefore less affected by changes in adhesion or motility cell functions.





Chapter 6

Boolean motif inference applied to
HOXA9 and APP in AML.

Abstract

Understanding molecular evolution in tumours confers an asset for predicting cancer pro-
gression and clinical outcomes. Knowledge about regulatory dynamics includes insights into
DNA sequence expression changes and how it affects other genes. As shown in chapter 4,
these gene interactions are decisive for future disease characteristics and different dynamics
can considerably alter prognosis. In chapter 5, I identified in AML patients three clusters
with distinct levels of HOXA9 and APP expression. These patients show distinct clinical
characteristics, however, the regulatory dynamics underlying these features are unclear. To
uncover the genes involved in AML patient stratification, I build a program inferring a
list of Boolean motifs reproducing biological system dynamics from input observations.
The program returns several motifs, thanks to which 12 gene candidates are identified as
potentially involved in the AML clusters. Each gene is computationally tested against AML
data to evaluate its probability as a good marker. Collectively, this motif inference program
highlights the importance of molecular evolution in blood disease diagnosis and therefore
could be applied to other systems to explain diverse complex biological mechanisms.

6.1 Introduction

Signalling pathways consist of a combination of molecular interactions that results in the
modification of a cell phenotype or function, such as its growth or DNA repair ability.
Signalling often starts with an input signal from the cell environment, such as an hormone
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or growth factor. This ligand then forms a complex with a receptor, which once activated,
will send a signal to another protein inside the cell. The number of interactions and proteins
involved varies from one pathway to another. This leads to a cellular response to the external
stimulus. Cell responses are broad and vary with gene expression changes such as post-
translational modifications and metabolism alterations. A small disruption in this series of
events can result in aberrant cell functions and cell death [491]. To better understand how
these disruptions affect the cells, signalling pathways can be modelled with networks [492].

A network motif is a recurring subgraph which repeats itself in complex networks and
which is defined by a particular pattern of interconnections between nodes [493]. Motifs
can be seperated into two broad classes which explain cell signalling with different network
properties. The first class is the sequential interactions of responsive elements, while the
second consists of biological switches with a feedback process (Fig. 6.1). The first type of
signalling involves transcription factors and response elements and can be illustrated as a
sequential linear series of molecules interacting one after another (Fig. 6.1A). In this type of
motif, the outcome phenotype is entirely dependent on the input signal. Varying input values
directly modify the cell phenotype. Such linearity also contributes to modified cell function
when either component of the pathway is mutated [494, 495]. The Notch pathway involved
in many cellular functions and cancer types has been described as a linear signalling pathway
[496].

In contrast to linear signalling, the second type of motifs including switches can retain the
history of the previous states. This memory property emerges from the presence of a feedback
loop as seen with HOXA9 in chapter 4. As illustrated in Figure 6.1B, the molecular motif once
activated by its environment stays in this state even after removal of the upstream activation
due to the feedback loop. This type of signalling is important for cell fate commitment.
A well-known example of switch signalling is the maturation of xenopous oocytes [344].
Immature oocytes commit to maturation after hormone stimulation and stay in the mature
state several days after hormone removal. This irreversible commitment is induced by protein
kinase activation that forms a positive feedback loop and therefore all kinases in this loop
stay highly expressed even after hormone removal. Perturbation of any genes involved in
this feedback loop abrogates the irreversible property of the maturation. Feedback loops are
certainly at the origin of many important cellular signalling regulation. Negative feedback
loops for example exert a hold on temporal expression of certain pathways once a certain
threshold has been reached while positive feedback loops can amplify and prolong a signal.
Finally, a combination of both could explain the complex process of pattern formation [497].
Inclusion of these feedback loops in executable biological models is essential to reproduce
experiments and untangle complex biological mechanisms [342]. Hence, feedback loops are
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important in cell signalling as they provide an intermediate control of the pathway regulation
in addition to the input signal that would not be sufficient on its own for cell fate commitment
and complex biological mechanisms.

(A)

(B)

Fig. 6.1 Examples of linear (A) and switch (B) signalling pathways. Both pathways are
initiated by an input signal from outside the cell and result in the modification of the cell
phenotype. However, in the linear pathway (A) the outcome phenotype is directly dependent
on the cell environment while the positive feedback loop in (B) stores events.

Linking gene expression and phenotype is challenging as a result of the considerable
number of possible protein interactions and feedback loops. Which proteins and pathways
modify a cell trait remains unclear. Proteins can have several functions which might be
cell-type or tissue specific, and even vary among different organisms. Similarly, protein
interactions depend on the biological context. These biological regulatory systems can be
represented as networks of regulatory interactions between molecules and many modelling
approaches are available to study, analyse and interpret them [498]. A common approach
consists in using continuous models based on ordinary differential equations (ODEs) which
are defined by continuous and quantitative variables over a continuous timescale. ODEs for
biological systems use biochemical kinetic reaction equations describing how the concentra-
tion of molecular elements evolve over time. They are powerful models thanks to the rich
diversity of biological details they can represent [499]. However, a major drawback of ODE
models is their limited application to small networks to avoid high computational cost [500].
Alternatively, Boolean networks offer a promising approach to model large complex systems.
First introduced in 1969 by Kauffman [501], Boolean networks describe the evolution of
discrete variables with binary states. Variables can be seen as nodes which represent any
biological molecules or phenotypes. Interactions between molecules and phenotypes are
illustrated by edges and Boolean functions. These Boolean functions are rules written in
formal logic connecting different nodes and representing their relationship, such as activation
or repression of a gene by one or several other genes. The appeal of this modelling technique
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is the abstraction of the system. Boolean networks can be applied to large signalling networks
and are relatively easy to build and interpret due to the structure of the model [500, 499].

Boolean networks have proved their value in many cancer studies. Among them, Fumia
et al [502] demonstrate thanks to a network of 96 nodes and 249 edges representing the
main cancer pathways that their model reproduces coherent healthy cell response to different
environments such as hypoxia or DNA damage, but also identifies well-known mutational se-
quences leading to tumour malignancy. Importantly, authors show the emergence of resistant
clones after therapy targeting only one cancer cell phenotype and therefore highlight the value
of combinatorial series of drugs applied concurrently to block multiple cancer pathways.
Boolean networks also highlights the role of biological switches in tumour progression and
cancer stage evolution [503]. In this paper, authors use Boolean networks built from gene
expression and protein interaction experiments to establish sets of genes which flip expression
between different disease stages and act as cellular phenotypic switches to allow disease
progression. Both studies confirm the strong potential of Boolean networks in predicting
protein and cellular pathways involved in tumour progression leading to malignancy in
different cancers, emphasising the robustness of abstract models in biological systems.

Boolean networks can incorporate deterministic or stochastic updates. The dynamics
of networks are often updated on discrete time steps, where every state at a time t + 1 is
evaluated through its Boolean function and the values of the other variables at time t. Nodes
can be updated simultaneously, in a synchronous manner, or asynchronously, that is nodes are
selected for update randomly at each time step [504]. As genes do not update simultaneously
in cells, asynchronous simulations are more realistic. The choice between update techniques
must be done cautiously as different methods can give different results [505]. In synchronous
update, a transition state has a unique successor which is not always the case in asynchronous.
Different attractors can be reached with different probability when starting from the same
initial condition in asynchronous update. Asynchronous updates tend to give additional
outcomes, which are often complex and difficult to analyse [506]. Finally, asynchronous
network are suitable for reduction techniques, which is untrue for synchronous networks as
reduction can lead to loss of reachable states [507]. Reduction techniques aim to simplify a
Boolean network while preserving its main properties.

Public databases provide easy-to-access information for network construction. The
increasing amount of new omic data have developed the urgent need of biological databases
listing metabolic and signalling pathways. These databases regroup biological data to
facilitate researchers work by accelerating information searches often scattered in several
papers and experiments. If the modeller already has a list of molecules in mind, these tools can
build models by finding the genetic or physical interactions between components of the list
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and deliver a visualisation of the network. Amongst popular tools, KEGG [508], Reactome
[509] and WikiPathway [510] all generate their databases through literature curation and
experimental publications for different cell types in different organisms. However, these
databases have different focuses and level of information for different molecular compounds.
They are often biased by the shared community interest for common drug targeted molecules
which limits for example the number of databases for protein-RNA interaction [511]. To
overcome this issue, Omnipath collects 61 resources, with a focus on public resources
containing literature-curated signalling interactions, which provide a current total of 99,255
interactions and has recently created an application linked to Cytoscape [512] for network
analysis and visualisation [513]. The development of tools like Omnipath ensures the
reliability of prior information used in network construction and help in the analysis of gene
regulatory networks.

Studies in previous chapters have identified two genes, HOXA9 and APP, with important
patient stratification properties in blood malignancies. Further investigations have shown that
both genes are not independent and actually form three groups of patients with different clin-
ical characteristics in TCGA AML data (data description in subsection 2.2.1). Relationship
between both genes is unknown, therefore, a better understanding of the regulatory dynamics
behind these clusters could aid patient stratification and classification. To do so, I use Z3
theorem prover, a SMT solver by Microsoft [286], to identify network motifs explaining
the three AML patient groups (see Methods section 2.6 for more details on SMT). Using
the Z3Python package, I build a program which infers a list of gene motifs from biological
observations. I apply this tool to the HOXA9/APP clusters. This work helps to identify a
set of genes potentially involved in AML patient stratification and are therefore important
for AML subtype characterisation and personalised treatment design. This approach can be
applied generally to other systems to decipher gene interactions and understand complex
biological mechanisms.

