
University of South Wales

2060371

Bound t>y

Abbey Bookbinding
Unit 3 Gabalfa Workshops

Clos Menter
Excelsior Ind. Est.
Cardiff CF14 3AY

T: »44 (0) 29 2062 3290
_ ' F: *44 (0) 29 2062 6420

E: info@obbeybookbinding.co.uk
W: www.obbeybookbinding.co.uk

EVOLVED NEURAL NETWORK APPROXIMATION OF
DISCONTINUOUS VECTOR FIELDS IN UNIT QUATERNION

SPACE (S3) FOR ANATOMICAL JOINT CONSTRAINT

GLENN LLEWELLYN JENKINS

School of Computing,
Faculty of Advanced Technology,

University of Glamorgan

A submission presented in partial fulfilment of the requirements of the University of
Glamorgan / Prifysgol Morgannwg for the degree of Doctor of Philosophy.

August 2007

Abstract
The creation of anatomically correct three-dimensional joints for the simulation of
humans is a complex process, a key difficulty being the correction of invalid joint
configurations to the nearest valid alternative. Personalised models based on individual
joint mobility are in demand in both animation and medicine [1]. Medical models need
to be highly accurate animated models less so, however if either are to be used in a real
time environment they must have a low temporal cost (high performance). This work
briefly explores Support Vector Machine neural networks as joint configuration
classifiers that group joint configurations into invalid and valid. A far more detailed
investigation is carried out into the use of topologically evolved feed forward neural
networks for the generation of appropriately proportioned corrective components which
when applied to an invalid joint configuration result in a valid configuration and the
same configuration if the original configuration was valid. Discontinuous vector fields
were used to represent constraints of varying size, dimensionality and complexity. This
culminated in the creation corrective quaternion constraints represented by
discontinuous vector fields, learned by topologically evolved neural networks and
trained via the resilient back propagation algorithm. Quaternion constraints are difficult
to implement and although alternative methods exist [2-6] the method presented here is
superior in many respects. This method of joint constraint forms the basis of the
contribution to knowledge along with the discovery of relationships between the
continuity and distribution of samples in quaternion space and neural network
performance. The results of the experiments for constraints on the rotation of limb with
regular boundaries show that 3.7 x lO'Vo of patterns resulted in errors greater than 2%
of the maximum possible error while for irregular boundaries 0.032% of patterns
resulted in errors greater than 7.5%.

Declaration

The work presented throughout this thesis, except that which has been explicitly
referenced, is solely the work of the author, Glenn Llewellyn Jenkins, and has not been
submitted in part or in whole for any other academic award or to any other academic
institution.

The copyright of this work is vested in the author.

Signed Dated

(Author) W /08/2007

(Director of Studies) *2-- /08/2007

Acknowledgements

I would like to extend my sincere thanks to my project supervisors at the University of
Glamorgan, Dr. Paul Angel and Mr. Colin Morris, for their support and guidance over
the last four years. I would also like to thank Mr. August Mayer and Dr. Helmut Mayer
for providing and supporting the NetJEN system used in my work. I would like to give
special thanks to my parents who have encouraged me and believed in me all my life,
and to Kirstie for her support, encouragement and tolerance. 1 would like to thank my
close friends and both Kirstie's family and my own who have helped me keep a sense of
perspective during the most stressful periods of my PhD. Finally I would like to thank
my colleagues at Swansea Metropolitan University for providing me with support,
friendship and sufficient time to complete my PhD.

Contents
/. Introduction __ 8

2. Literature Review____________________________________ 10

2.1 Joint Modelling _________________________________ 10
2.1.1 Anatomically Based Joint Modelling____________________ 10
2.1.2 Phenomenological Joint Modelling _____________________ 12
2.1.3 Rotational Representation _________________________ 14
2.1.3.1 Euler Angles ________________________________ 15
2.1.3.2 Rotation Matrices _____________________________ 16
2.1.3.3 Exponential Map or Versor________________________ 17
2.1.3.4 Quaternions (or Euler Parameters) ____________________ 18
2.1.3.5 Swing and Twist _______________________________ 21

2.2 Neural Networks ________________________________ 22
2.2.1 Feed-Forward Neural Networks________________________ 23

2.3 Support Vector Machines (SVMs)_______________________ 28

2.4 Genetic Algorithms _______________________________ 31

2.5 Evolved Artificial Neural Networks _____________________ 32
2.5.1 Topology Evolution _______________________________ 33
2.5.2 Activation Function Evolution_________________________ 34

2.6 Local and Global Learning Characteristics _________________ 35

2.7 Neural Network Approximation of Vector Fields ______________ 37

2.8 Principle Component Analysis_________________________ 42

2.9 Conclusion ____________________________________ 47

3. Simple Corrective Constraints_____________________________ 52

3.1 Methodology __________________________________ 53
3.1.1 Dataset Generation_______________________________ 54
3.1.2 NetJEN______________________________________ 57
3.1.3 Evolution and Training ____________________________ 60

3.2 Results ______________________________________ 63

3.3 Discussion_____________________________________ 71

3.4 Conclusion ____________________________________ 74

4.1 Methodology __________________________________ 75
4.1.1 Dataset Generation______________________________ 75
4.1.2 Evolution and Training _____________________________ 79

4.2 Results ______________________________________ 81

4.2.1 Regular Boundaries _______ ______________________ 81
4.2.2 Irregular Boundaries_____________________________ 94

4.3 Discussion____________________________________ 100
4.3.1 Regular Boundaries ____________________________ 100
4.3.2 Irregular Boundary_____________________________ 102

4.4 Conclusion _______________ 105

5.1 Methodology __________________________________ 106
5.1.1 Number of Hidden Layers and Nodes ______________________ 106
5.1.2 Training Epochs_______________________________ 107
5.1.3 Number of Patterns ___________ 108
5.
5.
5.
5.
5.
5.
5.

.4 Pattern Order ________________________________ 108

.5 Pattern Distribution ____________________________ 108

.6 Generations ________________________________ 109

.7 Population Size_______________________________ 110

.8 Activation Function ______________________________ 110

.9 Dataset Creation______________________________ 112

.10 Activation Function Evolution using NetJEN ________________ \ 12
5.1.11 Training and Evolution ___________________________ 114

5.2 Results _____________________________________ 116
5.2.1 Discontinuous Vector Fields Representing Three Dimensional Constraints

___ 117
5.2.1.1 Neural Network Size____________________________ 117
5.2.1.2 Training Epochs _______________________________ 118
5.2.1.3 Number of Training Patterns________________________ 120
5.2.1.4 Generations _________________________________ 121
5.2.1.5 Population Size _______________________________ 123
5.2.2 Discontinuous Vector Fields Representing Regular and Irregular Quaternion
Boundaries_______________________________________ 125
5.2.2.1 Number of Hidden Nodes________________________ 125
5.2.2.2 Training Epochs _______________________________ 126
5.2.2.4 Training Patterns_______________________________ 128
5.2.2.5 Pattern Order_________________________________ 129
5.2.2.6 Pattern Distribution __ 130
5.2.2.7 Activation Function Evolution _______________________ 130

5.3 Discussion__ 136
5.3.1 Discontinuous Vector Fields Representing Three-Dimensional Constraints

___ 136
5.3.2 Discontinuous Vector Fields Describing Regular and Irregular Boundary
Quaternion Constraints ___________________________________ 138

5.4 Conclusions __________________________________ 142

6. Binary Constraints in S* Space _________________________________ 144

6.1 Methodology
6. 1 . 1 Dataset Generation
6.1.2SVMLight
6.1.3 Training Configuration

6.2 Results

6.3 Discussion

6.4 Conclusions

7. Discussion

7.1 Binary Constraints

7.2 Corrective Constraints

8. Conclusions

9. Future Work

144
145
145
146

146

150

152

153

153

154

164

168

9.1 Introduction__________________________________ 168

9.2 Development of the Current Work _____________________ 168
9.2.1 Performance of Spline Based Neural Networks______________ 168
9.2.2 Performance Metrics for Joint Constraint Vector Fields _________ 169
9.2.3 The Constraint of Rotation around the Limb _______________ 169
9.2.4 Reduced Coordinate Encoding_______________________ 172
9.2.5 Multiple Dependent Joints _________________________ 173
9.2.6 Training from Sampled Data _________________________ 174

9.3 Application of the Techniques Developed__________________ 174
9.3.2 Kinematic Modelling ___________________________ 174
9.3.3 Biomechanical Modelling __________________________ 175
9.3.4 Dynamics Modelling ___________________________ 175
9.3.5 Pose Constraints________________________________ 176
9.3.6 Camera Constraint ______________________________ 176

9.4 Conclusion ___________________________________ 177

Appendix A. __ 190

Published Papers__________________________________ 190

1. Introduction

Joint models are important constituents of anatomical models, they are used in

simulation to retain anatomically correct movement and ensure limbs do not separate or

intersect. Anatomical models are used in both medicine and animation to create model

humans as characters, teaching aids or to evaluate the benefits of surgical or prosthetic

intervention [7-9]. It has been acknowledged that the joint models used in animation

are particularly underdeveloped despite advances in other areas of humanoid modelling

[1].

Many current techniques are limited by their underlying representation or their

abstraction of the joint function and there is increasing demand for anatomically correct

joints for both animation and medicine [1, 10, 11]. However in current applications,

increasing accuracy leads to increasing complexity which requires additional

computation [8, 12, 13]. No single technique has been presented suitable for accurately

modelling all classifications of anatomical joint [1].

The long term aim of this work is to create an anatomically correct joint model based on

person specific data (from non-invasive [14] or invasive [15] sources). Each model will

provide an accurate representation of an individual's mobility.

The accurate representation of joint constraints by Artificial Neural Networks (ANN)

has advantages over methods that use coarse approximations and computationally

expensive iterative techniques. In combination with a quaternion based angular

representation this presents an opportunity for systems with uniform constraint and

angular representations.

In this thesis a number of simple cases based on contrived data are examined these

provide the foundation for further research towards an eventual goal of patient or

character specific joint constraints systems.

A joint constraint system must be capable of a decision regarding the validity of the

current orientation and where required the appropriate correction should be assigned.

Where a constraint system only describes the constraint as valid (within its constraint

8

limits) or invalid (outside its constraint limits) the term binary constraint is used. Where

the constraint system responds with a correction for invalid configurations and a zero

correction for valid corrections the term corrective constraint is used.

This work focuses on corrective constraints modelled as vector fields and investigates

the application of evolved ANN techniques to model a joint constraint system, for

corrective constraints. The vector fields considered are discontinuous in nature, which

increases the difficulty of their approximation. Using evolutionary techniques based on

genetic algorithms, the topology of the network is configured dynamically to

approximate the piece-wise linear properties inherent in discontinuous functions [16].

The application of Support Vector Machines to the problem of binary constraints is also

investigated. In both cases less complex constraints are considered as a precursor to

those of the complexity required to model anatomical rotational constraints.

In Chapter 2 current approaches to joint constraint, rotational representation, neural

networks and their evolution by genetic algorithms are reviewed. Chapter 3 introduces

initial experiments exploring the capabilities of topologically evolved neural networks

applied to vector fields representing corrective constraints of increasing dimensionality.

This is followed in Chapter 4 by the application of these techniques to vector fields

representing quaternion based constrains, with both regular and irregular boundaries.

This work is concluded in Chapter 5 where training and evolution constraints imposed

to minimise temporal cost in earlier experiments are removed to ascertain the

capabilities of the neural networks. The construction and training of binary constrains

of varying dimensionality is considered in Chapter 6. Chapters 7 and 8 contain a

discussion and conclusions relevant to the thesis as a whole, finally Chapter 9 details

future work.

2. Literature Review

In order to apply neural networks to the problem of joint constraint existing approaches

to anatomical joint constraint and their limitations are reviewed. Current approaches

can be classified as either 'anatomically based' or 'phenomenological', of which the latter

are more relevant to this work [17]. The research presented here focuses on the

development of phenomeno logical joints, which mimic the behavior of the subject joint

but not its physical structure. In describing the rotational behavior of these joints a

selection of rotational parameterizations utilized in previous joint modeling solutions

are considered.

Joint constraints are separated into 'binary constraints' and 'corrective constraints' the

distinction being the response of the constraint system. In the binary case valid and

invalid rotations invoke true and false responses respectively while in the corrective

case a valid input rotation invokes a zero corrective response while an invalid rotation

results in the required correction to the closest valid rotation being given. Machine

learning techniques are studied with focus on their properties regarding classification

(for binary constraints) and vector field approximation (for corrective constraints).

2.1 Joint Modelling

The problem of constructing anatomical joints has been approached in several ways.

Engin and Turner [17] classifies these approaches as 'anatomically based' and

'phenomenological'. Anatomically based joints represent the joint through the

interaction of geometrical models that represent the physical components of the joint

while phenomenological joints use mathematical models to describe the behavior of the

joint without reference to its constituent parts.

2.1.1 Anatomically Based Joint Modelling

10

Anatomically based approaches emulate the physiological properties of joint

constituents in order to simulate their behaviour, as these physiological properties are

responsible for both movement and constraint the desired constraint is implemented.

Anatomical joints are typically made up of several constituents; bones, ligaments,

tendons and muscles, each of which contributes to the constraint [17].

Gait simulations model the patterns of movement observed during a walking cycle. In

many gait simulations the extremes of movement are ignored, as such limits are never

reached during the gait cycle. Groups of muscles acting together prevent the limb

reaching the limits of the joint [18, 19]. However for motions other than gait (e.g.

jumping, stretching or a fall) joint limits may be encountered and so to create more

versatile models more complex joint constraints are required.

An anatomical joint is always a connection between one or more bones, though this is

often simplified to a mechanical linkage, some approaches attempt to model the

interaction of the bones themselves. Bone dynamics are typically based on a physical

simulation of the contact forces of the bones in question [18, 20]. These are often used

in models in conjunction with other constituents of passive constraint i.e. ligaments,

tendons and muscles [17, 21].

The simulation of ligaments has generated a great deal of research as ligaments provide

much of the constraint in anatomical joints. Ligaments are mechanically heterogeneous

complex structures in that they transfer loads non-uniformly and simultaneously in three

dimensions [22]. Ligaments are responsible for the connection of articular extremities;

pliant and flexible they provide maximum freedom of movement while being strong and

inextensible so as not to yield under extreme force. Some ligaments are composed of

yellow fibres (as apposed to the more common white, silvery variety) and have more

elastic properties, it has been observed that they form a substitute for muscular power

[23].

Ligaments have been simulated in several ways, the most prevalent being spring model

variants. Ligaments behave much like springs at their optimal loadings though above

this they are unpredictable [24]. Primitive spring models with single attachment points

have been used to simulate ligaments [17, 25, 26], however ligaments have distributed

11

attachment points. To improve the accuracy of these models more complex approaches

have been developed.

Manal et al [9] used a sliding attachment point that "floats" along the edge of the bone

to which it is attached to simulate the active force of a group of ligaments using a single

spring. Other approaches provide a more accurate representation of the large

attachment area of ligaments by using elastic bundles - a collection of spring models

used to simulate ligament behaviour [22, 27]. Mommersteeg et al acknowledge that the

elements which make up the bundle cannot interact and suggests three dimensional

polygons as a way forward [22]. Ligament constraint systems have also been described

using mathematical models and utilizing rotational matrices as their description of the

constraint [21].

Kinetic approaches have also been used to describe the forces exerted by a tendon [28].

Models have also been constructed in order to ascertain the effect of smaller tendons

whose contribution to the constraint is difficult to measure [22].

2.1.2 Phenomenological Joint Modelling

Phenomenological joint models model the behaviour of the joint but not its physical

structure. Primitive joint constraints have been parameterised using Euler angles [29-

32]. Euler angles are one of the most established and popular parameterisations of

orientation. They model the rotation about each of the principle axes (x, y and z). Euler

angles suffer from the problem of "Gimbal lock". Here a singularity occurs when 90°

rotation is present around the second axis of rotation. This results in axis alignment and

the loss of a degree of freedom [8, 33].

Inter-dimensional dependencies cannot be easily represented using Euler angles [34],

and singularities or "Gimbal Lock" are encountered. Feikes et al [11] and Wilson et al

[21] used special orthogonal matrices, a rotational parameterisation not susceptible to

"Gimbal Lock", to overcome these limitations. Inter-dimensional dependencies

between Euler angles can be expressed as equations [35] though this increases

computational cost.

12

N-dimensional boundary representations preserve the relationships between degrees of

rotational freedom and are often used to supplement Euler angles. Conceptually, a

number of points along the constraint boundary are obtained through measurement, and

then approximated to an ^-dimensional polygon. Pioneered by Korein [36] whose three

dimensional spherical polygons constrained the movement of robotic arms. This

technique has been employed to constrain the 'swing' component in a swing-twist

parameterisation specifically for ball and socket joints [36-38]. Isaccs and Cohen [39]

used an arc based approach similar to that used by Korein. In a related approach Gyi et

al [40] projected a spherical polygon composed of arcs on to plane.

Cone based polygons using one [41] or more [10] cones have been suggested for the

complex shoulder joint. In the more complex case using multiple cones, the cones

themselves are planar polygons (composed of lines) much like the arcs used by Korein

and others [36, 40, 42].

A number of robotics and biomechanics based joint models have been included in a

single model by Shao and Ng-Thow-Hing [1]. Having reviewed the available models

they concluded that no single method could adequately simulate all the joints of a

human model and so a number of specialised constraint models were required to

simulate the individual characteristics of anatomical joints. In their approach conical

constraints and axial rotation constraints with changing centres of rotation are

implemented along with dependencies between rotational constraints [1].

The use of quaternions preserves the relationship between the degrees of freedom and

avoids the singularities encountered in other representations. Binary quaternion based

constraints in were implemented by Lee [6]. Lee decomposes a single quaternion into

two quaternions each representing rotation in a single plane (effectively swing and twist

for conic and axial constraints). In each case the centre of the constraint is known, a

quaternion describing the swing of the joint can be created based on the angle between

the centre and its image rotated by the subject quaternion and the axis calculated from

the cross product of the constraint centre and its rotated image. The second quaternion

representing the rotation around the axis can then be calculated by calculating the twist

alone, (removing the swing component) the axis and angle of this quaternion can then

be calculated. Conic, axial and re volute constraints are defined and can be used to

model basic constraints, more complex constraints can be defined with a union of these

13

basic types. Interrogation of these shapes (to ascertain the validity of a joint

configuration,) is presented, but no method of calculating a correction to the nearest

valid orientation is defined.

Liu and Prakash [3] build on Lee's work. Using a sampled boundary they create a

function to constrain the decomposed quaternion that can be used for both constraint

validation and clamping to the boundary.

An approach by Johnson utilises logarithmic and exponential mappings between unit

quaternions in S 3 and a tangent space in 9V\ For this to be successfully achieved all

quaternion must be moved to one side of the unit quaternion hyper-sphere as antipodal

unit quaternions represent the same rotation. [2]. In Johnson's work statistical

techniques are used to create both joint constraints and pose constraints. A set of valid

rotations expressing joint and pose constraints on the unit quaternion hyper sphere are

generated and their mean used as the centre point of the tangent space. A Gaussian

probability density function is used to describe these points and boundaries can be

implemented based on a maximum deviation from the mean of the sample data

provided. Corrections are implemented by recursively moving an invalid point closer to

the mean until the constraint is met.

In the quaternion iso-surface approach of Herda et a! [4, 5] a subject's arm movements

were recorded and represented in quaternion space. This quaternion-based

representation was simplified by ensuring all scalar components were positive and

omitting them, leaving the three-dimensional vector of imaginary components. A

boundary (iso-surface) between valid and invalid rotations of the arm was then defined

on the irregular boundary surrounding the valid region in three-dimensional space.

Iterative approaches were employed to identify the closest valid joint configuration, its

scalar component can be recovered from the other components, (as the quaternion is

unit length) and the correction to this orientation calculated.

2.1.3 Rotational Representation

An object's orientation in three-dimensional space relative to some reference can be

parameterised in a number of ways. Popular parameterisations include Euler angles,

14

axis angle, quaternion, the swing-twist representation, exponential map and orthogonal

matrices [4, 8, 11,37].

The parameterisation of rotation is difficult as rotations are non-Euclidean and periodic

in nature, that is travelling infinitely far in any direction will return you to the starting

point an infinite number of times. Any attempt to parameterise a non-Euclidean set

(such as the set of rotations for a joint with three degrees of freedom) by an open subset

of Euclidean space will result in 'Gimbal lock', the loss of degrees of freedom due to

singularities [38].

The choice of rotational representation is often a trade off between the advantages and

limitations of the available approaches. In some cases rotations are converted between

representations for specific applications, such as the conversion of axis-angle

representations to quaternion for interpolation of rotations. These conversions consume

processing time and may introduce numerical errors into the system, where possible a

uniform representation is preferred [2].

2.1.3.1 Euler Angles

Euler angles are one of the most established and popular parameterisations of

orientation. A general rotation is described around three mutually orthogonal

coordinate axis in fixed space. These three dimensional axis are reasonably familiar to

most, and rotation around any one is described as a roll. (The axes are x, y and z and the

corresponding rolls ;r-roll, y-roll and z-roll.) Euler angles ignore the interaction between

the rolls around separate axis it is this failing which causes the 'Gimbal lock' problem

[43].

Euler angles have been used by a number of authors for the parameterisation and

enforcement of constraints [29, 31, 32, 37]. However constraints on a single axis may

change in relation to the rotation of another axis and these relationships cannot be

preserved by Euler angles alone [37].

It is difficult to interpolate Euler angels due to the relationships that exist between the

degrees of freedom. In Cartesian coordinates it is trivial to interpolate (using linear

15

interpolation) between positions, however applying the same technique to Euler angles

the interpolation between one orientation and another is not unique [43].

Kuffher [44] details other problems regarding the creation of distance metrics between

rotations when using Euler angles. This is an important consideration in the creation of

joint constraints, especially trained via neural networks, as mechanisms are required to

assess the accuracy of the neural network response.

The direct constraint of Euler angles is not trivial due to a number of factors. While

constraints can be expressed on each of the components individually (one dimensional

constrains) it is difficult to describe valid and invalid regions. Several approaches have

utilized Euler angle based constraints such approaches are severely limited as both

constraint and motion are divided into separate planes and considered independently.

These approaches are limited to robotics applications [32] and crude planar

simplifications of the human skeletal system [29, 31]. Euler angles can be used as a

rotational parameterisation where other methods are employed to impose constraint, in

the work of Korein [36] for example.

2.1.3.2 Rotation Matrices

The set of all possible rotations (proper and improper,) can be considered using a 3x3

matrix representation. A subset of this group of each with a unit determinant and

mutually orthogonal columns of unit length describes the proper or binary rotations

only. This group of matrices is known as the special orthogonal group or SO(3) [38,

45]. Though a total of nine numbers are used to represent the matrix there are also six

constraints, three to maintain the unit length of the columns and three maintaining the

pair wise constraints which keep the columns orthogonal [44]. Rotation matrices are a

non-Euclidean parameterisation and do not contain singularities [46].

Though rotation matrices seem convenient they have several properties that make them

difficult to apply to anatomical joint simulation. Floating point precision and space

inefficiency are problems mentioned in the literature [44]. Floating-point errors also

occur when two rotations are combined via multiplication often the resulting matrix is

not orthogonal and must be re-orthonormalized this increases computational cost. More

16

relevant to this work is the difficulty in defining a simple metric for the differences

between two matrices, thus error must be indirectly calculated [44]. Interpolation of

matrices is also non-trivial the constraints must be maintained if the matrix is to remain

valid [46].

Feikes et a! [11] and Wilson et al [21] used special orthogonal matrices to describe the

rotation of the knee joint.

2.1.3.3 Exponential Map or Versor

In the exponential map the axis and angle are combined together into a single vector the

direction of the vector represents the axis and the magnitude the rotation about that axis.

[8, 38]. In addition to the inevitable problems with singularities the exponential map has

no convenient method for combining rotations (they must be converted to another

format e.g. quaternions) [38]. Exponential maps are used as rotational representations

by a number of authors [38, 47].

Axis angle or angular displacement orientation is a very similar rotational

parameterisation defined as a displacement around a single axis, much like a one-

dimensional Euler representation. However, in this case the axis does not correspond to

a three-dimensional plane but is itself relative to planes in three-dimensional space and

rotation is described around this axis. Unlike the exponential map a unit length vector

component represents the axis about which the rotation described by a fourth

component takes place. Baerlocher and Boulic [37] indicate that the axis angle approach

is remains susceptible to singularities but to a lesser extent than Euler angles.

Grassia [38] defined constraints for axis angle parameterisations suitable for describing

ball and socket joints. The approach decomposed the motion into swing and twist

components. The constraint here concerned only the swing component and used line

segments created from an ellipsoid template. This was later described as "swing twist"

parameterisation and possible swing and twist constraints were explored [37]. A number

of approaches are suitable for the individual constraint of both swing and twist once

decomposition has taken place, though equations are required to express any

relationship between these constraints.

17

2.1.3.4 Quaternions (or Euler Parameters)

Quaternions form a group whose underlying set is the four dimensional vector space

9f 4 , a subset of which the set of unit quaternions (S 3) form a hyper-sphere embedded

in 9t4 [38]. Using unit quaternions as a parameterisation of rotation gives a non-

Euclidean parameterisation that is free from singularities. However constraints must be

imposed to ensure that the quaternion remains on the surface of the quaternion hyper-

sphere (S3) [38].

Quaternions were the creation of Sir William Rowan Hamilton who became interested

in extending algebra to higher dimensions. Complex numbers have the form:

a + bi (1)

In equation 1 the '/' is a symbol denoting the square root of minus one. The scalar b

allows any negative square root to be represented as a multiple of minus one, as

demonstrated in equation 2.

This part of the complex number (bi in equation 1 ,) is called the imaginary part, the

other (a in equation 1) is the real part. Imaginary numbers are so named as there is no

square root of a negative number as any number squared is positive. This is difficult to

picture, as were negative numbers before the creation of the number line. In 1833

Hamilton noted that the sign only connected the two components and they could in fact

be written with notation similar to that used for Cartesian coordinates. Examples of this

are shown in equations 3 and 4.

i = (a,b) (3)

(4)

This combined with the earlier ideas of Gauss (1831) and Wallis (1685) led to the

creation of the complex plane, also known as Argand Diagram after J. R. Argand who

published a graphical representation of complex numbers in 1806 [48]. An example of

such a diagram is shown in Fig. 1 this also shows the alterative angle length <0,r>

representation, if the length of r is fixed then the variation of theta describes a circle this

sparked Hamilton's interest in complex numbers for rotational parameterisation.

-5

Fig. 1 - An Argand Diagram the x-axis is the familiar number line with negative and positive numbers

while the y-axis depicts the imaginary component. The alterative representation is shown in red.

Hamilton tried unsuccessfully for several years to use two imaginary and one real

component to describe rotation. Hamilton's epiphany came while walking past Broome

Bridge in Dublin in 1843 en route to a meeting of the Royal Irish Academy. He

realized that three imaginary components were required with the following properties

(equations 5-7).

 2 •"> 7 2 1/ = j -k =-l (5)

(6)

ji = (7)

19

The components also display the cyclic permutation / -> j -> k -> i , (if a constant is

added to the first component it generates the next and so forth finally it generates itself.)

The quaternion itself takes the form:

q = a + bi + cj + dk (8)

This is often condensed into the notation (s, v) where s is a scalar and v a vector. The

following quaternion operations were derived: multiplication (equation 9), conjugate

(equation 10) and magnitude (equation 11).

Multiplication:

2 =Cv2 -v, •v2 ,s l v, +5 2 v, + v, xv2) (9)

Conjugate:

q = (s,v) becomes ~q =(s,-v) (10)

Magnitude:

qq -s" + v = q (11)

In mathematics a group is a set of numbers with a rule representing their multiplication,

such that the result is a member of group. A subset of the quaternion group is closely

related to the group of rotation matrices. These are the unit length quaternion, their

magnitude is always one and this constraint has to be ensured for the quaternion to map

to a valid rotation [43].

Distance metrics in quaternion space can be defined in a number of ways arcs, angles

and linear distances can be used [44]. The angle between quaternions in quaternion

space and four-dimensional Pythagorean distance can be used as distance metrics.

Indirect measurement based on the resulting three-dimensional difference between

20

rotated vectors can be used in some cases use of such techniques is limited due to the

nature of the quaternion hyper-sphere.

A number of authors have implemented quaternion constraints, a set of simple

quaternion based constraints were implemented by Lee [6], these simple constraints

could be combined into more complex ones. Interrogation of these shapes (to ascertain

the validity of a configuration,) is presented but no method of calculating a correction to

the nearest valid constraint [6]. Lee's method relies on decomposing the quaternion into

two quaternions representing planar rotation, based on this approach constraint systems

capable of correction have been developed. Liu and Prakash [3] used a sampling

approach to create boundaries in the tangent space and clamp orientations to these

boundaries. Johnson [2] used a statistical approach to create both joint constraints and

pose constraints. A corrective component was implemented by recursively moving an

invalid point toward the mean of the sampled valid configurations. Johnson's approach

again relies on projecting unit quaternions in to a tangent space. Herda et al [4, 5] used

a three dimensional iso-surface reducing the dimensionality of the quaternion and

implemented an iterative joint correction process.

2.1.3.5 Swing and Twist

The swing twist representation has been used extensively in the description of ball and

socket joints, common in anatomy and robotics. This is not a parameterisation of

rotation like the above but has been used in the representation of joints. The rotation of

the limb is considered its swing, while rotation around the limb is considered the twist.

Specifying the swing component using axis angle rather than Euler angles reduces the

effect of singularities on this parameterisation [37]. Further problems are caused by

induced twist where successive swing rotations result in a change in the twist of the

joint that would not have been present in a direct rotation. Additional computational

expense is incurred to remove the effects of this phenomenon [37].

The twist component can be simply constrained using Euler constraints which may be a

function of the swing component [37]. The swing component can be constrained using

techniques such as spherical polygons [36, 37].

21

2.2 Neural Networks

Artificial Neural Networks (ANNs) are inspired by the structure of the human brain.

Like biological neural networks they are composed of neurons linked together to form

complex networks. However, they are significantly different in terms of their

complexity and their method of communication. Neural networks are typically

initialised to a random position in the search space from this position they attempt to

reduce the error present in the network moving towards a minima.

There are many types of network architecture, from auto-associative memories such as

the Hopfield network to unsupervised networks such as Kohonen's SOM (Self-

Organising Map) [49].

Deciding whether a joint configuration is valid or invalid (the validity of the constraint,)

can be considered as a classification problem where joint configurations are classified

into two groups. Coit et al [50] applied a classifying neural network to decide based on

a number of inputs if soldering should take place in a industrial system. In later sections

Support Vector Machines (SVMs) are considered this complex machine learning

technique has been shown to be superior to both neural networks and statistical

classifiers on a number of classification problems [51, 52].

In the case of corrective constraints the neural network attempts to approximate a

function relating the current configuration with the amount of correction required. For

corrective constraints in multiple dimensions it is clear that the neural network must

approximate a discontinuous vector field. A number of approaches have successfully

used neural networks to approximate vector fields [16, 53-58]. In later sections feed

forward neural networks, their topological evolution by genetic algorithms and finally

their application to vector field approximation are considered.

22

2.2.1 Feed-Forward Neural Networks

Feed-forward network architectures such as that of the Multi-layer Perception (MLP)

have been popular since the mid eighties when advances in their construction made

them applicable to a new range of problems [59]. These are trained to give certain

outputs in response to given inputs by repeatedly adjusting the strengths of the

interconnections between neurons within the network (a number of training methods

have been developed [60-62]).

The Multi-layer Perceptron is one of the simplest neural network architectures

consisting of a number of nodes with weighted interconnections. Each node receives

inputs along its connections, which are scaled from their source according to a

weighting. On receiving these inputs it calculates their sum and transforms this input via

an activation function to an output value [59]. The term Multi-layer Perceptron is often

used to describe a feed forward neural network trained via back-propagation though

there is little similarity between the Multi-layer Perceptron and its limited predecessor

the Perceptron [59].

Many aspects of the networks structure and the structure of its neurons can influence the

networks performance. The effect of the activation functions of neurons within the

network is discussed in detail later in this chapter. The topology of the network (the way

neurons are connected) determines the way computation proceeds and impacts on

performance [49]. Biological neural networks are mostly feed forward, however some

interconnections between nodes of the same layer exist as well as feed back connections

and inhibitory nodes inspiring a plethora of network topologies [49].

Fully connected neural networks are the most general kind of architecture, where each

node in the network is connected to every other node including itself. Despite their

generality the use of such networks is rare due to the large number of parameters

(weights) requiring training and the biological implausibility of its structure [49].

The are a number of feed-forward neural network topologies, each consisting of neurons

in layers labeled either numerically or alphabetically with the input layers labeled 0 or i

respectively.

23

Layered network - each node in the lower layers are connected to each node in all

higher layers and to neighboring nodes in their own layer [49].

Acyclic network - a subclass of the layered network here no connections exist between

nodes in the same layer [49].

Feedforward network - these are amongst the most common neural networks in use so

much so that the term neural network is often used to describe this topology alone [49].

These networks have connections from each node in a lower layer to each node in the

next layer.

This work uses generalized multi-layer Perceptrons (GMLPs) as used by Mayer and

Schwaiger [63, 64] also described as fully connected feed forward neural networks by

Yao and Liu [65]. These are much like layered networks with connections between each

node in a lower layer with all nodes in all higher layers. Unlike the layered network

there are no connections between nodes of the same layer. A single bias node is used

which is connected as an input node, i.e. with connections to all hidden and output

nodes.

Artificial neural networks are made up of artificial neurons, these typically have one or

more input and output connections depending on the layer in which they are found. A

weighted sum of the nodes inputs is modified via a transfer or activation function

(sigmoid in the above example) and this is passed as the output to the next layer. The

following example is based on that presented by Mehrotra, Mohan and Ranka [59].

The sum of the weighted neuron inputs (net) is defined as (equation 12).

net, =

Here xpj is the input and wpj the input weight for layer / pattern p. In this case n is used

to describe the number of inputs for summation. Where the activation function is

sigmoidal, the output of the neuron can be defined as (equation 13);

24

. ———— M3P.I v ' , -net \ l ~>

In the above equation (13) op . t is the output, e is the exponential function. In the

following example a simple neural network with three layers i,j and k is presented. To

'fire' the neural network, that is to get an output for a given input the input nodes are set

to the values of the input pattern. In this case there is no transformation and the outputs

are weighted to form the input of the next layer, this process continues until the outputs

of the final layer have been calculated, the process for a single node is shown in Fig. 2.

xl

XI+ ... Wn Xn)
^ v^ «

^ -^ ^*«^ ^ -^
x2

Fig. 2 - Weighted input summation [59]

The interaction of inputs, weights and functions to give the output can be described

using equations. Nodes in the input layer (layer /) are a special case here the inputs are

passed on without applying an activation function. This is shown in equation 14, here

the subscript p referrers to the pattern number, /' and j represent the layer and x is the

input to the given layer.

XP.J =XP.' (14)

The equation for the hidden layer (layer j, as shown in equation (15),) shows some

additional components. S is the sigmoid activation function applied to the sum of the

25

weighted inputs, c is a count of the number of weighted inputs to the layer. The weight

from the input layer (/) and the hidden layer (/) is represented by w,/.

(15)

For nodes in the output layer (layer k) the equation shown in equation 1 6 includes the

output of this layer. This will be one of the network outputs and is denoted by an o, the

weights between the hidden layer (/') and the output layer (k) are represented by wkj.

op, k = £(,,, *V*i>.*.r) (16)

Feed forward neural networks are trained using algorithms such as the back propagation

algorithm. The following brief description of the back propagation algorithm, based on

the example neural network above by Mehrotra, Mohan and Ranka [59].

