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ABSTRACT

MICROARRAY DATA MINING AND 

GENE REGULATORY NETWORK ANALYSIS

by Ying Li

May 2011

The novel molecular biological technology, microarray, makes it feasible to obtain 

quantitative measurements of expression of thousands of genes present in a biological 

sample simultaneously. Genome-wide expression data generated from this technology are 

promising to uncover the implicit, previously unknown biological knowledge. In this 

study, several problems about microarray data mining techniques were investigated, 

including feature(gene) selection, classifier genes identification, generation of reference 

genetic interaction network for non-model organisms and gene regulatory network 

reconstruction using time-series gene expression data. The limitations of most of the 

existing computational models employed to infer gene regulatory network lie in that they 

either suffer from low accuracy or computational complexity. To overcome such 

limitations, the following strategies were proposed to integrate bioinformatics data 

mining techniques with existing GRN inference algorithms, which enables the discovery 

of novel biological knowledge. An integrated statistical and machine learning (ISML) 

pipeline was developed for feature selection and classifier genes identification to solve 

the challenges of the curse of dimensionality problem as well as the huge search space.

Using the selected classifier genes as seeds, a scale-up technique is applied to search 

through major databases of genetic interaction networks, metabolic pathways, etc. 

ii



By curating relevant genes and blasting genomic sequences of non-model organisms 

against well-studied genetic model organisms, a reference gene regulatory network for

less-studied organisms was built and used both as prior knowledge and model validation 

for GRN reconstructions. Networks of gene interactions were inferred using a Dynamic 

Bayesian Network (DBN) approach and were analyzed for elucidating the dynamics 

caused by perturbations. Our proposed pipelines were applied to investigate molecular 

mechanisms for chemical-induced reversible neurotoxicity. 
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CHAPTER I

INTRODUCTION

Biological Background

Central Dogma of Molecular Biology

The Central Dogma of genetics [1] is: DNA is transcribed to RNA which is translated 

to protein. Protein is never back-translated to RNA or DNA, and DNA is never directly 

translated to protein. This dogma forms the backbone of molecular biology and is 

represented by four major stages: (1) replication: the DNA replicates its information in a 

process that involves many enzymes; (2) transcription: the DNA codes for the production 

of messenger RNA (mRNA); (3) In eukaryotic cells, the mRNA is processed (essentially 

by splicing) and migrates from the nucleus to the cytoplasm; (4) translation: messenger 

RNA carries coded information to ribosome. The ribosome “read” this information and 

uses it for protein synthesis. Proteins do not code for the production of protein, RNA or 

DNA. They are involved in almost all biological activities, structural or enzymatic. We 

often concentrate on protein coding genes, because proteins are the building blocks of 

cells and the majority of bio-active molecules. Figure 1.1 shows the central dogma of 

molecular biology [1].

The relationships of DNA, RNA, and Proteins are: Proteins determines the activity of 

the cells. They are the physical format of the abstract information integrated in the 

genome. DNA contains the genetic information and each cell has a copy. It is stable, 

packaged, and inert. RNA is the messenger and translator. It is unstable and lacks 

secondary structure. Some RNA has enzymatic activity.
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Figure 1.1. Central dogma of molecular biology [1].

Genes and Proteins

Genes are made of millions of deoxyribonucleic acid (DNA) molecules. A DNA 

molecule is constructed like a spiral staircase, or a double helix. The rails of the staircase 

are made of a backbone structure of phosphates and sugars, and the steps are pairs of four 

nitrogen-containing bases: adenine (A), cytosine (C), guanine (G), and thymine (T). 

Through hydrogen bonds the two rails of the staircase are kept together, A and T pair 

together, and C and G are partners [2].

A gene is made of a unique sequence of DNA bases. It is like a message containing a 

unique combination of letters. Then a translation of this message into information for 

protein production is performed. A protein is a folding chain of amino acids following a 

specific order. Altogether there are 20 different amino acids exist. The message for each 

amino acid within a protein is coded by a combination of three nucleotide bases. If the 

sequence in the message is misspelled, it will have a point mutation. As a result, the gene 

may produce a protein that has an incorrect shape so it won't combine with another 

protein (e.g., a receptor), leading to a mistake in the resulting message due to the unfitting 
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shape. In other words, if the message in the gene is misspelled, the protein it encodes may 

be wrong and its function in the body may be changed. In general, experimental and 

computational evidence shows that many genes produce an average of three different 

proteins and as many as ten protein products. The protein-coding regions of a gene are 

called exons, while the non-coding regions are called introns. Due to alternative splicing, 

the exons of a gene can be combined in different ways to make variants of the complete 

protein [3].

Gene Expression

By using the information from the DNA sequence of a gene, the synthesis of 

functional gene products is usually called gene expression. In Figure 1.2, it shows that 

there are two major steps in gene expression: transcription of DNA and translation of mRNA 

into protein. Here, the products are often proteins or functional RNA. Protein is 

considered the most basic building block of life. The roles that proteins play in the 

process of life include constituting cell structures, regulating cellular processes, 

catalyzing biochemical reactions in metabolic pathways, etc. The specific functions of a 

certain protein are determined by its particular physical structure and chemical properties.

Several steps in the gene expression process may be modulated, including the 

transcription, RNA splicing, translation, and post-translational modification of a protein. 

Gene regulation gives the cell control over structure and function, and is the basis for 

cellular differentiation, morphogenesis and the versatility and adaptability of any 

organism. Gene regulation may also serve as a substrate for evolutionary change, since 

control of the timing, location, and amount of gene expression can have a profound effect 

on the functions of the gene in a cell or in a multicellular organism.
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Figure 1.2. Transcription and translation process. Source from 
http://publications.nigms.nih.gov/thenewgenetics/chapter1.html

Gene Regulation

Gene regulation is the processes of cells regulate the information in genes to be turned 

into gene products. The majority of known mechanisms regulate protein coding genes 

although the product of a functional gene may be RNA or protein. A gene’s expression 

could be modulated at any step, for instance, DNA-RNA transcription, or post-

translational modification of a protein, etc. The regulation of gene’s expression plays vial 

roles due to its increase of the versatility and adaptability of an organism by allowing the 

cell to express proteins when needed. Besides, the processes of cellular differentiation

and morphogenesis are driven by gene regulation. Such processes lead to the creation of 

different cell types in multicellular organisms.

A gene regulation system consists of genes, cis-elements, and regulators [3]. The 

regulatory process of genes is illustrated in Figure 1.3. The regulators in the system could 
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be proteins in most cases, but small molecules such as miRNAs and metabolites may also 

be regulators sometimes. Such proteins that participate in the process of regulation are 

called transcription factors (TFs), or they are also referred to as trans-elements. The cis-

elements, which are the complementary to trans-elements, are DNA segments that control 

the expression of corresponding genes. 

Figure 1.3. Regulations of genes.

There are six stages where gene expression is regulated: chromatin, domains, 

transcription, post-transcriptional modification, RNA transport, translation, and mRNA 

degradation. Any step of gene expression could be modulated. Among these stages, the 

most extensively utilized point is transcription initiation. There two major cases of 

regulation of gene expression, namely up-regulation and down-regulation. Up-regulation 
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occurs within a cell, which results in increased expression of one or more genes while 

down-regulation results in decreased gene expression and corresponding protein 

expression. The regulation mechanism includes the binding of certain TFs to cis-elements 

and then controls the level of target gene’s expression during transcription. A gene’s 

expression is regulated by some regulators, while its own expressed products can be 

regulators of another gene. The gene regulatory network (GRN) is formed by such 

complex regulatory connections [3].

DNA Microarray Technology

Functional genomics involves the analysis of large datasets of information derived 

from various biological experiments. One such type of large-scale experiment involves 

monitoring the expression levels of thousands genes simultaneously under a particular 

condition, called gene expression analysis. Microarray technology makes use of the 

sequence resources created by the genome projects and other sequencing efforts to 

answer the question, what genes are expressed in a particular cell type of an organism, at 

a particular time, under particular conditions.

DNA Microarray

A DNA microarray is a multiplex technology used in molecular biology, which 

consists of an arrayed series of thousands of microscopic spots of DNA oligonucleotides, 

called features (genes). Each feature contains picomoles (10-12 moles) of a certain DNA 

sequence, which are also known as probes. Such probes can be a fragment of a gene or 

other DNA element which are used to hybridize with a cDNA/cRNA sample under 

experimental designed conditions. A microarray experiment is able to accomplish several 

genetic tests in parallel because tens of thousands of probes can be included in an array. 

Thus, microarray technology allows us to monitor tens of thousands of gene expressions 
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and have significantly accelerated the investigations of many types of biology 

experiments. Figure 1.4 illustrated the overall workflow of a microarray experiment.

Figure 1.4. Workflow of microarray experiment. Source from 
http://images-mediawiki-sites.thefullwiki.org/06/3/9/3/8878261581107656.png

Microarray technology evolved from Southern blotting, where fragmented DNA is 

attached to a substrate and then probed with a known gene or fragment. The use of a 

collection of distinct DNAs in arrays for expression profiling was first described in 1987, 

and the arrayed DNAs were used to identify genes whose expression is modulated by 

interferon [4]. These early gene arrays were made by spotting cDNAs onto filter paper 

with a pin-spotting device. The use of miniaturized microarrays for gene expression 

profiling was first reported in 1995 [5], and a complete eukaryotic genome on a 

microarray was published in 1997 [6]. 

Microarray Types and Applications

There exist many types of microarrays and they are differed by whether being 

spatially arranged on a surface or on coded beads. The early-stage array is a collection of 

orderly microscopic spots. Each spot is combined with a specific probe attached to a solid 

surface, such as silicon, glass or plastic biochip. The location of a certain probe has been 

arranged and thousands of these probes are placed on a single DNA microarray. On the 

alternative, bead array is a collection of microscopic polystyrene beads. A specific probe 
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and a ratio of two or more dyes are combined with each bead. Thus, they do not interfere 

with the fluorescent dyes used on the target sequence. DNA microarrays technology can 

be used in many areas such as gene expression profiling, comparative genomic 

hybridization, chromatin immunoprecipitation on Chip (ChIP), SNP detection, alternative 

splicing detection [4, 5, 7, 8] and etc. 

Microarray Data Analysis

Microarray experiments are inexpensive compare to many other biological 

experimental technologies. However, there exist several specific bioinformatics 

challenges as follows: first one is the multiple levels of replication in experimental 

design. Due to the biological complexity of gene expression, experiment design of a 

microarray experiment is critically important if statistically and biologically valid 

conclusions need to be elucidated from the data [9]. The second challenge is the number 

of platforms and distinct groups and data format. Microarray data is impossible to be 

exchanged due to the lack of standard protocols in platform fabrication, assay types, and 

analysis approaches. The "MicroArray Quality Control (MAQC) Project" is being 

conducted by the US Food and Drug Administration (FDA) to form standards and quality 

control metrics which will allow the use of microarray data in many fields such as drug 

discovery, clinical practice and regulatory decision-making [10, 11]. The third challenge 

is statistical analysis regards to accuracy and precision. Microarray data sets are normally 

of huge amount, and its analytical precision is influenced by several variables. Statistical 

challenges include effects of image background noise, whether appropriate normalization 

and transformation techniques are conducted, identification of significantly differentially 

expressed genes (DEGs) [12, 13, 14, 15] as well as inference of gene regulatory networks 
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[16]. How to reduce the dimensionality of microarray dataset in order to obtain more 

comprehension and focused analysis requires further preprocess of microarray data [17]. 

Contributions

In this dissertation, we have made a number of contributions in identification and 

optimization of classifier genes and significant pathways. Based on such information, 

reconstruction of gene regulatory networks of interested pathways was performed, and all 

above work were summarized below.   

Identification and Optimization of Classifier Genes

One important goal of microarray experiments is to discover novel classifier genes 

which play vital roles in genetic and molecular interactions. Microarrays have been 

successfully served as a research tool in discovering novel drug targets [18] and disease-

or toxicity-related biomarker genes for cancer classification [19]. A challenge in 

classifying or predicting the diagnostic categories using microarray data is the curse of 

dimensionality problem coupled with sparse sampling. That is, the number of examined 

genes per sample is much greater than the number of samples that are involved in 

classification [20]. The other crucial challenge is that the huge search space for an 

optimal combination of classifier genes renders high computational expenses [21]. To 

address these two issues, we developed the new Integrated statistical and machine 

learning (ISML) pipeline, which integrates statistical analysis with supervised and 

unsupervised machine learning techniques. A set of classifier/biomarker genes from high 

dimensional datasets were identified and classification models of acceptable precision for 

multiple classes were generated as well by our pipeline. More details will be discussed in

Chapter III.
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Reference Network Builder

Gene Regulatory Networks (GRNs) provide integrated views of gene interactions that 

control biological processes. Many public databases contain biological interactions 

extracted from literature with experimental validations, but most of them only provide 

information for a few genetic model organisms. A number of computational models have 

been developed to infer GRN from microarray data, and these models are often evaluated 

on model organisms. Researchers who work with non-model organisms rely on these 

computational models to build GRN for less-studied organisms. However, they can only 

evaluate GRNs built by computational models based on the evaluation criteria such as 

recall, precision tested on model organisms. The accuracy and reliability of the tools are 

critical for non-model organisms. The researchers also are interested in evaluating the 

GRN based on “true” GRN of their organisms. Although, some public network databases 

provide experimentally validated interactions among genes or proteins, there are 

limitations in accessibility and scalability. Thus, we developed a cyber-based integrated 

environment, called "reference network (RefNet)", to build a reference gene regulatory 

network for less-studied organisms. The resulting reference network could be used for 

validation of inferred GRNs or as prior knowledge for further inference. 

Gene Regulatory Network Reconstruction

In the past, many computational models have been proposed to infer gene regulatory 

networks. Among them Probabilistic Boolean Network (PBN) [22, 23, 24, 25, 26] and 

Dynamic Bayesian Network (DBN) [27, 28, 29, 30, 31] are two popular and powerful 

models. PBN is a discrete state space model which characterizes a system using 

quantized data, while DBN is an extension of Bayesian network model to incorporate 

temporal concept. Previous studies showed that both PBN and DBN approaches had good 
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performance in modeling the gene regulatory network, but DBN identified more gene 

interactions and gave better accuracy than PBN [32]. Besides, Zou et al. [28] used DBNs 

with various time-delays, by shifting time-series profiles with properly predicted amount 

of time steps. Therefore, we used the time-lagged DBN to reconstruct those chemical-

induced networks/pathways which were identified by the RefNet (see Chapter IV) to 

analyze the dynamics caused by perturbations. 

Dissertation Organization

This dissertation is organized as follows: In Chapter II, we introduce some basic 

concepts and backgrounds of microarray experiments and gene regulatory networks.

Then some data preprocessing methods and techniques based on microarray data are 

introduced, such as transformation, normalization, etc. We also discuss some statistical 

models to identify differentially expressed genes such as t-test, ANOVA and others for 

either two-class comparison or multi-class comparison. Then, some machine learning 

methods such as clustering, classification based on microarray data for feature selection 

and identification of biomarker genes are reviewed. 

In Chapter III, we proposed an integrated pipeline combining statistical analysis and 

machine learning approaches to identify a set of classifier genes for disease diagnostic 

and toxicity evaluation. We assembled an integrated statistical and machine learning 

pipeline consisting of several well-established feature filtering/selection and classification 

techniques to analyze microarray dataset in order to construct classifier models that can 

separate samples into different treatment groups such as evaluating toxicity exposure in 

certain environment or diagnosing cancer patients from normal people, etc. 

In Chapter IV, a cyber-based environment to retrieve reference genetic interaction 

network (RefNet) is proposed. Our RefNet toolbox provides the following services: (1) to 
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build reference GRN/Pathway for non-model organisms; (2) to provide biological prior 

knowledge of GRN to improve computational models; (3) to interpret and compare the 

GRNs built from computational models with wet-lab experiments; and (4) to serve as a 

gene selection tool for GRN reconstruction. 

In Chapter V, we introduced and discussed various computational methodologies to 

infer gene regulatory network. A review of existing inferring algorithms such as Boolean 

networks, Bayesian networks, and Dynamic Bayesian network is given. The time-lagged 

dynamic Bayesian network model was used to reconstruct sets of genes from selected 

pathways by RefNet. Results showed that our strategy helped with the improvement of 

accuracy as well as computational cost of GRN reconstruction and novel biological 

knowledge was discovered. In Chapter VI, by integrating all the toolkits and services for 

microarray data mining and gene regulatory network analysis, we presented two case 

studies to present the detailed contextual analysis.

We complete the dissertation by summarizing our work, and providing sets of issues 

appropriate for future work in Chapter VII.
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CHAPTER II

REVIEW OF MICROARRAY DATA MINING

Microarray Experiments and Data Generation

A microarray experiment requires a number of cDNA or oligonucleotide DNA 

sequences (probes) that are affiliated to a glass, nylon, or quartz wafer (adopted from the 

semiconductor industry and used by Affymetrix, Inc. [33]). Then material containing 

RNA, which is acquired from the biological samples to be studied, is mixed with this 

array. For example, the mixture of samples from normal tissues with samples from cancer 

tissues. Figure 2.1 illustrates the basic process of cDNA microarray experiments.

Microarrays can be manufactured using various technologies. In spotted microarrays, 

the probes are oligonucleotides, cDNA or small fragments of PCR products that 

correspond to mRNAs. The probes are synthesized prior to deposition on the array 

surface and are then "spotted" onto glass. The resulting grid of probes represents the 

nucleic acid profiles of the prepared samples. This provides a relatively low-cost 

microarray that may be customized for each study, and avoids the costs of interest to the 

investigator. However, publications exist which indicate such microarrays may not 

provide the same level of sensitivity compared to commercial oligonucleotide arrays [34]. 

In oligonucleotide microarrays, the probes are short sequences designed to match parts of 

the sequence of known or predicted Expressed Sequence Tags (ESTs), which is a short 

sub-sequence of a transcribed cDNA sequence [35]. Oligonucleotide arrays are produced 

by printing short oligonucleotide sequences designed to represent a single gene or family 

of gene splice-variants by synthesizing this sequence directly onto the array surface 

instead of depositing intact sequences. Sequences may be longer (60-mer probes such as 

the Agilent design) or shorter (25-mer probes produced by Affymetrix) depending on the 
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desired purpose; longer probes are more specific to individual target genes, shorter 

probes may be spotted in higher density across the array [36].

Figure 2.1. Process of cDNA microarray experiment design. Source from 
http://www.microarray.lu/en/MICROARRAY_Overview.shtml

Two-color microarrays or two-channel microarrays are typically hybridized with 

cDNA prepared from two types of samples to be compared (i.e., chemical-treated sample 

versus un-treated sample) and they are labeled with two different fluorophores [37]. Cy3

and Cy5 are two common fluorescent dyes that are used for cDNA labeling. The two Cy-

labeled cDNA samples are mixed and hybridized to a single microarray which is then 

scanned in a microarray scanner to measure the intensities of fluorescence of the two 

fluorophores after excitation with a laser beam of a defined wavelength. Relative 

intensities of each fluorophore are then used to identify up-regulated and down-regulated 

genes [38]. In single-channel or one-color microarrays, the array provides intensity data 

for each probe indicating a relative level of hybridization with the labeled target. 
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However, this intensity data is not true indicator of abundance level of a gene, but rather 

a relative abundance when compared with other samples processed in the same 

experiment. Since each chip is exposed to only one sample as opposed to two-channel 

platform, the single-channel system is more accurate. In one-color array chip, an aberrant 

sample cannot affect the raw data derived from other samples. While in two-color array 

chip, a single low-quality sample may drastically impinge on the precision of overall data 

set even if the other sample was of high quality. Another advantage of single-channel 

chip is that it is much easier when comparing data to arrays from different experiments as 

long as batch effects are taken care of. 

