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Abstract
The creation of anatomically correct three-dimensional joints for the simulation of 
humans is a complex process, a key difficulty being the correction of invalid joint 
configurations to the nearest valid alternative. Personalised models based on individual 
joint mobility are in demand in both animation and medicine [1]. Medical models need 
to be highly accurate animated models less so, however if either are to be used in a real 
time environment they must have a low temporal cost (high performance). This work 
briefly explores Support Vector Machine neural networks as joint configuration 
classifiers that group joint configurations into invalid and valid. A far more detailed 
investigation is carried out into the use of topologically evolved feed forward neural 
networks for the generation of appropriately proportioned corrective components which 
when applied to an invalid joint configuration result in a valid configuration and the 
same configuration if the original configuration was valid. Discontinuous vector fields 
were used to represent constraints of varying size, dimensionality and complexity. This 
culminated in the creation corrective quaternion constraints represented by 
discontinuous vector fields, learned by topologically evolved neural networks and 
trained via the resilient back propagation algorithm. Quaternion constraints are difficult 
to implement and although alternative methods exist [2-6] the method presented here is 
superior in many respects. This method of joint constraint forms the basis of the 
contribution to knowledge along with the discovery of relationships between the 
continuity and distribution of samples in quaternion space and neural network 
performance. The results of the experiments for constraints on the rotation of limb with 
regular boundaries show that 3.7 x lO'Vo of patterns resulted in errors greater than 2% 
of the maximum possible error while for irregular boundaries 0.032% of patterns 
resulted in errors greater than 7.5%.
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1. Introduction

Joint models are important constituents of anatomical models, they are used in 

simulation to retain anatomically correct movement and ensure limbs do not separate or 

intersect. Anatomical models are used in both medicine and animation to create model 

humans as characters, teaching aids or to evaluate the benefits of surgical or prosthetic 

intervention [7-9]. It has been acknowledged that the joint models used in animation 

are particularly underdeveloped despite advances in other areas of humanoid modelling 

[1].

Many current techniques are limited by their underlying representation or their 

abstraction of the joint function and there is increasing demand for anatomically correct 

joints for both animation and medicine [1, 10, 11]. However in current applications, 

increasing accuracy leads to increasing complexity which requires additional 

computation [8, 12, 13]. No single technique has been presented suitable for accurately 

modelling all classifications of anatomical joint [1].

The long term aim of this work is to create an anatomically correct joint model based on 

person specific data (from non-invasive [14] or invasive [15] sources). Each model will 

provide an accurate representation of an individual's mobility.

The accurate representation of joint constraints by Artificial Neural Networks (ANN) 

has advantages over methods that use coarse approximations and computationally 

expensive iterative techniques. In combination with a quaternion based angular 

representation this presents an opportunity for systems with uniform constraint and 

angular representations.

In this thesis a number of simple cases based on contrived data are examined these 

provide the foundation for further research towards an eventual goal of patient or 

character specific joint constraints systems.

A joint constraint system must be capable of a decision regarding the validity of the 

current orientation and where required the appropriate correction should be assigned. 

Where a constraint system only describes the constraint as valid (within its constraint
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limits) or invalid (outside its constraint limits) the term binary constraint is used. Where 

the constraint system responds with a correction for invalid configurations and a zero 

correction for valid corrections the term corrective constraint is used.

This work focuses on corrective constraints modelled as vector fields and investigates 

the application of evolved ANN techniques to model a joint constraint system, for 

corrective constraints. The vector fields considered are discontinuous in nature, which 

increases the difficulty of their approximation. Using evolutionary techniques based on 

genetic algorithms, the topology of the network is configured dynamically to 

approximate the piece-wise linear properties inherent in discontinuous functions [16]. 

The application of Support Vector Machines to the problem of binary constraints is also 

investigated. In both cases less complex constraints are considered as a precursor to 

those of the complexity required to model anatomical rotational constraints.

In Chapter 2 current approaches to joint constraint, rotational representation, neural 

networks and their evolution by genetic algorithms are reviewed. Chapter 3 introduces 

initial experiments exploring the capabilities of topologically evolved neural networks 

applied to vector fields representing corrective constraints of increasing dimensionality. 

This is followed in Chapter 4 by the application of these techniques to vector fields 

representing quaternion based constrains, with both regular and irregular boundaries. 

This work is concluded in Chapter 5 where training and evolution constraints imposed 

to minimise temporal cost in earlier experiments are removed to ascertain the 

capabilities of the neural networks. The construction and training of binary constrains 

of varying dimensionality is considered in Chapter 6. Chapters 7 and 8 contain a 

discussion and conclusions relevant to the thesis as a whole, finally Chapter 9 details 

future work.



2. Literature Review

In order to apply neural networks to the problem of joint constraint existing approaches 

to anatomical joint constraint and their limitations are reviewed. Current approaches 

can be classified as either 'anatomically based' or 'phenomenological', of which the latter 

are more relevant to this work [17]. The research presented here focuses on the 

development of phenomeno logical joints, which mimic the behavior of the subject joint 

but not its physical structure. In describing the rotational behavior of these joints a 

selection of rotational parameterizations utilized in previous joint modeling solutions 

are considered.

Joint constraints are separated into 'binary constraints' and 'corrective constraints' the 

distinction being the response of the constraint system. In the binary case valid and 

invalid rotations invoke true and false responses respectively while in the corrective 

case a valid input rotation invokes a zero corrective response while an invalid rotation 

results in the required correction to the closest valid rotation being given. Machine 

learning techniques are studied with focus on their properties regarding classification 

(for binary constraints) and vector field approximation (for corrective constraints).

2.1 Joint Modelling

The problem of constructing anatomical joints has been approached in several ways. 

Engin and Turner [17] classifies these approaches as 'anatomically based' and 

'phenomenological'. Anatomically based joints represent the joint through the 

interaction of geometrical models that represent the physical components of the joint 

while phenomenological joints use mathematical models to describe the behavior of the 

joint without reference to its constituent parts.

2.1.1 Anatomically Based Joint Modelling
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Anatomically based approaches emulate the physiological properties of joint 

constituents in order to simulate their behaviour, as these physiological properties are 

responsible for both movement and constraint the desired constraint is implemented. 

Anatomical joints are typically made up of several constituents; bones, ligaments, 

tendons and muscles, each of which contributes to the constraint [17].

Gait simulations model the patterns of movement observed during a walking cycle. In 

many gait simulations the extremes of movement are ignored, as such limits are never 

reached during the gait cycle. Groups of muscles acting together prevent the limb 

reaching the limits of the joint [18, 19]. However for motions other than gait (e.g. 

jumping, stretching or a fall) joint limits may be encountered and so to create more 

versatile models more complex joint constraints are required.

An anatomical joint is always a connection between one or more bones, though this is 

often simplified to a mechanical linkage, some approaches attempt to model the 

interaction of the bones themselves. Bone dynamics are typically based on a physical 

simulation of the contact forces of the bones in question [18, 20]. These are often used 

in models in conjunction with other constituents of passive constraint i.e. ligaments, 

tendons and muscles [17, 21].

The simulation of ligaments has generated a great deal of research as ligaments provide 

much of the constraint in anatomical joints. Ligaments are mechanically heterogeneous 

complex structures in that they transfer loads non-uniformly and simultaneously in three 

dimensions [22]. Ligaments are responsible for the connection of articular extremities; 

pliant and flexible they provide maximum freedom of movement while being strong and 

inextensible so as not to yield under extreme force. Some ligaments are composed of 

yellow fibres (as apposed to the more common white, silvery variety) and have more 

elastic properties, it has been observed that they form a substitute for muscular power 

[23].

Ligaments have been simulated in several ways, the most prevalent being spring model 

variants. Ligaments behave much like springs at their optimal loadings though above 

this they are unpredictable [24]. Primitive spring models with single attachment points 

have been used to simulate ligaments [17, 25, 26], however ligaments have distributed
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attachment points. To improve the accuracy of these models more complex approaches 

have been developed.

Manal et al [9] used a sliding attachment point that "floats" along the edge of the bone 

to which it is attached to simulate the active force of a group of ligaments using a single 

spring. Other approaches provide a more accurate representation of the large 

attachment area of ligaments by using elastic bundles - a collection of spring models 

used to simulate ligament behaviour [22, 27]. Mommersteeg et al acknowledge that the 

elements which make up the bundle cannot interact and suggests three dimensional 

polygons as a way forward [22]. Ligament constraint systems have also been described 

using mathematical models and utilizing rotational matrices as their description of the 

constraint [21].

Kinetic approaches have also been used to describe the forces exerted by a tendon [28]. 

Models have also been constructed in order to ascertain the effect of smaller tendons 

whose contribution to the constraint is difficult to measure [22].

2.1.2 Phenomenological Joint Modelling

Phenomenological joint models model the behaviour of the joint but not its physical 

structure. Primitive joint constraints have been parameterised using Euler angles [29- 

32]. Euler angles are one of the most established and popular parameterisations of 

orientation. They model the rotation about each of the principle axes (x, y and z). Euler 

angles suffer from the problem of "Gimbal lock". Here a singularity occurs when 90° 

rotation is present around the second axis of rotation. This results in axis alignment and 

the loss of a degree of freedom [8, 33].

Inter-dimensional dependencies cannot be easily represented using Euler angles [34], 

and singularities or "Gimbal Lock" are encountered. Feikes et al [11] and Wilson et al 

[21] used special orthogonal matrices, a rotational parameterisation not susceptible to 

"Gimbal Lock", to overcome these limitations. Inter-dimensional dependencies 

between Euler angles can be expressed as equations [35] though this increases 

computational cost.
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N-dimensional boundary representations preserve the relationships between degrees of 

rotational freedom and are often used to supplement Euler angles. Conceptually, a 

number of points along the constraint boundary are obtained through measurement, and 

then approximated to an ^-dimensional polygon. Pioneered by Korein [36] whose three 

dimensional spherical polygons constrained the movement of robotic arms. This 

technique has been employed to constrain the 'swing' component in a swing-twist 

parameterisation specifically for ball and socket joints [36-38]. Isaccs and Cohen [39] 

used an arc based approach similar to that used by Korein. In a related approach Gyi et 

al [40] projected a spherical polygon composed of arcs on to plane.

Cone based polygons using one [41] or more [10] cones have been suggested for the 

complex shoulder joint. In the more complex case using multiple cones, the cones 

themselves are planar polygons (composed of lines) much like the arcs used by Korein 

and others [36, 40, 42].

A number of robotics and biomechanics based joint models have been included in a 

single model by Shao and Ng-Thow-Hing [1]. Having reviewed the available models 

they concluded that no single method could adequately simulate all the joints of a 

human model and so a number of specialised constraint models were required to 

simulate the individual characteristics of anatomical joints. In their approach conical 

constraints and axial rotation constraints with changing centres of rotation are 

implemented along with dependencies between rotational constraints [1].

The use of quaternions preserves the relationship between the degrees of freedom and 

avoids the singularities encountered in other representations. Binary quaternion based 

constraints in were implemented by Lee [6]. Lee decomposes a single quaternion into 

two quaternions each representing rotation in a single plane (effectively swing and twist 

for conic and axial constraints). In each case the centre of the constraint is known, a 

quaternion describing the swing of the joint can be created based on the angle between 

the centre and its image rotated by the subject quaternion and the axis calculated from 

the cross product of the constraint centre and its rotated image. The second quaternion 

representing the rotation around the axis can then be calculated by calculating the twist 

alone, (removing the swing component) the axis and angle of this quaternion can then 

be calculated. Conic, axial and re volute constraints are defined and can be used to 

model basic constraints, more complex constraints can be defined with a union of these
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basic types. Interrogation of these shapes (to ascertain the validity of a joint 

configuration,) is presented, but no method of calculating a correction to the nearest 

valid orientation is defined.

Liu and Prakash [3] build on Lee's work. Using a sampled boundary they create a 

function to constrain the decomposed quaternion that can be used for both constraint 

validation and clamping to the boundary.

An approach by Johnson utilises logarithmic and exponential mappings between unit 

quaternions in S 3 and a tangent space in 9V\ For this to be successfully achieved all 

quaternion must be moved to one side of the unit quaternion hyper-sphere as antipodal 

unit quaternions represent the same rotation. [2]. In Johnson's work statistical 

techniques are used to create both joint constraints and pose constraints. A set of valid 

rotations expressing joint and pose constraints on the unit quaternion hyper sphere are 

generated and their mean used as the centre point of the tangent space. A Gaussian 

probability density function is used to describe these points and boundaries can be 

implemented based on a maximum deviation from the mean of the sample data 

provided. Corrections are implemented by recursively moving an invalid point closer to 

the mean until the constraint is met.

In the quaternion iso-surface approach of Herda et a! [4, 5] a subject's arm movements 

were recorded and represented in quaternion space. This quaternion-based 

representation was simplified by ensuring all scalar components were positive and 

omitting them, leaving the three-dimensional vector of imaginary components. A 

boundary (iso-surface) between valid and invalid rotations of the arm was then defined 

on the irregular boundary surrounding the valid region in three-dimensional space. 

Iterative approaches were employed to identify the closest valid joint configuration, its 

scalar component can be recovered from the other components, (as the quaternion is 

unit length) and the correction to this orientation calculated.

2.1.3 Rotational Representation

An object's orientation in three-dimensional space relative to some reference can be 

parameterised in a number of ways. Popular parameterisations include Euler angles,
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axis angle, quaternion, the swing-twist representation, exponential map and orthogonal 

matrices [4, 8, 11,37].

The parameterisation of rotation is difficult as rotations are non-Euclidean and periodic 

in nature, that is travelling infinitely far in any direction will return you to the starting 

point an infinite number of times. Any attempt to parameterise a non-Euclidean set 

(such as the set of rotations for a joint with three degrees of freedom) by an open subset 

of Euclidean space will result in 'Gimbal lock', the loss of degrees of freedom due to 

singularities [38].

The choice of rotational representation is often a trade off between the advantages and 

limitations of the available approaches. In some cases rotations are converted between 

representations for specific applications, such as the conversion of axis-angle 

representations to quaternion for interpolation of rotations. These conversions consume 

processing time and may introduce numerical errors into the system, where possible a 

uniform representation is preferred [2].

2.1.3.1 Euler Angles

Euler angles are one of the most established and popular parameterisations of 

orientation. A general rotation is described around three mutually orthogonal 

coordinate axis in fixed space. These three dimensional axis are reasonably familiar to 

most, and rotation around any one is described as a roll. (The axes are x, y and z and the 

corresponding rolls ;r-roll, y-roll and z-roll.) Euler angles ignore the interaction between 

the rolls around separate axis it is this failing which causes the 'Gimbal lock' problem 

[43].

Euler angles have been used by a number of authors for the parameterisation and 

enforcement of constraints [29, 31, 32, 37]. However constraints on a single axis may 

change in relation to the rotation of another axis and these relationships cannot be 

preserved by Euler angles alone [37].

It is difficult to interpolate Euler angels due to the relationships that exist between the 

degrees of freedom. In Cartesian coordinates it is trivial to interpolate (using linear
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interpolation) between positions, however applying the same technique to Euler angles 

the interpolation between one orientation and another is not unique [43].

Kuffher [44] details other problems regarding the creation of distance metrics between 

rotations when using Euler angles. This is an important consideration in the creation of 

joint constraints, especially trained via neural networks, as mechanisms are required to 

assess the accuracy of the neural network response.

The direct constraint of Euler angles is not trivial due to a number of factors. While 

constraints can be expressed on each of the components individually (one dimensional 

constrains) it is difficult to describe valid and invalid regions. Several approaches have 

utilized Euler angle based constraints such approaches are severely limited as both 

constraint and motion are divided into separate planes and considered independently. 

These approaches are limited to robotics applications [32] and crude planar 

simplifications of the human skeletal system [29, 31]. Euler angles can be used as a 

rotational parameterisation where other methods are employed to impose constraint, in 

the work of Korein [36] for example.

2.1.3.2 Rotation Matrices

The set of all possible rotations (proper and improper,) can be considered using a 3x3 

matrix representation. A subset of this group of each with a unit determinant and 

mutually orthogonal columns of unit length describes the proper or binary rotations 

only. This group of matrices is known as the special orthogonal group or SO(3) [38, 

45]. Though a total of nine numbers are used to represent the matrix there are also six 

constraints, three to maintain the unit length of the columns and three maintaining the 

pair wise constraints which keep the columns orthogonal [44]. Rotation matrices are a 

non-Euclidean parameterisation and do not contain singularities [46].

Though rotation matrices seem convenient they have several properties that make them 

difficult to apply to anatomical joint simulation. Floating point precision and space 

inefficiency are problems mentioned in the literature [44]. Floating-point errors also 

occur when two rotations are combined via multiplication often the resulting matrix is 

not orthogonal and must be re-orthonormalized this increases computational cost. More
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relevant to this work is the difficulty in defining a simple metric for the differences 

between two matrices, thus error must be indirectly calculated [44]. Interpolation of 

matrices is also non-trivial the constraints must be maintained if the matrix is to remain 

valid [46].

Feikes et a! [11] and Wilson et al [21] used special orthogonal matrices to describe the 

rotation of the knee joint.

2.1.3.3 Exponential Map or Versor

In the exponential map the axis and angle are combined together into a single vector the 

direction of the vector represents the axis and the magnitude the rotation about that axis. 

[8, 38]. In addition to the inevitable problems with singularities the exponential map has 

no convenient method for combining rotations (they must be converted to another 

format e.g. quaternions) [38]. Exponential maps are used as rotational representations 

by a number of authors [38, 47].

Axis angle or angular displacement orientation is a very similar rotational 

parameterisation defined as a displacement around a single axis, much like a one- 

dimensional Euler representation. However, in this case the axis does not correspond to 

a three-dimensional plane but is itself relative to planes in three-dimensional space and 

rotation is described around this axis. Unlike the exponential map a unit length vector 

component represents the axis about which the rotation described by a fourth 

component takes place. Baerlocher and Boulic [37] indicate that the axis angle approach 

is remains susceptible to singularities but to a lesser extent than Euler angles.