6.2 Results

Key findings of this work are divided into four subsections: in the first subsection, I describe
the conceptualisation and construction of the motif search algorithm. The next subsection
illustrates how the algorithm can be applied to biological systems. Here I use this algorithm to
untangle the regulatory dynamics in the three AML cohorts of patients with distinct HOXA9
and APP gene expressions. In the third subsection, I search for candidate genes for the
newly found motifs. Finally, the last subsection shows how poor or good candidates are
discriminated for the gene motifs.
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6.2.1 Implementation of a motif inference algorithm

Fig. 6.2 Standard network studies and the motif search program differ in their main
purpose and input information. Standard network studies aim to understand how the model
inputs alter the network outcomes by finding attractors. In this work, the simulation outcomes
and how the motif behaves to different initial conditions are known information. From this
prior input, the algorithm aims to determine the networks which are able to reproduce these
observations. To do so, it needs to find the corresponding edges and variable update functions,
here the target functions, between input variables. To identify correct edges, target functions
are defined from the input simulations which helps to identify the relationships between
nodes.

To determine the regulatory dynamics behind the three HOXA9/APP clusters, I use the
Z3Python package to build a python program which returns a list of Boolean networks with
the ability to reproduce particular biological observations. This program takes as inputs one
or several traces representing the biological observations and a list of genes that the motifs
should contain. From all the possible motifs existing for a certain number of genes, the code
selects and returns all the networks that match the input simulations as well as the smallest
network and the consensus interactions. The smallest network is defined as the network with
the lowest number of interactions and the consensus interactions as the required edges for
the motifs to match the observations. This work diverges from standard studies which aim to
find attractors for a defined network. Here, the biological outcomes are known and the aim is
to design a network to represent those (Fig. 6.2).
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Fig. 6.3 Network example.

Z3 solves systems of constraints between defined variables. Constraints are important
rules, properties or variable definitions a model must possess for Z3 to define the system as
satisfiable. In this program, constraints are established by the traces which determine how
the variable update functions should be defined for each gene. For example for the network
in Figure 6.3, one possible trace is:

Input A B Output
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 1
1 1 1 0
1 1 1 0

Rows of a trace show network states at each time step, while columns represent the
network variables. In traces, the initial conditions are defined in the first row. Here, all genes
are initially set to zero (False), meaning no or low activity. As shown by the second row of
the trace, Input is a basal gene, which means it can activate itself when all genes are inactive
at the previous step. In this example, the network simulations are synchronous which means
all genes are updated at the same time. Therefore, when A is activated, B and Output are
both active in the next time step. It should be noted that the last two steps are similar which
means the network has reached a steady state. Due to the synchronous update, the network is
deterministic. Consequently, for identical initial conditions, simulations always converge to
the same attractor which is a single state where Input, A and B are active and Output inactive.
Synchronous Boolean networks can also converge to a repeating sequence of states, called
cycles [514]. A network can reach several attractors with different initial conditions. Finally,
several traces can define the same network. Different definitions can be established for the
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activation and inhibition edges. In the example, Output is inactive when A and B are active.
However, one could consider that Output activation by A is stronger than its inhibition by B,
and thus another possible trace for the same network could be:

Input A B Output
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 1
1 1 1 1

Variable update functions are essential features of Boolean networks. To determine the
next state of a network, one must know the values of each node at the previous state as
well as their corresponding variable update functions (Fig. 6.4). Here, a target function
is defined as a variable update function that establishes the set of rules linking a node
to the other nodes with logic operators (AND, NOT, OR). A target function in the motif
inference algorithm is a Z3 Boolean variable giving the next state of a specific node given
the current network state. In the example, the target function of Input when all nodes equal
zero (False) is one (True) due to its basal activity. This means that if all genes are inactive at
a certain time t, Input will be active at time t +1. Its resulting target function is defined as
follows: TF-Input-Input/False-A/False-B/False-Output/False = True. The first
part of the variable TF-Input gives the name of the node, here Input, and the second part
Input/False-A/False-B/False-Output/False displays the current state of the network.
The value of this target function gives the state of the node Input at the next time step, here
True.

Fig. 6.4 Example of a one-step simulation using target functions. Figures on the left and
right represent the same network at different time steps. At each time step of a simulation,
the program computes the next network state by looking at the target functions for all nodes
given the current state. A target function is a variable update function represented by a Z3
Boolean variable for a specific node and network state.
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The algorithm first creates all target functions for all nodes and all possible current states.
Then, a "step" function assigns values to the target functions using the input traces (Fig. 6.2).
Target functions not defined by the traces have their value assigned by the Z3 solver to obtain
a satisfiable model.

Once all target functions are generated and assigned to a Boolean value, edges between
the nodes are defined by establishing for each pair of genes the nature of their interaction
(Fig. 6.2). The algorithm assumes 3 types of interactions: activation, inhibition and none.
For simplification, mixed interactions are ignored, meaning genes cannot have complex
interactions combining activation and inhibition. Indeed, molecular interactions can be
context dependent. For example, Wise, a secreted protein involved in posterior neural
marker induction, acts as both activator and inhibitor of the Wnt signalling pathway [515].
However, these interactions are rare [516], and therefore ignoring mixed interactions should
not alter results. To test the interaction between a gene source and a gene target, all the
target functions of the gene target are gathered. Then, the algorithm checks if the gene
target expression is constant, increased or decreased when the gene source is activated but
all other genes have kept the same activity. For example, in order to find the effect of a
gene A over a gene B, the program compares all the paired target functions of B such that
TF-B-A/False-{rest of state} and TF-B-A/True-{rest of state} have the same
rest of state. If all paired target functions have the same value for B, lack of interaction
between A and B is assumed. If B is activated in at least one paired target function, that is
its target function value goes from False to True when A is activated, A activation of B is
expected. Reciprocally, if activation of A inactivates B in at least one paired target function,
the algorithm speculates that A inhibits B. If both activation and inhibition are found for
B, the constraint is set to False which reciprocates to ignore mixed interactions and rejects
motifs including these interactions.

A system is said satisfiable if and only if Z3 finds a solution to the problem with all
constraints returning a True value. In this code, Z3 solver returns satisfiable if it finds at
least one network containing target functions and interactions between all input genes which
satisfy the constraints established by the observations/traces. The schematic of the code
workflow can be seen in Figure 6.5.
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Fig. 6.5 Code workflow for the motif inference program. From one or several input traces
representing biological observations, the code generates target functions for each input
variable. In this example, input variables are In, A, B and Out. In parallel, it associates values
to all variables at each time step using the trace and its corresponding time starting at t = 0
for the first row. Combining both state specification and target function information, Z3 can
now explore different sets of interactions between all genes and test if one can reproduce the
observations. If a set is found, the problem is said satisfiable and the code returns the motif
with the corresponding interactions. The final step consists in excluding this motif from the
solutions to look for other potential networks. The algorithm searches for a new solution
until none can be found.

When the Z3 solver determines the problem as satisfiable for the input traces and genes,
a network has been found. As mentioned formerly, one network can fit several traces in
regard to the activation/inhibition rules applied to gene interactions. The converse is also
true. Therefore, it is possible that several networks can reproduce the input observations. In
order to find all possible networks, the first network is saved in a list and a new rule is added
to constrain the solver to exclude this network from the possible solutions. If a new network
is found, the result is saved again in the list and this process is repeated until no network can
satisfy the problem. From this catalogue of motifs, the algorithm searches for interactions
that are present in all the networks. These edges are defined as consensus interactions and
represent necessary node interactions for the motifs to reproduce the observations. Finally,
the algorithm searches for the smallest network, that is the network with the highest number
of none interactions. Finding the smallest network and the consensus interactions facilitates
network explorations by starting with smaller models. It also helps to quickly reject variables
that do not possess the essential interactions.
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Lastly, I include two functions to facilitate the motif search for the HOXA9/APP clusters
which can be used for other biological problems. The first function converts the target
functions of a network found by Z3 into target functions which can be read by the BioModel-
Analyzer (BMA) tool [191] (Methods section 2.4.2). This functionality allows the validation
of the networks found by Z3. The second function allows the addition of "switches" into
the network. These switches represent biological events such as mutations and are not real
biological molecules. For example, a switch can induce a loss of function in a gene, and is
represented by an inhibition between the switch and its receptor. Switches only interact and
modify the expression of one gene, called the switch receptor, while none gene can interact
or modify the switch. Finally, the switch has a constant value and stays in its on or off state
at all time steps. To include a switch in the observations, a new input needs to be added in
the code specifying the name of the switch and its receptor.

6.2.2 Identification of motifs for the HOXA9 /APP AML cohorts

As shown in the previous chapters 4 and 5, the analysis of the TCGA AML data highlighted
the importance of HOXA9 as a marker for AML stratification in a first instance, and then
the unforeseen APP role in leukemia. Further work on the data showed the presence of
three clusters of patients with distinct HOXA9 and APP expression (Fig. 5.1B). These three
clusters are unexpected: no link between HOXA9 and APP has been previously identified in
the literature and the role of APP in AML is not well understood [517, 414, 518]. To untangle
why and how HOXA9 and APP clusters appear in AML patients, I search for networks that
can generate these clusters using the motif inference algorithm. Identification of molecular
motifs can help to understand how these genes are linked and predict patient classification.

The aim of this work is to find the smallest motifs reproducing the three HOXA9/APP
clusters. I therefore increase sequentially the number of variables until a fitting motif is found.
The motif inference is initiated with two genes, but with these inputs, traces reproducing
the three clusters cannot be generated. I increase the search to two genes with a switch
event. With these variables and some hypothetical traces reproducing the clusters, Z3 returns
unsatisfiable as a result of one of the switch constraints stating that a switch has one-way
interaction with a single gene. Removing the switch constraints on the third variable is a
sufficient condition for the Z3 solver to find Boolean networks for the clusters. Three genes
are then required and sufficient to explain the formation of the three clusters.