Once the neural network has fired error for each of the output nodes can be calculated.

In this example MSB an error measurement based on the norm of the difference vector

between the desired neural network output (dp) and the actual output (op) is used. There

is however more than one vector, there is one for each of the K outputs and for each of

the P patterns. These are combined using a sum of the squared error values, this

provides an error function which can be differentiated (unlike the absolute error) this is

essential for weight update via gradient decent [59]. The equations for MSB and SSE

are shown as equations 1 7 and 1 8 respectively.

P K

(\op,,-dp^ (18)
P =\ j=\

The output of the neural network is a function of all the weights (w) present therefore

the network error (E) is also a function of these weights. Differentiation of E with

26

respect to w equation 19 gives an error gradient. This gradient relates error and weight

change, the weights are changed in the direction coinciding with decreasing error.

-9£/3w (19)

Rather than calculate the update for all the weights (Aw) required for w this calculation

is performed for each connection from the output to the hidden layer and from the

hidden layer to the input layer. The corrections obtained are used to update the

respective weights. This is known as the generalised delta rule [59].

The formulation of the rules for updating the weights relies on calculating a number of

partial derivatives and evaluating them using the chain rule. To differentiate between E
and w it is noted that E is dependent on the network output (o), which is itself dependent

on w these partial differentiation links are evaluated using the chain rule. Mehrotra,

Mohan and Ranka [59] cover the formulation of these equations. The equations derived

for the update of weights connecting in the hidden and output layers are as follows

(equations 20-23).

(20)

y =r)*jUJ *xi (21)

where

Sk =(dk -ok)S'(netk) (22)

and

(23)

27

In the equations above (equations 20-23), the subscript p has been omitted to maintain

clarity. Here n is a user-controlled variable that scales weight updates known as the

learning rate.

The equations for calculating the weight updates between the output and hidden layer

(Awt:/) and hidden layer and input layer (Aw /v) are very similar as shown in equations

20 and 21. Both are the product of the input to the layer (.Y or \j) the learning rate (r))

and a generalized error term (8k or // ;).

The generalized error term for the nodes of the output layer Sk is proportional to the

amount of error multiplied by the derivative of the output node with respect to the input

node as shown in equation 22. The generalized error term for the hidden nodes /y ; is

proportional to the amount of weighted generalized error for the output nodes multiplied

by the derivative of the output node with respect to the input node as show in equation

23.

2.3 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) were introduced by Vladimir Vapnik and rely on the

principle of structural risk minimisation (SRM) [66]. Their key advantage is in their

training technique, which aims to minimise both error and network complexity and

hence maintain its ability to generalise [67]. The SVM attempts to identify a

mathematical function that produces the minimum error based on a cost function.

Unlike traditional neural network training which attempts to solve a non-convex

unconstrained minimisation problem [67, 68] the SVM minimises both the current error

and learning machine complexity by solution of a quadratic programming problem with

linear constraints.

SRM states that the current error (after exposure to some training patterns) and the

complexity of the network contribute to the generalisation error (error after infinite

training patterns) [69]. Neural networks focus on reducing the current error ignoring the

network complexity, an increase in which leads to over-fitting and therefore and

28

increase in generalisation error. SVM training reduces both the current error and the

complexity of the network [69].

An optimal linear hyper-plane (O in Fig. 3) is created to divide linearly separable data

this is placed between two hyper-planes (HI and H2 in Fig. 3), which delineate the

boundaries of the individual datasets [70]. The patterns on these hyper-planes (without

which the solution would change) are identified as support vectors [68]. The training

process aims to maximise the margin between HI and H2, SVMs are usually trained by

minimising a quadratic problem under constraints [66, 70]. Increasing the size of the

margin theoretically reduces the complexity of the machine, as well as reducing the

current error (number of misclassified patterns) a reduction of both terms leads to a

reduction of the generalisation error [69].

Fig. 3 - The figure shows the hyper-plane O separating the two sets of data shown as a thick black line. It

also shows the margins HI and H2 depicted as yellow lines upon which the support vectors (shown with a

pink hi-light,) lie.

This technique is only suitable for linearly separable cases it is by no means general.

Both non-separable and non-linear cases are dealt with using simple additions to this

technique. In the non-separable case slack variables are introduced, these relax the

constraints governing the distance of the hyper-planes from the support vectors with the

penalty of further cost [68].

29

SVMs capitalise on the only reference to the training data in the in the optimisation of

the hyper-plane being through a dot product in creating boundaries in the linearly

inseparable case. A mapping is used which maps the data to some other possibly

infinite Euclidean space this mapping is known as a kernel function.

In summary, SVMs attempt to separate sets of data with the maximum distance from

points on either side. SVMs utilize kernel functions, these move the points into a higher

dimensional space this has the effect of spreading the points reducing the complexity of

separation.

A version of SVM for regression was proposed by Vapnik, Golowich and Smola called

Support Vector Regression, (or SVR) [71] and considered the application of support

vector methods to function approximation. The classification method shown above only

depends on a subset of the data as the cost function ignores points that lie beyond the

margin. The regression method also depends on a subset of the data but ignores points

that are close to the boundary (within the threshold) [71]. To date much work has been

done improving on the simple SVM shown above for both classification [72-74] and

regression [75].

SVMs suffer from several limitations. One of the key limitations is the choice of kernel

function, trial and error (or prior knowledge) is often required to identify the best kernel

function for a dataset [68]. The computational cost of training and testing is high,

though successful attempts have been made to reduce both the testing and training time

[68, 72, 76]. The quadratic programming problem (quadratic optimization) is usually

quite complex and therefore suspect to stability problems [76]. Attempts have been

made to reformulate the quadratic optimization to improve stability and reduce

computational complexity [76]. There are also occasions where SVMs select sub-

optimal support vectors for categories within the training set. A multi-pass system that

separates the identification of the best candidates for support vectors prior to SVM

training has been developed by Masuyama Nakagawa [77].

30

2.4 Genetic Algorithms

Genetic Algorithms (GA) are search algorithms that utilize the mechanics of natural

selection first developed by John Holland and his students at the University of

Michigan. Each generation contains a number of blueprints for an individual called the

genotype. The performance of these individuals is measured against some metric. New

genotypes are created by retaining information from the strongest (reproduction) and

swapping genetic information between pairs of individuals (crossover). The occasional

new genetic feature is introduced and this is called mutation [78].

This method has advantages over traditional optimisation and search methods. Calculus

based methods are local in scope and search for the local optimum only. They are also

dependent on continuity and derivative existence in the search domain, making them

suitable only for a limited problem domain. Enumerative and random searches are

inefficient, though there is a random component to genetic algorithms [78].

Genetic Algorithms encode the parameter set rather than using the parameters

themselves, hence a genotype (blueprint for the individual) is created form the

phenotype (their characteristics). Each individual may evaluate a different part of the

search space rather than a single point as is the case in other approaches, reducing the

risk of becoming trapped in local minima. Other approaches rely on using deterministic

rules, often derivatives, to evaluate the current solution, genetic algorithms use an

objective function. The use of an objective function allows the comparison of local

minima in a multi-modal search space. Genetic algorithms move towards a solution

using probabilistic transition rules, though the direction is not decided at random [78].

Goldberg [79] shows by means of similarity metrics the workings of genetic algorithms.

These metrics are called schemata (similarity templates), schemata are similar to masks

placed over the genome they highlight commonality between genomes. For example the

binary genome 0110110 and 0100001 are both associated with the 01***** schema,

where the * represents information which is not part of the schema. Schemas have an

order and defining length. The distance between first and last values exposed in the

31

mask is termed the length, while the order of the schema refers to the explicitly of the

schema that is the number of values exposed in the mask.

The fundamental theory of genetic algorithms states that "high-performance, short-

defining-length, low-order schemata receive at least exponentially increasing numbers

of trials in successive generations" this is known as the building blocks hypothesis [79].

This is due to several factors;

1. Reproduction allocates more copies to the best schemata.

2. Crossover does not frequently disturb short chains where as the cross over point

may fall in the middle of large ones and split them in two.

3. Mutation is infrequent and has little effect.

In essence the small high-performance (low error) schema become partial solutions to

the problem (or building blocks) which the genetic algorithm then discovers new

solutions by speculating on how these can be best recombined [79].

2.5 Evolved Artificial Neural Networks

The human brain, which inspired the creation of artificial neural networks, has a

complex and bespoke structure that has evolved over many thousands of years.

Evolved neural networks represent the application of genetic algorithmic techniques to

neural network creation to enhance the specificity of the neural network to a problem or

environment [80].

Early Evolutionary Artificial Neural Networks (or EANNs) approaches considered the

evolution of neural components of the artificial neural network such as its structure,

interconnecting weights, nodes and learning rules [80]. Inspiration from natural

(human) evolution has lead to approaches where training patterns, learning scheme and

other factors, such systems are described as Artificial Neural Systems (ANS) [80].

This following sections focus on the evolution of the structure and activation function of

the neural network. Activation function evolution is especially interesting as it can

improve the learning of local features (such as the discontinuities of the vector field)

32

within feed forward networks. This is followed by an introduction to local and global

learning, with particular attention to the creation of neural networks that display both.

Finally existing application of neural networks to vector field approximation are

reviewed.

2.5.1 Topology Evolution

Huber, Mayer and Schwaiger [81] state that despite the successful application of Multi­

layer Perceptron ANNs, no analytical rule has been discovered governing the optimal

topology of the network. They also observe that improvement in approximation often

results in a loss of generalization capabilities and that smaller ANNs with low

connectivity show better generalization capabilities than more complex networks.

A number of authors have attempted to solve to this problem by means of evolutionary

techniques to evolve a topology suited to the problem at hand. There are two

approaches identified by Yao and Liu [53], the evolution of "pure" architectures where

weights are evolved separately and the evolution of weights and architectures together.

In both cases information regarding the topology of the network is encoded as the

connections made by the nodes of the network [53].

Huber, Mayer and Schwaiger [81] use genetic algorithms which searched for a problem-

adapted neural network topology. A hybrid system is employed using genetic

algorithms to evolve the topology with the Resilient Back-propagation [60] learning

algorithm to train the network weights. This is an example of "pure" architecture

evolution with direct encoding. There are some issues with such approaches as

identified by Yao and Liu [53], who observe that when training the training method may

find different minima in a multi-modal error surface from the same initialised weights.

The problems encountered in "pure" architecture evolution can be alleviated by

evolving both the weights and the architectures simultaneously, using a one-to-one

mapping from genotype to phenotype (where the phenotype is the evolved

network[53]). Difficulties here arise in the encoding of networks, as in some cases

networks can have different genotypes but produce the same phenotype making

evolution inefficient [53].

33

2.5.2 Activation Function Evolution

Neural network performance is greatly affected by the choice of activation function

present in the neurons that comprise the network. In biological neural networks,

specialisation of neurons takes place [82] simulating this with mixed [53, 65, 83] and

adaptive activation functions [63, 64, 84] has provided improvements over classical

architectures with fixed sigmoidal neurons.

A number of researchers have successfully improved on the results of classical sigmoid

neurons using mixed activation functions. Successful combinations include; Gaussian

and Sigmoid activation functions, both fixed in separate layers [85] and evolved in a

single layer [65, 86]. Sigmoid and Sigmoid based jump approximation functions were

used by Selmic and Lewis [58], these non-smooth activation functions produced good

results in learning one dimensional discontinuous functions. However the nature of the

activation functions made learning difficult and prior knowledge was required regarding

the position of the discontinuities.

Yao and Liu [53] evolved neurons with sigmoid and Gaussian activation functions in

the hidden layer using evolutionary programming techniques. More recently Mayer,

Strapetz and Fuchs [83] produced a version of the NetGen system capable of selecting

between multiple candidate activation functions, these included logistic, hyperbolic

tangent and linear.

There is a wealth of research regarding adaptive activation functions. Several

researchers have used adaptive sigmoid neural networks, where the parameters of the

sigmoid function are modified during training giving the neurons limited specialisation

capabilities [84, 87].

More recently research has focused on spline based activation functions. A spline is a

function constructed from low order polynomial pieces connected at breakpoints (called

knots) with certain smoothness conditions [82]. It is these knots that are modified by

training or evolution to create specialised nodes and increase performance.

34

A number of different types of spline exist and several have been used as adaptable

activation functions for neural networks. Some novel though limited approaches have

been suggested using B-Spline neural networks [82, 88]. More recently catmull-rom

cubic spline neural networks using algorithmic adjustment of the spline during learning

(spline training) have been developed [84, 89, 90].

Cubic splines have been used by a number of authors, both trained [91, 92] and evolved

[64]. Multi-dimensional cubic splines have also been used. Here there are as many

dimensions to the spline surface as there are inputs, these are combined into a single

input passed to the next layer [93-95].

Mayer [63] utilised a template based approach to cubic spline activation function

evolution. This brings together pure activation function evolution and spline based

activation function evolution. A number of spline based template functions are evolved

as candidates for neuron activation functions in the network. This reduces the

complexity of the genetic algorithm, as there are potentially fewer free parameters

requiring optimisation.

2.6 Local and Global Learning Characteristics

Sample data or training data displays both local and global characteristics. Approaches

that make use of these characteristics are described as local learning and global learning

respectively. Global learning has a long and distinguished history, scientist have used

global learning techniques to uncover the underlying mathematics that govern complex

phenomena [96]. However, global learning methodologies often struggle to find the

appropriate model and parameters to represent the observed data.

This has led to increasing interest in local models. Here the focus is on useful local

information from the observed data [96]. It has been demonstrated that local learning is

superior to global learning in many classification domains [96]. However local learning

methods do not grasp the structure of the data which may be critical for generalization

performance [96].

35

The illustration shown in Fig. 4 is similar to that shown by Huang el al [96]. The figure

shows a decision line identified by a local learning technique. In Fig. 4(a) the spread of

the data is fairly even, and there are a number of points used to make the decision

regarding positioning of the decision line. However in Fig. 4(b) there are only two

points identified, as being important to the boundary and much of the global

information about the pattern distribution is lost. This is equally true in the case of

function approximation, it may be more important to accurately describe the global data

than to base the mapping on a few points considered important.

Decision Line Decision Line

00 <b)

Fig. 4 - (a) An illustration showing local learning, where the decision boundary depends on a few selected

points, (b) In this case local learning cannot grasp the trend present in the data. Darker markers indicate

the points used in local learning.

Among the machine learning techniques which exhibit local learning are SVMs. Key to

the power of this approach is the local nature of its learning, the updating of support

vectors in one region does not disturb the learning in other regions [85]. However poor

performance on global trends, often referred to as 'over fitting 1 , has been recorded by a

number of researchers and attempts have been made to minimise its effects [74, 77].

Feed forward neural networks such as the MLP and GMLP display global learning and

often struggle to represent local features [85]. Due to the global nature of their learning

the training of one part of the function may change the weights related to another part

[85].

36

A combination of these two learning styles is required, a neural network where both

global and local learning takes place leading to accuracy on local features while

retaining generalization with regards to the global structure of the data. A number of

approaches attempt to introduce components of global learning in neural networks

which demonstrated good local learning, for example, the addition of a second layer of

sigmoidal nodes to a Gaussian functioned neural network (RBF) was implemented by

Shibata and Ito [85].

More recently, Support Vector Machines have been combined with the Minimax

Probability Machine and Linear Discriminant Analysis to form the Maxi-Min Margin

Machine (MA4). Their model tries to maximize the margin defined as the minimal

Mahalanobis distance for all training samples while maintaining correct classification

[96]. The introduction of this global distribution measurement improves the networks

choice of decision boundary.

Alternatively aspects of local learning can be introduced into neural networks that

display good global learning. Spline activation function neural networks display both

global and local learning, here inter-nodal connections partition off areas of the dataset

and the activation function becomes specific to local data [84, 95, 97].

2.7 Neural Network Approximation of Vector Fields

A vector field is defined as a mapping that assigns each input to an output via some

vector function. Vector fields can be uniquely specified by giving its divergence and

curl within a region, this is known as Helmholtz's theorem [98]. In mathematics vector

fields typically involve a Euclidean position in two dimensions being mapped to a

vector with direction and magnitude. They are used extensively to describe forces at a

given point in two-dimensional space. They are however extensible to any number of

dimensions in that a vector field can form a map between two vectors of equal

dimensionality or of unequal dimensions, (a projection). For example the use of three

dimensional vector fields for the exploration of complex problems is explored by

Crawfish a/[99].

37

Dynamic behaviour (such as joint constraint) can be described as a change in state that

is determined by a function dependent on the current state. There is clear similarity

between the mappings required for vector fields and those involved in the description of

dynamic behaviours such as joint constraint [54].

A one-dimensional vector field would simply consist of a function (as shown in

equation 24.) A joint constrained in one dimension using an Euler angle can be

described as a function (or one-dimensional vector field). The function is a

discontinuous or piecewise linear function as it has points where there is no gradient,

the discontinuities.

24

There are a number of practical applications for which the approximation of these

functions by neural network has been attempted. Selmic and Lewis show that the

inclusion of non-smooth neural network activation functions (sigmoid based jump

functions) produce good results. In their work a feed forward network is trained via

back-propagation to model friction compensation in industrial machinery. The weights

connecting the nodes with non-smooth activation functions were fixed and their

thresholds adjusted to correspond to the discontinuity based on prior knowledge [16,

58]. Radial Basis Function neural networks have also been used to overcome problems

with friction [100].

A similar problem involving backlash compensations has been solved using a recurrent

neural network using reinforcement learning [88, 101, 102]. Anderson [103]

demonstrates the superiority of a modular neural network approach over reinforcement

learning. In the modular approach the piecewise linear function is broken down into its

linear components, (separated at the discontinuities.) Expert networks are trained for

each linear part and a gate function or network used to decide which of the experts

should be used.

Moving to two-dimensional vector fields, which could be used as a crude representation

of a constraint, like the projected spherical polygons [40] discussed earlier. A two-

38

dimensional vector field used for joint constraint applications still has a discontinuous

quality, in that a number of points exist (at the boundary,) where there is no gradient.

Continuous vector fields in two dimensions have been trained using neural networks in

the field of robot control. Here a vector fields representing path following for simple

and more complex paths were trained using one and two hidden layer neural networks

[54, 55]. A MLP neural network with input nodes, representing the robots position and

two outputs, representing the directional change it needed to undertake to return to the

path was used. The hidden layer of the neural network was composed of nodes with

hyperbolic tangent (or bi-polar sigmoid) activation functions, and the output layer of

nodes with linear activation functions, the neural network was trained using

backpropagation.

Kuroe et al [104] suggested an alternative approach where an Adjoint neural network

was used to learn continuous vector fields. This approach utilises the basis field

simplification technique of Mussa-Ivaldi and Griszter [105]. The neural network is

trained via a customised training algorithm that relies on aspects of vector field theory.

Any continuous vector field can be shown to be composed of irrotational and solenodial

vector fields [106]. In the approach of Kuroe et al these are in turn expressed in terms a

common multi-dimensional scaling function (another vector field) and two additional

scalars. The scaling function and scalars are learned as part of the learning algorithm

and can be recombined into the original vector field [104].

The techniques developed by Kuroe et al [104] were applied to flow field measurement

from image data, a technique called Particle Imaging Velocimetry (PIV). An Adjoint

neural network was used to approximate regions flow within artificially generated two

dimensional smoke images [107].

Kulchin and Panov trained neural networks to learn two dimensional scalar fields for

reconstructing data from fibre-optic measuring systems [57]. Again the hidden layer

was composed of nodes with hyperbolic tangent (or bi-polar sigmoid) activation

functions, and the output layer of nodes with linear activation functions. The neural

network was trained using an enhanced backpropagation algorithm with simulated

annealing to reduce the effects of local minima.

39

Evolutionary programming a technique very similar to genetic algorithms was used by

Kim et al [108] to identify an appropriate path between an initial destination and an

ideal direction in two dimensions. This technique utilised vector fields to describe

attractive forces for the destination position and direction and repulsive forces for

obstacles.

Mussa-Ivaldi and Griszter [105] found that the limb pre-motor control in the reptilian

spine was arranged in discrete modules describing an equilibrium point for a limb using

groups of antagonistic muscles. The stimulation of multiple groups leads to the

superimposing of these individual modules suggesting that all combinations of posture

for the limb are generated in this way. The authors make use of basis fields to describe

fields of motion and imitate these discrete modules. Basis fields are the vectorial

equivalent of local basis vectors, just as any vector in a vector field can be represented

as a linear combination of its basis vectors a vector field can be represented as the linear

combination of its basis fields. This technique can be used to simplify complex vector

field representations.

Neural networks have been utilised for physics based animation by Grzeszczuk,

Terzopoulos and Hinton [56]. In their approach complex forward dynamics equations

required for physics based animation were replaced with neural networks, predicting the

complex vector mapping (0) from the current state (s,) to a future state (st +st) based on

the current state, the applied force («,) and external forces (f,), (as shown in equation

25.)

A key advantage of this approach is that the trained forward dynamics neural network

mappings can be reversed by applying the chain rule of differentiation to obtain the

inputs to the network given a resultant state. This is further exploited to move a limb

towards a desired position utilising a gradient decent [56].

Grzeszczuk, Terzopoulos and Hinton [56] provide a detailed account of their network

configuration and raise a number of issues regarding the capabilities of neural networks

as vector field approximators. As the range of the inputs and outputs are large in

40

comparison to the range of the sigmoidal activation function normalisation of this range

was impractical. Mapping from the current state to the difference between current and

future states is more practical and by adding the approximated difference and current

state the future state can be calculated. The range of the inputs to the neural network

can deviate greatly adversely affecting neural network output, these were normalised

and adjusted to have unit variance and zero mean. It is reported that neural networks

attempting to train vector fields with high dimensionality (10+) required large numbers

of hidden nodes (50+) and long training times (several CPU hours). The researchers

suggest a natural sub-division to reduce the number of free parameters in each case.

The neural network used for the forward dynamics has a single logistic sigmoid hidden

layer and is trained via back propagation enhanced with a conjugate gradient algorithm.

The term Quaternion Vector Field is attributed in much of the literature to the

visualization approach developed by A. J. Hanson, which reduces the four-dimensional

quaternion to three dimensions for visualisation. Herda et al [4, 5] have implemented

joint constraints based on this approach. In this thesis vector fields in quaternion space

and indeed quaternion vector fields are considered as mappings of an input quaternion

and an output quaternion via some function.

Research has also been undertaken towards specialized neural network architectures for

solving Constraint Satisfaction Problems (CSP's) [109, 110]. These neural networks

attempt to provide a general network for the solution of any CSP and consist of a

number of node clusters, one for each input that have inhibitory links between them.

They have been shown to be faster than conventional methods (sequential heuristic

search) and have execution times of tens to hundreds of nano seconds compared to more

than 20 hours for the more conventional approach [109]. These networks deal with a

high number of binary inputs, outputs and constraints, successful preliminary work is

also shown for non-binary problems [109].

Few of the existing approaches have been applied to discontinuous vector fields. A

possible reason for this is an inherent weakness in many neural networks. The learning

of individual patterns has an effect on the patterns already learned due to the update of

weights shared between neurons [111]. This is known as the "stability-plasticity"

problem, the neural network needs to be sensitive to but not seriously disrupted by new

patterns [111]. Some interference is acceptable and has little effect on the training,

41

however in extreme cases "catastrophic interference" occurs, here the learning of a new

group of patterns damages the patterns previously learned by the neural network [111].

French [111] states that catastrophic interference is largely a consequence of the overlap

of internal distributed representations. Hidden neurons are responsible for this internal

representation and catastrophic interference arises when they attempt to differentiate

between overlapping input.

2.8 Principle Component Analysis

Principle Component Analysis or PCA is a statistical technique used in a number of

domains, like many other multivariate statistical analysis techniques it can be used to

analyse the relationships between the variables of large multivariate data sets. PCA

provides an analysis of the multi-variant structure of the data giving an indication of the

relationship between variables and the components contributions to these relationships

[112].

At a high level PCA gives two important products, firstly a series of vectors known as

the characteristic vectors or eigenvectors. These are orthogonal vectors that identify the

directions in which variance takes place within the dataset. PCA also gives a set of

values associated with each eigenvector known as characteristic roots, latent roots or

eigenvalues, these values give the variance attributed to the associated vector [112].

A number of univariate techniques are introduced as a precursor to multivariate

techniques and PCA. The mean (or x) a is defined as the summation of the elements of

the data set x where x/ is the ith element of the dataset divided by the number of items in

the dataset n as shown in equation 26 [113].

(26)

There are two other statistical measures of variation for univariate data sets that are of

interest the first is the Standard Deviation denoted by the symbol s. This is the average

42

distance from the mean of the dataset to a point this is calculated by taking the square

root of the summation of the squared differences between the mean and each point as

shown in equation 27 [113]. The average of the squared differences is calculated using

one less than the number of numbers n, as this provides a more accurate estimate for

samples of data representing larger sets [113].

The second univariate statistical measure of interest is the variance of the dataset, which

describes the spread of the dataset. It is in fact the sum of the squared distances

between the mean and the individual data points. Its formula (shown in equation 28) is

very similar to that of the standard deviation [114].

(28)

Mean, variance and standard deviation are univariate and are not suitable for use in the

analysis of multivariate data. A related measure the covariance can be used to describe

the variance of one dimension with respect to another. The formula for the covariance

of two datasets is given in equation 29 [115]. Note that here the product of the

difference between the ith data points and their respective means has replaced the

square of the difference between the ith data points and the respective means of two

different sets of data. Variance is a measure of that variation of a dataset with respect to

itself and covariance the variance of two datasets with respect to each other.

, v) = 29
(H-l)

43

It is important to note at this point that cov(x,y) gives the same result as cov(y,x) as only

the order of the multiplication changes and multiplication is communicative.

Covariance only gives measure of the variance between two dimensions this can be

extended to more than two dimensions using the covariance matrix. For a dataset of n

dimensions the covariance matrix (an n x „ matrix) is shown in equation 30. The

format of the equation is based on that given by Jackson [112] though this has been

modified to aid clarity.

cov(x,y,....n) =

cov(x,x) cov(*,v) cov(x,n)
cov(v,*) cov(y,y) cov(y,n)

cov(n,x) cov(n,y) ••• cov(n,n)

(30)

The covariance matrix is a symmetric, non-singular square matrix it has both

eigenvectors and eigenvalues. Eigenvectors when multiplied with a matrix are scaled

rather than being rotating or translated. The resulting eigenvectors are scaled versions of

the original the scale of each eigenvector is termed its eigenvalue. The eigenvectors and

eigenvalues of a matrix can be identified by a number of methods [112, 116, 1 17].

The following is a brief description of eigenvectors and eigenvalues and the steps

required in their identification. A matrix A is multiplied by a vector x their product is

the vector B. However on closer examination B is a scaled version of x. The matrix x

contains the eigenvectors while the eigenvalue (k) is the scaling factor x has undertaken,

this can be expressed as shown in equation 31 [118].

(31)

Eigenvalues and Eigenvectors can only be found for square matrices, there exist at least

one eigenvalues and at most n eigenvalues for an n x n matrix where x is non-zero. Any

solution for X where x is non-zero is called an eigenvalue or characteristic value of the

matrix, the corresponding solutions of x for given values of I are called the

characteristic vectors [118].

44

The determination of Eigenvectors and Eigenvalues is illustrated by a simple example

based on that given by Kreyszig [118]. The first step is to introduce the example matrix

A and express equation 31 in these terms as shown in equations 32 and 33.

A = -5 2
2 -2 (32)

Ax = \
2 -2 Lr,

(33)

Equation 33 can be expressed as a set of simultaneous equations as shown in equations

34 and 35.

- 5*, + 2x, = Ax. (34)

2x, - 2x., = Ax^ (35)

Rearranging the terms of equations 34 and 35 gives equations 36 and 37.

(-5-/I)*, +2x, = 0 (36)

(37)

This can be expressed as a matrix (equation 38) the system has now been expressed as

shown in equation 39.

2x2
2x

= 0 (38)

45

(39)

Where / is the identity matrix. This is a homogeneous linear system, by Cramer's

theorem it has a non-trivial solution, x * 0 if its coefficient determinant is zero.

-5-/1 2

2 -2-/1

= (-5-l)(-2-/l)-4 = /l2 +7/1 + 6 = 0
(40)

is the characteristic determinant or if expanded the characteristic polynomial. The

solutions of this quadratic equation and hence the values of A, are -1 or -6. These are

the eigenvalues of A.

Substituting -1 into equation 41 values can be identified for jr, and x~, .

-5jc, +2x2 = -hr,

4x, = 2x2 (41)

x2 = 2x}

Choosing a value for jc, of 1 the resulting eigenvector is shown in equation 42.

x — (42)

Substituting -6 into equation 43 values can be identified for x, and x2 .

, = 0 (43)

Choosing a value x, for of 2 the resulting eigenvector is shown in equation 44.

46

(44)

Direct calculation of the eigenvectors and eigenvalues becomes cumbersome in cases

where there are more than three dimensions a number of alternative methods have been

suggested to speed up this process [118, 119].

2.9 Conclusion

The wealth of joint models uncovered by the literature review leads to the conclusion

that although the reproduction of anatomical joints is a modelling problem, there are a

number of fields where models of the human anatomy are required, such as animation,

simulation and medicine.

While proximal constraints (those holding the joint together) are not often problematic,

rotational constraints such as those required modelling the flexion and extension of

limbs are often more difficult to implement. In has been reported that joint constraints

in animation are particularly underdeveloped and in the absents of a single model

capable of modeling all joint constraints a number of specialized joint constraint

approaches (for joint structures) have been combined to produce full body systems [1].

Several approaches, Korein [36], Engin et al [41] and Manurel et al [10] use three-

dimensional polygons to represent the boundary between valid and invalid rotations.

The three-dimensional polygons are not exact representations of the data, but are best

fitted to the data points from observation. Huang et al [120] stored data in a database

rather than a geometrically described boundary / region. Points which are not in the

database cannot be interpolated, unlike other approaches [10, 36, 41] which use

geometrically defined boundaries between valid and invalid points.

Despite by their nature being simplifications of the constraints boundaries identified,

these approaches can produce reasonable approximations of joint function. However

the rotational representations used often contain singularities, or have other limiting

47

factors. Quaternions are a much more useftil representation though it is difficult to

define quaternion based constraints. Acknowledging the singularity free nature of the

quaternion parameterisation several researchers have attempted to implement

quaternion-based constraints.

Herda et al [4, 5] reduced the dimensionality of the quaternion data and fitted a

boundary to a cloud of valid points. This approach encountered problems in fitting the

boundary to the points due to gaps in the sampled data. More importantly the correction

of points to the boundary described is a non-trivial problem. An iterative approach is

suggested this however is inefficient and may not actually identify the closest valid

rotation.

Lee [6] implements several simple constraints in using decomposed quaternions only

binary constraints are provided and no method of ascertaining the appropriate correction

is suggested. Liu and Prakash [3] build on this approach allowing more complex

constraints. Johnson [2] used a boundary based on the maximum diversion from the

mean in the quaternion tangent space. Correction to this boundary was defined based

on iteratively moving the incorrect point closer to the mean of the valid points. As with

Herda et a/'s approach this approach is inefficient and may not identify the closest

point.

The mapping of a quaternion to the tangent space requires the pre-processing and

conversion of the quaternion prior to its constraint. Converting the quaternion to

another format for constraint resolution purposes is inefficient. The tangent space is a

local "linearization" (approximation) of the unit quaternion group, as with any

parameterization of a non-Euclidean group by a subset of Euclidean space it contains

singularities which must be avoided [3, 46].

There is a recognized requirement to minimise the conversion between rotational

parameterisations within a system this penalises the use of many complex joint models

in a single system [2]. Neural network based constraints present the opportunity to use a

single constraint system and quaternion rotational parameterisation regardless of the

joint structure. None of the joint constraint approaches discussed have utilised ANNs to

provide an accurate model of individual joint constraint.

48

ANNs are powerful analytical tools they offer significant performance advantages over

traditional methods where complex calculations must be carried out to calculate the

correction required to bring an invalid configuration to a valid one. Typically firing a

neural network involves a succession of multiplications and additions this allows a

vector based or hardware-based implementation. In addition to their execution speed

they offer similar benefits to the quaternion approach of Herda [5] and the three

dimensional polygon approaches [9, 17, 36] in that they can extrapolate and interpolate

from measured data.

ANNs can be though of as a store for data, the training patterns form clusters of data in

multi-dimensional feature space. The feature space is divided to best accommodate the

training data. Once trained, the ANN can then extrapolate in areas of sparse or absent

data in response to patterns not present in the training set. This may give an advantage

over Herda et al [5] who's work suffered due to sparse area's of data, and the three

dimensional boundary approaches [10, 36-38, 41] which require an even sampling of

points to accurately best fit a boundary.

Two types of constraint are identified for implementation, constraints which indicate the

validity of a given configuration termed binary' constraints and constraints which give a

correction to the nearest valid configuration termed corrective constraints. Binary

constraints can be considered a classification problem where configurations are

classified as valid or invalid. Corrective constraints can be considered as discontinuous

vector fields several researchers have demonstrated the capabilities of neural networks

in learning vector fields [16, 54, 100-103].

The SVM neural network was selected to classify valid and invalid rotations. The SVM

approach aims to minimise both the error on the training set and the complexity of the

SVM thus minimising generalisation error. An implementation of the SVM architecture

with the performance improvements as indicated by Joachims is available [72].

Corrective constraints are a discontinuous vector field approximation problem and

though both the local and global characteristics of the data should be approximated it

must first be established that the global mapping between valid and invalid patterns can

be trained. Once this is established improving the results with the inclusion of local

learning may be considered.

49

Feed forward Multi-layer Perceptrons have a number of qualities that make them well

suited as a starting point for this research. They have been extensively studied and their

capabilities are well documented. The process of firing a neural network is simple and

can be implemented in hardware [121, 122], it can also be easily distributed giving

potential speed increases over traditional methods in the use phase [123]. The nature of

the quaternion vector field required for joint constraint is unknown MLPs are capable of

learning mappings without prior knowledge of the functions which relate data [124].

Selmic and Lewis successfully approximate discontinuous functions using

backpropagation trained MLP neural networks with sigmoid and sigmoid jump

activation functions [16, 58]. Researchers have also utilised feed forward MLP neural

networks to approximate continuous vector fields in a number of dimensions. It has

been shown that neural networks can learn continuous two dimensional vector fields, in

this approach bi-polar sigmoid activation functions were used and networks were

trained via backpropagation [54, 55]. Similarly two dimensional scalar fields have

been approximated by Kulchin and Panova [57] again using bipolar sigmoid activation

functions and an enhanced backpropagation algorithm. Grzesczuk, Terzopoulos and

Hinton [56] successfully approximated complex multi-dimensional vector fields in their

approach sigmoid activation functions were used along with an enhanced version of the

backpropagation algorithm.

Topological evolution attempts to maximise performance by minimising both network

error though weight adjustment and generalisation error by reduction of the neural

network complexity. An implementation of these techniques (called NetJEN,) is

available based on published research [63, 64, 80, 81, 83, 125-128]. NetJEN also

provides activation function evolution from a number of candidate activation functions

based on Mayer, Strapetz and Fuchs [83] and template based spline activation function

evolution following Mayer and Schwaiger [63].

The discontinuous nature of the mapping between input and output may result in

internal representations that overlap increasing the difficulty associated with the

learning of such vector fields. Seipone and Bullinaria [129] suggested that the use of

Artificial Neural Systems (evolved neural networks) reduces effect of interference in

addition to improving performance.