Grassia [38] defined constraints for axis angle parameterisations suitable for describing 

ball and socket joints. The approach decomposed the motion into swing and twist 

components. The constraint here concerned only the swing component and used line 

segments created from an ellipsoid template. This was later described as "swing twist" 

parameterisation and possible swing and twist constraints were explored [37]. A number 

of approaches are suitable for the individual constraint of both swing and twist once 

decomposition has taken place, though equations are required to express any 

relationship between these constraints.
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2.1.3.4 Quaternions (or Euler Parameters)

Quaternions form a group whose underlying set is the four dimensional vector space 

9f 4 , a subset of which the set of unit quaternions (S 3 ) form a hyper-sphere embedded 

in 9t4 [38]. Using unit quaternions as a parameterisation of rotation gives a non- 

Euclidean parameterisation that is free from singularities. However constraints must be 

imposed to ensure that the quaternion remains on the surface of the quaternion hyper- 

sphere (S3 ) [38].

Quaternions were the creation of Sir William Rowan Hamilton who became interested 

in extending algebra to higher dimensions. Complex numbers have the form:

a + bi (1)

In equation 1 the '/' is a symbol denoting the square root of minus one. The scalar b 

allows any negative square root to be represented as a multiple of minus one, as 

demonstrated in equation 2.

This part of the complex number (bi in equation 1 ,) is called the imaginary part, the 

other (a in equation 1) is the real part. Imaginary numbers are so named as there is no 

square root of a negative number as any number squared is positive. This is difficult to 

picture, as were negative numbers before the creation of the number line. In 1833 

Hamilton noted that the sign only connected the two components and they could in fact 

be written with notation similar to that used for Cartesian coordinates. Examples of this 

are shown in equations 3 and 4.

i = (a,b) (3)

(4)



This combined with the earlier ideas of Gauss (1831) and Wallis (1685) led to the 

creation of the complex plane, also known as Argand Diagram after J. R. Argand who 

published a graphical representation of complex numbers in 1806 [48]. An example of 

such a diagram is shown in Fig. 1 this also shows the alterative angle length <0,r> 

representation, if the length of r is fixed then the variation of theta describes a circle this 

sparked Hamilton's interest in complex numbers for rotational parameterisation.

-5

Fig. 1 - An Argand Diagram the x-axis is the familiar number line with negative and positive numbers 

while the y-axis depicts the imaginary component. The alterative representation is shown in red.

Hamilton tried unsuccessfully for several years to use two imaginary and one real 

component to describe rotation. Hamilton's epiphany came while walking past Broome 

Bridge in Dublin in 1843 en route to a meeting of the Royal Irish Academy. He 

realized that three imaginary components were required with the following properties 

(equations 5-7).

 2 •"> 7 2 1/ = j -k =-l (5)

(6)

ji = (7)
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The components also display the cyclic permutation / -> j -> k -> i , (if a constant is 

added to the first component it generates the next and so forth finally it generates itself.) 

The quaternion itself takes the form:

q = a + bi + cj + dk ( 8 )

This is often condensed into the notation (s, v) where s is a scalar and v a vector. The 

following quaternion operations were derived: multiplication (equation 9), conjugate 

(equation 10) and magnitude (equation 11).

Multiplication:

2 =Cv2 -v, •v2 ,s l v, +5 2 v, + v, xv2 ) (9)

Conjugate:

q = (s,v) becomes ~q =(s,-v) ( 10 )

Magnitude:

qq -s" + v = q (11)

In mathematics a group is a set of numbers with a rule representing their multiplication, 

such that the result is a member of group. A subset of the quaternion group is closely 

related to the group of rotation matrices. These are the unit length quaternion, their 

magnitude is always one and this constraint has to be ensured for the quaternion to map 

to a valid rotation [43].

Distance metrics in quaternion space can be defined in a number of ways arcs, angles 

and linear distances can be used [44]. The angle between quaternions in quaternion 

space and four-dimensional Pythagorean distance can be used as distance metrics. 

Indirect measurement based on the resulting three-dimensional difference between
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rotated vectors can be used in some cases use of such techniques is limited due to the 

nature of the quaternion hyper-sphere.

A number of authors have implemented quaternion constraints, a set of simple 

quaternion based constraints were implemented by Lee [6], these simple constraints 

could be combined into more complex ones. Interrogation of these shapes (to ascertain 

the validity of a configuration,) is presented but no method of calculating a correction to 

the nearest valid constraint [6]. Lee's method relies on decomposing the quaternion into 

two quaternions representing planar rotation, based on this approach constraint systems 

capable of correction have been developed. Liu and Prakash [3] used a sampling 

approach to create boundaries in the tangent space and clamp orientations to these 

boundaries. Johnson [2] used a statistical approach to create both joint constraints and 

pose constraints. A corrective component was implemented by recursively moving an 

invalid point toward the mean of the sampled valid configurations. Johnson's approach 

again relies on projecting unit quaternions in to a tangent space. Herda et al [4, 5] used 

a three dimensional iso-surface reducing the dimensionality of the quaternion and 

implemented an iterative joint correction process.

2.1.3.5 Swing and Twist

The swing twist representation has been used extensively in the description of ball and 

socket joints, common in anatomy and robotics. This is not a parameterisation of 

rotation like the above but has been used in the representation of joints. The rotation of 

the limb is considered its swing, while rotation around the limb is considered the twist.

Specifying the swing component using axis angle rather than Euler angles reduces the 

effect of singularities on this parameterisation [37]. Further problems are caused by 

induced twist where successive swing rotations result in a change in the twist of the 

joint that would not have been present in a direct rotation. Additional computational 

expense is incurred to remove the effects of this phenomenon [37].

The twist component can be simply constrained using Euler constraints which may be a 

function of the swing component [37]. The swing component can be constrained using 

techniques such as spherical polygons [36, 37].
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2.2 Neural Networks

Artificial Neural Networks (ANNs) are inspired by the structure of the human brain. 

Like biological neural networks they are composed of neurons linked together to form 

complex networks. However, they are significantly different in terms of their 

complexity and their method of communication. Neural networks are typically 

initialised to a random position in the search space from this position they attempt to 

reduce the error present in the network moving towards a minima.

There are many types of network architecture, from auto-associative memories such as 

the Hopfield network to unsupervised networks such as Kohonen's SOM (Self- 

Organising Map) [49].

Deciding whether a joint configuration is valid or invalid (the validity of the constraint,) 

can be considered as a classification problem where joint configurations are classified 

into two groups. Coit et al [50] applied a classifying neural network to decide based on 

a number of inputs if soldering should take place in a industrial system. In later sections 

Support Vector Machines (SVMs) are considered this complex machine learning 

technique has been shown to be superior to both neural networks and statistical 

classifiers on a number of classification problems [51, 52].

In the case of corrective constraints the neural network attempts to approximate a 

function relating the current configuration with the amount of correction required. For 

corrective constraints in multiple dimensions it is clear that the neural network must 

approximate a discontinuous vector field. A number of approaches have successfully 

used neural networks to approximate vector fields [16, 53-58]. In later sections feed 

forward neural networks, their topological evolution by genetic algorithms and finally 

their application to vector field approximation are considered.
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2.2.1 Feed-Forward Neural Networks

Feed-forward network architectures such as that of the Multi-layer Perception (MLP) 

have been popular since the mid eighties when advances in their construction made 

them applicable to a new range of problems [59]. These are trained to give certain 

outputs in response to given inputs by repeatedly adjusting the strengths of the 

interconnections between neurons within the network (a number of training methods 

have been developed [60-62]).

The Multi-layer Perceptron is one of the simplest neural network architectures 

consisting of a number of nodes with weighted interconnections. Each node receives 

inputs along its connections, which are scaled from their source according to a 

weighting. On receiving these inputs it calculates their sum and transforms this input via 

an activation function to an output value [59]. The term Multi-layer Perceptron is often 

used to describe a feed forward neural network trained via back-propagation though 

there is little similarity between the Multi-layer Perceptron and its limited predecessor 

the Perceptron [59].

Many aspects of the networks structure and the structure of its neurons can influence the 

networks performance. The effect of the activation functions of neurons within the 

network is discussed in detail later in this chapter. The topology of the network (the way 

neurons are connected) determines the way computation proceeds and impacts on 

performance [49]. Biological neural networks are mostly feed forward, however some 

interconnections between nodes of the same layer exist as well as feed back connections 

and inhibitory nodes inspiring a plethora of network topologies [49].

Fully connected neural networks are the most general kind of architecture, where each 

node in the network is connected to every other node including itself. Despite their 

generality the use of such networks is rare due to the large number of parameters 

(weights) requiring training and the biological implausibility of its structure [49].

The are a number of feed-forward neural network topologies, each consisting of neurons 

in layers labeled either numerically or alphabetically with the input layers labeled 0 or i 

respectively.
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Layered network - each node in the lower layers are connected to each node in all 

higher layers and to neighboring nodes in their own layer [49].

Acyclic network - a subclass of the layered network here no connections exist between 

nodes in the same layer [49].

Feedforward network - these are amongst the most common neural networks in use so 

much so that the term neural network is often used to describe this topology alone [49]. 

These networks have connections from each node in a lower layer to each node in the 

next layer.

This work uses generalized multi-layer Perceptrons (GMLPs) as used by Mayer and 

Schwaiger [63, 64] also described as fully connected feed forward neural networks by 

Yao and Liu [65]. These are much like layered networks with connections between each 

node in a lower layer with all nodes in all higher layers. Unlike the layered network 

there are no connections between nodes of the same layer. A single bias node is used 

which is connected as an input node, i.e. with connections to all hidden and output 

nodes.

Artificial neural networks are made up of artificial neurons, these typically have one or 

more input and output connections depending on the layer in which they are found. A 

weighted sum of the nodes inputs is modified via a transfer or activation function 

(sigmoid in the above example) and this is passed as the output to the next layer. The 

following example is based on that presented by Mehrotra, Mohan and Ranka [59].

The sum of the weighted neuron inputs (net) is defined as (equation 12).

net, =

Here xpj is the input and wpj the input weight for layer / pattern p. In this case n is used 

to describe the number of inputs for summation. Where the activation function is 

sigmoidal, the output of the neuron can be defined as (equation 13);
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In the above equation (13) op . t is the output, e is the exponential function. In the 

following example a simple neural network with three layers i,j and k is presented. To 

'fire' the neural network, that is to get an output for a given input the input nodes are set 

to the values of the input pattern. In this case there is no transformation and the outputs 

are weighted to form the input of the next layer, this process continues until the outputs 

of the final layer have been calculated, the process for a single node is shown in Fig. 2.

xl
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^ v^ « 

^ -^ ^*«^ ^ -^
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Fig. 2 - Weighted input summation [59]

The interaction of inputs, weights and functions to give the output can be described 

using equations. Nodes in the input layer (layer /) are a special case here the inputs are 

passed on without applying an activation function. This is shown in equation 14, here 

the subscript p referrers to the pattern number, /' and j represent the layer and x is the 

input to the given layer.

XP.J =XP.' (14)

The equation for the hidden layer (layer j, as shown in equation (15),) shows some 

additional components. S is the sigmoid activation function applied to the sum of the
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weighted inputs, c is a count of the number of weighted inputs to the layer. The weight 

from the input layer (/) and the hidden layer (/) is represented by w,/.

(15)

For nodes in the output layer (layer k) the equation shown in equation 1 6 includes the 

output of this layer. This will be one of the network outputs and is denoted by an o, the 

weights between the hidden layer (/') and the output layer (k) are represented by wkj.

op, k = £(,,, *V*i>.*.r) (16)

Feed forward neural networks are trained using algorithms such as the back propagation 

algorithm. The following brief description of the back propagation algorithm, based on 

the example neural network above by Mehrotra, Mohan and Ranka [59].

Once the neural network has fired error for each of the output nodes can be calculated. 

In this example MSB an error measurement based on the norm of the difference vector 

between the desired neural network output (dp) and the actual output (op) is used. There 

is however more than one vector, there is one for each of the K outputs and for each of 

the P patterns. These are combined using a sum of the squared error values, this 

provides an error function which can be differentiated (unlike the absolute error) this is 

essential for weight update via gradient decent [59]. The equations for MSB and SSE 

are shown as equations 1 7 and 1 8 respectively.

P K

(\op,,-dp^ (18)
P =\ j=\

The output of the neural network is a function of all the weights (w) present therefore 

the network error (E) is also a function of these weights. Differentiation of E with
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respect to w equation 19 gives an error gradient. This gradient relates error and weight 

change, the weights are changed in the direction coinciding with decreasing error.

-9£/3w (19)

Rather than calculate the update for all the weights (Aw) required for w this calculation 

is performed for each connection from the output to the hidden layer and from the 

hidden layer to the input layer. The corrections obtained are used to update the 

respective weights. This is known as the generalised delta rule [59].

The formulation of the rules for updating the weights relies on calculating a number of 

partial derivatives and evaluating them using the chain rule. To differentiate between E 
and w it is noted that E is dependent on the network output (o), which is itself dependent 

on w these partial differentiation links are evaluated using the chain rule. Mehrotra, 

Mohan and Ranka [59] cover the formulation of these equations. The equations derived 

for the update of weights connecting in the hidden and output layers are as follows 

(equations 20-23).

(20)

y =r)*jUJ *xi (21)

where

Sk =(dk -ok )S'(netk ) (22)

and

(23)
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In the equations above (equations 20-23), the subscript p has been omitted to maintain 

clarity. Here n is a user-controlled variable that scales weight updates known as the 

learning rate.

The equations for calculating the weight updates between the output and hidden layer 

(Awt:/ ) and hidden layer and input layer (Aw /v ) are very similar as shown in equations

20 and 21. Both are the product of the input to the layer ( .Y or \j ) the learning rate (r)) 

and a generalized error term ( 8k or // ; ).

The generalized error term for the nodes of the output layer Sk is proportional to the 

amount of error multiplied by the derivative of the output node with respect to the input 

node as shown in equation 22. The generalized error term for the hidden nodes /y ; is

proportional to the amount of weighted generalized error for the output nodes multiplied 

by the derivative of the output node with respect to the input node as show in equation

23.

2.3 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) were introduced by Vladimir Vapnik and rely on the 

principle of structural risk minimisation (SRM) [66]. Their key advantage is in their 

training technique, which aims to minimise both error and network complexity and 

hence maintain its ability to generalise [67]. The SVM attempts to identify a 

mathematical function that produces the minimum error based on a cost function. 

Unlike traditional neural network training which attempts to solve a non-convex 

unconstrained minimisation problem [67, 68] the SVM minimises both the current error 

and learning machine complexity by solution of a quadratic programming problem with 

linear constraints.

SRM states that the current error (after exposure to some training patterns) and the 

complexity of the network contribute to the generalisation error (error after infinite 

training patterns) [69]. Neural networks focus on reducing the current error ignoring the 

network complexity, an increase in which leads to over-fitting and therefore and
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increase in generalisation error. SVM training reduces both the current error and the 

complexity of the network [69].

An optimal linear hyper-plane (O in Fig. 3) is created to divide linearly separable data 

this is placed between two hyper-planes (HI and H2 in Fig. 3), which delineate the 

boundaries of the individual datasets [70]. The patterns on these hyper-planes (without 

which the solution would change) are identified as support vectors [68]. The training 

process aims to maximise the margin between HI and H2, SVMs are usually trained by 

minimising a quadratic problem under constraints [66, 70]. Increasing the size of the 

margin theoretically reduces the complexity of the machine, as well as reducing the 

current error (number of misclassified patterns) a reduction of both terms leads to a 

reduction of the generalisation error [69].

Fig. 3 - The figure shows the hyper-plane O separating the two sets of data shown as a thick black line. It 

also shows the margins HI and H2 depicted as yellow lines upon which the support vectors (shown with a 

pink hi-light,) lie.

This technique is only suitable for linearly separable cases it is by no means general. 

Both non-separable and non-linear cases are dealt with using simple additions to this 

technique. In the non-separable case slack variables are introduced, these relax the 

constraints governing the distance of the hyper-planes from the support vectors with the 

penalty of further cost [68].
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SVMs capitalise on the only reference to the training data in the in the optimisation of 

the hyper-plane being through a dot product in creating boundaries in the linearly 

inseparable case. A mapping is used which maps the data to some other possibly 

infinite Euclidean space this mapping is known as a kernel function.

In summary, SVMs attempt to separate sets of data with the maximum distance from 

points on either side. SVMs utilize kernel functions, these move the points into a higher 

dimensional space this has the effect of spreading the points reducing the complexity of 

separation.

A version of SVM for regression was proposed by Vapnik, Golowich and Smola called 

Support Vector Regression, (or SVR) [71] and considered the application of support 

vector methods to function approximation. The classification method shown above only 

depends on a subset of the data as the cost function ignores points that lie beyond the 

margin. The regression method also depends on a subset of the data but ignores points 

that are close to the boundary (within the threshold) [71]. To date much work has been 

done improving on the simple SVM shown above for both classification [72-74] and 

regression [75].

SVMs suffer from several limitations. One of the key limitations is the choice of kernel 

function, trial and error (or prior knowledge) is often required to identify the best kernel 

function for a dataset [68]. The computational cost of training and testing is high, 

though successful attempts have been made to reduce both the testing and training time 

[68, 72, 76]. The quadratic programming problem (quadratic optimization) is usually 

quite complex and therefore suspect to stability problems [76]. Attempts have been 

made to reformulate the quadratic optimization to improve stability and reduce 

computational complexity [76]. There are also occasions where SVMs select sub- 

optimal support vectors for categories within the training set. A multi-pass system that 

separates the identification of the best candidates for support vectors prior to SVM 

training has been developed by Masuyama Nakagawa [77].
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2.4 Genetic Algorithms

Genetic Algorithms (GA) are search algorithms that utilize the mechanics of natural 

selection first developed by John Holland and his students at the University of 

Michigan. Each generation contains a number of blueprints for an individual called the 

genotype. The performance of these individuals is measured against some metric. New 

genotypes are created by retaining information from the strongest (reproduction) and 

swapping genetic information between pairs of individuals (crossover). The occasional 

new genetic feature is introduced and this is called mutation [78].