All possible traces reproducing the clusters found by hand are tested in the program
for the three genes, APP, HOXA9 and a third unknown gene, called marker here. A set
of three traces leads to three steady states representing the clusters and depending on the
initial conditions: high expression for APP and HOXA9, called the high/high cohort, low
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expression for HOXA9 and high expression for APP, the low/high cohort and finally high
expression for HOXA9 and low expression for APP, the high/low cohort. Only traces able to
reproduce these clusters and resulting in a list of inferred networks are kept. In the possible
motifs, three types of relationship between the marker and APP and HOXA9 are found: the
marker activates both genes, the marker inhibits them, and finally the marker inhibits one and
activates the other. The smallest motifs for each interaction type are illustrated in Figure 6.6.
It should be noted that motifs are symmetrical, that is each motif is one of the two solutions
producing the same traces but with swapped HOXA9 and APP nodes. Network dynamics are
described in the following paragraphs.

(A) (B) (C)

Fig. 6.6 Motif search for HOXA9/APP clusters identifies three potential networks (six
with the symmetric networks). Proteins in green have a basal activity. (A) The marker
activates both HOXA9 and APP. HOXA9 activates itself and inhibits APP. (B) The marker
inihibits both HOXA9 and APP. HOXA9 activates itself and inhibits APP. (C) The marker
activates HOXA9 and inhibits APP and HOXA9 activates itself.

If the marker activates both APP and HOXA9 (Fig. 6.6A and Table 6.1), the low/high
cohort should have a low expression for the marker (Trace 1). Here, APP have a basal activity,
which means when all genes are turned off, it can activate itself. Activation of the marker
is sufficient to induce both HOXA9 and APP expression and thus the high/high cohort is
expected to have a high expression for the marker gene (Trace 2). Finally, if HOXA9 is
turned on before APP while the marker stays off, APP expression remains low due to HOXA9
inhibition and lack of activation (Trace 3). Then, the high/low cohort should have a low
expression for the marker gene.

Trace 1 Trace 2 Trace 3
Marker HOXA9 APP Marker HOXA9 APP Marker HOXA9 APP

0 0 0 1 0 0 0 1 1
0 0 1 1 1 1 0 1 0
0 0 1 1 1 1 0 1 0

Table 6.1 Traces of the three HOXA9/APP clusters when the marker activates both
genes.
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If the marker inhibits both APP and HOXA9 (Fig. 6.6B and Table 6.2), the high/high
cohort should have a low expression for the marker gene (Trace 1). If the marker gene is
initially turned on, two cases are possible: APP turns itself on if and only if HOXA9 is not
expressed before which leads to the low/high case (Trace 2). However, if HOXA9 is on and
stays on thanks to its positive self loop, APP expression is inhibited by HOXA9 and the
marker, which results in the high/low situation (Trace 3).

Trace 1 Trace 2 Trace 3
Marker HOXA9 APP Marker HOXA9 APP Marker HOXA9 APP

0 0 0 1 0 0 1 1 1
0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0

Table 6.2 Traces of the three HOXA9/APP clusters when the marker inhibits both genes.

The last scenario illustrates the case in which the marker inhibits HOXA9 gene and
activates APP (Fig. 6.6C and Table 6.3). The motif search predicts that for the high/high
cohort, the marker should also have a high expression (Trace 3). In this case, HOXA9 is
turned on before the marker and stays in this state thanks to its positive feedback loop.
However in the low/high cohort, HOXA9 has low expression when the marker is turned on
which results in its inhibition while APP is activated by the marker (Trace 2). Finally, the
absence of marker activates HOXA9 while APP expression stays low, which leads to the
high/low case where patients should have low expression for the marker (Trace 1).

Trace 1 Trace 2 Trace 3
Marker HOXA9 APP Marker HOXA9 APP Marker HOXA9 APP

0 0 0 1 0 0 1 1 1
0 1 0 1 0 1 1 1 1
0 1 0 1 0 1 1 1 1

Table 6.3 Traces of the three HOXA9/APP clusters when the marker inhibits HOXA9
gene and activates APP.

6.2.3 Investigation of possible motif gene candidates

To discriminate between the symmetrical possible networks in the cases of double activation
or inhibition, I must determine which of HOXA9 inhibition by APP or APP inhibition by
HOXA9 is the most likely. The R package Omnipath gathers genetic interaction information
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from a large number of public databases [513]. Using Omnipath, I search for HOXA9 and
APP connections. No direct interaction between HOXA9 and APP can be found. I next
look for genes that are downstream of HOXA9 and upstream of APP to explore intermediate
genes. One gene fits the inhibition of APP by HOXA9: TGFβ1. Similar work is performed
for HOXA9 inhibition by APP, but no gene matches the request. In Omnipath, TGFβ1 is
marked as repressed by HOXA9 and as a positive regulator of APP. While many references
for the activation of APP by TGFβ1 are available [519–521], Omnipath only provides
one questionable source for TGFβ1 inhibition by HOXA9. After literature curation, one
paper showing HOXA9 repression of TGFβ1 [522] is found. HOXA9 inhibition of APP is
confirmed thanks to another study demonstrating the role of HOXA9 as a co-repressor partner
of SMAD6 [523]. The latter has been shown to repress SMAD4 activity which positively
regulates APP [521] by competing for the binding with SMAD1 [524]. Collectively, an
inhibition of APP by HOXA9 via the TGFβ pathway is therefore likely, however, further
biological experiments are required for confirmation of this connection in blood. In the rest
of this work, I ignore networks including an inhibition of HOXA9 by APP and focus on
networks in which HOXA9 inhibits APP and activates itself [334].

To determine the most biologically realistic motifs, identification of markers with a
known relationship to both HOXA9 and APP is essential. Omnipath does not find genes
directly upstream of both HOXA9 and APP. To fasten the search of markers in literature, I
save the two lists of upstream genes for HOXA9 and APP found by Omnipath and manually
look in literature for an interaction with the second gene HOXA9 or APP that Omnipath did
not report. This work identifies nine genes interacting with both HOXA9 and APP: PRMT5,
DNMT3A, TFAP2A, CTCF, STAT1, SP1, CDK1, GATA1 and GATA2. To this list, I add JAK2
and TET2 which were found to be upstream of HOXA9 in the MPN work and literature
[368]. Lastly, I also include SMAD4 as SMAD4 positively regulates APP and inhibits HOXA9
activity [521, 525]. The markers can be classified into three categories. JAK2, TET2, PRMT5,
TFAP2A, STAT1, SP1, CDK1, GATA1 and GATA2 form the largest category and all positively
regulate HOXA9 and APP. SMAD4 and CTCF represents the second category and are positive
regulators of APP and repressors of HOXA9 expression. Finally, DNMT3A inhibits the
activity of APP and HOXA9 via its methylation function.

6.2.4 Candidate gene validation using gene expression and clinical data

Public databases and literature curation have helped to list 12 genetic candidates for the
motifs. To validate the markers for the HOXA9/APP clusters found in AML, two tests are
performed using the TCGA AML data to discriminate good and poor markers. If the selected
genes are good markers, their expression in the three cohorts should follow a specific and
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predictable pattern (Tables 6.1, 6.2 and 6.3), but also stratify AML subtypes in the cohorts.
Summary of the validation tests can be found in Table 6.4.

(A) (B) (C)

Fig. 6.7 Expected marker expression level and FAB classification in the AML cohorts.
As shown in Tables 6.1, 6.2 and 6.3, different expression levels are expected for the marker
in the HOXA9/APP clusters. The marker expression level in the cohorts depends on its
interaction with HOXA9 and APP: (A) the marker activates both HOXA9 and APP, (B) the
marker inhibits both genes and (C) the marker inhibits HOXA9 and activates APP. Red
indicates an expected high expression and blue a low expression. Moreover, each area is
associated to a AML subtype from the French-American-British (FAB) classification: M0
the undifferentiated acute myeloblastic, M3 the acute promyelocytic leukemia (APL) and
M5 the acute monocytic leukemia.

Each category of markers should show different expression level in the patient cohorts
as a result of its relationship with HOXA9 and APP (Fig. 6.7). For example as illustrated in
Figure 6.7A, genes activating HOXA9 and APP should have high expression in the cohorts
with high APP and high HOXA9 expression (Trace 2 in Table 6.1). To assess how well our
candidate genes reproduce these patterns, AML patients are split into two groups with the
lowest and highest expression for each marker. I look at their distribution in the HOXA9/APP
cohorts and score each marker by calculating the percentage of patients found in the right
cohorts. For example, if GATA1 is highly expressed in a patient, this patient is expected to
be found in the cohort with high expression for HOXA9 and APP as GATA1 activates both
genes. This scoring method is repeated with diverse cut-offs for the marker expression level,
that is more or less patients are included in the groups with high and low expression for the
marker. This cut-off range analysis examines the possibility of extreme gene expressions
giving better scores.

To test score significance, permutation tests are carried out by randomly shuffling patients
in the low and high expression groups. Then a new score for the shuffled data is computed.
This method is reiterated ten thousand times to obtain a score distribution for the shuffled
data. How the original score falls into this distribution allows to compute the p-value for
the hypothesis that this score is obtained by chance. P-value for this permutation test is the
percentage of scores above the original score (Fig. 6.8). After Bonferroni correction for the
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11 markers, I expect a gene to be a good marker if its p-value is lower than 4×10−3 (original
threshold is 0.05). Through this permutation test, three classes of markers are found. The first
class composed of STAT1 and CTCF has a significant p-value after Bonferroni correction.
I also include in this category SMAD4 which has a p-value of 8×10−3, considered close
enough from significance in light of the conservative property of Bonferroni adjustment.
The second group with SP1, PRMT5 and JAK2 has an insignificant p-value after Bonferroni
correction, but a pattern can be identified in p-value significance for the different cut-offs
before correction. Patients with extreme expression levels for those genes are more likely
to be found in the expected HOXA9/APP cohorts. Lastly, the markers of the third class are
found as bad markers in all the permutation tests and consist of TET2, CDK1, DNMT3A and
GATA2. GATA1 due to noisy results cannot be classified: this gene possesses a significant
p-value after Bonferroni correction, but for some smaller cut-offs the tests without Bonferroni
correction resume as insignificant. I exclude TFAP2A from testing as absent in the AML
dataset.