50

Grzeszczuk, Terzopoulos and Hinton [56] have demonstrated that neural networks are

best able to model vector field approximations when the magnitudes of the input and

output vectors are similar and of unit variance and zero mean. Also that modelling the

relationship between a state and a state change provided more comparable magnitudes

with regards to input and output value than state-to-state mappings. The use of a

quaternion representation to model a discontinuous vector field describing a mapping

between the current rotation and the required correction neatly avoids a number of these

complications hence the inputs and outputs will require no pre-processing.

51

3. Simple Corrective Constraints

A corrective constraint returns an appropriate correction to a given orientation. In the

case of valid orientations the corrective rotation is zero while for invalid orientations the

corrective rotation rotates the invalid orientation to it's nearest valid counterpart. The

task of mapping a current rotation to the relevant corrective rotation is complex due to

the discontinuous or piecewise linear nature of the mapping.

In the previous chapter the limitations of the approaches used to implement joint

constraints and those inherent in common angular representations were highlighted. As

angular representations quaternions are ideal for many purposes (e.g. interpolation,)

though the definition of corrective constraints is problematic due to the increased

dimensionality and the difficulty of visualisation. In this approach corrective quaternion

constraints described using discontinuous vector fields in quaternion space (four

dimensions).

In order to gain an understanding of the performance of neural networks in learning

discontinuous vector fields less complex discontinuous vector fields were studied.

Studying vector fields, representing constraints in one, two and three dimensions

provides an opportunity to test the abilities of the neural network before investigating

more complex four-dimensional (quaternion) cases.

Having implemented these simple vector based constraints a unit sphere with a circular

rotational constraint on its boundary is introduced. In initial investigations an input

vector is corrected to a circular boundary on the sphere surface by a correction vector.

This is then extended to the quaternion based rotational correction of similar vectors to

a circular boundary.

52

3.1 Methodology

A Generalised Multi-Layer Perceptron (GMLP) is trained to model discontinuous

vector fields in one, two and three dimensions. These vector fields represent simple

joint constraints with two distinct regions - a valid region with zero correction per

vector and an invalid region with each vector pointing to an implicit joint constraint

boundary.

Initially rotations in a single dimension are considered. Here the relationship between

inputs and outputs, including its discontinuous nature, are similar to those of motor dead

zones and frictional forces for which compensation models have been created in the

robotics field [16, 58, 101]. Fig. 10 (a) shows an example one-dimensional mapping the

constrained region is the flat region at the centre of the graph this diagram clearly shows

the discontinuous nature of the mapping.

This was extended into two dimensions and two-dimensional vectors and their

correction to a circular constraint boundary were considered, (as illustrated in Fig. 10

(b).) The constraint region here is at the centre of the circle and the vectors shown

represent the mapping from invalid positions to the circular constraint boundary. The

colour lightens from the original vector to the corrected vector and points are placed at

the start of each vector allowing the visualisation of vectors with zero correction. This

was then extended to three dimensions with the vector field being trained to map to the

surface of a sphere in 9t 3 . A visualisation depicting this mapping is shown in Fig. 10

(c). This result is significant because quaternion based constraints were reduced to

three-dimensional mappings in the approaches of both Herda el al [4, 5] and Johnson

[2].

The results of these experiments showed that ANNs could be trained to learn vector

field models. This encouraged further investigation into mappings better suited to joint

modelling. A circular boundary was modelled on the surface of a unit sphere, similar to

the projected spherical polygons used to model joint constraints in previous work [40].

Initial investigations considered linear correction vectors representing the vector

required to translate the input vector to a valid position at the edge of the constrained

region, (as shown in Fig. 5(a).) Here the input is unit a vector that describes the current

limb and the output a corrective vector that maps the vector to the boundary. These

53

experiments were successful and extended to consider a mapping between a unit vector

and the quaternion rotation from an invalid configuration to a valid configuration, (as

shown in Fig. 5 (b)).

(a) Unit Sphere

Invalid vbctor
* \

Correction Vector

Unit Sphere

Correction Reflation

Fig. 5 - An image showing a two dimensional constraint on the surface of a three-dimensional sphere, the

initial vector to correction vector case (a) and the vector to correction quaternion case (b).

3.1.1 Dataset Generation

For one, two and ///7'ee-dimensional constraints a random vector was generated each

component limited to between -1 and +1. The distance of this vector from a central

point measured. If the vector was within a threshold then no correction was assigned (a

zero vector.) If not, the relevant correction is calculated and assigned.

In the Euler angle case a simple inequality is used to differentiate between valid and

invalid regions (shown in equation 45). Identifying the closer of the two boundaries and

calculating the difference produces the required correction for invalid cases (shown in

equations 46 and 47).

P is valid if(P> lower AND P < upper) (45)

C = lower - C if (P < lower) (46)

54

OR

C = P - upper if (P > upper) (47)

Where,

P is the Euler angle input; lower is the lower boundary of the constrained region, upper

the upper boundary of the constrained region and C the corrective component.

To ascertain the validity of points in the two and three-dimensional cases the length of

the vector between the origin and the point is considered as in relation to a specified

radius (as shown in equation 48). To calculate the two and three-dimensional

corrections for invalid cases where the correction is not zero the length of the vector

from the origin to the point is calculated and compared it to the radius of the circle or

sphere. The ideal is calculated by scaling the vector to the radius, the difference between

the original vector and the ideal gives the correction as outlined by equation 49.

V is invalid if \V\> R (48)

C= -V (\-RI\V\) (49)

Where,

R is the radius of the constrained region; Vis the input vector, \V\ the length of the input

vector and C the required correction.

In the case of regular two-dimensional boundaries on the surface of a unit sphere, the

angle between the input vector and the x-axis was used to delineate between valid and

invalid inputs. The method used to calculate the correction for invalid inputs was the

same in both cases the rotational correction is calculated first and used to generate the

vector correction the latter is calculated as follows. A random unit vector is generated

and the angle of the vector relevant to the centre of the circular constraint (the x-axis,) is

calculated (see equation 50,) and compared to the constraint radius. If smaller then the

55

resultant correction is set to the zero, if not correction rotation is calculated as a

quaternion as outlined in equations 50 and 52 to 56. This is used to create a vector

corrected to the boundary the correction is the difference between these two rotated

vectors. In the case of the quaternion based correction the output of equation 55 is used

as the correction.

(50)

Fis valid if (6>9max] (51)

(52)

Aa = A6 (53)

Av=V*C (54)

Qo = [COS(Aa/2), Av • SW(Aa/2)] (55)

0=K-(K rotated by Qo) (56)

Where,

V is the randomly generated vector. C is a unit vector aligned with the centre of the

spherical boundary on the surface of the sphere. A is an axis angle representing the

rotation of the randomly generated vector its axis part is described as Av and the angle

part by Aa. Qi is the quaternion equivalent of this axis angle rotation and 0 (theta) is the

angle between vectors V and C. Ad is the difference between the current angle and

Omax, the radius of the constrained region. Qo is the angular correction as a quaternion.

x is a vector aligned with the x-axis and O is the vector correction.

56

Three datasets were prepared for each of the experiments; a training set, used to train

each generation of ANN, a validation set, used to assess the fitness of the ANN for

genetic selection and a test set which provided an unseen set of data on which to test the

ANN. In creating the datasets patterns were clustered in the region before and after the

boundary representing the discontinuity between the valid and invalid joint

configurations.

3.1.2NetJEN

Initial experiments were carried out using Multi-Layer Perceptron with a single hidden

layer, implemented in C++ by the author. Preliminary experiments (Fig. 8) confirmed

the superiority of evolved neural networks and hence further experiments were carried

out using Net JEN.

NetJEN is a Java based implementation of NetGEN [63, 64, 81] developed by

researchers at the University of Salzburg. NetJEN [125] boasts several impressive

features and provides an intuitive user interface in addition to reporting tools and other

useful functionality. A brief outline of the system they developed follows based on

published work [53, 63-65, 81, 83].

Before GA techniques can be applied to ANN topology evolution their underlying

structures, the phenotype, must be considered as a genotype (a blue print for the

construction of the network.) This must be encoded such that GA techniques can be

applied. There are two common approaches; Indirect Encoding encodes a set of

constraints that govern the construction of individual neural networks within the

population. The constraints are evolved indirectly impacting on the neural networks

generated. In NetJEN Direct Encoding is used, a network topology is created and

encoded minimising the decoding effort to map between the genotype and

corresponding phenotype. The encoding scheme used is called the Modified Miller

Matrix, an extension of the Miller Matrix [130].

The genome structure is shown in Fig. 6 (a) and comprises Learn Parameters (Fig. 6

(b)) which describe the values required to train the neural network, the Activation

Function Template Parameters (Fig. 6 (c)), used to describe one or more activation

57

functions present in the network, the Neuron Parameters (Fig. 6 (d)) indicate the type of

neuron and the Structure Parameters explicitly specify each connection within the

network [63]. Markers (binary inhibitors) are used to regulate the expression of wild-

type genes, for example hidden neurons, while other problem dependent genes such as

output neurons are fixed [63]. As a result the bit string includes some non-coding

regions (Introns), these have been shown to reduce the effects of crossover and are

common in biological systems [126-128].

(a)

Learn
Parameters

AF Template
Parameters

Neuron
Parameters

Structure
Parameters

(b)

Epochs Learn 1 Learn 2

(c)

Marker
Point

*i YI iirkM
Point *2 Va *

Marker
Point *n

 Mirkar
YD iPoint

x i *1
terkar
Point

*2 *2
iterkvi
Point -. y

(d)

Marker AF-ID Marker AF-ID Marker AF-ID

0 0101 1 1101 1 0111

Fig. 6 - The organisation of the genotype: (a) The general structure of the genotype [63]. (b) The structure

of the learn parameters segment [63]. (c) The structure of the AF Template Parameters [63]. (d) The

structure of the Neuron Parameters [83].

The structure and neuron parameters are represented by a linearized binary adjacency

matrix [63] shown in Fig. 7. As the network architectures are feed-forward the triangle

above the main diagonal must be zero, the main diagonal is used to represent the

activation function index (zero if not expressed) [63]. The maximum size of the

network is set in advance and so the size of the structures does not change during

evolution. The activation function template parameters and activation functions were

not evolved during the following experiments but are included in descriptions of the

genome for completeness. In Chapter 5 experiments are undertaken evolving both

activation function type and template based spline activation functions.

58

To

Fr<

1
2
3
4
5

3m
12345
0
0
1
1
1

0
0
1
0
o;

o
0
i
0
A /

0
0
0

£i

0
0
0
0
2

AF Index

Fig. 7 - The Genorype/Phenotype mapping, here the presence of a one in indicates a forward connection

from the node identified by the row number to the node identified by the column number. As there are no

links from a node to itself the main diagonal represents the Activation Function (AF) Index is the index of

the activation function of a given neuron. The above figure shows all the notes of the system node 4

however despite having and activation function is not part of the generated phenotype is not represented

in the genotype as it has no input connections. The image is similar to that given by Mayer and Schwaiger

[63].

The system comprises of a Simple Genetic Algorithm (or SGA), the Genotype

Phenotype Mapping and the Neural Network Manager. The Neural Network Manager

(NNM) in NetGEN was the Stuttgart Neural Network Simulator (SNNS) [131], and the

SGA from Smith et al [132] an implementation of previous work by Goldberg [133]. In

the Java implementation the NNM used is BOONE, also developed by researchers at

the University of Salzburg.

The SGA generates blueprints for a random population of ANNs which are validated

and passed to the NNM where they are constructed and trained using Resilient Back-

propagation [60]. The SGA then assigns fitness values to each network using a fitness

function. This Composite Fitness Function comprises a measurement of the networks

performance (the Model Fitness} and a complexity regularization term (the Complexity

Fitness,} as expressed in equation 57.

= a\- a2- (57)
£C

59

Where,

«1+ #2 = 1. (58)

In equation 57, F is the fitness of the neural network em is the Model Error (Sum

Squared Error or SSE) and EC the complexity regularization term. EC = |C,otai| with C,otai

being the total set of neural network connections. The regularization weight (a.2) has

been shown to be most effective in the range 0.001 to 0.01 to guide the evolution

towards networks of low complexity. The error weight (al) is derived from

regularization weight (cc2).

The SGA uses Binary Tournament Selection to select the best networks of the

population to breed, n individuals (typically two) are selected and the individual with

the highest fitness is placed in the breeding pool. The selection itself is weighted, the

higher an individuals fitness the more likely it is to be chosen [79]. Binary Tournament

Selection has been found to be superior to Proportional Selection methods [126].

An entirely new generation of individuals is created through crossover and mutation of

the fittest individuals selected from the last generation. This completes the evolutionary

cycle that runs for a specified number of generations. It should be noted that the fittest

individuals of the last generation will appear in the breeding pool more than once and

breed with themselves generating identical offspring in the new generation [79]. This

ensures that the best genetic patterns are passed on to the next generation. Crossover

and mutation are implemented on a linearized Modified Miller Matrix allowing standard

two-point crossover, this has a more global effect on the bit string than the exchange of

rows and columns used in the original Miller Matrix approach [126-128].

3.1.3 Evolution and Training

In each experiment the network was configured as follows. The input layer represents

the current joint vector, while the output layer represents the correction vector/rotation.

A population of neural networks is created these have the maximum number of hidden

nodes, the appropriate region of the Modified Miller Matrix (below the main diagonal as

shown in Fig. 7) is randomly populated creating the connections between the nodes.

60

This leads to a number of hidden nodes not being connected these nodes are evolved but

are not present in the phenotype. Binary markers present on both the links and nodes

indicate their contribution to the phenotype, if these bits change during cross over or

mutation a node may be deactivated. In which case neither the node any associated links

are represented in the phenotype. The validation process marks any networks with no

connections between input and output nodes with a low fitness [81].

The validated neural networks were then trained by resilient back-propagation identified

as being superior to back-propagation by experimentation (as shown in Fig. 8). Where

necessary, the inputs and outputs were mapped to the range -1 to +1, the evolution and

training parameters were configured as shown in TABLE I. The number of generations

and training epochs were restricted to reduce training times. Each experiment was

repeated five times to creating five neural networks with independent results to ensure

consistency.

61

TABLE 1

EVOLUTION AND TRAINING SETTINGS

Parameter

Regularization

function

Hidden Nodes

Number of

Generations

Population Size

Fitness Function

Regularization

Weight

Evolve number of

Links

Evolve number of

Hidden Nodes

Evolve number of

epochs

Learning Rate

Stopping Error

Training Function

Max Epochs

Description

Secondary fitness function.

Maximum no. of hidden nodes.

No. of generations over which the ANN

were evolved.

Size of the populations evolved.

Primary fitness function.

Regularization weight (a2) this term

controls the effect network size on the

fitness function.

Networks are pruned down from fully

connected networks.

Evolves the no. of hidden nodes.

Evolves the no. of training epochs

Learning rate used when training the

ANN.

MSE at which the ANN are stopped.

Training function used to train the

weights of the ANN.

Maximum number of training epochs

Value

Number of links

20

50

20

Inverse SSE

0.01

On

On

On

0.1

0.001

Resilient back-

propagation

500

Through experimentation, it was determined neural networks with sigmoid activation

functions in the hidden layer and linear activation functions in the output layer produced

good results, (activation functions are examined in more detail in Chapter 5.) This

distribution of activation functions was used throughout these experiments a similar

distribution were employed for vector field approximation by Grzeszczuk et al [56],

62

linear output layers have also been used with bi-polar sigmoid hidden layers [54, 55].

Each experiment was repeated five times to ensure the consistency of the results.

The regularization weight was chosen based on publications by the authors [63], as was

the learning rate [126], the stopping MSB for the networks was identified though

experimentation. The size of the population, number of generations and initial limits for

the number of training patterns were suggested by a co-author of the Net JEN system Dr.

Helmut Mayer in private correspondence.

3.2 Results

Initial results confirm the superiority of the evolved GMLP neural network over the

feed forward neural network and resilient back-propagation over back-propagation

training. These results are included for completeness and shown in Fig. 8, experiments

were also carried out with sigmoidal activation functions in both the hidden and output

layers, though performance for this architecture is low. All subsequent experiments in

this section were carried out using the evolved GMLP neural network.

63

6.40E-03 -

5.40E-03
•
*
•

4.00E-04 -|

3^nv_ ru -

3.00E-04 -

2.00E-04 -

1.50E-04 -

l.OOE-04 -

5.00E-05 -

O.OOE+00 -

•
•
•

ID - Evolved GMLP
(RBP)

•
•
•

ID -Layered
(Sig/Lin) BP

X Avera

•
•
•

ID -Layered
(Sig/Lin) RBP

ge MSE

•
•
•

X

2D - Layered
(Sig/Lin) RBP

Fig. 8 - Graph comparing the performance of the Evolved GMLP and Layered neural networks with back-
propagation (BP) and resilient back-propagation (RBP) training on the one and two dimensional datasets.

The results of the one, two and three dimensional vector field experiments show that
though each of the networks trained successfully and the Mean Squared Error (MSE) of
the network is low in each case. The performance of the network decreased as the
number of dimensions increased, demonstrated by the increase in the MSE as shown in
Fig. 9. In each case the vector field that describes the constraint has both continuous
and discontinuous regions. These are of comparable size hence the decrease in accuracy
is proportional to both the number of degrees of freedom being modelled and the
dimensionality of the boundary between the continuous and discontinuous regions.

64

3.00E-03 -

2.50E-03 -

2.00E-03 -
H
IB

l.SOE-03 •

l.OOE-03

5.00E-04

n nnp4.nn

•

•
I •

•

•

.

• « <
«

•

1 —— «• ——

»

<

A

*

•

•

*

•

1

4

1

1

k.

50 100 150 200 250

Range (Degrees)

300 350 400

* ID Constraint
• Circular Constraint in 2D
* Spherical Costraint in 3D
» Circluar Constraint in 3D (angular correction)
• Circluar Constraint in 3D (vector correction)

Fig. 9 -Average MSE on a test set (unseen patterns) for constraints of increasing size. In the two and
three-dimensional cases the range referrers to the diameter of the constraint.

The number of hidden nodes and the number of inter-connections, which are to a certain
extent linked, increased as the number of dimensions increased, though only between
the one and two-dimensional constraints. This suggests that the number of inter­
connections and nodes required to approximate a constraint in two dimensions was
sufficient also to approximate a constraint in three dimensions. However, later
experiments investigating the improvement of these results (detailed in Chapter 5,)
provide evidence that the restrictions placed on the size of the neural network combined
with the regularization function limits the performance of the neural network. Similar
performance was observed for both test and training sets, indicating the network

performed well on unseen patterns.

With regards to the size of the discontinuous (constraint) region, the techniques
performed well. It was noted that in the two and three-dimensional case the network
performance decreased as the size of the constrained region increased, (Fig. 9.) For
each of the ranges tested the size of the evolved networks varied little. Visualisation of
these results along with a plot of the test data (or ideal data) demonstrates the accuracy

of the approximation, as shown in Fig. 10.

65

(a)

Fig. 10 - (a) A visualisation of the ID approximation showing the Weal (test data) in solid blue and the
neural network approximation in dashed pink, (b) A visualisation of the two dimensional approximation,
the ideal is shown in solid pink while the neural network output is shown in solid green, (c) A
visualisation of the three dimensional approximation the ideal is agam shown in pink and the neural
network output in green.

Our attention now turns to more practical two-dimensional boundary constraints on a
three-dimensional surface. These were first trained as mappings between vectors and
vector based corrections. The results show a significantly different distribution of error
despite similar numbers of hidden neurons, links and training epochs being evolved
(Fig. 9). High error is observed at 90 and 270 degrees. At this point the two-
dimensional boundaries on the surface of the sphere are of equal circumference.
Constraints with both larger and smaller circumferences demonstrate lower error
indicating that the error does not have a linear relationship with the circumference of the

constraint.

66

Experiments attempting to map between a vector and a corrective orientation using an
axis angle representation (calculated in equations 53 and 54) failed to evolve networks

with comparable performance to the two and three-dimensional cases. Attempts were
made to amend this by scaling the angle part of the axis angle representation to a -
1.0/+1.0 range without success.

A similar experiment using a corrective quaternion rather than an axis angle produced
MSB results that were generally lower than those of the earlier vector correction
mapping. Peaks are once more observed at 90 and 270 degrees, suggesting that these
features are the results of the vector-based description of the problem rather than the
output, which is different in each case.

The vector based correction and quaternion based correction results cannot be compared
directly, so the difference between two quaternions was considered indirectly as a
positional error in three-dimensional space. This is achieved by comparing the input
vector rotated by the ideal correction quaternion (training data) with the same input
vector rotated by the correction quaternion produced by the neural network. A plot of
the length of the vector between the input vector and the corrected input vector in each

case is shown in Fig. 11.

0.7

o.e

M 0.5 -j
o
M
M

?' 4

B
O
3 0.3

o
D. o.2 -

0.1 -

100 500 600

Vector to Correction Vector Vector to Correction Quaternion

Fig. 11 - Comparison of Positional Errors per Pattern

67

The results show that the positional error is below 0.1 for more than 97% of the dataset

in both cases, (the maximum possible error is 2.0). The vectors of the training,

validation and test data are generated at random in sequential groups starting inside the

constraint and working outwards. This arrangement of patterns provided good results

(as detailed in Chapter 5,) and allows some context to be attributed to the results shown

in Fig. 11. The central region in the graph from around 90 to over 400 contains two

groups with their division at around 250 patterns, this represents the two groups either

side of the boundary. The group on the far left of the graph (Fig. 11,) represents the

valid region while the one on the far right represents the region diametrically opposite

to the valid region. The region furthest from the boundary (far right of Fig. 11,)

contains those points with the highest error, though less than 3% of the points have

errors greater than 0.1 in either case.

Comparing the three-dimensional error shows that the increase in error with respect to

the radii of the constraint can be attributed to the contribution of patterns in the region

furthest from the boundary as shown in Fig. 12.

0.7 !

0.6

0.5

rt 0.4 -

0.3 -

0.2 -

0.1 •vV...,.^

100 200 300

Pattern

400 500 600

180 Degrees Diameter * 90 Degrees Diameter

Fig. 12 - Graph showing the increase in error with range being concentrated in the invalid region.

Though generating and plotting the points in groups is useful, it is difficult to identify

relationships between patterns with high error. Visualizing the output helps put the

results in context and demonstrates the accuracy of the neural network in the region of

discontinuity, (at the boundary.) In this case the neural network input represents a unit

68

vector that is rotated by the output quaternion to lie within spherical boundary on the

surface of a unit sphere.

Plotting the vector difference between the input vector and the quaternion corrected

input vector gives a visual representation of each of the corrections. In addition to these

lines points are rendered at their start, allowing valid points that are not corrected to be

displayed. The input data set can be displayed along side the neural network results,

(shown in Fig. 13.) Alone the neural network results are difficult to interpret though the

boundary region is evident as demonstrated by Fig. 14.

Fig. 13 - A screenshot of the visualisation program showing both ideal and neural network corrections (c).

The training data is shown as the dark lines while the light lines show the output of a single neural

network. Both lines are graded dark to light to show their direction. To clarify the direction of corrections

a simplified sketch of their path (a) has been included and to reinforce the lost 3D element of the subject a

second view (b) is included.

69

Fig. 14 - A screenshot of the visualisation program showing only the neural network output.

Visualising the results helps to demonstrate the capability of the network in terms of its

learning of the discontinuity at the boundary, (shown in Fig. 13, and Fig. 14.) The

visualisation also highlights the causes of the high neural network error for certain

patterns. This is illustrated in Fig. 15 where a threshold is imposed such that only the

results with three-dimensional error greater than this threshold are plotted.

Fig. 15 -A screenshot of the visualisation program showing training, validation and test dataset ideals

(shown in red.) The neural network results with Pythagorean error greater than a threshold of 0.1 (shown

in green). Five corrections are shown per input orientation representing the five neural networks trained

on the input set.

70

Visualising the results with the threshold shows that for each of the five different

datasets the points with the highest error were in a similar location.

3.3 Discussion

In the one, two and three dimensional discontinuous vector field experiments the MSE

increased with the dimensionality of the constraint and the problem space. With each

increase in dimensionality of the constraint more relationships are included and must be

learned, however neither the learning capabilities of the neural network nor the number

of patterns representing each relationship are increased. Consequently the performance

decreases.

The evolutionary aspects of the experiments indicate that as the constraints increased in

complexity more complex networks were required to maintain accuracy. This increase

is less pronounced between the two and three dimensional vector fields, due to the

constraints placed on the size of the hidden layer to limit the temporal cost of the

experiments.

The increase in the MSE in relation to the size of the constrained (discontinuous) region

for one, two and three-dimensional boundaries can be attributed to a lack of exposure to

the complex patterns in the invalid region where the neural network attempts to learn a

continuous non-zero mapping.

Two-dimensional polygons have been used for joint constraint by projecting spherical

polygons onto a surface [40], there is evidence to suggest our approach is capable of

learning such constraints. In published work quaternion based corrective constraints

systems have reduced the dimensionality of the quaternion representation [2-6], in such

cases the resulting constraint boundary is a three dimensional surface in three

dimensional space. It may be that evolved topology neural networks can be used to

implicitly model such boundaries.

71

In relation to the earlier one, two and ^/-ee-dimensional constraints, the MSB for neural

networks learning vector fields representing circular constraints on the surface of a unit

sphere is comparable with two and three-dimensional constraints. The results (in Fig. 9)

show an increase in the MSE between the two-dimensional constraint in two-

dimensional space and the two-dimensional constraint in three-dimensional space. This

indicates that the dimensionality of the problem space has caused an increase in the

MSE as dimensionality of the constraint has not increased.

Increases in MSE are observed around 90 and 270 degrees radius, these variations do

not seem to relate to the radius of the constraint but occur for constraints with identical

circumference. Their occurrence in both the vector-to-vector correction and vector-to-

quaternion correction indicate the cause of this error to be the vector field encoding of

the problem domain.

In both the vector-to-vector and vector-to-quaternion correction experiments, isolated

patterns of high error are encountered. Through visualisation these errors are attributed

to a lack of test data in the region of an additional discontinuity. This discontinuity is

diametrically opposite the boundary where points are of equal proximity to

diametrically opposite sides of the spherical boundary this is termed the correctional

discontinuity.

Patterns that demonstrate high error are isolated in the region of the correctional

discontinuity. Individual patterns are similar to neighbouring patterns and corrected to

one side of the sphere, this is in conflict with test data that states it should be corrected

to the other side of the sphere. The neural network successfully corrects the vector to

the boundary but as this is not the boundary indicated by in the test data, a large error is

reported. These errors affect the MSE as their magnitude (but not frequency) increases

as the radii of the constraint is increased Fig. 12. These errors are some distance from

the boundary and in an anatomically correct joint constraint system it is unlikely that a

joint would reach these configurations.

Encoding the output as a quaternion produces an improvement in the MSE of the result

over a range of radii, together with a slight increase in three-dimensional error (as

shown in Fig. 9.) Researchers have demonstrated that neural networks are best able to

model vector field approximations when the magnitudes of the input and output vectors

72

are similar and of unit variance and zero mean [56]. Quaternion encoding meets the
majority of these criterions. It has also been shown that that modelling the relationship
between a state and a state change provided more comparable magnitudes with regards
to input and output value than state-to-state mappings [56].

Regular two-dimensional boundaries on the surface of a sphere provided encouraging
results for constrained regions of different sizes. These techniques can effectively
implement simple constraints similar to those implemented by Baerlocher [37] and
Korein [36] .

73

3.4 Conclusion

The results show that a Generalised Multi-Layer Perceptron (GMLP) with evolved

structure can model multidimensional discontinuous vector fields suitable for the

accurate joint constraint simulation in one, two and three dimensions. There are also

indications that these techniques may be applied to other problems of similar

dimensionality which can be represented as vector fields, for example the dead-zone

compensation systems of Selmic and Lewis [16].

It was also noted that the dimensionalities of the constraint and problem space have an

effect on the complexity of the mapping and therefore the performance of the neural

network.

The results confirm that evolved neural networks can learn rotational corrections for

erroneous unit vectors with respect to regular two dimensional boundaries on the

surface of a three dimensional sphere.

An advantage to using the Evolved GMLP method has been identified. It has been

found that examination of the evolved networks and the evolutionary process can

identify limiting factors. In this case the number of hidden nodes tended towards the

maximum when error was highest indicating that an increase in the limit on the number

of hidden nodes evolved would produce a decrease in error. Later experiments show

that removing the limit on the number of hidden nodes produces an increase in

performance as discussed in Chapter 5.

A quaternion-based parameterisation offers a number of advantages. The use of

Quaternion based input and output parameters make this approach independent of the

position of the limb or body in three-dimensional space, also in any practical application

of this technique an orientation for each joint orientation need only be stored once as a

quaternion. The use of a quaternion based angular representation for the correction

demonstrates a low error in the majority of cases. This encourages the consideration of

mappings from a quaternion representing the current orientation to a relative corrective

quaternion.

74

4. Corrective Constraints in S3 Space

In the previous chapter vectors representing initial joint configuration were successfully

corrected to a circular boundary on the surface of a unit sphere using both positional

(vector) and rotational (quaternion) corrections. In this chapter evolved neural networks

are trained to correct quaternions representing initial joint orientation to a regular

(circular) or irregular boundaries using a quaternion-based correction. The

discontinuous vector fields learned by the neural network represent the rotation of the

joint as a precursor to implementing more complex boundaries representing both

rotation of and around the joint [2, 4-6].

Quaternions are used as a rotational representation in a number of applications [2-6],

and have a number of properties which make them useful [2, 4-6, 8, 33]. However it is

difficult to define correctional constraints in quaternion space and existing approaches

are flawed in that they rely on reducing the dimensionality of the quaternion [2-5],

iterative corrections [2, 4, 5] or provide no method for generating corrections [6].

4.1 Methodology

Experiments were undertaken to develop corrective quaternion-based constraints (like

those of Herda et al [4, 5] and Liu and Prakash [3],) which describe rotational

constraints for both regular and irregular boundaries in quaternion space. Once again

NetJEN was used to evolve and train Generalised Multi-Layer Perceptron (GMLP)

neural networks to simulate joint behaviour.

4.1.1 Dataset Generation

In these experiments the current joint orientation is described using a quaternion, as was

the corrective rotational output from the ANN. The corrective output quaternion, when

combined with the current rotation, rotates an invalid rotation to a valid rotation on the

constraint boundary. Valid input rotations are given no correction and the network

75

outputs the identity quaternion. A boundary between valid and invalid joint constraints

is implicitly defined. This boundary marks a discontinuity in the vector field between

corrective and non-corrective (identity) quaternions.

Three datasets were prepared for each of the experiments; a training set, used to train

each generation of ANN s, a validation set, used to assess the fitness of the ANNs for

genetic selection and a test set which provided an unseen set of data on which to test the

ANN's performance.

An even distribution of patterns is used with patterns grouped into valid and invalid and

trained in the same order. These distributions were found to provide superior results as

discussed later in Chapter 5. In the case of regular boundaries an automated dataset

generator was used. This generated a random unit vector then calculated its orientation

as a quaternion with respect to the constraint centre (aligned to the x-axis). This process

is demonstrated by equations 59 to 61.

Aa = ACOS(V-C) (59)

(60)

Qi = [COS(^a/2), Av • SIN(^a/2)] (61)

Where V is the randomly generated unit vector, C is a unit vector aligned with the centre

of the spherical boundary on the surface of the sphere (the x-axis). A represents an axis

angle describing the rotation of the randomly generated vector, its axis part is described

as Av and its angle part as Aa. Qi is the quaternion equivalent of this axis angle rotation.

The correction was generated by examining the effect of the quaternion on a unit vector

placed at the centre of the constrained region. The angle between the initial vector and

the effected vector was calculated (see equations 62 and 63) and compared to the

constraint radius (see equation 64). If the angle was smaller then the generated vector

was within the constrained region and so the corrective rotation was set to the identity

76

quaternion. If larger then a correction rotation was calculated as an axis angle and then

converted to a quaternion as outlined in equations 65 to 68.

P = X rotated by Qi i 52)

(63)

P is valid if (9 < Omax) (64)

A9 = 9- Omax (65)

Aa = AO (66)

Av = P*X (67)

Qo = [COS(Aa/2), Av • SW(Aa/2}] (68)

Here P is a vector used to represent the effect of the quaternion rotation. A6 is the

difference between the current angle 9 and 9max the maximum valid rotation. Qi is in

this case the input quaternion and Qo is the corrective output quaternion. X is a vector

aligned with the x-axis.

A similar automated dataset generator for irregular boundaries was discounted on the

grounds of complexity and predicted development time. Instead a semi-automated

system was adopted. An interactive virtual arm was created in a three dimensional

environment (using OpenGL) and used to record a boundary between invalid and valid

rotations. The valid and invalid rotations were then recorded individually relative to

this boundary. Rotations were sampled at a set interval while the virtual arm was

interactively manipulated.

77

The quaternions generated as part of the valid rotation set (inside the constraint

boundary,) were assigned a no correction output (the identity quaternion). The invalid

rotations were initially corrected to the nearest point on the constraint boundary. These

points were assigned the output quaternion representing the rotation from the given

invalid point to the nearest valid point calculated on the constraint boundary. The

closest boundary point was identified using angular and proximal comparisons in

quaternion space, however visualisation of the datasets generated showed the

corrections to be slightly skewed to what was expected. To overcome this problem the

nearest of the boundary quaternions was calculated based on their effects on unit vectors

in three-dimensions.

It is impractical to attempt to test the network with every variation of irregular

boundary. In contrast to the regular boundary, the initial irregular boundary (shown in

Fig. 16,) contains a single concave region. Concave regions are essential for modelling

boundaries such as that of the shoulder complex and so the boundaries considered are of

varying size and with one or more concave regions. A 'C' shaped boundary provides a

shape with a very pronounced concave region, while a boundary with a highly irregular

surface is used to assess the capability of the technique on highly irregular boundaries.

Fig. 16- The image shows an indirect visualisation of the valid (red) and invalid (blue) quaternion in the irregular

boundary dataset.

78

4.1.2 Evolution and Training

In each experiment the NetJEN system (described in section 3.1.2) was configured as

follows. The input layer represents the current joint rotation, while the output layer

represents the correction rotation. The number of hidden nodes and connection topology

are initially randomised and then evolved during the learning process using Genetic

Algorithms. The weights of the interconnections are also initially randomised then

updated using the resilient back-propagation algorithm. The evolution and training

parameters were set as shown in TABLE II. The number of generations, training epochs

and hidden nodes were limited to reduce training times. Each experiment was repeated

five times to ensure the consistency of the results.

79

TABLE II

EVOLUTION AND TRAINING SETTINGS

Parameter

Regular ization

function

Hidden Nodes

Number of

Generations

Population Size

Fitness Function

Evolve number of

Links

Evolve number of

Hidden Nodes

Evolve number of

training epochs

Learning Rate

Stopping Error

Training Function

Max Epochs

Description

Secondary fitness function.

Maximum no. of hidden

nodes.

No. of generations over

which the ANN were

evolved.

Size of the populations

evolved.

Primary fitness function.

Networks are pruned down

from fully connected

networks.

Evolves the no. of hidden

nodes.

Evolves the no. of training

epochs

Learning rate used when

training the ANN.

MSB at which the ANN are

stopped.

Training function used to

train the weights of the

ANN.

Maximum number of

training epochs

Value

Number of

links

20

50

20

Inverse SSE

On

On

On

0.1

0.001

Resilient back-

propagation

500

Through experimentation, it was found that good results were obtained for neural

networks with a sigmoid hidden layer and linear output layer, (as discussed greater

detail in Chapter 5). This distribution of activation functions was used throughout these

80

experiments. Each experiment was repeated five times giving five neural networks with

individual results ensuring consistency

The regularization weight was chosen based on publications by the authors [63], as was

the learning rate [126], the stopping MSE for the networks was identified though

experimentation. The size of the population, number of generations and initial limits for

the number of training patterns were suggested by a co-author of the Net JEN system Dr.

