

EVOLVED NEURAL NETWORK APPROXIMATION OF
DISCONTINUOUS VECTOR FIELDS IN UNIT QUATERNION
SPACE (S’) FOR ANATOMICAL JOINT CONSTRAINT

GLENN LLEWELLYN JENKINS
School of Computing,

Faculty of Advanced Technology,
University of Glamorgan

A submission presented in partial fulfilment of the requirements of the University of
Glamorgan / Prifysgol Morgannwg for the degree of Doctor of Philosophy.

August 2007

Abstract

The creation of anatomically correct three-dimensional joints for the simulation of
humans is a complex process, a key difficulty being the correction of invalid joint
configurations to the nearest valid alternative. Personalised models based on individual
joint mobility are in demand in both animation and medicine [1]. Medical models need
to be highly accurate animated models less so, however if either are to be used in a real
time environment they must have a low temporal cost (high performance). This work
briefly explores Support Vector Machine neural networks as joint configuration
classifiers that group joint configurations into invalid and valid. A far more detailed
investigation is carried out into the use of topologically evolved feed forward neural
networks for the generation of appropriately proportioned corrective components which
when applied to an invalid joint configuration result in a valid configuration and the
same configuration if the original configuration was valid. Discontinuous vector fields
were used to represent constraints of varying size, dimensionality and complexity. This
culminated in the creation corrective quaternion constraints represented by
discontinuous vector fields, learned by topologically evolved neural networks and
trained via the resilient back propagation algorithm. Quaternion constraints are difficult
to implement and although alternative methods exist [2-6] the method presented here is
superior in many respects. This method of joint constraint forms the basis of the
contribution to knowledge along with the discovery of relationships between the
continuity and distribution of samples in quaternion space and neural network
performance. The results of the experiments for constraints on the rotation of limb with
regular boundaries show that 3.7 x 10% of patterns resulted in errors greater than 2%
of the maximum possible error while for irregular boundaries 0.032% of patterns
resulted in errors greater than 7.5%.

Declaration

The work presented throughout this thesis, except that which has been explicitly
referenced, is solely the work of the author, Glenn Llewellyn Jenkins, and has not been
submitted in part or in whole for any other academic award or to any other academic
institution.

The copyright of this work is vested in the author.

Signed Dated

?5%"@ (Author) 14 /08/2007

——> = (Director of Studies) 2L /08/2007___

Acknowledgements

I would like to extend my sincere thanks to my project supervisors at the University of
Glamorgan, Dr. Paul Angel and Mr. Colin Morris, for their support and guidance over
the last four years. I would also like to thank Mr. August Mayer and Dr. Helmut Mayer
for providing and supporting the NetJEN system used in my work. 1 would like to give
special thanks to my parents who have encouraged me and believed in me all my life,
and to Kirstie for her support, encouragement and tolerance. 1 would like to thank my
close friends and both Kirstie’s family and my own who have helped me keep a sense of
perspective during the most stressful periods of my PhD. Finally I would like to thank
my colleagues at Swansea Metropolitan University for providing me with support,
friendship and sufficient time to complete my PhD.

Contents

1. Introduction 8
2. Literature Review 10
2.1 Joint Modelling 10
2.1.1 Anatomically Based Joint Modelling 10
2.1.2 Phenomenological Joint Modelling 12
2.1.3 Rotational Representation 14
2.1.3.1 Euler Angles I5
2.1.3.2 Rotation Matrices 16
2.1.3.3 Exponential Map or Versor 17
2.1.3.4 Quaternions (or Euler Parameters) 18
2.1.3.5 Swing and Twist 21
2.2 Neural Networks 22
2.2.1 Feed-Forward Neural Networks 23
2.3 Support Vector Machines (SVMs) 28
2.4 Genetic Algorithms 31
2.5 Evolved Artificial Neural Networks 32
2.5.1 Topology Evolution 33
2.5.2 Activation Function Evolution 34
2.6 Local and Global Learning Characteristics 35
2.7 Neural Network Approximation of Vector Fields 37
2.8 Principle Component Analysis 42
2.9 Conclusion 47
3. Simple Corrective Constraints 52
3.1 Methodology 53
3.1.1 Dataset Generation 54
3.1.2 NetJEN 57
3.1.3 Evolution and Training 60
3.2 Results 63
3.3 Discussion 71
3.4 Conclusion 74
4.1 Methodology 75
4.1.1 Dataset Generation 75
4.1.2 Evolution and Training 79
4.2 Results 81
4.2.1 Regular Boundaries 81
4.2.2 Irregular Boundaries 94
4.3 Discussion 100
4.3.1 Regular Boundaries 100
4.3.2 Irregular Boundary 102
4.4 Conclusion 105

5.1 Methodology 106

5.1.1 Number of Hidden Layers and Nodes 106
5.1.2 Training Epochs 107
5.1.3 Number of Patterns 108
5.1.4 Pattern Order 108
5.1.5 Pattern Distribution 108
5.1.6 Generations 109
5.1.7 Population Size 110
5.1.8 Activation Function 110
5.1.9 Dataset Creation 112
5.1.10 Activation Function Evolution using NetJEN 112
5.1.11 Training and Evolution 114
5.2 Results 116
5.2.1 Discontinuous Vector Fields Representing Three Dimensional Constraints
117
5.2.1.1 Neural Network Size 117
5.2.1.2 Training Epochs 118
5.2.1.3 Number of Training Patterns 120
5.2.1.4 Generations 121
5.2.1.5 Population Size 123
5.2.2 Discontinuous Vector Fields Representing Regular and Irregular Quaternion
Boundaries 125
5.2.2.1 Number of Hidden Nodes 125
5.2.2.2 Training Epochs 126
5.2.2.4 Training Patterns 128
5.2.2.5 Pattern Order 129
5.2.2.6 Pattern Distribution 130
5.2.2.7 Activation Function Evolution 130
5.3 Discussion 136
5.3.1 Discontinuous Vector Fields Representing Three-Dimensional Constraints
136
5.3.2 Discontinuous Vector Fields Describing Regular and Irregular Boundary
Quaternion Constraints 138
5.4 Conclusions 142
6. Binary Constraints in S’ Space 144
6.1 Methodology 144
6.1.1 Dataset Generation 145
6.1.2 SVMLight 145
6.1.3 Training Configuration 146
6.2 Results 146
6.3 Discussion 150
6.4 Conclusions 152
7. Discussion 153
7.1 Binary Constraints 153
7.2 Corrective Constraints 154
8. Conclusions 164
9. Future Work 168

9.1 Introduction 168

9.2 Development of the Current Work 168
9.2.1 Performance of Spline Based Neural Networks 168
9.2.2 Performance Metrics for Joint Constraint Vector Fields 169
9.2.3 The Constraint of Rotation around the Limb 169
9.2.4 Reduced Coordinate Encoding 172
9.2.5 Multiple Dependent Joints 173
9.2.6 Training from Sampled Data 174

9.3 Application of the Techniques Developed 174
9.3.2 Kinematic Modelling 174
9.3.3 Biomechanical Modelling 175
9.3.4 Dynamics Modelling 175
9.3.5 Pose Constraints 176
9.3.6 Camera Constraint 176

9.4 Conclusion 177

Appendix A. 190

Published Papers 190

1. Introduction

Jomt models are important constituents of anatomical models, they are used in
simulation to retain anatomically correct movement and ensure limbs do not separate or
intersect. Anatomical models are used in both medicine and animation to create model
humans as characters, teaching aids or to evaluate the benefits of surgical or prosthetic
intervention [7-9]. It has been acknowledged that the joint models used in animation

are particularly underdeveloped despite advances in other areas of humanoid modelling

[1].

Many current techniques are limited by their underlying representation or their
abstraction of the joint function and there is increasing demand for anatomically correct
joints for both animation and medicine [1, 10, 11]. However in current applications,
increasing accuracy leads to increasing complexity which requires additional
computation [8, 12, 13]. No single technique has been presented suitable for accurately

modelling all classifications of anatomical joint [1].

The long term aim of this work is to create an anatomically correct joint model based on
person specific data (from non-invasive [14] or invasive [15] sources). Each model will

provide an accurate representation of an individual’s mobility.

The accurate representation of joint constraints by Artificial Neural Networks (ANN)
has advantages over methods that use coarse approximations and computationally
expensive iterative techniques. In combination with a quaternion based angular
representation this presents an opportunity for systems with uniform constraint and

angular representations.

In this thesis a number of simple cases based on contrived data are examined these
provide the foundation for further research towards an eventual goal of patient or

character specific joint constraints systems.

A joint constraint system must be capable of a decision regarding the validity of the
current orientation and where required the appropriate correction should be assigned.

Where a constraint system only describes the constraint as valid (within its constraint

limits) or invalid (outside its constraint limits) the term binary constraint is used. Where
the constraint system responds with a correction for invalid configurations and a zero

correction for valid corrections the term corrective constraint is used.

This work focuses on corrective constraints modelled as vector fields and investigates
the application of evolved ANN techniques to model a joint constraint system, for
corrective constraints. The vector fields considered are discontinuous in nature, which
increases the difficulty of their approximation. Using evolutionary techniques based on
genetic algorithms, the topology of the network is configured dynamically to
approximate the piece-wise linear properties inherent in discontinuous functions [16].
The application of Support Vector Machines to the problem of binary constraints is also
investigated. In both cases less complex constraints are considered as a precursor to

those of the complexity required to model anatomical rotational constraints.

In Chapter 2 current approaches to joint constraint, rotational representation, neural
networks and their evolution by genetic algorithms are reviewed. Chapter 3 introduces
initial experiments exploring the capabilities of topologically evolved neural networks
applied to vector fields representing corrective constraints of increasing dimensionality.
This is followed in Chapter 4 by the application of these techniques to vector fields
representing quaternion based constrains, with both regular and irregular boundaries.
This work is concluded in Chapter 5 where training and evolution constraints imposed
to minimise temporal cost in earlier experiments are removed to ascertain the
capabilities of the neural networks. The construction and training of binary constrains
of varying dimensionality is considered in Chapter 6. Chapters 7 and 8 contain a
discussion and conclusions relevant to the thesis as a whole, finally Chapter 9 details

future work.

2. Literature Review

In order to apply neural networks to the problem of joint constraint existing approaches
to anatomical joint constraint and their limitations are reviewed. Current approaches
can be classified as either 'anatomically based' or 'phenomenological’, of which the latter
are more relevant to this work [17]. The research presented here focuses on the
development of phenomenological joints, which mimic the behavior of the subject joint
but not its physical structure. In describing the rotational behavior of these joints a
selection of rotational parameterizations utilized in previous joint modeling solutions

are considered.

Joint constraints are separated into ‘binary constraints’ and ‘corrective constraints’ the
distinction being the response of the constraint system. In the binary case valid and
invalid rotations invoke true and false responses respectively while in the corrective
case a valid input rotation invokes a zero corrective response while an invalid rotation
results in the required correction to the closest valid rotation being given. Machine
learning techniques are studied with focus on their properties regarding classification

(for binary constraints) and vector field approximation (for corrective constraints).

2.1 Joint Modelling

The problem of constructing anatomical joints has been approached in several ways.
Engin and Tumer [17] classifies these approaches as ‘anatomically based' and
'phenomenological’. Anatomically based joints represent the joint through the
interaction of geometrical models that represent the physical components of the joint
while phenomenological joints use mathematical models to describe the behavior of the

joint without reference to its constituent parts.

2.1.1 Anatomically Based Joint Modelling

10

Anatomically based approaches emulate the physiological properties of joint
constituents in order to simulate their behaviour, as these physiological properties are
responsible for both movement and constraint the desired constraint is implemented.
Anatomical joints are typically made up of several constituents; bones, ligaments,

tendons and muscles, each of which contributes to the constraint [17].