(A) (B)

Fig. 6.8 STAT1 and TET2 score distributions for the permutation test. Score distributions
for the shuffled data of (A) STAT1, found as a good marker by the permutation test (p =
0.0001), and (B) TET2, found as a poor marker (p = 0.4627). The dotted line represents the
original score.

To further investigate the genes found significant in the permutation tests, I examine
the AML French-American-British (FAB) classification distribution in the high and low
expression groups of each marker (Fig. 6.9). For the genes activating HOXA9 and APP, that
is for STAT1, GATA1 and SP1, M0 AML subtype patients should be mostly present in the
group with higher expression level for the marker while M3 and M5 should be in the low
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expression group (Fig. 6.7A). I include SP1 and GATA1 in this new test as a result of their
close significance for several permutation tests.

(A) (B)

Fig. 6.9 AML French-American-British (FAB) classification distribution in the high
and low expression groups of (A) SP1 and (B) SMAD4. SP1 activates both APP and
HOXA9 while SMAD4 represses HOXA9 and activates APP. Low SP1 expression should be
characterised by M3 and M5 subtypes and M0 should be observed in the high group. SP1
expression fails to stratify M5 patients, but seems as an excellent marker for M3 patients.
Per contrast, SMAD4 wrongly classifies M3 patients which should be characterised by high
SMAD4 expression but is excellent for M0 and M5 patient stratification.

Results from this test show that no one of the genes seems very good at classifying all
subtypes (Table 6.4). STAT1 and SP1 are good classifiers for M3 and M0 subtypes. SP1 is
an excellent M3 marker as the high expression cohort does not have any patients with M3
subtype. M5 patients seem randomly distributed between the two SP1 groups. Distribution
of M5 patients in the STAT1 cohorts shows a good trend towards good classification. On
the other hand, GATA1 is good at classifying M5 patients but not M3 and M0. For the
genes activating APP and inhibiting HOXA9, CTCF and SMAD4, patients with M0 and M3
subtypes should be found in the marker high expression group and M5 should be in the low
expression one. However, both genes wrongly classify M3 patients which are mostly found
in the low expression cohort. However, other subtypes are very well classified.
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Marker Bonferroni Significant Good M0 Good M3 Good M5
significant (< 0.05) Marker Marker Marker

Markers activating HOXA9 and APP
STAT1 Yes Yes Good Good Average
GATA1 Yes Noisy Poor Poor Good

SP1 No Yes Good Excellent Poor
PRMT5 No Yes
JAK2 No Yes
TET2 No No
CDK1 No No
GATA2 No No

Marker inhibiting HOXA9 and APP
DNMT3 No No

Markers inhibiting HOXA9 and activating APP
CTCF Yes Yes Excellent Poor Excellent

SMAD4 Close Yes Excellent Poor Excellent
Table 6.4 Marker validation test summary. Column 2 and 3 of the table indicates if the
p-value is significant for the permutation tests with or without Bonferroni correction. The
last three columns summarises if the markers stratify well M0, M3, M5 AML patients as
expected by the HOXA9/APP cohorts (visually using the histograms). GATA1 is referred as
noisy due to few insignificant permutation tests for random cut-offs despite its significant
p-value of the Bonferroni test. SMAD4 is said to be close to significance as its p-value is
8×10−3 for the Bonferroni test (threshold is 4×10−3).

6.3 Discussion

In this chapter, I investigate the regulatory dynamics behind the observed HOXA9/APP
patient cohorts in AML by developing a program inferring Boolean motifs from biological
observations. Inputs of the algorithm consist of a list of genes and one or several traces
representing the known biological dynamics between the genes. The program returns a set of
Boolean networks generating the traces. It also identifies the smallest motif as well as the
gene interactions required in all the accepted motifs. The input observations are transformed
into constraints in the form of Boolean variables. The set of constraint variables must have
True values for the theorem prover Z3 to find the appropriate edges between the genes
and solve the motif inference problem. To determine gene motifs reproducing the AML
clusters, various traces representing the different levels of HOXA9 and APP expression in
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AML patients are generated. Using the motif inference algorithm, I find that three genes,
HOXA9, APP and a third unknown gene, are required and sufficient to generate the clusters.
Using Omnipath and literature curation, 12 candidates are identified for the unknown gene.
Two tests are performed to classify genes into good or poor markers by splitting patients
into two groups with the lowest and highest expression for each marker. I then compare how
patients in both cohorts are located in the HOXA9/APP clusters and what are their AML
classification distribution. No gene perfectly passes both tests, but some genes such as STAT1,
CTCF and SMAD4 do better than others. Further biological experiments will be necessary to
confirm these findings. The knockout of these markers with CRISPR in human blood cells
to detect their effect on HOXA9 and APP expression could for example confirm the motifs.
Additionally, monitoring expression levels of these genes in patients with M0, M3 and M5
subtypes would also highlight their stratification property in leukemia. It should be noted
that multiple gene candidates may work together which could also be tested in experiments.
Identification of genetic markers are important for personalised diagnosis and treatment. I
expect this program to have further biological and clinical applications by establishing links
between gene expression and phenotypic changes or by finding new gene interactions.

This study concentrates the motif search on smallest models to explain the patient clusters
observed in AML. As three genes are required and sufficient to reproduce the three levels
of expression of HOXA9 and APP, the list of unknown genes is narrowed down to one.
However, one could argue the value of searching for larger motifs with higher number of
components to improve the test results. For several reasons, I believe this would not lead to
better conclusions. First, increasing the number of unknowns in a model increases prediction
uncertainty [526]. By reducing the number of genes in the motifs, the number of possible
gene interactions is reduced which therefore avoids addition of assumptions. Consequently,
reducing unknowns strengthens the predictions based on fewer hypotheses. Second, larger
networks can result in non-interpretable complex dynamics [527]. Increasing the number of
genes in the motifs could lead to unexpected dynamics which can be difficult to biologically
interpret. With smaller networks, the misinterpretation of the results is prevented. Moreover,
small networks have been widely used in diverse biological systems and give satisfiable and
relevant answers [528, 529]. Lastly, the validation of the motifs by biological experiments
would be prone to more errors if many gene expression and interactions have to be tested. A
large source of errors may be introduced in experiments and can be classified as "human"
errors, systematic errors or random errors [530]. Human errors refer to avoidable mistakes
such as misreading a quantity or using the wrong reactant. Conversely, systematic and
random errors are inevitable regardless the number of similar experiments. Systematic errors
often involve flaws in experimental instruments leading to inaccurate quantities, and random
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errors can be due to environmental variations such as temperature. By reducing the number
of experiments, protocols are simplified and the error rate is reduced.

This work is subject to possibilities of improvement. First, I ignore complex interactions
between genes and only consider activation or inhibition. Despite their known existence [516,
531], complex molecular interactions are often ignored in interaction inference tools [532,
533]. By neglecting mixed interactions, the algorithm possibly ignores gene connections
explaining some biological mechanisms. However, I believe neglecting these relationships
in the motifs could be apprehended by adding new variables representing the same gene
with a distinct biological state. Another potential limitation of this study is that the program
infers Boolean networks, which means variables can only take two values, True or False.
Quantitative networks with a wider range of discrete values could integrate intermediate level
of gene expression which might be biologically relevant. However, increasing granularity
would most likely result in longer simulation time. Moreover, it has been shown that network
structure is more relevant than kinetic details [534]. Boolean networks can also be used as
groundwork for quantitative modelling when additional information or experiments become
available. These findings further emphasise the benefit of Boolean networks for the motif
inference algorithm.

Lastly, this work highlights the valuable use of theorem prover in biological dilemmas.
Wolkenhauer et al define theorem proving in system biology as a tool to identify conditions
entities must possess for the system properties to hold [535]. Although some life science
studies have proved its performance for solving clinical and biological pathway problems
[536–538], I believe theorem provers are underused in the medical field and could provide
quick and useful answers to complex disease studies. Using theorem provers, de Maria et
al [537] model the p53/Mdm2 DNA-damage repair mechanism and prove the importance
of several properties for the system to behave properly. With a Boolean model and rules
written in HyLL, a linear logic language, they show that in absence of DNA damage, the
system stays at its initial state while DNA damage generates oscillations between two states.
These observations establish the regulatory dynamics in normal cells and constitute valuable
knowledge for deciphering the progression of dysregulated processes in diseases.



Chapter 7

Discussion

This thesis presents a wide range of computational, statistical and mathematical techniques to
study tumour progression in different blood malignancies. I show that important driver events
considerably impact on the cancer dynamics and the tumour clinical characteristics. The order
in which oncogenic aberrations have appeared alters the underlying cell fate and functions,
and therefore leads to distinct disease subtypes. Similarly, the timing between resistance
emergence and beginning of treatment affects the diagnosis outcome. Better insights into the
evolution of critical oncogenic aberrations can help to find the right treatment strategy. In the
following paragraphs, I discuss how the work presented in this thesis could affect clinical
monitoring and treatment.

This thesis demonstrates that resistance take-over and mutation order influence patient
treatment protocols. Specifically, for blood cancers with weak competition between cancerous
populations, a daily treatment at maximal dose becomes redundant once the number of
resistant cells exceeds the sensitive one. Hence, timing of cancer cell dynamics determines
when treatment should be stopped to avoid unnecessary toxicity. Similarly, timing between
two mutations alter the phenotype of cells as shown in the work in Myeloproliferative
Neoplasms. When TET2 is mutated before JAK2, its function loss decreases the gene
expression of some JAK2 downstream targets. Consequently, JAK2 inhibitor drugs become
inefficient for those patients despite the JAK2 mutation as a result of the evolution switch
property of JAK2 and TET2 common downstream target HOXA9.