Helmut Mayer in private correspondence.

4.2 Results

4.2.1 Regular Boundaries

Neural networks were successfully evolved and trained to model discontinuous vector

fields representing regular (spherical) constraints. This is reflected both by the low

Mean Squared Error (MSE) values and the structure of the neural networks - indicated

by the number of hidden nodes as shown Fig. 17. The number of hidden nodes was

limited to reduce training times (as indicated in TABLE II,) and the size of the hidden

layer for each trained network was close to this maximum throughout. The number of

hidden nodes appears to increase with the MSE (as shown in Fig. 17). This indicates

that more complex networks were required for these constraint ranges and that the high

error is contributed to by the restriction on network size.

81

1 . VUC.— WO -

9. OOE-04 -

8. OOE-04 -

7. OOE-04 -

6. OOE-04 -

5. OOE-04 -

4 .OOE-04 -

3. OOE-04 -

2. OOE-04 -

1. OOE-04 -

O.OOE+00 -

A I A *
A

A •

•

*

• . : » !———— i ———— i ———— i ———— i — - — i — * —
5 20 45 90 135 160

Radius of Constraint

• Avg. MSE »Std. dev. of MSE

- 20

- 18

- 16

- 14
tl

-12 J

- 10 c
0)

8 •§
•rl

- 6 *

- 4

2

0

AAvg. Hidden Nodes »Std. dev. Hidden Nodes

Fig. 17 - Graph showing the effect of range variation on MSE and network complexity (hidden nodes).

The increase in MSE between a 20° and 45° constraint radius cannot be related to any
obvious three-dimensional factors. To understand this behaviour, further correlations
are sought with respect to the distribution of training patterns in quaternion space.
Principle Component Analysis (PCA) gives a set of eigenvectors that describe the
orientation of the data in four dimensions while the eigenvalues describe the variance
within each dimension. The eigenvectors produced were compared to the identity
quaternion and the change in rotation between them noted. The fourth principle
component has an eigenvalues of zero and is thus ignored.

Fig. 18 illustrates the correlation between the first principle component and MSE
indicating the success of the training process is sensitive to the orientation of the data

set in quaternion space.

82

1.
9.OOE-04 -

8.OOE-04 -

7.OOE-04

6.OOE-04 -

g 5.OOE-04 --
£

4.OOE-04

3.OOE-04 -•

2.OOE-04 -

1.OOE-04 -

O.OOE+00

^

»
^

•

——————— 1 ———————— 1

•

•

*

———————— 1 ———————

*

"
m

4

•

130

110

- 90

- 70

- 50

- 30

- 10

- -i n

Uj
0

0•H

n
•rl
14

«5

ID
H
O>
C

n
01
0
(71
0
a

4J

V

o1
0u

20 45 90 135

Radius of Constraint

150 160

MSE * Principle Component Angle

Fig. 18 - Graph showing the effect of range variation on the MSE and the change in orientation of the
principle component.

MSE is a holistic measurement that masks regional variations in error over the vector
field. To quantify these errors, the behaviour of a virtual joint constrained by the
trained neural networks is observed. The /2norm (Pythagorean distance) between the
ideally corrected and neural network corrected endpoint of a virtual limb is observed.
This more direct comparison demonstrates that the error is highest around the boundary

separating the valid and invalid regions, as shown in Fig. 19.

83

in
4J

•rl

0
Qi

4J
01
cfl

B
S
JJ

S1

0.12

0.1 -

0.08 -

0.06 -

0.04 -

0.02 -

Constraint Reigon

* * *"'•V"*« '+*

Invalid Reigon

100 200 300 400

Pattern Number

500 600

Constraint Radius 20 Degrees

Fig. 19 - Plot showing the four-dimensional Pythagorean error between the ideal quaternion correction
and the corresponding neural network output.

Comparing the results using the Pythagorean error metric it is observed that for the
ranges investigated the average error for all patterns for each of the five networks is less
than 0.2 (as shown in Fig. 20). Given that the maximum error for on the unit sphere is 2
(diametrically opposite) this gives and average error of less than 1% with a maximum
error of 6.3%. Considered in terms of the virtual arm (which is unit length) the average
error is less than 2% and the maximum error 12.6%.

84

Pythagorean Error

O o o o o c
b o o o • M i-

JMibmCDl-'tO*

i . i i I ———— 1

5

•

20 45 90 135

Radius

-Maximum -Minimum -Average

160

Fig. 20 - A graph showing a comparison of Pythagorean error for constraints of varying radii.

Fig. 21 illustrates the ideal and actual correction vectors for a virtual limb constrained
by a regular boundary constraint. The red dashed line shows the result of the
corrections from the training data while the green solid line shows the results of the
neural network corrections, both lines lighten from their initial positions to their
corrected positions. The boundary can be clearly identified and it is noted that all
corrected rotations within a Pythagorean distance of 0.1 from the constraint boundary

(as indicated by Fig. 19).

85

Fig. 21 - Ideal and neural network corrected rotations. Ideal corrections are shown as red dashed lines;

neural network corrections (for each pattern) are shown as green solid lines.

In order to highlight the patterns with high error observed in Fig. 21 a threshold is set

and only the corrections whose error exceeds this are displayed. This allows the worst

results to be viewed in the context of the constraint boundary, as shown in Fig. 22. Fig.

21 and Fig. 22 demonstrate that even the points with the highest error are corrected to

the boundary.

Fig. 22 -A visualisation showing patterns with error above a threshold of 0.08 (three dimensional

Pythagorean error). The corrections of all the training patterns are shown as red dashed lines. The neural

network outputs above the threshold and their training patterns are shown as green solid lines, with the

neural network output shown as the lighter lines.

86

The network's behaviour can be further understood by looking at the distribution of
training patterns. Fig. 23 shows the test inputs for a regular constraint with 20° radius.
The input rotations of the test set are coloured according to their error, with blue points
having lower error and red points having higher error. Salient regions of higher error
are those around the constraint boundary and in the region opposite the constraint on the
quaternion unit hyper-sphere.

Fig. 23 - Regular test patterns coloured to represent the 12 norm (i.e. error) of the relative neural network
output. The blue patterns represent low error and the red ones high error.

Overlaying the patterns used in training (V) and evolution ('+') of the neural network
it is observed that regions of sparse training data correspond to regions of high error. In
Fig. 24 the camera is placed inside the same sphere of points shown in Fig. 23. High
error points are observed in an area where there are few training set points. Low error
points are observed in regions well populated with training points. The validation set

points ('+'), used to assess network fitness, have less effect.

87

&H»Wx Wv • +
• v X

Fig. 24 - Regions displaying poor performance. Blue squares depict low error and red squares high error.
Training patterns ('x') and validation patterns ('+') are overlaid.

As discussed earlier the datasets were generated with reference to circular constraint

boundary centred on the x-axis. A number of experiments were carried out with regards

to the orientation of the constraint centre. The experiments considered alignment with
each of the principle axis and varied little in terms of their MSB. However the

distribution of error changed significantly, as shown in Fig. 25. The results indicate that

a constraint centred on the y-axis offers the best results.

88

0.06 -,

0.05 -
0
M
£ °' 04 -

2 0.03 -
H

* 0.02 -

0.01 -

0 -

•

•

A *

*

4 • •

A

•«.

».,

: « «

A

. 1
A A

I.......................

1 * « • . '

A |

*<

*

*i * 4 " *
- •

*
+ * " •

A * *
* *

•

100 200 300 400 500 600

Pattern Number

Constraint Centered on X-Axis
Constraint Centered on Y-Axis
Constraint Centered on Z-Axis

Fig. 25 - Plot showing the average Pythagorean error for limbs with differing constraint centres. The

results represent an average error per 10 patterns to aid clarity.

These results can be supplemented using the MSB and PCA of the datasets involved.

Here the variation in the effects of the principle components (given by their

eigenvalues) is examined, smaller values indicate a less elongated dataset and if all

eigenvalues were equal (and variance zero) the dataset would be hyper-spherical. A

correlation between the variance of the eigenvalues and the average Pythagorean error

(as shown in both TABLE III and TABLE IV) indicates that the performance of the test

set is linked to the distribution of patterns in quaternion space.

TABLE III

EFFECT OF EIGENVALUE VARIANCE ON MSB

Limb Start

Alignment

Y

Z

X

Variance of

Eigenvector

Contributions

310.99

311.44

317.23

Average

MSE

5. 6 IE-04

4.60E-04

4.88E-04

Average

Pythagorean

Error

0.023

0.024

0.025

89

The results (shown in TABLE III,) show that although an initial limb alignment with the

Z-axis produced the lowest MSB, the networks performance in three-dimensional space

(indicated by the average Pythagorean error for all patterns,) increases as the variation

in eigenvalues increases, i.e. as the dataset becomes less elongated in quaternion space.

In the regular boundary experiments detailed above the dataset generation method

generates a random unit vector in three-dimensions, then calculates a quaternion

representing its current orientation and finally the correction required to return it to the

boundary. Unit quaternions used to represent rotation occupy a S 3 hyper-sphere in four-

dimensional space. The S 3 hyper-sphere represents 4n rotations, therefore quaternions

on opposite sides of the S 3 hyper-sphere represent the same rotation [43].

This ambiguity occurs with respect to the rotations represented by quaternions on the

unit quaternion hyper-sphere and not quaternion space itself. However since their

representation is used to generate the dataset this potentially poses a problem. The

situation arises where there are two boundaries - one on each side of the unit quaternion

hyper-sphere. The neural network has to learn to correct to the appropriate boundary

and this gives rise to second discontinuity in the dataset at which there will be a division

between quaternions who are corrected to a boundary on either half of the hyper-sphere.

The quaternion creation method used in the above experiments avoided these problems

as most of its invalid rotations, all valid rotations and more significantly the boundary to

which it generated its corrections were on one side of the unit quaternion hyper-sphere.

It was postulated that forcing all the points to be generated on one side of the unit

quaternion hyper-sphere would simplify the vector field and improve training.

However, results show this not to be the case, (Fig. 26). The original dataset with the

majority of points on one side is described as ambiguous (or AMB) and the dataset with

all points forced to one side as non-ambiguous (or Non-AMB).

90

3 •

4.

4.

3.

3.

2.

2.

1.

1.

5.

0.

Ut — \JJ

5E-03 -

OE-03 -

5E-03 -

OE-03 -

5E-03 -

OE-03 -

5E-03 -

OE-03 -

OE-04 -

OE+00 -i—

• • *

-

*

•
• ' * *——— •" ————— 1 ————— "• ————— 1 ————— ' ————— 1 ——————————— 1 ————— ' ————— 1 ————— * ————— r ~

u

0

0

0

0

- 0

0

- 0

- 0

ft

5 20 45 90 135 150

Radius of Constraint

• MSE Non-AMB
»MSE AMB
Avg. Difference Between Principle Components

. 43

.4

.35

.3

.25

.2

.15

.1

.05

V
£,

C,
4)
iJ
C
0
•rl

b

V
TO
3
O

Fig. 26 -A comparison of the MSE recorded over various ranges for ambiguous (AMB) and non-ambiguous (non-
AMB) results, plotted against the length of the difference quaternion between the principle components of each.

When the quaternions are forced to one side of the hyper-sphere the error on larger
ranges increases. In order to explore this further PCA was performed on pairs of
datasets over the same range. In each case one dataset was modified such that all the
quaternions were on the same side of the quaternion hyper-sphere.

A comparison of the principle components over the range found that below 90 degrees
there were no points moved and the PCA gave similar eigenvectors and eigenvalues.
Above 90 degrees the number of quaternions moved increases, as does the difference
between the principle components correlating with a rise in MSE.

The difference is measured by subtracting each vector in the principle component
matrix (4 x 4) to give the difference for each as a four-dimensional vector. The average
length of these vectors is used as a distance metric. In Fig. 26 a clear correlate can be
observed between the increasing difference in the distribution of patterns in quaternion
space represented by the length of the difference vector and the increase in error.

To further understand how the patterns in quaternion space are changing the orientation
and influence of each of the principle components was investigated. The following
graphs shows the MSE of the two test sets as before, the first (Fig. 27) in addition shows

91

the difference in orientation of the principal components (compared to a single 4D

vector). The second (Fig. 28) shows the contributions of the principle components

contribution, that is the percentage of the variation can be attributed to the component.

4.5E-03 -

4.0E-03 -

3.5E-03 -

3.0E-03 -

W2.5E-03 -
£

2.0E-03 -

1.5E-03 -

l.OE-03 -

5.0E-04 -

0. OE+00 -

H

5 20 45

Radius

D D
O

D

O

-

o n

90 135 150

of Constraint

- 35

- 30

' 25 „

ID
20 g

ti- is 2t
O<

- 10 <

- 5

-°

• MSE AMB n MSE non-AMB t PCI PC2 o PC3

Fig. 27 -The difference in the orientation of principle components plotted against the average MSE for the ambiguous

(AMB) dataset (with quaternions on both sides of the hyper-sphere,) and the non-ambiguous (non-AMB) dataset

(with all quatern

5.0E-03 -

4.5E-03 -

4.0E-03 -

3.5E-03 -

3.0E-03 -

OJ2.5E-03 -

2.0E-03 -

1.5E-03 -

l.OE-03 -

5.0E-04 -

0. OE+00 -

ons on one side of the hyper-sphere.)

Q
B

——— a ——— | ——— ft ——— 1 ——— «-

5 20 45

Radius

D D
O

D

X

A

n
1' i 9. o

90 135 150

O O M M M

m oo to *»

ribution Change

- 0.4 c
8

0.2

- 0

of Constraint

D MSE AMB D MSE non-AMB O PCI A PC2 " PC3

Fig. 28 -The difference in principle components contribution plotted against the average MSE for the ambiguous

(AMB) dataset (with quaternions on both sides of the hyper-sphere and the non-ambiguous (non-AMB) dataset (with

all quaternions on one side of the hyper-sphere.)

92

Mapping quaternions to one side of the hyper-sphere has an effect on the orientation of

the third principle component and the contributions of all principle components. These

increases are proportional to the range indicating a change in the distribution of training

patterns in quaternion space.

The shape of the dataset in quaternion space described by the variance of the

eigenvectors was discussed earlier. When investigating the differences in the shapes of

the datasets it was found that forcing quaternion to one side of the sphere produced

datasets with a less regular distribution. A marked increase in error (a positive

difference) for 90 and 135 degrees in correlation with a comparative increase in

eigenvector variance can be seen in TABLE IV. A large change in the difference in

eigenvector contributions for the largest radius (150 degrees) is noted but a relative

improvement in error, which can be attributed to the change in dataset orientation as

shown in Fig. 18 above.

TABLE IV

EFFECT OF AMBIGUITY REMOVAL ON EIGAN VALUES AND

PERFORMANCE

Radii of Simulated

Constraint

5

20

45

90

135

150

Difference in variance of

Eigenvector contributions

0

0

0

7.19

4.82

722.21

Difference in

MSE

1.59E-05

-9.8E-05

-2.6E-05

0.0040

0.0043

0.0029

Experiments also show that the effect of forcing the quaternion to one side of the hyper-

sphere is different depending on the axis at the centre of the constrained region. This is

shown in TABLE V.

93

TABLE V

THE EFFECT OF CONSTRAINT CENTRE ON QUATERNION DISTRIBUTION.

Limb Start

Alignment

Y

X

Z

Difference (4D

Pythagorean Distance)

0.087

0.120

0.236

4.2.2 Irregular Boundaries

In human anatomy most of the rotational boundaries encountered are irregular.

Therefore the performance of this technique on such boundaries is an important

consideration. In the experiments shown here irregular boundaries designed to test the

capabilities of this constraint modelling approach were used.

Mathematically generating datasets for constrained regions with an irregular boundary

is difficult. For these experiments a boundary and rotation recording program written in

C++ using OpenGL was used. This approach produced quaternions on both sides of the

quaternion hyper-sphere for all regions unlike the earlier automated test set generation.

Experiments using an ambiguous dataset, where invalid quaternions were corrected to

the closer of two boundaries (one on either side of the quaternion hyper-sphere,) did not

train successfully. Based on the successful regular boundary experiments, all points on

the boundary (used for generating corrections) and within the valid region were forced

to inhabit the same side of the quaternion hyper-sphere mimicking the distribution of

the earlier regular boundary experiments.

The results show the neural network was able to learn the irregular boundary, though

the error was higher than in the case of the simpler regular boundaries shown earlier.

This is demonstrated by the average results shown in TABLE VI. The resultant

networks are on average of higher complexity than those evolved for regular

boundaries.

94

TABLE VI

COMPARATIVE PERFORMANCE ON TEST DATA

Boundary

Regular

Irregular

Min. / Max. MSE

4.79E-05 / 7.86E-04

9.4 IE-03/ 1.4 IE-03

Avg. MSE

3.3 IE-04

1.24E-03

Avg. Hidden Nodes

16

18.4

Comparing the results using the Pythagorean error metric it was observed that for the
boundary shapes investigated the average error for all patterns for each of the five
networks is less than 0.4 (as shown in Fig. 29). Given that the maximum possible error
on the unit sphere is 2 (diametrically opposite) this gives and average error of 3.15%
with a maximum error of 21.7%. Considered in terms of the virtual arm (of unit length)
this gives an average error of 6.3% and a maximum error 43.4%.

0.45

0.4

8
g 0.35
4J

Q 0.3 •

« 0.25
g.
S 0.2-
4>
>l

0 0.15
m

0.1

0.05 -

0 - -

Original Small Large

"

C-Shape Highly Irregular

— Max. Pythag. -Min. Pythag. —Avg. Pythag.

Fig. 29 - A graph showing a comparison of Pythagorean error for constraints of irregular shape.

The evolved neural networks were able to learn the boundary in most cases. Fig. 30
demonstrates the neural networks learning of the discontinuity at the irregular boundary.
The chosen boundary is a continuous irregular shape and has both convex and concave

95

regions. The corrections are once again shown in green, and become lighter from start

to finish. The boundary has been highlighted for illustrative purposes.

Fig. 30 -A visualization of the irregular boundary results, ideal corrections are shown as red dashed lines,

neural network corrections (for each pattern) the green solid line. A fifth of the patterns are shown to

improve clarity.

It is clear from the results in Fig. 30 that the neural network has performed well. Some

error is present inside the boundary where valid points are very slightly adjusted. Error

is also present towards the rear of the sphere and other areas. This is best highlighted

using a plot of the test set quaternions graded by the Pythagorean error (using the

Pythagorean distance in three-dimensions,) of the applied resultant quaternion, Fig. 31.

96

Fig. 31 -Test patterns coloured to represent the 3D Pythagorean error of the relative neural network

output. The blue patterns represent low error and the red ones high error.

The pattern of error is similar to that observed for regular boundaries, with the

exception of the cluster of red (high error) points around the concave region of the

boundary.

The results of the experiments varying the shape of the boundary show that the neural

network is remarkably accurate on the majority of boundaries as shown in TABLE VII.

There is strong agreement between the MSB and the recorded Pythagorean error, with

the exception of the best two in each case. The highly irregular boundary one of the

more complex boundaries showed very high performance, though compared to the other

boundaries it required more hidden nodes to achieve this performance. The worst

performance is observed for the C-Shaped boundary, though this is not significantly

worse than the large boundary.

97

TABLE VII

A COMPARISION OF IRREGULAR BOUNDARY SHAPES

BOUNDARY

Highly Irregular

Small

Original

Large

C-Shape

Average 3D

Pythagorean Error

0.030
0.033

0.040

0.056

0.057

AVERAGE
MSE

9.33E-04

9.14E-04

1.24E-03

2.98E-03

3.30E-03

Average

Hidden Nodes

18.2

16.6
14

16.8

16.2

It is useful to visualize these boundaries to identify patterns in the distribution of the

points. The results are shown in Fig. 32, and are labelled as follows; C-Shape (a), Large

(b), Small (c) and Highly Irregular (d).

98

. • *•

(a) (b)

• . . ••-
_\ • •

• f • •

•-_*

- « ~~£f- - r,* -i
^ ;"••«!••• •

• « i

(d) ' * . '. •

Fig. 32 -The additional irregular boundaries visualized using the colour graded points method described

above.

The results show that the neural networks performed well, though difficulties were

encountered with regards to concave regions. This is most noticeable in the case of the

C-Shape boundary and the large boundary (Fig. 32 (a), Fig. 32 (b)). The small boundary

and the highly irregular boundary give much better results. Again the highest errors are

around the discontinuities. Poor neural network performance is observed for regions of

the highly irregular boundary as depicted by Fig. 33 - in some regions the boundary is

attenuated.

99

Fig. 33- A visualization showing the highly irregular boundary only 1/3 of the patterns are shown to aid

clarity. Solid green lines represent the valid patterns while dashed red lines represent the ideal patterns,

both get lighter from invalid to valid.

The visualization (Fig. 33) illustrates the slight errors that still occur at the boundary.

Some of the concave regions between convex regions are lost while others train well

and are clearly visible.

4.3 Discussion

4.3.1 Regular Boundaries

The results show that artificial neural networks can be successfully evolved and trained

to correct joint rotations to a regular boundary. Boundaries similar to those of Korein

[36], Engin et al [41] and Manurel et al [10] have been implemented though in

quaternion space. Herda [4, 5] provided corrective constraints but reduced the

dimensionality of the quaternion representation to do so, the approach presented here

removes this additional complexity. Additionally the correction method used in their

work was iterative and therefore inefficient in comparison to the vector field approach

adopted here (Johnson [2] also used an iterative approach to correction). Both

approaches reduced the dimensionality of the quaternion introducing a complex

mapping and singularities, similar boundaries can be implemented by our approach

100

without reducing the dimensionality of the representation. The approaches of Liu and

Prakash [3] (which extend Lee [6],) decompose the quaternion into two quaternions

representing rotation in a single plane. This effectively gives Euler angle like constraints

with a quaternion-based parameterisation.

Circular boundaries of a number of different radii were trained and the results show

good performance, with an average error of less than 1 % and a maximum error of only

6.3%. An increase in error matched by an increase in network size indicates an

increased complexity between 20 and 90 degrees. PCA reveals that there are significant

changes in the distribution of the data in quaternion space that account for this increase

as for these ranges the distribution of quaternions indicated by the orientation of the

principle components of the dataset change as shown in Fig. 18. These changes in the

distribution of patterns in quaternion space may increase the overlap of internal

distributed representations French suggests this can increase the extent of interference

between patterns which inhibit learning [111].

As the complexity of the evolved networks increases the standard deviation of the

number of hidden nodes evolved decreases. This indicates all the networks evolved for

these ranges were close to the maximum complexity set during these experiments, (20

hidden nodes). Limiting the number of hidden nodes in combination with the

regularization function has prevented an increase in complexity and contributed to the

increase in error.

The Pythagorean error between the ideal correction and the neural network correction

shows that the network performs well for all but a few patterns. In practice these

patterns occupy regions a large distance from the constraint boundary. However, this is

not a problem in that modelling anatomically constrained joints it is unlikely the joint

would move far beyond the boundary before being corrected. It is important to note

that these plots represent the average error over the networks created from repeating the

results, observing the plots for all five separately regional performance variations are

not constant.

The Pythagorean error is generally highest at the boundary due to the discontinuity in

this region and at a second discontinuity present in the region opposite the boundary

where proximally equal corrections to two valid boundary positions must be considered.

101

High Pythagorean error may be recorded in these regions despite the corrected joint
reaching the boundary. Other regions of high error such as those shown in Fig. 24 can

be attributed to sparse areas of training data. It is important to note however that despite

the relatively high error, the correction is in all cases to a configuration within 0.126 (or

12.6% of the limb length). In practice further resources (training, hidden nodes) or
iterative approaches could be used to improve on these results.

The results demonstrate that evolved neural networks of low complexity can be used to

implicitly model simple spherical joint constraints similar to those modelled in exiting

approaches [3]. However the evolved neural network constraints do not project the
quaternion into a space with fewer dimensions and require no pre-processing.

4.3.2 Irregular Boundary

The irregular boundary results have a lot in common with the regular boundary results,

though the MSE is higher due to the increased complexity of the mapping. The 3D
Pythagorean errors are also higher but follow a similar pattern with regions of high error

where discontinuities occur between valid and invalid configurations, diametrically
opposite the boundary and in areas where training patterns are sparse.

Additionally there is high error around the concave region of the boundary caused by
the complexity of the vector field in this region. In the centre of the convex region is
another vector field discontinuity, as invalid configurations are of equal proximity to

valid configurations on either side. In this case as in the case of the region opposite the
boundary, the network may correct a point to the boundary based on training patterns in

the region but correct to the wrong side of the sphere compared to the test set.

The range of irregular boundaries experimented with demonstrate the capabilities of

these neural networks in learning joint constraint boundaries of the kind necessary for

anatomically correct constraints, such as the knee, shoulder etc. The error in three

dimensions is low and there is a good correlation with the ideal corrections, in terms of

the virtual arm (which is unit length) an average error of 6.3% is reported. An

interesting limitation concerning invalid boundaries occurs where the boundary is

concave or convex, these local features are attenuated or lost. This can be attributed to

102

two factors, the first being pattern distribution and the second the learning method of the

sigmoid based neural network. There is little difference in shape between the large (Fig.

32 (b)) and small (Fig. 32 (c)) boundaries yet a noticeable difference in performance is
observed. This may be attributed to the density of patterns, the smaller boundary has the

same number of patterns within the constraint but confined to a smaller region.

In its learning method the sigmoid-based neural network demonstrates good global

learning - that is it learns large general mappings well. It is however insensitive to local
features such as the boundary discontinuity and shape irregularities that are sometimes
lost.

The neural networks evolved to learn the irregular boundary mapping were more
complex in nature in that they had a higher number of hidden nodes. This indicates that
a more complex neural network was required to train the more complex vector field.

The regular boundary experiments (which converted a random rotation to a quaternion)
generated the valid and the majority of invalid quaternions on one half of the quaternion
hyper-sphere. There is ambiguity in the rotations represented by the unit quaternions, in

that the quaternion sphere represents 4ft rotations.

In an attempt to improve performance this ambiguity was removed by limiting the
distribution of points to one side of the quaternion hyper-sphere. The results

deteriorated in performance for larger constraints, this is attributed to the continuity of
the valid and invalid regions in quaternion space. TABLE IV shows that the change in
distribution of data in quaternion space as the difference in the variance of the
eigenvalues increases (indicating that the non-ambiguous dataset is becoming more

elongated than its ambiguous counterpart) there is a marked decrease in performance.
Because of the system used to generate the input quaternions in the ambiguous case

there was no ambiguity in the valid region. Quaternions on both sides of the hyper-

sphere were corrected to a boundary on one side of the hyper-sphere. Forcing the
quaternions to one side of the sphere appears to have affected the continuity of valid and

invalid regions, increasing the number of discontinuities the neural network must learn

to approximate.

103

The irregular boundary experiments used a sampling dataset generator that generated a
quaternion representing the rotation of a control limb being manipulated in three-

dimensional space. Because of this the quaternions it generated were distributed over

the whole of the quaternion sphere. The quaternion space vector field therefore

contained two valid regions. Quaternion joint configurations were corrected to the
nearest of these two boundaries. There are in effect two vector fields, one on each half

of the hyper-sphere separated by a discontinuity. Training neural networks for such
datasets failed to produce any networks with acceptable performance.

To overcome this the valid dataset and the boundary used for corrections was moved to

the one side of the unit quaternion hyper sphere. Quaternions from both sides of the

hyper sphere are corrected to one boundary, giving a vector field with a continuous
invalid region in quaternion space. The neural network successfully learns this vector
field which now contains a single valid region and a single discontinuity at the implied
constraint boundary.

The choice of axis at the centre of the constraint affects the mean squared error and the
actual error in three-dimensional space in different ways. Principle component analysis

indicates that the distribution of patterns in quaternion space is most regular with the
constraint centred on the y-axis and that as the regularity of the dataset decreases the
Pythagorean error increases. According to the Pythagorean metric a dataset with a more
regular shape gives superior results as in the case of quaternion ambiguity. A possible

reason for this is that the increased distribution of patterns in quaternion space reduces
the overlap of internal distributed representations French suggests this can reduce the
extent of interference between patterns which inhibit learning [111].

Indirectly measuring the quaternion error has proved very useful and provides an insight
into the behaviour of this technique when applied to simple anatomical models.

Principle Component Analysis (PCA) has also proved useful in determining the shape

and orientation of datasets in quaternion space.

104

4.4 Conclusion

In conclusion, evolved neural networks show promise in the implicit modelling of joint
constraints. This chapter has demonstrated the successful learning of corrective joint
constraints using quaternions, without reducing their dimensionality in order to do so,

unlike the previous work of Herda et al [4, 5] and Johnson [2]. As this approach deals
with the rotations of the limb directly (parameterised as a single quaternion) there is no
decompose the quaternion as in the approaches of Lee [6] and Liu and Prakash [3].

In addition to the obvious vector field discontinuity at the joint constraint boundary
other discontinuities have been identified. A discontinuity also exists at any point
where two different boundary points are candidates for correction. There are two
regions where this applies, the region diametrically opposite the boundary and in
concave regions of the boundary. In such concave regions, the poor local learning
properties of the neural network paradigm may contribute to the error. This gives strong
motivation for experimentation with other paradigms which offer good global and local
learning, such as mixed activation function approaches [53, 65, 83, 85] and adaptive
spline activation function neural networks [63, 64, 81, 90, 93-95].

The distribution of patterns on the quaternion hyper-sphere has influence over the neural
network training, more specifically the shape and orientation of the dataset. The results
indicate that vector fields generated with the y-axis at the centre of the constraint may
produce a more evenly distributed vector field in quaternion space, improving the

results.

The neural network performs poorly if ambiguities are present in the quaternion space
vector field. To overcome this, the boundary and valid points must be defined on one
side of the quaternion hyper-sphere, and quaternions on both sides of the hyper-sphere
corrected too this. Moving all quaternions to one side of the hyper sphere produces

poor results for large constraints as the vector field becomes malformed.

In conclusion genetically evolved neural networks are applicable for joint constraint
modelling using quaternion as a result of their capabilities in learning vector fields in
quaternion space. These capabilities are in turn dependant on the formation of the

vector field in quaternion space.

105

5. Increasing Performance

In previous chapters both the evolution of the neural networks and their training was

limited to maximise productivity. These limitations, while reducing training times for

the networks have a detrimental effect on performance.

In order to illustrate the improvements in performance possible with additional training,

several key factors in the performance of evolved neural networks were investigated. In

some cases the discoveries influenced the creation of earlier datasets though where

training times were increased performance was sacrificed.

5.1 Methodology

There are a number of factors that influence the performance of genetic algorithm

evolution and neural network training. The following experiments aim to investigate

several factors identified in the literature that effect the performance of neural networks

and genetic algorithms [49, 79, 134].

In the following experiments two separate discontinuous vector field mappings are

investigated. The first represents a vectorial correction to a spherical constrained region

of input vectors in three-dimensional space (as discussed in Chapter 3), and the second a

quaternion correction to a given boundary from an initial quaternion orientation (as

discussed in Chapter 4).

5.1.1 Number of Hidden Layers and Nodes

In practice when utilizing Multi-Layer Perceptrons in their native form the ideal number

of hidden layers and nodes is identified by trial and error [49, 81]. If not enough nodes

are present then the neural network may not be powerful enough for the given task. If

too many nodes are present the training time increases may be unacceptable or more

seriously the neural network will loose its ability to generalise [49, 81].

106

This problem can be alleviated though the use of genetic algorithms, which search the
space of viable networks for one suited to the current dataset. A population of neural
networks is created these have the maximum number of hidden nodes, the appropriate
region of the Modified Miller Matrix (below the main diagonal as shown in Fig. 7) is
randomly populated creating the connections between the nodes. This leads to a number
of hidden nodes not being connected these nodes are evolved but are not present in the
phenotype. Binary markers present on both the links and nodes indicate their
contribution to the phenotype, if these bits change during cross over or mutation a node
may be deactivated. In which case neither the node or any associated links are
represented in the phenotype [81].

A regularization term in the fitness functions of the genetic algorithm favours smaller
networks. Small networks have a number of properties such as a low computational
complexity and good generalisation ability that make them favourable. As part of the
evolution of the networks via genetic algorithms, the number of links between the nodes
is evolved.

The experiments that follow are concerned only with the maximum number of hidden
nodes evolved in the hidden layer, this is an upper bound on the complexity of the
network [127]. The regularization function aims to minimise the number of links and
therefore the number of hidden nodes is kept below the maximum.

5.1.2 Training Epochs

The ideal number of training epochs can be determined by examining the performance
of the neural network on a test set (unseen patterns) and comparing this with the training
set (previously seen patterns.) At some point during training the performance on the test
patterns starts to decrease. When this occurs the network starts to "memorise" the
training set, loosing its ability to generalise this is knows as over-training [49].

Traditional approaches used a trial and error approach to identify over or under training.
Evolution provides an alternative to this time consuming approach. Using the
performance of the network on a unique set of validation patterns the genetic algorithm

107

evolves an ideal number epochs. The following experiments are concerned only with

the maximum number of training epochs, the minimum being zero.

5.1.3 Number of Patterns

Several rules have been suggested for the number of training patterns given a network

configuration with varying successes [59]. Net JEN has the capability to evolve the

number of training patterns however this is achieved by sampling a dataset of maximum

size. As pattern order appears to have a significant effect on the result an identification

of the ideal training set size is attempted by experimentation. More patterns in the

training set increases the length of time required to train the population of neural

networks. To limit the time required for each experiment in earlier experiments the

number of patterns was limited to five hundred. Dr. Helmut Mayer (a noted researcher

in evolved neural networks heavily involved with both the NetJEN project and NetGEN

its predecessor,) suggested this limit in a in a private correspondence.

5.1.4 Pattern Order

The order in which patterns are presented to the neural network has an impact on the

training. Due to the global learning nature of the multi-layer perceptron patterns in one

locality may affect weights associated with another. Patterns may be presented in any

order, in the experiments present here these were limited to the following

configurations; valid patterns followed by invalid patterns, invalid patterns followed by

valid patterns and both valid and invalid patterns in a random order. The patterns from

the original ordered dataset were moved to new random locations to create the random

order data set. Each of the datasets contained the same set of patterns in a different

order.

5.1.5 Pattern Distribution

There are a number of ways in which the patterns could be distributed (or the mapping

sampled.) Distributions with points clustered in a region close to the boundary and an

even distribution over the whole surface were compared. In the clustered set a dense

108

region of points was placed in the immediate vicinity (5 degrees) of the boundary. There

were four regions in total, as illustrated in Fig. 34. In the non-clustered set the valid and

invalid regions were divided into four regions containing an equal number of points.

These are illustrated in Fig. 34.

Boundary

Clusters

No Clusters

Invalid Region

Fig. 34 - A diagram showing the distribution of patterns in the datasets. The number of patterns in each

coloured region is constant irrespective of its size.

In both distributions the number of patterns within each of the regions is constant

irrespective of the constraint size. This maintains independence between the size of the

constraint and the distribution of patterns that may otherwise lead to small constraints

having very few or no patterns in their valid region.

5.1.6 Generations

Genetic Algorithms are less susceptible to over training (local minima), though are

constrained by the size of the population, number of generations, mutation rates etc.

[79]. The performance of a neural network increases until the population contains a

number of networks with similar genes. Further increases in performance require large

numbers of generations. There is however some optimal point where increasing the

number of generations still results in an increase in performance [135].