Gait simulations model the patterns of movement observed during a walking cycle. In
many gait simulations the extremes of movement are ignored, as such limits are never
reached during the gait cycle. Groups of muscles acting together prevent the limb
reaching the limits of the joint [18, 19]. However for motions other than gait (e.g.
jumping, stretching or a fall) joint limits may be encountered and so to create more

versatile models more complex joint constraints are required.

An anatomical joint is always a connection between one or more bones, though this is
often simplified to a mechanical linkage, some approaches attempt to model the
interaction of the bones themselves. Bone dynamics are typically based on a physical
simulation of the contact forces of the bones in question [18, 20]. These are often used
in models in conjunction with other constituents of passive constraint i.e. ligaments,

tendons and muscles [17, 21].

The simulation of ligaments has generated a great deal of research as ligaments provide
much of the constraint in anatomical joints. Ligaments are mechanically heterogeneous
complex structures in that they transfer loads non-uniformly and simultaneously in three
dimensions [22]. Ligaments are responsible for the connection of articular extremities;
pliant and flexible they provide maximum freedom of movement while being strong and
inextensible so as not to yield under extreme force. Some ligaments are composed of
yellow fibres (as apposed to the more common white, silvery variety) and have more
elastic properties, it has been observed that they form a substitute for muscular power

[23].

Ligaments have been simulated in several ways, the most prevalent being spring model
variants. Ligaments behave much like springs at their optimal loadings though above
this they are unpredictable [24]. Primitive spring models with single attachment points

have been used to simulate ligaments [17, 25, 26], however ligaments have distributed

11

attachment points. To improve the accuracy of these models more complex approaches

have been developed.

Manal et al [9] used a sliding attachment point that “floats” along the edge of the bone
to which it is attached to simulate the active force of a group of ligaments using a single
spring. Other approaches provide a more accurate representation of the large
attachment area of ligaments by using elastic bundles — a collection of spring models
used to simulate ligament behaviour [22, 27]. Mommersteeg ef al acknowledge that the
elements which make up the bundle cannot interact and suggests three dimensional
polygons as a way forward [22]. Ligament constraint systems have also been described
using mathematical models and utilizing rotational matrices as their description of the

constraint [21].

Kinetic approaches have also been used to describe the forces exerted by a tendon [28].
Models have also been constructed in order to ascertain the effect of smaller tendons

whose contribution to the constraint is difficult to measure [22].

2.1.2 Phenomenological Joint Modelling

Phenomenological joint models model the behaviour of the joint but not its physical
structure. Primitive joint constraints have been parameterised using Euler angles [29-
32]. Euler angles are one of the most established and popular parameterisations of
orientation. They model the rotation about each of the principle axes (x, y and z). Euler
angles suffer from the problem of “Gimbal lock”. Here a singularity occurs when 90°
rotation is present around the second axis of rotation. This results in axis alignment and

the loss of a degree of freedom [8, 33].

Inter-dimensional dependencies cannot be easily represented using Euler angles [34],
and singularities or “Gimbal Lock™ are encountered. Feikes et a/ [11] and Wilson et al
[21] used special orthogonal matrices, a rotational parameterisation not susceptible to
“Gimbal Lock”, to overcome these limitations. Inter-dimensional dependencies
between Euler angles can be expressed as equations [35] though this increases

computational cost.

12

N-dimensional boundary representations preserve the relationships between degrees of
rotational freedom and are often used to supplement Euler angles. Conceptually, a
number of points along the constraint boundary are obtained through measurement, and
then approximated to an n-dimensional polygon. Pioneered by Korein [36] whose three
dimensional spherical polygons constrained the movement of robotic arms. This
technique has been employed to constrain the ‘swing’ component in a swing-twist
parameterisation specifically for ball and socket joints [36-38]. Isaccs and Cohen [39]
used an arc based approach similar to that used by Korein. In a related approach Gyi et

al [40] projected a spherical polygon composed of arcs on to plane.

Cone based polygons using one [41] or more [10] cones have been suggested for the
complex shoulder joint. In the more complex case using multiple cones, the cones
themselves are planar polygons (composed of lines) much like the arcs used by Korein
and others [36, 40, 42].

A number of robotics and biomechanics based joint models have been included in a
single model by Shao and Ng-Thow-Hing [1]. Having reviewed the available models
they concluded that no single method could adequately simulate all the joints of a
human model and so a number of specialised constraint models were required to
simulate the individual characteristics of anatomical joints. In their approach conical
constraints and axial rotation constraints with changing centres of rotation are

implemented along with dependencies between rotational constraints [1].

The use of quaternions preserves the relationship between the degrees of freedom and
avoids the singularities encountered in other representations. Binary quaternion based
constraints in were implemented by Lee [6]. Lee decomposes a single quaternion into
two quaternions each representing rotation in a single plane (effectively swing and twist
for conic and axial constraints). In each case the centre of the constraint is known, a
quaternion describing the swing of the joint can be created based on the angle between
the centre and its image rotated by the subject quaternion and the axis calculated from
the cross product of the constraint centre and its rotated image. The second quaternion
representing the rotation around the axis can then be calculated by calculating the twist
alone, (removing the swing component) the axis and angle of this quaternion can then
be calculated. Conic, axial and revolute constraints are defined and can be used to

model basic constraints, more complex constraints can be defined with a union of these

13

basic types. Interrogation of these shapes (to ascertain the validity of a joint
configuration,) is presented, but no method of calculating a correction to the nearest

valid orientation is defined.

Liu and Prakash [3] build on Lee’s work. Using a sampled boundary they create a
function to constrain the decomposed quaternion that can be used for both constraint

validation and clamping to the boundary.

An approach by Johnson utilises logarithmic and exponential mappings between unit

quaternions in S’ and a tangent space in R*. For this to be successfully achieved all
quaternion must be moved to one side of the unit quaternion hyper-sphere as antipodal
unit quaternions represent the same rotation. [2]. In Johnson’s work statistical
techniques are used to create both joint constraints and pose constraints. A set of valid
rotations expressing joint and pose constraints on the unit quaternion hyper sphere are
generated and their mean used as the centre point of the tangent space. A Gaussian
probability density function is used to describe these points and boundaries can be
implemented based on a maximum deviation from the mean of the sample data
provided. Corrections are implemented by recursively moving an invalid point closer to

the mean until the constraint is met.

In the quaternion iso-surface approach of Herda ef al [4, 5] a subject’s arm movements
were recorded and represented in quaternion space. This quaternion-based
representation was simplified by ensuring all scalar components were positive and
omitting them, leaving the three-dimensional vector of imaginary components. A
boundary (iso-surface) between valid and invalid rotations of the arm was then defined
on the irregular boundary surrounding the valid region in three-dimensional space.
Iterative approaches were employed to identify the closest valid joint configuration, its
scalar component can be recovered from the other components, (as the quaternion 1s

unit length) and the correction to this orientation calculated.

2.1.3 Rotational Representation

An object’s orientation in three-dimensional space relative to some reference can be

parameterised in a number of ways. Popular parameterisations include Euler angles,

14

axis angle, quaternion, the swing-twist representation, exponential map and orthogonal
matrices [4, 8, 11, 37].

The parameterisation of rotation is difficult as rotations are non-Euclidean and periodic
in nature, that is travelling infinitely far in any direction will return you to the starting
point an infinite number of times. Any attempt to parameterise a non-Euclidean set
(such as the set of rotations for a joint with three degrees of freedom) by an open subset
of Euclidean space will result in ‘Gimbal lock’, the loss of degrees of freedom due to

singularities [38].

The choice of rotational representation is often a trade off between the advantages and
limitations of the available approaches. In some cases rotations are converted between
representations for specific applications, such as the conversion of axis-angle
representations to quaternion for interpolation of rotations. These conversions consume
processing time and may introduce numerical errors into the system, where possible a

uniform representation is preferred [2].

2.1.3.1 Euler Angles

Euler angles are one of the most established and popular parameterisations of
orientation. A general rotation is described around three mutually orthogonal
coordinate axis in fixed space. These three dimensional axis are reasonably familiar to
most, and rotation around any one is described as a roll. (The axes are x, y and z and the
corresponding rolls x-roll, y-roll and z-roll.) Euler angles ignore the interaction between
the rolls around separate axis it is this failing which causes the ‘Gimbal lock’ problem

[43].

Euler angles have been used by a number of authors for the parameterisation and
enforcement of constraints [29, 31, 32, 37]. However constraints on a single axis may
change in relation to the rotation of another axis and these relationships cannot be

preserved by Euler angles alone [37].

It is difficult to interpolate Euler angels due to the relationships that exist between the

degrees of freedom. In Cartesian coordinates it is trivial to interpolate (using linear

15

interpolation) between positions, however applying the same technique to Euler angles

the interpolation between one orientation and another is not unique [43].

Kuffner [44] details other problems regarding the creation of distance metrics between
rotations when using Euler angles. This is an important consideration in the creation of
joint constraints, especially trained via neural networks, as mechanisms are required to

assess the accuracy of the neural network response.

The direct constraint of Euler angles is not trivial due to a number of factors. While
constraints can be expressed on each of the components individually (one dimensional
constrains) it is difficult to describe valid and invalid regions. Several approaches have
utilized Euler angle based constraints such approaches are severely limited as both
constraint and motion are divided into separate planes and considered independently.
These approaches are limited to robotics applications [32] and crude planar
simplifications of the human skeletal system [29, 31]. Euler angles can be used as a
rotational parameterisation where other methods are employed to impose constraint, in

the work of Korein [36] for example.

2.1.3.2 Rotation Matrices

The set of all possible rotations (proper and improper,) can be considered using a 3x3
matrix representation. A subset of this group of each with a unit determinant and
mutually orthogonal columns of unit length describes the proper or binary rotations
only. This group of matrices is known as the special orthogonal group or SO(3) [38,
45). Though a total of nine numbers are used to represent the matrix there are also six
constraints, three to maintain the unit length of the columns and three maintaining the
pair wise constraints which keep the columns orthogonal [44]. Rotation matrices are a

non-Euclidean parameterisation and do not contain singularities [46].

Though rotation matrices seem convenient they have several properties that make them
difficult to apply to anatomical joint simulation. Floating point precision and space
inefficiency are problems mentioned in the literature [44]. Floating-point errors also
occur when two rotations are combined via multiplication often the resulting matrix is

not orthogonal and must be re-orthonormalized this increases computational cost. More

16

relevant to this work is the difficulty in defining a simple metric for the differences
between two matrices, thus error must be indirectly calculated [44]. Interpolation of

matrices is also non-trivial the constraints must be maintained if the matrix is to remain
valid [46].

Feikes et al [11] and Wilson er a/ [21] used special orthogonal matrices to describe the

rotation of the knee joint.

2.1.3.3 Exponential Map or Versor

In the exponential map the axis and angle are combined together into a single vector the
direction of the vector represents the axis and the magnitude the rotation about that axis.
[8, 38]. In addition to the inevitable problems with singularities the exponential map has
no convenient method for combining rotations (they must be converted to another
format e.g. quaternions) [38]. Exponential maps are used as rotational representations

by a number of authors [38, 47].

Axis angle or angular displacement orientation is a very similar rotational
parameterisation defined as a displacement around a single axis, much like a one-
dimensional Euler representation. However, in this case the axis does not correspond to
a three-dimensional plane but is itself relative to planes in three-dimensional space and
rotation is described around this axis. Unlike the exponential map a unit length vector
component represents the axis about which the rotation described by a fourth
component takes place. Baerlocher and Boulic [37] indicate that the axis angle approach

is remains susceptible to singularities but to a lesser extent than Euler angles.