This work also highlights the value of frequent tumour monitoring to predict clinical
outcomes (Fig. 7.1). As shown with the model of lymphoma growth, measuring proliferation
rate of cancer cells could help predict patient survival, as with increasing tumour burden,
organ dysfunction results in lower proliferation rates when approaching maximum burden
and death. Loss of APP expression as well as high HOXA9 expression in leukemia are valid
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indicators for poor survival in patients. Control and stratification of patients for these genetic
markers can help clinicians initiate a faster care of those aggressive tumours.

Fig. 7.1 Monitoring and oncogenic event timing in cancer progression. Three scenarios
of cancer progression demonstrate the importance of monitoring in cancer evolution. A good
monitoring is an early monitoring in which clinicians have identified the disease markers
and potential resistant clones. Efficient monitoring also examines specific gene expressions
which correlate with prognosis and disease classification. Identification of important markers
and clones for cancer evolution improves disease monitoring and therefore helps clinicians
to develop personalised cancer therapies.

Finally, this thesis emphasises the benefit of biological networks to link regulatory
dynamics with tumour evolution and clinical features. Gene and protein networks possess
many functionalities which allow users to simulate major molecular events such as genetic
mutations but also drug application which has not been investigated in this work. Changes on
the cell phenotype induced by these events justify the observed disease characteristics. Two
distinct analyses in which molecular networks are central to the methodology are carried out
in this thesis. First, a network is constructed to understand which molecules are responsible
for the evolution switch property observed in Myeloproliferative Neoplasms patients bearing
both JAK2 and TET2 mutations. This model helps to assess important genes involved in the
disease progression. Then in Chapter 6, a program is built to infer gene motifs reproducing
patient clusters observed in AML. Both studies help to decipher the complexity of gene
dynamics in blood diseases and identify potential drug targets to fight tumour progression.

In the following sections, I discuss new insights related to specific clinical aspects this
thesis highlights. Specifically, I review the distinct clinical characteristics of solid and liquid
cancers and how treatment strategies are directly impacted by those. I also argue about
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how the specific order of biological processes for lineage commitment can be viewed as the
premises for the influence of oncogenic event timing in blood diseases. In a third section, I
examine the novel promising technologies to study cancer evolution and how these could be
applied to my work. Finally, I conclude this chapter with a list of the detailed results of this
thesis.

7.1 Liquid versus solid tumours

Blood cancers arise from hematopoietic cells. Unlike solid tumours, they do not form a mass,
but circulate in our blood system and are therefore easier to access. Consequently, despite
their lower prevalence in adults, publications and researches on hematological malignancies
are more frequent than solid cancers [539]. As for treatments, liquid cancers can be treated
with chemotherapy and targeted therapies, but also with stem cell transplant which is primarily
used in blood diseases [540, 541]. Stem cell transplant allows clinicians to transfer to
the patient bone marrow new hematopoietic stem cells after damaging the old ones with
toxic therapies. However, haematological malignancies cannot be removed by surgical
interventions [542]. Thanks to their lack of physical barriers, the infiltration of immune
cells and drug targeting against cancer cells are facilitated in liquid cancers [543]. Liquid
and solid tumours are also genetically different, for example, chromosome aberrations are
mostly found in blood cancers [544]. Finally, well-known oncogenic processes such as
angiogenesis and metastasis are also radically different in blood cancers [545, 546]. Hence,
liquid and solid cancers display many dissimilarities, resulting in distinct cell dynamics,
disease progression and clinical treatment strategies.

Among possible cancer treatment strategies, adaptive therapy aims at stabilising ther-
apeutic sensitive cells by giving tumours resting periods between drugging applications
[71]. Rest periods are necessary to allow the sensitive cells, the primary competitors of
resistant clones, to be saved from complete extinction. Adaptive therapy by keeping constant
competition interactions between clones avoids resistance expansion and therefore increases
patient survival. However, adaptive therapy has only been used and investigated in solid
cancers [547, 73, 548]. I believe adaptive therapy due to the differences in spatial properties
and cell dynamics of liquid cancers might not succeed to prolong survival as long as observed
in prostate cancer [548].

One of the major results of Chapter 3 is that the therapeutic sensitive and therapeutic
resistant cell populations have similar proliferation rates in lymphoma. This result can be
interpreted as both populations having similar fitness in absence of treatment. This lack of
resistance cost reduces competition between clones and therefore shortens possible therapy
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strategies such as adaptive therapy. Despite the improved survival after stabilisation of the
sensitive population, the best survival outcome is obtained by daily injections of reduced
efficacy drugging. This finding correlates with a recently published paper which highlights
the importance of using spatial models to describe solid tumour dynamics treated with
adaptive therapies [385]. In their model, trapping resistance cells inside tumours due to
spatial constraints can improve treatments. This cannot be achieved in liquid tumours as
lymphoma cells circulate freely in blood and cannot be trapped. I hypothesise that in absence
of resistance cost, adaptive therapy is not the optimal strategy in liquid cancers due to limited
spatial pressure. However, treating tumours close from carrying capacity seems to improve
adaptive therapy results [549]. Competition between cancerous clones is indeed enhanced
when tumours are closed from the carrying capacity. This conclusion is supported by the
reduced-efficacy daily drugging treatment in lymphoma which greatly improves survival
by creating a stable equilibrium close from maximal tumour burden between sensitive and
resistance cells.

7.2 Hematopoietic dysregulation: the importance of gene
expression dynamics in cell fate

In multicellular organisms, each cell has a defined type and function to support life and
reproduction of the individual [550]. Here, I define cell fate as the last differentiated state
a cell can be in in a stable environment. Cell fate commitment is determined by cell-type
specific transcriptional programs which consist of genetic, epigenetic and environmental
processes leading to fully functional and mature cells [551]. Progressively, cells transition
from one state to another losing their immaturity and self-renewal ability while gaining
important features for their final role in a particular tissue or organ [552]. Through acquisition
of their identity, cells also gain specific structure and morphology which are important to
their function. Cell fate differentiation is therefore a central mechanism in embryogenesis
[553], but also in tissue homeostasis [554] and hematopoiesis [555].

Hematopoietic stem cells (HSC) possess the ability to regenerate the entire blood system
and represent therefore the first state of hematopoietic cell fate commitment [75]. Production
of all mature cells by HSC requires the involvement of many biological processes. Important
signalling pathways such Notch, Shh, Wnt and Smad have been shown to control both
self-renewal and differentiation of blood cells [556]. Cytokines, small proteins produced by
immune cells, play also an important role in lineage differentiation [557–559].
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Timing of events in hematopoiesis is crucial for the healthy development of all lineages
and differentiated cells which reflects on blood disease evolution. As a large variety of
mechanisms are involved in blood cell production, the ordering between all events leading to
the specification of the cell identity must be thoroughly performed. Consequently, activation
of markers in the wrong lineage can alter cell fate as shown by the artificial induction
of the CEBPα and CEBPβ myeloid markers in lymphoid progenitors reprogrammed into
macrophages [560]. It is therefore not surprising that different orders between important
hematopoietic transcription factors can also modify cell fate. In their paper, Iwasaki et al
[561] show how the lineage commitment of Granulocyte-Monocyte Progenitors (GMPs)
is regulated by different orders of GATA2 and CEBPα expression. If upregulation of
GATA2 in GMPs is followed by the downregulation of CEBPα , then GMPs differentiate into
eosophil progenitors. On the other hand, maintained CEBPα expression results in GMPs
differentiation into basophil/mast cell progenitors. This study confirms the importance of
studying oncogenic event order to clarify disease clinical characteristics. Systems such as
hematopoiesis require clear defined steps towards healthy cell development. Hence, even
when dysregulated by genetic or epigenetic aberrations, distinct blood diseases necessitate
precise order of events to display their own characteristics. For example, as shown in this
thesis, Polycythemia vera (PV) which overproduces erythroid cells needs the upregulation
of several JAK2 downstream targets. Apparition of a mutation such as TET2 loss impacting
on JAK2 targets before JAK2 is mutated disables erythroid overproduction and therefore PV
diagnosis.

Finally, the investigation of gene expression dynamics in a strictly organised system
such as hematopoiesis reveals the complexity of genotype-phenotype interactions in cells.
As mentioned above, slight disruption in important lineage marker expression can greatly
impact differentiation and cell fate. This work illustrates that the earliest the hematopoietic
stage the greater the impact of a marker aberration. Dissociation between the lymphoid and
the myeloid lineages is one of the first step towards hematopoietic stem cell differentiation
[76], in which the Amyloid Precursor Protein (APP) seems to participate. Its dysregulation,
specifically its low expression, induces poor survival probability in leukemia patients. Simi-
larly, HOXA9 expression has been shown to be high in early progenitors and downregulated
with differentiation [341]. This thesis further demonstrates the strong influence of its loss
or overactivation on the development of haematological malignancies. By directly or indi-
rectly acting upstream of important hematopoietic markers, HOXA9 is a master regulator of
hematopoiesis and an important prognosis and clinical marker in blood cancers. This also
raises the question of why HOXA9 is often impacted by upstream mutations or translocations
in blood diseases, but rarely mutated. Two explanations could justify this observation. First,
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HOXA9 belongs to a large family of genes which interact with each other and consequently,
upstream mutations such as MEIS1 often lead to the aberrant expression of several HOX
genes [562]. Recent studies have shown that loss of one HOX gene is not compensated by
other HOX genes [563] and that mice with multiple null HOX genes demonstrate worse
clinical characteristics than single HOX null mice [564]. Therefore, cancer cells would
benefit better from mutations upstream of HOXA9 rather than its single mutation. A second
explanation is that HOXA9 mutation could result in its extreme expression which might be
lethal for cells as a result of vital HOXA9 downstream targets. Similar finding has been
shown for overexpression of wild-type RAS which can promote tumour expansion while "too
much" RAS would lead to cell senescence [565]. A mutation in an upstream regulator of
HOXA9 could therefore promote its expression while preserving cell vital needs. To conclude,
this thesis shows that studying the dynamics between frequently mutated genes and their
upstream and downstream targets sometimes better explain disease progression and resulting
clinical outcomes than studies focusing on single mutation. Further work on non-mutated
oncogenic genes could enlightens unknown important cancerous mechanisms.