109

5.1.7 Population Size

The size of the population primarily effects the diversity of individuals within the gene

pool. Potentially each individual carries beneficial alleles (the individuals genotype is a

set of alleles,) that combined with alleles form other individuals may form a better

solution. Larger populations display poor initial performance due to their slow changing

populations, though their performance over a number of generations is better as their

larger population allows them to maintain a more diverse gene pool and avoid allele

loss leading to a better solution [134, 135]. Small populations display better initial

performance as the small population changes quickly, however due to a loss of alleles

from the gene pool the final solution is inferior to that of a larger population [134, 135].

It is clear that population size and the number of generations are linked. A small

population may out perform a large one if the number of generations is limited [135]. A

constant population size was maintained throughout the earlier experiments to minimise

the training times. The effects of population size are explored in an attempt to identify

an ideal population size for these experiments.

5.1.8 Activation Function

The activation function has been shown to be significant in effecting the performance of

a neural network [64, 84]. The effect of activation functions can be explored using

genetic algorithms, in the approach used [63] the activation function of layers of nodes

are encoded as part of a genome. The genetic algorithm searches for the best of the

encoded types this is described as pure activation function evolution [65]. The

activation functions for the hidden and output nodes were evolved, with the following

candidate functions; Gaussian, linear, sigmoid, sinus and hyperbolic tangent. These are

shown in Fig. 35.

110

40 n

-10
(0) (d)

(e)

Fig. 35 - The candidate activation functions for evolution. The functions depicted are linear (a), Gaussian
(b), hyperbolic tangent (c), sinus (d) and sigmoid (e).

The activation function information (as show in Fig. 6(d)) is encoded into the genome
(as shown in Fig. 6(a» and converted into a linearized binary adjacency matrix as
demonstrated for the example network in Fig. 7 [83].

Alternatively a spline based function is evolved to form the shape of the activation
function required [63, 64]. Early experiments utilized a neural network with sigmoid
activation functions in the in both the hidden and output nodes, significant
improvements were made by replacing the sigmoid activation functions in the output
layer with a linear activation function. These results are included to justify the choice of
activation function in the mam body of this work. Template based evolved cubic spline
activation functions for the hidden layer are investigated as suggested by Mayer and

Schwaiger [63].

The genome representing the template spline activation functions (as show in Fig. 6(c))
is evolved separately and does not form part of the adjacency matrix. Evolution of the

111

activation function is effectively the same as in the previous case with an index

representing each of the spline templates being evolved [63].

5.1.9 Dataset Creation

The results shown in this section are based on datasets from earlier experiments and the

creation methods have remained the same. The vector-based experiments concerned a

vector field representing a spherical constraint of radius 0.125 with its centre at the

origin. Valid and invalid vectors are generated with components ranging form -1 to +1,

giving a cube with the origin at its centre. In addition to the datasets created in earlier

experiments, i.e. the training set, validation set and test set, a fourth dataset was created

for the number of patterns experiments. Here it was necessary to test the performance

of the networks on a common dataset, these contained three thousand patterns. The

constraint is described in detail in section 3.1 and the creation of the constraint in

section 3.1.1.

A discontinuous vector field in quaternion space that described a twenty-degree

constraint on the surface of a unit sphere was chosen along with out initial irregular

boundary. Once again additional datasets, for example a common test set with three

thousand patterns for the pattern number experiments were created as required. A

description of the discontinuous vector fields used to represent these constraints and

their construction is contained in sections 4.1 and 4.1.1 respectively.

5.1.10 Activation Function Evolution using NetJEN

NetJEN allows the evolution of activation functions via the two methods outlined

above, that is encode the activation function of nodes as part of a genome and have the

genetic algorithms search for the best of the encoded types from a list of candidate

functions this is described as pure activation function evolution [65]. Alternatively a

spline based functions can be evolved which form the shapes of the activation functions

required [63, 64].

Mayer, Strapetz and Fuchs [83] implemented pure activation function evolution in the

NetGen system. The genome is discussed in section 3.1.2 (and shown in Fig. 6(d)) and

112

it is noted that the index of the activation function is encoded into the binary adjacency

matrix (shown in Fig. 7). The number of bits required to represent the index of the

activation function is flexible depending on the number of candidate networks presented

[83]. The maximum size of the networks is set in advance and as the structure of the

networks is changed links and nodes are switched on and off using binary markers (see

Fig. 6) hence the chromosomes contain some non-coding regions [83].

The alternative involves the representation of a cubic spline within the genome the

control points of which are evolved during the evolutionary process. The description

which follows is based on that documented by Mayer and Schwaiger [63, 64] for the

earlier system on which NetJEN is based. A fixed number of control points are used to

describe the cubic spline activation function as outlined in equation 69.

(jr,., v,)e 9?x9l where i = \,.....,n (69)

Here n is the number of control points and defines n-\ intervals on the x-axis (equation

70).

(70)

For each of these intervals a function /; (x) is defined in equation 71.

ai (x-xi) + bi (x-xi) 2 +ci (x-xi) 3 whereai ,bi ,ci e*K. (71

This demands equality of the function value and that the first and second derivative can

be determined for each interval yielding a continuous and differentiable function

composed of a number of cubic splines. The number of control points, range of the

cubic-spline activation (sensitivity interval) and its limits during activation (activation

interval) must be configured before evolution begins. Within these boundaries the spline

is free to develop.

NetJEN implements template-based spline activation function evolution that relies on

the encoding and evolution of the spline as indicated above. However Huber and Mayer

113

[63] found results were improved by evolving a set of custom spline activation
functions (called templates) and simultaneously evolving the functions of the hidden
layer with these templates as candidates. The spline templates are encoded and evolved
as part of the genome (shown in Fig. 6(c)), the template associated with each node is
evolved and encoded in the same way as the candidate functions are in the pure
activation function encoding approach [63].

5.1.11 Training and Evolution

In each experiment the NetJEN system (described in 3.1.2) was configured as follows.
The input layer represents the current joint either as a three-dimensional unit vector or a
quaternion rotation. The output layer represents the correction either as a corrective
three-dimensional vector or a corrective quaternion rotation. The number of hidden
nodes and connection topology are randomised and then evolved during the learning
process using Genetic Algorithms. The weights of the interconnections are initially
randomised then updated using the resilient back-propagation algorithm. The evolution
and training parameters, where constant, were set as shown in TABLE VIII and each
experiment was repeated five times to ensure the consistency of the results. Unlike
previous sections the table shows the constants used for each parameter when it was not
the subject of investigation.

114

TABLE VIII

EVOLUTION AND TRAINING SETTINGS

Parameter

Regularization

function

Hidden Nodes

Number of

Generations

Population Size

Fitness Function

Evolve number of

Links

Evolve number of

Hidden Nodes

Evolve number of

training epochs

Learning Rate

Stopping Error

Training Function

Max Epochs

Description

Secondary fitness function.

Maximum no. of hidden

nodes.

No. of generations over

which the ANN were

evolved.

Size of the populations

evolved.

Primary fitness function.

Networks are pruned down

from fully connected

networks.

Evolves the no. of hidden

nodes.

Evolves the no. of training

epochs

Learning rate used when

training the ANN.

MSB at which the ANN are

stopped.

Training function used to

train the weights of the

ANN.

Maximum number of

training epochs

Value

Number of

links

20

50

20

Inverse SSE

On

On

On

0.1

0.001

Resilient back-

propagation

500

The neural networks used sigmoid activation functions in their hidden layer and linear

activation functions in their output layer, unless otherwise stated. The justification of

this decision is covered in a later section of this chapter.

115

The regularization weight was chosen based on publications by the authors [63], as was

the learning rate [126], the stopping MSE for the networks was identified though

experimentation. The size of the population, number of generations and initial limits for

the number of training patterns were suggested by a co-author of the NetJEN system Dr.

Helmut Mayer in private correspondence.

Additional spline specific parameters were required for the experiments involving the

evolution of spline activation functions these are outlined in the following table

(TABLE IX), based on those used by Mayer and Schwaiger [63].

TABLE IX

THE CONFIGURATION OF THE SPLINE EVOLUTION PARAMETERS

Parameter

Control Points

Activation Interval

Sensitivity Interval

Number of

Templates

Description

Number of control points

used to define each spline.

Minimum and maximum

activation displayed by the

function.

Interval over which the

functions output is

considered.

The number of template

nodes evolved.

Value

Min:-1.0

Max: 1.0

Min: -5.0

Max: 5.0

5.2 Results

The majority of experiments in this section were carried out for a discontinuous vector

field representing a spherical constrained region in three-dimensional space. This

constraint showed high MSE and has the benefit of easily quantifiable results. Further

experiments demonstrate the applicability of these results to quaternion based corrective

constraints.

.16

5.2.1 Discontinuous Vector Fields Representing Three Dimensional

Constraints

Firstly the improvements are investigated on vector fields that represent the spherical

constraint in three-dimensional space (discussed in Chapter 3).

5.2.1.1 Neural Network Size

Increasing the maximum number of hidden nodes that the genetic algorithm can assign

to sixty nodes improves performance on both the unseen test set and on the training, as

shown in Fig. 36. After this point the performance on the training set continues to

increase while the performance on the test set decreases. Increasing the number of

hidden nodes also increased the time required to complete the experiments, eighty

hidden nodes taking just over a week to complete on a 2.4 ghz Pentium 4, experiments

with twenty hidden nodes took between 16 and 18 hours on the same hardware.

u
M
JS

6.00E-04 -

7.00E-04 -

6.00E-04 -

5.00E-04 -

4.00E-04 -

3.00E-04

2.00E-04

l.OOE-04 -

n nnr-idfi -

...............|

i

k

.

1

i

,
................. i
1

I

|--------

,

20 40 60 80

Maximum Number of Hidden Nodes

100

• MSE - Test Set MSB - Training Set

Fig. 36 - The effect of the maximum number of hidden nodes on testing and training set performance. The

MSE values shown are averages of the five neural networks evolved and trained in each case.

Examining the number of hidden nodes, links and training epochs it was found that an

increase the maximum number of hidden nodes results in an increase in the number of

117

hidden nodes evolved in the neural network. The number of training epoch evolved
also increases as shown in Fig. 37.

800 --

700 -

n
c 600 -

v. 500 -

4J 400 -
z
c 300 --
0

S 200 -
x

100 -

0 --

T 495

490

485

480

- 475

--465

- 460

455

450
20 40 60

Maximum Hidden Nodes

80

-Hidden Nodes -Links Training Epochs

Fig. 37 - Effect of increasing the maximum number of evolved hidden nodes on the topology and evolved

training requirement of the neural network.

5.2.1.2 Training Epochs

The number of training epochs has a significant effect on the performance of the neural

network and incurs a significant time penalty. Five runs of the two thousand-epoch

experiment required over three days to complete. Fig. 38 shows the resulting MSE, a

decrease in the gradient of the MSE curve indicates that more epochs would not produce

significant improvements in the result.

18

9.00E-04 -

8.00E-04 -

7.00E-04 -

6.00E-04 -

5.00E-04 •

4.00E-04 -

3.00E-04 -

2.00E-04 -

l.OOE-04 -

O.OOE+00 -

.......................i

i

\—-—

i

, 4
.....................tv

0 500 1000 1500 2000 250

Epochs

• MSB - Test Set A MSB - Training Set

Fig. 38 - A graph showing the effect of training epochs on neural network performance.

Increasing the maximum number of training epochs for neural networks created by the
genetic algorithm results in an increase in the number of training epochs evolved for
each of the networks generated. However there is no significant effect on the number of
hidden nodes or interconnections (links) as shown in Fig. 39.

M

C
-rl

-,

n
TJ

£
C

TJ•o
•H
X

X DU

140 -

120 -

100

80 -

60

40

20 -

n -

•
A

•

^

4
"

-

A

• •

——— | ——————————————— - —— - ——————————————————————————— ——

2UUO

1800

1600

1400

1200

- 1000

800

600

400

200

- 0

n
U
0 Q.
M

C
•H
C
•H

2H

500 1000

Training Epochs

2000

iHidden Nodes * Links Epochs

Fig. 39 - A graph showing the effect of training epochs on evolved neural network structure

119

5.2.1.3 Number of Training Patterns

Increasing the number of hidden nodes utilised an additional test set. As in previous
experiments the performance is shown on the previously seen patterns (training set) and
unseen patterns (test set) of equal size. This is shown in figure Fig. 40. A common test
set containing three thousand patterns was used to give an indication of the performance
of each network. The results show that performance on the common test set generally
improved as the number of patterns increased. However the scale of the improvements

decreases.

in

8.00E-04 -

7.00E-04 -

6.00E-04 -

5.00E-04 -

4.00E-04 -

3.00E-04 -

2.00E-04 -

l.OOE-04 -

n nfti?.i-rkn -

i

.......&........

I.......

i «

i

3

i

————————————— i

si!

.................

————~1r——

500 1000 1500 2000 2500

Training Set Size

3000 3500

"MSE - Test Set
MSE - Common Test Set

.MSB - Train Set

Fig. 40 - The effect of training set size on neural network performance.

Increasing the number of patterns does not appear to have a constant effect on the
number of hidden nodes, links or training epochs as shown by Fig. 41. The smallest and
largest training sets seem to result in large networks and a low number of training
epochs, between these two extremes less neurons and more training epochs are required.

120

*«« -

120

100 -
n
ii
C
J 80 -

8 €0-
•9

1 40-

20 -

o -

t

4

*
*

*

• . . •

————————— i ————————— i ————————— i ————————— i —————————

- 490

- 465

- 460

h 475 5

1
470 M

465

460

- 41R

250 500 1000 2000

Training Set Size

3000

• Hidden Nodes Links Epochs

Fig. 41 - Effect of pattern density on the performance of evolved neural networks.

5.2.1.4 Generations

The results show that as the number of generations is increased the performance on the
training and test sets increases as shown in Fig. 42. However the gradient of the
improvements itself tends towards zero indicating that further increases in the number

of generations would not produce any significant improvements in the result.

121

0.0006 -

0.0005 -
u
<n
S 0.0004 -

D>

Jj 0.0003 -

0.0002 -

0.0001 -

o -

,
j

..............

) ——————

I...............

r"~ ~- '
,

i ————

i---— ---------

i ———

..........J

'

,....

k
1

,

, ———————— •

1

I

••— ••— — — 1

i ———————— i

50 100 150 200 250

Generations

300 350 400

• MSE - Test Set A MSE - Training Set

Fig. 42 - A graph showing the Number of Generations vs Average MSE. The result for fifty generations
on the test set was much higher and obscured the other results.

Changing the number of generations allows the evolutionary process to continue
towards a solution. As evolution is allowed to continue the number of links, hidden
nodes and epochs move closer to their limits shown in Fig. 43. This seems to agree with
the results observed in the individual hidden node and epoch experiments, in that
improved performance requires a larger number of hidden nodes and training epochs.

122

500 -

400 -

Id

s

200 -

100 -

0 -

(3 5

ir ————— ~*

1 ——————— I

0 1(

^^X

I —————— i

50 1

> — ————— .

i —————— "

I ———————

50 2(

_ —— . ——— *

30 2!

• ——————

50 3(

——— ——— t

•

30 3!

,

50 4C

Generations

-•-Hidden Nodes -Links - Epochs

Fig. 43 - Effect of increased evolution on evolved neural networks.

5.2.1.5 Population Size

Experiments were carried out to determine the effect of varying the size of the
population of neural networks used during evolution. For all other experiments a
population size of fifty individuals was used. Experiments with between ten and one
hundred and fifty individuals reveal that an increase in the size of the population
produces an increase in performance, (as shown in Fig. 44.) There is a decrease in the

gradient of improvement towards a minimum.

123

u

0.0014 -i

0.0012

0.001 -

0.0008 -

0.0006

0.0004

0.0002 -

n

•

• 4

1 <

I .

.................

20 40 60 60 100

Population Size

« MSE - Test Set

120 140 160

• MSE - Train Set

Fig. 44 - Effect of population size on the performance of the evolved neural networks.

The effect of varying the population size on the neural networks evolved is clear from
the number of hidden nodes, links and epochs evolved. As the population size increases
the number of hidden nodes, links and training epochs also increases, as shown in Fig.

45.

160 n — ——— '

140 -

120 -
n

.5 100 -

--. 80 -
n
5 60-
0z 40 -

20 -

0 -

i
A

» A

*

A

.

|

- 480

- 470

- 460 n
£
0

- 450 °
u

- 440 O>
c
H

-430 .H
HI

420 H

- 410

- 400———— ———————————————————————— | ——— • I" 1

12 25 50 100

Population Size

150

iHidden Nodes Links Epochs

Fig. 45 - Effect of population size on evolved neural network performance.

124

5.2.2 Discontinuous Vector Fields Representing Regular and

Irregular Quaternion Boundaries

The effects of these same factors on the more complex discontinuous vector fields

representing quaternion based rotational constraints (as discussed in Chapter 4,) are

examined. The results of these experiments provide evidence as to the improvements

possible for practical applications of these techniques.

5.2.2.1 Number of Hidden Nodes

As in the previous experiments, increasing the maximum number of hidden nodes the

genetic algorithm can evolve within the neural network reduces the MSE, as shown in

Fig. 46. The degree of improvement is similar for both training and unseen patterns.

Due to the time required to complete these experiments the results are insufficient to

identify the point at which the neural network starts to over specialise, (when the test set

performance decreases despite and increase in training set performance.) This indicates

that further improvements are possible.

1.60E-03 -

1.40E-03 -

1.20E-03 -

w l.OOE-03 -
01
S B.OOE-04 -

6.00E-04 -

4.00E-04 -

2.00E-04 -

•"-"™»"»~™1

i

*

'\- ------
<i

K.......................
1

L.

i

<

"1

i

>

f--------

O.OOE+00 - ————————— --, — — -T - i - ----- i —————————— i

0 10 20 30 40 5(

Maximum Hidden Nodes

•MSE - Training Set (RB) A MSE - Test Set (RB)

• MSE - Train Set (IRB) • MSE - Test Set (IKS)

Fig. 46 - Effect of hidden node variation on regular and irregular quaternion boundary constraints.

125

As in the previous experiments the increase in the maximum number of hidden nodes
leads to an increase in the number evolved, (Fig. 47,) and an increase in the number of
training epochs evolved with respect to the increasing neural network size.

ouw -

500

400

300 -

200

100 -

n .

*
x *

* • •

•
4>

1

*

500

450

400

350

300

250

200

150

100

50
n n D n

n
£.
0
0a
bl

10 20

Hidden Nodes

40

• Hidden Nodes (RB)

• Epochs (RB)

• Links (IRB)

• Links (RB)

A Hidden Nodes (IRB)

*Epochs (IRB)

Fig. 47 - Effect of the maximum number of hidden nodes on the topology and training requirements of
evolved neural networks trained to model regular (RB) and Irregular (IRB) boundaries.

5.2.2.2 Training Epochs

Variation of the maximum number of training epochs evolved as part of the neural
network structure reveals that an increase in the number of epochs results in an increase
in the performance of the neural networks evolved, as shown in Fig. 48. As the
maximum number of training epochs increases the gradient of this increase decreases.
This indicates that a saturation point exists where further neural network training would

have no further benefit.

126

2.00E-03 -i

1.80E-03 -

1 . 60E-03 -

1.40E-03

1 .20E-03 -

l.OOE-03 -

8.00E-04

6.00E-04

4 .OOE-04

2.00E-04 -

n nnv.+nn -

m

•

i
1

i

...............i

i

........................
i

............

>

k

i

.............j

i

>---------

.........................

500 1000 1500

Max Epochs

2000 2500

• MSB - Train Set (IRB)
• USE - Train Set (RB)

A MSB - Test Set (RB)
• MSB - Test Set (IRB)

Fig. 48 - Effect of increasing the maximum number of training epochs allowed during evolution on the
performance neural networks evolved to model regular (RB) and irregular (IRB) boundaries.

An increase the maximum number of training epochs which can be genetically assigned
to any individual network results in no significant change in the neural network size,

indicated both by the number of hidden nodes and links, as shown in figure Fig. 49.

ADW

160 -

140 -

•jf 120 -
-H
J 100 -
V.

n 80 -
II
0 60 -
z

40 -

20 -

ft -

*
* *

*i
*

«

*
2 a a a -

—————— i —————— i —————— i ——————

- 2OOO

1800

1600

1400

1200 N
JC

1000 o
- 800 w

600

400

200

n

250 500 1000

Max Training Epochs

2000

'Hidden Nodes (RB)
.Hidden Nodes (IRB)
Epochs (RB) ___

* Links (RB)
• Links (IRB)
> Epochs (IRB)

Fig. 49 - Effect of changing the upper limit for training epochs of the neural networks evolved to model

regular (RB) and irregular (IRB) boundaries.

127

5.2.2.4 Training Patterns

In the 5.2.1 above the number of training patterns was investigated using a less
complicated three-dimensional point based constraint. An increase in performance is
observed in both regular and irregular boundaries, as the number of training patterns is
increased. Fig. 50 shows that irregular boundaries demonstrate a marked improvement
on the common test set (three thousand patterns). However the regular boundary
demonstrates a very small improvement.

1.40E-03 -

1 one*— n^ -

l.OOE-03 -

u M n oniP— n^

6.00E-04 -

4.00E-04 -

2.00E-04 -

ft ftr\e+.nri -

a
A I

^.....

*—————————\

(-

' " " 1
3

r——

?-------

c

• --- ••<

[...................?<
.

s

........

t.......
.

»

500 1000 1500 2000

Patterns

2500 3000

MSB - Test Set (RB)

MSB - Comnon Test (RB)

+MSB - Training Set (IRE)

iMSE - Training Set (RB)

>USE - Test Set (IRB)

OMSE - Comnon Test (IRB)

Fig. 50 - A graph showing the effect of training set size on the performance of the neural networks for

both regular (RB) and irregular (IRB) boundaries.

The effect of increasing the number of patterns on the number of hidden nodes appears
to be more pronounced in the irregular boundary results. Fig. 51 shows both an increase
in hidden nodes and epochs indicating an increased difficulty associated with the
inclusion of new patterns. In the case of the regular boundary this increase is not
present, indicating that in the regular boundary case the problem does not increase in

complexity as the number of patterns increases.

128

160 -

140 -

120 -
X
5 loo -
ij
-^ 80 -

•S €0 •

i 40 -

20

0 -

9 A o ~I s * •
X o

X 0

- .

D 8 o a 6
——————— I ——————— i ——————— i ——————— , ———————

- 500

- 450

400 •^ I
" 350 M

- 300

- 9*n

250 500 1000 2000

Training Pattern*

3000

DHidden Nodes (RB)
A Hidden Nodes (IRB)
oEpochs (RB)

>Links (RB)
• Link (1KB)
x Epochs (IRB)

Fig. 51 - A graph showing the effect of changing the number of training patterns on the evolved neural

networks for both regular (RB) and irregular (IRB) boundaries.

5.2.2.5 Pattern Order

The results of the pattern order experiment showed the configuration used throughout

the experiments, that is, valid patterns followed by invalid patterns, was superior to both

the random order and reversed order (invalid patterns first) training sets These results

are shown in TABLE X.

TABLE X

THE RESULTS OF THE PATTERN ORDER EXPERIMENT

Normal

Random

Reversed

Average

4.88E-04

6.43E-04

6.49E-04

Standard Deviation

1.61E-04

1.10E-04

1.58E-04

129

5.2.2.6 Pattern Distribution

Comparing the clustered and evenly distributed (non-clustered) datasets (outlined in

5.1.5,) there is a clear improvement in the results for evenly distributed patterns. This

can be observed in a comparison of the average network error as shown in TABLE XI.

TABLE XI

THE ERROR AND EVOLVED NODE CONSTRUCTION FOR CLUSTERED AND

NON-CLUSTERED DATASETS

No Clusters

Clusters At Boundaries

Avg.

MSE

4.88E-04

7.85E-04

Avg. Hidden

Nodes

17

17.8

Avg.

Links

144.2

164.6

Avg.

Epochs

458

492.8

The neural networks evolved were of comparable size and required a similar amount of

training epochs as shown in TABLE XI. As shown by the number of hidden nodes,

links and training epochs evolved by the genetic algorithm over the five test networks

also shown in TABLE XI.

5.2.2.7 Activation Function Evolution

All experiments studying the effect of the activation function on neural network

performance are presented in the following section. This holistic approach gives the

results context.

The section begins with a general overview of the results obtained for the network

architectures investigated. These results and the evolution of activation functions

concern only the four-dimensional vector fields representing the quaternion based

constraints and the earlier constraints of lower dimensionality. Later the template based

130

spline activation function neural networks are compared to sigmoid-linear neural

networks for one, two, three and four dimensional vector fields.

The performances of evolved topology neural networks with a number of hidden and

output layer activation functions were examined. Sigmoid activation functions in both

the hidden and output layer produced very poor performance. This was countered by the

introduction of a linear output layer (this is described as the sigmoid-linear neural

network.) Several authors have used bipolar sigmoid (or hyperbolic tangent) neural

networks for vector field approximations [54, 55, 57].

The use of evolution in assigning the activation functions produced some improvement

over the sigmoid-linear neural network in terms of the average MSB over five evolved

neural networks. Sigmoid linear neural networks produced a lower minimum error than

both pure evolved activation function and evolved template based spline activation

function neural networks, but also produces a higher maximum error. These results are

shown in TABLE XII.

TABLE XII

TABLE DETAILING THE PERFORMANCE OF NEURAL NETWORKS WITH

DIFFERENT ACTIVATION FUNCTIONS

Network Construction

Hidden / Output

Cubic Spline / Linear

Evolved / Evolved

Sigmoid / Linear

Sigmoid / Sigmoid

Avg.

MSE

5.46E-04

6.19E-04

6.22E-04

1.01E-01

Std. MSE

7.64E-05

2.25E-04

2.12E-04

1.26E-04

Max

MSE

6.72E-04

9.18E-04

9.67E-04

1.01E-01

Min MSE

4.42E-04

3.68E-04

3.18E-04

1.01E-01

The topologies of the neural networks evolved by the genetic algorithm were varied.

The neural network with sigmoid hidden and output layers produced the smallest

network but the high error makes them of little use. The sigmoid-linear neural network

evolved a number of nodes close to the maximum of twenty hidden nodes to produce

131

reasonable performance (TABLE XIII). The evolved and cubic spline neural networks

give better performance on average and require fewer hidden nodes to achieve this, as

shown in TABLE XIII.

TABLE XIII

TABLE DETAILING THE TOPOLOGY OF NEURAL NETWORKS WITH

DIFFERENT ACTIVATION FUNCTIONS

Network Construction

Hidden / Output

Cubic Spline / Linear

Evolved / Evolved

Sigmoid / Linear

Sigmoid / Sigmoid

Avg. Hidden Nodes

14.4

14.6

17

8.6

Avg. Links

124.8

119.6

129.6

56.6

Avg. Epochs

485.6

433.2

475.8

430.6

When evolving the activation functions of the hidden and output nodes via pure

evolution, some patterns in the evolved activation functions can be identified. The

performance of the five neural networks is shown in Fig. 52 along with the distribution

of the evolved functions. There is correlation between the number of patterns and the

performance of the network, with larger hidden layers showing better performance. The

results also suggest that an increase in the number of hidden nodes with Gaussian,

bipolar sigmoid (or hyperbolic tangent) and Sinus functions improved the performance

of the neural network, this coincides with a decrease in the number of hidden nodes

with sigmoid functions.

132

3.68E-04 4.36E-04 5.15E-04 8.56E-04 9.18E-04

iGaussian DLinear • Sigmoid • Sinus • Bipolar Sigmoid

Fig. 52 - Graph detailing the comparative performance of activation functions in the hidden layers of the

evolved networks.

Evolving the output layer seems to have less influence. A wide variety of activation
function combinations are observed but there is no correlation between the activation
functions and the performance of the evolved neural networks. Sinus and linear
activation functions are most prevalent, few Gaussian or sigmoidal activation functions

were evolved.

The dataset used in these experiments has four distinct regions (discussed in some detail
in section 5.1.5) and provide a clear indication of the performance in each of these
regions. The results (shown in Fig. 53) indicate that all three networks demonstrate
similar performance on the inner constrained region (shown as the green region in Fig.
34) though the pure evolved activation function network is least capable. In the second
region inside the constraint but adjacent to the boundary (shown in red in Fig. 34)
Sigmoid linear and spline linear networks display similar performance, and purely
evolved neural network give lower error. These regions are within the constraint
boundary and so the corrective response in both cases is the identity quaternion.

133

0 1 04

u 0.035
O u
U 0.03
e
3 0.025
u
o
| 0.02
•P
£ 0.015

Q
<•> 0.01

0.005

0

1;

...............4................

¥

i

............... .X..
X

Inner constrained Constrained region Invalid region Outer invalid
region adjacent to adjacent to region

boundary boundary

+ Sigmoid hidden / linear ouput -Evolved spline hidden / linear output
•' Evolved hidden / evolved output

Fig. 53 - The average Pythagorean per region of the dataset.

The invalid regions where a more complex mapping exists i.e. from the invalid rotation
to the correction produced more interesting results. The sigmoid-linear neural network
out performs the purely evolved activation function neural network by 0.044 and the
spline activation function neural by 0.028 in the region adjacent to the boundary on the
invalid side (the region depicted in pink in Fig. 34.). The evolved spline neural network
outperforms the evolved activation function neural network by 0.027 and the sigmoid-
linear neural network by 0.049 in the invalid region furthest from the boundary (as
shown in Fig. 53.) In general the spline activation function gives very similar results to
the sigmoid-linear but out performs it in the outer region (Fig. 53). Despite this fewer

nodes are required as shown in TABLE XIII.

The comparison of sigmoid and (evolved template based) cubic spline activation
functions in the hidden layer (as shown in Fig. 54,) indicates that in several cases
networks with a cubic spline hidden layer were out performed (on average) by their
sigmoid based counterparts. These include the spherical boundary in three-dimensional
space (a difference of 1.61E-04) and both quaternion examples (a difference of 7.59E-
05 for the regular boundary and 1.52E-04 for the irregular boundary).

134

J.UUE-UO

2.50E-03

2.00E-03

ra 1.50E-03

l.OOE-03

5.00E-04

O.OOE+00 <fe
*

•? 0?

,L

••- $
X

*
*

o

^

.......%........

^ ^ . + / *
*

4 ,

Training Set - Spline AF 1 Test Set - Sigmoid AF
l Training Set - Sigmoid AF O Test Set - Spline AF

Fig. 54 - A comparison of evolved spline and sigmoid activation functions in the hidden layer.

The manifestation of this improvement in performance can be clearly identified by
observing the error around the boundary, paying close attention to the region that
corrects to the discontinuity. This is shown in Fig. 55.

(a)

Fig. 55 - The figure on the left (a) represents the spline activation function neural network while that on
the right (b) represents the sigmoid linear neural network. The same datasets were used in each case the
reduction in the number of red points indicates that a significant improvement has taken place in the area

around the discontinuity.

135

Comparing the neural networks evolved by the genetic algorithms it is noted that the
number of hidden nodes in the cubic spline activation function network has in each case
fewer nodes than its sigmoid-linear counterpart, as shown in Fig. 56.

160 -

140 -

n 120

•H 100 -

^ 80 -
n
0 60 -
0
2 40 -

20 -

O -

A * W y

- f * * 1 » * J
*

X

* XX

X

———— A ———— | ———— A_ , A A | A | A , A

• 600

i- 500

- 400
n

- 300 g
a u

- 200

- 100

- n

• Hidden Nodes (Sigmoid)
• Links (Spline)

A Hidden Nodes (Spline)

• Links (Sigmoid)
• Epochs (Sigmoid)
i Epochs (Spline)

Fig. 56 - A graph showing the effect of activation function variation on the topologies and training

requirements of the evolved neural networks.

5.3 Discussion

5.3.1 Discontinuous Vector Fields Representing Three-Dimensional

Constraints

The results of varying the maximum number of hidden nodes evolved by the genetic
algorithm indicate that increasing the size of the neural network increased performance
on the training and test set until the maximum number of evolved hidden nodes reached
around sixty. Here the neural network began to 'over train'. Mehrotra, Mohan, and
Ranker describe this as the neural network 'memorizing' the test set after which it is

unable to generalize when faced with fresh examples [49].

136

The increase in the number of hidden nodes leads an increase in the number of links.

This is to be expected as the number of links is related to the number of hidden nodes.

There is also an increase in the number of training epochs evolved. This indicates that as

the number of hidden nodes increased the amount of training required increased this

confirms a connection between these two factors highlighted by Huber, Mayer and

Schwaiger[81].

Varying the number of epochs evolved by the genetic algorithm demonstrates that

increasing the training epochs also leads to an increase in performance. The shape of the

plot (shown in Fig. 49) indicates that the gradient of performance decreases as the

number of epochs increases. It can be inferred from this that at some point increasing

the size of the network will no longer lead to a productive gain in performance. The

network would over train giving further increases in performance on the training set

only indicating a reduction in the neural networks generalisation ability. A trade off

exists between the time taken to training the network (greatly affected by the number of

epochs evolved) and the network performance.

Increasing the maximum number of epochs that the genetic algorithm can evolve leads

to an increase in the number of epochs evolved in each case. This indicates that

additional epochs would yield networks with higher performance. There is also a

corresponding increase in the numbers of nodes and links, indicating that bigger

networks were not previously evolved due to a lack of epochs to train them. This

confirms the earlier results indicating a link between the number of hidden nodes and

the volume of training required.

Increasing the number of generations increases the length of the genetic algorithms

search and with each additional generation it approaches a maximum fitness, (the best

network it can find to suit the problem.) In support of this the results show that the as

the number of generations increases the performance of the neural networks evolved on

both the test and training sets is increased. The increase in performance however is less

each time indicating that a saturation point exists where an increase in the number of

generations will have little effect on the performance.

An increase in the number of links, hidden nodes and training epochs evolved is

observed as the number of generations over which the neural network is evolved

137

increases. Evidently as the evolutionary process continues the networks evolve towards

the evolutionary constraints and an improvement in performance. These results

reinforce those discussed earlier regarding the number of hidden nodes, and epochs.

An increase in the number of training patterns provided to train the three-dimensional

discontinuous vector field representing a spherical constraint in three-dimensional space

appears to improve the results in terms of their average MSB. As the number of training

patterns was increased the improvement in performance decreased indicating a

saturation point. This was accompanied by an attenuated increase in the number of

training epochs required.

Increasing the size of the population with a fixed number of generations appears to

improve neural network performance up to a saturation point. At this point the number

of generations becomes the limiting factor and an increase in population size no longer

produces an increase in performance. A large population requires more generations to

evolve but produces better neural networks, as it does not suffer from allele loss.

Increasing the size of the population increases the performance as allele loss is reduced

while there are sufficient generations to evolve the population.

5.3.2 Discontinuous Vector Fields Describing Regular and Irregular

Boundary Quaternion Constraints

Investigating performance issues for these vector fields representing quaternion based

joint constraints with complex boundaries provide an opportunity to assess the

performance increases and to compare the regular and irregular boundaries based on the

complexities of the neural network evolved to learn them.

Increasing the maximum number of hidden nodes evolved seems to improve both the

training set and the test set, indicating that the point where over training occurs has not

been reached and further performance increases may be possible. A significant

difference in the average MSE between the regular and irregular boundaries is observed

and that this distance is maintained, further demonstrating that the irregular boundary is

more complex than its regular counterpart.

138

An increase in the maximum number of evolved hidden nodes, leads to a proportional
increase in the number of links, accompanied by an increase in the number of evolved

training epochs required. This confirms that an increase in nodes results in an increased
requirement for neural network training epochs.