This method has advantages over traditional optimisation and search methods. Calculus 

based methods are local in scope and search for the local optimum only. They are also 

dependent on continuity and derivative existence in the search domain, making them 

suitable only for a limited problem domain. Enumerative and random searches are 

inefficient, though there is a random component to genetic algorithms [78].

Genetic Algorithms encode the parameter set rather than using the parameters 

themselves, hence a genotype (blueprint for the individual) is created form the 

phenotype (their characteristics). Each individual may evaluate a different part of the 

search space rather than a single point as is the case in other approaches, reducing the 

risk of becoming trapped in local minima. Other approaches rely on using deterministic 

rules, often derivatives, to evaluate the current solution, genetic algorithms use an 

objective function. The use of an objective function allows the comparison of local 

minima in a multi-modal search space. Genetic algorithms move towards a solution 

using probabilistic transition rules, though the direction is not decided at random [78].

Goldberg [79] shows by means of similarity metrics the workings of genetic algorithms. 

These metrics are called schemata (similarity templates), schemata are similar to masks 

placed over the genome they highlight commonality between genomes. For example the 

binary genome 0110110 and 0100001 are both associated with the 01***** schema, 

where the * represents information which is not part of the schema. Schemas have an 

order and defining length. The distance between first and last values exposed in the
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mask is termed the length, while the order of the schema refers to the explicitly of the 

schema that is the number of values exposed in the mask.

The fundamental theory of genetic algorithms states that "high-performance, short- 

defining-length, low-order schemata receive at least exponentially increasing numbers 

of trials in successive generations" this is known as the building blocks hypothesis [79]. 

This is due to several factors;

1. Reproduction allocates more copies to the best schemata.

2. Crossover does not frequently disturb short chains where as the cross over point 

may fall in the middle of large ones and split them in two.

3. Mutation is infrequent and has little effect.

In essence the small high-performance (low error) schema become partial solutions to 

the problem (or building blocks) which the genetic algorithm then discovers new 

solutions by speculating on how these can be best recombined [79].

2.5 Evolved Artificial Neural Networks

The human brain, which inspired the creation of artificial neural networks, has a 

complex and bespoke structure that has evolved over many thousands of years. 

Evolved neural networks represent the application of genetic algorithmic techniques to 

neural network creation to enhance the specificity of the neural network to a problem or 

environment [80].

Early Evolutionary Artificial Neural Networks (or EANNs) approaches considered the 

evolution of neural components of the artificial neural network such as its structure, 

interconnecting weights, nodes and learning rules [80]. Inspiration from natural 

(human) evolution has lead to approaches where training patterns, learning scheme and 

other factors, such systems are described as Artificial Neural Systems (ANS) [80].

This following sections focus on the evolution of the structure and activation function of 

the neural network. Activation function evolution is especially interesting as it can 

improve the learning of local features (such as the discontinuities of the vector field)
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within feed forward networks. This is followed by an introduction to local and global 

learning, with particular attention to the creation of neural networks that display both. 

Finally existing application of neural networks to vector field approximation are 

reviewed.

2.5.1 Topology Evolution

Huber, Mayer and Schwaiger [81] state that despite the successful application of Multi­ 

layer Perceptron ANNs, no analytical rule has been discovered governing the optimal 

topology of the network. They also observe that improvement in approximation often 

results in a loss of generalization capabilities and that smaller ANNs with low 

connectivity show better generalization capabilities than more complex networks.

A number of authors have attempted to solve to this problem by means of evolutionary 

techniques to evolve a topology suited to the problem at hand. There are two 

approaches identified by Yao and Liu [53], the evolution of "pure" architectures where 

weights are evolved separately and the evolution of weights and architectures together. 

In both cases information regarding the topology of the network is encoded as the 

connections made by the nodes of the network [53].

Huber, Mayer and Schwaiger [81] use genetic algorithms which searched for a problem- 

adapted neural network topology. A hybrid system is employed using genetic 

algorithms to evolve the topology with the Resilient Back-propagation [60] learning 

algorithm to train the network weights. This is an example of "pure" architecture 

evolution with direct encoding. There are some issues with such approaches as 

identified by Yao and Liu [53], who observe that when training the training method may 

find different minima in a multi-modal error surface from the same initialised weights.

The problems encountered in "pure" architecture evolution can be alleviated by 

evolving both the weights and the architectures simultaneously, using a one-to-one 

mapping from genotype to phenotype (where the phenotype is the evolved 

network[53]). Difficulties here arise in the encoding of networks, as in some cases 

networks can have different genotypes but produce the same phenotype making 

evolution inefficient [53].
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2.5.2 Activation Function Evolution

Neural network performance is greatly affected by the choice of activation function 

present in the neurons that comprise the network. In biological neural networks, 

specialisation of neurons takes place [82] simulating this with mixed [53, 65, 83] and 

adaptive activation functions [63, 64, 84] has provided improvements over classical 

architectures with fixed sigmoidal neurons.

A number of researchers have successfully improved on the results of classical sigmoid 

neurons using mixed activation functions. Successful combinations include; Gaussian 

and Sigmoid activation functions, both fixed in separate layers [85] and evolved in a 

single layer [65, 86]. Sigmoid and Sigmoid based jump approximation functions were 

used by Selmic and Lewis [58], these non-smooth activation functions produced good 

results in learning one dimensional discontinuous functions. However the nature of the 

activation functions made learning difficult and prior knowledge was required regarding 

the position of the discontinuities.

Yao and Liu [53] evolved neurons with sigmoid and Gaussian activation functions in 

the hidden layer using evolutionary programming techniques. More recently Mayer, 

Strapetz and Fuchs [83] produced a version of the NetGen system capable of selecting 

between multiple candidate activation functions, these included logistic, hyperbolic 

tangent and linear.

There is a wealth of research regarding adaptive activation functions. Several 

researchers have used adaptive sigmoid neural networks, where the parameters of the 

sigmoid function are modified during training giving the neurons limited specialisation 

capabilities [84, 87].

More recently research has focused on spline based activation functions. A spline is a 

function constructed from low order polynomial pieces connected at breakpoints (called 

knots) with certain smoothness conditions [82]. It is these knots that are modified by 

training or evolution to create specialised nodes and increase performance.
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A number of different types of spline exist and several have been used as adaptable 

activation functions for neural networks. Some novel though limited approaches have 

been suggested using B-Spline neural networks [82, 88]. More recently catmull-rom 

cubic spline neural networks using algorithmic adjustment of the spline during learning 

(spline training) have been developed [84, 89, 90].

Cubic splines have been used by a number of authors, both trained [91, 92] and evolved 

[64]. Multi-dimensional cubic splines have also been used. Here there are as many 

dimensions to the spline surface as there are inputs, these are combined into a single 

input passed to the next layer [93-95].

Mayer [63] utilised a template based approach to cubic spline activation function 

evolution. This brings together pure activation function evolution and spline based 

activation function evolution. A number of spline based template functions are evolved 

as candidates for neuron activation functions in the network. This reduces the 

complexity of the genetic algorithm, as there are potentially fewer free parameters 

requiring optimisation.

2.6 Local and Global Learning Characteristics

Sample data or training data displays both local and global characteristics. Approaches 

that make use of these characteristics are described as local learning and global learning 

respectively. Global learning has a long and distinguished history, scientist have used 

global learning techniques to uncover the underlying mathematics that govern complex 

phenomena [96]. However, global learning methodologies often struggle to find the 

appropriate model and parameters to represent the observed data.

This has led to increasing interest in local models. Here the focus is on useful local 

information from the observed data [96]. It has been demonstrated that local learning is 

superior to global learning in many classification domains [96]. However local learning 

methods do not grasp the structure of the data which may be critical for generalization 

performance [96].
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The illustration shown in Fig. 4 is similar to that shown by Huang el al [96]. The figure 

shows a decision line identified by a local learning technique. In Fig. 4(a) the spread of 

the data is fairly even, and there are a number of points used to make the decision 

regarding positioning of the decision line. However in Fig. 4(b) there are only two 

points identified, as being important to the boundary and much of the global 

information about the pattern distribution is lost. This is equally true in the case of 

function approximation, it may be more important to accurately describe the global data 

than to base the mapping on a few points considered important.

Decision Line Decision Line

00 <b)

Fig. 4 - (a) An illustration showing local learning, where the decision boundary depends on a few selected 

points, (b) In this case local learning cannot grasp the trend present in the data. Darker markers indicate 

the points used in local learning.

Among the machine learning techniques which exhibit local learning are SVMs. Key to 

the power of this approach is the local nature of its learning, the updating of support 

vectors in one region does not disturb the learning in other regions [85]. However poor 

performance on global trends, often referred to as 'over fitting 1 , has been recorded by a 

number of researchers and attempts have been made to minimise its effects [74, 77].

Feed forward neural networks such as the MLP and GMLP display global learning and 

often struggle to represent local features [85]. Due to the global nature of their learning 

the training of one part of the function may change the weights related to another part 

[85].
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A combination of these two learning styles is required, a neural network where both 

global and local learning takes place leading to accuracy on local features while 

retaining generalization with regards to the global structure of the data. A number of 

approaches attempt to introduce components of global learning in neural networks 

which demonstrated good local learning, for example, the addition of a second layer of 

sigmoidal nodes to a Gaussian functioned neural network (RBF) was implemented by 

Shibata and Ito [85].

More recently, Support Vector Machines have been combined with the Minimax 

Probability Machine and Linear Discriminant Analysis to form the Maxi-Min Margin 

Machine (MA4). Their model tries to maximize the margin defined as the minimal 

Mahalanobis distance for all training samples while maintaining correct classification 

[96]. The introduction of this global distribution measurement improves the networks 

choice of decision boundary.

Alternatively aspects of local learning can be introduced into neural networks that 

display good global learning. Spline activation function neural networks display both 

global and local learning, here inter-nodal connections partition off areas of the dataset 

and the activation function becomes specific to local data [84, 95, 97].

2.7 Neural Network Approximation of Vector Fields

A vector field is defined as a mapping that assigns each input to an output via some 

vector function. Vector fields can be uniquely specified by giving its divergence and 

curl within a region, this is known as Helmholtz's theorem [98]. In mathematics vector 

fields typically involve a Euclidean position in two dimensions being mapped to a 

vector with direction and magnitude. They are used extensively to describe forces at a 

given point in two-dimensional space. They are however extensible to any number of 

dimensions in that a vector field can form a map between two vectors of equal 

dimensionality or of unequal dimensions, (a projection). For example the use of three 

dimensional vector fields for the exploration of complex problems is explored by 

Crawfish a/[99].
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Dynamic behaviour (such as joint constraint) can be described as a change in state that 

is determined by a function dependent on the current state. There is clear similarity 

between the mappings required for vector fields and those involved in the description of 

dynamic behaviours such as joint constraint [54].

A one-dimensional vector field would simply consist of a function (as shown in 

equation 24.) A joint constrained in one dimension using an Euler angle can be 

described as a function (or one-dimensional vector field). The function is a 

discontinuous or piecewise linear function as it has points where there is no gradient, 

the discontinuities.

24

There are a number of practical applications for which the approximation of these 

functions by neural network has been attempted. Selmic and Lewis show that the 

inclusion of non-smooth neural network activation functions (sigmoid based jump 

functions) produce good results. In their work a feed forward network is trained via 

back-propagation to model friction compensation in industrial machinery. The weights 

connecting the nodes with non-smooth activation functions were fixed and their 

thresholds adjusted to correspond to the discontinuity based on prior knowledge [16, 

58]. Radial Basis Function neural networks have also been used to overcome problems 

with friction [100].

A similar problem involving backlash compensations has been solved using a recurrent 

neural network using reinforcement learning [88, 101, 102]. Anderson [103] 

demonstrates the superiority of a modular neural network approach over reinforcement 

learning. In the modular approach the piecewise linear function is broken down into its 

linear components, (separated at the discontinuities.) Expert networks are trained for 

each linear part and a gate function or network used to decide which of the experts 

should be used.

Moving to two-dimensional vector fields, which could be used as a crude representation 

of a constraint, like the projected spherical polygons [40] discussed earlier. A two-
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dimensional vector field used for joint constraint applications still has a discontinuous 

quality, in that a number of points exist (at the boundary,) where there is no gradient. 

Continuous vector fields in two dimensions have been trained using neural networks in 

the field of robot control. Here a vector fields representing path following for simple 

and more complex paths were trained using one and two hidden layer neural networks 

[54, 55]. A MLP neural network with input nodes, representing the robots position and 

two outputs, representing the directional change it needed to undertake to return to the 

path was used. The hidden layer of the neural network was composed of nodes with 

hyperbolic tangent (or bi-polar sigmoid) activation functions, and the output layer of 

nodes with linear activation functions, the neural network was trained using 

backpropagation.

Kuroe et al [104] suggested an alternative approach where an Adjoint neural network 

was used to learn continuous vector fields. This approach utilises the basis field 

simplification technique of Mussa-Ivaldi and Griszter [105]. The neural network is 

trained via a customised training algorithm that relies on aspects of vector field theory. 

Any continuous vector field can be shown to be composed of irrotational and solenodial 

vector fields [106]. In the approach of Kuroe et al these are in turn expressed in terms a 

common multi-dimensional scaling function (another vector field) and two additional 

scalars. The scaling function and scalars are learned as part of the learning algorithm 

and can be recombined into the original vector field [104].

The techniques developed by Kuroe et al [104] were applied to flow field measurement 

from image data, a technique called Particle Imaging Velocimetry (PIV). An Adjoint 

neural network was used to approximate regions flow within artificially generated two 

dimensional smoke images [107].

Kulchin and Panov trained neural networks to learn two dimensional scalar fields for 

reconstructing data from fibre-optic measuring systems [57]. Again the hidden layer 

was composed of nodes with hyperbolic tangent (or bi-polar sigmoid) activation 

functions, and the output layer of nodes with linear activation functions. The neural 

network was trained using an enhanced backpropagation algorithm with simulated 

annealing to reduce the effects of local minima.
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Evolutionary programming a technique very similar to genetic algorithms was used by 

Kim et al [108] to identify an appropriate path between an initial destination and an 

ideal direction in two dimensions. This technique utilised vector fields to describe 

attractive forces for the destination position and direction and repulsive forces for 

obstacles.

Mussa-Ivaldi and Griszter [105] found that the limb pre-motor control in the reptilian 

spine was arranged in discrete modules describing an equilibrium point for a limb using 

groups of antagonistic muscles. The stimulation of multiple groups leads to the 

superimposing of these individual modules suggesting that all combinations of posture 

for the limb are generated in this way. The authors make use of basis fields to describe 

fields of motion and imitate these discrete modules. Basis fields are the vectorial 

equivalent of local basis vectors, just as any vector in a vector field can be represented 

as a linear combination of its basis vectors a vector field can be represented as the linear 

combination of its basis fields. This technique can be used to simplify complex vector 

field representations.

Neural networks have been utilised for physics based animation by Grzeszczuk, 

Terzopoulos and Hinton [56]. In their approach complex forward dynamics equations 

required for physics based animation were replaced with neural networks, predicting the 

complex vector mapping (0) from the current state (s,) to a future state (st +st) based on 

the current state, the applied force («,) and external forces (f,), (as shown in equation 

25.)

A key advantage of this approach is that the trained forward dynamics neural network 

mappings can be reversed by applying the chain rule of differentiation to obtain the 

inputs to the network given a resultant state. This is further exploited to move a limb 

towards a desired position utilising a gradient decent [56].

Grzeszczuk, Terzopoulos and Hinton [56] provide a detailed account of their network 

configuration and raise a number of issues regarding the capabilities of neural networks 

as vector field approximators. As the range of the inputs and outputs are large in
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comparison to the range of the sigmoidal activation function normalisation of this range 

was impractical. Mapping from the current state to the difference between current and 

future states is more practical and by adding the approximated difference and current 

state the future state can be calculated. The range of the inputs to the neural network 

can deviate greatly adversely affecting neural network output, these were normalised 

and adjusted to have unit variance and zero mean. It is reported that neural networks 

attempting to train vector fields with high dimensionality (10+) required large numbers 

of hidden nodes (50+) and long training times (several CPU hours). The researchers 

suggest a natural sub-division to reduce the number of free parameters in each case. 

The neural network used for the forward dynamics has a single logistic sigmoid hidden 

layer and is trained via back propagation enhanced with a conjugate gradient algorithm.

The term Quaternion Vector Field is attributed in much of the literature to the 

visualization approach developed by A. J. Hanson, which reduces the four-dimensional 

quaternion to three dimensions for visualisation. Herda et al [4, 5] have implemented 

joint constraints based on this approach. In this thesis vector fields in quaternion space 

and indeed quaternion vector fields are considered as mappings of an input quaternion 

and an output quaternion via some function.

Research has also been undertaken towards specialized neural network architectures for 

solving Constraint Satisfaction Problems (CSP's) [109, 110]. These neural networks 

attempt to provide a general network for the solution of any CSP and consist of a 

number of node clusters, one for each input that have inhibitory links between them. 

They have been shown to be faster than conventional methods (sequential heuristic 

search) and have execution times of tens to hundreds of nano seconds compared to more 

than 20 hours for the more conventional approach [109]. These networks deal with a 

high number of binary inputs, outputs and constraints, successful preliminary work is 

also shown for non-binary problems [109].

Few of the existing approaches have been applied to discontinuous vector fields. A 

possible reason for this is an inherent weakness in many neural networks. The learning 

of individual patterns has an effect on the patterns already learned due to the update of 

weights shared between neurons [111]. This is known as the "stability-plasticity" 

problem, the neural network needs to be sensitive to but not seriously disrupted by new 

patterns [111]. Some interference is acceptable and has little effect on the training,
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however in extreme cases "catastrophic interference" occurs, here the learning of a new 

group of patterns damages the patterns previously learned by the neural network [111].

French [111] states that catastrophic interference is largely a consequence of the overlap 

of internal distributed representations. Hidden neurons are responsible for this internal 

representation and catastrophic interference arises when they attempt to differentiate 

between overlapping input.

2.8 Principle Component Analysis

Principle Component Analysis or PCA is a statistical technique used in a number of 

domains, like many other multivariate statistical analysis techniques it can be used to 

analyse the relationships between the variables of large multivariate data sets. PCA 

provides an analysis of the multi-variant structure of the data giving an indication of the 

relationship between variables and the components contributions to these relationships 

[112].

