357 research outputs found

    Smooth trajectory generation for rotating extensible manipulators

    Get PDF
    In this study the generation of smooth trajectories of the end-effector of a rotating extensible manipulator arm is considered. Possible trajectories are modelled using Cartesian and polar piecewise cubic interpolants expressed as polynomial Hermite-type functions. The use of polar piecewise cubic interpolants devises continuous first and - in some cases - second order derivatives and allows easy calculation of kinematics variables such as velocity and acceleration. Moreover, the manipulator equations of motion can be easily handled, and the constrained trajectory of the non-active end of the manipulator derived directly from the position of the end-effector. To verify the proposed approach, numerical simulations are conducted for two different configurations

    Online Motion Planning for Safe Human–Robot Cooperation Using B-Splines and Hidden Markov Models

    Get PDF
    When humans and robots work together, ensuring safe cooperation must be a priority. This research aims to develop a novel real-time planning algorithm that can handle unpredictable human movements by both slowing down task execution and modifying the robot’s path based on the proximity of the human operator. To achieve this, an efficient method for updating the robot’s motion is developed using a two-fold control approach that combines B-splines and hidden Markov models. This allows the algorithm to adapt to a changing environment and avoid collisions. The proposed framework is thus validated using the Franka Emika Panda robot in a simple start–goal task. Our algorithm successfully avoids collision with the moving hand of an operator monitored by a fixed camera

    Identification of robotic manipulators' inverse dynamics coefficients via model-based adaptive networks

    Get PDF
    The values of a given manipulator's dynamics coefficients need to be accurately identified in order to employ model-based algorithms in the control of its motion. This thesis details the development of a novel form of adaptive network which is capable of accurately learning the coefficients of systems, such as manipulator inverse dynamics, where the algebraic form is known but the coefficients' values are not. Empirical motion data from a pair of PUMA 560s has been processed by the Context-Sensitive Linear Combiner (CSLC) network developed, and the coefficients of their inverse dynamics identified. The resultant precision of control is shown to be superior to that achieved from employing dynamics coefficients derived from direct measurement. As part of the development of the CSLC network, the process of network learning is examined. This analysis reveals that current network architectures for processing analogue output systems with high input order are highly unlikely to produce solutions that are good estimates throughout the entire problem space. In contrast, the CSLC network is shown to generalise intrinsically as a result of its structure, whilst its training is greatly simplified by the presence of only one minima in the network's error hypersurface. Furthermore, a fine-tuning algorithm for network training is presented which takes advantage of the CSLC network's single adaptive layer structure and does not rely upon gradient descent of the network error hypersurface, which commonly slows the later stages of network training

    A robot programming environment based on free-form CAD modelling

    Get PDF
    This paper presents the mathematical and computational foundations of a robot programming environment embedded within a CAD system. The key ideas behind this system is that it will work offline, it will allow a high-level of task abstraction and it will be usable by designers and engineers who have a good knowledge of the desired task but only a basic grounding in robot engineering. In this paper we begin with a discussion of how robot workspace can be modelled using free-form CAD design concepts. The core of the paper is concerned with the application of these to well known problems of collision detection and path planning, showing how algorithms developed in CAD can be applied to these new problem-areas in an efficient way. In the closing section we use these ideas to consider the development of new, graphically-based, robot programming systems

    Identification of Inertial Parameters for Position and Force Control of Surgical Assistance Robots

    Full text link
    [EN] Surgeries or rehabilitation exercises are hazardous tasks for a mechanical system, as the device has to interact with parts of the human body without the hands-on experience that the surgeon or physiotherapist acquires over time. For various gynecological laparoscopic surgeries, such as laparoscopic hysterectomy or laparoscopic pelvic endometriosis, Uterine Manipulators are used. These medical devices allow the uterus to be suitably mobilized. A gap needs to be filled in terms of the precise handling of this type of devices. In this sense, this manuscript first describes the mathematical procedure to identify the inertial parameters of uterine manipulators. These parameters are needed to establish an accurate position and force control for an electromechanical system to assist surgical operations. The method for identifying the mass and the center of mass of the manipulator is based on the solution of the equations for the static equilibrium of rigid solids. Based on the manipulator inertial parameter estimation, the paper shows how the force exerted by the manipulator can be obtained. For this purpose, it solves a matrix system composed of the torques and forces of the manipulator. Different manipulators have been used, and it has been verified that the mathematical procedures proposed in this work allow us to calculate in an accurate and efficient way the force exerted by these manipulators.The authors wish to thank the "Agencia Valenciana de la Innovacio" (Generalitat Valenciana) for the partial funding of this study under the project with reference INNCON00/20/002. We also want to thank the "Instituto Universitario de Automatica e Informatica Industrial (ai2)" of the "Universitat Politecnica de Valencia" for its financial support under the program "Plan de ayudas a la I+D+I del Instituto ai2".Zamora-Ortiz, P.; Carral-Alvaro, J.; Valera Fernández, Á.; Pulloquinga-Zapata, J.; Escarabajal-Sánchez, RJ.; Mata Amela, V. (2021). Identification of Inertial Parameters for Position and Force Control of Surgical Assistance Robots. Mathematics. 9(7):1-16. https://doi.org/10.3390/math9070773S1169