Increasing the number of training epochs increases the performance, as for three-

dimensional vector based constraints. The gradient of the improvement decreases,

indicating a saturation point at this point the network will over train that is, the
performance on the training set will continue to increase while the performance on the
test set will decrease as the neural network looses its ability to generalise. The results

for the four-dimensional vector fields representing the regular and irregular quaternion
boundaries remain an almost identical distance apart, indicating that the improvement to

both networks is comparable. There is little or no effect on the size of the networks
evolved as observed for the three-dimensional vector fields representing spherical
constraints.

The effect of the number of training patterns appears to be different for discontinuous
vector fields representing regular and irregular quaternion rotational boundaries. For
irregular boundaries the results are similar to the vector fields representing spherical
constraints described earlier in this chapter. There appear to be some anomalies in the
results attributed to averaging multiple neural networks results. In the irregular
boundary case the number of hidden nodes and links increase as the number of patterns

increases. Increasing the number of patterns increases the complexity of the constraint,
due to the irregularity of the boundary. As more patterns are added the boundary is
more clearly defined and the genetic algorithm evolves networks capable of dealing

with this higher level of complexity.

In the case of regular boundaries there is no significant performance improvement as the
number of patterns increases and there is no increase in the number of hidden nodes,
links or epochs. The number of patterns does not affect the complexity in this case.

The performance of the neural network was significantly affected by the order of the
training patterns, attributed to the global learning properties of the multi-layer feed­

forward perceptron. Presenting the invalid patterns first led to poor performance,

indicating that the valid patterns affected the learning that had taken place for invalid

139

patterns. Similar results are observed in the random case for the same reason. The

performance is greatly improved when the valid patterns are presented first, indicating

that the valid patterns have a disruptive effect on the learned invalid patterns but not

vice versa. Disruption of previously learned patterns to this extent is termed

'catastrophic interference', it is a radical manifestation of a more general problem

termed the 'plasticity-stability' problem [111]. This is summarised by French [111] as

being the problem of designing "a system that is simultaneously sensitive to, but not

radically disrupted by, new input." A reduction in the overlap of internal distributed

representations reduces the extent of catastrophic interference [111]. As the back

propagation-learning algorithm updates all nodes, not just those associated with the

erroneous response it appears the magnitude of the updates required in the case of the

valid inputs are sufficient to erase previously learned patterns but not vice versa.

In distributing the training patterns it was discovered that an even distribution gives a

much better result than clustering the points at the boundary, which led to sparse regions

away from the clusters. The evenly distributed data set provides clear representation of

the mapping as a whole without the focus on individual sections, improving the

generalisation of the neural networks evolved. This indicates that the high concentration

of patterns depicting the local features had an effect on the global learning of the

network.

Experiments investigating the effect of neuron activation function on neural network

training show that pure evolution of the activation function can provide distinct

advantages over neural networks with fixed sigmoid activation functions. Experiments

show that in some regions the pure evolution neural network is better suited than the

other approaches investigated (Fig. 53), though overall its MSB is higher than that of

the evolved sigmoid hidden layer neural networks.

The activation functions evolved in the pure evolution approach are interesting in

themselves some correlation can be identified between the functions evolved and the

result. Results improve with the inclusion of both Gaussian and bipolar sigmoid

(hyperbolic tangent) functions, researchers have found mixed activation function

networks with two layers composed of these functions to perform well [53, 65, 83, 85].

Researchers have used the hyperbolic tangent, or bi-polar sigmoid function in the field

of function approximation [54, 55, 57].

140

Shibata [85] used a mixture of Gaussian and Sigmoid activation functions and found the

Gaussian function added a local learning component to the global learning of the feed

forward sigmoid neural network. The results show that evolution tends towards an

increase in Gaussian activation functions to improve performance, though an increase in

local learning cannot be identified. This is possibly due to the increased number of free

variables the genetic algorithm needs to optimise an increase in generations may

provide this improvement.

The results of the evolved spline activation function experiments demonstrate that on

average, template based evolved cubic spline activation functions offered some small

improvements over their sigmoid hidden layered counterparts. This seems to be

reversed when error is very high (when the mapping is at its most complex). In isolation

this slight improvement in performance means very little, however combined with a

lower network size for each of the spline networks this result becomes significant.

The regular boundary results with varied activation functions (shown in Fig. 53,)

indicate that evolving cubic spline activation functions reduces the three-dimensional

error in some regions but not in others. This may be an indication of better local

learning in this region, however in the regions where local learning should have the

largest influence (those regions closest to the boundary) the results do not support this.

In earlier results regarding irregular boundaries it was found that performance in the

concave section was particularly low these were attributed in part to the poor local

learning capabilities of the sigmoid activation function neural network. Spline activation

function neural networks have been shown to have better local learning properties than

their sigmoid-based counterparts [63, 64, 81, 90, 93-95]. The results support this with

the evolved spline activation function neural network providing an improvement in the

neural network performance reflected both by the MSB (Fig. 54) and the Pythagorean

error (visualised as coloured points in Fig. 55).

Several researchers have identified improvements in performance when using spline

activation functions, however there seems to be some disagreement on the origin of this

performance increase. A number of authors [84, 87, 97] indicate that the adaptive spline

141

activation functions provide improved local learning as in the case of mixed activation

function neural networks such as the gauss-sigmoid neural network [85].

Huber, Mayer and Schwaiger [63, 64] found that using spline activation functions

reduced network complexity and increased performance for simple examples. They

attribute this to a shift in complexity from the neural network (number of hidden nodes

and links) to the activation functions of the hidden layer. In this case where the size of

the hidden layer is less than optimal (due to the constraints imposed to reduce training

times) the complex hidden layer neurons of the spline activation function neural

networks give them a slight advantage over the sigmoid linear neural network.

5.4 Conclusions

Significant improvements can be made by removing the constraints placed on the

evolution and training of the networks to minimise training times. The effect of each of

these parameters on the evolved neural network is dictated by the complexity of the

mapping.

The neural network and genetic algorithm performance was improved towards some

maximum by increasing the duration of each, i.e. the number of epochs the neural

networks were trained for and the number of generations over which the neural

networks were evolved. This was also the case with regards to the population size - a

larger population with more diverse individuals when provided with sufficient

generations over which to evolve produced an improvement in the results.

In each experiment the number of hidden nodes tended towards the maximum, despite

the secondary fitness function (fewer links) attempting to limit this rise. This seems to

indicate that many more neurons are needed to obtain the maximum performance from

evolved neural networks with sigmoid activation functions in their hidden neurons.

Increases in the number of hidden layer neurons were accompanied by increases in the

number of training epochs, indicating that an increased number of weight updates were

required to sufficiently train the additional neurons.

142

Increasing the number of training patterns in most cases improves the results by

providing clarification of the mapping. The network complexity and training

requirement (evolved training epochs) did not increase, demonstrating that the mapping

complexity was not changed. In the case of irregular boundaries, clarification of the

mapping led to an increased complexity as the irregularities of the boundary became

more clearly defined.

The pattern order selected for use in earlier experiments - valid patterns followed by

invalid patterns, out performs both a random and an invalid patterns first approach.

Learning one region has a disruptive effect on the other this is caused by the single set

of weights used within the network and is described as catastrophic interference [111].

It was found that learning the invalid patterns after the valid patterns is less disruptive

than learning the invalid first or the patterns in random order, this suggests that this

arrangement of patterns produces a reduction in the overlap of internal distributed

representations reduces the extent of catastrophic interference thus improving

performance as suggested by French [111].

This chapter also shows that improvements can be made by using evolving neuron

activation functions to suit the purpose. What the results do not clarify is the source of

these improvements. Does the specialisation of the neurons improve the local learning

[84, 87, 97] or the scope for additional complexity created when some of the network

complexity is transferred to the activation functions [63, 64, 81]? Further investigation

is needed to explore this question.

In a practical context a neural networks with smaller computational cost can be trained

with the benefit of good generalization [81] an important consideration in any practical

application. Further improvements could be made by the use of a gating network as

used in the work of several other researchers [136-140]. Here the approximation of

discontinuous functions is achieved by a number of continuous approximations

separated at the discontinuities. However to achieve this an appropriate expert is

required to differentiate between valid and invalid regions. Such an expert may be

useful in improving the performance of the neural networks by limiting their application

to invalid constraints. The following chapter will investigate the training of neural

networks to group rotations as valid or invalid.

143

6. Binary Constraints in S3 Space

Though the focus of this work lies in creating corrective constraints, binary constraints

are implemented by a number of authors, either alone [6] or as a precursor to corrective

constraints [2, 4, 5, 36]. These are simple equality type constraints in the case of Euler

angles and more complex point in polygon tests in the case of two and three-

dimensional polygon representations (for example [36]). Lee [6] implemented a set of

simple binary quaternion constraints which could easily be combined into more

complex constraints. Herda [4, 5] and Johnson [2] implemented binary quaternion

constraints as a precursor to corrective constraints. These approaches all required the

projection of the unit quaternions to a lower dimensional space, requiring additional

processing and introducing singularities.

From a neural network point of view the mapping of an invalid constraint to a valid one

can be considered as the learning of a discontinuous vector field. The problem of

identifying valid and invalid constraints may be considered a classification problem.

There are many machine learning techniques capable of solving multi-dimensional

classification problems [49, 141]. Binary constraints in a number of dimensions were

implemented using a Support Vector Machine (SVM) neural network.

6.1 Methodology

A number of experiments were designed to evaluate the use of SVMs for configuration

classification. Initial experiments concerned the classification of one, two and three-

dimensional vectors representing constraints of various sizes. With each increase in

spatial dimensionality there was an accompanying increase in the complexity of the

constraint, one-dimensional equality constraints were followed with circular constraints

then spherical constraint. Encouraged by the results of these more complex quaternion

based constraints, limited to regular shaped constraint boundaries similar to those of Lee

[6] were attempted.

144

Experiments were also carried out towards finding the most appropriate kernel function

and improving on the results of the quaternion-based experiments by increasing the

number of patterns used in training.

6.1.1 Dataset Generation

The dataset generation software created to model corrective constraints was modified in

each case such that it produced a single binary output indicating which of the two

groups (valid or invalid) the input data represented. The dataset creation processes for

one, two and three-dimensional constraints are detailed in sections 3.1 and those for the

quaternion based constraints in section 4.1.

Two datasets were created for each experiment, the training set was used to train the

SVM and the test set provided measurement of the SVMs generalisation capabilities.

SVMLight provides a plethora of statistics regarding its performance on each test set

and the success of the training.

6.1.2 SVMLight

SVMLight is a state of the art SVM implementation, it is based on the original ideas of

Cotes and Vapnic [73] refined in conjunction with other researchers [66, 67, 71, 73].

The SVM methodology was discussed in section 2.3.1, SVMLight implements these

principles with extensions to improve computation efficiency.

These improvements allow the use of a larger set of training patterns which would

otherwise be limited by the size of the matrix containing the training patterns and more

conventional computational improvements such as cashing [72]. The development of

SVMLight is discussed in detail by Joachims [72] whose training algorithm;

- Decomposes the training set into manageable chunks avoiding the problems

of memory allocation with large training sets.
- Successively reduces the size of the training set, by removing those patterns

most unlikely to become support vectors.

145

- Implements computational improvements such as caching.

SVMLight was developed by T. Joachims who has published substantial material on

improving the performance of the SVM [72]. He has very kindly made his work
available for non-commercial purposes.

6.1.3 Training Configuration

Unlike the earlier experiments with neural networks and genetic algorithms there is no

random component in the training process and so two SVMs trained with the same

training set will give the same result hence there is no requirement to repeat the results

to obtain an average.

SVMLight provides several different kernel functions including linear, polynomial,

sigmoid and radial basis (Gaussian). Earlier research discussed the power of different

activation functions in a neural network setting this is also true in terms of kernel

functions for SVMs [71].

6.2 Results

The results show that the SVM is able to classify the joint configurations as valid or

invalid to a high degree of accuracy. In the case of one-dimensional constraints shown

in Fig. 57 it is noted that for small constraints the linear kernel out performed the other

kernel types this trend however was reversed above sixty degrees. The results for

polynomial, radial basis, and sigmoid kernel types were very similar though where the

results differ significantly the sigmoid kernel function appears to correctly classify the

highest percentage of patterns.

146

C 100 -
o

•rt

g
•H QQ

•H
IA ,' 0-73 97 '

rHU ge -
4J
0 95 .
n
0 94-

o\° 93

QO

O

X
—^.

n g

<

1

1 >™-"™-1J...............J

<

I

>

.......fl<

.................

?.................

,.....£.......

20 40 60 80 100

Constraint Radius

120 140 160

o Linear kernel function
A Radial basis Kernel function

a Polynomial kernel function
Sigmoid kernel function

Fig. 57 - Performance of the SVM on a one-dimensional constraint.

The performance of the SVM decreases between one-dimensional and two-dimensional
vector based constraints. However the pattern of results remains the same, there is a
steady increase in performance as the size of the constraint increases for the linear,
sigmoid and polynomial kernels. The opposite is true in the case of the linear kernel
where performance decreases as the size of the constraint increases. The performance of
the polynomial and radial basis kernel functions are very similar to each other perhaps
indicating some advantage provided by a common aspect of their shape. These results

are shown in Fig. 58.

147

% Correct Classification

R I-

K> *> CTl 00 O fv

3 O O O O O C i i i i 1

a is

o o

X
X

i

<

...........i

c,
&

c

...............4

>••—————
<

; :

\ I
................c

> J
\

:

!
a.............

<
< •>

------j

1

: i

r IS"

I X

0 20 40 60 80 100 120 140 160

Constraint Range

o Linear kernel function o Polynomial kernel function
A Radial basis kernel function Sigmoid kernel function

Fig. 58 - Performance of the SVM on a two-dimensional (spherical) constraint.

Moving to three dimensions there is a further decrease in the performance of the SVM
compared to two and three-dimensional constraints. The polynomial and radial basis
kernel functions again out perform the sigmoid and linear kernel types. Though for all
kernel functions the results have decreased compared to earlier results as shown in Fig.
59. For the polynomial and radial basis kernel functions an increase in performance is
observed as the size of the constraint region increases. However for linear and sigmoid
kernel functions there are less definite variations, though there are indications of an
overall increase in the sigmoid performance with range and a decrease in the linear

kernel function performance.

148

iou -

90 •

g 80 -
•ri

« 70 -
U

n
* *n0 so
o * u
«
« 30 -
o u
* 20 -

10 -

n -

6 6

0 0

X

d
............ ...u

c

<

------2

L................C
D

:> <

;

~—~~3
;----•-!

1.

L............H

i5-------

>--—--<

............... ..^

\................
i

.................

i- A3 — — ft— -

,.......<>........
'

20 40 60 80 100

Constraint Range

120 140 160

O Linear kernel function o Polynomial kernel function
A Radial basis kernel function Sigmoid kernel function

Fig. 59 - Performance of the SVM on a 3D constraint

Moving to more complex quaternion based constraints an improvement is observed in
performance, a similar improvement is observed in neural networks trained for
corrective constraints between constraints of the same complexity. The performance for
the quaternion-based constraint (a two dimensional regular boundary on the surface of a
three dimensional sphere, described using quaternion) demonstrates a significant
improvement in performance. The sigmoid kernel function does not perform very well
with a maximum correct classification of less than 60%. The results for linear,
polynomial and radial basis kernel functions demonstrate much better performance and
all follow a similar pattern. Their results are almost symmetrical around a ninety
degrees radius as the constraint covers half the sphere hence the size of the regions is

equal. These results are shown in Fig. 60.

149

% Correct Classification

100 -

80 -

60 -

40 -

20 -

n

OQ n 9 » * a a a a
° O 0

y

X *

X
X

20 40 60 80 100

Constraint Range

120 140 160

o Linear kernel function n Polynomial kernel function
A Radial basis kernel function Sigmoid kernel function

Fig. 60 - Performance of the SVM on a quaternion based constraint with a regular boundary.

Attempts were made to improve on these results by increasing the number of patterns
used in training. A constraint of twenty degrees radius was selected as the results
showed scope for improvement. The results show that increasing the number of
training patterns does make some improvement in the case of the linear, polynomial and
radial basis kernel functions, but not however in the case of the sigmoid function
performance decreases as the number of patterns increases. The increase in these results
seems to attenuate as the number of patterns increases hence the benefits of increasing
the number of patterns are negligible above a threshold.

6.3 Discussion

The results show that SVMs are capable of classifying valid and invalid vectors in a
vector field in one, two and three dimensions and indicate an increase in problem
complexity (by their decrease in performance,) as the dimensionality of the constraint

and the problem space increase.

Polynomial and radial basis kernel functions perform consistently well for each
however there is a decrease in their performance as the number of dimensions and

150

therefore complexity increases. Sigmoid kernel functions perform poorly for all but the

one-dimensional constraint and the performance of the linear kernel function

(effectively not using a kernel transform) decreases in its effectiveness as the number of

dimensions increases.

Considered in terms of the distribution of the points in their respective problem space, it

is clear why the performance of the linear separator decreases, moving to two and then

three dimensions the boundaries formed are circular and spherical respectively and

therefore better separated when moved into a higher dimensional space.

The local learning capabilities exhibited by neural networks which used Gaussian or

polynomial activation functions is well established in the literature [85, 96], and

likewise the poor local learning exhibited by feed forward neural networks with sigmoid

activation fictions [85]. The limitations of this kernel type have been acknowledged,

though due to their global learning capabilities in neural networks their development

and inclusion in SVMs is an open issue [142].

There is a definite contrast between the results of the one, two and three-dimensional

constraints and those of the quaternion based constraints. Thought there are only two

dimensions related by the constraint several additional constraints are required by the

quaternion representation. It appears however that the neural network finds it easier to

classify the quaternion constraints than any of the previous constraints with fewer

dimensions. This indicates that the increase in dimensionality of initial mapping

provided better results when moved to a higher dimensional space by the kernel

functions.

There is a strong indication that the density or distribution of data changes significantly

between three and four dimensions giving a decease in classification error. Current

results do not provide a basis for quantifying these factors and this may be considered in

future work.

With regards to the performance of the SVM it was found that the polynomial and RBF

kernel types were superior and provided the best results in all cases. It was also found

that the effect of increasing the number of patterns improved classification results

151

though there were no significant gains after two thousand patterns. This is the result of

increasing the number of support vectors present in the dataset.

6.4 Conclusions

In conclusion SVMs are capable of implementing constraints in one, two and three

dimensions to a reasonable degree of accuracy. More importantly they can classify valid

and invalid quaternion based orientation constraints like those suggested by Lee [6] to a

very high degree of accuracy. Unlike the approach of Lee no decomposition or

reformatting of the quaternion representing the joints rotation is required. SVMs

provide a significant advantage in that they can be created based on subject data rather

than being a combination of abstract shapes.

Furthermore it can be concluded that the quaternion rotational representation offers

further advantages in this case as due to its higher dimensionality the SVM is more

successful in defining a boundary between valid and invalid points in the high

dimensional kernel space.

152

7. Discussion

This work has focused on neural network learning of discontinuous multidimensional

vector fields applicable to the implementation of corrective angular constraints to

simulate anatomical joints. Initially constraints represented by vector fields in one, two

and three dimensions were studied as a precursor to quaternion representations. An

initial investigation was also carried out into the neural network classification of valid

and invalid vectors representing joint configurations, building from low dimensional

representations to those in quaternion space.

7.1 Binary Constraints

It has been found that Support Vector Machines (SVMs,) are capable of classifying

valid and invalid vectors in a vector field in one, two and three dimensions. The results

here indicate an increasing complexity as the number of related dimensions in the

constraint increase.

As the complexity of the constraints increases in terms of the related dimensions that

describe the constrained region, it was found that the suitability of the tested SVM

transfer functions changes. One-dimensional constraints can be separated using a

support vector machine with linear kernel functions, though these kernels are incapable

of separating more complex constraints in two and three dimensions. Radial Basis

(Gaussian) and polynomial activation functions have shown the best performance

indicating that applying these kernel transformations makes the data easier to separate in

the more complex cases.

The Support Vector Machine classifies the quaternion based binary constraints more

accurately than constraints with fewer dimensions. This indicates that the higher

dimensionality of the quaternion representation provides better results when moved to a

higher dimensional space by the kernel functions. This improvement may indicate that

the density or distribution of data changes significantly between three and four

153

dimensions giving a decrease in classification error. The quantification of these factors

is a subject for further study.

The performance of the SVM was improved by increasing the number of patterns

though no significant increases were observed after two thousand patterns. This is the

result of increasing the number of support vectors present in the dataset, which in turn

improves the positioning of the separating function.

7.2 Corrective Constraints

Corrective constraints in all cases involve genetically evolved neural networks learning

a discontinuous vector field. In initial experiments simple one, two and three-

dimensional discontinuous vector fields representing constraints with continuous

boundaries were trained. A discussion of these simple cases follows moving towards

quaternion-based constraints.

Each increase in the dimensionality of the discontinuous vector field results in the

inclusion of additional relationships between dimensions these define both the vector

field and implicitly the discontinuity. The neural network requires sufficient patterns to

learn both the vector field and the discontinuity. As increases in the dimensionality of

the vector field and constraint were not matched by increases the number of training

patterns there are fewer patterns present representing each relationship and consequently

the neural network performance decreases, as shown in Fig. 9. Experiments undertaken

to improve the performance of the neural network showed that increasing the number of

patterns increased performance (Fig. 40).

Monitoring the evolution of the networks formed in each case showed that as the vector

field and discontinuity increased in complexity more complex networks were required

to maintain performance. This increase is less pronounced between results for

discontinuous vector fields representing constraints in two and three-dimensional space

with constrains of equal dimensionality to the problem space, as shown in Fig. 9. This is

attributed to the constraints imposed on the maximum hidden nodes evolved (imposed

to restrict the temporal cost of experiments.) Removing the hidden node constraint

154

where more complex networks were required resulted in an increase in performance

Fig. 36.

The decrease in performance in relation to the increasing size of the discontinuous

region (representing the constrained region,) can be attributed to the distribution of

training patterns. Large valid regions are easily learned as the majority of inputs map to

a single vector however, the reduction in exposure to patterns outside this region (where

the input vector is mapped to a correction) reduces neural network exposure to complex

inter-relationships between vector elements and between input and correction vectors.

The technique is applicable to various sizes of constrained region and that despite the

increase in error with the size of the constraint as the overall MSB of the results is low,

the results are shown Fig. 9.

The evolution and training parameters of the neural networks were initially limited and

these limitations were found to affect performance and became the subject of further

investigation (detailed in Chapter 5). Several parameters with a direct effect on

performance were identified. Increasing the number of generations allowed further

evolution and improving results (in Fig. 43.) Several limiting factors such as the number

of nodes and epochs evolved further towards their constrained maximums.

Increasing the limit on the number of hidden nodes increased performance. Resulting in

an increase in the number of training epochs required these additional epochs being

required to refine the additional nodes. Increasing the number of training patterns and

training epochs improved the neural networks performance though the scale of the

improvements decreased. Extending the adaptive processes, i.e. evolution via the

number of generations and neural network training via the number of epochs leads to an

increase in performance. Increasing the population size produces a steady increase in

performance due to the reduction of allele loss until the number of generations required

to evolve the population became a limiting factor.

Having considered the training of less complicated vector fields (those with fewer

dimensions,) focus moves towards vector fields representing regular two-dimensional

boundaries on the surface of a unit sphere. Here vectors represent both the initial

position and correction. A high rate of correct approximation was observed for a range

of constraint radii (as shown in Fig. 9). This technique can be used to implement simple

155

angular constraints similar to spherical polygon [36] and cone based [41] constraints

considered in the literature review (Chapter 2).

The error recorded for these neural networks is higher that of the circular boundary in

two-dimensional space and that of the spherical boundary in three-dimensional space.

Despite the dimensionality of the input space being the same as that of the output space

the constraint itself is more complex. This confirms that the complexity of the vector

field discontinuity has an effect on the neural networks performance. It is also the case

that an increase in dimensionality of the problem space has an effect on performance for

networks of limited size as indicated by Grzeszczuk, Terzopoulos and Hinton [56].

The experiments for vector fields representing a circular constraint on the surface of a

sphere were extended such that the corrective component was no longer a vector but a

quaternion representing the required corrective rotation. A decrease in MSB is observed

when the output component is encoded as a quaternion and the error is more consistent

(as shown in Fig. 9.) Examination of the three-dimensional Pythagorean error (as

shown in Fig. 11,) identifies isolated patterns of high error. These errors can be

attributed to a lack of test data in the region of an additional discontinuity by visualising

them in the context of the training and validation patterns.

This additional discontinuity is opposite the valid region where points are equally close

to opposite sides of the spherical boundary. To simplify future discussion discontinuity

between the valid and invalid region is described as the boundary discontinuity and the

discontinuity in the region opposite the valid region equidistant to two positions on the

boundary as the correctional discontinuity. The correctional discontinuity results from

the corrections in three-dimensional space and is implied in quaternion space like the

boundary discontinuity. The true effect of this discontinuity is difficult to judge from

the results presented as the metrics used (MSE and Pythagorean distance between

corrected virtual limbs) both measure against the test set and not the proximity to the

boundary of the corrected orientation.

This explains why the high error patterns are isolated each is similar to neighbouring

patterns corrected to the other side of the sphere. The neural network successfully

corrects the point to the boundary, however, as this is not the boundary indicated by the

test set a large error is reported.

156

Orientations effected by the correctional discontinuity are some distance from the

boundary, in a practical application it is unlikely that the limb would reach these

extremes before being corrected. Improvement in neural network training may partially

eliminate these errors and the creation of an error metric that recorded error in relation

to the distance of the virtual limb from the boundary would give a more accurate

representation of network error. The networks created here could be used to implement

corrective constraints for some of the spherical polygon and cone boundaries described

by earlier researchers [36, 40, 41].

Continuing with the two-dimensional constraint boundary on the surface of a unit

sphere quaternions are used to represent both current rotation of the limb and the

required correction. Though the complexity of the discontinuity represented remains

constant the dimensionality of the vector field increases. A direct comparison of the

MSE of the discontinuous vector fields in S2 with those in S 3 (quaternion) is

meaningless as the latter represent rotational and the former proximal error. An increase

in the MSE of the neural network is observed as the complexity of the vector field

increases.

Neural networks can be successfully evolved and trained to learn discontinuous vector

fields in quaternion space, which produce quaternion rotations to correct a given

quaternion rotation to a regular constraint boundary. Thus implementing similar

boundaries to those of Gyi et al [40], Korein [36], and Lee [6]. The approach

introduced here does not require the dimensionality of the quaternion to be reduced

unlike other joint constraint approaches [4, 5, 46]. Reducing the dimensionality of the

quaternion representation incurs a similar penalty to converting between rotational

formats for constraint and introduces singularities. Also unlike the approaches of Lee

[6] and Liu and Prakash [3] there is no requirement to decompose the quaternion into

quaternions representing planar rotations, this again incurs a similar penalty to

converting between parameterisations.

Discontinuous vector fields trained to imply a constrained circular region of various

radii produces positive results with average errors less than one percent using networks

with less than twenty hidden nodes. An increase in error matched by an increase in

network size indicates an increased complexity between constraint sizes of 45 and 135

157

degrees in radius (Fig. 18). PCA reveals that there are significant changes in the

distribution of the quaternion in quaternion space that account for the increase for this

angular range, the orientation of the principle components of the dataset change as

shown in Fig. 18. These changes in the distribution of patterns in quaternion space may

increase the overlap of internal distributed representations French suggests this can

increase the extent of interference between patterns which inhibit learning [111].

The regions of the vector field representing constraint correction and the constrained

region are continuous with a single discontinuity between them. This is with the

exception of the vector field representing the circular constraint boundary on the surface

of a unit sphere. Here a discontinuity is present in the region of the vector field

representing the correction due the corrective discontinuity discussed earlier. This

discontinuity is implied within the problem space and so the neural network reports a

high error, as the network results do not match the ideal. Despite the high error reported

by both MSB and three-dimensional metrics the corrections made by the neural network

are to configurations close to the boundary in most cases.

As the complexity of the evolved networks increases with respect to the range, the

standard deviation of the number of hidden nodes evolved decreases. This combined

with the high average number of hidden nodes indicates all the networks evolved for

these ranges were close to the constrained maximum. Limiting the number of hidden

nodes in combination with the regularization function prevented an increase in

complexity and contributed to the increase in error.

The axis chosen to mark the centre of the constraints has an effect on the results. PCA

can be used to link this to the distribution of patterns in quaternion space this becomes

more regular as the constraint centre is moved from the y-axis to x-axis and from x-axis

to the z-axis. According to the Pythagorean metric a dataset with a more regular shape

gives superior results as in the case of quaternion ambiguity. A possible reason for this

is that the more regular datasets are better distributed in quaternion space French [111]

suggests that increasing the distribution of patterns reduces interference.

The order in which the patterns were presented to the neural network provided an

interesting insight into the learning process. The patterns were presented with valid

patterns followed by invalid patterns, and results (TABLE X) have shown that this out

158

performs datasets with both a random and an invalid patterns first ordering. Learning

one region clearly has a disruptive effect on the other this is caused by the single set of

weights used within the network and is described as catastrophic interference [111].

Learning the invalid patterns after the valid patterns is less disruptive than learning the

invalid first or the patterns in random order, this suggests that this arrangement of

patterns produces a reduction in the overlap of internal distributed representations

reduces the extent of catastrophic interference thus improving performance as suggested

by French [111].

The Pythagorean error between the ideal correction and the neural network correction

shows that the network performs well for all but a few patterns. Only 3.7 x lO'Vo of

patterns demonstrated an average error greater than 2% of the maximum possible error

(with an average neural network size of 16 hidden neurons, and an average of 471

training epochs). In practice where these patterns occupy regions a large distance from

the constraint this is not critical as it is unlikely in kinematics systems that the joint

would move far beyond the boundary between corrections. It is important to note that

these plots (shown in Fig. 21) represent the average error over the networks, when

observing the plots for all five separately individual neural network performances vary

from region to region.

The Pythagorean error is generally highest at the boundary discontinuity and at the

correctional discontinuity. Similar results were observed in the case of circular

boundaries on the surface of a unit sphere described using vectors (shown in Fig. 11,)

and that ambiguity is the cause of many of the problems associated with neural network

training.

Sparse data offers an explanation for a number of individual high error results

(highlighted in Fig. 24). However despite the high error the correction is to a

configuration close to or inside the boundary, in practice iterative approaches could be

used to improve these results. Sparse regions of data had a similar impact on

performance in earlier experiments of lower dimensional order.

The results demonstrate that evolved neural networks of low complexity can be used to

implicitly model simple spherical joint constraints similar to those modelled in other

approaches [6]. However the evolved neural network constraints described here are able

159

to provide the necessary correction without reducing the dimensionality of the

quaternion like contemporary approaches [2-5].

Having considered discontinuous vector fields representing regular boundaries (circular

boundaries) on the surface of a unit sphere the discussion turns to constraints with

irregular boundaries on the surface of a unit sphere. An increase in both neural network

error and three-dimensional Pythagorean error is observed compared with regular

boundaries. High error is once more observed between valid and invalid configurations

(at the boundary discontinuity), opposite the boundary (at the correctional

discontinuity,) and in areas of sparse training patterns.

High error recorded around the convex region of the irregular boundary is attributed to

the complexity of the vector field in this region. In the centre of each concave region of

the boundary is another vector field discontinuity as quaternions are proximally

equidistant from valid configurations on either side, (these are referred to as concave

region discontinuities.) As in the case of the correctional discontinuity the network may

produce a correction that returns the limb to the boundary but not to the side of the

boundary indicated by the test set, resulting in a high Pythagorean error.

Additional irregular boundaries demonstrate the capabilities of neural networks in

learning discontinuous vector fields to represent anatomical boundaries. The error in

three dimensions is low and there is a good correlation with the ideal corrections. An

interesting limitation is identified, where the boundary of the discontinuity is concave or

convex these local features are sometimes lost. This can be attributed to two factors, the

first being pattern distribution. There is little difference in shape between the large (Fig.

32 (b)) and small (Fig. 32 (c)) boundaries yet a noticeable difference in performance is

observed. This is attributed to the density of patterns, the smaller boundary has the same

number of patterns within the constraint but confined to a smaller region.

The second factor that may affect the error at the discontinuous boundary is the learning

method of the sigmoid-based neural network. This demonstrates good global learning

that is it learns large general mappings well. It is however insensitive to local features

such as the concave and convex regions of the boundary, this results in the learned

boundary being an attenuated version of the original.

160

An interesting discovery was made regarding the vector field representation of

quaternion rotational constraints. The regular boundary experiments (which generated

data sets by converting a random rotation to a quaternion) generated all valid and the

majority of invalid quaternion on one half of the quaternion hyper-sphere. There was no

ambiguity in quaternion space as there was only one boundary to which all the

quaternions were corrected.

There is ambiguity in the rotations represented by unit quaternions, in that the

quaternion sphere represents 4n rotations. In an attempt to improve performance this

ambiguity was removed by forcing the quaternion to one side of the quaternion hyper-

sphere. The results deteriorated in performance for larger constraints, this is attributed

to a change in the continuity of the continuous parts of the vector field and or the

implied boundary in quaternion space. The increase in error is accompanied by a

change in the distribution of data in quaternion space.

A comparable case in two dimensions can be visualised (Fig. 61), where a group of

valid and invalid points lie across the centre of the region. If the size of this region is

halved and the points projected to their equals on the opposite side the distribution of

the data changes reflected the principle components. The divergence of results at a

given constraint radius (reflected in Fig. 26,) may indicate that below a given radius the

continuity of the regions is not affected. Above this radius a number of points key to the

implicit representation of the boundary are moved, as in the two-dimensional case

shown in Fig. 61.

A B

Fig. 61 - The diagram presents a simplified demonstration of the effect of moving patterns to one side of

the quaternion hyper sphere. A shows the points distributed evenly, B shows the points forced to one

side.

161

The irregular boundary experiments used a sampling dataset generator that generated a

quaternion representing the rotation of a control limb being manipulated in three-

dimensional space. The dataset generated is more widely distributed over the surface of

the quaternion hyper-sphere. This caused ambiguity, as there were two valid regions on

either side of the quaternion hyper-sphere. The quaternion space vector field now

contained a second discontinuity, the network had to perform mapping of quaternions to

the appropriate boundary on the quaternion hyper-sphere. Neural network training

failed to produce any networks with acceptable performance for these datasets.

To overcome this, the valid dataset and the boundary used to calculate corrections were

moved to one side of the quaternion hyper-sphere. The neural network is capable of

learning the vector field which now contains a single discontinuity, between invalid and

valid quaternion, that is correction and no correction.

The choice of constraint centre seems to affect the mean squared error and the actual

error in three-dimensional space in different ways. It is clear from the principle

component analysis that the distribution of patterns in quaternion space is more regular

with the constraint centred on the y-axis than on the x-axis or z-axis. More regularly

shaped dataset appear to give better results according to the three-dimensional metric.

Increasing the maximum number of hidden nodes evolved by the genetic algorithm

produced an increase in performance. Though for discontinuous quaternion vector fields

the experiments do not identify the point at which over-training occurred due to the time

required to complete the experiments. Increasing the number of training epochs evolved

also increased performance to a saturation point, with uniform increases in performance

observed for both regular and irregular boundaries.

Regular boundaries were found to be insensitive to an increase or decrease in the

number of patterns used. This indicates fewer patterns were sufficient for the neural

network to learn the regular case and that in this case the number of patterns is not the

limiting factor. In the case of irregular boundaries the increase in the definition of the

boundary irregularities improved the neural networks learning of these complex

structures. Earlier experiments with different shaped boundaries identified that the

increasing density of patterns describing the implied boundary as being significant.