At a high level PCA gives two important products, firstly a series of vectors known as 

the characteristic vectors or eigenvectors. These are orthogonal vectors that identify the 

directions in which variance takes place within the dataset. PCA also gives a set of 

values associated with each eigenvector known as characteristic roots, latent roots or 

eigenvalues, these values give the variance attributed to the associated vector [112].

A number of univariate techniques are introduced as a precursor to multivariate 

techniques and PCA. The mean (or x ) a is defined as the summation of the elements of 

the data set x where x/ is the ith element of the dataset divided by the number of items in 

the dataset n as shown in equation 26 [113].

(26)

There are two other statistical measures of variation for univariate data sets that are of 

interest the first is the Standard Deviation denoted by the symbol s. This is the average
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distance from the mean of the dataset to a point this is calculated by taking the square 

root of the summation of the squared differences between the mean and each point as 

shown in equation 27 [113]. The average of the squared differences is calculated using 

one less than the number of numbers n, as this provides a more accurate estimate for 

samples of data representing larger sets [113].

The second univariate statistical measure of interest is the variance of the dataset, which 

describes the spread of the dataset. It is in fact the sum of the squared distances 

between the mean and the individual data points. Its formula (shown in equation 28) is 

very similar to that of the standard deviation [114].

(28)

Mean, variance and standard deviation are univariate and are not suitable for use in the 

analysis of multivariate data. A related measure the covariance can be used to describe 

the variance of one dimension with respect to another. The formula for the covariance 

of two datasets is given in equation 29 [115]. Note that here the product of the 

difference between the ith data points and their respective means has replaced the 

square of the difference between the ith data points and the respective means of two 

different sets of data. Variance is a measure of that variation of a dataset with respect to 

itself and covariance the variance of two datasets with respect to each other.

, v) = 29
(H-l)
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It is important to note at this point that cov(x,y) gives the same result as cov(y,x) as only 

the order of the multiplication changes and multiplication is communicative. 

Covariance only gives measure of the variance between two dimensions this can be 

extended to more than two dimensions using the covariance matrix. For a dataset of n 

dimensions the covariance matrix (an n x „ matrix) is shown in equation 30. The 

format of the equation is based on that given by Jackson [112] though this has been 

modified to aid clarity.

cov(x,y,....n) =

cov(x,x) cov(*,v)     cov(x,n) 
cov(v,*) cov(y,y) cov(y,n)

cov(n,x) cov(n,y) ••• cov(n,n)

(30)

The covariance matrix is a symmetric, non-singular square matrix it has both 

eigenvectors and eigenvalues. Eigenvectors when multiplied with a matrix are scaled 

rather than being rotating or translated. The resulting eigenvectors are scaled versions of 

the original the scale of each eigenvector is termed its eigenvalue. The eigenvectors and 

eigenvalues of a matrix can be identified by a number of methods [112, 116, 1 17].

The following is a brief description of eigenvectors and eigenvalues and the steps 

required in their identification. A matrix A is multiplied by a vector x their product is 

the vector B. However on closer examination B is a scaled version of x. The matrix x 

contains the eigenvectors while the eigenvalue (k) is the scaling factor x has undertaken, 

this can be expressed as shown in equation 31 [118].

(31)

Eigenvalues and Eigenvectors can only be found for square matrices, there exist at least 

one eigenvalues and at most n eigenvalues for an n x n matrix where x is non-zero. Any 

solution for X where x is non-zero is called an eigenvalue or characteristic value of the 

matrix, the corresponding solutions of x for given values of I are called the 

characteristic vectors [118].
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The determination of Eigenvectors and Eigenvalues is illustrated by a simple example 

based on that given by Kreyszig [118]. The first step is to introduce the example matrix 

A and express equation 31 in these terms as shown in equations 32 and 33.

A = -5 2 
2 -2 (32)

Ax = \
2 -2 Lr,

(33)

Equation 33 can be expressed as a set of simultaneous equations as shown in equations 

34 and 35.

- 5*, + 2x, = Ax. (34)

2x, - 2x., = Ax^ (35)

Rearranging the terms of equations 34 and 35 gives equations 36 and 37.

(-5-/I)*, +2x, = 0 (36)

(37)

This can be expressed as a matrix (equation 38) the system has now been expressed as 

shown in equation 39.

2x2
2x

= 0 (38)
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(39)

Where / is the identity matrix. This is a homogeneous linear system, by Cramer's 

theorem it has a non-trivial solution, x * 0 if its coefficient determinant is zero.

-5-/1 2 

2 -2-/1

= (-5-l)(-2-/l)-4 = /l2 +7/1 + 6 = 0
(40)

is the characteristic determinant or if expanded the characteristic polynomial. The 

solutions of this quadratic equation and hence the values of A, are -1 or -6. These are 

the eigenvalues of A.

Substituting -1 into equation 41 values can be identified for jr, and x~, .

-5jc, +2x2 = -hr, 

4x, = 2x2 (41)

x2 = 2x}

Choosing a value for jc, of 1 the resulting eigenvector is shown in equation 42.

x — (42)

Substituting -6 into equation 43 values can be identified for x, and x2 .

, = 0 (43)

Choosing a value x, for of 2 the resulting eigenvector is shown in equation 44.
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(44)

Direct calculation of the eigenvectors and eigenvalues becomes cumbersome in cases 

where there are more than three dimensions a number of alternative methods have been 

suggested to speed up this process [118, 119].

2.9 Conclusion

The wealth of joint models uncovered by the literature review leads to the conclusion 

that although the reproduction of anatomical joints is a modelling problem, there are a 

number of fields where models of the human anatomy are required, such as animation, 

simulation and medicine.

While proximal constraints (those holding the joint together) are not often problematic, 

rotational constraints such as those required modelling the flexion and extension of 

limbs are often more difficult to implement. In has been reported that joint constraints 

in animation are particularly underdeveloped and in the absents of a single model 

capable of modeling all joint constraints a number of specialized joint constraint 

approaches (for joint structures) have been combined to produce full body systems [1].

Several approaches, Korein [36], Engin et al [41] and Manurel et al [10] use three- 

dimensional polygons to represent the boundary between valid and invalid rotations. 

The three-dimensional polygons are not exact representations of the data, but are best 

fitted to the data points from observation. Huang et al [120] stored data in a database 

rather than a geometrically described boundary / region. Points which are not in the 

database cannot be interpolated, unlike other approaches [10, 36, 41] which use 

geometrically defined boundaries between valid and invalid points.

Despite by their nature being simplifications of the constraints boundaries identified, 

these approaches can produce reasonable approximations of joint function. However 

the rotational representations used often contain singularities, or have other limiting
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factors. Quaternions are a much more useftil representation though it is difficult to 

define quaternion based constraints. Acknowledging the singularity free nature of the 

quaternion parameterisation several researchers have attempted to implement 

quaternion-based constraints.

Herda et al [4, 5] reduced the dimensionality of the quaternion data and fitted a 

boundary to a cloud of valid points. This approach encountered problems in fitting the 

boundary to the points due to gaps in the sampled data. More importantly the correction 

of points to the boundary described is a non-trivial problem. An iterative approach is 

suggested this however is inefficient and may not actually identify the closest valid 

rotation.

Lee [6] implements several simple constraints in using decomposed quaternions only 

binary constraints are provided and no method of ascertaining the appropriate correction 

is suggested. Liu and Prakash [3] build on this approach allowing more complex 

constraints. Johnson [2] used a boundary based on the maximum diversion from the 

mean in the quaternion tangent space. Correction to this boundary was defined based 

on iteratively moving the incorrect point closer to the mean of the valid points. As with 

Herda et a/'s approach this approach is inefficient and may not identify the closest 

point.

The mapping of a quaternion to the tangent space requires the pre-processing and 

conversion of the quaternion prior to its constraint. Converting the quaternion to 

another format for constraint resolution purposes is inefficient. The tangent space is a 

local "linearization" (approximation) of the unit quaternion group, as with any 

parameterization of a non-Euclidean group by a subset of Euclidean space it contains 

singularities which must be avoided [3, 46].

There is a recognized requirement to minimise the conversion between rotational 

parameterisations within a system this penalises the use of many complex joint models 

in a single system [2]. Neural network based constraints present the opportunity to use a 

single constraint system and quaternion rotational parameterisation regardless of the 

joint structure. None of the joint constraint approaches discussed have utilised ANNs to 

provide an accurate model of individual joint constraint.
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ANNs are powerful analytical tools they offer significant performance advantages over 

traditional methods where complex calculations must be carried out to calculate the 

correction required to bring an invalid configuration to a valid one. Typically firing a 

neural network involves a succession of multiplications and additions this allows a 

vector based or hardware-based implementation. In addition to their execution speed 

they offer similar benefits to the quaternion approach of Herda [5] and the three 

dimensional polygon approaches [9, 17, 36] in that they can extrapolate and interpolate 

from measured data.

ANNs can be though of as a store for data, the training patterns form clusters of data in 

multi-dimensional feature space. The feature space is divided to best accommodate the 

training data. Once trained, the ANN can then extrapolate in areas of sparse or absent 

data in response to patterns not present in the training set. This may give an advantage 

over Herda et al [5] who's work suffered due to sparse area's of data, and the three 

dimensional boundary approaches [10, 36-38, 41] which require an even sampling of 

points to accurately best fit a boundary.

Two types of constraint are identified for implementation, constraints which indicate the 

validity of a given configuration termed binary' constraints and constraints which give a 

correction to the nearest valid configuration termed corrective constraints. Binary 

constraints can be considered a classification problem where configurations are 

classified as valid or invalid. Corrective constraints can be considered as discontinuous 

vector fields several researchers have demonstrated the capabilities of neural networks 

in learning vector fields [16, 54, 100-103].

The SVM neural network was selected to classify valid and invalid rotations. The SVM 

approach aims to minimise both the error on the training set and the complexity of the 

SVM thus minimising generalisation error. An implementation of the SVM architecture 

with the performance improvements as indicated by Joachims is available [72].

Corrective constraints are a discontinuous vector field approximation problem and 

though both the local and global characteristics of the data should be approximated it 

must first be established that the global mapping between valid and invalid patterns can 

be trained. Once this is established improving the results with the inclusion of local 

learning may be considered.
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Feed forward Multi-layer Perceptrons have a number of qualities that make them well 

suited as a starting point for this research. They have been extensively studied and their 

capabilities are well documented. The process of firing a neural network is simple and 

can be implemented in hardware [121, 122], it can also be easily distributed giving 

potential speed increases over traditional methods in the use phase [123]. The nature of 

the quaternion vector field required for joint constraint is unknown MLPs are capable of 

learning mappings without prior knowledge of the functions which relate data [124].

Selmic and Lewis successfully approximate discontinuous functions using 

backpropagation trained MLP neural networks with sigmoid and sigmoid jump 

activation functions [16, 58]. Researchers have also utilised feed forward MLP neural 

networks to approximate continuous vector fields in a number of dimensions. It has 

been shown that neural networks can learn continuous two dimensional vector fields, in 

this approach bi-polar sigmoid activation functions were used and networks were 

trained via backpropagation [54, 55]. Similarly two dimensional scalar fields have 

been approximated by Kulchin and Panova [57] again using bipolar sigmoid activation 

functions and an enhanced backpropagation algorithm. Grzesczuk, Terzopoulos and 

Hinton [56] successfully approximated complex multi-dimensional vector fields in their 

approach sigmoid activation functions were used along with an enhanced version of the 

backpropagation algorithm.

Topological evolution attempts to maximise performance by minimising both network 

error though weight adjustment and generalisation error by reduction of the neural 

network complexity. An implementation of these techniques (called NetJEN,) is 

available based on published research [63, 64, 80, 81, 83, 125-128]. NetJEN also 

provides activation function evolution from a number of candidate activation functions 

based on Mayer, Strapetz and Fuchs [83] and template based spline activation function 

evolution following Mayer and Schwaiger [63].

The discontinuous nature of the mapping between input and output may result in 

internal representations that overlap increasing the difficulty associated with the 

learning of such vector fields. Seipone and Bullinaria [129] suggested that the use of 

Artificial Neural Systems (evolved neural networks) reduces effect of interference in 

addition to improving performance.
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Grzeszczuk, Terzopoulos and Hinton [56] have demonstrated that neural networks are 

best able to model vector field approximations when the magnitudes of the input and 

output vectors are similar and of unit variance and zero mean. Also that modelling the 

relationship between a state and a state change provided more comparable magnitudes 

with regards to input and output value than state-to-state mappings. The use of a 

quaternion representation to model a discontinuous vector field describing a mapping 

between the current rotation and the required correction neatly avoids a number of these 

complications hence the inputs and outputs will require no pre-processing.
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3. Simple Corrective Constraints

A corrective constraint returns an appropriate correction to a given orientation. In the 

case of valid orientations the corrective rotation is zero while for invalid orientations the 

corrective rotation rotates the invalid orientation to it's nearest valid counterpart. The 

task of mapping a current rotation to the relevant corrective rotation is complex due to 

the discontinuous or piecewise linear nature of the mapping.

In the previous chapter the limitations of the approaches used to implement joint 

constraints and those inherent in common angular representations were highlighted. As 

angular representations quaternions are ideal for many purposes (e.g. interpolation,) 

though the definition of corrective constraints is problematic due to the increased 

dimensionality and the difficulty of visualisation. In this approach corrective quaternion 

constraints described using discontinuous vector fields in quaternion space (four 

dimensions).

In order to gain an understanding of the performance of neural networks in learning 

discontinuous vector fields less complex discontinuous vector fields were studied. 

Studying vector fields, representing constraints in one, two and three dimensions 

provides an opportunity to test the abilities of the neural network before investigating 

more complex four-dimensional (quaternion) cases.

Having implemented these simple vector based constraints a unit sphere with a circular 

rotational constraint on its boundary is introduced. In initial investigations an input 

vector is corrected to a circular boundary on the sphere surface by a correction vector. 

This is then extended to the quaternion based rotational correction of similar vectors to 

a circular boundary.
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3.1 Methodology

A Generalised Multi-Layer Perceptron (GMLP) is trained to model discontinuous 

vector fields in one, two and three dimensions. These vector fields represent simple 

joint constraints with two distinct regions - a valid region with zero correction per 

vector and an invalid region with each vector pointing to an implicit joint constraint 

boundary.

Initially rotations in a single dimension are considered. Here the relationship between 

inputs and outputs, including its discontinuous nature, are similar to those of motor dead 

zones and frictional forces for which compensation models have been created in the 

robotics field [16, 58, 101]. Fig. 10 (a) shows an example one-dimensional mapping the 

constrained region is the flat region at the centre of the graph this diagram clearly shows 

the discontinuous nature of the mapping.

This was extended into two dimensions and two-dimensional vectors and their 

correction to a circular constraint boundary were considered, (as illustrated in Fig. 10

(b).) The constraint region here is at the centre of the circle and the vectors shown 

represent the mapping from invalid positions to the circular constraint boundary. The 

colour lightens from the original vector to the corrected vector and points are placed at 

the start of each vector allowing the visualisation of vectors with zero correction. This 

was then extended to three dimensions with the vector field being trained to map to the 

surface of a sphere in 9t 3 . A visualisation depicting this mapping is shown in Fig. 10

(c). This result is significant because quaternion based constraints were reduced to 

three-dimensional mappings in the approaches of both Herda el al [4, 5] and Johnson 

[2].

The results of these experiments showed that ANNs could be trained to learn vector 

field models. This encouraged further investigation into mappings better suited to joint 

modelling. A circular boundary was modelled on the surface of a unit sphere, similar to 

the projected spherical polygons used to model joint constraints in previous work [40]. 

Initial investigations considered linear correction vectors representing the vector 

required to translate the input vector to a valid position at the edge of the constrained 

region, (as shown in Fig. 5(a).) Here the input is unit a vector that describes the current 

limb and the output a corrective vector that maps the vector to the boundary. These
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experiments were successful and extended to consider a mapping between a unit vector 

and the quaternion rotation from an invalid configuration to a valid configuration, (as 

shown in Fig. 5 (b)).

(a) Unit Sphere

Invalid vbctor 
* \

Correction Vector

Unit Sphere

Correction Reflation

Fig. 5 - An image showing a two dimensional constraint on the surface of a three-dimensional sphere, the 

initial vector to correction vector case (a) and the vector to correction quaternion case (b).

3.1.1 Dataset Generation

For one, two and ///7'ee-dimensional constraints a random vector was generated each 

component limited to between -1 and +1. The distance of this vector from a central 

point measured. If the vector was within a threshold then no correction was assigned (a 

zero vector.) If not, the relevant correction is calculated and assigned.

In the Euler angle case a simple inequality is used to differentiate between valid and 

invalid regions (shown in equation 45). Identifying the closer of the two boundaries and 

calculating the difference produces the required correction for invalid cases (shown in 

equations 46 and 47).

P is valid if(P> lower AND P < upper) (45)

C = lower - C if (P < lower) (46)
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OR

C = P - upper if (P > upper) ( 47 ) 

Where,

P is the Euler angle input; lower is the lower boundary of the constrained region, upper 

the upper boundary of the constrained region and C the corrective component.

To ascertain the validity of points in the two and three-dimensional cases the length of 

the vector between the origin and the point is considered as in relation to a specified 

radius (as shown in equation 48). To calculate the two and three-dimensional 

corrections for invalid cases where the correction is not zero the length of the vector 

from the origin to the point is calculated and compared it to the radius of the circle or 

sphere. The ideal is calculated by scaling the vector to the radius, the difference between 

the original vector and the ideal gives the correction as outlined by equation 49.

V is invalid if \V\> R (48)

C= -V (\-RI\V\) (49)

Where,

R is the radius of the constrained region; Vis the input vector, \V\ the length of the input 

vector and C the required correction.