Grassia [38] defined constraints for axis angle parameterisations suitable for describing
ball and socket joints. The approach decomposed the motion into swing and twist
components. The constraint here concerned only the swing component and used line
segments created from an ellipsoid template. This was later described as “swing twist”
parameterisation and possible swing and twist constraints were explored [37]. A number
of approaches are suitable for the individual constraint of both swing and twist once
decomposition has taken place, though equations are required to express any

relationship between these constraints.

17

2.1.3.4 Quaternions (or Euler Parameters)

Quaternions form a group whose underlying set is the four dimensional vector space
R*, a subset of which the set of unit quaternions (S’) form a hyper-sphere embedded
in ®R* [38]. Using unit quaternions as a parameterisation of rotation gives a non-
Euclidean parameterisation that is free from singularities. However constraints must be

imposed to ensure that the quaternion remains on the surface of the quaternion hyper-
sphere (S*) [38].

Quaternions were the creation of Sir William Rowan Hamilton who became interested

in extending algebra to higher dimensions. Complex numbers have the form:

a+ bi (1)

In equation 1 the ‘i* is a symbol denoting the square root of minus one. The scalar b
allows any negative square root to be represented as a multiple of minus one, as

demonstrated in equation 2.

2i=2d-1=+-2 (2)

This part of the complex number (bi in equation 1,) is called the imaginary part, the
other (a in equation 1) is the real part. Imaginary numbers are so named as there 1S no
square root of a negative number as any number squared is positive. This is difficult to
picture, as were negative numbers before the creation of the number line. In 1833
Hamilton noted that the sign only connected the two components and they could in fact
be written with notation similar to that used for Cartesian coordinates. Examples of this

are shown in equations 3 and 4.

a+ bi=(a,b) (3)

a—-bi=(a,~b) (4)
18

The components also display the cyclic permutation i — j — k — i, (if a constant is

added to the first component it generates the next and so forth finally it generates itself.)

The quaternion itself takes the form:

g=a+bi+cj+dk (8)

This is often condensed into the notation (s, v) where s is a scalar and v a vector. The
following quaternion operations were derived: multiplication (equation 9), conjugate

(equation 10) and magnitude (equation 11).

Multiplication:

4.9, = (5,5, = v, ®v,, 8V, + 5,V +V, Xv,) (9)
Conjugate:

q =(s,v) becomes q =(s,~v) (10)
Magnitude:

g7 =5"+M" =l (11)

In mathematics a group is a set of numbers with a rule representing their multiplication,
such that the result is a member of group. A subset of the quaternion group is closely
related to the group of rotation matrices. These are the unit length quaternion, their
magnitude is always one and this constraint has to be ensured for the quaternion to map

to a valid rotation [43].

Distance metrics in quaternion space can be defined in a number of ways arcs, angles
and linear distances can be used [44]. The angle between quaternions in quaternion
space and four-dimensional Pythagorean distance can be used as distance metrics.

Indirect measurement based on the resulting three-dimensional difference between

20

rotated vectors can be used in some cases use of such techniques is limited due to the

nature of the quaternion hyper-sphere.

A number of authors have implemented quaternion constraints, a set of simple
quaternion based constraints were implemented by Lee [6], these simple constraints
could be combined into more complex ones. Interrogation of these shapes (to ascertain
the validity of a configuration,) is presented but no method of calculating a correction to
the nearest valid constraint [6]. Lee’s method relies on decomposing the quaternion into
two quaternions representing planar rotation, based on this approach constraint systems
capable of correction have been developed. Liu and Prakash [3] used a sampling
approach to create boundaries in the tangent space and clamp orientations to these
boundaries. Johnson [2] used a statistical approach to create both joint constraints and
pose constraints. A corrective component was implemented by recursively moving an
invalid point toward the mean of the sampled valid configurations. Johnson’s approach
again relies on projecting unit quaternions in to a tangent space. Herda et al [4, 5] used
a three dimensional iso-surface reducing the dimensionality of the quaternion and

implemented an iterative joint correction process.

2.1.3.5 Swing and Twist

The swing twist representation has been used extensively in the description of ball and
socket joints, common in anatomy and robotics. This is not a parameterisation of
rotation like the above but has been used in the representation of joints. The rotation of

the limb is considered its swing, while rotation around the limb is considered the twist.

Specifying the swing component using axis angle rather than Euler angles reduces the
effect of singularities on this parameterisation [37]. Further problems are caused by
induced twist where successive swing rotations result in a change in the twist of the
joint that would not have been present in a direct rotation. Additional computational

expense is incurred to remove the effects of this phenomenon [37].

The twist component can be simply constrained using Euler constraints which may be a
function of the swing component [37]. The swing component can be constrained using

techniques such as spherical polygons {36, 37].

21

2.2 Neural Networks

Artificial Neural Networks (ANNs) are inspired by the structure of the human brain.
Like biological neural networks they are composed of neurons linked together to form
complex networks. However, they are significantly different in terms of their
complexity and their method of communication. Neural networks are typically
initialised to a random position in the search space from this position they attempt to

reduce the error present in the network moving towards a minima.

There are many types of network architecture, from auto-associative memories such as
the Hopfield network to unsupervised networks such as Kohonen’s SOM (Self-

Organising Map)[49].

Deciding whether a joint configuration is valid or invalid (the validity of the constraint,)
can be considered as a classification problem where joint configurations are classified
into two groups. Coit et al [50] applied a classifying neural network to decide based on
a number of inputs if soldering should take place in a industrial system. In later sections
Support Vector Machines (SVMs) are considered this complex machine learning
technique has been shown to be superior to both neural networks and statistical

classifiers on a number of classification problems [51, 52].

In the case of corrective constraints the neural network attempts to approximate a
function relating the current configuration with the amount of correction required. For
cotrective constraints in multiple dimensions it is clear that the neural network must
approximate a discontinuous vector field. A number of approaches have successfully
used neural networks to approximate vector fields [16, 53-58]. In later sections feed
forward neural networks, their topological evolution by genetic algorithms and finally

their application to vector field approximation are considered.

22

2.2.1 Feed-Forward Neural Networks

Feed-forward network architectures such as that of the Multi-layer Perception (MLP)
have been popular since the mid eighties when advances in their construction made
them applicable to a new range of problems [59]. These are trained to give certain
outputs in response to given inputs by repeatedly adjusting the strengths of the
interconnections between neurons within the network (a number of training methods

have been developed [60-62]).

The Multi-layer Perceptron is one of the simplest neural network architectures
consisting of a number of nodes with weighted interconnections. Each node receives
inputs along its connections, which are scaled from their source according to a
weighting. On receiving these inputs it calculates their sum and transforms this input via
an activation function to an output value [59]. The term Multi-layer Perceptron is often
used to describe a feed forward neural network trained via back-propagation though
there is little similarity between the Multi-layer Perceptron and its limited predecessor

the Perceptron [59].

Many aspects of the networks structure and the structure of its neurons can influence the
networks performance. The effect of the activation functions of neurons within the
network is discussed in detail later in this chapter. The topology of the network (the way
neurons are connected) determines the way computation proceeds and impacts on
performance [49]. Biological neural networks are mostly feed forward, however some
interconnections between nodes of the same layer exist as well as feed back connections

and inhibitory nodes inspiring a plethora of network topologies [49].

Fully connected neural networks are the most general kind of architecture, where each
node in the network is connected to every other node including itself. Despite their
generality the use of such networks is rare due to the large number of parameters

(weights) requiring training and the biological implausibility of its structure [49].

The are a number of feed-forward neural network topologies, each consisting of neurons
in layers labeled either numerically or alphabetically with the input layers labeled 0 or 1

respectively.

23

Layered network — each node in the lower layers are connected to each node in all

higher layers and to neighboring nodes in their own layer [49].

Acyclic network — a subclass of the layered network here no connections exist between

nodes in the same layer [49].

Feed forward network — these are amongst the most common neural networks in use so
much so that the term neural network is often used to describe this topology alone [49].
These networks have connections from each node in a lower layer to each node in the

next layer.

This work uses generalized multi-layer Perceptrons (GMLPs) as used by Mayer and
Schwaiger [63, 64] also described as fully connected feed forward neural networks by
Yao and Liu [65]. These are much like layered networks with connections between each
node in a lower layer with all nodes in all higher layers. Unlike the layered network
there are no connections between nodes of the same layer. A single bias node is used
which is connected as an input node, i.e. with connections to all hidden and output

nodes.

Artificial neural networks are made up of artificial neurons, these typically have one or
more input and output connections depending on the layer in which they are found. A
weighted sum of the nodes inputs is modified via a transfer or activation function
(sigmoid in the above example) and this is passed as the output to the next layer. The

following example is based on that presented by Mehrotra, Mohan and Ranka [59].

The sum of the weighted neuron inputs (nef) is defined as (equation 12).

net, = WX, (12)

Here x,, is the input and w), the input weight for layer / pattern p. In this case » is used
to describe the number of inputs for summation. Where the activation function is

sigmoidal, the output of the neuron can be defined as (equation 13);

24

1
o ,=S(net) = ——— 13
pd () 1+e-—nel ()

In the above equation (13) o,, is the output, e is the exponential function. In the
following example a simple neural network with three layers i, j and & is presented. To
‘fire’ the neural network, that is to get an output for a given input the input nodes are set
to the values of the input pattern. In this case there is no transformation and the outputs
are weighted to form the input of the next layer, this process continues until the outputs

of the final layer have been calculated, the process for a single node is shown in Fig. 2.

x1

j(w1 X1+ ... Wn Xn)

x2

Fig. 2 - Weighted input summation [59]

The interaction of inputs, weights and functions to give the output can be described
using equations. Nodes in the input layer (layer /) are a special case here the inputs are
passed on without applying an activation function. This is shown in equation 14, here
the subscript p referrers to the pattern number, i and j represent the layer and x is the

input to the given layer.

X, =%, (14)

The equation for the hidden layer (layer j, as shown in equation (15),) shows some

additional components. § is the sigmoid activation function applied to the sum of the

25

weighted inputs, ¢ is a count of the number of weighted inputs to the layer. The weight

from the input layer (/) and the hidden layer (j) is represented by w;;

xp,k = S(z,::] M)ji,rxp,i,(') (15)

For nodes in the output layer (layer k) the equation shown in equation 16 includes the
output of this layer. This will be one of the network outputs and is denoted by an o, the

weights between the hidden layer (j) and the output layer (k) are represented by wy;.

Op,l\' = S(z:;] ij,('xp_k_(') (16)

Feed forward neural networks are trained using algorithms such as the back propagation
algorithm. The following brief description of the back propagation algorithm, based on

the example neural network above by Mehrotra, Mohan and Ranka [59].

Once the neural network has fired error for each of the output nodes can be calculated.
In this example MSE an error measurement based on the norm of the difference vector
between the desired neural network output (d,,) and the actual output (0,) is used. There
is however more than one vector, there is one for each of the K outputs and for each of
the P patterns. These are combined using a sum of the squared error values, this
provides an error function which can be differentiated (unlike the absolute error) this is
essential for weight update via gradient decent [59]. The equations for MSE and SSE

are shown as equations 17 and 18 respectively.

2

P K

SSE=3"Y(0,,~d,,) (17)
p=1 j=1
P K
MSE=%ZZ(|0P_, —d, |y (18)
p=1 j=1

The output of the neural network is a function of all the weights (w) present therefore

the network error (E) is also a function of these weights. Differentiation of E with

26

respect to w equation 19 gives an error gradient. This gradient relates error and weight

change, the weights are changed in the direction coinciding with decreasing error.