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Bayesian Optimisation for Planning And Reinforcement Learning

    Get PDF
    This thesis addresses the problem of achieving efficient non-myopic decision making by explicitly balancing exploration and exploitation. Decision making, both in planning and reinforcement learning (RL), enables agents or robots to complete tasks by acting on their environments. Complexity arises when completing objectives requires sacrificing short-term performance in order to achieve better long-term performance. Decision making algorithms with this characteristic are known as non-myopic, and require long sequences of actions to be evaluated, thereby greatly increasing the search space size. Optimal behaviours need balance two key quantities: exploration and exploitation. Exploitation takes advantage of previously acquired information or high performing solutions, whereas exploration focuses on acquiring more informative data. The balance between these quantities is crucial in both RL and planning. This thesis brings the following contributions: Firstly, a reward function trading off exploration and exploitation of gradients for sequential planning is proposed. It is based on Bayesian optimisation (BO) and is combined to a non-myopic planner to achieve efficient spatial monitoring. Secondly, the algorithm is extended to continuous actions spaces, called continuous belief tree search (CBTS), and uses BO to dynamically sample actions within a tree search, balancing high-performing actions and novelty. Finally, the framework is extended to RL, for which a multi-objective methodology for explicit exploration and exploitation balance is proposed. The two objectives are modelled explicitly and balanced at a policy level, as in BO. This allows for online exploration strategies, as well as a data-efficient model-free RL algorithm achieving exploration by minimising the uncertainty of Q-values (EMU-Q). The proposed algorithms are evaluated on different simulated and real-world robotics problems, displaying superior performance in terms of sample efficiency and exploration

    ANN Models and Bayesian Spline Models for Analysis of Exchange Rates and Gold Price

    Get PDF
    ANN (Artificial Neural Network) models and Spline techniques have been applied to economic analysis, to handle economic problems, evaluate portfolio risk and stock performance, and to forecast stock exchange rates and gold prices. These techniques are improving nowadays and continue to serve as powerful predictive tools. In this study, we compare the performance of ANN models and Bayesian Spline models in forecasting economic datasets. We consider the most commonly used ANN models, which are Generalized Regression Neural Networks (GRNN), Multilayer Perceptron (MLP), and Radial Basis Function Neural Networks (RBFNN). We compare these models using BayesX and Statistica software with three important economic datasets: on the exchange rate of Turkish Liras (TL) to Euro, exchange rate of Turkish Liras (TL) to United States Dollars (USD), and Gold Price for Turkey. With these three economic datasets, we made a comparative study of these models, using the criterions MSE and MAPE to evaluate their forecasting performance. The results demonstrate that the penalized spline model performed best amongst the spline techniques and their Bayesian versions. Amongst the ANN models, the MLP model obtained the best performance criterion results

    Redundant Unilaterally Actuated Kinematic Chains: Modeling and Analysis

    Get PDF
    Unilaterally Actuated Robots (UAR)s are a class of robots defined by an actuation that is constrained to a single sign. Cable robots, grasping, fixturing and tensegrity systems are certain applications of UARs. In recent years, there has been increasing interest in robotic and other mechanical systems actuated or constrained by cables. In such systems, an individual constraint is applied to a body of the mechanism in the form of a pure force which can change its magnitude but cannot reverse its direction. This uni-directional actuation complicates the design of cable-driven robots and can result in limited performance. Cable Driven Parallel Robot (CDPR)s are a class of parallel mechanisms where the actuating legs are replaced by cables. CDPRs benefit from the higher payload to weight ratio and increased rigidity. There is growing interest in the cable actuation of multibody systems. There are potential applications for such mechanisms where low moving inertia is required. Cable-driven serial kinematic chain (CDSKC) are mechanisms where the rigid links form a serial kinematic chain and the cables are arranged in a parallel configuration. CDSKC benefits from the dexterity of the serial mechanisms and the actuation advantages of cable-driven manipulators. Firstly, the kinematic modeling of CDSKC is presented, with a focus on different types of cable routings. A geometric approach based on convex cones is utilized to develop novel cable actuation schemes. The cable routing scheme and architecture have a significant effect on the performance of the robot resulting in a limited workspace and high cable forces required to perform a desired task. A novel cable routing scheme is proposed to reduce the number of actuating cables. The internal routing scheme is where, in addition to being externally routed, the cable can be re-routed internally within the link. This type of routing can be considered as the most generalized form of the multi-segment pass-through routing scheme where a cable segment can be attached within the same link. Secondly, the analysis for CDSKCs require extensions from single link CDPRs to consider different routings. The conditions to satisfy wrench-closure and the workspace analysis of different multi-link unilateral manipulators are investigated. Due to redundant and constrained actuation, it is possible for a motion to be either infeasible or the desired motion can be produced by an infinite number of different actuation profiles. The motion generation of the CDSKCs with a minimal number of actuating cables is studied. The static stiffness evaluation of CDSKCs with different routing topologies and isotropic stiffness conditions were investigated. The dexterity and wrench-based metrics were evaluated throughout the mechanism's workspace. Through this thesis, the fundamental tools required in studying cable-driven serial kinematic chains have been presented. The results of this work highlight the potential of using CDSKCs in bio-inspired systems and tensegrity robots
    corecore