In the case of regular two-dimensional boundaries on the surface of a unit sphere, the 

angle between the input vector and the x-axis was used to delineate between valid and 

invalid inputs. The method used to calculate the correction for invalid inputs was the 

same in both cases the rotational correction is calculated first and used to generate the 

vector correction the latter is calculated as follows. A random unit vector is generated 

and the angle of the vector relevant to the centre of the circular constraint (the x-axis,) is 

calculated (see equation 50,) and compared to the constraint radius. If smaller then the
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resultant correction is set to the zero, if not correction rotation is calculated as a 

quaternion as outlined in equations 50 and 52 to 56. This is used to create a vector 

corrected to the boundary the correction is the difference between these two rotated 

vectors. In the case of the quaternion based correction the output of equation 55 is used 

as the correction.

(50)

Fis valid if (6>9max] (51)

(52)

Aa = A6 (53) 

Av=V*C (54)

Qo = [COS(Aa/2), Av • SW(Aa/2)] ( 55 ) 

0=K-(K rotated by Qo) (56)

Where,

V is the randomly generated vector. C is a unit vector aligned with the centre of the 

spherical boundary on the surface of the sphere. A is an axis angle representing the 

rotation of the randomly generated vector its axis part is described as Av and the angle 

part by Aa. Qi is the quaternion equivalent of this axis angle rotation and 0 (theta) is the 

angle between vectors V and C. Ad is the difference between the current angle and 

Omax, the radius of the constrained region. Qo is the angular correction as a quaternion. 

x is a vector aligned with the x-axis and O is the vector correction.
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Three datasets were prepared for each of the experiments; a training set, used to train 

each generation of ANN, a validation set, used to assess the fitness of the ANN for 

genetic selection and a test set which provided an unseen set of data on which to test the 

ANN. In creating the datasets patterns were clustered in the region before and after the 

boundary representing the discontinuity between the valid and invalid joint 

configurations.

3.1.2NetJEN

Initial experiments were carried out using Multi-Layer Perceptron with a single hidden 

layer, implemented in C++ by the author. Preliminary experiments (Fig. 8) confirmed 

the superiority of evolved neural networks and hence further experiments were carried 

out using Net JEN.

NetJEN is a Java based implementation of NetGEN [63, 64, 81] developed by 

researchers at the University of Salzburg. NetJEN [125] boasts several impressive 

features and provides an intuitive user interface in addition to reporting tools and other 

useful functionality. A brief outline of the system they developed follows based on 

published work [53, 63-65, 81, 83].

Before GA techniques can be applied to ANN topology evolution their underlying 

structures, the phenotype, must be considered as a genotype (a blue print for the 

construction of the network.) This must be encoded such that GA techniques can be 

applied. There are two common approaches; Indirect Encoding encodes a set of 

constraints that govern the construction of individual neural networks within the 

population. The constraints are evolved indirectly impacting on the neural networks 

generated. In NetJEN Direct Encoding is used, a network topology is created and 

encoded minimising the decoding effort to map between the genotype and 

corresponding phenotype. The encoding scheme used is called the Modified Miller 

Matrix, an extension of the Miller Matrix [130].

The genome structure is shown in Fig. 6 (a) and comprises Learn Parameters (Fig. 6 

(b)) which describe the values required to train the neural network, the Activation 

Function Template Parameters (Fig. 6 (c)), used to describe one or more activation
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functions present in the network, the Neuron Parameters (Fig. 6 (d)) indicate the type of 

neuron and the Structure Parameters explicitly specify each connection within the 

network [63]. Markers (binary inhibitors) are used to regulate the expression of wild- 

type genes, for example hidden neurons, while other problem dependent genes such as 

output neurons are fixed [63]. As a result the bit string includes some non-coding 

regions (Introns), these have been shown to reduce the effects of crossover and are 

common in biological systems [126-128].

(a)

Learn 
Parameters

AF Template 
Parameters

Neuron 
Parameters

Structure 
Parameters

(b)

Epochs Learn 1 Learn 2

(c)
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*i YI iirkM 
Point *2 Va *      
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 Mirkar 
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terkar
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iterkvi 
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(d)

Marker AF-ID Marker AF-ID Marker AF-ID

0 0101 1 1101        1 0111

Fig. 6 - The organisation of the genotype: (a) The general structure of the genotype [63]. (b) The structure 

of the learn parameters segment [63]. (c) The structure of the AF Template Parameters [63]. (d) The 

structure of the Neuron Parameters [83].

The structure and neuron parameters are represented by a linearized binary adjacency 

matrix [63] shown in Fig. 7. As the network architectures are feed-forward the triangle 

above the main diagonal must be zero, the main diagonal is used to represent the 

activation function index (zero if not expressed) [63]. The maximum size of the 

network is set in advance and so the size of the structures does not change during 

evolution. The activation function template parameters and activation functions were 

not evolved during the following experiments but are included in descriptions of the 

genome for completeness. In Chapter 5 experiments are undertaken evolving both 

activation function type and template based spline activation functions.
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Fig. 7 - The Genorype/Phenotype mapping, here the presence of a one in indicates a forward connection 

from the node identified by the row number to the node identified by the column number. As there are no 

links from a node to itself the main diagonal represents the Activation Function (AF) Index is the index of 

the activation function of a given neuron. The above figure shows all the notes of the system node 4 

however despite having and activation function is not part of the generated phenotype is not represented 

in the genotype as it has no input connections. The image is similar to that given by Mayer and Schwaiger 

[63].

The system comprises of a Simple Genetic Algorithm (or SGA), the Genotype 

Phenotype Mapping and the Neural Network Manager. The Neural Network Manager 

(NNM) in NetGEN was the Stuttgart Neural Network Simulator (SNNS) [131], and the 

SGA from Smith et al [132] an implementation of previous work by Goldberg [133]. In 

the Java implementation the NNM used is BOONE, also developed by researchers at 

the University of Salzburg.

The SGA generates blueprints for a random population of ANNs which are validated 

and passed to the NNM where they are constructed and trained using Resilient Back- 

propagation [60]. The SGA then assigns fitness values to each network using a fitness 

function. This Composite Fitness Function comprises a measurement of the networks 

performance (the Model Fitness} and a complexity regularization term (the Complexity 

Fitness,} as expressed in equation 57.

= a\- a2- (57)
£C
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Where,

«1+ #2 = 1. (58)

In equation 57, F is the fitness of the neural network em is the Model Error (Sum 

Squared Error or SSE) and EC the complexity regularization term. EC = |C,otai| with C,otai 

being the total set of neural network connections. The regularization weight (a.2) has 

been shown to be most effective in the range 0.001 to 0.01 to guide the evolution 

towards networks of low complexity. The error weight (al) is derived from 

regularization weight (cc2).

The SGA uses Binary Tournament Selection to select the best networks of the 

population to breed, n individuals (typically two) are selected and the individual with 

the highest fitness is placed in the breeding pool. The selection itself is weighted, the 

higher an individuals fitness the more likely it is to be chosen [79]. Binary Tournament 

Selection has been found to be superior to Proportional Selection methods [126].

An entirely new generation of individuals is created through crossover and mutation of 

the fittest individuals selected from the last generation. This completes the evolutionary 

cycle that runs for a specified number of generations. It should be noted that the fittest 

individuals of the last generation will appear in the breeding pool more than once and 

breed with themselves generating identical offspring in the new generation [79]. This 

ensures that the best genetic patterns are passed on to the next generation. Crossover 

and mutation are implemented on a linearized Modified Miller Matrix allowing standard 

two-point crossover, this has a more global effect on the bit string than the exchange of 

rows and columns used in the original Miller Matrix approach [126-128].

3.1.3 Evolution and Training

In each experiment the network was configured as follows. The input layer represents 

the current joint vector, while the output layer represents the correction vector/rotation. 

A population of neural networks is created these have the maximum number of hidden 

nodes, the appropriate region of the Modified Miller Matrix (below the main diagonal as 

shown in Fig. 7) is randomly populated creating the connections between the nodes.
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This leads to a number of hidden nodes not being connected these nodes are evolved but 

are not present in the phenotype. Binary markers present on both the links and nodes 

indicate their contribution to the phenotype, if these bits change during cross over or 

mutation a node may be deactivated. In which case neither the node any associated links 

are represented in the phenotype. The validation process marks any networks with no 

connections between input and output nodes with a low fitness [81].

The validated neural networks were then trained by resilient back-propagation identified 

as being superior to back-propagation by experimentation (as shown in Fig. 8). Where 

necessary, the inputs and outputs were mapped to the range -1 to +1, the evolution and 

training parameters were configured as shown in TABLE I. The number of generations 

and training epochs were restricted to reduce training times. Each experiment was 

repeated five times to creating five neural networks with independent results to ensure 

consistency.
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TABLE 1 

EVOLUTION AND TRAINING SETTINGS

Parameter

Regularization 

function

Hidden Nodes

Number of 

Generations

Population Size

Fitness Function

Regularization 

Weight

Evolve number of 

Links

Evolve number of 

Hidden Nodes

Evolve number of 

epochs

Learning Rate

Stopping Error

Training Function

Max Epochs

Description

Secondary fitness function.

Maximum no. of hidden nodes.

No. of generations over which the ANN 

were evolved.

Size of the populations evolved.

Primary fitness function.

Regularization weight (a2) this term 

controls the effect network size on the 

fitness function.

Networks are pruned down from fully 

connected networks.

Evolves the no. of hidden nodes.

Evolves the no. of training epochs

Learning rate used when training the

ANN.

MSE at which the ANN are stopped.

Training function used to train the 

weights of the ANN.

Maximum number of training epochs

Value

Number of links

20

50

20

Inverse SSE

0.01

On

On

On

0.1

0.001

Resilient back- 

propagation

500

Through experimentation, it was determined neural networks with sigmoid activation 

functions in the hidden layer and linear activation functions in the output layer produced 

good results, (activation functions are examined in more detail in Chapter 5.) This 

distribution of activation functions was used throughout these experiments a similar 

distribution were employed for vector field approximation by Grzeszczuk et al [56],

62



linear output layers have also been used with bi-polar sigmoid hidden layers [54, 55]. 

Each experiment was repeated five times to ensure the consistency of the results.

The regularization weight was chosen based on publications by the authors [63], as was 

the learning rate [126], the stopping MSB for the networks was identified though 

experimentation. The size of the population, number of generations and initial limits for 

the number of training patterns were suggested by a co-author of the Net JEN system Dr. 

Helmut Mayer in private correspondence.

3.2 Results

Initial results confirm the superiority of the evolved GMLP neural network over the 

feed forward neural network and resilient back-propagation over back-propagation 

training. These results are included for completeness and shown in Fig. 8, experiments 

were also carried out with sigmoidal activation functions in both the hidden and output 

layers, though performance for this architecture is low. All subsequent experiments in 

this section were carried out using the evolved GMLP neural network.
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Fig. 8 - Graph comparing the performance of the Evolved GMLP and Layered neural networks with back- 
propagation (BP) and resilient back-propagation (RBP) training on the one and two dimensional datasets.

The results of the one, two and three dimensional vector field experiments show that 
though each of the networks trained successfully and the Mean Squared Error (MSE) of 
the network is low in each case. The performance of the network decreased as the 
number of dimensions increased, demonstrated by the increase in the MSE as shown in 
Fig. 9. In each case the vector field that describes the constraint has both continuous 
and discontinuous regions. These are of comparable size hence the decrease in accuracy 
is proportional to both the number of degrees of freedom being modelled and the 
dimensionality of the boundary between the continuous and discontinuous regions.
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Fig. 9 -Average MSE on a test set (unseen patterns) for constraints of increasing size. In the two and 
three-dimensional cases the range referrers to the diameter of the constraint.

The number of hidden nodes and the number of inter-connections, which are to a certain 
extent linked, increased as the number of dimensions increased, though only between 
the one and two-dimensional constraints. This suggests that the number of inter­ 
connections and nodes required to approximate a constraint in two dimensions was 
sufficient also to approximate a constraint in three dimensions. However, later 
experiments investigating the improvement of these results (detailed in Chapter 5,) 
provide evidence that the restrictions placed on the size of the neural network combined 
with the regularization function limits the performance of the neural network. Similar 
performance was observed for both test and training sets, indicating the network 

performed well on unseen patterns.

With regards to the size of the discontinuous (constraint) region, the techniques 
performed well. It was noted that in the two and three-dimensional case the network 
performance decreased as the size of the constrained region increased, (Fig. 9.) For 
each of the ranges tested the size of the evolved networks varied little. Visualisation of 
these results along with a plot of the test data (or ideal data) demonstrates the accuracy 

of the approximation, as shown in Fig. 10.
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(a)

Fig. 10 - (a) A visualisation of the ID approximation showing the Weal (test data) in solid blue and the 
neural network approximation in dashed pink, (b) A visualisation of the two dimensional approximation, 
the ideal is shown in solid pink while the neural network output is shown in solid green, (c) A 
visualisation of the three dimensional approximation the ideal is agam shown in pink and the neural 
network output in green.

Our attention now turns to more practical two-dimensional boundary constraints on a 
three-dimensional surface. These were first trained as mappings between vectors and 
vector based corrections. The results show a significantly different distribution of error 
despite similar numbers of hidden neurons, links and training epochs being evolved 
(Fig. 9). High error is observed at 90 and 270 degrees. At this point the two- 
dimensional boundaries on the surface of the sphere are of equal circumference. 
Constraints with both larger and smaller circumferences demonstrate lower error 
indicating that the error does not have a linear relationship with the circumference of the 

constraint.
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Experiments attempting to map between a vector and a corrective orientation using an 
axis angle representation (calculated in equations 53 and 54) failed to evolve networks 

with comparable performance to the two and three-dimensional cases. Attempts were 
made to amend this by scaling the angle part of the axis angle representation to a - 
1.0/+1.0 range without success.

A similar experiment using a corrective quaternion rather than an axis angle produced 
MSB results that were generally lower than those of the earlier vector correction 
mapping. Peaks are once more observed at 90 and 270 degrees, suggesting that these 
features are the results of the vector-based description of the problem rather than the 
output, which is different in each case.

The vector based correction and quaternion based correction results cannot be compared 
directly, so the difference between two quaternions was considered indirectly as a 
positional error in three-dimensional space. This is achieved by comparing the input 
vector rotated by the ideal correction quaternion (training data) with the same input 
vector rotated by the correction quaternion produced by the neural network. A plot of 
the length of the vector between the input vector and the corrected input vector in each 

case is shown in Fig. 11.
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Fig. 11 - Comparison of Positional Errors per Pattern
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The results show that the positional error is below 0.1 for more than 97% of the dataset 

in both cases, (the maximum possible error is 2.0). The vectors of the training, 

validation and test data are generated at random in sequential groups starting inside the 

constraint and working outwards. This arrangement of patterns provided good results 

(as detailed in Chapter 5,) and allows some context to be attributed to the results shown 

in Fig. 11. The central region in the graph from around 90 to over 400 contains two 

groups with their division at around 250 patterns, this represents the two groups either 

side of the boundary. The group on the far left of the graph (Fig. 11,) represents the 

valid region while the one on the far right represents the region diametrically opposite 

to the valid region. The region furthest from the boundary (far right of Fig. 11,) 

contains those points with the highest error, though less than 3% of the points have 

errors greater than 0.1 in either case.

Comparing the three-dimensional error shows that the increase in error with respect to 

the radii of the constraint can be attributed to the contribution of patterns in the region 

furthest from the boundary as shown in Fig. 12.
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Fig. 12 - Graph showing the increase in error with range being concentrated in the invalid region.

Though generating and plotting the points in groups is useful, it is difficult to identify 

relationships between patterns with high error. Visualizing the output helps put the 

results in context and demonstrates the accuracy of the neural network in the region of 

discontinuity, (at the boundary.) In this case the neural network input represents a unit
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vector that is rotated by the output quaternion to lie within spherical boundary on the 

surface of a unit sphere.

Plotting the vector difference between the input vector and the quaternion corrected 

input vector gives a visual representation of each of the corrections. In addition to these 

lines points are rendered at their start, allowing valid points that are not corrected to be 

displayed. The input data set can be displayed along side the neural network results, 

(shown in Fig. 13.) Alone the neural network results are difficult to interpret though the 

boundary region is evident as demonstrated by Fig. 14.

Fig. 13 - A screenshot of the visualisation program showing both ideal and neural network corrections (c). 

The training data is shown as the dark lines while the light lines show the output of a single neural 

network. Both lines are graded dark to light to show their direction. To clarify the direction of corrections 

a simplified sketch of their path (a) has been included and to reinforce the lost 3D element of the subject a 

second view (b) is included.
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Fig. 14 - A screenshot of the visualisation program showing only the neural network output.

Visualising the results helps to demonstrate the capability of the network in terms of its 

learning of the discontinuity at the boundary, (shown in Fig. 13, and Fig. 14.) The 

visualisation also highlights the causes of the high neural network error for certain 

patterns. This is illustrated in Fig. 15 where a threshold is imposed such that only the 

results with three-dimensional error greater than this threshold are plotted.

Fig. 15 -A screenshot of the visualisation program showing training, validation and test dataset ideals 

(shown in red.) The neural network results with Pythagorean error greater than a threshold of 0.1 (shown 

in green). Five corrections are shown per input orientation representing the five neural networks trained 

on the input set.
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Visualising the results with the threshold shows that for each of the five different 

datasets the points with the highest error were in a similar location.

3.3 Discussion

In the one, two and three dimensional discontinuous vector field experiments the MSE 

increased with the dimensionality of the constraint and the problem space. With each 

increase in dimensionality of the constraint more relationships are included and must be 

learned, however neither the learning capabilities of the neural network nor the number 

of patterns representing each relationship are increased. Consequently the performance 

decreases.

The evolutionary aspects of the experiments indicate that as the constraints increased in 

complexity more complex networks were required to maintain accuracy. This increase 

is less pronounced between the two and three dimensional vector fields, due to the 

constraints placed on the size of the hidden layer to limit the temporal cost of the 

experiments.

The increase in the MSE in relation to the size of the constrained (discontinuous) region 

for one, two and three-dimensional boundaries can be attributed to a lack of exposure to 

the complex patterns in the invalid region where the neural network attempts to learn a 

continuous non-zero mapping.