162

Global and local learning were briefly mentioned earlier in this chapter regarding the

global learning nature of multi-layer perceptron type networks and its possible adverse

effects on the results. As indicated in the literature survey (Chapter 2) several

researchers have attempted to introduce local learning to the multi-layer perceptron via

evolutionary techniques. In Chapter 5 two of these approaches are investigated, the

evolution of static neural network functions in the hidden layer of a neural network

(similar to [65, 86]) and the template based evolution of cubic spline activation function

in hidden layer neurons (similar to [63]).

On average, template based evolved cubic-spline activation functions offered some

small improvements over their sigmoid counterparts. This seems to be reversed when

the vector field is at its most complex. In isolation this slight improvement in

performance means very little, however combined with a reduction in network size this

result becomes significant as smaller networks have better generalisation capabilities.

Mayer and Schwaiger [63, 64] found that using spline activation functions reduced

network complexity and increased performance for simple examples. This is because

the complexity shifts from the neural network (number of hidden nodes and links) to the

activation functions of the hidden layer. In this case where the size of the hidden layer is

less than optimal (due to the constraints imposed to reduce training times) the complex

hidden layer neurons of the spline activation function neural networks give them a slight

advantage over their competitors.

Indirectly measuring the quaternion error has proved very useful and provides an insight

into the behaviour of this technique when applied to simple anatomical models. For

regular boundaries errors in quaternion space are proportional to those in three-

dimensional space. Principle Component Analysis (PCA) has also proved useful in

determining the shape and orientation of datasets in quaternion space.

163

8. Conclusions

This thesis details an investigation into the use of Evolved Topology Neural Networks

for anatomical constraints. The conclusion, and contribution to knowledge, is that

evolved generalised multi-layer perceptrons are capable of modelling vector fields in

quaternion space suitable implementation of correctional rotational constraints on a

virtual limb. The main findings of this work that support this conclusion are outlined

below...

• Evolved topology neural networks can model implicit boundaries

(discontinuities) between continuous regions within vector fields in a number of

dimensions, specifically one, two, three and four-dimensional quaternion space.

In terms of vector fields suitable for the creation of corrective joint constraints it

was found that a number of three-dimensional factors needed to be taken into

consideration. An additional discontinuity was identified where a point was

equally close to more than one point on the boundary. These must be taken into

account when creating the datasets and evaluating neural network performance.

• The distribution of the training data in quaternion space had a significant effect

on the performance of evolved neural networks in learning the discontinuous

vector field. It was found that the implied boundary between continuous regions

must be located on one side of the hyper sphere (despite the equality of its polar

equivalent), to maintain continuity of the both valid and invalid regions. A

number of factors concerning the dataset were found to influence neural network

training these were primarily concerned with the distribution of the training set

in quaternion space. Appropriately orientated evenly distributed datasets

produce an improvement in performance this is attributed to a reduction in the

overlap of internal distributed representations which reduces the extent of

interference [111].

• The implicit boundaries between continuous regions can be applied to the

representation of anatomical constraints this research focuses on rotational

constraints concerning rotation of (but not along) a virtual limb in three-

dimensional space. The technique has been shown to be successful for two-

164

dimensional constraints on a unit sphere represented by both vectors

(representing the free end of a virtual limb) and quaternion (representing the

orientation of a virtual limb). Constraints can be trained in quaternion space

utilising the quaternion representation for both regular and irregular boundaries,

an important consideration if anatomical boundaries are to be considered. The

vector fields in these cases are similar despite an increase in the dimensionality

of both the problem space and the constraint.

• The complexity of the quaternion vector field mapping is affected by the

distribution (shape and orientation) of the dataset in quaternion space, resulting

in fluctuations in the error recorded. Despite which, neural networks were

trained (using limited training) such that error in three-dimensions is on average

0.99%, by neural networks with less than twenty hidden nodes.

Representational ambiguity must be removed such that the neural network

corrects to only one boundary from any point on the quaternion hyper sphere.

• Evolved topology neural networks were found to be capable of modelling

constraints of equal dimensionality to the problem space, and of lower

dimensionality. Increases in dimensionality result in an increase in the

complexity of the network, if network complexity is limited the network error

increases. Where the dimensionality of the constraint is lower than the

dimensionality of the problem space, the error is significantly lower than when

the constraint and problem dimensionality are the same.

• Evolved topology neural networks successfully trained a number of regular

boundaries in quaternion space with different ranges the success of the training

is dependent on the distribution of patterns in quaternion space. These results

produced average errors of 0.99% in three-dimensions, with the highest error at

11.67% and the lowest at 0.0063%. Only 3.7 x 10"*% of patterns resulted in

errors greater than 2% with an average neural network size of 16 hidden nodes.

• A number of irregular boundaries were also investigated performance on these

boundaries was dependent on the boundary shape. The presents of concave

regions on the boundary introduced boundary correction ambiguities decreasing

performance. These results produced average errors of 2.15% in three-

165

dimensions, with the highest error at 24.71% and the lowest at 0.017%. Only

0.032% of patterns resulted in errors greater than 7.5% with an average network

size of 18.4 hidden nodes.

These findings have implications in a number of areas where joint constraints of high

accuracy and performance are required. In animation a requirement for more

sophisticated joint specific constraints was identified by Shao and Ng-Thow-Hing [1].

Such standard body constraints are however limited in scenarios where other factors

affect a joints range of motion. For example, an animated character designed with heavy

shoulder armour may be constrained to avoid contact with the armour during the

animation process. Using present techniques an irregular boundary could be defined by

an animator, training data could then be generated manually or automatically and the

network trained. Unlike other approaches [3-6, 46] no prior processing of the

quaternion is required at use time.

In terms of execution time it was found that in the one two and three-dimensional case

the correction of the dataset generator (written in C) was faster than the Java based

neural network. In the quaternion case the C based generator for the regular boundary in

quaternion space was faster than the Java based neural network. Re-writing the regular

boundary correction generator in Java made little difference to the execution time. The

Java based neural network was however significantly faster than the dataset generator

for irregular boundaries. As most anatomical joints have non-spherical joint constraint

limits this is the most significant.

The neural network manager used in NetJEN is BOONE (Basic Object Orientated

Neural Evaluator) which was written and designed by August Mayer and is available

under the GNU Public Licence (GPL). Viewing the code it is apparent that rather than

firing the layers sequentially to obtain an output the network fires the nodes sequentially

until there are no farther changes to the activations of any of the nodes. Through

correspondence with the author it was found that this method was selected over the

more efficient alternative to allow BOONE the flexibility to deal with recurrent and

cyclic neural networks.

In summary evolved generalised multi-layer perceptrons are capable of modelling

discontinuous vector fields in quaternion space suitable for the correction of rotational

166

constraints on a virtual limb subject to a number of conditions concerning the

distribution of patterns. Their ability to model irregular rotational boundaries gives

them an advantage of approaches using coarse spherical approximations [6]. Their

ability to utilise quaternions without pre-processing (conversion or dimensional

reduction) and their potential for hardware [121, 143, 144] and vector based [145]

implementations gives them the potential for performance increases over existing

approaches.

167

9. Future Work

9.1 Introduction

Previous chapters have demonstrated the capabilities of evolved topology neural

networks in modelling discontinuous vector fields suitable for the representation of joint

constraints using a quaternion representation. In this section a number of possible

extensions to the work undertaken are considered. These are intended to overcome

limitations of the current study and look towards applying the constraints developed in

other areas.

9.2 Development of the Current Work

9.2.1 Performance of Spline Based Neural Networks

In Chapter 5 improvements in performance were identified when using spline activation

functions. This has been previously demonstrated by a number of researchers however

there seems to be some disagreement on the origin of this performance increase.

Shen et al [87], Guarnieri, Piazza and Uncini [97], and Vecci, Piazza and Uncini [84]

indicate that the adaptive spline activation functions provide improved local learning as

in the case of mixed activation function neural networks such as the gauss-sigmoid

neural network [85].

Huber, Mayer and Schwaiger [63, 64] found that using template based spline activation

functions reduced network complexity and increased performance for simple examples.

They attribute this to a shift in complexity from the neural network (number of hidden

nodes and links) to the activation functions of the hidden layer. The results presented in

Chapter 5 supports both and further work is required to resolve the exact reason for the

performance increase.

Catastrophic interference was significantly reduced by changing the alignment of the

centre of the constrained region, Seipone [129] has suggested that evolution can reduce

168

interference between patterns. Further research into the effects of pattern order on the

structure of the neural networks evolved may give some insight into the changes in the

internal representations described by French [111].

Recent work by Bullinaria [146] suggests that learning strategies may have a significant

effect on the performance of neural network evolution, advances have also been made in

the constraint of the genetic algorithms search domain limiting it to feasible individuals

using genetic techniques similar to RNA repair [147].

9.2.2 Performance Metrics for Joint Constraint Vector Fields

Current methods for assessing the error produced by the neural networks developed

may not reflect the networks true performance in each case. At present the

measurements used, SSE (used to assess neural network fitness during evolution), MSE

(used to calculate network error during training,) and the Pythagorean error metric (used

in reporting the results and comparing representations,) all depend on the comparison of

the current output with the test set. A more useful error metric would be the distance of

the corrected virtual limb from the boundary. This would provide more representative

results in cases such as the correctional discontinuity where the vector is corrected to a

diametrically opposite position on the boundary. Future work may consider the

development of an error metric of this kind and possibly the development of a

backpropagation based learning algorithm based on this error metric.

9.2.3 The Constraint of Rotation around the Limb

The previous chapters have focused on the development of quaternion-based constraints

for the rotation of the limb in three-dimensional space. It has not however considered

the rotation around the limb itself. The rotations being performed are better described as

the swing and twist respectively [37]. This is an important consideration if the approach

presented here is to be used in the constraint of anatomical limbs in three-dimensional

space. Preliminary research has been carried out into this area with the training of a

simple one-dimensional constraints representing rotation around the limb and

combining these with constraints on the rotation of the limb.

169

9.2.3.1 Methodology

As in previous experiments a Generalised Multi-Layer Perceptron (GMLP) was used to
model discontinuous vector fields representing quaternion constraints. Vector fields
were trained to model both constraints on the rotation around the limb and combining
both rotation of the limb and rotation around the limb. Initially the rotation around the
limb was considered alone with the rotation of the limb constrained to a radius of
twenty degrees. These constraints were then combined with those on the rotation of the
limb. The datasets were created using similar method to that described in 4.1.1 with the
addition of a second quaternion generated and combined with the first to represent the
rotation around the limb. Its negation was stored and used as the initial component of
the correction. The parameters for training and evolution were as shown in TABLE I.

9.2.3.2 Results

The results of preliminary experiments show that the neural network successfully
learned discontinuous vector fields representing corrective quaternion based constraints
on both the rotation of and around the limb. The results for a constraint on the rotation
around the limb with a constant rotation of the limb show invariable results Fig. 62.

170

oi
S

4 50E O T

4.00E-03 -

3.50E 03 -

3.00E-03 -

2.50E-03 -

2.00E-03 -

1 .50E-03 -

l.OOE-03 -

5.00E-04 -

n nr»ir*nn

--——-•,

••

A
A

...............

• Rot

..A...........

ation Arc

A

•

und The I

A

.imb A

"
Rotation Of The LI

A

rab

0 20 40 60 80 100 120 140 160

Angle / Radius

Fig. 62 - A graph showing the effect of the additional constraint on the rotation around the axis. The red
triangle marker shows the effect of changing the limb rotation constraint with a constant rotational
constraint around the limb of twenty degrees. The green square marker shows the error resulting from the
increase in the constraint on rotation around the axis with a constant constraint on the rotation of the limb.

Distinct changes in the pattern of error are observed when a constant rotation around the

limb (of 20°,) and varying the rotation of the limb are considered. An increase occurs as
the constraint increases in size (Fig. 62) up to 90° followed by a decrease the error is to

some extent symmetrical around 90°. In both cases there is an increase in the error

compared to earlier constraints where no constraint on the rotation around the limb was

enforced (shown in Fig. 18).

9.2.3.3 Discussion & Conclusions

The results indicate that the introduction of a secondary constraint on the rotation

around the limb has a significant effect on the performance of the neural network,

possibly caused by a further increase in the complexity of the discontinuous vector field

that the neural network is required to learn. As the size of the constraint on the rotation

of the limb increases error increases towards a radius of ninety degrees above this it

decreases. Based on previous observations it is postulated that the shape and orientation

of the dataset in quaternion space becomes more difficult to learn at this point. More

171

work is required to understand how the distribution of the quaternion vector-field

changes and its effect on the performance of the neural network.

The results suggest that while there is an increase in error when the rotation of the limb

is increased it may be possible to implement constraints on the rotations around the limb

separately. It is observed (in Fig. 62,) that where the constraint on rotation of the limb

is very small there is an increase in performance, indicating if the rotation of the limb

was zero and a system considering only the rotation around the limb a suitable

constraint of any size could be trained with high performance. Hence a quaternion

based constraints system could be employed to constrain the rotation of and rotation

around the limb separately. However one of the benefits of using quaternion based

constraints, the ability to model these the relationships between these constraints, is lost.

Future work may investigate the factors the shape and orientation of the quaternion

space vector field and how the errors observed can be reduced possibly investigating

some of the performance related factors uncovered in Chapter 5. More complex

networks may form part of any future solution.

9.2.4 Reduced Coordinate Encoding

Previous approaches to the constraint of both the rotation of and around the limb have

reduced the dimensionality of the quaternion representation. Herda et al [5, 8] reduced

the dimensionality of the sampled rotations by ensuring all scalar components were

positive and omitting them as the quaternion is unit length (and the scalar positive,)

these can be recovered from the three remaining components. Johnson [2] who

projected one half of the unit quaternion hyper sphere onto a three-dimensional tangent

space. Chapter 3 demonstrated the capabilities of evolved topology neural networks in

the approximation of vector fields in three-dimensional space. It may be feasible to

apply these techniques to vector fields representing joint constraints using reduced

coordinate mappings in order to improve results or include rotation around the limb.

172

9.2.5 Multiple Dependent Joints

The internal bio mechanical constraints of anatomical joint are often linked to the

orientation of other joints as muscles and tendons often contributed to the constraint of
more than one joint. For example what is often referred to as the ankle is anatomically
two joints the ankle itself that provides anterior and posterior movement and the
subtalar joint that provides medial and lateral movement [23, 148].

This work has only considered the constraint of individual joints however inter-joint
dependencies have been modelled in other approaches [1]. It is feasible to model
multiple joints using the presented approach however the input space would have to
include the orientations of all related joints in the system, a significant increase in

dimensionality. Research into dynamics systems for animated multi-jointed limbs
suggests a hierarchical approach to combat the disproportionate increase in network size
with problem space dimensionality [56]. A number of previous approaches have
reduced the dimensionality of the problem space to three dimensions [2, 4, 5] though
this would not significantly reduce problem space dimensionality. Research also
suggests that complex vector fields may be simplified by conversion to basis fields
[105] this may reduce the complexity of the vector field to be learned in each case.

173

9.2.6 Training from Sampled Data

To date only topologically evolved feed forward neural networks that undergo

supervised learning have been considered. This is suitable for a number of applications

where a dataset can be constructed detailing the whole of the vector field in the case of

joint constraints this means the valid and invalid regions. In animation systems this is

not a problem, as the animator would typically create the constraint boundary in an

editor from which training data could be generated. In other application areas such as

medical research where patient biomechanics are being recorded this is almost certainly

impossible, as acquisition of data relies on motion capture techniques or mechanical

measuring.

In order to utilise neural networks for applications where a complete vector field cannot

be measured recurrent neural networks may be utilised. One-dimensional discontinuous

functions have been approximated using recurrent neural network and reinforcement

learning [88, 101, 102]. Pose constraints whose underlying representation is comparable

to joint constraints were learned by a Scaled Gaussian Process Latent Variable Model

(SGPLVM) in an approach which uses exponential maps rotated to avoid singularities

[47].

Research has shown the inclusion of domain knowledge in learning algorithms can

produce significant improvements in the learning of continuous two dimensional vector

fields [104, 105]. Other techniques have considered the simplification of the vector field

using such techniques as basis vectors [105]. These techniques may be applied within

the framework of the evolved neural networks where full vector fields and a traditional

back-propagation training algorithm were used.

9.3 Application of the Techniques Developed

9.3.2 Kinematic Modelling

The generation of character specific joint constraints may be a useful addition to

character animation tools. It is feasible using the techniques described for creating

irregular boundaries to create a character specific joint boundary limited for example by

clothing or injury. Such constraints may have advantages in maintaining consistency

174

where procedural animation is used and where multiple individuals animate a single
model. The approach also gives the potential advantage of a quaternion representation
for all aspects of rotation within the system as indicated by a number of authors [6, 46].
The potential improvements in performance offered by these techniques may add to
these benefits.

9.3.3 Biomechanical Modelling

Recent studies suggest that current joint constraint approaches are only capable of
modelling gross motion and are unsuitable for surgical purposes such as simulation of
surgical outcomes [149, 150]. Proposed solutions rely on moving frame
implementations [149] leading to difficulties in constraint interrogation, increased
complexity and lacking the benefits of a quaternion based approach, (such as the
avoidance of singularities).

Skeletal models with joint constraints are used extensively in the study of lower body

motion. At present simplified skeletons with various mechanical joints and crude

constraints are advocated for cleaning up motion capture data [150]. Accurate joint

modelling in this case is essential esspecialy in the case of pathological patients who

may have abnormal joint motions [150].

The techniques proposed here may be applied in this area creating more accurate

constraints based on patient specific data. Using current techniques a rotational

boundary could be recorded by the patient and training data created based on the

techniques used for irregular boundaries.

9.3.4 Dynamics Modelling

The description of joints in dynamics simulations is often associated with a number of
constraints that produce specified joint behaviour. These constraints provide forces
which prevent the limbs from drifting apart and may provide angular constraint by
reducing the degrees of freedom of a joint [151, 152]. Constraint forces are also used
when objects intersect a joint is formed between the two components and repulsive

forces calculated to reduce intersection to zero [151, 152].

175

In terms of constraint of the rotational movement, of for example, a virtual limb
connected to a ball and socket joint whose constrained region of rotational motion is
described as a bounding polygon, (with the body of this polygon describing the invalid
region). It may be feasible to treat the intersection of the bounding polygon and virtual
limb as a collision and generate forces to reduce the intersection. This would produce a
force on the virtual limb that would translate into rotational force being applied to the
virtual limb validating the constraint. Using the approach presented here it may be
possible to develop a neural network based constraint that produces a corrective
rotational force based on the position of the limb end point or orientation. This would
reduce the computational complexity of the implementation with the additional
advantage that the constraint boundary could be trained using data from various sources.

9.3.5 Pose Constraints

There has been some research into the combination of pose and joint constraints these
include approaches which only consider pose constraints and assume (not unreasonably)
that a favoured pose would not contain invalid joint configurations [47]. Johnson [2]
presents a system of statistically based quaternion constraints which enforces pose and
joint constraints in quaternion space. The inclusion of pose constraints may be
considered in future work simplifying the modelling of joint constraints significantly as
the set of poses that for example maintain balance is smaller than the set of all possible
configurations for the limbs concerned. Such techniques however are not applicable to
falling bodies where there may be no appropriate pose to maintain.

9.3.6 Camera Constraint

The discontinuous vector fields modelled in this work were created specifically to
represent joint constraints. There are however other applications where these techniques
may prove useful. One of these is the stabilization of a camera being rotated between
orientations via spherical linear interpolation (SLERP), without a constraint it is
impossible to ensure that the camera remains upright a limitation in the use of
quaternions for camera control [153]. It may be possible to employ the constraints

developed in this work to solve this problem.

176

9.4 Conclusion

The work undertaken in this thesis provides a building block for further research into

the use of neural networks for anatomical joint constraint. A number of areas of future

work have been identified based around both the improvement of the current techniques

and their application in various domains. The application of the techniques is

particularly important in order to obtain insight into the relationship between

experimental performance and performance within an application.

177

References

[I] W. Shao and V. Ng-Thow-Hing, "A General Joint Component Framework for
Realistic Articulation in Human Characters," presented at 2003 Symposium on
3D Graphics, Monterey, California, USA, 2003.

[2] M. P. Johnson, "Exploiting Quaternions to Support Expressive Interactive
character Motion." Massachusetts: Massachusetts Institute of Technology, 1995.

[3] Q. Liu and E. Prakash, C, "The Parameterization of Joint Rotation with the Unit
Quaternion," presented at 7th Digital Image Computing: Techniques and
Applications, Sydney, 2003.

[4] L. Herda, R. Urtasun, and P. Fua, " Hierarchical Implicit Surface Joint Limits for
Human Body Tracking," Computer Vision Lab, Ecole Polytechnique Federal de
Lausanne (EPFL), Lusanne CH-1015, 2004.

[5] L. Herda, R. Urtasun, P. Fua, and A. Hanson, "Automatic determination of
shoulder joint limits using quaternion field boundaries," International Journal of
Robotics Research, vol. 22, pp. 419-444, 2003.

[6] J. Lee, "A Hierarchical Approach to Motion Analysis and Synthesis for
Articulated Figures," in Department of Computer Science. Daejeon: Korean
Advanced Institute of Science and Technology, 2000, pp. 93.

[7] F. E. Zajac, "Biomechanics and muscle coordination of human walking Part 2:
Lessons from dynamical simulations and clinical implications," Gait and
Posture, vol. 17, pp. 1-17, 2003.

[8] A. Watt and M. Watt, "Forward vs Inverse Kinematics in Computer Animation,"
in Advanced Animation and Rendering Techniques. New York: ACM Press,
1992, pp. 371-384.

[9] K. Manal, X. Lu, M. K. Nieuwenhuis, P. J. M. Helders, and T. S. Buchanan,
"Force transmission through the juvenile idiopathic arthritic wrist: a novel
approach using a sliding rigid body spring," Journal of Biomechanics, vol. 35,
pp. 203-218, 2002.

[10] W. Manurel and D. Thalmann, "Human shoulder joint modelling including
scapulo-thoratic constraints and joint sinus cones," Computers and Graphics,
vol. 24, pp. 203-218,2000.

[II] J. D. Feikes, J. J. O'Connor, and A. B. Zavatsky, "A constraint-based approach
to modelling the mobility of the human knee joint," Journal of Biomechanics,
vol. 36, pp. 125-129,2003.

[12] Y. Zhang and J. Wang, "A dual neural network for constrained torque
optimization of kinematically redundant manipulators," IEEE Transactions on
System, Man and Cybernetics: Part B, vol. 32, pp. 654-662, 2002.

178

[13] A. D'Souza, V. S, and S. Stefan, "Learning Inverse Kinematics," presented at
International Conference on Intelligent Robots and System, Maui, Hawaii, USA,
2001.

[14] A. J. Hamel, N. A. Sharkey, F. L. Buczek, and J. Michelson, "Relative motions
of the tibia, talus and calcareous during the stance phase of gait," Gait and
Posture, vol. 20, pp. 153-157, 2003.

[15] D. N. Yang, D. N. Condie, M. H. Granat, J. P. Paul, and D. I. Rowley, "Effects
of joint motion constraints on the gait of normal subjects and their implications
on the further developments of hybrid FEZ orthosis for paraplegic persons.,"
Journal ofBiomechanics, vol. 29, pp. 217-226, 1996.

[16] R. R. Selmic and L. L. Lewis, "Deadzone Compensation in Motion Control
Systems Using Neural Networks," IEEE Transactions on Automatic Control,
vol. 45, pp. 602-613, 2000.

[17] A. E. Engin and S. T. Turner, "Improvised dynamic model of human knee joint
and its response to loading," Journal of Biomechanical Engineering, vol. 115,
pp. 137-142, 1993.

[18] M. G. Ishac, D. A. Winter, and J. J. Engin, "Limb segment model validation:
The power imbalance story," Gait and Posture, vol. 4, pp. 167-208, 1996.

[19] D. Popovic, R. B. Stein, M. N. Oguztoreli, M. Lebiedowska, and S. Jonic',
"Optimal control of walking with functional electrical stimulation a computer
simulation study," IEEE Transactions of Rehabilitation Engineering, vol. 7, pp.
69-79, 1999.

[20] J. Feikes, "Articular surface representation in a 3D model of the knee mobility,"
Journal ofBiomechanics, vol. 31, pp. 148, 1998.

[21] D. R. Wilson, J. D. Feikes, and J. J. O'Connor, "Ligaments and articular contact
guide passive knee flextion," Journal ofBiomechanics, vol. 31, pp. 1127-1136,
1998.

[22] T. J. A. Mommersteeg, R. Huiskes, L. Blankevoort, J. G. M. Kooloos, and J. M
G. Kauer, "An inverse dynamics modelling approach to determine the
restraining function of the human knee ligament bundles," Journal of
Biomechanics, vol. 30, pp. 139-146, 1997.

[23] F. Gray, Gray's Anatomy, the classic collectors edition, 15 ed. New York:
Bounty Books, 1977.

[24] A. J. Van Soest and G. P. Van Galen, "Coordination of multi-joint movements:
An introduction to emerging views.," Human Movement Science, vol. 14, pp.
391-400, 1995.

[25] M. G. Pandy and B. Nicip, "Synthesis of human walking: a planar model for
single support," Journal ofBiomechanics, vol. 21, pp. 1053-1063, 1988.

179

[26] M. G. Pandy and B. Nicip, "Quantitative assessment of gait determinants during
ingle stance via a three-dimensional model - part 1 normal gait," Journal of
Biomechanics, vol. 22, pp. 69-79, 1989.

[27] K. B. Shelburne, M. G. Pandy, and M. R. Torry, "Comparison of shear forces
and ligament loading in the healthy and ACL-deficient knee during gait,"
Journal of Biomechanics, vol. 37, pp. 313-319, 2004.

[28] J. H. Heegaard, P. F. Leyvraz, and C. B. Hovey, "A computer model to simulate
patellar biomechanics following total knee replacement: the effects of femoral
component alignment," Clinical Biometrics, vol. 16, pp. 415-423, 2001.

[29] J. J. Faraway, X. Zhang, and D. B. Chaffin, "Rectifying postures reconstructed
from joint angles to meet constraints," Journal of Biomechanics, vol. 32, pp.
733-736, 1999.

[30] C. B. Phillips, J. Zhao, and N. Badler, "Interactive Real-Time Articulated Figure
Manipulation using Multiple Kinematics Constraints," S1GGRAPH 90 Course
notes (Human figure animation : approaches and applications), 1990.

[31] J. Eng and D. A. Winter, "Kinematic analysis of the lower limbs during walking:
what information can be gained from a 3D model," Journal of Biomechanics,
vol. 28, pp. 753-758, 1995.

[32] T. Furuta, T. Tawara, Y. Okumura, M. Shimizu, and K. Tomiyama, "Design and
construction of a series of compact humanoid robots & development of bipedal
walking control strategies," Robotics and Autonomous Systems, vol. 37, pp. SI-
100, 2001.

[33] A. Watt and M. Watt, Advanced Rendering Techniques. New York: ACM Press,
1992.

[34] P. Baerlocher, "Inverse Kinematics Techniques for the Interactive Posture
Control of Articulated Figures," in Department D 'Informatique. Lausanne:
Ecole Fob/technique Federal De Lausanne, 2001, pp. 156.

[35] A. Maciel, L. P. Nedel, and C. M. D. S. Freitas, "Anatomy Based Joint Models
for Virtual Human Skeletons," presented at IEEE Computer Animation, Geneva,
Switzerland., 2002.

[36] J. U. Korein, A geometric investigation of reach. Massachusetts: MIT Press,
1984.

[37] P Baerlocher and R. Boulic, "Parameterization and Range of Motion of the Ball
and Socket Joint," presented at IFIP TC5/WG5.10 DEFORM' 2000 Workshop
and AVATARS' 2000 Workshop on Deformable Avatars, 2000.

[38] F. S. Grassia, "Practical Parameterization of Rotations Using the Exponential
Map," Journal of Graphics Tools, vol. 3, 1998.

180

[39] P. M. Isaacs and M. F. Cohen, "Controlling dynamic simulation with kinematic
constraints," ACMSIGGRAPH Computer Graphics, vol. 21, pp. 215 - 224,
1987.

[40] D. E. Gyi, R. E. Sims, J. M. Porter, R. Marshall, and K. Case, "Representing
Older and Disabled People in Virtual User Trials: Data Collection Methods,"
Applied Ergonomics, vol. 35, pp. 443-451, 2004.

[41] A. E. Engin and S. T. Turner, "Three dimensional kinematic modelling of the
human shoulder complex part 1: physical model & determination of joint sinus
cone," Journal of Biomechanical Engineering, vol. 111, pp. 107-112, 1989.

[42] P. M. Issacs, Micheal, F C, "Controlling Dynamic Simulation with Kinematic
Constraints, Behaviour Functions and Inverse Dynamics," ACM Transactions on
Computer Graphics, vol. 21, pp. 215-223, 1987.

[43] A. Watt and M. Watt, "Parameterisation of Rotation," in Advanced Animation
and Rendering Techniques. New York: ACM Press, 1992, pp. 356-368.

[44] J. J. Kufmer, "Effective Sampling and Distance Metrics for 3D Ridgid body
Path Planning," presented at IEEE International Conference on Robotics and
Automation, New Orleans, Los Angels, USA, 2004.

[45] S. L. Altermann, Rotations, Quaternions and Double Groups. New York: Dover
Publications Inc., 2005.

[46] M. P. Johnson, "Exploiting Quaternions to Support Expressive Interactive
character Motion," in MIT Media Lab. Massachusetts: Massachusetts Institute of
Technology, 2003.

[47] K. Grochow, S. Martin, L. , A. Hertzmann, and Z. Popovic, "Style-Based
Inverse Kinematics," presented at ACM Transactions on Graphics, 2004.

[48] The-Open-University-Course-Team, "Complex Numbers, Mathematics
Foundation Course, Block VI Mathematical Structures, Unit 1.," The Open
University, Milton Keynes 1993.

[49] K. Mehrotra, C. K. Mohan, and S. Ranka, "Introduction," in Elements of
Artificial Neural Networks. Massachusetts: MIT Press, 1997, pp. 1-40.

[50] D. W. Coit, J. Billa, D. Lenoard, A. Smith, W. Clark, and A. El-Jarovd, "Wave
soldering process control modelling using a neural network approach," in
Intelligent Engineering Systems through artificial neural networks, vol. 4, C. H.
Dagli, B. R. Fernandez, J. Ghosh, and R. T. S. Kumara, Eds.: ASME Press, New
York, 1994, pp. 999-1004.

[51] J. Kamruzzaman and R. R. Begg, "Support Vector Machines and Other Pattern
Recognition Approaches to the Diagnosis of Cerebral Palsy Gait," IEEE
Transactions on Biomedical Engineering, vol. 53, pp. 2479-2490, 2006.

181

[52] P. Janik and T. Lobos, "Automated classification of power-quality disturbances
using SVM and RBF networks," IEEE Transactions on Power Delivery, vol. 21,
pp. 1663-1669,2006.

[53] X. Yao and Y. Liu, "A New Evolutionary System for Evolving Artificial Neural
Networks," IEEE Transactions on Neural Networks, vol. 8, pp. 694-712, 1997.

[54] N. H. R. Goerke and R. Eckiller, "A Neural Network that Generates Attractive
Vector Fields for Robot Control," presented at Fourth European Congress on
Intelligent Techniques and Soft Computing, Aachen, 1996.

[55] N. H. R. Goerke, F. Kintzler, A. Rabe, D. Roggisch, and R. Eckmiller,
"Controlling the Khepera Robot by Neural Network Modules," presented at First
International Khepera Workshop, Paderborn: HNI-Verglasschriftenreihe, 1999.

[56] R. Grzeszczuk, Terzopoulos, D, Hinton, G, "NuroAnimator: Fast Neural
Network Emulation and Control of Physics-Based Models," presented at 25th
Annual Conference on Computer Graphics and Interactive Techniques, 1998.

[57] Y. N. Kulchin and A. V. Panova, "Neural Networks for Reconstruction of Signal
from Distributed Measuring System of Optical Amplitude Sensors," Pacific
Science Review, vol. 3, pp. 1-4, 2001.

[58] R. R. Selmic and L. L. Lewis, "Neural Network Approximation of Piecewise
Continuous Functions: Application to Friction Compensation," in Soft
Computing and Intelligent Systems: Theory and Applications. New York:
Academic, 2000.

[59] K. Mehrotra, C. K. Mohan, and S. Ranka, "Supervised Learning: Multi-layer
Networks," in Elements of Artificial Neural Networks. Massachusetts: MIT
Press, 1997, pp. 63-105.

[60] M. Riedmiller and H. Braun, "A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm," presented at IEEE
International Conference on Neural Networks, San Francisco, CA, 1993.

[61] M. Hargan and M. Menhaj, "Training Feedforward Networks with the
Marquardt Algorithm," IEEE Transactions on Neural Networks, vol. 5, pp. 989-
993, 1994.

[62] D. E. Rumelheart and J. L. McClelland, "Parallel distributed processing:
Explorations in the microstructure of cognition," IEEE Transactions on Neural
Networks, vol. 1, 1986.

[63] H. A. Mayer and R. Schwaiger, "Differentiation of Neuron Types by Evolving
Activation Function Templates for Artificial Neural Networks," presented at
World Congress on Computational Intelligence, International Joint Conference
on Neural Networks, Honolulu, Hawaii, USA, 2002.

[64] H. A. Mayer and R. Schwaiger, "Evolution of Cubic Spline Activation Functions
for Artificial Neural Networks," presented at 10th Portuguese Conference on
Artificial Intelligence (EPIA 2001), 2001.

182

[65] Y. Liu and X. Yao, "Evolutionary Design of Artificial Neural Networks with
Different Nodes," presented at The Third International Conference on
Evolutionary Computation, 1996.

[66] V. Vapnik, The Nature of Statistical Learning Theory, 2 ed. New York:
Springer, 1995.

[67] A. Autret, "Modular Neural Networks for Analysis of Flow Cytometry Data," in
School of Computing. Treforest: University of Glamorgan, 2003.

[68] C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern
Recognition," Data Mining and Knowledge Discovery, vo\ 2 pp. 121-167
1998.

[69] S. Zomer, R. G. Brereton, J. F. Carter, and C. Eckers, "Support Vector Machines
for the Discrimination of Analytical Chemical Data: Applications to the
Determiniation of Tablet Production by Pyrolysis-gas Chromatography-mass
Spectrometry," The Analyst, vol. 129, pp. 175-181, 2004.

[70] R. Collobert and S. Bengio, "Links between Perceptrons, MLPs and SVMs,"
presented at Twenty-first International Conference on Machine Learning, Banff,
Alberta, Canada, 2004.

[71] V. Vapnik, S. E. Golowich, and A. J. Smola, "Support Vector Method for
Function Approximation, Regression Estimation and Signal Processing,"
Advances in Neural Information Processing, vol. 9, pp. 281-287, 1997.

[72] T. Joachims, "Making Large-Scale SVM Learning Practical," in Advances in
Kernel Methods - Support Vector Learning, B. Scholkopf, C. J. C. Burges, and
A. J. Smola, Eds. Cambridge: MIT Press, 1999.

[73] C. Cortes and V. Vapnik, "Support-Vector Networks," Machine Learning, vol.
20, pp. 273-297, 1995.

[74] X. Zhang and H. Ke, "ALL/AML Cancer Classification by Gene Expression
Data Using SVM and CSVM Approach," Genome Informatics, vol. 11, pp. 237-
239, 2000.

[75] B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, "New Support
Vector Algorithms," Neural Computation, vol. 12, pp. 1207-1245, 2000.

[76] S. Vijayakumar and S. Wu, "Sequential Support Vector Classifiers and
Regression," presented at International Conference on Soft Computing, 1999.