Microarray Data Preprocessing

Image Processing Analysis

The population of mRNA in a certain sample can be stored as an image with intensity 

values indicating the relative expression level for each gene. The array chips are scanned 

by microarray scanners, which are provided by microarray manufacturers, and the 

intensity values of each spot on the chip are recorded. Image processing involves the 

following steps: (1) Identification of the spots and distinguishing them from spurious 

signals. The microarray is scanned following hybridization and an image file is 

generated. Once image generation is completed, the image is then analyzed to identify 

spots and used to identify regions that correspond to spots; (2) Determination of the spot 

area will be studied and identification of the local region is used to estimate background 

noise. After identifying regions that correspond to sub-arrays, in order to get a 

measurement of the spot signal and estimated for background intensity, a region within 

the sub-array needs to be selected; (3) Reporting statistics summary and generate spot 

intensity by subtracting background intensity. In this step, once the center and 
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background areas have been determined, a number of statistics summary for each spot are 

reported. Another concern in image processing is the number of pixels to be included for 

measurement in the spot image [39

However, it is better to use a smaller pixel size to make sure enough pixels included.

Even though using a smaller pixel size increases the confidence in the measurement, the 

image size tends to be bigger when compared with ones using larger pixel size.

Data Normalization and Transformation

The purpose of normalization is to eliminate variations to allow appropriate 

comparison of data that is obtained from each sample. Comparison of different 

arrays/samples normally involves making adjustments for systematic errors which is 

introduced by different procedures and effects. The order of operations for filtering the 

data is that spot filters are applied first, then data normalization, and then truncation of 

extreme values, then gene screening. 

Spot filtering refers to filters on spots in individual arrays. Spot filtering is used for 

quality control purposes, i.e., to filter out “bad” spots. Unlike gene screening, Spot 

filtering does not filter out the entire gene (a row), but replaces the existing values of a 

spot within any given array with a missing value. There exist four types of spot filters: 

intensity filter, spot flag filter, spot size filter and detection call filter. The intensity filter 

is applied to the background adjustment of signals and different parameters are adopted 

for dual-channel or single-channel data. The spot flag filter can contain both numeric and 

character values. Outside of a specified numeric range, a flag is considered to be 

“excluded”. For example, in Affymetrix array, a Detection Call column is used to 

designate as the spot flag at the time of collating, which allows the users to filter out 

expression values that have an “A” (Absent) call. Additionally, the spot flag is also used 



17

to filter out spots with a large percentage of expression values that have a spot flag value 

of “A”. 

In general, a logarithmic (base 2) transformation is applied to the signal intensities (for 

single-channel data) or intensity-ratios (for dual-channel data) before they are normalized 

and truncated. There are currently four major normalization options: median 

normalization, housekeeping gene normalization, lowess normalization as well as print-

tip group normalization. The first two are available for both single-channel and dual-

channel data, but the last two are only for dual-channel data. For single-channel data, the 

user needs to choose a reference array against which all other arrays will be normalized. 

The “median” reference array is selected as following algorithm:

(1) Let N be the number of experiments, and let i be an index of experiments running 

from 1 to N.

(2) For each array i, the median log-intensity of the array (denoted Mi) will be 

computed.

(3) A median M will be selected from the {M1,…,MN} values. If N is even, then the 

median M will be the lower of the two middle values.

(4) The array whose median log-intensity Mi equals the overall median M will be 

chosen as the median array.

Then, the median normalization is performed by subtracting out the median log-ration for 

each array, so that each normalized array has a median log-ration of 0. Such median 

normalization is called per-gene normalization. Besides, per chip normalization is 

performed by computing a gene-by-gene difference between each array and the reference 

array, and subtracting the median difference from the log-intensities on that array, so that 

the gene-by-gene difference between the normalized array and the reference array is 0. 
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Figure 2.2. Intensity distribution of arrays before and after median normalization.

For dual-channel data, locally weighted linear regression (LOWESS) normalization is 

normally used. In the lowess normalization, a non-linear lowess smoother function is fit 

to the graph of un-normalized log-ratio on the y-axis versus average log intensity (i.e., 

[log(R)+log(G)]/2) on the x-axis. That is, lowess normalization assumes that the dye bias 

appears to be dependent on spot intensity. The adjusted ratio is computed by the 

following Equation 2.1:

log log  ( )   (2.1)
where c(A) is the lowess fit to the log / versus log × plot. Lowess regression is 

a technique for fitting a smoothing curve to a dataset. The degree of smoothing is 

determined by the window width parameter. In general, a larger window width results in 

a smoother curve, while a smaller window results in local variation [40, 41, 42, 43]. 

Figure 2.3 shows the plots under different lowess window width.
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Figure 2.3. Spot intensity plots with different lowess window width.

Missing Values

After applying various techniques of normalization or filtering, missing expression 

values may exists in the data sets. However, many further gene expression analysis 

require a complete matrix of array values. Even missing values are allowed for some 

analysis algorithms, they are treated as intensity value of zero when calculated, which 

will certainly affect the accuracy and validity of analysis results. Therefore, methods for 

imputing missing data are needed to minimize the effect of incomplete data sets. 

Previously, three most popular methods to impute missing values are proposed, namely, 

Singular Value Decomposition (SVD) based method (SVDimpute) [45, 46, 47], weighted 

K-nearest neighbors (KNNimpute) [44], as well as row average. The KNN-based method 

selects genes whose expression profiles are similar to the gene of interest to impute 

missing values. Suppose there is a missing value in experiment 1 for gene A, KNNimpute 

will find K other genes whose expression values are most similar to A in experiments 2 to 

N. Euclidean distance, which is the metric for gene similarity is used during the imputing 

process. The row average technique is trivial as calculating the average of the row 
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containing missing values and filling them with it. SVDimpute method can only be 

performed on complete matrices, so row average is imputed for all missing values and 

then utilize an expectation maximization method to arrive at the final estimate.

Troyanskaya et al. compared the above three missing value imputation techniques and 

KNN-based estimations turned out to have best performance among the three on the same 

data set. 

Figure 2.4. Comparison of KNN, SVD, and row average based estimations’ performance 
on the same data set [44].

Identification of Differentially Expressed Genes (DEGs)

One of the common interests of microarray analysis is to identify genes that are 

significantly differentially expressed. Such DEGs are ones with expression ratio 

significantly different from 1 and are considered as important genes in later analysis 

study such as classification, clustering, or gene regulatory network reconstruction. 

Although some clustering techniques are used to find groups of genes with similar 

patterns [48, 49, 50], it is still very useful to find those genes that are changed 

significantly between different samples or conditions. A number of methods are proposed 

to identify the largely varied genes such as fold-change cut-off (usually two folds is used)

method or a statistical approach called “Z-score”, which calculates the mean and standard 
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deviation of the distribution of intensity values and defines a global fold change 

difference and confidence level. Therefore, if the confidence level is chosen at 95%, 

DEGs will have a Z-score value of Z > 1.96 [51]. Figure 2.5 illustrates an example of a Z-

score selection application. 

Figure 2.5. Intensity-dependent Z-scores for identifying differential expression.

In general, if two classes are compared and the experiments are paired, the paried t-

test could be used to find DEGs. For example, DEGs can be found by comparing samples 

from cancer tissues with normal tissues. Here, either a single replicate for each RNA 

sample is used or the averaging mean of all replicates should be used. T-test (or F-test) is 

based on the comparison of differences in the mean log-ratios / log-intensities between 

classes relative to the variation expected in the mean differences. It is assumed that all the 

samples are independent. Alternatively, if multivariate permutation classes need to be 

compared (i.e., more than two classes), analysis of variance (ANOVA) is used, usually 

one-way ANOVA. The ANOVA test the null hypothesis that samples in multiple groups 

are drawn from the same population. Two estimates, which are made of the population 

variance, rely on various assumptions such as independent samples, equal variances of 
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populations, etc. The ANOVA calculates an F-score, which is the ratio of the variance 

among the means to the variance within the samples. 

Feature Selection

Due to the “curse-of-dimensionality,” i.e., the large dimensionality (usually contain 

tens of thousands of genes) and their relatively small sample sizes [52], it is of great 

challenge to analyze microarray data using data mining techniques. Furthermore, 

experimental complications such as systematic noise and variability add more difficulties 

to the analysis. Thus, one of the effective ways to deal with these particular 

characteristics of microarray data is to reduce the dimension and select “useful” features 

[53, 54, 55, 56]. A number of feature selection techniques has been proposed and studied 

to contribute to feature selection methodologies [57]. There are two major types of 

feature selection methods: univariate filtering and multivariate filtering. Figure 2.6

summarizes the most widely used techniques [58].

Univariate Filtering

Due to the high dimensionality of microarray data set, fast and efficient feature 

selection techniques such as univariate filtering methods are widely used. Previously and 

nowadays, comparative evaluations of different classification and feature selection 

techniques over DNA microarray datasets are normally focused in the univariate cases 

[59, 60, 61, 62]. Some trivial heuristics for the identification of DEGs include choosing a 

threshold for the fold-change differences in gene expression, and detection of the 

threshold point in each gene that minimizes the misclassification of training sample 

numbers [63]. Furthermore, new or adapted univariate feature ranking techniques has 

been developed, which is divided into two classes: parametric and model-free methods. 

Parametric methods assume a given distribution from which the samples have been 
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generated. Among them, t-test and ANOVA are the most widely used approaches in 

microarray analysis. Dominating the parametrical analysis field by Gaussian 

assumptions, other parametrical approaches such as regression modeling technique [64] 

and Gamma distribution models [65] are also useful.

Figure 2.6. Key references for feature selection technique in microarray domain [58].

Multivariate Filter Paradigm 

Univariate filtering approaches have specific restrictions and may cause less accurate 

classifiers. For example, gene to gene regulatory interactions are not considered. 

Therefore, techniques that capture such correlations between genetic interactions are 

proposed. The widely used applications of multivariate filter methods includes simple 

bivariate interactions [66], correlation-based feature selection (CFS) [67, 68] as well as 

some variants of the Markov blanket filter method [69, 70, 71]. An alternative way to 

perform a multivariate gene selection is to use wrapper or embedded methods. This could 

incorporate the classifier’s bias into the search space and more accurate classifiers might 
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be constructed. Most wrapper approaches use population-based, randomized search 

heuristics [72, 73, 74, 75] while others use sequential search techniques [76, 77].

Inference of Gene Regulatory Networks (GRNs)

Inference of gene regulatory network is yet another major application of analysis of gene 

expression data. Such study is also known as reverse engineering problem, specifically, 

reverse engineering of gene regulatory networks. Previous studies [78, 79] indicate that 

microarray expression data can be used to make predictions about the genetic transcriptional 

regulation relationships. In a gene regulatory network, the nodes of this network could be 

protein products, their coded genes/mRNAs, and complexes of groups of proteins. While the 

edges between nodes represent protein-to-protein interactions, protein-to mRNA interactions, 

or molecular reactions. The structure of gene regulatory network is an abstraction of the 

system's chemical dynamics, describing the mechanisms how one substance affects all the 

others to which it is connected. Such gene regulatory networks are inferred from the 

biological knowledgebase for a certain system and represent a distillation of the collective 

knowledge regarding a set of related biochemical reactions. Figure 2.7 is an example of a

gene regulatory network.

Mathematical models of GRN have been developed to capture the behavior of the 

modeled system, and generate predictions corresponding with experimental observations in 

some cases. In some other cases, models could make accurate novel predictions, which can 

be tested experimentally. Therefore, to explore in an experiment by suggesting novel 

approaches are not considered in the design of the protocol of an experimental laboratory. 

Several approaches are used for reconstruction or inference of gene regulatory networks from 

gene expression data such as clustering, classification, and visualization, etc. These methods 

generally group genes based on the similarity of expression patterns. In addition, many 
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Figure 2.7. A typical gene regulatory network. Source from 
http://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Gene_Regulatory_Network.jpg/
360px-Gene_Regulatory_Network.jpg

computational approaches have been proposed to reconstruct gene regulatory networks based 

on large-scale microarray data retrieved from biological experiments such as information 

theory [80, 81, 82, 83, 84], Boolean networks [23, 26, 85, 86, 87, 88], differential equations 

[89, 90, 91, 92, 93], Bayesian networks [27, 28, 29, 30, 94, 95, 96] and neural networks [97]. 

Many computational methods have been developed for modeling or simulating GRNs.
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CHAPTER III 

IDENTIFY CLASSIFIER GENES USING ISML PIPELINE

From a regulatory standpoint, there is an increasing and continuous demand for more 

rapid, more accurate and more predictive assays due to the already large but still growing, 

number of man-made chemicals released into the environment [98]. Molecular endpoints 

such as gene expression that may reflect phenotypic disease symptoms manifested later at 

higher biological levels (e.g., cell, tissue, organ, or organism) are potentially biomarkers 

that meet such demands. As a high throughput tool, microarrays simultaneously measure 

thousands of biologically-relevant endpoints (gene expression). However, to apply this 

tool to animals under field conditions, one critical hurdle to overcome is the separation of 

toxicity-induced signals from background noise associated with environmental variation 

and other confounding factors such as animal age, genetic make-up, physiological state 

and exposure length and route [99, 100]. A common approach to biomarker discovery is 

to screen genome- or transcriptome-wide gene expression responses and identify a small 

subset of genes capable of discriminating animals that received different treatments, or 

predicting the class of unknown samples. It is relatively less challenging to identify 

differentially expressed genes from two or more classes of samples. However, the search 

for an optimal and small subset of genes that has a high discriminatory power in 

classifying field samples often having multiple classes is much more complicated.

We propose an integrated statistics and machine learning (ISML) pipeline to analyze 

the microarray dataset in order to construct classifier models that can separate samples 

into different chemical treatment groups. The results show that our approach can be used 

to identify and optimize a small subset of classifier/biomarker genes from high 
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dimensional datasets and generate classification models of acceptable precision from

multiple classes.

Integrated Statistical and Machine Learning (ISML) Pipeline

Overview of ISML

A challenge in classifying or predicting the diagnostic categories using microarray 

data is the curse of dimensionality problem coupled with sparse sampling. That is, the 

number of examined genes per sample is much greater than the number of samples that 

are involved in classification [101]. The other crucial challenge is that the huge search 

space for an optimal combination of classifier genes renders high computational expenses 

[102]. To address these two issues, we developed the new ISML pipeline, which 

integrates statistical analysis with supervised and unsupervised machine learning 

techniques (Figure 3.1). The pipeline consists of four major components: (1) statistical 

analysis that reduces dimensionality through identification of the most differentially 

expressed genes; (2) tree-based algorithms that are used to further downsize the number 

of classifier genes with assigned weight and associated ranking; (3) MC-SVM and 

unsupervised clustering, each of which independently selects an optimal set of classifier 

genes using an iterative elimination process; and (4) the integration of the two 

independent gene sets to generate a final refined gene sets. 
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Figure 3.1. Overview of the ISML pipeline.

Feature Filtering by Statistical Analysis

Data Preprocessing 

The following data pre-treatment steps were applied prior to further statistical and 

computational analyses: (1) feature filtering: flag out spots with signal intensity outside 

the linear range as well as non-uniform spots; (2) conversion: convert signal intensity into 

relative RNA concentration based on the linear standard curve of spike-in RNAs; (3) 
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normalization: normalize the relative RNA concentration to the median value on each 

array; and (4) gene filtering: filter out genes appearing in less than 50% of arrays.

Identification of Differentially Expressed Genes

The Class Comparison Between Groups of Arrays Tool in BRB-ArrayTools v.3.8 

software package ([103]; linus.nci.nih.gov/BRB-ArrayTools.html) was used to identify 

significantly changed genes. The dataset was normalized and transformed previously, and 

then was imported into the BRB-ArrayTools application. The tool runs a random 

variance version of the t-test or F-test separately for each gene. It performs random 

permutations of the class labels and computes the proportion of the random permutations 

that give as many genes significant at the level set by the user as are found in comparing 

the true class labels. Differentially expressed genes were inferred by univariate statistical 

analysis. In general, we use a univariate test random variance model, multivariate 

permutation test with 10,000 random permutations, a confidence level of false discovery 

rate assessment = 99%, and a maximum allowed number of false-positive genes = 10.

Classifier Gene Selection and Ranking

Molecular endpoints such as gene expression that may reflect phenotypic disease 

symptoms manifested later at higher biological levels (e.g., cell, tissue, organ, or 

organism) are potentially biomarkers that meet such demands. As a high throughput tool, 

microarrays simultaneously measure thousands of biologically-relevant endpoints (gene 

expression). However, to apply this tool to animals under field conditions, one critical 

hurdle to overcome is the separation of toxicity-induced signals from background noise 

associated with environmental variation and other confounding factors such as animal 

age, genetic make-up, physiological state and exposure length and route [99, 100]. A 

common approach to biomarker discovery is to screen genome- or transcriptome-wide 
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gene expression responses and identify a small subset of genes capable of discriminating 

animals that received different treatments, or predicting the class of unknown samples. It 

is relatively less challenging to identify differentially expressed genes from two or more 

classes of samples. However, the search for an optimal and small subset of genes that has 

a high discriminatory power in classifying field samples often having multiple classes is 

much more complicated.

Classifier Gene Selection by Tree-Based Algorithms

A tree structure consists of a number of branches, one root, a number of internal nodes 

and a number of leaves. A decision tree is a decision support tool that uses a tree-like 

model of decisions and their possible consequences, where each internal node (non-leaf 

node) denotes a test on an attribute, each branch represents an outcome of the test, and 

each leaf node holds a class label. The topmost node in a tree is the root node. The 

occurrence of a node (feature/gene) in a tree provides the information about the 

importance of the associated feature/gene. At each decision node in a decision tree, one 

can select the most useful feature for classification using estimation criteria such as the 

concepts of entropy reduction and information gain. In a decision tree, the feature in the 

root is the best one for classification. The other features in the decision tree nodes appear 

in descending order of importance, which contribute to the classification, appear in the 

decision tree. The features that have less capability of discrimination are discarded during 

the tree construction. Thus, the decision tree algorithms could identify good features for 

the purpose of classification from the given training dataset.

Seven decision tree methods (SimpleCart, BFTree, FT, J48, LADTree, LMT and 

REPTree) were used for gene selection to avoid the biases and overcome limitations of 

each single algorithm [105, 106]. An ensemble strategy was also applied to increase 
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prediction accuracy using bagging (Bagging) and boosting (AdaBoostM1) [106]. These 

two well known methods are used to construct ensemble by re-sampling techniques. 

Bagging builds bags of the same size of the original data set by applying random 

sampling with replacement. While boosting resample original data set with replacement, 

but weights has been assigned to each training sample. The weights are updated 

iteratively to train subsequent classifier to pay more attention to misclassified samples. 

The last classifier combines the votes of each individual classifier.

All of these algorithms are implemented in the WEKA machine learning workbench 

v.3.6.0 ([108]; www.cs.waikato.ac.nz/ml/weka/). Table 3.1 summarizes the seven tree-

based classification algorithms that were examined and the last two strategies were the 

ensemble ones. Each algorithm generated a set of classification rules and a selection of

classifier genes. For each algorithm, a 10-fold cross validation method was used to 

calculate the accuracy of the classifiers. 