—3E /dw (19)

Rather than calculate the update for all the weights (4w) required for w this calculation
is performed for each connection from the output to the hidden layer and from the
hidden layer to the input layer. The corrections obtained are used to update the

respective weights. This is known as the generalised delta rule [59].

The formulation of the rules for updating the weights relies on calculating a number of
partial derivatives and evaluating them using the chain rule. To differentiate between E
and w it is noted that £ is dependent on the network output (o), which is itself dependent
on w these partial differentiation links are evaluated using the chain rule. Mehrotra,
Mohan and Ranka [59] cover the formulation of these equations. The equations derived
for the update of weights connecting in the hidden and output layers are as follows

(equations 20-23).

Aw, =n*0, *x, (20)

Aw, =n*u *x (21)

where

6, =(d, —0,)S'(net,) (22)

and

H; ‘:(Zé‘kwl\;,‘)S'(”e’j) (23)
k

27

In the equations above (equations 20-23), the subscript p has been omitted to maintain
clarity. Here n is a user-controlled variable that scales weight updates known as the

learning rate.

The equations for calculating the weight updates between the output and hidden layer

(Aw,;) and hidden layer and mput layer (Aw) are very similar as shown in equations
20 and 21. Both are the product of the mput to the layer (x; or x,) the learning rate (n)

and a generalized error term (&, or 4,).

The generalized error term for the nodes of the output layer J, is proportional to the

amount of error multiplied by the derivative of the output node with respect to the input

node as shown in equation 22. The generalized error term for the hidden nodes 4, is

proportional to the amount of weighted generalized error for the output nodes multiplied
by the derivative of the output node with respect to the input node as show in equation

23.

2.3 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) were introduced by Vladimir Vapnik and rely on the
principle of structural risk minimisation (SRM) [66]. Their key advantage is in their
training technique, which aims to minimise both error and network complexity and
hence maintain its ability to generalise [67]. The SVM attempts to identify a
mathematical function that produces the minimum error based on a cost function.
Unlike traditional neural network training which attempts to solve a non-convex
unconstrained minimisation problem [67, 68] the SVM minimises both the current error
and learning machine complexity by solution of a quadratic programming problem with

linear constraints.

SRM states that the current error (after exposure to some training patterns) and the
complexity of the network contribute to the generalisation error (error after infinite
training patterns) [69]. Neural networks focus on reducing the current error ignoring the

network complexity, an increase in which leads to over-fitting and therefore and

28

SVMs capitalise on the only reference to the training data in the in the optimisation of
the hyper-plane being through a dot product in creating boundaries in the linearly
inseparable case. A mapping is used which maps the data to some other possibly

infinite Euclidean space this mapping is known as a kernel function.

In summary, SVMs attempt to separate sets of data with the maximum distance from
points on either side. SVMs utilize kernel functions, these move the points into a higher
dimensional space this has the effect of spreading the points reducing the complexity of

separation.

A version of SVM for regression was proposed by Vapnik, Golowich and Smola called
Support Vector Regression, (or SVR) [71] and considered the application of support
vector methods to function approximation. The classification method shown above only
depends on a subset of the data as the cost function ignores points that lie beyond the
margin. The regression method also depends on a subset of the data but ignores points
that are close to the boundary (within the threshold) [71]. To date much work has been
done improving on the simple SVM shown above for both classification [72-74] and

regression [75].

SVMs suffer from several limitations. One of the key limitations is the choice of kernel
function, trial and error (or prior knowledge) is often required to identify the best kernel
function for a dataset [68]. The computational cost of training and testing is high,
though successful attempts have been made to reduce both the testing and training time
(68, 72, 76]. The quadratic programming problem (quadratic optimization) is usually
quite complex and therefore suspect to stability problems [76]. Attempts have been
made to reformulate the quadratic optimization to improve stability and reduce
computational complexity [76]. There are also occasions where SVMs select sub-
optimal support vectors for categories within the training set. A multi-pass system that
separates the identification of the best candidates for support vectors prior to SVM

training has been developed by Masuyama Nakagawa [77].

30

2.4 Genetic Algorithms

Genetic Algorithms (GA) are search algorithms that utilize the mechanics of natural
selection first developed by John Holland and his students at the University of
Michigan. Each generation contains a number of blueprints for an individual called the
genotype. The performance of these individuals is measured against some metric. New
genotypes are created by retaining information from the strongest (reproduction) and
swapping genetic information between pairs of individuals (crossover). The occasional

new genetic feature is introduced and this is called mutation [78].

This method has advantages over traditional optimisation and search methods. Calculus
based methods are local in scope and search for the local optimum only. They are also
dependent on continuity and derivative existence in the search domain, making them
suitable only for a limited problem domain. Enumerative and random searches are

inefficient, though there is a random component to genetic algorithms [78].

Genetic Algorithms encode the parameter set rather than using the parameters
themselves, hence a genotype (blueprint for the individual) is created form the
phenotype (their characteristics). Each individual may evaluate a different part of the
search space rather than a single point as is the case in other approaches, reducing the
risk of becoming trapped in local minima. Other approaches rely on using deterministic
rules, often derivatives, to evaluate the current solution, genetic algorithms use an
objective function. The use of an objective function allows the comparison of local
minima in a multi-modal search space. Genetic algorithms move towards a solution

using probabilistic transition rules, though the direction is not decided at random [78].

Goldberg [79] shows by means of similarity metrics the workings of genetic algorithms.
These metrics are called schemata (similarity templates), schemata are similar to masks
placed over the genome they highlight commonality between genomes. For example the
binary genome 0110110 and 0100001 are both associated with the Q1***** schema,
where the * represents information which is not part of the schema. Schemas have an

order and defining length. The distance between first and last values exposed in the

31

mask is termed the length, while the order of the schema refers to the explicitly of the

schema that is the number of values exposed in the mask.

The fundamental theory of genetic algorithms states that “high-performance, short-
defining-length, low-order schemata receive at least exponentially increasing numbers
of trials in successive generations” this is known as the building blocks hypothesis [79].

This is due to several factors;

1. Reproduction allocates more copies to the best schemata.
2. Crossover does not frequently disturb short chains where as the cross over point
may fall in the middle of large ones and split them in two.

3. Mutation 1s infrequent and has little effect.

In essence the small high-performance (low error) schema become partial solutions to
the problem (or building blocks) which the genetic algorithm then discovers new

solutions by speculating on how these can be best recombined [79].

2.5 Evolved Artificial Neural Networks

The human brain, which inspired the creation of artificial neural networks, has a
complex and bespoke structure that has evolved over many thousands of years.
Evolved neural networks represent the application of genetic algorithmic techniques to
neural network creation to enhance the specificity of the neural network to a problem or

environment [80].

Early Evolutionary Artificial Neural Networks (or EANNs) approaches considered the
evolution of neural components of the artificial neural network such as its structure,
interconnecting weights, nodes and learning rules [80]. Inspiration from natural
(human) evolution has lead to approaches where training patterns, learning scheme and

other factors, such systems are described as Artificial Neural Systems (ANS) [80].

This following sections focus on the evolution of the structure and activation function of
the neural network. Activation function evolution is especially interesting as it can

improve the learning of local features (such as the discontinuities of the vector field)

32

within feed forward networks. This is followed by an introduction to local and global
learning, with particular attention to the creation of neural networks that display both.

Finally existing application of neural networks to vector field approximation are

reviewed.

2.5.1 Topology Evolution

Huber, Mayer and Schwaiger [81] state that despite the successful application of Multi-
layer Perceptron ANNs, no analytical rule has been discovered governing the optimal
topology of the network. They also observe that improvement in approximation often
results in a loss of generalization capabilities and that smaller ANNs with low

connectivity show better generalization capabilities than more complex networks.

A number of authors have attempted to solve to this problem by means of evolutionary
techniques to evolve a topology suited to the problem at hand. There are two
approaches identified by Yao and Liu [53], the evolution of “pure” architectures where
weights are evolved separately and the evolution of weights and architectures together.
In both cases information regarding the topology of the network is encoded as the

connections made by the nodes of the network [53].

Huber, Mayer and Schwaiger [81] use genetic algorithms which searched for a problem-
adapted neural network topology. A hybrid system is employed using genetic
algorithms to evolve the topology with the Resilient Back-propagation [60] learning
algorithm to train the network weights. This is an example of “pure” architecture
evolution with direct encoding. There are some issues with such approaches as
identified by Yao and Liu [53], who observe that when training the training method may

find different minima in a multi-modal error surface from the same initialised weights.

The problems encountered in “pure” architecture evolution can be alleviated by
evolving both the weights and the architectures simultaneously, using a one-to-one
mapping from genotype to phenotype (where the phenotype is the evolved
network[53]). Difficulties here arise in the encoding of networks, as in some cases
networks can have different genotypes but produce the same phenotype making

evolution inefficient {53].

33

2.5.2 Activation Function Evolution

Neural network performance is greatly affected by the choice of activation function
present in the neurons that comprise the network. In biological neural networks,
specialisation of neurons takes place [82] simulating this with mixed [53, 65, 83] and
adaptive activation functions [63, 64, 84] has provided improvements over classical

architectures with fixed sigmoidal neurons.

A number of researchers have successfully improved on the results of classical sigmoid
neurons using mixed activation functions. Successful combinations include; Gaussian
and Sigmoid activation functions, both fixed in separate layers [85] and evolved in a
single layer [65, 86]. Sigmoid and Sigmoid based jump approximation functions were
used by Selmic and Lewis [58], these non-smooth activation functions produced good
results in learning one dimensional discontinuous functions. However the nature of the
activation functions made learning difficult and prior knowledge was required regarding

the position of the discontinuities.

Yao and Liu [53] evolved neurons with sigmoid and Gaussian activation functions in
the hidden layer using evolutionary programming techniques. More recently Mayer,
Strapetz and Fuchs [83] produced a version of the NetGen system capable of selecting
between multiple candidate activation functions, these included logistic, hyperbolic

tangent and linear.

There is a wealth of research regarding adaptive activation functions. Several
researchers have used adaptive sigmoid neural networks, where the parameters of the
sigmoid function are modified during training giving the neurons limited specialisation

capabilities [84, 87].

More recently research has focused on spline based activation functions. A spline is a
function constructed from low order polynomial pieces connected at breakpoints (called
knots) with certain smoothness conditions [82]. It is these knots that are modified by

training or evolution to create specialised nodes and increase performance.

34

A number of different types of spline exist and several have been used as adaptable
activation functions for neural networks. Some novel though limited approaches have
been suggested using B-Spline neural networks [82, 88]. More recently catmull-rom
cubic spline neural networks using algorithmic adjustment of the spline during learning

(spline training) have been developed [84, 89, 90].

Cubic splines have been used by a number of authors, both trained [91, 92] and evolved
[64]. Multi-dimensional cubic splines have also been used. Here there are as many
dimensions to the spline surface as there are inputs, these are combined into a single

input passed to the next layer [93-95].

Mayer [63] utilised a template based approach to cubic spline activation function
evolution. This brings together pure activation function evolution and spline based
activation function evolution. A number of spline based template functions are evolved
as candidates for neuron activation functions in the network. This reduces the
complexity of the genetic algorithm, as there are potentially fewer free parameters

requiring optimisation.

2.6 Local and Global Learning Characteristics

Sample data or training data displays both local and global characteristics. Approaches
that make use of these characteristics are described as local learning and global learning
respectively. Global learning has a long and distinguished history, scientist have used
global learning techniques to uncover the underlying mathematics that govern complex
phenomena [96]. However, global learning methodologies often struggle to find the

appropriate model and parameters to represent the observed data.