7.3 Novel experimental technologies for tumour progres-
sion analyses

This thesis highlights the importance of studying tumour progression and evolution to tackle
the complex disease that is cancer. As shown by the diverse methods used in this work, a large
range of computational and modelling tools are currently publicly available to explore cancer
evolution. However, the recent development of "omics" technologies have considerably
improved our understanding of cancer dynamics [566], some of which could be applied to
the work carried out in this thesis.

Among these emergent promising technologies, RNA velocity has already shown its
great value to determine single cell future state on a short timescale in various cancer
studies [567, 568]. Established in 2018 by La Manno et al [569], the spliced mRNA
abundance, or RNA velocity, can be determined by solving a simple model which includes
the mRNA degradation and the production of spliced mRNA from unspliced mRNA. Indeed,
the increased transcription of a gene induces the upregulation of nascent/unspliced mRNA,
followed by increase of mature/spliced mRNA (and opposite when the gene is repressed). By
measuring the current (spliced mRNA) and future (unspliced mRNA) states of the cell, this
technique predicts gene expression dynamics using scRNAseq data. Velocity can after be
displayed as vector fields onto existing reduced dimension plots such as t-SNE to visualise
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directionality in differentiation trajectories [570]. This method should have a great impact
in the cancer evolution field. RNA velocity could for example confirm the role of APP in
leukemia as well as in the lymphoid versus myeloid differentiation process by comparing
differentiation trajectories of hematopoietic stem cells with and without APP knockout.

Predicting cancer evolution remains an attractive but complex solution to control cancer
[571]. Based on this idea, Hosseini et al [572] estimate mutational pathway probabilities
using driver mutation data and conjunctive Bayesian networks (CBN). CBN are networks
describing combination of events, here mutations, with their order. The technique described
by authors possesses the great advantage of not requiring to measure the effect of mutations on
cell fitness and therefore avoids simulation of fitness landscapes which can be experimentally
costly [573]. In their paper, authors find that cancer progression is highly predictable in most
cancer types, and even higher in tumour samples from metastatic sites. Their method could
be used to further investigate the impact of JAK2 and TET2 mutation order. For example, it
could help to stratify MPN diseases (PV, ET, PMF) according to JAK2 and TET2 mutation
order. Another application of this method could be to examine the proportion of secondary
AML patients with an initial JAK2 or TET2 mutation to help clinicians identify the most
dangerous mutational routes from MPN to leukemogenesis.

7.4 Conclusion

Studying the influence of biological event timing in blood cancer progression has permit to
highlight the importance of studying gene, cell and tumour dynamics to understand patient
stratification. Combined together these events determine the path toward which tumours
develop, and therefore how they should be treated. Using computational models of blood
cancer progression, this thesis proposes alternative treatment strategies and identifies potential
new drug targets. I recapitulate here the main findings of this work:

• Coupled with the lack of strong space constraints in blood tumours, absence of thera-
peutic resistance fitness cost reduces cell competition and possibilities of treatment
strategies such as adaptive therapy when resistance is present before patient treatment
starts.

• In blood tumours with a high proportion of sensitive compared to resistant cells, treat-
ment holidays can improve patient survival by increasing sensitive cell proliferation at
the expense of resistant cells as a result of the released nutrients and space of dying
cells.
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• Mutation order greatly impact the regulatory dynamics of important hematopoietic
genes in blood cancer patients and the identification of biological switch such as
HOXA9 in one malignancy can explain tumour development and patient stratification
in closely related diseases.

• Identification of markers involved in the early stages of hematopoiesis differentiation
such as APP is important to highlight genes able to induce an undifferentiated state in
blood cells, resulting in deadly blood malignancies.

• As shown by our motif inference program, the use of computational models for
deciphering the regulatory dynamics of a blood disease at the molecular scale can help
to decipher disease dynamics at larger scales. Notably, gene networks are valuable
tools to study patient stratification and identify new potential drug targets.
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Jiří Litzman, Anna Šedivá, and Tomáš Kalina. Characterization of lymphocyte subsets
in patients with common variable immunodeficiency reveals subsets of naive human b
cells marked by cd24 expression. The Journal of immunology, 185(11):6431–6438,
2010.

[444] Uma Malhotra and Patrick Concannon. Human t-cell receptor cd3-delta (cd3d)/mspi
dna polymorphism. Nucleic acids research, 17(6):2373, 1989.

[445] Alejandro Aruffo and Brian Seed. Molecular cloning of two cd7 (t-cell leukemia
antigen) cdnas by a cos cell expression system. The EMBO journal, 6(11):3313–3316,
1987.

[446] Noémi Nagy, Cristina Cerboni, Karin Mattsson, Akihiko Maeda, Péter GOGOLak,
János Sümegi, Arpád Lanyi, László SZekely, Ennio Carbone, George Klein, et al.
Sh2d1a and slam protein expression in human lymphocytes and derived cell lines.
International journal of cancer, 88(3):439–447, 2000.

[447] Paul M Maciocia, Patrycja A Wawrzyniecka, Brian Philip, Ida Ricciardelli, Ayse U
Akarca, Shimobi C Onuoha, Mateusz Legut, David K Cole, Andrew K Sewell,
Giuseppe Gritti, et al. Targeting the t cell receptor β -chain constant region for
immunotherapy of t cell malignancies. Nature medicine, 23(12):1416, 2017.

[448] Hugo J Snippert, Johan H van Es, Maaike van den Born, Harry Begthel, Daniel E
Stange, Nick Barker, and Hans Clevers. Prominin-1/cd133 marks stem cells and early
progenitors in mouse small intestine. Gastroenterology, 136(7):2187–2194, 2009.

[449] Francisco Borrego. The cd300 molecules: an emerging family of regulators of the
immune system. Blood, 121(11):1951–1960, 2013.



198 References

[450] S Kotake, M Higaki, K Sato, S Himeno, H Morita, KANG JUNG Kim, N Nara,
N Miyasaka, K Nishioka, and S Kashiwazaki. Detection of myeloid precursors (gran-
ulocyte/macrophage colony forming units) in the bone marrow adjacent to rheumatoid
arthritis joints. The Journal of Rheumatology, 19(10):1511–1516, 1992.

[451] Felix Ellett, Luke Pase, John W Hayman, Alex Andrianopoulos, and Graham J Li-
eschke. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.
Blood, The Journal of the American Society of Hematology, 117(4):e49–e56, 2011.

[452] Louise M Kelly, Ursula Englmeier, Isabelle Lafon, Michael H Sieweke, and Thomas
Graf. Mafb is an inducer of monocytic differentiation. The EMBO journal, 19(9):1987–
1997, 2000.

[453] K Morita, Y Masamoto, K Kataoka, J Koya, Y Kagoya, H Yashiroda, T Sato, S Murata,
and M Kurokawa. Baalc potentiates oncogenic erk pathway through interactions with
mekk1 and klf4. Leukemia, 29(11):2248–2256, 2015.

[454] Caroline S Hughes, Liza M Colhoun, Baljinder K Bains, Joanne D Kilgour, Roberta E
Burden, James F Burrows, Ed C Lavelle, Brendan F Gilmore, and Christopher J
Scott. Extracellular cathepsin s and intracellular caspase 1 activation are surrogate
biomarkers of particulate-induced lysosomal disruption in macrophages. Particle and
fibre toxicology, 13(1):1–13, 2015.

[455] Alphonse Krystosek and Leo Sachs. Control of lysozyme induction in the differentia-
tion of myeloid leukemic cells. Cell, 9(4):675–684, 1976.

[456] Jacinta Bustamante, Andres A Arias, Guillaume Vogt, Capucine Picard, Lizbeth Blan-
cas Galicia, Carolina Prando, Audrey V Grant, Christophe C Marchal, Marjorie
Hubeau, Ariane Chapgier, et al. Germline cybb mutations that selectively affect
macrophages in kindreds with x-linked predisposition to tuberculous mycobacterial
disease. Nature immunology, 12(3):213–221, 2011.

[457] Didi Matza, Abdallah Badou, Mithilesh K Jha, Tim Willinger, Andrey Antov, Shomy-
seh Sanjabi, Koichi S Kobayashi, Vincent T Marchesi, and Richard A Flavell. Re-
quirement for ahnak1-mediated calcium signaling during t lymphocyte cytolysis.
Proceedings of the National Academy of Sciences, 106(24):9785–9790, 2009.

[458] Chen Wang, Sharon Celeste Morley, David Donermeyer, Ivan Peng, Wyne P Lee,
Jason Devoss, Dimitry M Danilenko, Zhonghua Lin, Juan Zhang, Jie Zhou, et al.
Actin-bundling protein l-plastin regulates t cell activation. The Journal of immunology,
185(12):7487–7497, 2010.

[459] Charles A Janeway Jr. The t cell receptor as a multicomponent signalling machine:
Cd4/cd8 coreceptors and cd45 in t cell activation. Annual review of immunology,
10(1):645–674, 1992.

[460] Kee Nyung Lee, Hyung-Sik Kang, Jun-Ho Jeon, Eun-Mi Kim, Suk-Ran Yoon,
Hyunkeun Song, Chil-Youl Lyu, Zheng-Hao Piao, Sun-Uk Kim, Ying-Hao Han, et al.
Vdup1 is required for the development of natural killer cells. Immunity, 22(2):195–208,
2005.



References 199

[461] Thomas N Wight. Versican: a versatile extracellular matrix proteoglycan in cell
biology. Current opinion in cell biology, 14(5):617–623, 2002.