The performance of the classification algorithms was evaluated based on three criteria: 

accuracy, Receiver Operating Characteristic (ROC) area, and size of the tree. Accuracy 

of a classifier M is the percentage of dataset that are correctly classified by the model M. 

ROC Area is the area under the ROC curve, which can be interpreted as the probability 

that the classifier ranks a randomly chosen positive instance above a randomly chosen 

negative one. Roughly speaking, the larger the area is, the better the model would be. The 

ROC can also be represented equivalently by plotting the fraction of true positives (TPR 

= true positive rate) versus the fraction of false positives (FPR = false positive rate). The 

ROC curve is a comparison of two operating characteristics (TPR & FPR) as the criterion 

changes [108]. 



32

Table 3.1

Tree-Based Classifier Algorithms in WEKA [17]

Classifier Name Function

SimpleCart Class implementing minimal cost-complexity pruning

BFTree Class for building a best-first decision tree classifier

FT Classifier for building “Functional trees” with logistic regression 
functions at inner nodes/leaves

J48 Class for generating a pruned or un-pruned C4.5 decision tree

LADTree Class for generating a multi-class alternating decision tree using 
the LogitBoost strategy

LMT Classifier for building 'logistic model trees' with logistic 
regression functions at the leaves

REPTree Fast decision tree learner

Bagging
(ensemble)

Class for bagging a classifier to reduce variance

AdaBoostM1
(ensemble)

Class for boosting a nominal class classifier using the Adaboost 
M1 method

ROC analysis provides tools to select optimal models and is related in a direct and natural 

way to cost/benefit analysis of diagnostic decision making. The size of the tree represents 

the number of selected genes in an assembled tree. Classification rules generated by 

algorithms with ensemble strategy included multiple trees and the total number of non-

redundant classifier genes was counted as the tree size.

Ranking Classifier Genes by Weight of Significance

A weight of significance was assigned on a scale between 0 and 1 to every selected 

classifier gene based on its position/significance in an assembled decision tree according 

to Equation 3.1:

( ) = max 1_     (3.1)
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where ( ) is the weight of gene assigned by a tree model t, _ is the longest 

path of the tree, and  is the height of the gene in path . A “root” gene was awarded the 

largest weight whereas a “leaf” gene the smallest. The weight value was normalized to 

the longest leaf-to-root path, except for those genes selected by the LMT algorithm, 

whose weight had already been assigned by a logistic model. The overall weight for a 

classifier gene, i.e., the sum of its weight assigned in all the decision tree methods, was 

calculated in Equation 3.2:

( ) = ( )    (3.2)
where ( ) is the overall weight of gene ,  is the accuracy of tree model t, and N is 

the total number of tree models. All of the classifier genes were ranked by their overall 

weight, i.e., the larger the weight it had, the higher it ranked. Let’s look at an example. 

Suppose the following three classification trees are produced by one or more tree-based 

classification (see Figure 3.2).

(a)

Figure 3.2. Classifier tree models with corresponding accuracy. The accuracy of each 
tree is (a) 90% (b) 85% and (c) 95%, respectively.
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(b)

(c)

Figure 3.2. (continued).

Thus ( 2) = 2 × = 0.67, ( 2) = 1 × = 0.33, ( 2) = 2 × = 1.

Summing up gives:( 2) = 0.67 × 0.90 + 0.33 × 0.85 + 1 × 0.95 = 1.8335.

Optimization by Machine Learning Approaches

Optimization of Classifier Genes by MC-SVM

Sequential minimum optimization (SMO), a fast algorithm for training SVM [109,

110], was used to build MC-SVM kernel function models, as implemented in WEKA. 

We designed the following steps to refine the classifier gene set:
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(1) start with the highest ranking classifier gene to train the SVM using the training 

dataset and classify the testing dataset using the trained SVM;

(2) add one gene of immediately lower ranking in overall weight at a time to 

constitute a new gene set, and use the gene set to train and predict the samples; 

repeat this step until all the classifier genes have been included;

(3) calculate the classification accuracy of each class (control, TNT and RDX) and 

the weighted average accuracy of all three classes for each set of genes using 

results from the testing dataset;

(4) estimate the improvement or decline in classification accuracy as a result of 

adding one gene for each of the three classes plus the weighted average accuracy 

of all three classes;

(5) remove any gene(s) starting from the one ranking at the bottom that causes a 

decline in ALL four classification accuracies; and

(6) Iterate steps 1~5 until no more gene(s) can be removed. The remaining set of 

genes is considered the refined classifier gene set because of its small gene size 

and high accuracy.

Optimization of Classifier Genes by Clustering

Because both tree-based algorithms and SVM are supervised machine learning 

methods, an unsupervised clustering method was used to independently optimize the 

classifier genes.  Clustering was performed using the K-mean clustering analysis as 

implemented in the WEKA toolbox. All the dendrogram trees were cut at a level so that 

all the 248 earthworm RNA samples were grouped into three clusters. The three pre-

labelled clusters (control, RDX and TNT) served as the reference, and the three clusters 

derived from the dendrogram trees were compared to the reference clusters to determine 
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matching sample numbers. The optimization of classifier genes by clustering followed 

the same iterative steps as described above for MC-SVM.

Estimation of Classification Accuracy

Accuracy (also called true positive rate or recall) of a classifier was defined as the 

percentage of the dataset correctly classified by the method, i.e., number of correctly 

classified samples/total number of samples in the class. Due to the use of the whole 

dataset in feature selection, ten-fold stratified cross-validation with inner and outer loops 

was performed as described in [111] throughout this study to avoid sample selection bias 

and obtain unbiased estimates of prediction accuracies [112].

Identification of Significant Pathways

By using the ISML pipeline, we are able to reduce the dimensionality of microarray 

datasets, identify and rank classifier genes, and generate a small set of classifier genes. 

However, from the system biology point of view, networks/pathways of genetic 

regulation were able to discover the mechanisms of the modern biomedical research. 

Thus, having the list of classifier genes which are significant affected by treated chemical 

compounds, we are able to identify those relevant highly affected pathways. Combined

with the reference network tool, which was introduced in the next chapter, all the 

pathways that includes the classifier genes were selected and ranked based on the number 

of classifier genes involved. The resulting ordered list of highly affected pathways are 

considered as the candidates for detailed analysis.
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CHAPTER IV 

REFNET: A TOOLBOX TO RETRIEVE REFERENCE NETWORK

Once a list of significant classifier genes has been obtained, the next consideration is 

the identification of the biological processes represented in the list. The information 

associated with a particular gene, such as the annotation and the relevant biological 

interactions, is available from many online resources [114, 115, 116, 117]. Many public 

databases contain genetic interactions retrieved from literature with wet-lab experimental

validations. Unfortunately, only a few well-studied model organisms are curated and their 

GRN/Pathways are available in most of these public databases. A number of 

computational models also have been developed to infer gene regulatory network such as 

Boolean Network (BN [23, 26, 85]), Probabilistic Boolean Network (PBN [86, 87, 88]),

Dynamic Bayesian Network (DBN [27, 28, 29, 30, 94, 95, 96]), etc. Such models are 

only assessed based on the evaluation criteria such as recall and precision tested on model 

organisms. However, researchers who work with non-model organisms also need to 

obtain genetic interaction information and use it to systematically analyze their own 

organisms. And they rely on these computational models to infer GRN and investigate

the genetic interaction among thousands of genes for less-studied organisms. Due to the 

lack of "true" genetic interaction network as reference to assess the reconstructed GRNs, 

accuracy and reliability are the critical limitations of using the computational models 

which are only evaluated on model organisms for inference of GRNs for non-model 

organisms. Although some public network databases provide experimentally validated 

interactions among genes or proteins, limitations in accessibility and scalability make it 

difficult to extract relevant information for researchers.
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Several bioinformatics toolkits have been developed to extract biological interactions 

from public databases for known interactions of well-studied organism. For example, 

BioNetBiulder [119, 120] and NetMatch [122] are Cytoscape [118] plug-ins for 

retrieving, integrating, visualization and analysis of known biology networks. However, 

their usage is very limited for species whose networks are unknown. Other tools such as 

BlastPath [124] and OmicViZ [121], also are Cytoscape [118] plug-ins, provide network 

mapping across species based on homology. But they only map query species to its 

related model organism; and have limited number of query genes / proteins. For less-

studied organisms, their related species may not be well-annotated. Moreover, 

information from a single model organism is usually not enough to map network for 

query species. In addition, biological interactions among genes/proteins in an entire 

pathway may be more comprehensive than those among several random genes/proteins. 

To the best of our knowledge, currently no tools are available that provide an integrated 

environment for less-studied non-model organisms GRN. Thus, we propose to develop a 

cyber-based reference GRN analysis platform in order to (1) build reference 

GRNs/Pathways for non-model organisms; (2) provide biological prior knowledge of 

GRN which is useful for improving those computational models; (3) interpret and 

compare the GRNs built from computational models with wet-lab experiments; and (4) 

serve as a gene selection tool for GRN reconstruction. Figure 4.1 shows the overall 

workflow for the cyber-based RefNet analysis platform.
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Figure 4.1. Overview of the RefNet analysis platform.

Basic Local Alignment Search Tool (BLAST)

Basic Local Alignment Search Tool

Functional annotation is based on the principle of sequence similarity with well-

annotated sequences in public databases. This is accomplished by the sequence 

comparison methods such as the BLAST [128, 129], Smith-Waterman algorithm [125]

and FASTA [126, 127]. Homology among proteins and DNA is often concluded on the 

basis of sequence similarity. In general, if two or more genes have highly similar DNA 

sequences, it is likely that they are homologous. But sequence similarity may also occur 

when the sequences are short, or sequences may be similar due to the binding to a 

particular protein, such as a transcription factor.
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Basic Local Alignment Search Tool (BLAST) [128, 129] is one of the most popular 

and widely-used algorithm for comparing primary biological sequence information, such 

as the amino-acid sequences of different proteins or the nucleotides of DNA sequences. A 

BLAST search enables the comparison of a query sequence with a library or database of 

sequences. The library sequences that resemble the query sequence above a certain 

threshold will be identified. BLAST is implemented based on the Smith-Waterman 

Algorithm, but it emphasizes speed over sensitivity, which makes it more practical on the 

huge genome databases currently available. However, BLAST cannot guarantee the 

optimal alignments of a certain query sequence with database sequences. 

Alignment Theory: Smith-Waterman Algorithm

Before BLAST, alignment programs used dynamic programming algorithms, such as 

the Needleman-Wunsch [130] and Smith-Waterman [125] algorithms, that required long 

processing times and the use of a supercomputer or parallel computer processors. Both 

algorithms are dynamic programming algorithms, but the main difference is that S-W

algorithm sets the negative scoring matrix cells to zero, which renders the local 

alignments visible. Backtracking starts at the highest scoring matrix cell and proceeds 

until a cell with score zero is encountered, yielding the highest scoring local alignment. 

Given a query sequence am and database B, where . Sequence a, b contains m

and n nucleotides respectively. A matrix H is built as in Equation 4.1 and 4.2:( , 0) = 0, 0      (4.1)(0, ) = 0,0       (4.2)
if ai = bj w(ai,bj) = w(match) or if ai! = bj w(ai,bj) = w(mismatch)
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( , ) = 0( 1, 1 + ( , )( 1, ) + ( , )( , 1) + , , 1 , 1    (4.3)
where:

a,b = Strings over the

m = length(a)

n = length(b)

H(i,j) - is the maximum Similarity-Score between a suffix of a[1...i] and a suffix of 

b[1...j]( , ), , {‘ ’}, where ‘-’ is the gap-scoring scheme

For example, suppose we have sequence a = ACACACTA and sequence b =

AGCACACA. We assign w (match) = +2, w (a, -) = w (-, b) = w (mismatch) = -1.

The resulting matrix H will be obtained and by tracing back, sequence a and b was

aligned as follows:

Configurations of BLAST Program

BLAST increases the speed of alignment by decreasing the search space or number of 

comparisons it makes. A word list from the query sequence with words of a specific 

length is created and a short "word" (w) segments is used to create alignment "seeds."

Once an alignment is seeded, BLAST extends the alignment according to a threshold (T)

which is set by the user. When performing a BLAST query, the computer extends words 

with a neighborhood score greater than T. A cutoff score (S) is used to select alignments 

Sequence a = A-CACACTA

Sequence b = AGCACAC-A
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over the cutoff, which means the sequences share significant homologies. If a hit is 

detected, then the algorithm checks whether w is contained within a longer aligned 

segment pair that has a cutoff score greater than or equal to S. When an alignment score 

starts to decrease past a lower threshold score (X), the alignment is terminated. 

There are several different BLAST programs available for users to select the best one 

that suits their problem. These different programs vary in query sequence input, the 

database being searched, and what is being compared. Table 4.1 lists the program name 

and a short description. 

Table 4.1

Different BLAST Programs

BLAST 
Program Description

blastn Search a nucleotide database using a nucleotide query

blastp Search protein database using a protein query

blastx Search protein database using a translated nucleotide query

tblastn Search translated nucleotide database using a protein query

tblastx Search translated nucleotide database using a translated nucleotide
query

In RefNet, the program blastx is used after formatting the database of sequences to 

map gene fragments of our own organism (i.e., earthworm Eisenia fetida) to eight

selected model organisms in the KEGG (Kyoto Encyclopedia of Genes and Genomes)

database listed as following: Anopheles gambiae (mosquito), Apis mellifera (honey bee),

Caenorhabditis elegans (nematode), Drosophila melanogaster (fruit fly), Homo sapiens

(human), Mus musculus (mouse), Rattus norvegicus (rat) and Schistosoma mansoni
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(flatworm). The default settings for the program are used and we limit the maximum 

target sequences to be 1 as the best hit for a query sequence is demanded. The cutoff for 

expected value is set to be 10 by default and the matching sequence which has a higher e-

value (>10) are considered as statistically not similar. The e-value, together with the 

percentage of identity (pident) as well as the length of the identity (nident) is recorded. 

KEGG Metabolic Pathways and GRN Database

Although many public databases contain information of genetic interactions associated 

with a particular pathway, pathway annotation is generally sparse for organisms other 

than human, mouse and rat. Many of the organisms that have had their genomes 

sequenced have very limited pathway annotation, usually in a dedicated database that is 

difficult to retrieve. 

The primary causes of diseases can be associated with altered protein activities,

altered biochemical composition of cells and tissues, or changes at the genetic level.

Thus, identification of relationships between genes, transcripts, proteins, and metabolites 

is essential for understanding the underlying mechanisms for disease-associated pathways

[123]. Pathway annotation has been attempted by a number of public databases, and the 

most notable ones are KEGG [123] and PANTHER [131]. Table 4.2 lists some of the 

commonly used public databases.

KEGG is a collection of online databases dealing with genomes, enzymatic pathways, 

and biological chemicals. The PATHWAY database records networks of molecular 

interactions in the cells, and variants of them specific to particular organisms. KEGG 

connects known information on molecular interaction networks, such as pathways and 

complexes, information about genes and proteins generated by genome projects and 

information about biochemical compounds and reactions. The gene expression data can 
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be superimposed onto relevant pathways, which is greatly helpful in identifying

biological regulation through the co-expression of gene data obtained from microarrays.

Table 4.2

Commonly Used Public Databases of Genetic Interactions

Database 
Name 

Database Type Comments 

DIP Database of 
Interacting Proteins 

Documents experimentally determined protein-
protein interactions 

BIND Biomolecular 
Interaction Network 
Database 

Archives biomolecular interaction, complex and 
pathway information 

HPRD Human Protein 
Reference Database 

A database of curated proteomic information 
pertaining to human proteins 

MINT Molecular 
INTeraction database 

Store data on functional interactions between 
proteins 

KEGG Kyoto Encyclopedia 
of Genes and 
Genomes 

An integrated database resource consisting of 
systems information, genomic information, and 
chemical information 

Reactome Curated 
Knowledgebase of 
Biological Pathways 

REACTOME is a curated pathway database 
encompassing human biology.

ENZYME ENZYME database A repository of information related to the 
nomenclature of enzymes. 

BioGRID Biological General 
Repository for 
Interaction Datasets 

an online interaction repository of protein and 
genetic interactions 

Table 4.3 summarizes the integrated resources included in the KEGG database.

In RefNet, all the systematic reference pathways/networks in the KEGG database are 

extracted and loaded into our own pathway annotation database. There are two major 

categories of reference pathways, namely metabolite pathway and non-metabolite 

pathway. We are only interested in most of the non-metabolite reference pathways since 

they capture the interaction networks for genetic information processing, environmental 

information processing and other cellular processes. Pathways in KEGG DISEASE 
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database also contains perturbed reaction/interaction networks for human diseases. The 

pathway knowledge from KEGG database is manually collected and summarized from 

literature and presented in computable forms. The molecular network shown in each 

pathway map is a graph consisting of nodes (e.g., genes, proteins, small molecules, etc.) 

and edges (reaction, interactions and relations). In general, if two genes in the pathway 

map are connected with an edge, they are considered to have regulatory relationship.

Table 4.3

KEGG Databases [123]

Category Database Content

Systems 
Information KEGG PATHWAY Pathway maps

KEGG BRITE Functional hierarchies

KEGG MODULE Pathway modules
KEGG DISEASE Human diseases
KEGG DRUG Drugs
KEGG ORTHOLOGY KEGG orthology (KO) groups

Genomic 
Information KEGG GENOME KEGG organisms

KEGG GENES Genes in high-quality genomes
KEGG SSDB Sequence similarities and best hit
KEGG DGENES Genes in draft genomes
KEGG EGENES Genes as EST contigs

Chemical 
Information KEGG COMPOUNDS Metabolites and other small molecules

KEGG GLYCAN Glycans
KEGG REACTION Biochemical reactions
KEGG RPAIR Reactant pair chemical transformation
KEGG ENZYME Enzyme nomenclature

Each gene extracted from the KEGG Gene database can be uniquely mapped to a

KEGG Orthology (KO) identification. The KO entry represents an ortholog group that is 

linked to a gene product in the KEGG pathway diagram. Thus, the BLAST scores 
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between a query sequence and the reference sequence set from the KEGG GENES 

database are computed, and homologs are found in the reference set.

RefNet: Reference Network for Non-Model Organisms

After BLAST between query gene and the reference gene set from KEGG GENES 

database, homologs are found for each query sequence. Then, homologs ranked above the 

threshold are selected as ortholog candidates based on the BLAST score. Ortholog 

candidates are divided into KO groups according to the annotation of the KEGG GENES 

database and each query sequence was mapped with the corresponding KO group. Figure 

4.2 shows the flow chart of RefNet pipeline.

Figure 4.2. Overall procedure of RefNet.

Interpretation of Retrieved Reference Network

The KEGG represents the metabolic and regulatory processes in the form of wiring 

diagrams, which can be used for browsing and information retrieval as well as a base for 

modeling and simulation. And it helps in understanding biological processes and higher-

order functions of biological systems. Currently the KEGG website uses semi-static 
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visualizations for the presentation and navigation of its pathway information. However, it 

does not provide the possibilities of dynamic visualizations or customized visualization 

of user-specific pathways. The KEGG system provides a XML representation of its 

pathway information called KGML (KEGG Markup Language). Several applications that 

support KGML are available for the visualization, analysis and modeling of the 

biological networks such as KGML-ED [132], VisANT [133, 134], kegg2sbml, 

Biopathways Workbench etc. Not only interactive visualization and exploration of 

pathways is desirable to study biological processes, but scientists would also like to 

change the pathway structure as to customize interpretation of the pathway. The KGML 

visualization and editing tool (KGML-ED) application is a visual exploration method in a 

Java based graphical editor. It is based on Gravisto [135], a graph editor and visualization 

system, and supports KGML file import and export, visualization and editing of pathway 

structures and attributes consistent to the KGML pathway model. 