This has led to increasing interest in local models. Here the focus is on useful local
information from the observed data [96]. It has been demonstrated that local learning is
superior to global learning in many classification domains [96]. However local learning
methods do not grasp the structure of the data which may be critical for generalization

performance [96].

35

A combination of these two learning styles is required, a neural network where both
global and local learning takes place leading to accuracy on local features while
retaining generalization with regards to the global structure of the data. A number of
approaches attempt to introduce components of global learning in neural networks
which demonstrated good local learning, for example, the addition of a second layer of

sigmoidal nodes to a Gaussian functioned neural network (RBF) was implemented by

Shibata and Ito [85].

More recently, Support Vector Machines have been combined with the Minimax
Probability Machine and Linear Discriminant Analysis to form the Maxi-Min Margin
Machine (M"4). Their model tries to maximize the margin defined as the minimal
Mahalanobis distance for all training samples while maintaining correct classification
[96]. The introduction of this global distribution measurement improves the networks

choice of decision boundary.

Alternatively aspects of local learning can be introduced into neural networks that
display good global learning. Spline activation function neural networks display both
global and local learning, here inter-nodal connections partition off areas of the dataset

and the activation function becomes specific to local data [84, 95, 97].

2.7 Neural Network Approximation of Vector Fields

A vector field is defined as a mapping that assigns each input to an output via some
vector function. Vector fields can be uniquely specified by giving its divergence and
cur] within a region, this is known as Helmholtz’s theorem [98]. In mathematics vector
fields typically involve a Euclidean position in two dimensions being mapped to a
vector with direction and magnitude. They are used extensively to describe forces at a
given point in two-dimensional space. They are however extensible to any number of
dimensions in that a vector field can form a map between two vectors of equal
dimensionality or of unequal dimensions, (a projection). For example the use of three
dimensional vector fields for the exploration of complex problems is explored by

Crawfis et al [99].

37

Dynamic behaviour (such as joint constraint) can be described as a change in state that
is determined by a function dependent on the current state. There is clear similarity

between the mappings required for vector fields and those involved in the description of

dynamic behaviours such as joint constraint [54].

A one-dimensional vector field would simply consist of a function (as shown in
equation 24.) A joint constrained in one dimension using an Euler angle can be
described as a function (or one-dimensional vector field). The function is a
discontinuous or piecewise linear function as it has points where there is no gradient,

the discontinuities.

x = f(x) (24)

There are a number of practical applications for which the approximation of these
functions by neural network has been attempted. Selmic and Lewis show that the
inclusion of non-smooth neural network activation functions (sigmoid based jump
functions) produce good results. In their work a feed forward network is trained via
back-propagation to model friction compensation in industrial machinery. The weights
connecting the nodes with non-smooth activation functions were fixed and their
thresholds adjusted to correspond to the discontinuity based on prior knowledge [16,
58]. Radial Basis Function neural networks have also been used to overcome problems

with friction [100].

A similar problem involving backlash compensations has been solved using a recurrent
neural network using reinforcement learning [88, 101, 102]. Anderson [103]
demonstrates the superiority of a modular neural network approach over reinforcement
learning. In the modular approach the piecewise linear function is broken down into its
linear components, (separated at the discontinuities.) Expert networks are trained for
each linear part and a gate function or network used to decide which of the experts

should be used.

Moving to two-dimensional vector fields, which could be used as a crude representation

of a constraint, like the projected spherical polygons [40] discussed earlier. A two-

38

dimensional vector field used for joint constraint applications still has a discontinuous
quality, in that a number of points exist (at the boundary,) where there is no gradient.
Continuous vector fields in two dimensions have been trained using neural networks in
the field of robot control. Here a vector fields representing path following for simple
and more complex paths were trained using one and two hidden layer neural networks
[54, 55]. A MLP neural network with input nodes, representing the robots position and
two outputs, representing the directional change it needed to undertake to return to the
path was used. The hidden layer of the neural network was composed of nodes with
hyperbolic tangent (or bi-polar sigmoid) activation functions, and the output layer of
nodes with linear activation functions, the neural network was trained using

backpropagation.

Kuroe et al [104] suggested an alternative approach where an Adjoint neural network
was used to learn continuous vector fields. This approach utilises the basis field
simplification technique of Mussa-Ivaldi and Griszter [105]. The neural network is
trained via a customised training algorithm that relies on aspects of vector field theory.
Any continuous vector field can be shown to be composed of irrotational and solenodial
vector fields [106]. In the approach of Kuroe et al these are in turn expressed in terms a
common multi-dimensional scaling function (another vector field) and two additional
scalars. The scaling function and scalars are learned as part of the learning algorithm

and can be recombined into the original vector field [104].

The techniques developed by Kuroe et al [104] were applied to flow field measurement
from image data, a technique called Particle Imaging Velocimetry (PIV). An Adjoint
neural network was used to approximate regions flow within artificially generated two

dimensional smoke images [107].

Kulchin and Panov trained neural networks to learn two dimensional scalar fields for
reconstructing data from fibre-optic measuring systems [57]. Again the hidden layer
was composed of nodes with hyperbolic tangent (or bi-polar sigmoid) activation
functions, and the output layer of nodes with linear activation functions. The neural
network was trained using an enhanced backpropagation algorithm with simulated

annealing to reduce the effects of local minima.

39

Evolutionary programming a technique very similar to genetic algorithms was used by
Kim ef al [108] to identify an appropriate path between an initial destination and an
ideal direction in two dimensions. This technique utilised vector fields to describe
attractive forces for the destination position and direction and repulsive forces for

obstacles.

Mussa-Ivaldi and Griszter [105] found that the limb pre-motor control in the reptilian
spine was arranged in discrete modules describing an equilibrium point for a limb using
groups of antagonistic muscles. The stimulation of multiple groups leads to the
superimposing of these individual modules suggesting that all combinations of posture
for the limb are generated in this way. The authors make use of basis fields to describe
fields of motion and imitate these discrete modules. Basis fields are the vectorial
equivalent of local basis vectors, just as any vector in a vector field can be represented
as a linear combination of its basis vectors a vector field can be represented as the linear
combination of its basis fields. This technique can be used to simplify complex vector

field representations.

Neural networks have been utilised for physics based animation by Grzeszczuk,
Terzopoulos and Hinton [56]. In their approach complex forward dynamics equations
required for physics based animation were replaced with neural networks, predicting the
complex vector mapping (@) from the current state (s;) to a future state (s;+s;) based on
the current state, the applied force (u,) and external forces (f)), (as shown in equation

25.)

Sia =¢[Sn”/7f/] (25)

A key advantage of this approach is that the trained forward dynamics neural network
mappings can be reversed by applying the chain rule of differentiation to obtain the
inputs to the network given a resultant state. This is further exploited to move a limb

towards a desired position utilising a gradient decent [56].

Grzeszczuk, Terzopoulos and Hinton [56] provide a detailed account of their network
configuration and raise a number of issues regarding the capabilities of neural networks

as vector field approximators. As the range of the inputs and outputs are large in

40

comparison to the range of the sigmoidal activation function normalisation of this range
was impractical. Mapping from the current state to the difference between current and
future states is more practical and by adding the approximated difference and current
state the future state can be calculated. The range of the inputs to the neural network
can deviate greatly adversely affecting neural network output, these were normalised
and adjusted to have unit variance and zero mean. It is reported that neural networks
attempting to train vector fields with high dimensionality (10+) required large numbers
of hidden nodes (50+) and long training times (several CPU hours). The researchers
suggest a natural sub-division to reduce the number of free parameters in each case.
The neural network used for the forward dynamics has a single logistic sigmoid hidden

layer and 1s trained via back propagation enhanced with a conjugate gradient algorithm.

The term Quaternion Vector Field is attributed in much of the literature to the
visualization approach developed by A. J. Hanson, which reduces the four-dimensional
quaternion to three dimensions for visualisation. Herda et al [4, 5] have implemented
joint constraints based on this approach. In this thesis vector fields in quaternion space
and indeed quaternion vector fields are considered as mappings of an input quaternion

and an output quaternion via some function.

Research has also been undertaken towards specialized neural network architectures for
solving Constraint Satisfaction Problems (CSP’s) [109, 110]. These neural networks
attempt to provide a general network for the solution of any CSP and consist of a
number of node clusters, one for each input that have inhibitory links between them.
They have been shown to be faster than conventional methods (sequential heuristic
search) and have execution times of tens to hundreds of nano seconds compared to more
than 20 hours for the more conventional approach [109]. These networks deal with a
high number of binary inputs, outputs and constraints, successful preliminary work is

also shown for non-binary problems [109].

Few of the existing approaches have been applied to discontinuous vector fields. A
possible reason for this is an inherent weakness in many neural networks. The learning
of individual patterns has an effect on the patterns already learned due to the update of
weights shared between neurons [111]. This is known as the “stability-plasticity”
problem, the neural network needs to be sensitive to but not seriously disrupted by new

patterns [111]. Some interference is acceptable and has little effect on the training,

41

however in extreme cases “catastrophic interference” occurs, here the learning of a new

group of patterns damages the patterns previously learned by the neural network [111].

French [111] states that catastrophic interference is largely a consequence of the overlap
of internal distributed representations. Hidden neurons are responsible for this internal

representation and catastrophic interference arises when they attempt to differentiate

between overlapping input.

2.8 Principle Component Analysis

Principle Component Analysis or PCA is a statistical technique used in a number of
domains, like many other multivariate statistical analysis techniques it can be used to
analyse the relationships between the variables of large multivariate data sets. PCA
provides an analysis of the multi-variant structure of the data giving an indication of the

relationship between variables and the components contributions to these relationships

[112].

At a high level PCA gives two important products, firstly a series of vectors known as
the characteristic vectors or eigenvectors. These are orthogonal vectors that identify the
directions in which variance takes place within the dataset. PCA also gives a set of
values associated with each eigenvector known as characteristic roots, latent roots or

eigenvalues, these values give the variance attributed to the associated vector [112].

A number of univariate techniques are introduced as a precursor to multivariate
techniques and PCA. The mean (or X) a is defined as the summation of the elements of
the data set x where x; is the ith element of the dataset divided by the number of items in

the dataset » as shown in equation 26 [113].

=2 (26)

There are two other statistical measures of variation for univariate data sets that are of

interest the first is the Standard Deviation denoted by the symbol s. This is the average

42

distance from the mean of the dataset to a point this is calculated by taking the square
root of the summation of the squared differences between the mean and each point as
shown in equation 27 {113]. The average of the squared differences is calculated using
one less than the number of numbers n, as this provides a more accurate estimate for

samples of data representing larger sets [113].

(27)

The second univariate statistical measure of interest is the variance of the dataset, which
describes the spread of the dataset. It is in fact the sum of the squared distances
between the mean and the individual data points. Its formula (shown in equation 28) 1s

very similar to that of the standard deviation [114].

9

.'Z](xi _f)z

= 28
"D (28)

Mean, variance and standard deviation are univariate and are not suitable for use in the
analysis of multivariate data. A related measure the covariance can be used to describe
the variance of one dimension with respect to another. The formula for the covariance
of two datasets is given in equation 29 [115]. Note that here the product of the
difference between the ith data points and their respective means has replaced the
square of the difference between the ith data points and the respective means of two
different sets of data. Variance is a measure of that variation of a dataset with respect to

itself and covariance the variance of two datasets with respect to each other.