Two-dimensional polygons have been used for joint constraint by projecting spherical 

polygons onto a surface [40], there is evidence to suggest our approach is capable of 

learning such constraints. In published work quaternion based corrective constraints 

systems have reduced the dimensionality of the quaternion representation [2-6], in such 

cases the resulting constraint boundary is a three dimensional surface in three 

dimensional space. It may be that evolved topology neural networks can be used to 

implicitly model such boundaries.
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In relation to the earlier one, two and ^/-ee-dimensional constraints, the MSB for neural 

networks learning vector fields representing circular constraints on the surface of a unit 

sphere is comparable with two and three-dimensional constraints. The results (in Fig. 9) 

show an increase in the MSE between the two-dimensional constraint in two- 

dimensional space and the two-dimensional constraint in three-dimensional space. This 

indicates that the dimensionality of the problem space has caused an increase in the 

MSE as dimensionality of the constraint has not increased.

Increases in MSE are observed around 90 and 270 degrees radius, these variations do 

not seem to relate to the radius of the constraint but occur for constraints with identical 

circumference. Their occurrence in both the vector-to-vector correction and vector-to- 

quaternion correction indicate the cause of this error to be the vector field encoding of 

the problem domain.

In both the vector-to-vector and vector-to-quaternion correction experiments, isolated 

patterns of high error are encountered. Through visualisation these errors are attributed 

to a lack of test data in the region of an additional discontinuity. This discontinuity is 

diametrically opposite the boundary where points are of equal proximity to 

diametrically opposite sides of the spherical boundary this is termed the correctional 

discontinuity.

Patterns that demonstrate high error are isolated in the region of the correctional 

discontinuity. Individual patterns are similar to neighbouring patterns and corrected to 

one side of the sphere, this is in conflict with test data that states it should be corrected 

to the other side of the sphere. The neural network successfully corrects the vector to 

the boundary but as this is not the boundary indicated by in the test data, a large error is 

reported. These errors affect the MSE as their magnitude (but not frequency) increases 

as the radii of the constraint is increased Fig. 12. These errors are some distance from 

the boundary and in an anatomically correct joint constraint system it is unlikely that a 

joint would reach these configurations.

Encoding the output as a quaternion produces an improvement in the MSE of the result 

over a range of radii, together with a slight increase in three-dimensional error (as 

shown in Fig. 9.) Researchers have demonstrated that neural networks are best able to 

model vector field approximations when the magnitudes of the input and output vectors
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are similar and of unit variance and zero mean [56]. Quaternion encoding meets the 
majority of these criterions. It has also been shown that that modelling the relationship 
between a state and a state change provided more comparable magnitudes with regards 
to input and output value than state-to-state mappings [56].

Regular two-dimensional boundaries on the surface of a sphere provided encouraging 
results for constrained regions of different sizes. These techniques can effectively 
implement simple constraints similar to those implemented by Baerlocher [37] and 
Korein [36] .
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3.4 Conclusion

The results show that a Generalised Multi-Layer Perceptron (GMLP) with evolved 

structure can model multidimensional discontinuous vector fields suitable for the 

accurate joint constraint simulation in one, two and three dimensions. There are also 

indications that these techniques may be applied to other problems of similar 

dimensionality which can be represented as vector fields, for example the dead-zone 

compensation systems of Selmic and Lewis [16].

It was also noted that the dimensionalities of the constraint and problem space have an 

effect on the complexity of the mapping and therefore the performance of the neural 

network.

The results confirm that evolved neural networks can learn rotational corrections for 

erroneous unit vectors with respect to regular two dimensional boundaries on the 

surface of a three dimensional sphere.

An advantage to using the Evolved GMLP method has been identified. It has been 

found that examination of the evolved networks and the evolutionary process can 

identify limiting factors. In this case the number of hidden nodes tended towards the 

maximum when error was highest indicating that an increase in the limit on the number 

of hidden nodes evolved would produce a decrease in error. Later experiments show 

that removing the limit on the number of hidden nodes produces an increase in 

performance as discussed in Chapter 5.

A quaternion-based parameterisation offers a number of advantages. The use of 

Quaternion based input and output parameters make this approach independent of the 

position of the limb or body in three-dimensional space, also in any practical application 

of this technique an orientation for each joint orientation need only be stored once as a 

quaternion. The use of a quaternion based angular representation for the correction 

demonstrates a low error in the majority of cases. This encourages the consideration of 

mappings from a quaternion representing the current orientation to a relative corrective 

quaternion.

74



4. Corrective Constraints in S3 Space

In the previous chapter vectors representing initial joint configuration were successfully 

corrected to a circular boundary on the surface of a unit sphere using both positional 

(vector) and rotational (quaternion) corrections. In this chapter evolved neural networks 

are trained to correct quaternions representing initial joint orientation to a regular 

(circular) or irregular boundaries using a quaternion-based correction. The 

discontinuous vector fields learned by the neural network represent the rotation of the 

joint as a precursor to implementing more complex boundaries representing both 

rotation of and around the joint [2, 4-6].

Quaternions are used as a rotational representation in a number of applications [2-6], 

and have a number of properties which make them useful [2, 4-6, 8, 33]. However it is 

difficult to define correctional constraints in quaternion space and existing approaches 

are flawed in that they rely on reducing the dimensionality of the quaternion [2-5], 

iterative corrections [2, 4, 5] or provide no method for generating corrections [6].

4.1 Methodology

Experiments were undertaken to develop corrective quaternion-based constraints (like 

those of Herda et al [4, 5] and Liu and Prakash [3],) which describe rotational 

constraints for both regular and irregular boundaries in quaternion space. Once again 

NetJEN was used to evolve and train Generalised Multi-Layer Perceptron (GMLP) 

neural networks to simulate joint behaviour.

4.1.1 Dataset Generation

In these experiments the current joint orientation is described using a quaternion, as was 

the corrective rotational output from the ANN. The corrective output quaternion, when 

combined with the current rotation, rotates an invalid rotation to a valid rotation on the 

constraint boundary. Valid input rotations are given no correction and the network
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outputs the identity quaternion. A boundary between valid and invalid joint constraints 

is implicitly defined. This boundary marks a discontinuity in the vector field between 

corrective and non-corrective (identity) quaternions.

Three datasets were prepared for each of the experiments; a training set, used to train 

each generation of ANN s, a validation set, used to assess the fitness of the ANNs for 

genetic selection and a test set which provided an unseen set of data on which to test the 

ANN's performance.

An even distribution of patterns is used with patterns grouped into valid and invalid and 

trained in the same order. These distributions were found to provide superior results as 

discussed later in Chapter 5. In the case of regular boundaries an automated dataset 

generator was used. This generated a random unit vector then calculated its orientation 

as a quaternion with respect to the constraint centre (aligned to the x-axis). This process 

is demonstrated by equations 59 to 61.

Aa = ACOS(V-C) (59)

(60)

Qi = [COS(^a/2), Av • SIN(^a/2)] ( 61 )

Where V is the randomly generated unit vector, C is a unit vector aligned with the centre 

of the spherical boundary on the surface of the sphere (the x-axis). A represents an axis 

angle describing the rotation of the randomly generated vector, its axis part is described 

as Av and its angle part as Aa. Qi is the quaternion equivalent of this axis angle rotation.

The correction was generated by examining the effect of the quaternion on a unit vector 

placed at the centre of the constrained region. The angle between the initial vector and 

the effected vector was calculated (see equations 62 and 63) and compared to the 

constraint radius (see equation 64). If the angle was smaller then the generated vector 

was within the constrained region and so the corrective rotation was set to the identity
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quaternion. If larger then a correction rotation was calculated as an axis angle and then 

converted to a quaternion as outlined in equations 65 to 68.

P = X rotated by Qi i 52 )

(63)

P is valid if ( 9 < Omax ) ( 64 )

A9 = 9- Omax ( 65 )

Aa = AO (66)

Av = P*X (67) 

Qo = [COS(Aa/2), Av • SW(Aa/2}] ( 68 )

Here P is a vector used to represent the effect of the quaternion rotation. A6 is the 

difference between the current angle 9 and 9max the maximum valid rotation. Qi is in 

this case the input quaternion and Qo is the corrective output quaternion. X is a vector 

aligned with the x-axis.

A similar automated dataset generator for irregular boundaries was discounted on the 

grounds of complexity and predicted development time. Instead a semi-automated 

system was adopted. An interactive virtual arm was created in a three dimensional 

environment (using OpenGL) and used to record a boundary between invalid and valid 

rotations. The valid and invalid rotations were then recorded individually relative to 

this boundary. Rotations were sampled at a set interval while the virtual arm was 

interactively manipulated.
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The quaternions generated as part of the valid rotation set (inside the constraint 

boundary,) were assigned a no correction output (the identity quaternion). The invalid 

rotations were initially corrected to the nearest point on the constraint boundary. These 

points were assigned the output quaternion representing the rotation from the given 

invalid point to the nearest valid point calculated on the constraint boundary. The 

closest boundary point was identified using angular and proximal comparisons in 

quaternion space, however visualisation of the datasets generated showed the 

corrections to be slightly skewed to what was expected. To overcome this problem the 

nearest of the boundary quaternions was calculated based on their effects on unit vectors 

in three-dimensions.

It is impractical to attempt to test the network with every variation of irregular 

boundary. In contrast to the regular boundary, the initial irregular boundary (shown in 

Fig. 16,) contains a single concave region. Concave regions are essential for modelling 

boundaries such as that of the shoulder complex and so the boundaries considered are of 

varying size and with one or more concave regions. A 'C' shaped boundary provides a 

shape with a very pronounced concave region, while a boundary with a highly irregular 

surface is used to assess the capability of the technique on highly irregular boundaries.

Fig. 16- The image shows an indirect visualisation of the valid (red) and invalid (blue) quaternion in the irregular 

boundary dataset.
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4.1.2 Evolution and Training

In each experiment the NetJEN system (described in section 3.1.2) was configured as 

follows. The input layer represents the current joint rotation, while the output layer 

represents the correction rotation. The number of hidden nodes and connection topology 

are initially randomised and then evolved during the learning process using Genetic 

Algorithms. The weights of the interconnections are also initially randomised then 

updated using the resilient back-propagation algorithm. The evolution and training 

parameters were set as shown in TABLE II. The number of generations, training epochs 

and hidden nodes were limited to reduce training times. Each experiment was repeated 

five times to ensure the consistency of the results.
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TABLE II 

EVOLUTION AND TRAINING SETTINGS

Parameter

Regular ization 

function

Hidden Nodes

Number of 

Generations

Population Size

Fitness Function

Evolve number of 

Links

Evolve number of 

Hidden Nodes

Evolve number of 

training epochs

Learning Rate

Stopping Error

Training Function

Max Epochs

Description

Secondary fitness function.

Maximum no. of hidden 

nodes.

No. of generations over 

which the ANN were 

evolved.

Size of the populations 

evolved.

Primary fitness function.

Networks are pruned down 

from fully connected 

networks.

Evolves the no. of hidden 

nodes.

Evolves the no. of training 

epochs

Learning rate used when 

training the ANN.

MSB at which the ANN are 

stopped.

Training function used to 

train the weights of the

ANN.

Maximum number of 

training epochs

Value

Number of 

links

20

50

20

Inverse SSE

On

On

On

0.1

0.001

Resilient back- 

propagation

500

Through experimentation, it was found that good results were obtained for neural 

networks with a sigmoid hidden layer and linear output layer, (as discussed greater 

detail in Chapter 5). This distribution of activation functions was used throughout these
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experiments. Each experiment was repeated five times giving five neural networks with 

individual results ensuring consistency

The regularization weight was chosen based on publications by the authors [63], as was 

the learning rate [126], the stopping MSE for the networks was identified though 

experimentation. The size of the population, number of generations and initial limits for 

the number of training patterns were suggested by a co-author of the Net JEN system Dr. 

Helmut Mayer in private correspondence.

4.2 Results

4.2.1 Regular Boundaries

Neural networks were successfully evolved and trained to model discontinuous vector 

fields representing regular (spherical) constraints. This is reflected both by the low 

Mean Squared Error (MSE) values and the structure of the neural networks - indicated 

by the number of hidden nodes as shown Fig. 17. The number of hidden nodes was 

limited to reduce training times (as indicated in TABLE II,) and the size of the hidden 

layer for each trained network was close to this maximum throughout. The number of 

hidden nodes appears to increase with the MSE (as shown in Fig. 17). This indicates 

that more complex networks were required for these constraint ranges and that the high 

error is contributed to by the restriction on network size.
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Fig. 17 - Graph showing the effect of range variation on MSE and network complexity (hidden nodes).

The increase in MSE between a 20° and 45° constraint radius cannot be related to any 
obvious three-dimensional factors. To understand this behaviour, further correlations 
are sought with respect to the distribution of training patterns in quaternion space. 
Principle Component Analysis (PCA) gives a set of eigenvectors that describe the 
orientation of the data in four dimensions while the eigenvalues describe the variance 
within each dimension. The eigenvectors produced were compared to the identity 
quaternion and the change in rotation between them noted. The fourth principle 
component has an eigenvalues of zero and is thus ignored.

Fig. 18 illustrates the correlation between the first principle component and MSE 
indicating the success of the training process is sensitive to the orientation of the data 

set in quaternion space.
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MSE is a holistic measurement that masks regional variations in error over the vector 
field. To quantify these errors, the behaviour of a virtual joint constrained by the 
trained neural networks is observed. The /2norm (Pythagorean distance) between the 
ideally corrected and neural network corrected endpoint of a virtual limb is observed. 
This more direct comparison demonstrates that the error is highest around the boundary 

separating the valid and invalid regions, as shown in Fig. 19.
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Comparing the results using the Pythagorean error metric it is observed that for the 
ranges investigated the average error for all patterns for each of the five networks is less 
than 0.2 (as shown in Fig. 20). Given that the maximum error for on the unit sphere is 2 
(diametrically opposite) this gives and average error of less than 1% with a maximum 
error of 6.3%. Considered in terms of the virtual arm (which is unit length) the average 
error is less than 2% and the maximum error 12.6%.
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Fig. 21 illustrates the ideal and actual correction vectors for a virtual limb constrained 
by a regular boundary constraint. The red dashed line shows the result of the 
corrections from the training data while the green solid line shows the results of the 
neural network corrections, both lines lighten from their initial positions to their 
corrected positions. The boundary can be clearly identified and it is noted that all 
corrected rotations within a Pythagorean distance of 0.1 from the constraint boundary 

(as indicated by Fig. 19).
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Fig. 21 - Ideal and neural network corrected rotations. Ideal corrections are shown as red dashed lines; 

neural network corrections (for each pattern) are shown as green solid lines.

In order to highlight the patterns with high error observed in Fig. 21 a threshold is set 

and only the corrections whose error exceeds this are displayed. This allows the worst 

results to be viewed in the context of the constraint boundary, as shown in Fig. 22. Fig. 

21 and Fig. 22 demonstrate that even the points with the highest error are corrected to 

the boundary.

Fig. 22 -A visualisation showing patterns with error above a threshold of 0.08 (three dimensional 

Pythagorean error). The corrections of all the training patterns are shown as red dashed lines. The neural 

network outputs above the threshold and their training patterns are shown as green solid lines, with the 

neural network output shown as the lighter lines.
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The network's behaviour can be further understood by looking at the distribution of 
training patterns. Fig. 23 shows the test inputs for a regular constraint with 20° radius. 
The input rotations of the test set are coloured according to their error, with blue points 
having lower error and red points having higher error. Salient regions of higher error 
are those around the constraint boundary and in the region opposite the constraint on the 
quaternion unit hyper-sphere.

Fig. 23 - Regular test patterns coloured to represent the 12 norm (i.e. error) of the relative neural network 
output. The blue patterns represent low error and the red ones high error.

Overlaying the patterns used in training (V) and evolution ('+') of the neural network 
it is observed that regions of sparse training data correspond to regions of high error. In 
Fig. 24 the camera is placed inside the same sphere of points shown in Fig. 23. High 
error points are observed in an area where there are few training set points. Low error 
points are observed in regions well populated with training points. The validation set 

points ('+'), used to assess network fitness, have less effect.
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Fig. 24 - Regions displaying poor performance. Blue squares depict low error and red squares high error. 
Training patterns ('x') and validation patterns ('+') are overlaid.

As discussed earlier the datasets were generated with reference to circular constraint 

boundary centred on the x-axis. A number of experiments were carried out with regards 

to the orientation of the constraint centre. The experiments considered alignment with 
each of the principle axis and varied little in terms of their MSB. However the 

distribution of error changed significantly, as shown in Fig. 25. The results indicate that 

a constraint centred on the y-axis offers the best results.
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results represent an average error per 10 patterns to aid clarity.

These results can be supplemented using the MSB and PCA of the datasets involved. 

Here the variation in the effects of the principle components (given by their 

eigenvalues) is examined, smaller values indicate a less elongated dataset and if all 

eigenvalues were equal (and variance zero) the dataset would be hyper-spherical. A 

correlation between the variance of the eigenvalues and the average Pythagorean error 

(as shown in both TABLE III and TABLE IV) indicates that the performance of the test 

set is linked to the distribution of patterns in quaternion space.

TABLE III 

EFFECT OF EIGENVALUE VARIANCE ON MSB

Limb Start

Alignment

Y

Z

X

Variance of

Eigenvector

Contributions

310.99

311.44

317.23

Average

MSE

5. 6 IE-04

4.60E-04

4.88E-04

Average

Pythagorean

Error

0.023

0.024

0.025
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The results (shown in TABLE III,) show that although an initial limb alignment with the 

Z-axis produced the lowest MSB, the networks performance in three-dimensional space 

(indicated by the average Pythagorean error for all patterns,) increases as the variation 

in eigenvalues increases, i.e. as the dataset becomes less elongated in quaternion space.

In the regular boundary experiments detailed above the dataset generation method 

generates a random unit vector in three-dimensions, then calculates a quaternion 

representing its current orientation and finally the correction required to return it to the 

boundary. Unit quaternions used to represent rotation occupy a S 3 hyper-sphere in four- 

dimensional space. The S 3 hyper-sphere represents 4n rotations, therefore quaternions 

on opposite sides of the S 3 hyper-sphere represent the same rotation [43].