Based on the results of mapping between query sequence and KO reference genes

from the KEGG GENE database, all the reference pathways that are extracted from the 

KEGG database were interpreted as highlighting those KO reference genes if they could 

be mapped to a query sequence from our own organism. That is, for each pathway map, 

the node (representation of ortholog gene) is marked “red” if it is the best hit of a query 

sequence from our organism and the gene names are replaced by its corresponding KO 

group identification. The rest of the structure on the map remains the same as the original 

map from KEGG database. By using the KGML-ED tool, the customized interpretation 

of pathway maps, which include mapping information of query gene and KO reference 

gene, are generated and can be used as graphical representation of reference network for 

reconstruction of GRNs/Pathways for our own non-model organism.
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CHAPTER V

GENE REGULATORY NETWORK RECONSTRUCTION

Inference of gene regulatory network is yet another major application of analysis of 

gene expression data. Such study is also known as reverse engineering problem, 

specifically, reverse engineering of gene regulatory networks. Previous studies [78, 79] 

indicate that microarray expression data can be used to make predictions about the 

genetic transcriptional regulation relationships. In a gene regulatory network, the nodes 

of this network could be protein products, their coded genes/mRNAs, and complexes of 

groups of proteins. While the edges between nodes represent protein-to-protein 

interactions, protein-to mRNA interactions, or molecular reactions. The structure of gene 

regulatory network is an abstraction of the system's chemical dynamics, describing the 

mechanisms how one substance affects all the others to which it is connected. Such gene 

regulatory networks are inferred from the biological knowledgebase for a certain system 

and represent a distillation of the collective knowledge regarding a set of related 

biochemical reactions.

Mathematical models of GRN have been developed to capture the behavior of the 

modeled system, and generate predictions corresponding with experimental observations 

in some cases. In some other cases, models could make accurate novel predictions, which 

can be tested experimentally. Several approaches are used for reconstruction or inference 

of gene regulatory networks from gene expression data such as clustering, classification, 

and visualization, etc. These methods generally group genes based on the similarity of 

expression patterns. In addition, many computational approaches have been proposed to 

reconstruct gene regulatory networks based on large-scale microarray data retrieved from 

biological experiments such as information theory [80, 81, 82, 83, 84], Boolean networks 
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[23, 26, 85, 86, 87, 88], differential equations [89, 90, 91, 92, 93], Bayesian networks [27, 

28, 29, 30, 94, 95, 96] and neural networks [97]. Many computational methods have been 

developed for modeling or simulating GRNs. In this chapter, we reviewed several 

widely-used gene regulatory network reconstruction methods, which provide a guideline 

to choosing the most appropriate methods to infer the GRNS in a case study described in 

Chapter VI.

Information Theory

Information theoretic approaches use a generalization of pairwise correlation 

coefficient in Equation 5.1, called Mutual Information (MI), to compare expression 

profiles from a set of microarrays. For each pair of genes, their MIij is computed and the 

edge aij=aji is set to 0 or 1 depending on a significance threshold to which MIij is 

compared. MI can be used to measure the degree of independence between two genes.

= ( ( ) ( ))( ( ) x (k))   (5.1)
Mutual information, MIij, between gene i and gene j is computed as in Equation 5.2:MI = +      (5.2)
where H, the entropy, is defined as in Equation 5.3:

H = (x ) log (x )           (5.3)
The entropy Hi has many interesting properties; specifically, it reaches a maximum for 

uniformly distributed variables, that is, the higher the entropy, the more randomly 

distributed are gene expression levels across the experiments. From the definition, it 

follows that MI becomes zero if the two variables xi and xj are statistically independent 
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(P(xixj)=P(xi)P(xj)), as their joint entropy Hij=Hi+Hj [80, 81, 82]. A higher MI indicates 

that the two genes are non-randomly associated to each other. It can be easily shown that 

MI is symmetric, Mij=Mji, therefore the network is described by an undirected graph G, 

thus differing from Bayesian networks which is a directed acyclic graph. The relationship 

between entropy and mutual information is described in Figure 5.1.

Figure 5.1. Relationship between entropy and mutual information [80].

MI is more general than the Pearson correlation coefficient. This quantifies only linear 

dependencies between variables, and a vanishing Pearson correlation does not imply that 

two variables are statistically independent. In practical application, however, MI and 

Pearson correlation may yield almost identical results [82].

The definition of MI in Equation 5.2 requires each data point to be statistically 

independent from the others. Therefore information-theoretic approaches can deal with 

steady-state gene expression data set or with time-series data as long as the sampling time 

is long enough to assume that each time point is independent of the previous points.

Edges in networks derived by information theory approaches represent statistical 

dependences among gene expression profiles. As in the case of Bayesian network, the 

edge does not represent a direct causal interaction between two genes, but only a 
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statistical dependency. It is possible to derive the information theory approaches a 

method to approximate the joint probability distribution of gene expression profiles, as it 

is performed for Bayesian networks.

The network inference algorithms RELNET (RELevance NETworks, [81]), ARACNE 

(Algorithm for the Reverse engineering of Accurate Cellular Networks, [82, 83]) and 

CLR (Context Likelihood of Relatedness, [84]) apply network schemes in which edges 

are assigned by statistically weighted scores derived from the mutual information. In 

[85], an asymmetric mutual information measurement was proposed to obtain directed 

networks. Similarly, the use of partial correlations to detect conditionally dependent 

genes in GGMs (Graphical Gaussian Models) also allows us to distinguish direct from 

indirect associations [136].

Boolean Network and Probabilistic Boolean Network (PBN)

The Boolean Network [137, 138, 139] is useful in inference of gene regulatory 

networks due to its ability in monitoring the dynamic behavior in complicated systems 

which are based on large quantities of gene expression data [85, 86, 140]. To learn and 

reverse engineer the genetic interactions with no prior knowledge is the main objective of 

Boolean Network [86, 140]. The Boolean function is used to predict the relationship of 

co-express by other correlated genes in a Boolean Network. A Probabilistic Boolean 

Network (PBN) [22] is the stochastic extension of Boolean Network. PBN is formed by a 

group of Boolean Network and each network in PBN corresponds to a contextual 

condition determined by variables outside the model. PBN is widely used in many 

applications in the area of GRN inference. For instance, [23] proposed a model to 

generate an explicit formula for the transition probabilities for random gene 

perturbations. Some learning methods [24, 25, 26] are also investigated for Probabilistic 
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Boolean Network. PBN and DBN are studied in terms of fundamental relationships [96] 

considering the same joint probability distribution over common variables.

In a Boolean Network, by using the logical rules target gene’s expression level is 

functionally related to other genes’ expression states. In addition, the target gene is 

updated by other genes through a Boolean function. In a Boolean network, the gene 

expression values need to be discretized into two states: namely on and off, which 

corresponds to “activated” and “inhibited” respectively. A probabilistic Boolean network 

consists of a family of Boolean networks and incorporates rule-based dependencies 

between variables. In a PBN model, BNs are allowed to switch from one to another with 

certain probabilities during state transitions. 

Boolean Network

A Boolean network G(V,F) [87, 181] is defined by a set of variables representing 

genes V={x1,x2,…,xn} (where xi {0,1} is a binary variable) and a set of Boolean functions 

F={f1,f2,…,fn} which represents the transitional relationships between different time 

points. A Boolean function ( ( ), ( ), … , ( )( )) with k(i) specified input nodes is 

assigned to node xi. The gene status (state) at time point t+1 is determined by the values 

of some other genes at previous time point t using one Boolean function fi taken from a 

set of Boolean functions F . So we can define the transitions as in Equation 5.4:( + 1) = ( )( ), ( )( ), … , ( )( )( )   (5.4)
where each xi is the expression value of gene i, if xi = 1, it is activated; if xi = 0, gene i is 

inhibited. The variable ( ) is the mapping between gene networks at different time 

points. Boolean function F is the rules of regulatory interactions between different genes. 
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Figure 5.2 shows an example of a Boolean network. The connected graph is represented 

by (a), and the transition function is defined by (b).

Figure 5.2. An example of a Boolean network. (a) the wiring diagram; (b) the updating 
rules; (c) a state transition table; and (d) the state space of the network.

Probabilistic Boolean Network

By combining one or more possible transition Boolean functions, the extension of BN 

becomes PBN. Each network in PBN can be randomly selected to update the target gene 

based on the selection probability. It is proportional to the coefficient of determination

(COD) of each Boolean function. The same set of nodes V={x1,x2,...,xn} as in Boolean

network is used in a PBN G(V,F) [22], but the list of function sets F={f1,f2,…,fn} is

replaced by F={F1,F2,…,Fn}, where each function set Fi={fj
(i)}j=1,2,…,l(i) composed of l(i)

possible Boolean functions corresponds to each node xi. A realization of the PBN at a

given time point is determined by a vector of Boolean functions. Each realization of the

PBN corresponds to one of the vector functions = ( ),( ) ( ),( ) … ( )( )), 1 k N, 1 

k(i) l(i), where ( )( ) and N is the number of possible realizations. Given the values 
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of all genes in network at time point t and a realization fk, the state of the genes after one 

updating step is expressed as in Equation 5.5:( ( + 1), ( + 1), … ( + 1)) = ( ( ), ( ), … ( )) (5.5)

Given genes V = {x1,x2,…,xn}, each xi is assigned to a set of Boolean functions= { ( )} , ,…, ( ) to update target gene. The PBN will reduce to a standard Boolean

network if l(i)=1 for all genes. A basic building block of a PBN describing the updating

mechanism is shown in Figure 5.3.

Figure 5.3. A basic building block of a PBN.

Inference of Probabilistic Boolean Network

For each target gene, Coefficient of Determination (COD) is used to select a set of 

predictors [22, 25] at any time point t. Previously, the COD is used for the steady state 

data sets and then Monte Carlo approaches combined with PBN are used to approximate 

dynamics [86] and some theoretical results are given in [182]. Here we use upper case 

letters to represent random variables: Let Xi be the target gene, X1
(i), X2

(i),..., Xl(i)
(i) be sets 

of genes and f1
(i), f2

(i),..., fl(i)(i) be available Boolean functions. Thus, the optimal predictors 

of Xi can be defined by f1
(i)(X1

(i)), f2
(i)(X2

(i)),…, fl(i)
(i)( Xl(i)

(i)) and the probabilistic error 
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measure i, fk
(i)(Xk

(i))). For each k, the COD for Xi relative to the

conditioning set Xk
(i) is defined by Equation 5.6:

= ( , ( )( ( ))) (5.6)

where is the error of the best estimate of [25].

Based on the above equations [22, 25], the Boolean functions which are corresponding 

to the highest CODs will be chosen in the probabilistic network. The selected Boolean 

functions will be used to predict the state of gene (gene expression status) on the 

subsequent time point as well as to infer gene regulatory networks.

Bayesian Network and Dynamic Bayesian Network (DBN)

Due to the probabilistic nature of Bayesian network, it is widely used in reconstruction 

of gene regulatory network from time series dataset. Dynamic Bayesian network is the 

temporal extension of Bayesian network. DBN can be used to model complex temporal 

stochastic processes as it captures several other often used modeling frameworks such as 

hidden Markov models (and its variants) and Kalman filter models. The drawbacks of 

Bayesian network approach makes it fail to capture temporal information and unable to 

model cyclic networks. The Dynamic Bayesian network approaches solved such 

problems as it is better suited for characterizing time series gene expression dataset. A lot 

of researches have been conducted to infer GRNs from gene expression data using BN 

and DBN. For example, the stochastic machine learning algorithm is used to model 

genetic interactions are capable of handling dataset with missing variables [29]. In 

addition, Min Zou et al. [28] proposed a new DBN-based approach, in which the number 

of potential regulators is limited in order to reduce search space. Yu, J. et al. [27]

developed a simulation approach to take advantage of DBN algorithm, especially in the 
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case of limited biological dataset. In [30], a higher order Markov DBN approach is 

proposed in order to model multiple time units in a delayed GRN. Also, likelihood 

maximization algorithms have been used to predict hidden parameters and impute 

missing gene expression values [31].

Bayesian Network

A Bayesian network is a graphical model for probabilistic relationships among a set of 

random variables Xi, where i=1…n. Such relationships are represented in a structure of 

directed acyclic graph G, in which the vertices are random variables Xi. The relationship 

between the variables are indicated as a joint probability distribution P(X1, …, Xn) which

is consistent with the independence assertions embedded in the graph G and has the form 

as in Equation 5.7:

( , … , ) = ( = | = , … , =     (5.7)
where the p+1 genes, on which the probability is conditioned, are called the parents of 

gene i and represent its regulators, and the joint probability density is expressed as a 

product of conditional probabilities by applying the chain rule of probabilities and 

independence. This rule is based on the Bayes’ theorem: 

P(A,B)=P(B||A)*P(A)=P(A||B)*P(B). The joint probability distribution can be 

decomposed as the product of conditional probabilities [26, 94]. A simple example of 

Bayesian network is shown in Figure 5.4.
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Figure 5.4. A simple example of Bayesian network. (a) Graph representation of a 
Bayesian network. (b) Probability representation corresponding to network in (a).

The computational cost of DBN approach is expensive since the probability of every 

possible event as defined by the values of all variables needs to be stored in order to 

describe the joint distribution over n variables (genes). Thus, there are exponentially 

many such events and gives the search space complexity of (2 ). In Bayesian network,

if the maximum number of parents is denoted as p, we have the space complexity of 

Bayesian network is (2 ). Since p is usually much smaller than n, the search space 

of BN is much lower than the method that exhaustively enumerates all the possible 

events.

Bayesian networks reflect the stochastic nature of gene regulation and are based on the 

Bayes’ rule. We assume that the gene expression values are random variables which 

follow a probability distribution. Since probability is used to represent their regulatory 

relationships, Bayesian networks are considered to capture randomness and noise as 

inherent features of genetic regulation processes [94]. In the process of gene regulatory 

network inference to derive a valid network structure [183], Bayesian networks combine 

different types of data and prior knowledge. In addition, the ability to avoid over-fitting a 

model to training data and to handle incomplete noisy data as well as hidden variables 

such as transcription factors have made BNs good models to infer gene regulatory 

networks.
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Three essential elements in the process of learning a BN: model selection, parameter 

learning as well as model scoring [184]. In model selection, instead of using brute-force 

search algorithm, heuristics methods are usually used to learn a BN efficiently since the 

brute-force search will grow exponentially as the number of genes increase in a directed 

acyclic graph. In parameter learning, the goal is to find the best conditional probabilities 

(CP) for each node in a graph and experimental dataset. In model scoring, each candidate 

model will be scored and higher score indicates the network model (the DAG and the 

learned CP distribution) better fits to the data. The inferred GRN will be the model with 

the highest score.

Dynamic Bayesian Network 

The drawbacks of Bayesian network approach makes it fail to capture temporal 

information and unable to model cyclic networks. The Dynamic Bayesian network

(DBN) [185] approaches solved such problems as it is better suited for characterizing 

time series gene expression dataset. DBN can be used to model complex temporal and 

cyclic relationships of genes by incorporating time course (or time slice) information. 

Here we are modeling a dynamic system while the gene regulatory network does not 

change over time. By incorporating time series information, DBN represents the cyclic 

relations among genes in Figure 5.5.

Figure 5.5. Static Bayesian network and DBN.
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A DBN is defined by a pair (B0, B1) means the joint probability distribution over all 

possible time series of variables X={X1,X2,…,Xn}, where Xi(1 represents the binary-

valued random variables in the network. Besides, we use lower case xi(1 to denote

the values of variable Xi. It is composed of an initial state of BN and a transition two-slice 

temporal Bayesian network (2TBN). An example of DBN is shown in Figure 5.6.

Figure 5.6. A basic building block of DBN.

As we transit from one time slice to the next, the system is updated by Dynamic 

Bayesian network and its behaviors are predicted for future state. By changing the nature 

of the static BN, it has been adapted to a dynamic model. There are two categories of 

temporal approaches based on the way to represent time: time-points representation and 

time-intervals representation. We could also treat time intervals as a group of consecutive 

time points and thus it is more appropriate and expressive to use time-points 

representation.
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Leaning Bayesian Network

In general, it is difficult or hardly to manually capture the complete structure and 

parameters of Bayesian network. Therefore, the task of learning BN from gene 

expression data becomes very important. Estimating the parameters of the model and 

inferring the structure of the GRN are two key elements to learn a Bayesian network from 

a given gene expression data.

Parameter Learning

For a given graph G, maximizing the joint likelihood of gene expression data is 

generally used to estimate the parameters (also known as generative parameter learning 

[186]). Recently, the algorithms of maximizing conditional likelihood of the class 

variables given the observed evidence variables have been proposed in order to learn the 

parameters since BNs are widely used as classifiers. Such algorithms are called 

discriminative parameter learning [187, 188, 189].

Generative Parameter Learning 

Given a set of training data , which is composed of a set of independent and 

identically distributed instances [x1,…,xN], where all components are observed, 

generative parameter learning methods estimate the parameters of a BN either by directly 

maximizing the joint likelihood of training data, or by computing the posterior over 

parameters given a prior distribution 

The method of maximum likelihood estimation uses the conditional independence 

assumptions encoded in the structure. The joint log likelihood of training data can be 

factored in Equation 5.8:log ( | ) = log ( | ( ), ) (5.8)
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The second generative method is called maximum a posteriori estimation (MAP). 

Bayesian networks allow us to incorporate prior domain knowledge and use it to 

effectively avoid the problem of over-fitting, especially when limited number of training 

datasets is given. Given a prior density , we can learn the parameters to maximize the 

posterior as in Equation 5.9:

log ( | ) = log ( ) ( | )( )     (5.9)
This is equivalent to maximizing because P(D) is invariant with respect to .

A commonly used algorithm to learn BN from incomplete data is the Expectation 

Maximization (EM) method.

Discriminative Parameter Learning 

Due to the shortcoming of inconsistency with its performance when optimizing a 

criterion such as maximum likelihood or MAP, the generative parameter learning method

is not the best way to train classification models. Recently, an improved discriminative 

approach for supervised parameter learning that takes conditional likelihood as the 

optimization criterion is proposed in [187, 188, 189, 190].

Although it is easy to learn parameters given complete dataset, to find the global 

maximum is still difficult when using the discriminative conditional likelihood criterion 

for general Bayesian networks. To find the parameters for a fixed BN structure that 

maximize the conditional likelihood of a given sample of incomplete data is a NP-hard 

problem as in [187].

Structural Learning 

If the topology of the target Bayesian network is fixed, the task is to estimate the CPTs 

or CPDs for every node in the network. Or else, if the topology is unknown, structure 
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learning is required to learn the graph topology of the target BN before the parameters 

could be determined. In addition, the dataset could be either complete or incomplete for 

BN learning. Thus, four cases of learning structure of BNs are summarized based on the 

above varieties [191]. Table 5.1 shows the four cases for learning Bayesian network 

structure.

Table 5.1

Methods for Learning Bayesian Network Structure and Parameter Determination

Structure/Observability Method

Known, full Sample statistics

Known, partial EM or gradient ascent

Unknown, full Search through model space

Unknown, partial Structural EM

Full observability means that the values of all variables are known; partial 

observability means that we do not know the values of some of the variables. This might 

be because they cannot be measured (in which case they are usually called hidden 

variables), or because they just happen to be unmeasured in the training data (in which 

case they are called missing variables). Unknown structure means we do not know the 

complete topology of the gene regulatory network. Usually we know some parts of it, or 

at least know some properties of the graph, for instance, the maximum number of parents 

(fan-in) that a node can take in, and we may know that nodes of a certain “type” only 

connect to other nodes of the same type. Such constraints are called prior knowledge. 