S (x, - F), - 7)
cov(x, y) == (29)
(n-1)

43

It is important to note at this point that cov(x,y) gives the same result as cov(y,x) as only
the order of the multiplication changes and multiplication is communicative.
Covariance only gives measure of the variance between two dimensions this can be
extended to more than two dimensions using the covariance matrix. For a dataset of n
dimensions the covariance matrix (an #» X »n matrix) is shown in equation 30. The
format of the equation is based on that given by Jackson [112] though this has been
modified to aid clarity.

cov(x,x) cov(x,y) -+ cov(x,n)
cov(y,x) cov(y, cov(y,n

COV(X, Vy..tt) = | : ») : (y.n) (30)
cov(n,x) cov(n,y) - cov(n,n)

The covariance matrix is a symmetric, non-singular square matrix it has both
eigenvectors and eigenvalues. Eigenvectors when multiplied with a matrix are scaled
rather than being rotating or translated. The resulting eigenvectors are scaled versions of
the original the scale of each eigenvector is termed its eigenvalue. The eigenvectors and

eigenvalues of a matrix can be identified by a number of methods [112, 116, 117].

The following is a brief description of eigenvectors and eigenvalues and the steps
required in their identification. A matrix A4 is multiplied by a vector x their product is
the vector B. However on closer examination B is a scaled version of x. The matrix x
contains the eigenvectors while the eigenvalue (1) is the scaling factor x has undertaken,

this can be expressed as shown in equation 31 [113].

Ax = Ax (31)

Eigenvalues and Eigenvectors can only be found for square matrices, there exist at least
one eigenvalues and at most » eigenvalues for an # x n matrix where x is non-zero. Any
solution for A where x is non-zero is called an eigenvalue or characteristic value of the
matrix, the corresponding solutions of x for given values of A are called the

characteristic vectors [118].

44

The determination of Eigenvectors and Eigenvalues is illustrated by a simple example
based on that given by Kreyszig [118]. The first step is to introduce the example matrix

A and express equation 31 in these terms as shown in equations 32 and 33.

e -5 2
5 _» (32)

-5 2
{2 2R

Equation 33 can be expressed as a set of simultaneous equations as shown in equations

34 and 35.

—=5x, +2x, = Ax, (34)
2x, - 2x, = Ax, (35)
Rearranging the terms of equations 34 and 35 gives equations 36 and 37.
(-5-A)x, +2x, =0 (36)
2x,+(-2-A)x, =0 (37)

This can be expressed as a matrix (equation 38) the system has now been expressed as

shown in equation 39.

[(—5 “Ax 2 (38)
2x, (-2-A)x,

45

(A= ADx=0 (39)

Where / is the identity matrix. This is a homogeneous linear system, by Cramer’s

theorem it has a non-trivial solution, x # 0if its coefficient determinant is zero.

D(A) = det(A - Al) =

-5-2 2
2 -2-2

(40)
=(-5-A(2-)-4=2+71+6=0

D(7) is the characteristic determinant or if expanded the characteristic polynomial. The
solutions of this quadratic equation and hence the values of A are —1 or —6. These are

the eigenvalues of 4.

Substituting —1 into equation 41 values can be identified for x, and x,.

-5x, +2x, =-lx,
4x, = 2x, (41)

x, =2x,

Choosing a value for x, of 1 the resulting eigenvector is shown in equation 42.

x=H (42)
2

Substituting —6 into equation 43 values can be identified for x, and x,.

-5x, +2x, =—6x,
Ix, +2x, =0 (43)

X, ==x,/2

Choosing a value x, for of 2 the resulting eigenvector is shown in equation 44.

46

2
X=LJ (44)

Direct calculation of the eigenvectors and eigenvalues becomes cumbersome in cases
where there are more than three dimensions a number of alternative methods have been

suggested to speed up this process [118, 119].

2.9 Conclusion

The wealth of joint models uncovered by the literature review leads to the conclusion
that although the reproduction of anatomical joints is a modelling problem, there are a
number of fields where models of the human anatomy are required, such as animation,

simulation and medicine.

While proximal constraints (those holding the joint together) are not often problematic,
rotational constraints such as those required modelling the flexion and extension of
limbs are often more difficult to implement. In has been reported that joint constraints
in animation are particularly underdeveloped and in the absents of a single model
capable of modeling all joint constraints a number of specialized joint constraint

approaches (for joint structures) have been combined to produce full body systems [1].

Several approaches, Korein [36], Engin e a/ [4]1] and Manurel et al [10] use three-
dimensional polygons to represent the boundary between valid and invalid rotations.
The three-dimensional polygons are not exact representations of the data, but are best
fitted to the data points from observation. Huang et al [120] stored data in a database
rather than a geometrically described boundary / region. Points which are not in the
database cannot be interpolated, unlike other approaches [10, 36, 41] which use

geometrically defined boundaries between valid and invalid points.

Despite by their nature being simplifications of the constraints boundaries identified,
these approaches can produce reasonable approximations of joint function. However

the rotational representations used often contain singularities, or have other limiting

47

factors. Quaternions are a much more useful representation though it is difficult to
define quaternion based constraints. Acknowledging the singularity free nature of the

quaternion parameterisation several researchers have attempted to implement

quaternion-based constraints.

Herda et al [4, 5] reduced the dimensionality of the quaternion data and fitted a
boundary to a cloud of valid points. This approach encountered problems in fitting the
boundary to the points due to gaps in the sampled data. More importantly the correction
of points to the boundary described is a non-trivial problem. An iterative approach is
suggested this however is inefficient and may not actually identify the closest valid

rotation.

Lee [6] implements several simple constraints in using decomposed quaternions only
binary constraints are provided and no method of ascertaining the appropriate correction
is suggested. Liu and Prakash [3] build on this approach allowing more complex
constraints. Johnson [2] used a boundary based on the maximum diversion from the
mean in the quaternion tangent space. Correction to this boundary was defined based
on iteratively moving the incorrect point closer to the mean of the valid points. As with
Herda et al’s approach this approach is inefficient and may not identify the closest

point.

The mapping of a quaternion to the tangent space requires the pre-processing and
conversion of the quaternion prior to its constraint. Converting the quaternion to
another format for constraint resolution purposes is inefficient. The tangent space is a
local “linearization” (approximation) of the unit quaternion group, as with any
parameterization of a non-Euclidean group by a subset of Euclidean space it contains

singularities which must be avoided [3, 46].

There is a recognized requirement to minimise the conversion between rotational
parameterisations within a system this penalises the use of many complex joint models
in a single system [2]. Neural network based constraints present the opportunity to use a
single constraint system and quaternion rotational parameterisation regardless of the
joint structure. None of the joint constraint approaches discussed have utilised ANNs to

provide an accurate model of individual joint constraint.

48

ANNSs are powerful analytical tools they offer significant performance advantages over
traditional methods where complex calculations must be carried out to calculate the
correction required to bring an invalid configuration to a valid one. Typically firing a
neural network involves a succession of multiplications and additions this allows a
vector based or hardware-based implementation. In addition to their execution speed
they offer similar benefits to the quaternion approach of Herda [5] and the three
dimensional polygon approaches [9, 17, 36] in that they can extrapolate and interpolate

from measured data.

ANNSs can be though of as a store for data, the training patterns form clusters of data in
multi-dimensional feature space. The feature space is divided to best accommodate the
training data. Once trained, the ANN can then extrapolate in areas of sparse or absent
data in response to patterns not present in the training set. This may give an advantage
over Herda et al [5] who's work suffered due to sparse area's of data, and the three
dimensional boundary approaches [10, 36-38, 41] which require an even sampling of

points to accurately best fit a boundary.

Two types of constraint are identified for implementation, constraints which indicate the
validity of a given configuration termed binary constraints and constraints which give a
correction to the nearest valid configuration termed corrective constraints. Binary
constraints can be considered a classification problem where configurations are
classified as valid or invalid. Corrective constraints can be considered as discontinuous
vector fields several researchers have demonstrated the capabilities of neural networks

in learning vector fields [16, 54, 100-103].

The SVM neural network was selected to classify valid and invalid rotations. The SVM
approach aims to minimise both the error on the training set and the complexity of the
SVM thus minimising generalisation error. An implementation of the SVM architecture

with the performance improvements as indicated by Joachims is available [72].

Corrective constraints are a discontinuous vector field approximation problem and
though both the local and global characteristics of the data should be approximated it
must first be established that the global mapping between valid and invalid patterns can

be trained. Once this is established improving the results with the inclusion of local

learning may be considered.

49

Feed forward Multi-layer Perceptrons have a number of qualities that make them well
suited as a starting point for this research. They have been extensively studied and their
capabilities are well documented. The process of firing a neural network is simple and
can be implemented in hardware [121, 122], it can also be easily distributed giving
potential speed increases over traditional methods in the use phase [123]. The nature of
the quaternion vector field required for joint constraint is unknown MLPs are capable of

learning mappings without prior knowledge of the functions which relate data [124].

Selmic and Lewis successfully approximate discontinuous functions using
backpropagation trained MLP neural networks with sigmoid and sigmoid jump
activation functions [16, 58]. Researchers have also utilised feed forward MLP neural
networks to approximate continuous vector fields in a number of dimensions. It has
been shown that neural networks can learn continuous two dimensional vector fields, in
this approach bi-polar sigmoid activation functions were used and networks were
trained via backpropagation [54, 55]. Similarly two dimensional scalar fields have
been approximated by Kulchin and Panova [57] again using bipolar sigmoid activation
functions and an enhanced backpropagation algorithm. Grzesczuk, Terzopoulos and
Hinton [56] successfully approximated complex multi-dimensional vector fields in their
approach sigmoid activation functions were used along with an enhanced version of the

backpropagation algorithm.

Topological evolution attempts to maximise performance by minimising both network
error though weight adjustment and generalisation error by reduction of the neural
network complexity. An implementation of these techniques (called NetJEN,) is
available based on published research [63, 64, 80, 81, 83, 125-128]. NetJEN also
provides activation function evolution from a number of candidate activation functions
based on Mayer, Strapetz and Fuchs [83] and template based spline activation function

evolution following Mayer and Schwaiger [63].

The discontinuous nature of the mapping between input and output may result in
internal representations that overlap increasing the difficulty associated with the
learning of such vector fields. Seipone and Bullinaria [129] suggested that the use of

Artificial Neural Systems (evolved neural networks) reduces effect of interference in

addition to improving performance.

50

Grzeszczuk, Terzopoulos and Hinton [56] have demonstrated that neural networks are
best able to model vector field approximations when the magnitudes of the input and
output vectors are similar and of unit variance and zero mean. Also that modelling the
relationship between a state and a state change provided more comparable magnitudes
with regards to input and output value than state-to-state mappings. The use of a
quaternion representation to model a discontinuous vector field describing a mapping
between the current rotation and the required correction neatly avoids a number of these

complications hence the inputs and outputs will require no pre-processing.

51

3. Simple Corrective Constraints

A corrective constraint returns an appropriate correction to a given orientation. In the
case of valid orientations the corrective rotation is zero while for invalid orientations the
corrective rotation rotates the invalid orientation to it’s nearest valid counterpart. The
task of mapping a current rotation to the relevant corrective rotation is complex due to

the discontinuous or piecewise linear nature of the mapping.

In the previous chapter the limitations of the approaches used to implement joint
constraints and those inherent in common angular representations were highlighted. As
angular representations quaternions are ideal for many purposes (e.g. interpolation,)
though the definition of corrective constraints is problematic due to the increased
dimensionality and the difficulty of visualisation. In this approach corrective quaternion
constraints described using discontinuous vector fields in quaternion space (four

dimensions).

In order to gain an understanding of the performance of neural networks in learning
discontinuous vector fields less complex discontinuous vector fields were studied.
Studying vector fields, representing constraints in one, two and three dimensions
provides an opportunity to test the abilities of the neural network before investigating

more complex four-dimensional (quaternion) cases.