This ambiguity occurs with respect to the rotations represented by quaternions on the 

unit quaternion hyper-sphere and not quaternion space itself. However since their 

representation is used to generate the dataset this potentially poses a problem. The 

situation arises where there are two boundaries - one on each side of the unit quaternion 

hyper-sphere. The neural network has to learn to correct to the appropriate boundary 

and this gives rise to second discontinuity in the dataset at which there will be a division 

between quaternions who are corrected to a boundary on either half of the hyper-sphere.

The quaternion creation method used in the above experiments avoided these problems 

as most of its invalid rotations, all valid rotations and more significantly the boundary to 

which it generated its corrections were on one side of the unit quaternion hyper-sphere. 

It was postulated that forcing all the points to be generated on one side of the unit 

quaternion hyper-sphere would simplify the vector field and improve training. 

However, results show this not to be the case, (Fig. 26). The original dataset with the 

majority of points on one side is described as ambiguous (or AMB) and the dataset with 

all points forced to one side as non-ambiguous (or Non-AMB).
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Fig. 26 -A comparison of the MSE recorded over various ranges for ambiguous (AMB) and non-ambiguous (non- 
AMB) results, plotted against the length of the difference quaternion between the principle components of each.

When the quaternions are forced to one side of the hyper-sphere the error on larger 
ranges increases. In order to explore this further PCA was performed on pairs of 
datasets over the same range. In each case one dataset was modified such that all the 
quaternions were on the same side of the quaternion hyper-sphere.

A comparison of the principle components over the range found that below 90 degrees 
there were no points moved and the PCA gave similar eigenvectors and eigenvalues. 
Above 90 degrees the number of quaternions moved increases, as does the difference 
between the principle components correlating with a rise in MSE.

The difference is measured by subtracting each vector in the principle component 
matrix (4 x 4) to give the difference for each as a four-dimensional vector. The average 
length of these vectors is used as a distance metric. In Fig. 26 a clear correlate can be 
observed between the increasing difference in the distribution of patterns in quaternion 
space represented by the length of the difference vector and the increase in error.

To further understand how the patterns in quaternion space are changing the orientation 
and influence of each of the principle components was investigated. The following 
graphs shows the MSE of the two test sets as before, the first (Fig. 27) in addition shows
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the difference in orientation of the principal components (compared to a single 4D 

vector). The second (Fig. 28) shows the contributions of the principle components 

contribution, that is the percentage of the variation can be attributed to the component.
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Mapping quaternions to one side of the hyper-sphere has an effect on the orientation of 

the third principle component and the contributions of all principle components. These 

increases are proportional to the range indicating a change in the distribution of training 

patterns in quaternion space.

The shape of the dataset in quaternion space described by the variance of the 

eigenvectors was discussed earlier. When investigating the differences in the shapes of 

the datasets it was found that forcing quaternion to one side of the sphere produced 

datasets with a less regular distribution. A marked increase in error (a positive 

difference) for 90 and 135 degrees in correlation with a comparative increase in 

eigenvector variance can be seen in TABLE IV. A large change in the difference in 

eigenvector contributions for the largest radius (150 degrees) is noted but a relative 

improvement in error, which can be attributed to the change in dataset orientation as 

shown in Fig. 18 above.

TABLE IV

EFFECT OF AMBIGUITY REMOVAL ON EIGAN VALUES AND

PERFORMANCE

Radii of Simulated 

Constraint

5

20

45

90

135

150

Difference in variance of 

Eigenvector contributions

0

0

0

7.19

4.82

722.21

Difference in 

MSE

1.59E-05

-9.8E-05

-2.6E-05

0.0040

0.0043

0.0029

Experiments also show that the effect of forcing the quaternion to one side of the hyper- 

sphere is different depending on the axis at the centre of the constrained region. This is 

shown in TABLE V.
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TABLE V 

THE EFFECT OF CONSTRAINT CENTRE ON QUATERNION DISTRIBUTION.

Limb Start 

Alignment

Y

X

Z

Difference (4D 

Pythagorean Distance)

0.087

0.120

0.236

4.2.2 Irregular Boundaries

In human anatomy most of the rotational boundaries encountered are irregular. 

Therefore the performance of this technique on such boundaries is an important 

consideration. In the experiments shown here irregular boundaries designed to test the 

capabilities of this constraint modelling approach were used.

Mathematically generating datasets for constrained regions with an irregular boundary 

is difficult. For these experiments a boundary and rotation recording program written in 

C++ using OpenGL was used. This approach produced quaternions on both sides of the 

quaternion hyper-sphere for all regions unlike the earlier automated test set generation.

Experiments using an ambiguous dataset, where invalid quaternions were corrected to 

the closer of two boundaries (one on either side of the quaternion hyper-sphere,) did not 

train successfully. Based on the successful regular boundary experiments, all points on 

the boundary (used for generating corrections) and within the valid region were forced 

to inhabit the same side of the quaternion hyper-sphere mimicking the distribution of 

the earlier regular boundary experiments.

The results show the neural network was able to learn the irregular boundary, though 

the error was higher than in the case of the simpler regular boundaries shown earlier. 

This is demonstrated by the average results shown in TABLE VI. The resultant 

networks are on average of higher complexity than those evolved for regular 

boundaries.
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TABLE VI 

COMPARATIVE PERFORMANCE ON TEST DATA

Boundary

Regular

Irregular

Min. / Max. MSE

4.79E-05 / 7.86E-04

9.4 IE-03/ 1.4 IE-03

Avg. MSE

3.3 IE-04

1.24E-03

Avg. Hidden Nodes

16

18.4

Comparing the results using the Pythagorean error metric it was observed that for the 
boundary shapes investigated the average error for all patterns for each of the five 
networks is less than 0.4 (as shown in Fig. 29). Given that the maximum possible error 
on the unit sphere is 2 (diametrically opposite) this gives and average error of 3.15% 
with a maximum error of 21.7%. Considered in terms of the virtual arm (of unit length) 
this gives an average error of 6.3% and a maximum error 43.4%.
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Fig. 29 - A graph showing a comparison of Pythagorean error for constraints of irregular shape.

The evolved neural networks were able to learn the boundary in most cases. Fig. 30 
demonstrates the neural networks learning of the discontinuity at the irregular boundary. 
The chosen boundary is a continuous irregular shape and has both convex and concave
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regions. The corrections are once again shown in green, and become lighter from start 

to finish. The boundary has been highlighted for illustrative purposes.

Fig. 30 -A visualization of the irregular boundary results, ideal corrections are shown as red dashed lines, 

neural network corrections (for each pattern) the green solid line. A fifth of the patterns are shown to 

improve clarity.

It is clear from the results in Fig. 30 that the neural network has performed well. Some 

error is present inside the boundary where valid points are very slightly adjusted. Error 

is also present towards the rear of the sphere and other areas. This is best highlighted 

using a plot of the test set quaternions graded by the Pythagorean error (using the 

Pythagorean distance in three-dimensions,) of the applied resultant quaternion, Fig. 31.
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Fig. 31 -Test patterns coloured to represent the 3D Pythagorean error of the relative neural network 

output. The blue patterns represent low error and the red ones high error.

The pattern of error is similar to that observed for regular boundaries, with the 

exception of the cluster of red (high error) points around the concave region of the 

boundary.

The results of the experiments varying the shape of the boundary show that the neural 

network is remarkably accurate on the majority of boundaries as shown in TABLE VII. 

There is strong agreement between the MSB and the recorded Pythagorean error, with 

the exception of the best two in each case. The highly irregular boundary one of the 

more complex boundaries showed very high performance, though compared to the other 

boundaries it required more hidden nodes to achieve this performance. The worst 

performance is observed for the C-Shaped boundary, though this is not significantly 

worse than the large boundary.
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TABLE VII 

A COMPARISION OF IRREGULAR BOUNDARY SHAPES

BOUNDARY

Highly Irregular

Small

Original

Large

C-Shape

Average 3D 

Pythagorean Error

0.030
0.033

0.040

0.056

0.057

AVERAGE 
MSE

9.33E-04

9.14E-04

1.24E-03

2.98E-03

3.30E-03

Average 

Hidden Nodes

18.2

16.6
14

16.8

16.2

It is useful to visualize these boundaries to identify patterns in the distribution of the 

points. The results are shown in Fig. 32, and are labelled as follows; C-Shape (a), Large 

(b), Small (c) and Highly Irregular (d).
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Fig. 32 -The additional irregular boundaries visualized using the colour graded points method described 

above.

The results show that the neural networks performed well, though difficulties were 

encountered with regards to concave regions. This is most noticeable in the case of the 

C-Shape boundary and the large boundary (Fig. 32 (a), Fig. 32 (b)). The small boundary 

and the highly irregular boundary give much better results. Again the highest errors are 

around the discontinuities. Poor neural network performance is observed for regions of 

the highly irregular boundary as depicted by Fig. 33 - in some regions the boundary is 

attenuated.
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Fig. 33- A visualization showing the highly irregular boundary only 1/3 of the patterns are shown to aid 

clarity. Solid green lines represent the valid patterns while dashed red lines represent the ideal patterns, 

both get lighter from invalid to valid.

The visualization (Fig. 33) illustrates the slight errors that still occur at the boundary. 

Some of the concave regions between convex regions are lost while others train well 

and are clearly visible.

4.3 Discussion

4.3.1 Regular Boundaries

The results show that artificial neural networks can be successfully evolved and trained 

to correct joint rotations to a regular boundary. Boundaries similar to those of Korein 

[36], Engin et al [41] and Manurel et al [10] have been implemented though in 

quaternion space. Herda [4, 5] provided corrective constraints but reduced the 

dimensionality of the quaternion representation to do so, the approach presented here 

removes this additional complexity. Additionally the correction method used in their 

work was iterative and therefore inefficient in comparison to the vector field approach 

adopted here (Johnson [2] also used an iterative approach to correction). Both 

approaches reduced the dimensionality of the quaternion introducing a complex 

mapping and singularities, similar boundaries can be implemented by our approach
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without reducing the dimensionality of the representation. The approaches of Liu and 

Prakash [3] (which extend Lee [6],) decompose the quaternion into two quaternions 

representing rotation in a single plane. This effectively gives Euler angle like constraints 

with a quaternion-based parameterisation.

Circular boundaries of a number of different radii were trained and the results show 

good performance, with an average error of less than 1 % and a maximum error of only 

6.3%. An increase in error matched by an increase in network size indicates an 

increased complexity between 20 and 90 degrees. PCA reveals that there are significant 

changes in the distribution of the data in quaternion space that account for this increase 

as for these ranges the distribution of quaternions indicated by the orientation of the 

principle components of the dataset change as shown in Fig. 18. These changes in the 

distribution of patterns in quaternion space may increase the overlap of internal 

distributed representations French suggests this can increase the extent of interference 

between patterns which inhibit learning [111].

As the complexity of the evolved networks increases the standard deviation of the 

number of hidden nodes evolved decreases. This indicates all the networks evolved for 

these ranges were close to the maximum complexity set during these experiments, (20 

hidden nodes). Limiting the number of hidden nodes in combination with the 

regularization function has prevented an increase in complexity and contributed to the 

increase in error.

The Pythagorean error between the ideal correction and the neural network correction 

shows that the network performs well for all but a few patterns. In practice these 

patterns occupy regions a large distance from the constraint boundary. However, this is 

not a problem in that modelling anatomically constrained joints it is unlikely the joint 

would move far beyond the boundary before being corrected. It is important to note 

that these plots represent the average error over the networks created from repeating the 

results, observing the plots for all five separately regional performance variations are 

not constant.

The Pythagorean error is generally highest at the boundary due to the discontinuity in 

this region and at a second discontinuity present in the region opposite the boundary 

where proximally equal corrections to two valid boundary positions must be considered.
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High Pythagorean error may be recorded in these regions despite the corrected joint 
reaching the boundary. Other regions of high error such as those shown in Fig. 24 can 

be attributed to sparse areas of training data. It is important to note however that despite 

the relatively high error, the correction is in all cases to a configuration within 0.126 (or 

12.6% of the limb length). In practice further resources (training, hidden nodes) or 
iterative approaches could be used to improve on these results.

The results demonstrate that evolved neural networks of low complexity can be used to 

implicitly model simple spherical joint constraints similar to those modelled in exiting 

approaches [3]. However the evolved neural network constraints do not project the 
quaternion into a space with fewer dimensions and require no pre-processing.

4.3.2 Irregular Boundary

The irregular boundary results have a lot in common with the regular boundary results, 

though the MSE is higher due to the increased complexity of the mapping. The 3D 
Pythagorean errors are also higher but follow a similar pattern with regions of high error 

where discontinuities occur between valid and invalid configurations, diametrically 
opposite the boundary and in areas where training patterns are sparse.

Additionally there is high error around the concave region of the boundary caused by 
the complexity of the vector field in this region. In the centre of the convex region is 
another vector field discontinuity, as invalid configurations are of equal proximity to 

valid configurations on either side. In this case as in the case of the region opposite the 
boundary, the network may correct a point to the boundary based on training patterns in 

the region but correct to the wrong side of the sphere compared to the test set.

The range of irregular boundaries experimented with demonstrate the capabilities of 

these neural networks in learning joint constraint boundaries of the kind necessary for 

anatomically correct constraints, such as the knee, shoulder etc. The error in three 

dimensions is low and there is a good correlation with the ideal corrections, in terms of 

the virtual arm (which is unit length) an average error of 6.3% is reported. An 

interesting limitation concerning invalid boundaries occurs where the boundary is 

concave or convex, these local features are attenuated or lost. This can be attributed to
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two factors, the first being pattern distribution and the second the learning method of the 

sigmoid based neural network. There is little difference in shape between the large (Fig. 

32 (b)) and small (Fig. 32 (c)) boundaries yet a noticeable difference in performance is 
observed. This may be attributed to the density of patterns, the smaller boundary has the 

same number of patterns within the constraint but confined to a smaller region.

In its learning method the sigmoid-based neural network demonstrates good global 

learning - that is it learns large general mappings well. It is however insensitive to local 
features such as the boundary discontinuity and shape irregularities that are sometimes 
lost.

The neural networks evolved to learn the irregular boundary mapping were more 
complex in nature in that they had a higher number of hidden nodes. This indicates that 
a more complex neural network was required to train the more complex vector field.

The regular boundary experiments (which converted a random rotation to a quaternion) 
generated the valid and the majority of invalid quaternions on one half of the quaternion 
hyper-sphere. There is ambiguity in the rotations represented by the unit quaternions, in 

that the quaternion sphere represents 4ft rotations.

In an attempt to improve performance this ambiguity was removed by limiting the 
distribution of points to one side of the quaternion hyper-sphere. The results 

deteriorated in performance for larger constraints, this is attributed to the continuity of 
the valid and invalid regions in quaternion space. TABLE IV shows that the change in 
distribution of data in quaternion space as the difference in the variance of the 
eigenvalues increases (indicating that the non-ambiguous dataset is becoming more 

elongated than its ambiguous counterpart) there is a marked decrease in performance. 
Because of the system used to generate the input quaternions in the ambiguous case 

there was no ambiguity in the valid region. Quaternions on both sides of the hyper- 

sphere were corrected to a boundary on one side of the hyper-sphere. Forcing the 
quaternions to one side of the sphere appears to have affected the continuity of valid and 

invalid regions, increasing the number of discontinuities the neural network must learn 

to approximate.
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The irregular boundary experiments used a sampling dataset generator that generated a 
quaternion representing the rotation of a control limb being manipulated in three- 

dimensional space. Because of this the quaternions it generated were distributed over 

the whole of the quaternion sphere. The quaternion space vector field therefore 

contained two valid regions. Quaternion joint configurations were corrected to the 
nearest of these two boundaries. There are in effect two vector fields, one on each half 

of the hyper-sphere separated by a discontinuity. Training neural networks for such 
datasets failed to produce any networks with acceptable performance.

To overcome this the valid dataset and the boundary used for corrections was moved to 

the one side of the unit quaternion hyper sphere. Quaternions from both sides of the 

hyper sphere are corrected to one boundary, giving a vector field with a continuous 
invalid region in quaternion space. The neural network successfully learns this vector 
field which now contains a single valid region and a single discontinuity at the implied 
constraint boundary.

The choice of axis at the centre of the constraint affects the mean squared error and the 
actual error in three-dimensional space in different ways. Principle component analysis 

indicates that the distribution of patterns in quaternion space is most regular with the 
constraint centred on the y-axis and that as the regularity of the dataset decreases the 
Pythagorean error increases. According to the Pythagorean metric a dataset with a more 
regular shape gives superior results as in the case of quaternion ambiguity. A possible 

reason for this is that the increased distribution of patterns in quaternion space reduces 
the overlap of internal distributed representations French suggests this can reduce the 
extent of interference between patterns which inhibit learning [111].

Indirectly measuring the quaternion error has proved very useful and provides an insight 
into the behaviour of this technique when applied to simple anatomical models. 

Principle Component Analysis (PCA) has also proved useful in determining the shape 

and orientation of datasets in quaternion space.
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4.4 Conclusion

In conclusion, evolved neural networks show promise in the implicit modelling of joint 
constraints. This chapter has demonstrated the successful learning of corrective joint 
constraints using quaternions, without reducing their dimensionality in order to do so, 

unlike the previous work of Herda et al [4, 5] and Johnson [2]. As this approach deals 
with the rotations of the limb directly (parameterised as a single quaternion) there is no 
decompose the quaternion as in the approaches of Lee [6] and Liu and Prakash [3].

In addition to the obvious vector field discontinuity at the joint constraint boundary 
other discontinuities have been identified. A discontinuity also exists at any point 
where two different boundary points are candidates for correction. There are two 
regions where this applies, the region diametrically opposite the boundary and in 
concave regions of the boundary. In such concave regions, the poor local learning 
properties of the neural network paradigm may contribute to the error. This gives strong 
motivation for experimentation with other paradigms which offer good global and local 
learning, such as mixed activation function approaches [53, 65, 83, 85] and adaptive 
spline activation function neural networks [63, 64, 81, 90, 93-95].

The distribution of patterns on the quaternion hyper-sphere has influence over the neural 
network training, more specifically the shape and orientation of the dataset. The results 
indicate that vector fields generated with the y-axis at the centre of the constraint may 
produce a more evenly distributed vector field in quaternion space, improving the 

results.