Therefore, the learning task becomes parameter estimation when we know the structure 

of the model.

DBN Implementation 
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Kevin Murphy [185, 191] implemented a Dynamic Bayesian Network toolbox using 

the mathematical programming language (MATLAB), namely Bayes Net toolbox (BNT).

It is an open-source package for directed graphical models and supports many types of 

nodes (probability distributions), exact and approximate inference, parameter and 

structure learning, and static as well as dynamic models. BNT can be freely downloaded 

from [192]. In Murphy’s method, the gene expression data was first discretized from 

continuous form and the number of discrete steps is kept as low as possible. In general, 

three discrete steps were used: one for unchanged, one for up-regulated and one for 

down-regulated expression values. Then the BNT function learn_struct_dbn_reveal is 

called to conduct structural learning, which employs the REVEAL algorithm [193]. The 

BNT function called draw_layout is used to visualize the generated inter-slice adjacency 

matrix that represents the transition network. A number of other implementations of DBN 

method using time series gene expression data are proposed in [27, 28, 29, 30].

Time-Delayed Dynamic Bayesian Network

There are two major problems with Murphy’s DBN method which greatly reduce their 

effectiveness. The first is the lack of a systematic way to determine the time lag of 

biological relevance. Such problem results in a relatively low accuracy of inferring gene 

regulatory networks. The second is the excessive computational cost of huge searching 

space. Only limited number of genes can be modeled and reconstructing GRN. Thus, Min 

Zou et al. [28] introduces a DBN-based analysis that can predict gene regulatory 

networks from time course expression data with significantly increased accuracy and 

reduced computational time. Based on the characteristics of our microarray dataset, Zou’s 

implementation is used to reconstruct gene regulatory network. Figure 5.7 shows the 

process of approach in [28]: (1) Identification of the initial expression changes; (2) 
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Potential regulators; (3) Estimation of the transcriptional time lag; (4) DBN: statistical

analysis of the expression relationship between the potential regulator and its target gene 

in time slices; and (5) Predicted gene regulatory network.

Figure 5.7. Process of time lag DBN.

All the genes in the data are treated as potential regulators of certain target gene in 

Murphy’s method, which brings the challenge of inferring large-scale GRN due to the 

exponentially increasing of computational time. However, most transcriptional regulators 

present either an earlier or simultaneous change in the expression level when compared to 

the target genes [194]. Therefore, we can significantly reduce the computational overhead 

by limiting the number of potential regulators for each target gene. Also, in Zou’s 

method, an estimation of the transcriptional time lag between potential regulators and 

their target genes are conducted and is expected to be more accurate because it takes into 

account variable expression relationships of different regulator–target pairs.

CHAPTER VI
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MICROARRAY DATA MINING: CASE STUDY

Military-related activities produce many different chemicals, a portion of which 

inevitably contaminate soil. Neurotoxicity has been associated with energetic

compounds, TNT and RDX as well as their degradation products. Monitoring, assessing

and predicting the risks these chemicals pose when released require fundamental 

knowledge on how neurotoxicity occurs. A major barrier to development of predictive 

risk tools is the lack of an appropriate and detailed model of the molecular events leading

to neurotoxicity when organisms are exposed to contaminated soils. We are interested to 

identify and discover how components involved in neurotransmission within the soil 

organism Eisenia fetida interact and are affected by neurotoxicants. Understanding this 

network of interactions is essential for development of predictive risk models in the 

future. 

As a terrestrial toxicological model organism, E. fetida has a simple but efficient 

nervous system that is an excellent model to study the major neurotransmitters and 

synaptic pathways. Many neurotransmission pathways are conserved between E. fetida

and vertebrates. Previously, we discovered that at sub-lethal doses, TNT affected genes 

involved in neurological processes. At appropriate dosages RDX both exhibit reversible 

neurotoxicity in E. fetida. However, it is unclear whether RDX has affected other 

neurotransmission pathways and how genes involved in these pathways interact in a 

broader network context to compensate for or to cope with the perturbation caused by 

exposure to a neurotoxicant. Therefore, a system biology approach is used to discover 

effects of neurotoxicants on neurotransmitter pathways related gene expression in a gene 

regulatory network (GRN). First, the data set of gene expression values are preprocessed 

and analyzed by ISML pipeline to discover classifier genes that significantly affected by 
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the chemical and identify relevant pathways/GRNs for further study. Then, reference 

networks of user-selected pathways in the organism of interest were built by RefNet 

toolbox. Last, a set of genes in a certain pathway were selected and used to reconstruct 

gene regulatory networks in order to discover the mechanisms of perturbations of the 

network after being exposed to the chemical. Two case studies will be described in the 

following section to walk through the procedure.

Multi-Class Earthworm Microarray Dataset

DNA microarray, a maturing genomic technology, has been used extensively as a 

diagnostic tool to complement traditional approaches such as histopathological 

examination for various diseases (particularly cancers) because microscopic appearances 

sometimes can be deceiving [141, 142, 143, 144]. Microarrays have also successfully 

served as a research tool in discovering novel drug targets [145] and disease- or toxicity-

related biomarker genes for cancer classification [146]. In ecological risk assessment, 

indigenous species such as fish and earthworms are often used as bioindicators for 

adverse effects caused by environmental contaminants. Previously, we developed an 

earthworm (Eisenia fetida) cDNA microarray to analyze toxicological mechanisms for 

two military-unique explosive compounds 2,4,6-trinitrotolune (TNT) and 1,3,5-trinitro-

1,3,5-triazacyclohexane (also known as Royal Demolition eXplosive or RDX) [147, 148].

These two compounds exhibit distinctive toxicological properties that are accompanied 

by significantly different gene expression profiles in the earthworm E. fetida [147, 148, 

149], which has motivated us to look further into toxicant- or toxicity-specific signature 

genes/biomarkers. The second motivation comes from the fact that many diagnostic 

assays exist for human diseases while very few are available for evaluating impacts on 

environmentally-relevant organisms. Gross survival, growth and reproduction rates are 
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often used as assessment endpoints without reflecting the diseased population of affected 

animals that is an important part of long-term impact assessment. The last motivation is 

that computational tools such as machine learning techniques have been widely used in 

cancer and toxicant classification with microarray data but rarely applied in microarray 

data analysis of environmentally relevant organisms [150, 151, 152].

From a regulatory standpoint, there is an increasing and continuous demand for more 

rapid, more accurate and more predictive assays due to the already large, but still 

growing, number of man-made chemicals released into the environment [153]. Molecular 

endpoints such as gene expression that may reflect phenotypic disease symptoms 

manifested later at higher biological levels (e.g., cell, tissue, organ, or organism) are 

potentially biomarkers that meet such demands. As a high throughput tool, microarrays 

simultaneously measure thousands of biologically-relevant endpoints (gene expression). 

However, to apply this tool to animals under field conditions, one critical hurdle to 

overcome is the separation of toxicity-induced signals from background noise associated 

with environmental variation and other confounding factors such as animal age, genetic 

make-up, physiological state and exposure length and route [150,151]. A common 

approach to biomarker discovery is to screen genome- or transcriptome-wide gene 

expression responses and identify a small subset of genes capable of discriminating 

animals that received different treatments, or predicting the class of unknown samples. It 

is relatively less challenging to identify differentially expressed genes from two or more 

classes of samples. However, the search for an optimal and small subset of genes that has 

a high discriminatory power in classifying field samples often having multiple classes is 

much more complicated.
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For instance, Falciani and colleagues profiled gene expression of 77 hepatic samples 

of European flounder (Platichthys flesus) collected from six different environmental sites 

[150]. Using a multivariate variable selection coupled with a statistical modelling 

procedure they demonstrated that the accuracy of predicting the geographical site of 

origin based on gene expression signatures in flounder livers was limited to specific sites. 

After incorporating prior knowledge and data from laboratory exposures to individual 

toxicants, they were able to limit the search space for a combination of effective classifier 

genes and built a very accurate model consisting of only 17 genes for classification of all 

the different environmental sites. Similarly, Nota and co-workers recently identified a set 

of 188 genes from expression profiles of the springtail (Folsomia candida) exposed to a 

soil spiked with six different metals using the uncorrelated shrunken centroid method, 

and predicted an independent test soils set with an accuracy of 83% but failed on field 

soils collected from two cobalt-contaminated sites using this gene set [151]. Several other 

studies also reported a varying degree of success in the identification of classifier genes 

in both aquatic species like the zebrafish (Danio rerio) [152], the common carp Cyprinus 

carpio [154] and the water flea Daphnia magna [155], and terrestrial organisms such as 

the earthworm Lumbricus rubellus [156].

As part of a larger effort towards discovering novel biomarkers for ecological risk 

assessment of military lands, researchers at the Environmental Laboratory of U.S. Army 

Engineer Research and Development Center have developed a 15208-oligonucleotide E.

fetida array, and generated a large-scale microarray dataset from a laboratory study where 

earthworms (E. fetida) were exposed to various concentrations of TNT or RDX for 

various lengths of time in soil, mimicking field exposure scenarios (see below for 

details). The objective of the current study was to identify a small set of classifier genes 
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that could be used to build a predictive model capable of accurately separating all 

exposed earthworm samples into three categories: control, TNT-treated and RDX-treated. 

We focused on identifying and optimizing classifier genes from the earthworm dataset 

using a machine learning approach.

Experimental Design and Dataset Generation

The following experiment id designed and conducted by Dr. Ping Gong at the 

Environmental Laboratory of U.S. Army Engineer Research and Development Center.

Adult earthworms (E. fetida) were exposed in a field collected pristine silty loam soil 

(3% sand, 72% silt, 26% clay, pH 6.7, total organic C 0.7%, and CEC 10.8 mEq/100 g)

spiked with TNT (0, 6, 12, 24, 48, or 96 mg/kg) or RDX (8, 16, 32, 64, or 128 mg/kg) for 

4 or 14 days. The 4-day treatment was repeated a second time with the same TNT 

concentrations; however RDX concentrations were 2, 4, 8, 16 or 32 mg/kg soil. Each 

treatment originally had 10 replicate worms with 8~10 survivors at the end of exposure,

except the two highest TNT concentrations. At 96 mg TNT/kg, no worms survived in the 

original 4-day and 14-day exposures, whereas at 48 mg TNT/kg, all 10 worms died in the 

original 4-day exposure. Total RNA was isolated from the surviving worms as well as the 

Day 0 worms (worms sampled immediately before experiments). A total of 248 worm 

RNA samples (= 8 replicate worms × 31 treatments) were hybridized to a custom-

designed oligo array using Agilent’s one-color Low RNA Input Linear Amplification Kit. 

The array contained 15,208 non-redundant 60-mer probes (GEO platform accession 

number GPL9420), each targeting a unique E. fetida transcript [157]. After hybridization 

and scanning, gene expression data were acquired using Agilent’s Feature Extraction 

Software (v.9.1.3). In the current study, the 248-array dataset was divided into three 

worm groups regardless of exposure length and concentration: 32 untreated controls, 96 
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TNT-treated, and 120 RDX-treated. This MIAME compliant dataset has been deposited 

in NCBI’s Gene Expression Omnibus [158] and is accessible through GEO Series 

accession number GSE18495.

Data Preprocessing 

The following data pre-treatment steps were applied prior to further statistical and 

computational analyses: (1) feature filtering: flag out spots with signal intensity outside 

the linear range as well as non-uniform spots; (2) conversion: convert signal intensity into 

relative RNA concentration based on the linear standard curve of spike-in RNAs; (3) 

normalization: normalize the relative RNA concentration to the median value on each 

array; and (4) gene filtering: filter out genes appearing in less than 50% of arrays (i.e., 

present on at least 124 arrays). There were more than 14,000 genes remaining after this 

procedure.

Feature Filtering by Univariate Statistical Analysis

The Class Comparison Between Groups of Arrays Tool in BRB-ArrayTools v.3.8 

software package ([21]; linus.nci.nih.gov/BRB-ArrayTools.html) was used to identify 

significantly changed genes. The collated earthworm array dataset was imported without 

any further normalization or transformation. The tool runs a random variance version of 

the t-test or F-test separately for each gene. It performs random permutations of the class 

labels and computes the proportion of the random permutations that give as many genes 

significant at the level set by the user as are found in comparing the true class labels. The 

following eight class-comparison analyses were conducted to infer genes differentially 

expressed in response to TNT or RDX: (1) two 2-class comparisons: pooled controls vs. 

pooled TNT or RDX treatments; and (2) six multiple-class comparisons: 4-day TNT or 

RDX multiple concentrations, 4-day repeat TNT or RDX multiple concentrations, and 
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14-day TNT or RDX multiple concentrations. The following settings were employed: a 

univariate test random variance model, multivariate permutation tests with 10,000 

random permutations, a confidence level of false discovery rate assessment = 99%, and a 

maximum allowed number of false-positive genes = 10.

Differentially expressed genes were inferred by univariate statistical analysis. At the 

same level of statistical stringency, the significant gene lists derived from four different 

comparisons for either TNT or RDX shared very few common genes (Figure 6.1),

suggesting different genes may be significantly altered under different conditions. In

Figure 6.1, both Venn diagrams are produced as follows: TNT/RDX-Control: two-class 

comparison between pooled controls and pooled TNT/RDX treatments; TNT/RDX-

D4orig: multiple-class comparison of 4-day TNT/RDX treatments including the control 

group; TNT/RDX-D4Rpt: multiple-class comparison of 4-day repeat TNT/RDX 

treatments including the control group; TNT/RDX-D14: multiple-class comparison of 14-

day TNT/RDX treatments including the control group.

(a)                            (b)

Figure 6.1. Summary of DEGs in multi-class earthworm microarray dataset. The number 
and overlapping of significant genes statistically inferred from class comparisons for (a) 
TNT and (b) RDX treatments.

To validate these results, we used ANOVA in GeneSpring GX 10 to analyze the same 

dataset by applying the Benjamini-Hochberg method for multiple testing corrections and 
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a cut-off of 1.5-fold change. By allowing a variable threshold of cut-off p-value, the same 

amount of top significant genes can be derived from the same comparisons as we did 

using BRB-ArrayTools. The two sets of significant gene lists share 85~95% common 

genes (data not shown), indicating a high level of statistical reproducibility. The 

difference in the resulting gene lists may be primarily attributed to the use of a 1.5-fold 

change as the cut-off level by GeneSpring. A total of 869 unique genes were obtained 

after combining all significantly changed gene lists from TNT- and RDX-exposures. A

screenshot of the table containing the expression information of these 869 transcripts in 

all 248 earthworm samples is provided in Figure 6.2.

Figure 6.2. Screenshots of gene expression data of multi-class earthworm dataset.
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Identification and Optimization of Classifier Genes

Integrated Statistical and Machine Learning (ISML) Approach

An integrated statistical and machine learning (ISML) pipeline was applied to the 15K 

earthworm dataset which are exposed to chemical compounds such as TNT and RDX. 

Figure 6.3 shows the overall process of identifying 58 classifier genes from 15K genes. 

The pipeline illustrates the analytical procedure that integrates statistical analysis with 

supervised machine learning and unsupervised clustering. Numbers in brackets indicate 

the amount of genes remaining.

Figure 6.3.Application of ISML pipeline in multi-class earthworm dataset.

Classifier Gene Selection and Ranking

Seven decision tree methods (SimpleCart, BFTree, FT, J48, LADTree, LMT and 

REPTree) were used for gene selection to avoid the biases and overcome limitations of 
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each single algorithm [105, 106]. An ensemble strategy was also applied to increase 

prediction accuracy using bagging (Bagging) and boosting (AdaBoostM1) [106]. All of 

these algorithms are implemented in the WEKA machine learning workbench v.3.6.0 

([108]; www.cs.waikato.ac.nz/ml/weka/). The resulting tree structure each generated a set 

of classifier genes. The performance of a classifier was evaluated using three criteria: 

accuracy (see below for definition), precision (or sensitivity = number of correctly 

classified samples / total number of samples classified into this class), and the area under 

the ROC (Receiver Operating Characteristic) curve.

We used seven different tree-based machine learning algorithms to select classifier 

genes from the 869 statistically significant genes. Each algorithm in combination with 

bagging or boosting generated decision trees, separating earthworm samples into three 

pre-defined classes based on the expression of classifier genes. A different set of 

classifier genes was selected by each algorithm (Table 6.1). The classification accuracy 

varied from 75.0% for SimpleCart with boosting to 84.7% for LMT with bagging. There 

is a significant correlation between ROC area and accuracy (correlation coefficient = 

0.94).

A total of 354 unique classifier genes were obtained after pooling classifier genes 

from all decision trees. Each classifier gene was then ranked by an overall weight of 

significance. The distribution and histogram of overall weights of these genes are shown 

in Figure 6.4. The overall weight of 127 (or 36%) of classifier genes are below 0.1 

(Figure 6.4a). Only the top 43 or 14 genes had an overall weight larger than 0.5 or 1.0 

(Figure 6.4b), respectively. Over 90% of these genes have one or more strings of 

annotation information obtained using such bioinformatics programs as BLASTX, 

BLASTN, InterProScan and PIPA [159].
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Table 6.1

Summary of Classification Results Using Tree-Based Classification Algorithms

Ensemble Method Tree-Based Algorithm Accuracy (%) ROC Area

Boosting BFTree 75.8 0.878

Boosting J48 79.8 0.882

Boosting LADTree 77.4 0.881

Boosting SimpleCart 75.0 0.868

Boosting FT 83.5 0.930

Boosting LMT 81.8 0.936

Bagging J48 75.4 0.868

Bagging LADTree 75.0 0.876

Bagging REPTree 75.0 0.870

Bagging SimpleCart 76.2 0.855

Bagging FT 82.7 0.937

Bagging LMT 84.7 0.944

Figure 6.4. The accumulative distribution (a) and histogram (b) of weights of 354
classifier genes. In the histogram, the bin size is set at 0.05, and three genes with the 
highest overall weight of 2.81, 6.38 and 8.70, respectively, are not shown.

Refinement of the Classifier Gene Set Using MC-SVM or Clustering 

Two different algorithms, SMO and K-mean clustering, were employed to optimize 

the number and set of genes from the 354 ranked classifier genes. Composition of the 
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classifier gene set had a significant influence on classification accuracy (Figure 6.5).

Using SMO, as few as 16 top ranked genes classified 81% of the 248 samples into correct 

classes (Figure 6.5a). Starting at the 250th gene, the inclusion of additional classifier 

genes not only did not improve the classification accuracy for the TNT and the RDX 

classes as well as the weighted average accuracy, but deteriorated the accuracy for the 

control class (Figure 6.5a). Similarly, with the clustering approach, the top ranked 31 

genes correctly clustered 66% of the samples, while addition of other genes did little, if 

any, to improve the accuracy of either individual classes or the weighted average (Figure 

6.5b). Clearly, individual classifier genes vary remarkably in its contribution to the 

change of classification accuracy, which also depends on the choice of machine learning 

algorithms. The iterative optimization process effectively removed many genes that made 

no or negative contribution to the classification performance. As a result, this process 

produced a SVM- and a clustering-optimized subset consisting of 39 and 30 genes, 

respectively (Figure 6.6).