[77] T. Masuyama and H. Nakagawa, "Two Step POS Selection for SVM Based Text
Categorization," IECE Transactions on Information and Systems, vol. E87-D,
pp. 1-7, 2004.

[78] D. E. Goldberg, "A Gentle Introduction to Genetic Algorithms," in Genetic
Algorithms in Search, Optimization, and Machine Learning, D. Edward, Ed.

183

Reading, Massachusetts: Addison-Wesley Publishing Company Inc., 1989, pp.
1-26.

[79] D. E. Goldberg, "Genetic Algorithms Revisited: Mathematical Foundations," in
Genetic Algorithms in Search, Optimization, and Machine Learning, D. Edward,
Ed. Reading, Massachusetts: Addison-Wesley Publishing Company Inc., 1989.

[80] H. A. Mayer, "A Taxonomy of the Evolution of Artificial Neural Systems,"
presented at Scientific Computing in Salzburg, 2005.

[81] R. Huber, H. A. Mayer, and R. Schwaiger, "netGEN - A Parallel System
Generating Problem-Adapted Topologies of Artificial Neural Networks by
means of Genetic Algorithms," presented at Beitrage zum 7. Fachgruppentreffen
Maschinelles Lernen der GI-Frachgruppe 1.1.3, Dortmund, 1995.

[82] S. H. Lane, D. A. Handelman, and J. Gelfand, J., "Theory and development of
higher order CMAC neural networks," Control Systems Magazine, IEEE theory
and development of higher order CMAC neural networks, vol. 12, 1992.

[83] H. A. Mayer, M. Strapetz, and R. Fuchs, "Simultaneous Evolution of Structure
and Activation Function Types in Generalized Multi-Layer Perceptrons,"
presented at WSES International Conference on Neural Networks and
Applications, Puerto De La Cruz, Tenerife, Spain, 2000.

[84] L. Vecci, F. Piazza, and A. Uncini, "Learning and Approximation Capabilities of
Adaptive Spline Activation Function Neural Networks," Neural Networks, vol.
11, pp. 259-270, 1998.

[85] K. Shibata and K. Ito, "Gauss-Sigmoid Neural Network," presented at
International Joint Conference on Neural Networks, 1999.

[86] A. L. V. Coelho, D. Weingaertner, and F. J. Von Zuben, "Evolving
Heterogeneous Neural Networks for Classification Problems," presented at
Genetic and Evolutionary Computation Conference, San Francisco, 2001.

[87] Y. Shen, B. Wang, F. Chen, and L. Cheng, "A new multi-output neural model
with tuneable activation function and its applications," Neural Processing
Letters, vol. 20, pp. 85-104, 2004.

[88] S. W. Lee and J. H. Kim, "Control of system deadzones using neural-network
based learning controller," presented at IEEE International Conference on
Neural Networks, 1994.

[89] R. Garziera, "Recursive Formulation of the Inverse Kinematics of Redundant
Robots Performing Tasks with Priority Order," ASME Journal of Mechanical
Design, vol. 116, pp. 337-338, 1994.

[90] F. Piazza, S. Smerilli, A. Uncini, M. Griffo, and R. Zunino, "Fast Spline Neural
Networks for Image Compression," presented at 8th Italian Workshop on Neural
Nets, Vietri Sul Mare, Salerno, Italy, 1996.

184

[91] K. Hlavackova and M. Verleysen, "Placing spline knots in neural networks
using splines as activation functions," Neurocomputing, vol. 17, pp 159-166
1997.

[92] S. Fiori, "Hybrid independent component analysis by adaptive LUT activation
function neurons," Neural Networks, vol. 15, pp. 85-94, 2002.

[93] M. Solazzi and A. Uncini, "Artificial Neural Networks with Adaptive
Multidimensional Spline Activation Functions," presented at IEEE International
Joint Conference on Neural Networks (IEEE-INNS-ENNS), Como, Italy, 2000.

[94] M. Solazzi and A. Uncini, "Adaptive multidimensional spline neural network for
digital equalization," presented at IEEE International Conference on Acoustics,
Speech and Signal Processing, Istanbul, 2000.

[95] M. Solazzi and A. Uncini, "Regularising neural networks using flexible
multivariate activation function," Neural Networks, vol. 17, pp. 247-260, 2004.

[96] K. Huang, Y. Haiqin, I. King, and M. R. Lyu, "Local Learning vs. Global
Learning: An Introduction to Maxi-Min Margin Machine," in Support Vector
Machines: Theory and Applications, vol. 177/2005, Studies in Fuzziness and
Soft Computing: Springer-Verlag, 2005.

[97] S. Guarnieri, F. Piazza, and A. Uncini, "Multilayer Feedforward Networks with
Adaptive Spline Activation Function," IEEE Transactions on Neural Networks,
vol. 10, pp. 672-683, 1999.

[98] G. Arfken, "Vector Analysis," in Mathematical Methods for Physisits, G. B.
Arfken and H. J. Weber, Eds., 3rd ed. Orlando: Academic Press, 1985.

[99] R. A. Crawfis, B. Becker, B. Cabral, and N. Max, "Volume Rendering of 3D
Scalar and Vector Fields at LLNL," presented at Supercomputing, Portland,
Oregon, 1993.

[100] S. N. Huang, K. Tan, K, and T. Lee, H, "Adaptive Motion Control using Neural
Network Approximations," Automatica, vol. 38, pp. 227-233, 2002.

[101] R. Rastko, R. R. Selmic, and L. L. Lewis, "Neural Net Backlash Compensation
with Hebbian Tuning using Dynamic Inversion," Automatica, Special Issue on
Neural Networks for Feedback Control, 1999.

[102] T. Taware and G. Tao, "Neural-hybrid control of systems with sandwidge dead-
zones," IntemationalJournal of Adaptive Control and Signal Processing, vol.
16, pp. 473-469, 2002.

[103] C. W. Anderson and Z. Hong, "Reinforcement Learning with Modular Neural
Networks for Control," presented at IEEE International Workshop on Neural
Networks Applied to Control and Image Processing, 1994.

[104] Y. Kuzo, M. Mitsui, H. Kawakimi, and T. Mori, "A Learning Method for Vector
Field Approximation by Neural Networks," presented at IEEE World Congress
on Computational Intelligence, Ankhorage, AK, USA, 1998.

185

[105] F. A. Mussa-Ivaldi and S. F. Griszter, "Vector Field Approximations: A
Computational Paradigm for Motor Control and Learning," Biological
Cybernetics, vol. 67, pp. 491-500, 1992.

[106] Y. Kuroe, M. Mitsui, H. Kawakimi, and T. Mori, "A Learning Method for
Vector Field Approximation by Neural Networks," presented at IEEE World
Congress on Computational Intelligence, Ankhorage, AK, USA, 1998.

[107] I. Kimura, Y. Susaki, R. Kiyohara, A. Kaga, and Y. Kuroe, "Gradient-based PIV
Using Neural Networks," Journal of Visualization, vol. 5, pp. 363-370, 2002.

[108] Y. J. Kim, D. H. Kim, and J. H. Kirn, "Evolutionary Programming-Based Uni-
Vector Field Method for Fast Mobile Robot Navigation," Lecture Notes in
Computer Science, vol. 1585, pp. 154-156, 1999.

[109] E. P. Tsang and C. J. Wang, "A generic neural network approach for constraint
satisfaction problems.," in Neural Network Applications, J. G. Taylor, Ed.:
Springer-Varlag, 1992, pp. 12-22.

[110] C. J. Wang and E. P. Tsang, "Solving the constraint satisfaction problem using
neural networks," presented at IEEE Second International Conference on
Artificial Neural Networks, 1991.

[Ill] R. M. French, "Catastrophic Forgetting in Connectionist Networks: Causes,
Consequences and Solutions," Trends in Cognitive Sciences, vol. 3, pp. 128-135,
1999.

[112] J. E. Jackson, "Introduction," in A Users Guide To Principal Components: John
Wiley & Sons, Inc, 1991, pp. 4-25.

[113] A. F. Siegel, Morgan, C J, "Describing Distribuitons," in Statistics and Data
Analysis: An Introduction. Chichester: John-Whiley, 1996, pp. 67-141.

[114] F. Daly, D. J. Hand, M. C. Jones, A. D. Lunn, and K. J. McConway, "Models for
Data II," in Elements of Statistics, J. K. Brown, Ed. Workingham: Addison-
Wesley Publishing Company, 1995.

[115] M. S. Srivastava, "Multivariate Normal Distributions," in Models of Multivariate
Statistics. New York: John Wiley and Sons Inc, 2002, pp. 20-56.

[116] M. S. Srivastava, "Eigenvectors and Eigenvalues," in Models of Multivariate
Statistics. New York: John Wiley and Sons Inc, 2002, pp. 632-633.

[117] The-Open-University-Course-Team, "Complex Numbers, Mathematics
Foundation Course, Block IV Matricies, Unit 4.," The Open University, Milton
Keynes 1993.

[118] E. Kreyszig, "Linear Algebra: Matrix Eigenvalue Problems," in Advanced
Engineering Mathematics, 9th ed. Singapore: John Wiley & Sons, 2006, pp.
333-364.

186

[119] J. E. Jackson, "Computational Methods," in A Users Guide To Principal
Components: John Wiley & Sons, Inc, 1991, pp. 450-455.

[120] J. Huang and E. C. Prankash, "Sinus cone a theta-phi algorithm for human arm
animation," presented at Proceedings for 2000 IEEE Conference on Information
Visualization, 2000.

[121] B. Girau and A. Tisserand, "On-line Arithmetic based Reprogrammable
Hardware Implementation of Multi-layer Perceptron Back-Propagation,"
presented at Fifth International Converence on Microelectronics for Neural
Networks and Fuzzy Systems, 1996.

[122] J. Dayhoff, "Applications and Future Directions," in Neural Network
Architectures. New York: Van Nostrand Reinhold, 1990, pp. 217-245.

[123] G. F. Luger, "Machine Learning: Connectionist," in Artificial Intelligence, 5th
ed. Essex, England: Pearson Education Limited, 2005, pp. 435-507.

[124] J. Dayhoff, "Back-Error Propagation," in Neural Network Architectures. New
York: Van Nostrand Reinhold, 1990, pp. 58-79.

[125] H. A. Mayer and P. Maier, "Evolution of Neural Go Players," Osterreichische
Gesellschaft fur Artificial Intelligence, vol. 24, pp. 8-16, 2005.

[126] H. A. Mayer, R. Huber, and R. Schwaiger, "Lean Artificial Neural Networks -
Regularization Helps Evolution," presented at 2nd Nordic Workshop on Genetic
Algorithms and their Applications, Vaasa, Finland, 1996.

[127] H. A. Mayer and R. Schwaiger, "Evolutionary and Coevlolutionary Approaches
to Time Series Prediction Using Generalized Multi-Layer Perceptrons,"
presented at Congress on Evolutionary Computation, Washington DC, 1999.

[128] H. A. Mayer, "Symbiotic Co evolution of Artificial Neural Networks and
Training Data Sets," presented at 5th International Conference on Problem
Solving from Nature, Amsterdam, The Netherlands, 1998.

[129] T. Seipone and J. A. Bullinaria, "Evolving Improved Incremental Learning
Schemes for Neural Network Systems.," presented at 2005 IEEE Congress on
Evolutionary Computing, Piscataway, NJ, 2005.

[130] G. F. Miller, P. M. Todd, and S. Hegde, U., "Designing neural networks using
genetic algorithms," presented at Third International Conference on Genetic
Algorithms, San Mateo, California, 1989.

[131] A. Zell, G. Marmier, M. Vogt, N. Mach, R. Huebner, K. U. Herrmann, T. Soyez,
M. Schmalzl, T. Sommer, A. Hatzigeogiou, S. Doering, and D. Posselt,
"Stuttgart Neural Network Simulator, User Manual," University of Stuttgart,
Stuttgart 1994.

[132] R. E. Smith, D. E. Goldberg, and J. A. Earickson, "Sga-c: A c-language
implementation of a simple genetic algorithm.," University of Alabama,
Tuscaloosa TCGA 91002, May 1991.

187

[133] D. E. Goldberg, "Computer Implementation of a Genetic Algorithm," in Genetic
Algorithms in Search, Optimization, and Machine Learning, D. Edward, Ed.
Reading, Massachusetts: Addison-Wesley Publishing Company Inc., 1989.

[134] K. A. De Jong, "An analysis of the behaviour of a class of genetic adaptive
systems." Michigan: University of Michigan, 1975.

[135] D. E. Goldberg, "De Jong and Function Optimization," in Genetic Algorithms in
Search, Optimization, and Machine Learning, D. Edward, Ed. Reading,
Massachusetts: Addison-Wesley Publishing Company Inc., 1989, pp. 106-120.

[136] E. Oyama, A. Arvin, K. F. MacDorman, T. Maeda, and S. Tachi, "A modular
neural network architecture for inverse kinematics model learning,"
Neurocomputing, vol. 38-40, pp. 797-805, 2001.

[137] E. Oyama and S. Tachi, "Modular neural net system for inverse kinematics
learning," presented at International Conference on Robotics and Automation,
2000.

[138] E. Oyama and S. Tachi, "Inverse Kinematics Learning by Modular Architecture
Neural Networks," presented at International Joint Conference on Neural
Networks, Washinton D.C., 1999.

[139] D. DeMers and K. Kreutz-Delgardo, "Learning Global Direct Inverse
Kinematics," in Advances in Neural Information Processing Systems 4, J. E.
Moody, S. J. Hanson, and R. Lippmann, Eds.: Morgan Kaufmann Publishers
Inc., 1992, pp. 589-594.

[140] M. Toussaint and S. Vijayakumar, "Learning Discontinuities for Switching
between Local Models," presented at 19th International Conference on Artificial
Intelligence, Edinburgh, UK, 2005.

[141] M. F. Wilkins, "Neural network analysis of multivariate flow cytometric data
from phytoplankton," in School of Pure and Applied Biology. Cardiff:
University of Wales, 1995.

[142] G. Camps-Vails, J. D. Martin-Guerreo, J. L. Rojo-Alvarez, and E. Soria-Olivas,
"Fuzzy sigmoid kernel for support vector classifiers," Neurocomputing, vol. 62,
pp. 501-506, 2004.

[143] M. Skrbek, "Fast Neural Network Implementation," Neural Network World, vol.
9, pp. 375-391, 1999.

[144] F. Boussaid, A. Bouzerdoum, and D. Chai, "VLSI Implementation of a Skin
Detector based on Neural Network," presented at 5th International Conference
on Information, Communications and Signal Processing, Bangkok, Thiland,
2005.

[145] A. Janin and N. Morgan, "SpeechCorder, the portable meeting recorder,"
presented at International Workshop on Hands-Free Speech Communication,
Kyoto, Japan, 2001.

188

[146] J. A. Bullinaria, "Ensemble Techniques for Avoiding Poor Performance in
evolved Neural Networks," presented at International Joint Conference on
Neural Networks, Piscataway, NJ, 2006.

[147] P. Rohlfshagen and J. A. Bullinaria, "An Exonic Genetic Algorithm with RNA
Editing Inspired Repair Function for the Multiple Knapsack Problem," presented
at UK Workshop on Computational Intelligence, Leeds, UK, 2006.

[148] K. F. Wells and K. Luttgens, Kinesiology, scientific basis of human motion. East
Sussex: W B Saunders Company, 1979.

[149] D. Gattamelata, P. Engenio, and P. P. PValentini, "Accurate Geometrical
Constraints for the Computer Aided Modelling of the Hummer Upper Body,"
Computer-Aided Design, vol. 39, pp. 540-547, 2007.

[150] R. Ward, R. Baker, and A. Schache, "Anatomical constraints of the lower limb
joints: Implications for kinematic modelling for quantitative gait analysis," Gait
and Posture, vol. 24, pp. 103-104, 2006.

[151] R. Smith, "How to make new joints in ODE," vol. 2008, 2002.

[152] R. Smith, "Constraints in Ridgid Body Dynamics," in Games Programming
Gems: 3, A. Kirmse, Ed., 1st ed. Hingham, Massachusetts: Charles River Media,
2004, pp. 241-253.

[153] J. D. Foley, A. Van Dam, S. Feiner, and J. F. Hughes, Computer Graphics
Principles and Practice: Addison Wesley, 1995.

189

Appendix A.
Published Papers

G. Jenkins and P. Angel, "Evolved Topology Generalized Multi-Layer Perceptron
(GMLP) for Joint Constraint Modeling," presented at 9th International Conference on
Computer Modeling and Simulation, Oriel Collage Oxford, 2006.

190

EVOLVED TOPOLOGY GENERALIZED MULTI-LAYER PERCEPTION
(GMLP) FOR JOINT CONSTRAINT MODELLING.

GLENN JENKINS, DR. PAUL ANGEL
School of Computing, University of Glamorgan,

Pontypridd (Cardiff),
CF37 1DL,

Wales
Email: <gjenkins><pangel>@glam.ac.uk

ABSTRACT

The accurate simulation of anatomical joint models is becoming increasingly important for both medical
and animation applications. We propose the use of Artificial Neural Networks to accurately simulate
joint constraints based on recorded data. This paper describes the application of Genetic Algorithm
approaches to neural network training in order to model corrective piece-wise linear / discontinuous
functions required to maintain valid joint configurations. The results show that Artificial Neural Networks
are capable of modelling continuous boundary shapes for a range of constraint sizes.

KEYWORDS: anatomical joint constraint, NetJEN, GMLP, piece-wise linear, discontinuous, neural
networks

INTRODUCTION

Anatomical joint models are important
constituents of anatomical models, they are
used in simulation to retain anatomically
correct movement and ensure limbs do not
separate or intersect. Anatomical models are
used in both medicine and animation to create
model humans as characters, teaching aids or
to evaluate the benefits of surgical or
prosthetic intervention (Zajac 2003, Watt and
Watt 1992, Manal, et al. 2002).

Many current techniques are limited by their
underlying representation or their abstraction
of the joint function and there is increasing
demand for anatomically correct joints for
both animation and medicine. However in
current applications, increasing accuracy
leads to increasing complexity which requires
additional computation (Watt and Watt 1992,
Zhang and Wang 2002, D'Souza, et al. 2001).

The long term aim of this work is to create an
anatomically correct joint model trained using
person specific data (from non-invasive
(Hamel, et al. 2003) or invasive (Yang, et al.
1996) sources). This will provide an accurate
representation of an individual's mobility.
The accurate representation of joint
constraints by Artificial Neural Networks
(ANN) has advantages over methods which
use coarse approximations and
computationally expensive recursive or
iterative techniques.

This paper investigates the application of ANN
techniques to model a joint constraint system.
From the training data given, the network learns
discontinuous corrective functions which model
the behaviour of the joint and ensure the joint
configuration remains valid during movement.
Using evolutionary techniques based on genetic
algorithms, the topology of the network is
configured dynamically to approximate the piece-
wise linear properties inherent in discontinuous
functions (Selmic and Lewis 2000).

BACKGROUND

Inverse Kinematics (IK) techniques attempt to
resolve one or more constraints which constitute a
constraint system. This problem is compounded
by the existence of zero or more solutions (Watt
and Watt 1992). Numerical techniques are
favoured over analytical techniques as the
inversion of forward kinematics functions
becomes more difficult as the systems complexity
increases. Common approaches are based on
resolved motion rate (Madhavapeddy and
Ferguson 1998, Baerlocher and Boulic 2004) and
optimization techniques (Badler, et al. 1993, Zhao
and Badler 1994, Nelson 1988).

Speed and complexity limitations associated with
IK have been overcome using ANNs (Guez and
Ahmad 1988). Recurrent neural networks have
been used to identify optimum solutions to
inverse kinematics problems (Ding and Wang
1999, Ding and Tso 1999, Zhang, et al. 2003,
Zhang and Wang 2002, Zhang, et al. 2002, Xia
and Wang 2001, D'Souza, et al. 2001) and have

also been developed to overcome problems in
numerical techniques which use Jacobian
inversion (Wang 1997). This operation is
difficult, especially when the matrix is non-
square as in the case of redundant
manipulators (Watt and Watt 1992).

The problem of constructing anatomical joints
has been approached in several ways. Engin
(Engin and Turner 1993) classifies these as
'anatomically based' and 'phenomenological'
joints. Anatomically-based joints represent
the joint through the interaction of
geometrical models that represent the physical
components of the joint whereas
phenomenological joints use mathematical
models to describe the behavior of the joint
without reference to its constituent parts.

Primitive joint constraints have been
parameterized using Euler angles (Faraway, et
al. 1999, Eng and Winter 1995, Furuta, et al.
2001). Inter-dimensional dependencies cannot
be easily represented using Euler angles
(Baerlocher 2001), and singularities or
"Gimbal Lock" are encountered. Feikes et al
(Feikes, et al. 2003) used special orthogonal
matrices, a rotational parameterization not
susceptible to "Gimbal Lock", to overcome
this.

N-dimensional boundary representations
preserve the relationships between rotational
degrees of freedom. Conceptually a number
of points along the boundary are obtained
through measurement, and then approximated
to an n-dimensional shape. Pioneered by
Korein (Korein 1984) whose 2D spherical
polygons constrained the movement of
robotic arms, this technique has also been
employed to constrain the 'swing' component
in a swing-twist parameterization specifically
for ball and socket joints (Baerlocher and
Boulic 2000, Korein 1984). Cone based
polygons using one (Engin and Turner 1989)
or more (Manurel and Thalmann 2000) cones
have also been suggested for the complex
shoulder joint. The quaternion iso-surface
approach of Herda et al both preserves the
relationship between the degrees of freedom
and avoids singularities found in Euler angles
(Herda, et al. 2003, Watt and Watt 1992).
Here a subject's arm movements were
recorded and represented in quaternion space.
A boundary between valid and invalid
rotations of the arm was then defined on the
surface of the unit sphere in quaternion space.
Iterative approaches were then employed to
resolve invalid joint configurations.

Artificial neural networks are inspired by the
structure of the human brain. Like biological
neural networks they are composed of

neurons which are linked together to form
complex networks. However, they are
significantly different in terms of complexity and
the way nodes in the network communicate.
There are many types of network architecture,
from auto-associative memories such as the
Hopfield network to unsupervised networks such
as Kohonen's SOM (Self-Organising
Map)(Mehrotra, et al. 1997). The most popular
type of architecture is the feed-forward network
such as the Multi-layer Perception. These are
trained to give certain outputs in response to
given inputs by repeatedly adjusting the strengths
of the interconnections between neurons within
the network. Typically, neural networks use an
optimization process to learn the best boundary to
delineate regions within a multi-dimensional
feature space. Recent developments have
introduced the use of genetic algorithms to find
the optimum network configuration and topology
for a given network (Huber, et al. 1995).

EXPERIMENTS

This paper describes the application of genetic
algorithm approaches to neural network training
in order to model piece-wise linear /
discontinuous functions that approximate the
behaviour of anatomically correct joint
constraints.

We trained a Generalised Multi-Layer Perceptron
(GMLP) model to learn joint behaviour in one
(Euler angle), two and three dimensions. Each
point in the feature space represents the rotation
of a given joint model. For each point, we want
to model the appropriate correction to map a
given joint configuration to the nearest valid joint
configuration. So for valid rotations, there is no
correction, while for invalid rotations, a vector is
stored to move the rotation to the nearest valid
rotation. Discontinuities arise at the joint
constraint boundary where the valid and invalid
joint configurations meet. A range of
experiments were undertaken to model different
rotational constraint sizes in 1, 2 and 3
dimensions.

The NetJEN system used in our work is a Java
based application which grew out of NetGEN
(Huber, et al. 1995) developed for research
purposes at the University of Salzburg. NetJEN
boasts several impressive features and provides an
implementation of Huber et al's (Huber, et al.
1995) work in topology evolution. A hybrid
system is employed using genetic algorithms with
the back-propagation learning algorithm.

In each experiment the network was configured as
follows. The input layer represents the current
joint rotation, while the output layer represents
the correction vector. The number of hidden

nodes and connection topology are
randomized and then evolved during the
learning process using Generic Algorithms.
The weights of the interconnections are
randomized and updated using the back-
propagation algorithm. In each case the
inputs and outputs were mapped to the range -
1 to +1, the evolution and training parameters
were set as shown in Table 1. We restricted
the number of generations and training cycles
to reduce training times. Each experiment was
repeated five times to ensure the consistency
of the results.

Three datasets were prepared for each of the
experiments; a training set, used to train each
generation of ANN, a validation set, used to
assess the fitness of the ANN for genetic
selection and a test set which provided an
unseen set of data on which to test the ANN.
In creating the datasets we aimed to cluster
patterns around the boundary representing the
discontinuity between the valid and invalid
joint regions.

Table 1 : Evolution and Training Settings

Parameter
Regularization
function
Hidden Nodes

Number of
Generations

Population Size

Fitness Function

Evolve number
of Links

Evolve number
of Hidden
Nodes
Evolve number
of training
cycles
Learning Rate

Stopping Error

Training
Function

Max Epochs

Description
Secondary fitness
function.
Maximum no. of
hidden nodes.
No. of generations
over which the
ANN were
evolved.
Size of the
populations
evolved.
Primary fitness
function.
Networks are
pruned down from
fully connected
networks.
Evolves the no. of
hidden nodes.

Evolves the no. of
training cycles

Learning rate used
when training the
ANN.
MSE at which the
ANN arc stopped.
Training function
used to train the
weights of the
ANN.
Maximum number
of training epochs

Setting
Number of links

20

50

20

Inverse SSE

On

On

On

0.1

0.001

Resilient back-
propagation

500

RESULTS

The results of the first experiment show that
though each of the networks trained
successfully and the Mean Squared Error
(MSE) of the network was low, the

performance of the network decreased as the
number of dimensions increased, demonstrated by
the increase in the MSE, (figurel.) In each case
the functions describe both continuous and
discontinuous regions. These are of comparable
size so the decrease in accuracy is proportional to
the number of degrees of freedom being
modelled. There was little difference in the
performance on test and training sets, suggesting
the network performed well on unseen patterns.

Figure 1: Average MSE vs. Constraint Size

The number of hidden nodes and the number of
inter-connections, which are to a certain extent
linked, also increased as the number of
dimensions increased, though only between the
one and two dimension constraints. This indicates
that the number of inter-connections and nodes
required to approximate a constraint in two
dimensions was sufficient also to approximate a
constraint in three dimensions.

The second experiment varied the size of the
constraint, hi each case the network performed
well. However, it was noted that in each case the
network performance decreased as the size of the
constrained region increased, (figure 1.) For each
of the ranges tested the size of the evolved
networks varied little. The increase in the MSE in
relation to the size of the constraint can be
attributed to the distribution of training patterns.
This shows that the technique is applicable to
various sizes of constrained region, which is
important if we are to model anatomical joints.

CONCLUSION AND FUTURE WORK

Our results show that a Generalised Multi-Layer
Perceptron (GMLP) with evolved structure can
model a corrective joint function in 1, 2 and 3
dimensions to a reasonable degree of accuracy.
Experimental results are encouraging with regards
to the use of such networks for neural network
constraint modelling. Through experimentation,
we found that the best results were obtained when
the network evolved a hidden layer with sigmoid
transfer functions and an output layer with linear
transfer functions.

Future work will look at applying this
network architecture to more general rotation
models using the quaternion representation.

ACKNOWLEDGEMENTS

The authors would like to thank; Helmut
Mayer (University of Salzburg) for all his
advice in optimizing the configuration of the
NetJEN system; August Mayer (University of
Salzburg) for his advice and continued
development and support of the NetJEN
system and Carl Davies (ISeLS - University
of Glamorgan) for additional hardware and
technical support.

REFERENCES

Badler, N. I.; C. B. Phillips and B. L. Webber.
1993. Simulating Humans: Computer
Graphics, Animation, and Control., Oxford
University Press, Oxford.

Baerlocher, P. and R. Boulic. 2000.
"Parameterization and Range of Motion of the
Ball and Socket Joint" In IFIP TC5/WG5.10
DEFORM' 2000 Workshop and AVATARS'
2000 Workshop on Deformable Avatars

Baerlocher, P. 2001. "Inverse Kinematics
Thechniques for the Interactive Posture
Control of Articulated Figures". PhD thesis
from Department D'lnformatique, Ecole
Polytechnique Federal De Lausanne,
Lausanne

Baerlocher, P. and R. Boulic. 2004. "An
Inverse Kinematics Architecture Enforcing an
Arbitrary Number of Strict Priority Levels"
The Visual Computer: International Journal of
Computer Graphics, 20, No 6, 402-217.

Ding, H. and S. K. Tso. 1999. "A Fully
Neural Network-Based Planning Scheme for
Torque Minimization of Redundant
Manipulators" IEEE Transactions on
Industrial Electronics, 46, No 1, 199-206.

Ding, H. and J. Wang. 1999. "Recurrent
Neural Networks for Minimum Infinity-Norm
Kinematic Control of Redundant
Manipulators" IEEE Transactions on System,
Man and Cybernetics: Part A, 29, No 3, 269-
276.

D'Souza, A.; V. S. and S. Stefan. 2001.
"Learning Inverse Kinematics" In
International Conference on Intelligent
Robots and System, (Maui, Hawaii, USA)

Eng, J. and D. A. Winter. 1995. "Kinematic
Analysis of the Lower Limbs During Walking:
What Information Can Be Gained from a 3d
Model" Journal of Biomechanics, 28, No 6, 753-
758.

Engin, A. E. and S. T. Turner. 1989. "Three
Dimensional Kinematic Modelling of the Human
Shoulder Complex Part 1: Physical Model &
Determination of Joint Sinus Cone." Journal of
Biomecahnical Engineering, 111, 107-112.

Engin, A. E. and S. T. Turner. 1993. "Improvised
Dynamic Model of Human Knee Joint and Its
Response to Loading" Journal of Biomechanical
Engineering, 115, No 2, 137-142.

Faraway, J. J.; X. Zhang and D. B. Chaffin. 1999.
"Rectifying Postures Reconstructed from Joint
Angles to Meet Constraints" Journal of
Biomechanics, 32, No 7, 733-736.

Feikes, J. D.; J. J. O'Connor and A. B. Zavatsky.
2003. "A Constraint-Based Approach to
Modelling the Mobility of the Human Knee Joint"
Journal of Biomechanics, 36, No 1, 125-129.

Furuta, T.; T. Tawara; Y. Okumura; M. Shimizu
and K. Tomiyama. 2001. "Design and
Construction of a Series of Compact Humanoid
Robots & Development of Bipedal Walking
Control Strategies" Robotics and Autonomous
Systems, 37, 81-100.

Guez, A. and Z. Ahmad. 1988. "Solution to the
Inverse Problem in Robotics by Neural Network"
In IEEE International Conference on Neural
Networks, 2, (San Diego, CA), 617-624

Hamel, A. J.; N. A. Sharkey; F. L. Buczek and J.
Michelson. 2003. "Relative Motions of the Tibia,
Talus and Calcareous During the Stance Phase of
Gait" Gait and Posture, 20, No 2, 153-157.

Herda, L.; R. Urtasun; P. Fua and A. Hanson.
2003. "Automatic Determination of Shoulder
Joint Limits Using Quaternion Field Boundries"
International Journal of Robotics Research, 22,
No 6, 419-444.

Huber, R.; H. A. Mayer and R. Schwaiger. 1995.
"Netgen - a Parallel System Generating Problem-
Adapted Topologies of Artificial Neural
Networks by Means of Genetic Algorithms" In
Beitrage zum 7. Fachgruppentreffen Maschinelles
Lernen der GI-Frachgruppe 1.1.3, (Dortmund),
91-98

Korein, J. U. 1984. A Geometric Investigation of
Reach, MIT Press, Massachusetts.
Madhavapeddy, N. and S. Ferguson. 1998.
"Specialised Constraints for an Inverse

Kinematics Animation System Applied to
Articulated Figures" In Eurographics'98,
(Leeds, United Kingdom), 215-223

Manal, K.; X. Lu; M. K. Nieuwenhuis; P. J.
M. Helders and T. S. Buchanan. 2002. "Force
Transmission through the Juvenile Idiopathic
Arthritic Wrist: A Novel Approach Using a
Sliding Rigid Body Spring" Journal of
Biomechanics, 35, 203-218.

Manurel, W. and D. Thalmann. 2000.
"Human Shoulder Joint Modelling Including
Scapulo-Thoratic Constraints and Joint Sinus
Cones." Computers and Graphics, 24, 203-
218.

Mehrotra, K.; C. K. Mohan and S. Ranka.
1997. Elements of Artificial Neural Networks,
MIT Press, Massachusetts.

Nelson, D. 1988. "Constraint Jacobians for
Constant-Time Inverse Kinematics and
Assembly Optermization". Report No.
University of Utah, Utah

Selmic, R. R. and L. L. Lewis. 2000.
"Deadzone Compensation in Motion Control
Systems Using Neural Networks" IEEE
Transactions on Automatic Control, 45, No 4,
602-613.

Wang, J. 1997. "Recurrent Neural Networks
for Computng Pseudoinverses of Rank-
Deficient Matrices" SIAM Journal of
Scientific Computing, 18, No 5, 1479-1493.

Watt, A. and M. Watt. 1992. Advanced
Animation and Rendering Techniques, ACM
Press, New York.

Xia, Y. and J. Wang. 2001. "A Dual Neural
Network for Kinematic Control of Redundant
Robot Manipulators" IEEE Transactions on
System, Man and Cybernetics: Part B, 31, No
1,147-154.

Yang, D. N.; D. N. Condie; M. H. Granat; J.
P. Paul and D. I. Rowley. 1996. "Effects of
Joint Motion Constraints on the Gait of
Normal Subjects and Their Implications on
the Further Developments of Hybrid Fez
Orthosis for Paraplegic Persons." Journal of
Biomechanics, 29, No 2, 217-226.

Zajac, F. E. 2003. "Biomechanics and Muscle
Coordination of Human Walking Part 2: Lessons
from Dynamical Simulations and Clinical
Implications" Gait and Posture, 17, 1-17.

Zhang, Y. and J. Wang. 2002. "A Dual Neural
Network for Constrained Torque Optimization of
Kinematically Redundant Manipulators" IEEE
Transactions on System, Man and Cybernetics:
Part B, 32, No 5, 654-662.

Zhang, Y.; J. Wang and Y. Xu. 2002. "A Dual
Neural Network for Bi-Criteria Kinematic Control
of Redundant Manipulators" IEEE Transactions
on Robotics and Automation, 18, No 6, 923-931.

Zhang, Y.; J. Wang and Y. Xia. 2003. "A Dual
Neural Network for Redundancy Resolution of
Kinematically Redundant Manipulators Subject to
Joint Limits and Joint Velocity Limits" IEEE
Transactions on Neural Networks, 14, No 3, 658-
667.

Zhao, J. and N. I. Badler. 1994. "Inverse
Kinematics Positioning Using Non-Linear
Programming for Highly Articulated Figures"
Transactions on Graphics, 14, No 4, 313-336.

AUTHOR BIOGRAPHIES

Mr. Glenn Jenkins is a PhD Research Student at
the University of Glamorgan, studying towards a
PhD in Computer Science focusing on the
Simulation of Anatomical Joint Constraints using
Neural Networks. His research interests include
artificial neural network evolution, spline and
mixed activation function artificial neural
networks, the simulation of anatomical joint
constraints and their implementation.

Dr. Paul Angel is a Senior Lecturer in the School
of Computing at the University of Glamorgan,
specialising in Computer Graphics, Visualisation
and software design. His research interests
include volumetric modelling and visualisation,
image analysis, artificial neural networks and
concurrent / parallel programming techniques. He
obtained his PhD in Computer Science focusing
on the application of wavelet feature extraction
techniques applied to biological image data.