Having implemented these simple vector based constraints a unit sphere with a circular
rotational constraint on its boundary is introduced. In initial investigations an input
vector is corrected to a circular boundary on the sphere surface by a correction vector.
This is then extended to the quaternion based rotational correction of similar vectors to

a circular boundary.

52

3.1 Methodology

A Generalised Multi-Layer Perceptron (GMLP) is trained to model discontinuous
vector fields in one, two and three dimensions. These vector fields represent simple
joint constraints with two distinct regions — a valid region with zero correction per
vector and an invalid region with each vector pointing to an implicit joint constraint

boundary.

Initially rotations in a single dimension are considered. Here the relationship between
inputs and outputs, including its discontinuous nature, are similar to those of motor dead
zones and frictional forces for which compensation models have been created in the
robotics field [16, 58, 101]. Fig. 10 (a) shows an example one-dimensional mapping the
constrained region is the flat region at the centre of the graph this diagram clearly shows

the discontinuous nature of the mapping.

This was extended into two dimensions and two-dimensional vectors and their
correction to a circular constraint boundary were considered, (as illustrated in Fig. 10
(b).) The constraint region here is at the centre of the circle and the vectors shown
represent the mapping from invalid positions to the circular constraint boundary. The
colour lightens from the original vector to the corrected vector and points are placed at
the start of each vector allowing the visualisation of vectors with zero correction. This
was then extended to three dimensions with the vector field being trained to map to the
surface of a sphere in R*. A visualisation depicting this mapping is shown in Fig. 10
(c). This result is significant because quaternion based constraints were reduced to

three-dimensional mappings in the approaches of both Herda er a/ [4, 5] and Johnson

[2].

The results of these experiments showed that ANNs could be trained to learn vector
field models. This encouraged further investigation into mappings better suited to jomt
modelling. A circular boundary was modelled on the surface of a unit sphere, similar to
the projected spherical polygons used to model joint constraints in previous work [40].
Initial investigations considered linear correction vectors representing the vector
required to translate the input vector to a valid position at the edge of the constrained
region, (as shown in Fig. 5(a).) Here the input is unit a vector that describes the current

limb and the output a corrective vector that maps the vector to the boundary. These

53

OR

C = P - upper if (P > upper) (47)

Where,

P is the Euler angle input; lower is the lower boundary of the constrained region, upper

the upper boundary of the constrained region and C the corrective component.

To ascertain the validity of points in the two and three-dimensional cases the length of
the vector between the origin and the point is considered as in relation to a specified
radius (as shown in equation 48). To calculate the two and three-dimensional
corrections for invalid cases where the correction is not zero the length of the vector
from the origin to the point is calculated and compared it to the radius of the circle or
sphere. The ideal is calculated by scaling the vector to the radius, the difference between

the original vector and the ideal gives the correction as outlined by equation 49.

Vis invalid if [V] > R (48)
C=-V({(1-R/|V) (49)
Where,

R is the radius of the constrained region; ¥ is the input vector, |V] the length of the input

vector and C the required correction.

In the case of regular two-dimensional boundaries on the surface of a unit sphere, the
angle between the input vector and the x-axis was used to delineate between valid and
invalid inputs. The method used to calculate the correction for invalid inputs was the
same in both cases the rotational correction is calculated first and used to generate the
vector correction the latter is calculated as follows. A random unit vector is generated
and the angle of the vector relevant to the centre of the circular constraint (the x-axis,) 1S

calculated (see equation 50,) and compared to the constraint radius. 1f smaller then the

55

resultant correction is set to the zero, if not correction rotation is calculated as a
quaternion as outlined in equations 50 and 52 to 56. This is used to create a vector
corrected to the boundary the correction is the difference between these two rotated

vectors. In the case of the quaternion based correction the output of equation 55 is used

as the correction.

6 =ACOS(V - C) (50)
Vis valid if (8 > Omax) (51)
46 = 0 — Bmax (52)
Aa= 460 (53)
Av=VxC (54)
Qo = [COS(4al2), Av - SIN(4a/2)] (55)
O =V — (V rotated by Qo) (56)
Where,

V is the randomly generated vector. C is a unit vector aligned with the centre of the
spherical boundary on the surface of the sphere. 4 is an axis angle representing the
rotation of the randomly generated vector its axis part is described as Av and the angle
part by Aa. Qi is the quaternion equivalent of this axis angle rotation and @ (theta) 1s the
angle between vectors ¥ and C. 40 is the difference between the current angle and
Omax, the radius of the constrained region. Qo is the angular correction as a quaternion.

x is a vector aligned with the x-axis and O is the vector correction.

56

Three datasets were prepared for each of the experiments; a training set, used to train
each generation of ANN, a validation set, used to assess the fitness of the ANN for
genetic selection and a test set which provided an unseen set of data on which to test the
ANN. In creating the datasets patterns were clustered in the region before and after the

boundary representing the discontinuity between the valid and invalid joint

configurations.

3.1.2 NetJEN

Initial experiments were carried out using Multi-Layer Perceptron with a single hidden
layer, implemented in C++ by the author. Preliminary experiments (Fig. 8) confirmed
the superiority of evolved neural networks and hence further experiments were carried

out using NetJEN.

NetJEN is a Java based implementation of NetGEN [63, 64, 81] developed by
researchers at the University of Salzburg. NetJEN [125] boasts several impressive
features and provides an intuitive user interface in addition to reporting tools and other
useful functionality. A brief outline of the system they developed follows based on
published work [53, 63-65, 81, 83].

Before GA techniques can be applied to ANN topology evolution their underlying
structures, the phenotype, must be considered as a genotype (a blue print for the
construction of the network.) This must be encoded such that GA techniques can be
applied. There are two common approaches; Indirect Encoding encodes a set of
constraints that govern the construction of individual neural networks within the
population. The constraints are evolved indirectly impacting on the neural networks
generated. In Net]EN Direct Encoding is used, a network topology is created and
encoded minimising the decoding effort to map between the genotype and
corresponding phenotype. The encoding scheme used is called the Modified Miller

Matrix, an extension of the Miller Matrix [130].

The genome structure is shown in Fig. 6 (a) and comprises Learn Parameters (Fig. 6
(b)) which describe the values required to train the neural network, the Activation

Function Template Parameters (Fig. 6 (c)), used to describe one or more activation

57

functions present in the network, the Neuron Parameters (Fig. 6 (d)) indicate the type of
neuron and the Structure Parameters explicitly specify each connection within the
network [63]. Markers (binary inhibitors) are used to regulate the expression of wild-
type genes, for example hidden neurons, while other problem dependent genes such as
output neurons are fixed [63]. As a result the bit string includes some non-coding
regions (/ntrons), these have been shown to reduce the effects of crossover and are

common in biological systems [126-128].

(a)

Learn AF Template Neuron Structure
Parameters Parameters Parameters Parameters
(b)

Epochs Learn 1 Learn 2

(c)

x
poire | 1 1 frotne| 2| 2| ® @ ® O [ooine| *n| Yo Jeosne | 5| V2 fotne| %2| 2| @ @ @ @ foine| x| va

(d)
Marker AF-ID Marker afF-ID Marker AfF-ID

0 |0101|1 [1101] e ®# @ e 10111

Fig. 6 - The organisation of the genotype: (a) The general structure of the genotype [63]. (b) The structure
of the learn parameters segment [63]. (¢) The structure of the AF Template Parameters [63]. (d) The

structure of the Neuron Parameters [83].

The structure and neuron parameters are represented by a linearized binary adjacency
matrix [63] shown in Fig. 7. As the network architectures are feed-forward the triangle
above the main diagonal must be zero, the main diagonal is used to represent the
activation function index (zero if not expressed) [63]. The maximum size of the
network is set in advance and so the size of the structures does not change during
evolution. The activation function template parameters and activation functions were
not evolved during the following experiments but are included in descriptions of the
genome for completeness. In Chapter 5 experiments are undertaken evolving both

activation function type and template based spline activation functions.

58

Where,

aol+a2=10 (58)

In equation 57, F is the fitness of the neural network em is the Model Error (Sum
Squared Error or SSE) and &c the complexity regularization term. ec = |Crotat] With Ciotat
being the total set of neural network connections. The regularization weight (a2) has
been shown to be most effective in the range 0.001 to 0.01 to guide the evolution
towards networks of low complexity. The error weight (al) is derived from

regularization weight (a2).

The SGA uses Binary Tournament Selection to select the best networks of the
population to breed, » individuals (typically two) are selected and the individual with
the highest fitness is placed in the breeding pool. The selection itself is weighted, the
higher an individuals fitness the more likely it is to be chosen [79]. Binary Tournament

Selection has been found to be superior to Proportional Selection methods [126].

An entirely new generation of individuals is created through crossover and mutation of
the fittest individuals selected from the last generation. This completes the evolutionary
cycle that runs for a specified number of generations. It should be noted that the fittest
individuals of the last generation will appear in the breeding pool more than once and
breed with themselves generating identical offspring in the new generation [79]. This
ensures that the best genetic patterns are passed on to the next generation. Crossover
and mutation are implemented on a linearized Modified Miller Matrix allowing standard
two-point crossover, this has a more global effect on the bit string than the exchange of

rows and columns used in the original Miller Matrix approach [126-128].

3.1.3 Evolution and Training

In each experiment the network was configured as follows. The input layer represents
the current joint vector, while the output layer represents the correction vector/rotation.
A population of neural networks is created these have the maximum number of hidden
nodes, the appropriate region of the Modified Miller Matrix (below the main diagonal as

shown in Fig. 7) is randomly populated creating the connections between the nodes.

60

This leads to a number of hidden nodes not being connected these nodes are evolved but
are not present in the phenotype. Binary markers present on both the links and nodes
indicate their contribution to the phenotype, if these bits change during cross over or
mutation a node may be deactivated. In which case neither the node any associated links
are represented in the phenotype. The validation process marks any networks with no

connections between input and output nodes with a low fitness [81].

The validated neural networks were then trained by resilient back-propagation identified
as being superior to back-propagation by experimentation (as shown in Fig. 8). Where
necessary, the inputs and outputs were mapped to the range -1 to +1, the evolution and
training parameters were configured as shown in TABLE 1. The number of generations
and training epochs were restricted to reduce training times. Each experiment was
repeated five times to creating five neural networks with independent results to ensure

consistency.

6l

TABLE 1

EVOLUTION AND TRAINING SETTINGS

Parameter Description Value
Regularization Secondary fitness function. Number of links
function

Hidden Nodes Maximum no. of hidden nodes. 20

Number of No. of generations over which the ANN | 50

Generations were evolved.

Population Size Size of the populations evolved. 20

Fitness Function

Primary fitness function.

Inverse SSE

Regularization Regularization weight (a2) this term 0.01
Weight controls the effect network size on the
fitness function.
Evolve number of | Networks are pruned down from fully On
Links connected networks.
Evolve number of | Evolves the no. of hidden nodes. On
Hidden Nodes
Evolve number of | Evolves the no. of training epochs On
epochs
Learning Rate Learning rate used when training the 0.1
ANN.
Stopping Error MSE at which the ANN are stopped. 0.001
Training Function | Training function used to train the Resilient back-
weights of the ANN. propagation
Max Epochs Maximum number of training epochs 500

Through experimentation, it was determined neural networks with sigmoid activation
functions in the hidden layer and linear activation functions in the output layer produced
good results, (activation functions are examined in more detail in Chapter 5.) This
distribution of activation functions was used throughout these experiments a similar

distribution were employed for vector field approximation by Grzeszczuk et al [56],

62

linear output layers have also been used with bi-polar sigmoid hidden layers [54, 55].