Figure 6.5. Classification accuracy using 354 classifier genes by SVM and clustering. 
Classification accuracy of 248 earthworm samples using SVM (a) or clustering (b) with 
an increasing number of top ranked classifier genes. The weighted average accuracy and 
the accuracy for each of the three classes (control, RDX and TNT) are shown for each set 
of genes (1~354 genes). Genes were added to the increasing gene set one at a time in the 
order of decreasing overall weight (see also Figure 6.4a).
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Figure 6.6. Classification accuracy using 39 or 30 classifier genes by SVM or clustering, 
respectively. Classification accuracy of 248 earthworm samples using an increasing 
number of classifier genes optimized by SVM (a) or clustering (b). The weighted average 
accuracy and the accuracy for each of the three classes (control, RDX and TNT) are 
shown for each set of genes (1~39 genes in 6.6(a) or 1~30 genes in 6.6(b)). One gene (the 
next highest ranked gene) at a time was added to the previous gene set to generate a new 
gene set (see also Figure 6.4(a)).

The first 24 genes of the SVM-optimized subset clearly played more important roles than 

the remaining 15 genes that only slightly improved the accuracy for the control class and 

changed very little the accuracy for the TNT and the RDX classes (Figure 6.5a). The 

subset of 39 genes performed well in terms of accuracy, ROC area, and precision, with 

83~91% in accuracy and precision except for the 76% precision of the control class 

(Table 6.2). The case for the clustering-optimized subset is a bit perplexing as the 

accuracy of the control and the RDX classes changed in opposite directions after adding 

the 2nd, 5th, 7th, 9th, 11th and 13th genes (Figure 6.5b). Nevertheless, the whole subset of 30 

genes evened up the accuracy for all classes (Figure 6.6b and Table 6.3) and gave an 

average of 72.5% precision for the three classes (Table 6.3). The sensitivity for the 

control class was relatively lower, especially in classification by clustering, when 

compared with that for the other two classes. An examination of the samples that were

incorrectly clustered into the control class showed that they were mostly exposed for 4 
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Table 6.2

Confusion Matrix Showing Classification Results Using 39 Classifier Genes by SVM

True Class
(No. Samples)

No. Samples Classified 
as

Accuracy (%) ROC 
Area

Control RDX TNT

Control (32) 29 2 1 90.6 0.938

RDX (120)
7 106 7 88.3 0.887

TNT (96) 2 14 80 83.3 0.913

Precision (%) 76.3 86.9 90.9

Weighted average (248) 87.1 (precision) 86.7 0.904

Note. The confusion matrix showing classification results for testing datasets obtained by MC-SVM using the optimized set of 39 

classifier genes.

Table 6.3

Confusion Matrix Showing Classification Results Using 30 Classifier Genes by 

Clustering a

True Class
(No. Samples)

No. Samples Classified 
as

Accuracy (%)

Control RDX TNT

Control (32) 22 1 9 68.8

RDX (120)
46 56 18 46.7

TNT (96) 21 8 67 69.8

Precision (%) 24.7 86.2 71.3

Weighted average(248) 72.5 (precision) 58.5

Note. The confusion matrix showing classification results for testing datasets obtained by clustering using the optimized set of 39 

classifier genes. a The optimized set of 30 classifier genes were used. ROC area was not computable for clustering.
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days to the lowest three concentrations of RDX or TNT (data not shown). A plausible

reason for this misclassification is that gene expression in these samples may not be 

significantly different from that in the controls due to low levels of contaminant. The 

uneven sample size might explain why the SVM precision for the control class (32 

samples) is relatively lower than that for the other two classes (96 and 120).

Optimized Gene Subset for Classification

The two subsets of classifier genes optimized by SVM and clustering share 11 

common genes, and the combination of these two resulted in a set of 58 unique genes that 

represents a refined gene set for the three-class classification. Using this gene set, we 

were able to build a SVM model with high performance parameters including accuracy, 

sensitivity and ROC area (Table 6.4). The classification results for both supervised SVM 

and unsupervised clustering are slightly less superior with the 58-gene set (Table 6.4) 

than with the 39- or the 30-gene set (Tables 6.2 and 6.3). As summarized in Table 6.5, 38 

genes or 65.5% of the optimal gene set are among the 70 highest ranked classifier genes, 

15 or 75% of the top 20 ranked genes are included in the optimal gene set, and 7 or 63.6% 

of the 11 genes picked by both SVM and clustering come from the top 12 ranked 

classifiers. These results reinforce the merit of our weight-of-significance ranking system.

Discussion

Microarray datasets possess an exceptionally high complexity distinguished by high 

feature dimension and low sample size. Like other microarray studies, the primary 

objective of this study was to search for an optimal or near optimal subset of genes that 

could be used to predict the exposure history of unknown samples. It has been proven in 

both theory and practice that feature selection can effectively enhance learning efficiency, 

increase predictive accuracy, reduce complexity of learned results, and improve the 
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Table 6.4

Confusion Matrix Showing Classification Results Using 58 Classifier Genes by SVM or 

Clustering a

True Class
(No. Samples)

No. Samples Classified as Accuracy (%) ROC 
AreaControl RDX TNT

SVM

Control (32) 26 6 0 81.3 0.936

RDX (120) 9 100 11 83.3 0.856

TNT (96) 2 13 81 84.4 0.913

Precision (%) 70.3 84.0 88.0

Weighted average (248) 83.8 (precision) 83.5 0.904

Clustering

Control (32)

a

22 1 9 68.8 NA

RDX (120) 48 55 17 45.8 NA

TNT (96) 22 10 64 66.7 NA

Precision (%) 23.9 83.3 71.1

Weighted average (248) 70.9 (precision) 56.9 NA

Note. Confusion matrix of classification results obtained using the refined set of 58 classifier genes combined from the SVM- and the 

clustering-optimized gene sets. a ROC area was not computable with clustering.

accuracy of classification models [156, 160, 161]. Although numerous supervised or 

unsupervised machine learning techniques have been used for feature selection and 

sample classification of microarray data (for reviews see [162, 163, 164]), classification 

performance appears to depend strongly on the dataset and less on the variable selection 

and classification methods [165]. Meanwhile, it has been demonstrated that a combined 
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Table 6.5

Optimized Set of 58 Classifier Genes

Gene 
Order Probe Name Overall 

Weight Rank a Picked
By

Expression 
Altered By Target Gene Annotation

1 TA2-091233 8.70 1 Both RDX Polypyrimidine tract binding (PTB) protein

2 TA1-023824 6.38 2 Both TNT NADH-coenzyme Q reductase

3 TA1-204280 2.81 3 Clustering RDX DEAD box polypeptide 46 (DDX46)

4 TA1-012917 2.40 4 Both TNT Unavailable

5 TA2-092252 2.21 5 Both RDX Diazepam binding inhibitor (DBI)-like protein

6 TA1-022179 1.96 6 Both RDX Signal-peptide

7 TA1-200771 1.94 7 Both TNT Superoxide dismutase (SOD)

8 TA1-003377 1.50 9 SVM RDX Unavailable

9 TA2-113782 1.20 10 SVM Both Signal-peptide

10 TA2-139945 1.17 12 Both TNT Earthworm valosine containing peptide-2 (evcp-2)

11 TA2-210040 1.14 13 SVM TNT Unavailable

12 TA1-173733 1.00 14 Clustering RDX Signal recognition particle

13 TA2-206312 0.96 15 Clustering TNT Heat shock protein 70 (HSP70)

14 TA1-200094 0.84 19 Clustering RDX Serine/Threonine protein phosphatise

15 TA1-084360 0.78 20 SVM TNT Translational elongation factor 2 (EF2)

16 TA2-056405 0.70 21 SVM TNT Heterogeneous nuclear ribonucleoprotein (hnRNP) 
K

17 TA2-029918 0.66 25 SVM Both Unknown

18 TA1-189015 0.65 26 SVM RDX 60S acidic ribosomal protein P2

19 TA2-153080 0.62 29 SVM RDX Electron transfer flavoprotein (ETF) -subunit

20 TA2-135639 0.58 32 SVM Both Unavailable

21 TA1-056351 0.56 34 Clustering TNT Unavailable

22 TA1-167854 0.55 35 SVM RDX Unknown

23 TA2-099898 0.55 36 Clustering TNT Presenilin

24 TA2-005815 0.53 38 SVM TNT Unknown

25 TA1-065695 0.52 39 SVM TNT Unknown

26 TA2-088504 0.51 41 SVM TNT Eukaryotic release factor 1 (eRF1)

27 TA1-020439 0.50 42 Clustering RDX Unknown
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Table 6.5 (continued).

Gene 
Order Probe Name Overall 

Weight Rank a Picked
By

Expression 
Altered By Target Gene Annotation

28 TA1-
194525 0.50 43 Both Both Valosine containing peptide-2 (evcp-2)

29 TA2-
146992 0.45 47 SVM RDX ATP synthase 9 mitochondrial

30 TA2-
058573 0.44 48 Clustering TNT Arginine/Serine-rich splicing factor

31 TA1-
086892 0.42 50 Clustering TNT Unavailable

32 TA1-
030037 0.42 51 SVM RDX S10_Plectin

33 TA2-
058673 0.41 52 SVM TNT Unavailable

34 TA2-
006089 0.40 55 SVM TNT Translational elongation factor 2 (EF2)

35 TA1-
213621 0.37 63 Both TNT Vacuolar ATP synthase proteolipid subunit

36 TA1-
058331 0.36 67 SVM TNT Titin

37 TA1-
095832 0.36 68 Clustering RDX Unknown

38 TA2-
144740 0.35 70 SVM RDX 26S proteasome complex subunit DSS1

39 TA1-
183759 0.32 78 Both RDX 26S proteasome regulatory subunit RPN1

40 TA1-
058194 0.32 80 SVM TNT Unknown

41 TA1-
026013 0.31 83 SVM TNT Heat shock protein 70 (HSP70)

42 TA1-
017276 0.31 85 SVM TNT RNA-binding domain, RBD

43 TA2-
203946 0.31 86 SVM TNT

44 TA1-
153822 0.30 88 Clustering TNT Pyruvate kinase

45 TA1-
184000 0.30 89 Clustering TNT NADPH FAD oxidoreductase

46 TA1-
193191 0.27 102 Clustering RDX Cytochrome c oxidase subunit IV (COX4)

47 TA1-
118706 0.27 104 SVM TNT Oxidoreductase

48 TA2-
119638 0.25 116 SVM TNT Unavailable

49 TA2-
118209 0.23 121 Clustering TNT Unavailable

50 TA2-
081772 0.20 132 Clustering TNT NADH-coenzyme Q reductase

51 TA1-
208104 0.14 163 SVM TNT Lipocalins

52 TA1-
118589 0.11 207 SVM RDX 40S ribosomal protein S10

53 TA2-
031808 0.10 225 Clustering RDX Biogenesis of lysosome-related organelles complex-1 subunit

54 TA1-
123240 0.09 246 Clustering RDX RNA-binding protein

55 TA2-
090604 0.08 254 Clustering TNT Arginine/Serine-rich coiled-coil 2 isoform 2
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Table 6.5 (continued).

Gene 
order Probe name Overall 

weight Rank a Picked
By

Expression 
altered by Target gene annotation

56 TA1-008487 0.08 265 Clustering TNT Cytochrome C1

57 TA2-118601 0.08 266 Both RDX Translationally-controlled tumor protein homolog (TCTP)

58 TA2-095503 0.04 319 SVM RDX 60S ribosomal protein RPL36A

Note. Optimized set of 58 classifier genes as an output of the ISML pipeline. a Rank indicates the weight-of-significance ranking 

among the 354 classifier genes.

use of different classification and feature selection approaches can enhance confidence in 

selecting relevant genes [156, 164] and that ensemble methods such as bagging and 

boosting can improve classification performances [106]. These two strategies are both 

reflected in our ISML pipeline (Figure 6.3, Table 6.1).

We first used the univariate statistical analysis [166] that selected 869 features/genes. 

These genes may represent a wide variety of transcripts that responded not only to 

toxicants TNT or RDX, but also likely to other environmental stresses. To further down 

select the features, we employed several decision-tree algorithms. A decision tree is 

constructed by selecting the most discriminative features / nodes for classification [164]

and biomarker genes discovery [103] from microarray data. In a decision tree, the 

occurrence of a node (feature / gene) provides the information about the importance of 

the associated feature / gene [103]. The root gene has the most information gain for 

classification, and the other nodes genes appear in descending order of power in 

discrimination [38]. During the decision learning, the genes that have no discrimination 

capability are discarded. A total of 515 genes were eliminated from the 869 differentially 

expressed genes by tree-based algorithms, leaving 354 classifier genes. This represents a 

59% feature reduction.
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As our goal was to scale down the size of potential classifier gene set while 

maintaining a high discriminative power, we introduced in the ISML pipeline a new 

algorithm to compute and rank the overall weight of the 354 individual classifier genes 

based on their contribution/significance to classification. We also developed a novel 

optimization algorithm for iteratively removing classifier genes that had little or a 

negative impact on classification performance. This bottom-up removal process began 

with the least important gene having the lowest overall weight. We chose to eliminate 

those genes that only reduced the classification accuracies of all classes as well as the 

weighted average. This conservative approach was adopted to preserve genes that might 

increase the accuracy of one class but decrease that of another, like the 2nd, 5th, 7th, 9th,

11th and 13th genes in the clustering-optimized gene set (Figure 6.6b). These genes are 

usually important for discriminating one particular class while confounding other classes.

SVMs are powerful classification models that have shown state-of-the-art 

performance on several diagnosis and prognosis tasks on biological data [106, 167].

SVM-based classification can usually achieve higher accuracy/precision on a given 

dataset than unsupervised algorithms. Ideally, an SVM analysis should produce a hyper-

plane that completely separates the feature vectors into non-overlapping groups. 

However, perfect separation may not be possible, or it may result in a model with so 

many feature vector dimensions that the model does not generalize well to other data, 

which is a problem commonly known as over-fitting [168]. The risk of over-fitting to the 

specific dataset in compensation for high accuracy/precision may render a high 

probability of misclassification when the trained SVM model is applied to predict 

unknown samples of other independent datasets. Unlike SVM, unsupervised learning 

algorithms can overcome this shortfall with a trade-off of less superior 
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accuracy/precision. Our ISML pipeline adopted a compromise between these two 

approaches. Although the effectiveness, efficiency and superiority of this approach has to 

go through more stringent validation and testing, our results indicate that the final 

combined gene set produced nearly as good classification outcome as the two separately 

optimized gene subsets. This combined gene set need to be tested in field samples where 

exposure history including species and concentration of contaminants as well as exposure 

length is often unknown. Currently, a field soil study is undertaken to validate this 

optimal gene set, where lab-cultured mature earthworms are exposed in field soils 

primarily contaminated with TNT or RDX.

Classification accuracy was evaluated in this study on a sole basis of the pre-defined 

exposure history, that is, each sample was labelled with a priori class corresponding to 

the chemical it had been exposed to, disregarding the differences in soil concentration of 

TNT or RDX. The accuracy of biological classification can be impaired for soils 

containing low toxicant concentrations which may not induce gene expression effects 

significant enough to distinguish exposed animals from the controls. This might 

contribute partly to the lower accuracy obtained from clustering than from SVM. It is 

desirable to define a threshold such as the lowest observable effect concentration 

expressed as the toxicant concentration in soil or animals (body burden). We prefer body 

burden as an exposure measure over soil concentration due to the often heterogeneous 

distribution of toxicants in soil. This way, animals with a tissue concentration below the 

threshold can be grouped/pre-defined together with unexposed control animals, which 

potentially benefits clustering more than SVM.

To define a sensitive threshold, one can measure disease-related biological endpoints 

that are presumably more sensitive than the mortality and growth endpoints in short-term 
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exposures of 4 or 14 days. Alternatively, one can measure toxicity-related phenotypic 

(e.g., biochemical, physiological, or pathological) endpoints if a more toxicological 

meaningful discrimination is desired. The SVM classification model for exposure 

classification in the output of the ISML pipeline can be conveniently converted into a 

disease or toxicity diagnosis model.

Another confounding factor that affects classification accuracy is that vulnerability 

and susceptibility vary from one animal to another, which may be caused by many factors 

such as genetic make-up, age, and physiological status. We believe that the diagnosis or 

prediction accuracy of unknown samples can be greatly improved if gene expression 

profiles of biologically well-characterized, pre-defined animals are used as the training 

dataset, just like in cancer microarray studies.

Among the 58 optimized genes, 93% genes exhibited toxicant-specific gene 

expression alterations, that is, 32 genes responded specifically to TNT, 22 to RDX, and 

only 4 to both chemicals (Table 6.5). Forty-two genes (72%) have meaningful annotation 

with a wide range of biological functions spanning from antioxidant response (COX4 and 

NADH-coenzyme Q reductase) to spermatogenesis (evcp-2) and GABA receptor 

modulator (DBI, also known as Acyl-CoA-binding protein or ACBP). Three of the top 10 

ranked genes, PTB, DBI and SOD, have previously been shown being altered by TNT 

[157] or RDX [158]. Two probes targeting two highly similar transcripts coding for evcp-

2, a gene expressed specifically in the anterior segments of sexually mature earthworms 

[169], take the 10th and the 28th positions on the optimal gene list, suggesting that both 

TNT and RDX may affect spermatogenesis. On the list, there are also several stress-

responding genes such as HSP70 (#13 & #41) [170] as well as cancer-related genes such 

as TCTP (#57) [171]. It is worth noting that six genes, PTB (#1) [172], DDX46 (#3) 



87

[173], EF2 (#15 & #34) [174], hnRNP K (#16) [175], and eRF1 (# 26) [176] are all 

involved in mRNA splicing or processing and RNA translation initiation or termination, 

indicating alteration of mRNA secondary structure and protein synthesis may be targeted 

by both TNT and RDX. More work should be devoted to exploring biological functions 

and interactions of the 58 genes that may lead or be linked to toxicological effects or 

biochemical endpoints.

This study addresses a sophisticated issue of discovering and optimizing classifier 

gene sets in environmentally relevant animal models. Although a perfect or the best 

solution to it is yet to be found, we have demonstrated that the ISML pipeline can reduce 

the dimensionality of microarray datasets, identify and rank classifier genes, generate a 

small set of classifier genes, produce an SVM classification model with high accuracy, 

and select a small group of biomarker candidate genes for biological validation. This 

approach can also be applied to discover diagnostic biomarker genes exhibiting toxicity-

or disease-dependent response in environmental species from fish and springtail to water 

flea and earthworm.

We report here some preliminary results of a much larger effort. Our future work 

include: (1) compare the performance of the ISML approach with that of other popular 

and existing feature selection techniques such as SVM-RFE (SVM Recursive Feature 

2 using the earthworm 

dataset and other microarray datasets; (2) validate the final 58- gene set using other 

experimental methods such as real-time quantitative PCR; (3) further test the classifiers 

in field samples; (4) identify TNT/RDX concentration-related classifier genes; and (5) 

validate the biochemical outcome regulated by the biomarker candidate genes. We 
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believe that these consorted efforts will lead us to discovery of novel classifier genes 

useful for environmental risk assessment.