[462] JMH Kijas, TR Bauer Jr, S Gäfvert, S Marklund, G Trowald-Wigh, A Johannisson,
Å Hedhammar, M Binns, RK Juneja, DD Hickstein, et al. A missense mutation in
the β -2 integrin gene (itgb2) causes canine leukocyte adhesion deficiency. Genomics,
61(1):101–107, 1999.

[463] Ann P Wheeler and Anne J Ridley. Why three rho proteins? rhoa, rhob, rhoc, and cell
motility. Experimental cell research, 301(1):43–49, 2004.

[464] Jennifer M Mataraza, Michael W Briggs, Zhigang Li, Alan Entwistle, Anne J Ridley,
and David B Sacks. Iqgap1 promotes cell motility and invasion. Journal of Biological
Chemistry, 278(42):41237–41245, 2003.

[465] Jin-Long Huang, Wei Liu, Li-Hong Tian, Ting-Ting Chai, Yang Liu, Feng Zhang,
Hai-Ying Fu, Hua-Rong Zhou, and Jian-Zhen Shen. Upregulation of long non-coding
rna malat-1 confers poor prognosis and influences cell proliferation and apoptosis in
acute monocytic leukemia. Oncology reports, 38(3):1353–1362, 2017.

[466] Kang-xiao Ma, Hong-jie Wang, Xiao-rong Li, Tao Li, Gang Su, Pan Yang, and Jian-
wen Wu. Long noncoding rna malat1 associates with the malignant status and poor
prognosis in glioma. Tumor Biology, 36(5):3355–3359, 2015.

[467] Hong-Tu Zheng, De-Bing Shi, Yu-Wei Wang, Xin-Xiang Li, Ye Xu, Pratik Tripathi,
Wei-Lie Gu, Guo-Xiang Cai, and San-Jun Cai. High expression of lncrna malat1
suggests a biomarker of poor prognosis in colorectal cancer. International journal of
clinical and experimental pathology, 7(6):3174, 2014.

[468] Lars Henning Schmidt, Tilmann Spieker, Steffen Koschmieder, Julia Humberg, Do-
minik Jungen, Etmar Bulk, Antje Hascher, Danielle Wittmer, Alessandro Marra,
Ludger Hillejan, et al. The long noncoding malat-1 rna indicates a poor prognosis
in non-small cell lung cancer and induces migration and tumor growth. Journal of
thoracic oncology, 6(12):1984–1992, 2011.

[469] T Fujimoto, Kristina Anderson, Sten Eirik W Jacobsen, S-i Nishikawa, and C Nerlov.
Cdk6 blocks myeloid differentiation by interfering with runx1 dna binding and runx1-
c/ebpα interaction. The EMBO journal, 26(9):2361–2370, 2007.

[470] EM Heath, SM Chan, MD Minden, T Murphy, LI Shlush, and AD Schimmer. Biolog-
ical and clinical consequences of npm1 mutations in aml. Leukemia, 31(4):798–807,
2017.

[471] Sebastian Schwind, Guido Marcucci, Kati Maharry, Michael D Radmacher, Krzysztof
Mrózek, Kelsi B Holland, Dean Margeson, Heiko Becker, Susan P Whitman, Yue-
Zhong Wu, et al. Baalc and erg expression levels are associated with outcome
and distinct gene and microrna expression profiles in older patients with de novo
cytogenetically normal acute myeloid leukemia: a cancer and leukemia group b study.
Blood, The Journal of the American Society of Hematology, 116(25):5660–5669, 2010.



200 References

[472] Christian Langer, Michael D Radmacher, Amy S Ruppert, Susan P Whitman, Peter
Paschka, Krzysztof Mrózek, Claudia D Baldus, Tamara Vukosavljevic, Chang-Gong
Liu, Mary E Ross, et al. High baalc expression associates with other molecular
prognostic markers, poor outcome, and a distinct gene-expression signature in cyto-
genetically normal patients younger than 60 years with acute myeloid leukemia: a
cancer and leukemia group b (calgb) study. Blood, 111(11):5371–5379, 2008.

[473] Anqi Zhu, Joseph G Ibrahim, and Michael I Love. Heavy-tailed prior distributions for
sequence count data: removing the noise and preserving large differences. Bioinfor-
matics, 35(12):2084–2092, 2019.

[474] Pantano L. Degreport: Report of deg analysis. r package version 1.13.8. http:
//lpantano.github.io/DEGreport/, 2020.

[475] L Kaufman and PJ Rousseeuw. Divisive analysis (program diana), volume 1 of 1,
chapter 6. New York: Wiley Inter-Science, 9:14–22, 1990.

[476] Guangchuang Yu, Li-Gen Wang, Yanyan Han, and Qing-Yu He. clusterprofiler: an r
package for comparing biological themes among gene clusters. Omics: a journal of
integrative biology, 16(5):284–287, 2012.

[477] Ursula Mönning, Gerhard König, Reinhard Prior, Hans Mechler, Ursula Schreiter-
Gasser, Colin L Masters, and Konrad Beyreuther. Synthesis and secretion of alzheimer
amyloid βa4 precursor protein by stimulated human peripheral blood leucocytes.
FEBS letters, 277(1-2):261–266, 1990.

[478] U Mönning, G König, RB Banati, H Mechler, Christian Czech, J Gehrmann,
U Schreiter-Gasser, CL Masters, and K Beyreuther. Alzheimer beta a4-amyloid protein
precursor in immunocompetent cells. Journal of Biological Chemistry, 267(33):23950–
23956, 1992.

[479] Ryuichi Fukuyama, Yohko Murakawa, and Stanley I Rapoport. Induction of gene
expression of amyloid precursor protein (app) in activated human lymphoblastoid cells
and lymphocytes. Molecular and chemical neuropathology, 23(2-3):93–101, 1994.

[480] Maria J Bullido, Maria A Muñoz-Fernadez, Maria Recuero, Manuel Fresno, and
Fernando Valdivieso. Alzheimer’s amyloid precursor protein is expressed on the
surface of hematopoietic cells upon activation. Biochimica et Biophysica Acta (BBA)-
Molecular Cell Research, 1313(1):54–62, 1996.

[481] Antoinette R Bailey, Huayan Hou, Demian F Obregon, Jun Tian, Yuyan Zhu, Qiang
Zou, William V Nikolic, Michael Bengtson, Takashi Mori, Tanya Murphy, et al.
Aberrant t-lymphocyte development and function in mice overexpressing human
soluble amyloid precursor protein-α: implications for autism. The FASEB Journal,
26(3):1040–1051, 2012.

[482] Richard J O’Brien and Philip C Wong. Amyloid precursor protein processing and
alzheimer’s disease. Annual review of neuroscience, 34:185–204, 2011.

[483] Andreas Kern, Birgit Roempp, Kai Prager, Jochen Walter, and Christian Behl. Down-
regulation of endogenous amyloid precursor protein processing due to cellular aging.
Journal of Biological Chemistry, 281(5):2405–2413, 2006.

http://lpantano.github.io/DEGreport/
http://lpantano.github.io/DEGreport/


References 201

[484] Sebastian Jimenez, Manuel Torres, Marisa Vizuete, Raquel Sanchez-Varo, Elisabeth
Sanchez-Mejias, Laura Trujillo-Estrada, Irene Carmona-Cuenca, Cristina Caballero,
Diego Ruano, Antonia Gutierrez, et al. Age-dependent accumulation of soluble amy-
loid β (aβ ) oligomers reverses the neuroprotective effect of soluble amyloid precursor
protein-α (sappα) by modulating phosphatidylinositol 3-kinase (pi3k)/akt-gsk-3β

pathway in alzheimer mouse model. Journal of Biological Chemistry, 286(21):18414–
18425, 2011.

[485] Tatiana Burrinha, Ricardo Gomes, Ana Paula Terrasso, and Cláudia Guimas Almeida.
Neuronal aging potentiates beta-amyloid generation via amyloid precursor protein
endocytosis. bioRxiv, page 616540, 2019.

[486] Kathryn L McCance and Sue E Huether. Pathophysiology: The biologic basis for
disease in adults and children. Elsevier Health Sciences, 2014.

[487] Desa Lilic, Andrew J Cant, Mario Abinun, Jane E Calvert, and Gavin P Spickett.
Cytokine production differs in children and adults. Pediatric research, 42(2):237–240,
1997.

[488] R Valiathan, M Ashman, and D Asthana. Effects of ageing on the immune system:
infants to elderly. Scandinavian journal of immunology, 83(4):255–266, 2016.

[489] H Morbach, EM Eichhorn, JG Liese, and HJ Girschick. Reference values for b cell
subpopulations from infancy to adulthood. Clinical & Experimental Immunology,
162(2):271–279, 2010.

[490] Christina Siemes, Thomas Quast, Christiane Kummer, Sven Wehner, Gregor Kirfel,
Ulrike Müller, and Volker Herzog. Keratinocytes from app/aplp2-deficient mice are
impaired in proliferation, adhesion and migration in vitro. Experimental cell research,
312(11):1939–1949, 2006.

[491] Francisco Sanchez-Vega, Marco Mina, Joshua Armenia, Walid K Chatila, Augustin
Luna, Konnor C La, Sofia Dimitriadoy, David L Liu, Havish S Kantheti, Sadegh
Saghafinia, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell,
173(2):321–337, 2018.

[492] Evren U Azeloglu and Ravi Iyengar. Signaling networks: information flow, computa-
tion, and decision making. Cold Spring Harbor perspectives in biology, 7(4):a005934,
2015.

[493] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and
Uri Alon. Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[494] Adam Friedman and Norbert Perrimon. Genetic screening for signal transduction in
the era of network biology. Cell, 128(2):225–231, 2007.

[495] Norbert Perrimon, Chrysoula Pitsouli, and Ben-Zion Shilo. Signaling mechanisms
controlling cell fate and embryonic patterning. Cold Spring Harbor perspectives in
biology, 4(8):a005975, 2012.