Each experiment was repeated five times to ensure the consistency of the results.

The regularization weight was chosen based on publications by the authors [63], as was
the learning rate [126], the stopping MSE for the networks was identified though
experimentation. The size of the population, number of generations and initial limits for

the number of training patterns were suggested by a co-author of the NetJEN system Dr.

Helmut Mayer in private correspondence.

3.2 Results

Initial results confirm the superiority of the evolved GMLP neural network over the
feed forward neural network and resilient back-propagation over back-propagation
training. These results are included for completeness and shown in Fig. 8, experiments
were also carried out with sigmoidal activation functions in both the hidden and output
layers, though performance for this architecture is low. All subsequent experiments in

this section were carried out using the evolved GMLP neural network.

63

Visualising the results with the threshold shows that for each of the five different

datasets the points with the highest error were in a similar location.

3.3 Discussion

In the one, two and three dimensional discontinuous vector field experiments the MSE
increased with the dimensionality of the constraint and the problem space. With each
increase in dimensionality of the constraint more relationships are included and must be
learned, however neither the learning capabilities of the neural network nor the number

of patterns representing each relationship are increased. Consequently the performance

decreases.

The evolutionary aspects of the experiments indicate that as the constraints increased in
complexity more complex networks were required to maintain accuracy. This increase
is less pronounced between the two and three dimensional vector fields, due to the
constraints placed on the size of the hidden layer to limit the temporal cost of the

experiments.

The increase in the MSE in relation to the size of the constrained (discontinuous) region
for one, two and three-dimensional boundaries can be attributed to a lack of exposure to
the complex patterns in the invalid region where the neural network attempts to learn a

continuous non-zero mapping.

Two-dimensional polygons have been used for joint constraint by projecting spherical
polygons onto a surface [40], there is evidence to suggest our approach is capable of
learning such constraints. In published work quaternion based corrective constraints
systems have reduced the dimensionality of the quaternion representation [2-6], in such
cases the resulting constraint boundary is a three dimensional surface in three
dimensional space. It may be that evolved topology neural networks can be used to

implicitly model such boundaries.

71

In relation to the earlier one, two and three-dimensional constraints, the MSE for neural
networks learning vector fields representing circular constraints on the surface of a unit
sphere is comparable with two and three-dimensional constraints. The results (in Fig. 9)
show an increase in the MSE between the two-dimensional constraint in two-
dimensional space and the two-dimensional constraint in three-dimensional space. This
indicates that the dimensionality of the problem space has caused an increase in the

MSE as dimensionality of the constraint has not increased.

Increases in MSE are observed around 90 and 270 degrees radius, these variations do
not seem to relate to the radius of the constraint but occur for constraints with identical
circumference. Their occurrence in both the vector-to-vector correction and vector-to-
quaternion correction indicate the cause of this error to be the vector field encoding of

the problem domain.

In both the vector-to-vector and vector-to-quaternion correction experiments, isolated
patterns of high error are encountered. Through visualisation these errors are attributed
to a lack of test data in the region of an additional discontinuity. This discontinuity is
diametrically opposite the boundary where points are of equal proximity to
diametrically opposite sides of the spherical boundary this is termed the correctional

discontinuity.

Patterns that demonstrate high error are isolated in the region of the correctional
discontinuity. Individual patterns are similar to neighbouring patterns and corrected to
one side of the sphere, this is in conflict with test data that states it should be corrected
to the other side of the sphere. The neural network successfully corrects the vector to
the boundary but as this is not the boundary indicated by in the test data, a large error is
reported. These errors affect the MSE as their magnitude (but not frequency) increases
as the radii of the constraint is increased Fig. 12. These errors are some distance from
the boundary and in an anatomically correct joint constraint system it is unlikely that a

joint would reach these configurations.

Encoding the output as a quaternion produces an improvement in the MSE of the result
over a range of radii, together with a slight increase in three-dimensional error (as
shown in Fig. 9.) Researchers have demonstrated that neural networks are best able to

model vector field approximations when the magnitudes of the input and output vectors

72

are similar and of unit variance and zero mean [56]. Quaternion encoding meets the
majority of these criterions. It has also been shown that that modelling the relationship

between a state and a state change provided more comparable magnitudes with regards

to input and output value than state-to-state mappings [56].

Regular two-dimensional boundaries on the surface of a sphere provided encouraging
results for constrained regions of different sizes. These techniques can effectively

implement simple constraints similar to those implemented by Baerlocher [37] and
Korein [36] .

73

3.4 Conclusion

The results show that a Generalised Multi-Layer Perceptron (GMLP) with evolved
structure can model multidimensional discontinuous vector fields suitable for the
accurate joint constraint simulation in one, two and three dimensions. There are also
indications that these techniques may be applied to other problems of similar
dimensionality which can be represented as vector fields, for example the dead-zone

compensation systems of Selmic and Lewis [16].

It was also noted that the dimensionalities of the constraint and problem space have an

effect on the complexity of the mapping and therefore the performance of the neural

network.

The results confirm that evolved neural networks can learn rotational corrections for
erroneous unit vectors with respect to regular two dimensional boundaries on the

surface of a three dimensional sphere.

An advantage to using the Evolved GMLP method has been identified. It has been
found that examination of the evolved networks and the evolutionary process can
identify limiting factors. In this case the number of hidden nodes tended towards the
maximum when error was highest indicating that an increase in the limit on the number
of hidden nodes evolved would produce a decrease in error. Later experiments show
that removing the limit on the number of hidden nodes produces an increase in

performance as discussed in Chapter 5.

A quaternion-based parameterisation offers a number of advantages. The use of
Quaternion based input and output parameters make this approach independent of the
position of the limb or body in three-dimensional space, also in any practical application
of this technique an orientation for each joint orientation need only be stored once as a
quaternion. The use of a quaternion based angular representation for the correction
demonstrates a low error in the majority of cases. This encourages the consideration of

mappings from a quaternion representing the current orientation to a relative corrective

quaternion.

74

4. Corrective Constraints in S’ Space

In the previous chapter vectors representing initial joint configuration were successfully
corrected to a circular boundary on the surface of a unit sphere using both positional
(vector) and rotational (quaternion) corrections. In this chapter evolved neural networks
are trained to correct quaternions representing initial joint orientation to a regular
(circular) or irregular boundaries using a quaternion-based correction. The
discontinuous vector fields learned by the neural network represent the rotation of the
joint as a precursor to implementing more complex boundaries representing both

rotation of and around the joint [2, 4-6].

Quaternions are used as a rotational representation in a number of applications [2-6],
and have a number of properties which make them useful [2, 4-6, 8, 33]. However it is
difficult to define correctional constraints in quaternion space and existing approaches
are flawed in that they rely on reducing the dimensionality of the quaternion [2-5],

iterative corrections [2, 4, 5] or provide no method for generating corrections [6].

4.1 Methodology

Experiments were undertaken to develop corrective quaternion-based constraints (like
those of Herda et al [4, 5] and Liu and Prakash {3],) which describe rotational
constraints for both regular and irregular boundaries in quaternion space. Once again
NetJEN was used to evolve and train Generalised Multi-Layer Perceptron (GMLP)

neural networks to simulate joint behaviour.

4.1.1 Dataset Generation

In these experiments the current joint orientation is described using a quaternion, as was
the corrective rotational output from the ANN. The corrective output quaternion, when
combined with the current rotation, rotates an invalid rotation to a valid rotation on the

constraint boundary. Valid input rotations are given no correction and the network

75

outputs the identity quaternion. A boundary between valid and invalid joint constraints
is implicitly defined. This boundary marks a discontinuity in the vector field between

corrective and non-corrective (identity) quaternions.

Three datasets were prepared for each of the experiments; a training set, used to train
each generation of ANNs, a validation set, used to assess the fitness of the ANNs for

genetic selection and a test set which provided an unseen set of data on which to test the

ANN’s performance.

An even distribution of patterns is used with patterns grouped into valid and invalid and
trained in the same order. These distributions were found to provide superior results as
discussed later in Chapter 5. In the case of regular boundaries an automated dataset
generator was used. This generated a random unit vector then calculated its orientation
as a quaternion with respect to the constraint centre (aligned to the x-axis). This process

is demonstrated by equations 59 to 61.

Aa = ACOS(V - C) (59)
Av=CxV (60)
Qi = [COS(4al2), Av - SIN(4a/2)] (61)

Where V is the randomly generated unit vector, C is a unit vector aligned with the centre
of the spherical boundary on the surface of the sphere (the x-axis). 4 represents an axis
angle describing the rotation of the randomly generated vector, its axis part is described

as Av and its angle part as 4a. Qi is the quaternion equivalent of this axis angle rotation.

The correction was generated by examining the effect of the quaternion on a unit vector
placed at the centre of the constrained region. The angle between the initial vector and
the effected vector was calculated (see equations 62 and 63) and compared to the
constraint radius (see equation 64). If the angle was smaller then the generated vector

was within the constrained region and so the corrective rotation was set to the identity

76

quaternion. If larger then a correction rotation was calculated as an axis angle and then

converted to a quaternion as outlined in equations 65 to 68.

P = X rotated by Qi (62)
0 =ACOS(P - X) (63)
P is valid if (0 < Omax) (64)
46 = 0 — Omax (65)
Aa =460 (66)
Av=PxX (67)
Qo =[COS(4a/2), Av - SIN(4a/2)] (68)

Here P is a vector used to represent the effect of the quaternion rotation. 46 is the
difference between the current angle 6 and @max the maximum valid rotation. Qi is in
this case the input quaternion and Qo is the corrective output quaternion. X is a vector

aligned with the x-axis.

A similar automated dataset generator for irregular boundaries was discounted on the
grounds of complexity and predicted development time. Instead a semi-automated
system was adopted. An interactive virtual arm was created in a three dimensional
environment (using OpenGL) and used to record a boundary between invalid and vahd
rotations. The valid and invalid rotations were then recorded individually relative to

this boundary. Rotations were sampled at a set interval while the virtual arm was

interactively manipulated.

77

4.1.2 Evolution and Training

In each experiment the NetJEN system (described in section 3.1.2) was configured as
follows. The input layer represents the current joint rotation, while the output layer
represents the correction rotation. The number of hidden nodes and connection topology
are initially randomised and then evolved during the learning process using Genetic
Algorithms. The weights of the interconnections are also initially randomised then
updated using the resilient back-propagation algorithm. The evolution and training
parameters were set as shown in TABLE 11. The number of generations, training epochs
and hidden nodes were limited to reduce training times. Each experiment was repeated

five times to ensure the consistency of the results.

79

TABLE Il

EVOLUTION AND TRAINING SETTINGS

Parameter Description Value
Regularization Secondary fitness function. | Number of
function links
Hidden Nodes Maximum no. of hidden 20

nodes.
Number of No. of generations over 50
Generations which the ANN were

evolved.
Population Size Size of the populations 20

evolved.

Fitness Function

Primary fitness function.

Inverse SSE

Evolve number of

Links

Networks are pruned down

from fully connected

On

networks.
Evolve number of | Evolves the no. of hidden | On
Hidden Nodes nodes.
Evolve number of | Evolves the no. of training | On
training epochs epochs
Learning Rate Learning rate used when 0.1
training the ANN.
Stopping Error MSE at which the ANN are | 0.001

stopped.

Training Function

Training function used to

Resilient back-

train the weights of the propagation
ANN.
Max Epochs Maximum number of 500

training epochs

Through experimentation, it was found that good results were obtained for neural
networks with a sigmoid hidden layer and linear output layer, (as discussed greater

detail in Chapter 5). This distribution of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>