Time-Series Earthworm Microarray Dataset

Experimental Design and Dataset Generation

The following experiment id designed and conducted by Dr. Ping Gong at the 

Environmental Laboratory of U.S. Army Engineer Research and Development Center. A

new earthworm array containing 43,803 non-redundant 60-mer probes was used to 

generate the dataset. The probes were selected from 63,641 previously validated 

oligonucleotide probes, each targeting a unique Eisenia fetida transcript, and 37,439 

(59%) of probed targets had meaningful biological annotation [157]. A synchronized 

earthworm culture (starting from cocoons) was created and mature worms bearing 

clitellum and weighing 0.4~0.6 g were chosen for this experiment. Each worm was 

transferred from artificial soil-based bedding (culture) and housed in an individual glass 

vial (115 mL in volume) [177]. These worms were exposed to carbaryl (20 ng/cm2) or 

RDX (2 μg/cm2) or acetone (solvent control) on moistened filter paper lined up inside the 

vial. These chemical concentrations were selected because they did not cause lethality 

(based on results from preliminary tests). The entire experiment was divided into three 

phases (Figure 6.8): acclimation (4 days), exposure (6 days) and recovery (7 days). The 

acclimation phase was necessary for the worms to adapt from soil culture to filter paper, 

and four samplings were taken to establish the “background” baseline under the control 

condition. Worms were sampled at 13 and 14 time points for all three treatments (control,

RDX and carbaryl) during the exposure and the recovery phase, respectively. Sampled 

worms were measured for conduction velocity of the medial giant nerve fiber (MGF) 

before being sacrificed by snap-freezing in liquid nitrogen. All yet-to-be-sampled worms
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were transferred to new vials at the beginning of the next phase. For instance, at the end 

of exposure phase, all remaining worms were transferred from exposure vials (containing 

spiked filter paper) to recovery vials (containing non-spiked clean filter paper). No 

mortality occurred throughout the whole experiment. Sampled worms were fixed in 

RNAlater-ICE to preserve RNA integrity at -80°C. 

Figure 6.7. Array distributions of three treatments and 31 time points.

Total RNA were extracted from at least 5 worms per time point per treatment, except 

for the 10th time point of RDX treatment in recovery stage (R10-RDX) where only 4 

replicates remained after removing an array due to the poor RNA quality in the second 

replicate. RNA samples were hybridized to the custom-designed 44K-oligo array using 

Agilent’s one-color Low RNA Input Linear Amplification Kit. After hybridization and 

scanning, gene expression data were acquired using Agilent’s Feature Extraction 

Software (v.9.1.3). In the current study, a total of 436 good quality arrays were generated, 

corresponding to 436 worm RNA samples (= 4~8 replicate worms × (1 control treatment



90

× 31 time points + 2 chemical treatments × 27 time points) (see Figure 6.7). There were 

161 untreated controls, 141 carbaryl-treated, and 134 RDX-treated. Three manufacturing 

batches of arrays were used, so the replicates within the same treatment condition and 

sampling time point were distributed into three batches in order to minimize batch effects.

For example, five replicate worms exposed to RDX were sampled at E01, and 2, 2 and 1 

replicate worm was hybridized to arrays of batch 1, 2 and 3, respectively. A

multidimensional scaling was used to examine batch effects, and results show that 

samples are not grouped by batch, suggest batch had no significant effect in this dataset. 

Figure 6.8 shows the sampling scheme and time points of sample collections.

Figure 6.8. Sampling scheme of 44K time-series earthworm microarray dataset.

Integrated Statistical and Machine Learning (ISML) Approach

The ISML pipeline was applied to the 44K earthworm dataset. Figure 6.10 shows the 

overall process, which identified 70 classifier genes from 44K genes. The pipeline 

illustrates the analytical procedure that integrates statistical analysis with supervised 
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machine learning and unsupervised clustering. Numbers in brackets indicate the amount 

of genes remaining.

Figure 6.9. Application of ISML pipeline in time-series earthworm dataset.

Data Preprocessing 

The following data pre-treatment steps were applied prior to further statistical and 

computational analyses: (1) feature filtering: flag out spots with signal intensity outside 

the linear range as well as non-uniform spots; (2) conversion: convert signal intensity into 

relative RNA concentration based on the linear standard curve of spike-in RNAs; (3) 

normalization: normalize the relative RNA concentration to the median value on each 

array; and (4) gene filtering: filter out genes appearing in less than 50% of arrays (i.e., 
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present on at least 219 arrays). There were more than 43,000 genes remaining after this 

procedure.

Feature Filtering by Univariate Statistical Analysis

The Class Comparison Between Groups of Arrays Tool in BRB-ArrayTools v.3.8 

software package ([103]) was used to identify significantly changed genes. The collated 

earthworm array dataset was imported without any further normalization or 

transformation. The tool runs a random variance version of the t-test or F-test separately 

for each gene. It performs random permutations of the class labels and computes the 

proportion of the random permutations that give as many genes significant at the level set 

by the user as are found in comparing the true class labels. The following class-

comparison analyses were conducted to infer genes differentially expressed in response 

to Carbaryl or RDX: two 2-class comparisons: pooled controls vs. pooled Carbaryl or 

RDX treatments. The following settings were employed: a univariate test random 

variance model, multivariate permutation tests with 10,000 random permutations, a 

confidence level of false discovery rate assessment = 99%, and a maximum allowed 

number of false-positive genes = 10. A total of 9184 unique genes were obtained after 

combining all significantly changed gene lists from Carbaryl- and RDX-exposures. The 

frequency of changes of gene expression values for each gene across 31 time points are 

counted, and among the 9184 differentially expressed genes (DEGs), 2574 unique genes 

were identified as DEGs for at least two time points. 

Identification and Optimization of Classifier Genes

Classifier Gene Selection and Ranking

We used seven different tree-based machine learning algorithms to select classifier 

genes from the 2574 statistically significant genes. Each algorithm in combination with 



93

bagging or boosting generated decision trees, separating earthworm samples into three 

pre-defined classes based on the expression of classifier genes. A different set of 

classifier genes was selected by each algorithm (Table 6.6). The classification accuracy 

varied from 75.0% for SimpleCart with boosting to 84.7% for LMT with bagging. There 

is a significant correlation between ROC area and accuracy (correlation coefficient = 

0.94).

A total of 1072 unique classifier genes were obtained after pooling classifier genes 

from all decision trees. Each classifier gene was then ranked by an overall weight of 

significance. The distribution and histogram of overall weights of these genes are shown 

in Figure 6.10. The overall weight of 550 (or 36%) of classifier genes are below 0.1 

(Figure 6.10a). Only the top 68 genes had an overall weight between 0.5 and 1.0 (Figure 

6.10b), respectively. Over 90% of these genes have one or more strings of annotation 

information obtained using such bioinformatics programs as BLASTX, BLASTN, 

InterProScan and PIPA [159].

Table 6.6

Summary of Classification Results Using Tree-Based Classification Algorithms

Ensemble Method Tree-Based Algorithm Accuracy (%) ROC Area

Boosting LADTree 77.3 0.918

Boosting SimpleCart 78.0 0.913

Boosting REPTree 74.8 0.889

Boosting LMT 83.9 0.961

Bagging J48 78.4 0.919

Bagging LADTree 77.8 0.918

Bagging REPTree 79.4 0.914

Bagging SimpleCart 78 0.904

Bagging LMT 84.9 0.965
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(a)                                                                  (b)

Figure 6.10. The accumulative distribution (a) and histogram (b) of weights of 1074
classifier genes. In the histogram, the bin size is set at 0.02.

Refinement of Classifier Gene Set Using MC-SVM or Clustering 

Two different algorithms, SMO and K-mean clustering, were employed to optimize 

the number and set of genes from the 1074 ranked classifier genes. Composition of the 

classifier gene set had a significant influence on classification accuracy (Figure 6.11).

Using SMO, as few as 22 top ranked genes classified 82% of the 436 samples into correct 

classes (Figure 6.11a). Starting at the 268th gene, the inclusion of additional classifier 

genes not only did not improve the classification accuracy for the TNT and the RDX 

classes as well as the weighted average accuracy, but deteriorated the accuracy for the 

control class (Figure 6.11a). Similarly, with the clustering approach, the top ranked 23

genes correctly clustered 72% of the samples, while addition of other genes did little, if 

any, to improve the accuracy of either individual classes or the weighted average (Figure

6.11b). Clearly, individual classifier genes vary remarkably in its contribution to the 

change of classification accuracy, which also depends on the choice of machine learning 

algorithms. In Figure 6.11, the weighted average accuracy and the accuracy for each of 

the three classes (control, RDX and Carbaryl) are shown for each set of genes (1~1074
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genes). Genes were added to the increasing gene set one at a time in the order of 

decreasing overall weight (see also Figure 6.10a). The iterative optimization process 

effectively removed many genes that made no or negative contribution to the 

classification performance. As a result, this process produced a SVM- and a clustering-

optimized subset consisting of 45 and 49 genes, respectively (Figure 6.12).

(a)

(b)

Figure 6.11. Classification accuracy using 1074 classifier genes by SVM or Clustering. 
Classification accuracy of 436 earthworm samples using SVM (a) or clustering (b) with 
an increasing number of top ranked classifier genes.
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The first 28 genes of the SVM-optimized subset clearly played more important roles 

than the remaining 17 genes that only slightly improved the accuracy for the control class 

and changed very little the accuracy for the Carbaryl and the RDX classes (Figure 6.11a). 

The subset of 45 genes performed well in terms of accuracy, ROC area, and precision, 

with 85~89% in accuracy and precision except for the 85% precision of the carbaryl class 

(Table 6.7). The case for the clustering-optimized subset is a bit perplexing as the 

accuracy of the control and the RDX classes changed in opposite directions after adding 

the 2nd, 5th, 7th, 9th genes (Figure 6.11b). Nevertheless, the whole subset of 49 genes 

evened up the accuracy for all classes (Figure 6.12b and Table 6.8) and gave an average 

of 80.7% precision for the three classes (Table 6.8).

Table 6.7

Confusion Matrix Showing Classification Results Using 45 Classifier Genes by SVM

True Class
(No. Samples)

No. Samples Classified as Accuracy (%) ROC 
AreaControl RDX Carbaryl

Control (161) 140 14 7 87.0 0.938

RDX (134) 8 120 6 89.6 0.887

Carbaryl (141) 5 15 121 85.8 0.913

Precision (%) 91.5 80.5 90.3

Weighted average 
(436)

89.4 (precision) 88.6 0.904

Note. Confusion matrix showing classification results for testing datasets obtained by MC-SVM using the optimized set of 45 

classifier genes.
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(a)

(b)

Figure 6.12. Classification accuracy using 45 or 49 classifier genes by SVM or clustering, 
respectively. Classification accuracy of the 436 earthworm samples using an increasing 
number of classifier genes optimized by SVM (a) or clustering (b). The weighted average 
accuracy and the accuracy for each of the three classes (control, RDX and Carbaryl) are 
shown for each set of genes (1~45 genes in 6.12(a) or 1~49 genes in 6.12(b)). One gene 
(the next highest ranked gene) at a time was added to the previous gene set to generate a 
new gene set (see also Figure 6.10(a)).
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Table 6.8

Confusion Matrix Showing Classification Results Using 49 Classifier Genes by 

Clustering 

True Class
(No. Samples)

No. Samples Classified as Accuracy (%)
Control RDX Carbaryl

Control (161) 140 3 18 87

RDX (134) 24 100 10 74.6

Carbaryl (141) 30 9 102 72.3

Precision (%) 72.2 89.3 78.5

Weighted average (436) 80.7 (precision) 77.2

Note. Confusion matrix showing classification results obtained by clustering. a The optimized set of 49 classifier genes were used. 

ROC area was not computable for clustering.

Optimized Gene Subset for Classification

The two subsets of classifier genes optimized by SVM and clustering share 24

common genes, and the combination of these two resulted in a set of 70 unique genes that 

represents a refined gene set for the three-class classification. Using this gene set, we 

were able to build a SVM model with high performance parameters including accuracy, 

sensitivity and ROC area (Table 6.9). The classification results for both supervised SVM 

and unsupervised clustering are slightly less superior with the 70-gene set (Table 6.9)

than with the 45- or the 49-gene set (Tables 6.7 and 6.8).

Reconstruction of GRNs for Chemical-Induced Neurotoxicity

Identification of Significant Pathways/GRNs

A total of 240 KEGG pathways, including 121 metabolism pathways and 119 non-

metabolism pathways contain KO ortholog genes that can be mapped with earthworm 

target genes. Among those 2574 significant differential expressed genes, 604 of them 
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were found in the 240 KEGG pathways with 218 genes mapped to metabolic pathways, 

460 to non-metabolic pathways and 74 genes to both. Figure 6.13 gives an example of a 

customized pathway built by RefNet toolbox. The red-highlighted KEGG genes have 

homologous E. fetida transcripts.

Table 6.9

Confusion Matrix Showing Classification Results Using 70 Classifier Genes by SVM or 

Clustering

True Class
(No. Samples)

No. Samples Classified as Accuracy (%) ROC 
AreaControl RDX Cararyl

SVM

Control (161) 135 20 6 83.9 0.936

RDX (134) 14 100 20 74.6 0.856

Carbaryl (141) 6 20 115 81.6 0.913

Precision (%) 87.1 71.4 81.6

Weighted average (436) 81.8 (precision) 79.5 0.904

Clustering

Control (161)

a

121 4 36 75.2 NA

RDX (134) 30 90 14 67.2 NA

Carbaryl (141) 26 12 103 73 NA

Precision (%) 68.4 84.9 63.2

Weighted average (436) 70.9 (precision) 72.3 NA

Note. Confusion matrix of classification results obtained using the refined set of 70 classifier genes combined from the SVM- and the 

clustering-optimized gene sets. a ROC area was not computable with clustering.
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Figure 6.13. Reference pathway for Alzheimer’s disease built by RefNet.

By comparing all the mapped earthworm genes in KEGG pathways with 2574 

significantly differentially expressed genes, nine pathways were identified that are 

significantly affected by chemical treatments. The nine pathways are related to signaling 

and neurological functions. Table 6.10 summarized the selected 9 pathways and they are 

ordered by the number of differentially expressed genes found in mapped KEGG 

pathways. Then, the top two pathways, namely MAPK Signaling Pathway (Ko04010) 

and Huntington’s disease pathway (Ko05016) were chosen to perform detailed analysis 

and sets of relevant genes were selected to reconstruct gene regulatory network using 

time-lagged DBN model. From Table 6.10, a total of 327 mapped earthworm genes were 

included in the MAPK Signaling Pathway and 181 unique KO orthologs in the KEGG 

database. That is, roughly one KO gene is matched by two earthworm genes. Due to the 

high computational costs and huge searching space of time-lagged DBN model, the set of 
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372 genes was difficult to accomplish and demanded high performance computing 

facility to model GRN. Therefore, a part of the MAPK pathway was selected to infer 

GRN, given current computing power. Figure 6.14 shows the reference networks for 

MAPK Signaling Pathway (6.14a) and Huntington’s Disease Pathway (6.14b) built by 

RefNet.

Table 6.10

Summary of Nine Identified Significant Pathways

Pathway Description #KO in 
KEGG

#Probe Mapped 
in KEGG

(#Probe Mapped 
if Evalue<10E-6)

#DEG in 
KEGG

(in 2574g / in 
9184g /in 
1072g)

#DEG in 
KEGG

(in 2574g / in 
9184g )

Evalue<10E-6
Ko04010 MAPK Signaling 

Pathway
181 327 (46) 26/71/15 5/9

Ko05016 Huntington’s Disease 147 372 (141) 43/94/15 32/51

Ko04360 Axon Guidance 80 189 (15) 20/48/13 0/3

Ko05010 Alzheimer’s Disease 140 349 (129) 44/95/13 29/46

Ko04141 Protein Processing in 
ER

137 409 (121) 25/81/12 6/20

Ko04110 Cell Cycle 103 233 (29) 17/60/11 4/10

Ko04740 Olfactory 
transduction

16 593 (12) 20/117/11 0/1

Ko04810 Regulation of actin 
Cytoskeleton

144 296 (47) 25/73/11 3/13

Ko05200 Pathways in Cancer 239 448 (32) 29/115/11 0/8
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(a)

(b)

Figure 6.14. Reference pathways of (a) MAPK and (b) Huntington’s disease built by 
RefNet.

Mitogen-activated protein (MAP) kinases are serine/threonine-specific protein kinases 

that respond to extracellular stimuli (mitogens, osmotic stress, heat shock and 
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proinflammatory cytokines) and regulate various cellular activities, such as gene 

expression, mitosis, differentiation, proliferation, and cell survival/apoptosis. ERK1 and 

ERK2 were the first of the ERK/MAP kinase subfamily to be cloned. Other related 

mammalian enzymes have been detected including: two ERK3 isoforms, ERK4, Jun N-

terminal kinases/stress-activated protein kinases (JNK/SAPKs), p38/HOG, and p57 MAP 

kinases (38). 

1. Extracellular signal-regulated kinases (ERK1, ERK2). The ERK1/2 (also known as 

classical MAP kinases) signaling pathway is preferentially activated in response to 

growth factors and phorbol ester (a tumor promoter), and regulates cell proliferation 

and cell differentiation.

2. C-Jun N-terminal kinases (JNKs), (MAPK8, MAPK9, MAPK10) also known as 

stress-activated protein kinases (SAPKs).

3. P38 isoforms. (p38- - - -

(MAPK13 or SAPK4)) Both JNK and p38 signaling pathways are responsive to stress 

stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and 

are involved in cell differentiation and apoptosis.

4. ERK5. ERK5 (MAPK7), which has been found recently, is activated both by growth 

factors and by stress stimuli, and it participates in cell proliferation.

5. ERK3/4. ERK3 (MAPK6) and ERK4 (MAPK4) are structurally-related atypical 

MAPKs possessing SEG motifs in the activation loop and displaying major 

differences only in the C-terminal extension. ERK3 and ERK4 are primarily 

cytoplasmic proteins that bind, translocate, and activate MK5 (PRAK, MAPKAP5). 

ERK3 is unstable, unlike ERK4, which is relatively stable [178].
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6. ERK7/8. (MAPK15) is the newest member of MAPKs and behaves like atypical 

MAPKs. It possesses a long C terminus similar to ERK3/4.

The JNK/SAPK pathway and p38 isoforms pathway are the mammalian ortholog of 

the yeast HOG kinase, which participate in a signaling cascade controlling cellular 

responses. Therefore, we choose these two parallel pathways to infer GRNs using 44K 

time-series earthworm microarray dataset. Based on the annotation information from 

NCBI, InterProScan and PIPA databases, a total of 38 genes related to the JNK/SAPK 

and p38 isoforms pathways were selected. Figure 6.16 contains the annotation 

information for the 38 genes from MAPK Signaling Pathway. Based on the MAPK 

pathway map from the KEGG database, a manually curated reference pathway using the 

38 genes was constructed (Figure 6.15) and biologically significant genes were 

highlighted as red nodes.

Figure 6.15. A curated reference network of 38 genes from MAPK Pathway.
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Figure 6.16. List of 38 genes from MAPK pathway for reconstruction of GRN.