202 References

[496] Spyros Artavanis-Tsakonas, Matthew D Rand, and Robert J Lake. Notch signaling:
cell fate control and signal integration in development. Science, 284(5415):770–776,
1999.

[497] Matthew Freeman. Feedback control of intercellular signalling in development. Nature,
408(6810):313–319, 2000.

[498] Hidde De Jong. Modeling and simulation of genetic regulatory systems: a literature
review. Journal of computational biology, 9(1):67–103, 2002.

[499] John J Tyson, Teeraphan Laomettachit, and Pavel Kraikivski. Modeling the dynamic
behavior of biochemical regulatory networks. Journal of theoretical biology, 462:514–
527, 2019.

[500] Lian En Chai, Swee Kuan Loh, Swee Thing Low, Mohd Saberi Mohamad, Safaai
Deris, and Zalmiyah Zakaria. A review on the computational approaches for gene
regulatory network construction. Computers in biology and medicine, 48:55–65, 2014.

[501] Stuart A Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of theoretical biology, 22(3):437–467, 1969.

[502] Herman F Fumia and Marcelo L Martins. Boolean network model for cancer pathways:
predicting carcinogenesis and targeted therapy outcomes. PloS one, 8(7):e69008, 2013.

[503] Sriganesh Srihari, Venkatesh Raman, Hon Wai Leong, and Mark A Ragan. Evolution
and controllability of cancer networks: a boolean perspective. IEEE/ACM transactions
on computational biology and bioinformatics, 11(1):83–94, 2013.

[504] Desheng Zheng, Guowu Yang, Xiaoyu Li, Zhicai Wang, Feng Liu, and Lei He. An
efficient algorithm for computing attractors of synchronous and asynchronous boolean
networks. PloS one, 8(4):e60593, 2013.

[505] Eric Goles and Lilian Salinas. Comparison between parallel and serial dynamics of
boolean networks. Theoretical Computer Science, 396(1-3):247–253, 2008.

[506] Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thieffry. Dynamical
analysis of a generic boolean model for the control of the mammalian cell cycle.
Bioinformatics, 22(14):e124–e131, 2006.

[507] Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya. Dynamically
consistent reduction of logical regulatory graphs. Theoretical Computer Science,
412(21):2207–2218, 2011.

[508] Hiroyuki Ogata, Susumu Goto, Kazushige Sato, Wataru Fujibuchi, Hidemasa Bono,
and Minoru Kanehisa. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic
acids research, 27(1):29–34, 1999.

[509] G Joshi-Tope, Marc Gillespie, Imre Vastrik, Peter D’Eustachio, Esther Schmidt,
Bernard de Bono, Bijay Jassal, GR Gopinath, GR Wu, Lisa Matthews, et al. Reactome:
a knowledgebase of biological pathways. Nucleic acids research, 33(suppl_1):D428–
D432, 2005.



References 203

[510] Alexander R Pico, Thomas Kelder, Martijn P Van Iersel, Kristina Hanspers, Bruce R
Conklin, and Chris Evelo. Wikipathways: pathway editing for the people. PLoS Biol,
6(7):e184, 2008.

[511] Gary D Bader, Michael P Cary, and Chris Sander. Pathguide: a pathway resource list.
Nucleic acids research, 34(suppl_1):D504–D506, 2006.

[512] Michael E Smoot, Keiichiro Ono, Johannes Ruscheinski, Peng-Liang Wang, and Trey
Ideker. Cytoscape 2.8: new features for data integration and network visualization.
Bioinformatics, 27(3):431–432, 2011.

[513] Francesco Ceccarelli, Denes Turei, Attila Gabor, and Julio Saez-Rodriguez. Bringing
data from curated pathway resources to cytoscape with omnipath. Bioinformatics,
36(8):2632–2633, 2020.

[514] István Albert, Juilee Thakar, Song Li, Ranran Zhang, and Reka Albert. Boolean
network simulations for life scientists. Source code for biology and medicine, 3(1):1–
8, 2008.

[515] Nobue Itasaki, C Michael Jones, Sara Mercurio, Alison Rowe, Pedro M Domingos,
James C Smith, and Robb Krumlauf. Wise, a context-dependent activator and inhibitor
of wnt signalling. Development, 130(18):4295–4305, 2003.

[516] Soorin Yim, Hasun Yu, Dongjin Jang, and Doheon Lee. Annotating activa-
tion/inhibition relationships to protein-protein interactions using gene ontology rela-
tions. BMC systems biology, 12(1):9, 2018.

[517] Qiao-Xin Li, Stephanie J Fuller, Konrad Beyreuther, and Colin L Masters. The
amyloid precursor protein of alzheimer disease in human brain and blood. Journal of
leukocyte biology, 66(4):567–574, 1999.

[518] Mary Y Chang, Christina K Chan, Kathleen R Braun, Pattie S Green, Kevin D
O’Brien, Alan Chait, Anthony J Day, and Thomas N Wight. Monocyte-to-macrophage
differentiation synthesis and secretion of a complex extracellular matrix. Journal of
Biological Chemistry, 287(17):14122–14135, 2012.

[519] Stefan Bodmer, Marcia Berman Podlisny, Dennis J Selkoe, Irma Heid, and Adri-
ano Fontana. Transforming growth factor-beta bound to soluble derivatives of the
beta amyloid precursor protein of alzheimer’s disease. Biochemical and biophysical
research communications, 171(2):890–897, 1990.

[520] Darrell D Mousseau, Sarah Chapelsky, Gregory De Crescenzo, Marina D Kirki-
tadze, Joanne Magoon, Sadayuki Inoue, David B Teplow, and Maureen D O’Connor-
McCourt. A direct interaction between transforming growth factor (tgf)-β s and
amyloid-β protein affects fibrillogenesis in a tgf-β receptor-independent manner. Jour-
nal of Biological Chemistry, 278(40):38715–38722, 2003.

[521] Sylvain Lesné, Fabian Docagne, Cecılia Gabriel, Géraldine Liot, Debomoy K Lahiri,
Luc Buée, Laurent Plawinski, André Delacourte, Eric T MacKenzie, Alain Buisson,
et al. Transforming growth factor-β1 potentiates amyloid-β generation in astrocytes
and in transgenic mice. Journal of Biological Chemistry, 278(20):18408–18418, 2003.



204 References

[522] Thomas M Williams, Melissa E Williams, Joanne H Heaton, Thomas D Gelehrter, and
Jeffrey W Innis. Group 13 hox proteins interact with the mh2 domain of r-smads and
modulate smad transcriptional activation functions independent of hox dna-binding
capability. Nucleic acids research, 33(14):4475–4484, 2005.

[523] Shuting Bai, Xingming Shi, Xiangli Yang, and Xu Cao. Smad6 as a transcriptional
corepressor. Journal of Biological Chemistry, 275(12):8267–8270, 2000.

[524] Akiko Hata, Giorgio Lagna, Joan Massagué, and Ali Hemmati-Brivanlou. Smad6
inhibits bmp/smad1 signaling by specifically competing with the smad4 tumor sup-
pressor. Genes & development, 12(2):186–197, 1998.

[525] Ronan Quéré, Göran Karlsson, Falk Hertwig, Marianne Rissler, Beata Lindqvist,
Thoas Fioretos, Peter Vandenberghe, Marilyn L Slovak, Jörg Cammenga, and Stefan
Karlsson. Smad4 binds hoxa9 in the cytoplasm and protects primitive hematopoietic
cells against nuclear activation by hoxa9 and leukemia transformation. Blood, The
Journal of the American Society of Hematology, 117(22):5918–5930, 2011.

[526] Leon Arriola and James M Hyman. Sensitivity analysis for uncertainty quantification
in mathematical models. In Mathematical and statistical estimation approaches in
epidemiology, pages 195–247. Springer, 2009.

[527] Yanika Borg, Ekkehard Ullner, Afnan Alagha, Ahmed Alsaedi, Darren Nesbeth, and
Alexey Zaikin. Complex and unexpected dynamics in simple genetic regulatory
networks. International Journal of Modern Physics B, 28(14):1430006, 2014.

[528] Timothy S Gardner, Charles R Cantor, and James J Collins. Construction of a genetic
toggle switch in escherichia coli. Nature, 403(6767):339–342, 2000.

[529] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcrip-
tional regulators. Nature, 403(6767):335–338, 2000.

[530] Felipe Barraza, Marcelo Arancibia, Eva Madrid, and Cristian Papuzinski. General
concepts in biostatistics and clinical epidemiology: Random error and systematic error.
Medwave, 19(07), 2019.

[531] Elena Kuzmin, Benjamin VanderSluis, Wen Wang, Guihong Tan, Raamesh Deshpande,
Yiqun Chen, Matej Usaj, Attila Balint, Mojca Mattiazzi Usaj, Jolanda Van Leeuwen,
et al. Systematic analysis of complex genetic interactions. Science, 360(6386), 2018.

[532] Apichat Suratanee, Martin H Schaefer, Matthew J Betts, Zita Soons, Heiko
Mannsperger, Nathalie Harder, Marcus Oswald, Markus Gipp, Ellen Ramminger,
Guillermo Marcus, et al. Characterizing protein interactions employing a genome-
wide sirna cellular phenotyping screen. PLoS Comput Biol, 10(9):e1003814, 2014.

[533] Tengjiao Wang, Yanghe Feng, and Qi Wang. Pairs: Prediction of activation/inhibition
regulation signaling pathway. Computational intelligence and neuroscience, 2017,
2017.

[534] Sarah M Assmann and Réka Albert. Discrete dynamic modeling with asynchronous
update, or how to model complex systems in the absence of quantitative information.
In Plant Systems Biology, pages 207–225. Springer, 2009.



References 205

[535] Olaf Wolkenhauer, Darryl Shibata, and Mihajlo D Mesarović. The role of theorem
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