Then, the time-lagged DBN model was used to infer 6 GRNs using the 38 genes for 

different chemical treatments and different stages. Figure 6.17 (a)-(f) are inferred GRNs 

of the 38 genes: (a) Control Exposure; (b) Carbaryl Exposure; (c) RDX Exposure; (d) 

Control Recovery; (e) Carbaryl Recovery; and (f) RDX Recovery. The nodes highlighted 

in red are biologically significant genes based on annotations from the KEGG database, 

while the green nodes are selected genes to model GRNs.

probeid koid targetid blastn_go blastx_go ips_go pipa_go evalue sigevent
TA2-126866 K03158 SMcontig_53030 5.3 1
TA2-091607 K03173 SMcontig_40747 " Mus musculus Tnf recePREDICTED: similar to 1E-19
TA1-007919 K03283 DQ286711.1 0
TA1-107832 K03283 contig00900 Cytoplasmic 4.1 1
TA2-096080 K04374 contig26722 activating transcription fa 2E-12
TA1-155914 K04375 contig07787 Cytoplasmic 2.3
TA1-190236 K04383 EW1_F1P03_F07 Cytoplasmic 1.1
TA2-070993 K04386 contig02072 Transmembrane  Locatio 1.1 2
TA1-048906 K04387 EB3O8BM02H1SF8 Cytoplasmic 6.8
TA2-082186 K04406 EW1_F1P02_A02 fucolectin 1.4
TA2-010612 K04407 contig14403 """Molecular Function: m 0.37 2
TA1-177238 K04409 EB3ZX6E02JKG87 Transmembrane  Locatio 5.2 2
TA2-081847 K04410 EB3ZX6E02H35FR unnamed protein produc IPR017442;name kina 8E-07
TA1-158033 K04416 contig26439 Signal_peptide  Location 2
TA2-050769 K04416 SMcontig_340 2.6
TA2-068852 K04421 SMcontig_39284 6.9 1
TA1-029141 K04426 contig15518 " Eisenia fetida evcp-1 g 5.2 2
TA1-063042 K04428 contig24900 Transmembrane  Locatio 1.9
TA1-037449 K04430 SMcontig_16164 9.2 4
TA1-028829 K04431 EB3O8BM01BYSQT Signal_peptide  Location 1.8 1
TA2-059291 K04431 contig25936 3.1 1
TA2-035527 K04432 EB3O8BM02I9JL3 Cytoplasmic 4
TA1-033623 K04440 contig24419 Cytoplasmic 1.3
TA1-190111 K04440 SMcontig_1640 7
TA1-088084 K04441 EB3O8BM02G38M8 Cytoplasmic 0.057
TA1-015495 K04441 contig08069 Molecular Function: hydr 1.8
TA1-181500 K04443 EB3ZX6E02JKLS7 " PREDICTED: Apis me"PREDICTED: similar to IPR015731;name MAP 2E-08 1
TA1-169617 K04448 contig02521 Cytoplasmic 1.1
TA1-069894 K04449 SMcontig_24452 JunDLb 1E-08
TA1-035060 K04453 contig00402 AGAP003177-PA Transmembrane  Locatio 1E-19
TA1-148021 K04455 EB3O8BM02I5ZVH NULL;name SMALL H 0.002 2
TA1-054006 K04456 EB3ZX6E02HBMTJ  Corynebacterium urealy Cytoplasmic 2.4
TA2-173283 K04457 EB3ZX6E01EEPBN PREDICTED: similar to IPR015655;name PROT 6E-06 2
TA1-015759 K04458 EB3O8BM02JRER0 Cytoplasmic 3
TA2-151795 K04458 SMcontig_61478 3.1
TA1-203999 K04459 EW1_F1P02_E08 MGC84083 protein Cytoplasmic 3E-34
TA2-057123 K04459 EB3ZX6E01BHTE0 MGC79099 protein NULL;name DUAL SP 6E-06 2
TA1-130886 K04462 contig29646 Transmembrane  Locatio 4.1 1

eee ttttttt
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(a)

(b)

Figure 6.17. Inferred GRNs of 38 genes from MAPK pathway. (a)-(f) are inferred GRNs 
of the 38 genes: (a) Control Exposure; (b) Carbaryl Exposure; (c) RDX Exposure; (d) 
Control Recovery; (e) Carbaryl Recovery; and (f) RDX Recovery.
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(c)

(d)

Figure 6.17. (continued).
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(e)

(f)

Figure 6.17. (continued).
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Table 6.11 lists the number of inferred edges for each chemical treatment condition in 

either stage. By comparing these six constructed networks with the curated reference 

network, Figure 6.18 summarizes the common connections (edges) for the 6 GRNs, 

respectively.

Table 6.11

Summary of Inferred GRNs for MAPK Pathway by DBN Model

Sample # Edges Inferred

Refnet 62

Control, Exposure 55

Carbaryl, Exposure 49

RDX, Exposure 61

Control, Recovery 63

Carbaryl, Recovery 69

RDX, Recovery 60

Figure 6.18. Summary of common edges between six inferred GRNs with curated 
reference network, respectively.

RefNet and Conexp RefNet and Conrec
TA1-015759 TA1-088084 TA2-010612 TA1-158033
TA1-088084 TA1-035060 TA2-057123 TA1-015495
TA2-082186 TA2-050769 TA2-057123 TA1-088084

TA2-091607 TA2-050769

RefNet and Carexp RefNet and Carrec
TA2-126866 TA2-091607 TA1-190236 TA1-048906
TA2-151795 TA1-033623 TA2-151795 TA1-015495

RefNet and RDXexp RefNet and RDXrec
TA1-088084 TA1-155914 TA1-054006 TA1-029141
TA1-190111 TA1-169617 TA1-130886 TA1-033623
TA2-081847 TA2-068852 TA2-010612 TA2-050769
TA2-091607 TA2-050769
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From Figure 6.18 we can see that inferred GRN of control treatment in recovery stage 

have the maximum number of conserved connections with curated reference network. 

Table 6.12 summaries pairwise comparisons between six inferred GRNs by DBN in 

various treatment conditions and stages. 

Table 6.12

Summary of Comparing Inferred GRNs in Three Treatment Conditions 

Pair of GRNs Common Connections

Conexp and Conrec TA1-088084 TA1-130886
TA1-130886 TA1-029141
TA1-130886 TA1-088084
TA1-130886 TA2-050769
TA1-155914 TA1-203999
TA1-203999 TA1-155914
TA2-091607 TA1-190111
TA2-091607 TA2-070993
TA2-091607 TA2-173283
TA2-096080 TA1-033623
TA2-173283 TA2-091607

Conexp and Carexp TA1-015495 TA1-148021
TA1-158033 TA2-126866

Conexp and RDXexp TA1-148021 TA2-126866
TA1-158033 TA2-126866
TA2-070993 TA2-057123

Carexp and RDXexp TA1-069894 TA1-169617
TA1-169617 TA1-069894
TA2-126866 TA1-158033

Conrec and Carrec TA1-007919 TA1-037449
TA2-082186 TA1-169617
TA1-007919 TA1-190111
TA2-050769 TA2-068852
TA2-081847 TA1-181500

Conrec and RDXrec TA2-010612 TA1-177238
TA1-069894 TA2-091607
TA1-028829 TA2-126866

Carrec and RDXrec TA1-148021 TA1-190236
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Huntington’s Disease

Huntington's disease, chorea, or disorder (HD), is a neurodegenerative genetic 

disorder that affects muscle coordination and leads to cognitive decline and dementia. It 

typically becomes noticeable in middle age. HD is the most common genetic cause of 

abnormal involuntary writhing movements called chorea. The disease is caused by an 

autosomal dominant mutation on either of an individual's two copies of a gene called 

Huntingtin (Htt gene in KEGG pathway), which means that any child of an affected 

parent has a 50% risk of inheriting the disease. The Huntingtin gene normally provides 

the genetic information for a protein that is also called “Huntingtin.” The mutation of the 

Huntingtin gene codes for a different form of the protein, whose presence results in 

gradual damage to specific areas of the brain.

All humans have the Huntingtin gene, which codes for the protein Huntingtin (Htt). 

Part of this gene is a repeated section called a trinucleotide repeat, which varies in length 

between individuals and may change length between generations. When the length of this 

repeated section reaches a certain threshold, it produces an altered form of the protein, 

called mutant Huntingtin protein (mHtt). The differing functions of these proteins are the 

cause of pathological changes which in turn cause the disease symptoms. The 

Huntington's disease mutation is genetically dominant and almost fully penetrant: 

mutation of either of a person's HTT genes causes the disease. It is not inherited 

according to sex, but the length of the repeated section of the gene, and hence its severity, 

can be influenced by the sex of the affected parent [179, 180].

By mapping the 44K earthworm genes to KEGG ortholog genes, a total of 372 

transcripts were mapped in the KEGG Huntington's disease pathway and 43 of them are 

DEGs from the set of 2574 DEGs. Again, a part of the Huntington’s disease pathway has 
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been selected and a set of 40 biological significant genes was used to infer GRNs under 

various circumstances. Figure 6.19 are the list of the 40 genes with their annotation 

information from NCBI, InterProScan and PIPA databases.

Figure 6.19. List of 40 genes from huntington’s disease pathway for reconstruction of 
GRN.

probeid koid targetid blastn_go blastx_go ips_go pipa_go evalue sigevent
TA1-110674 K00234 EB3ZX6E02F5UO2 hypothetical p 4E-12 2
TA1-124713 K00235 contig26540 " Dinoroseobacter shibaunnamed prot Transmembrane  Locatio 0
TA1-167099 K00412 contig24442 " Lumbricus terrestris miCYTB_1059 IPR005797;name ytoc 1E-27 2
TA1-080260 K00412 contig29848 " Tetraogallus tibetanus iCYTB_1059 6E-20 4
TA1-151920 K02084 SMcontig_61192 PREDICTED 0.025
TA1-052474 K02127 SMcontig_36607 putative ATP 1E-24
TA1-030538 K02128 EW2_R1P10_E09 " Ixodes pacificus clone mitochondrial 3E-19
TA1-185327 K02132 contig23278  Platynereis dumerilii ES mitochondrial """IPR004100;name - 6E-12 3
TA1-056208 K02133 contig28741  Aedes aegypti ATP synhypothetical p Signal_peptide  Location 2E-29 1
TA2-021709 K02137 contig02700 ATP synthase"""Molecular Function: e 2E-18
TA2-141273 K02159 contig24085 bcl2-associate IPR000712;name Bcl-2 0.00002
TA1-204993 K02187 SMcontig_25193 GD24332 3.1 1
TA2-122460 K02266 contig24873 AGAP00085 Cytoplasmic 7E-31
TA1-088917 K03129 SMcontig_12304 1.1 1
TA2-082037 K03940 contig25313 " Drosoph ila willistoni GGH21035 Signal_peptide  Location 0 1
TA2-144557 K03954 contig26178 GK14239 Cytoplasmic 9E-21
TA1-062050 K04533 contig07159 """Biological Process: pr Cytoplasmic 0.37
TA2-158820 K04533 SMcontig_41013 6.8 1
TA1-153843 K04564 contig28172 " Callinectes sapidus mitAF264029_1 Cytoplasmic 0
TA1-115451 K04565 EW2_R1P04_A07 SJCHGC056 Cytoplasmic 1E-08 1
TA2-084557 K04604 contig21397 5.2
TA1-231349 K04634 contig26701 Cytoplasmic 5.2 3
TA1-023347 K04958 SMcontig_40677 1.4
TA1-030855 K05208 contig24936 Transmembrane  Locatio 1.6
TA2-161461 K05210 EW2_R1P09_G11 0.096
TA1-043128 K05858 EB3ZX6E01DWRZB NULL;name METHYL 0.28
TA1-006086 K05862 contig02841 " Mus musculus voltage-voltage-depen NULL;name VOLTAG 6E-23 2
TA2-047090 K05863 contig10190 " Platynereis dumerilii pahypothetical p"""Molecular unction: Cytoplasmic 9E-27 2
TA2-000741 K05863 SMcontig_12917 SJCHGC027 5E-08 2
TA2-090805 K05864 contig13426 NULL;name TPR-like 0.043
TA2-106990 K05870 EB3O8BM01D3TAQ """IPR003102;name 0.004
TA2-079359 K08530 SMcontig_14039 6.9
TA2-093641 K08738 SMcontig_79 " PREDICTED: Equus cGJ16722 3E-28
TA2-157407 K08769 SMcontig_21734 PREDICTED 0.015 2
TA1-093839 K09047 EW1_F2P20_G01 " Eisenia foetida mRNA IPR001396;name Meta 1.1
TA1-111713 K09048 SMcontig_8876 1.1 2
TA1-070849 K10132 EB3O8BM01A2T70 Cytoplasmic 0.62 1
TA1-138641 K11828 SMcontig_7092 0.82
TA1-178978 K11830 SMcontig_45447 " Rattus norvegicus coilePREDICTED 1.1 1
TA2-045009 K11831 contig23638 Signal_peptide  Location 1.3

ttttttt
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K04533 is the Htt gene, which could produce mHtt protein if it is mutant under certain 

condition. Figure 6.20 (a)-(f) are inferred GRNs using the selected 40 genes from the 

Huntington’s disease pathway by time-lagged DBN model: (a) Control Exposure; (b) 

Carbaryl Exposure; (c) RDX Exposure; (d) Control Recovery; (e) Carbaryl Recovery; 

and (f) RDX Recovery.

Table 6.13 lists the number of inferred edges for each chemical treatment condition in 

either stage. Table 6.14 summaries pairwise comparison between six inferred GRNs by 

DBN in various treatment conditions and stages in the Huntington’s disease Pathway.

Table 6.13

Summary of Inferred GRNs for Huntington’s Disease Pathway by DBN Model

Sample # Edges Inferred

Refnet 51

Control, Exposure 55

Carbaryl, Exposure 62

RDX, Exposure 64

Control, Recovery 64

Carbaryl, Recovery 68

RDX, Recovery 64

In summary, after exposure to sublethal concentrations of RDX or carbaryl, 

physiological recovery reflected in MGF conduction velocity correlates with both the 

number and the restored expression level of altered genes (results not shown). RDX and 

carbaryl affected different biological pathways and gene interactions in a network

context, suggesting that they have different targets. Network landscape change caused by 

neurotoxicant RDX or carbaryl did not recover even after full physiological recovery. 



114

(a)

(b)

Figure 6.20. Inferred GRNs of 40 genes from Huntington’s disease pathway. (a)-(f) are 
inferred GRNs using the selected 40 genes from Huntington’s disease pathway by time-
lagged DBN model: (a) Control Exposure; (b) Carbaryl Exposure; (c) RDX Exposure; (d) 
Control Recovery; (e) Carbaryl Recovery; and (f) RDX Recovery.
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(c)

(d)

Figure 6.20. (continued).
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(e)

(f)

Figure 6.20. (continued).
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Table 6.14

Summary of Comparing Inferred GRNs in Three Treatment Conditions

Pair of GRNs Common Connections

Conexp and Conrec TA1-080260 TA1-111713
TA1-080260 TA2-084557
TA1-080260 TA2-158820
TA1-110674 TA1-178978
TA1-110674 TA1-185327
TA1-110674 TA2-047090
TA2-021709 TA1-231349
TA2-093641 TA2-161461
TA2-158820 TA1-080260

Conexp and Carexp TA1-080260 TA1-111713
TA1-110674 TA1-153843
TA1-110674 TA2-082037
TA1-124713 TA1-056208
TA1-151920 TA1-093839
TA1-204993 TA2-021709
TA2-021709 TA1-204993
TA2-079359 TA1-030538
TA2-082037 TA1-110674

Conexp and RDXexp TA1-080260 TA2-084557
TA1-110674 TA1-115451
TA2-079359 TA1-030538

Carexp and RDXexp TA1-030538 TA2-079359
TA1-124713 TA1-185327

Conrec and Carrec TA1-110674 TA1-056208
TA2-047090 TA1-110674
TA1-231349 TA1-151920
TA2-141273 TA2-090805

Conrec and RDXrec TA1-023347 TA1-043128
TA1-111713 TA1-115451
TA1-115451 TA1-111713
TA1-115451 TA2-045009
TA2-045009 TA1-115451
TA2-084557 TA1-080260

Carrec and RDXrec TA1-167099 TA1-062050
TA1-167099 TA2-047090
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CHAPTER VII

CONCLUSIONS

Summary and Conclusions

Gene Regulatory Networks (GRNs) provide integrated views of gene interactions that 

control biological processes. Reconstruction of GRNs from time-series microarray gene 

expression data is a very challenging problem for bioinformatics researchers. Although a 

number of computational models and algorithms have been developed to infer GRNs, 

there is no single outstanding approach that can model GRNs with the best performances 

for any given data set. Here, we have developed ISML and RefNet toolboxs that have 

shown promising potential in overcoming some of the difficulties in inference of GRNs 

and have had some novel biological discovery.

By applying ISML to two microarray datasets, we have identified and optimized small 

subsets of classifier/biomarker genes from high dimensional datasets and generated

classification models of acceptable precision for multiple classes.

In the RefNet toolbox, we have developed a cyber-based integrated environment to (1) 

build reference GRN/Pathway for non-model organisms; (2) provide biological prior 

knowledge of GRN to improve computational models, (3) interpret and compare the 

GRNs built from computational models with wet-lab experiments; and (4) serve as a gene 

selection tool for GRN reconstruction. This tool was applied to the earthworm Eisenia 

fetida, an environmentally important species without a complete genome sequence and 

helped identify pathway-related genes from transcriptomic-wide transcripts.

By applying ISML, RefNet and time-lagged DBN to a time-course microarray dataset, 

GRNs were inferred for the exposure and the recovery phases of unexposed earthworms 

and earthworms exposed to RDX and carbaryl. Differences between these networks are 
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attributed to perturbations caused by chemical exposure. These differences warrant 

further biological experiments for validation and validated changes have the great 

potential of providing new clues to toxicity targets and modes of action (mechanisms).

Future Directions

There are several areas that we can extend the current work to in the future:

Identification of exposure dose- and duration-specific classifier genes from the

15K earthworm multi-class microarray dataset. Instead of separating the 

biological samples into three classes of treatment types, they can be further 

classified into six classes: (1) Control day_0 & day_14; (2) Control day_4; (3) 

TNT day_0 & day_14; (4) TNT day_4; (5) RDX day_0 & day_14; (6) RDX 

day_4. Currently, we are investigating which factor (dose or exposure time) has 

more pronounced effects on the gene expression of biological samples. 

Many other biological interaction resources and databases may be incorporated in 

the RefNet toolbox. To integrate the organism specific reference pathways, genes 

and interaction relations in all organism-specific reference pathways will be 

merged to form a unified pathways graph. This graph contains the maximum (but,

may be redundant or inaccurate) information extracted from the experimental 

validated pathways. The graph will be pruned based on the importance score of 

the nodes, which will be computed using a graph ranking algorithm, e.g.  page 

rank algorithm. Different similarity metrics for comparing pathways can be tested 

to generate gene interaction relationships in pathway-pathway relationships for 

whole genome of query organism. Furthermore, to validate the pruned pathways, 

leave-one-out cross validation can be applied. For the eight model organisms, one 

can be used as query, and a pathway based on homologues search against the 
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other seven model organisms can be built. The number of genes and the number 

of interaction relations can be used to evaluate the accuracy and the precision of 

the proposed method. In addition, we can interpret and display the pathway in 

web-based Cytoscape and integrate confirmed prior interaction information to 

computational model. Meanwhile, the generated GRN can be used to develop a 

gene selection tool to generate a gene set for GRN reconstruction.

Currently, I only used the time-lagged DBN model to reconstruct gene regulatory 

networks and only small parts of the constructed reference network by RefNet are

reconstructed. I intend to try other computational approaches such as information 

theory based method (e.g., ARACNE), Probabilistic Boolean network model, or 

differential equations method to infer gene regulatory network using the same sets 

of genes from a specific pathway of interest. Based on the inferred networks from 

various methods, their performances such as precision, recall, and run time will be 

compared with current inferred results. Furthermore, I also plan to integrate 

results of different computational approaches by combining each inferred network 

with their performance/scores to generate a more reliable gene regulatory 

network. For example, certain connections may exist in the multiple GRNs

inferred using different computational methods, and such connections are 

considered more reliable than others inferred by a single method.
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