The neural network performs poorly if ambiguities are present in the quaternion space 
vector field. To overcome this, the boundary and valid points must be defined on one 
side of the quaternion hyper-sphere, and quaternions on both sides of the hyper-sphere 
corrected too this. Moving all quaternions to one side of the hyper sphere produces 

poor results for large constraints as the vector field becomes malformed.

In conclusion genetically evolved neural networks are applicable for joint constraint 
modelling using quaternion as a result of their capabilities in learning vector fields in 
quaternion space. These capabilities are in turn dependant on the formation of the 

vector field in quaternion space.
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5. Increasing Performance

In previous chapters both the evolution of the neural networks and their training was 

limited to maximise productivity. These limitations, while reducing training times for 

the networks have a detrimental effect on performance.

In order to illustrate the improvements in performance possible with additional training, 

several key factors in the performance of evolved neural networks were investigated. In 

some cases the discoveries influenced the creation of earlier datasets though where 

training times were increased performance was sacrificed.

5.1 Methodology

There are a number of factors that influence the performance of genetic algorithm 

evolution and neural network training. The following experiments aim to investigate 

several factors identified in the literature that effect the performance of neural networks 

and genetic algorithms [49, 79, 134].

In the following experiments two separate discontinuous vector field mappings are 

investigated. The first represents a vectorial correction to a spherical constrained region 

of input vectors in three-dimensional space (as discussed in Chapter 3), and the second a 

quaternion correction to a given boundary from an initial quaternion orientation (as 

discussed in Chapter 4).

5.1.1 Number of Hidden Layers and Nodes

In practice when utilizing Multi-Layer Perceptrons in their native form the ideal number 

of hidden layers and nodes is identified by trial and error [49, 81]. If not enough nodes 

are present then the neural network may not be powerful enough for the given task. If 

too many nodes are present the training time increases may be unacceptable or more 

seriously the neural network will loose its ability to generalise [49, 81].
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This problem can be alleviated though the use of genetic algorithms, which search the 
space of viable networks for one suited to the current dataset. A population of neural 
networks is created these have the maximum number of hidden nodes, the appropriate 
region of the Modified Miller Matrix (below the main diagonal as shown in Fig. 7) is 
randomly populated creating the connections between the nodes. This leads to a number 
of hidden nodes not being connected these nodes are evolved but are not present in the 
phenotype. Binary markers present on both the links and nodes indicate their 
contribution to the phenotype, if these bits change during cross over or mutation a node 
may be deactivated. In which case neither the node or any associated links are 
represented in the phenotype [81].

A regularization term in the fitness functions of the genetic algorithm favours smaller 
networks. Small networks have a number of properties such as a low computational 
complexity and good generalisation ability that make them favourable. As part of the 
evolution of the networks via genetic algorithms, the number of links between the nodes 
is evolved.

The experiments that follow are concerned only with the maximum number of hidden 
nodes evolved in the hidden layer, this is an upper bound on the complexity of the 
network [127]. The regularization function aims to minimise the number of links and 
therefore the number of hidden nodes is kept below the maximum.

5.1.2 Training Epochs

The ideal number of training epochs can be determined by examining the performance 
of the neural network on a test set (unseen patterns) and comparing this with the training 
set (previously seen patterns.) At some point during training the performance on the test 
patterns starts to decrease. When this occurs the network starts to "memorise" the 
training set, loosing its ability to generalise this is knows as over-training [49].

Traditional approaches used a trial and error approach to identify over or under training. 
Evolution provides an alternative to this time consuming approach. Using the 
performance of the network on a unique set of validation patterns the genetic algorithm
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evolves an ideal number epochs. The following experiments are concerned only with 

the maximum number of training epochs, the minimum being zero.

5.1.3 Number of Patterns

Several rules have been suggested for the number of training patterns given a network 

configuration with varying successes [59]. Net JEN has the capability to evolve the 

number of training patterns however this is achieved by sampling a dataset of maximum 

size. As pattern order appears to have a significant effect on the result an identification 

of the ideal training set size is attempted by experimentation. More patterns in the 

training set increases the length of time required to train the population of neural 

networks. To limit the time required for each experiment in earlier experiments the 

number of patterns was limited to five hundred. Dr. Helmut Mayer (a noted researcher 

in evolved neural networks heavily involved with both the NetJEN project and NetGEN 

its predecessor,) suggested this limit in a in a private correspondence.

5.1.4 Pattern Order

The order in which patterns are presented to the neural network has an impact on the 

training. Due to the global learning nature of the multi-layer perceptron patterns in one 

locality may affect weights associated with another. Patterns may be presented in any 

order, in the experiments present here these were limited to the following 

configurations; valid patterns followed by invalid patterns, invalid patterns followed by 

valid patterns and both valid and invalid patterns in a random order. The patterns from 

the original ordered dataset were moved to new random locations to create the random 

order data set. Each of the datasets contained the same set of patterns in a different 

order.

5.1.5 Pattern Distribution

There are a number of ways in which the patterns could be distributed (or the mapping 

sampled.) Distributions with points clustered in a region close to the boundary and an 

even distribution over the whole surface were compared. In the clustered set a dense
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region of points was placed in the immediate vicinity (5 degrees) of the boundary. There 

were four regions in total, as illustrated in Fig. 34. In the non-clustered set the valid and 

invalid regions were divided into four regions containing an equal number of points. 

These are illustrated in Fig. 34.

Boundary

Clusters

No Clusters

Invalid Region

Fig. 34 - A diagram showing the distribution of patterns in the datasets. The number of patterns in each 

coloured region is constant irrespective of its size.

In both distributions the number of patterns within each of the regions is constant 

irrespective of the constraint size. This maintains independence between the size of the 

constraint and the distribution of patterns that may otherwise lead to small constraints 

having very few or no patterns in their valid region.

5.1.6 Generations

Genetic Algorithms are less susceptible to over training (local minima), though are 

constrained by the size of the population, number of generations, mutation rates etc. 

[79]. The performance of a neural network increases until the population contains a 

number of networks with similar genes. Further increases in performance require large 

numbers of generations. There is however some optimal point where increasing the 

number of generations still results in an increase in performance [135].
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5.1.7 Population Size

The size of the population primarily effects the diversity of individuals within the gene 

pool. Potentially each individual carries beneficial alleles (the individuals genotype is a 

set of alleles,) that combined with alleles form other individuals may form a better 

solution. Larger populations display poor initial performance due to their slow changing 

populations, though their performance over a number of generations is better as their 

larger population allows them to maintain a more diverse gene pool and avoid allele 

loss leading to a better solution [134, 135]. Small populations display better initial 

performance as the small population changes quickly, however due to a loss of alleles 

from the gene pool the final solution is inferior to that of a larger population [134, 135].

It is clear that population size and the number of generations are linked. A small 

population may out perform a large one if the number of generations is limited [135]. A 

constant population size was maintained throughout the earlier experiments to minimise 

the training times. The effects of population size are explored in an attempt to identify 

an ideal population size for these experiments.

5.1.8 Activation Function

The activation function has been shown to be significant in effecting the performance of 

a neural network [64, 84]. The effect of activation functions can be explored using 

genetic algorithms, in the approach used [63] the activation function of layers of nodes 

are encoded as part of a genome. The genetic algorithm searches for the best of the 

encoded types this is described as pure activation function evolution [65]. The 

activation functions for the hidden and output nodes were evolved, with the following 

candidate functions; Gaussian, linear, sigmoid, sinus and hyperbolic tangent. These are 

shown in Fig. 35.
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Fig. 35 - The candidate activation functions for evolution. The functions depicted are linear (a), Gaussian 
(b), hyperbolic tangent (c), sinus (d) and sigmoid (e).

The activation function information (as show in Fig. 6(d)) is encoded into the genome 
(as shown in Fig. 6(a» and converted into a linearized binary adjacency matrix as 
demonstrated for the example network in Fig. 7 [83].

Alternatively a spline based function is evolved to form the shape of the activation 
function required [63, 64]. Early experiments utilized a neural network with sigmoid 
activation functions in the in both the hidden and output nodes, significant 
improvements were made by replacing the sigmoid activation functions in the output 
layer with a linear activation function. These results are included to justify the choice of 
activation function in the mam body of this work. Template based evolved cubic spline 
activation functions for the hidden layer are investigated as suggested by Mayer and 

Schwaiger [63].

The genome representing the template spline activation functions (as show in Fig. 6(c)) 
is evolved separately and does not form part of the adjacency matrix. Evolution of the
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activation function is effectively the same as in the previous case with an index 

representing each of the spline templates being evolved [63].

5.1.9 Dataset Creation

The results shown in this section are based on datasets from earlier experiments and the 

creation methods have remained the same. The vector-based experiments concerned a 

vector field representing a spherical constraint of radius 0.125 with its centre at the 

origin. Valid and invalid vectors are generated with components ranging form -1 to +1, 

giving a cube with the origin at its centre. In addition to the datasets created in earlier 

experiments, i.e. the training set, validation set and test set, a fourth dataset was created 

for the number of patterns experiments. Here it was necessary to test the performance 

of the networks on a common dataset, these contained three thousand patterns. The 

constraint is described in detail in section 3.1 and the creation of the constraint in 

section 3.1.1.

A discontinuous vector field in quaternion space that described a twenty-degree 

constraint on the surface of a unit sphere was chosen along with out initial irregular 

boundary. Once again additional datasets, for example a common test set with three 

thousand patterns for the pattern number experiments were created as required. A 

description of the discontinuous vector fields used to represent these constraints and 

their construction is contained in sections 4.1 and 4.1.1 respectively.

5.1.10 Activation Function Evolution using NetJEN

NetJEN allows the evolution of activation functions via the two methods outlined 

above, that is encode the activation function of nodes as part of a genome and have the 

genetic algorithms search for the best of the encoded types from a list of candidate 

functions this is described as pure activation function evolution [65]. Alternatively a 

spline based functions can be evolved which form the shapes of the activation functions 

required [63, 64].

Mayer, Strapetz and Fuchs [83] implemented pure activation function evolution in the 

NetGen system. The genome is discussed in section 3.1.2 (and shown in Fig. 6(d)) and
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it is noted that the index of the activation function is encoded into the binary adjacency 

matrix (shown in Fig. 7). The number of bits required to represent the index of the 

activation function is flexible depending on the number of candidate networks presented 

[83]. The maximum size of the networks is set in advance and as the structure of the 

networks is changed links and nodes are switched on and off using binary markers (see 

Fig. 6) hence the chromosomes contain some non-coding regions [83].

The alternative involves the representation of a cubic spline within the genome the 

control points of which are evolved during the evolutionary process. The description 

which follows is based on that documented by Mayer and Schwaiger [63, 64] for the 

earlier system on which NetJEN is based. A fixed number of control points are used to 

describe the cubic spline activation function as outlined in equation 69.

(jr,., v,)e 9?x9l where i = \,.....,n ( 69 )

Here n is the number of control points and defines n-\ intervals on the x-axis (equation 

70).

(70)

For each of these intervals a function /; (x) is defined in equation 71.

ai (x-xi ) + bi (x-xi ) 2 +ci (x-xi ) 3 whereai ,bi ,ci e*K. (71

This demands equality of the function value and that the first and second derivative can 

be determined for each interval yielding a continuous and differentiable function 

composed of a number of cubic splines. The number of control points, range of the 

cubic-spline activation (sensitivity interval) and its limits during activation (activation 

interval) must be configured before evolution begins. Within these boundaries the spline 

is free to develop.

NetJEN implements template-based spline activation function evolution that relies on 

the encoding and evolution of the spline as indicated above. However Huber and Mayer

113



[63] found results were improved by evolving a set of custom spline activation 
functions (called templates) and simultaneously evolving the functions of the hidden 
layer with these templates as candidates. The spline templates are encoded and evolved 
as part of the genome (shown in Fig. 6(c)), the template associated with each node is 
evolved and encoded in the same way as the candidate functions are in the pure 
activation function encoding approach [63].

5.1.11 Training and Evolution

In each experiment the NetJEN system (described in 3.1.2) was configured as follows. 
The input layer represents the current joint either as a three-dimensional unit vector or a 
quaternion rotation. The output layer represents the correction either as a corrective 
three-dimensional vector or a corrective quaternion rotation. The number of hidden 
nodes and connection topology are randomised and then evolved during the learning 
process using Genetic Algorithms. The weights of the interconnections are initially 
randomised then updated using the resilient back-propagation algorithm. The evolution 
and training parameters, where constant, were set as shown in TABLE VIII and each 
experiment was repeated five times to ensure the consistency of the results. Unlike 
previous sections the table shows the constants used for each parameter when it was not 
the subject of investigation.
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TABLE VIII 

EVOLUTION AND TRAINING SETTINGS

Parameter

Regularization 

function

Hidden Nodes

Number of 

Generations

Population Size

Fitness Function

Evolve number of 

Links

Evolve number of 

Hidden Nodes

Evolve number of 

training epochs

Learning Rate

Stopping Error

Training Function

Max Epochs

Description

Secondary fitness function.

Maximum no. of hidden 

nodes.

No. of generations over 

which the ANN were 

evolved.

Size of the populations 

evolved.

Primary fitness function.

Networks are pruned down 

from fully connected 

networks.

Evolves the no. of hidden 

nodes.

Evolves the no. of training 

epochs

Learning rate used when 

training the ANN.

MSB at which the ANN are 

stopped.

Training function used to 

train the weights of the

ANN.

Maximum number of 

training epochs

Value

Number of 

links

20

50

20

Inverse SSE

On

On

On

0.1

0.001

Resilient back- 

propagation

500

The neural networks used sigmoid activation functions in their hidden layer and linear 

activation functions in their output layer, unless otherwise stated. The justification of 

this decision is covered in a later section of this chapter.
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The regularization weight was chosen based on publications by the authors [63], as was 

the learning rate [126], the stopping MSE for the networks was identified though 

experimentation. The size of the population, number of generations and initial limits for 

the number of training patterns were suggested by a co-author of the NetJEN system Dr. 

Helmut Mayer in private correspondence.

Additional spline specific parameters were required for the experiments involving the 

evolution of spline activation functions these are outlined in the following table 

(TABLE IX), based on those used by Mayer and Schwaiger [63].

TABLE IX 

THE CONFIGURATION OF THE SPLINE EVOLUTION PARAMETERS

Parameter

Control Points

Activation Interval

Sensitivity Interval

Number of 

Templates

Description

Number of control points 

used to define each spline.

Minimum and maximum 

activation displayed by the 

function.

Interval over which the 

functions output is 

considered.

The number of template 

nodes evolved.

Value

Min:-1.0 

Max: 1.0

Min: -5.0 

Max: 5.0

5.2 Results

The majority of experiments in this section were carried out for a discontinuous vector 

field representing a spherical constrained region in three-dimensional space. This 

constraint showed high MSE and has the benefit of easily quantifiable results. Further 

experiments demonstrate the applicability of these results to quaternion based corrective 

constraints.
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5.2.1 Discontinuous Vector Fields Representing Three Dimensional 

Constraints

Firstly the improvements are investigated on vector fields that represent the spherical 

constraint in three-dimensional space (discussed in Chapter 3).

5.2.1.1 Neural Network Size

Increasing the maximum number of hidden nodes that the genetic algorithm can assign 

to sixty nodes improves performance on both the unseen test set and on the training, as 

shown in Fig. 36. After this point the performance on the training set continues to 

increase while the performance on the test set decreases. Increasing the number of 

hidden nodes also increased the time required to complete the experiments, eighty 

hidden nodes taking just over a week to complete on a 2.4 ghz Pentium 4, experiments 

with twenty hidden nodes took between 16 and 18 hours on the same hardware.
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Fig. 36 - The effect of the maximum number of hidden nodes on testing and training set performance. The 

MSE values shown are averages of the five neural networks evolved and trained in each case.

Examining the number of hidden nodes, links and training epochs it was found that an 

increase the maximum number of hidden nodes results in an increase in the number of
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hidden nodes evolved in the neural network. The number of training epoch evolved 
also increases as shown in Fig. 37.
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Fig. 37 - Effect of increasing the maximum number of evolved hidden nodes on the topology and evolved 

training requirement of the neural network.

5.2.1.2 Training Epochs

The number of training epochs has a significant effect on the performance of the neural 

network and incurs a significant time penalty. Five runs of the two thousand-epoch 

experiment required over three days to complete. Fig. 38 shows the resulting MSE, a 

decrease in the gradient of the MSE curve indicates that more epochs would not produce 

significant improvements in the result.
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Fig. 38 - A graph showing the effect of training epochs on neural network performance.

Increasing the maximum number of training epochs for neural networks created by the 
genetic algorithm results in an increase in the number of training epochs evolved for 
each of the networks generated. However there is no significant effect on the number of 
hidden nodes or interconnections (links) as shown in Fig. 39.
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5.2.1.3 Number of Training Patterns

Increasing the number of hidden nodes utilised an additional test set. As in previous 
experiments the performance is shown on the previously seen patterns (training set) and 
unseen patterns (test set) of equal size. This is shown in figure Fig. 40. A common test 
set containing three thousand patterns was used to give an indication of the performance 
of each network. The results show that performance on the common test set generally 
improved as the number of patterns increased. However the scale of the improvements 

decreases.
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Fig. 40 - The effect of training set size on neural network performance.

Increasing the number of patterns does not appear to have a constant effect on the 
number of hidden nodes, links or training epochs as shown by Fig. 41. The smallest and 
largest training sets seem to result in large networks and a low number of training 
epochs, between these two extremes less neurons and more training epochs are required.
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Fig. 41 - Effect of pattern density on the performance of evolved neural networks.

5.2.1.4 Generations

The results show that as the number of generations is increased the performance on the 
training and test sets increases as shown in Fig. 42. However the gradient of the 
improvements itself tends towards zero indicating that further increases in the number 

of generations would not produce any significant improvements in the result.
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on the test set was much higher and obscured the other results.

Changing the number of generations allows the evolutionary process to continue 
towards a solution. As evolution is allowed to continue the number of links, hidden 
nodes and epochs move closer to their limits shown in Fig. 43. This seems to agree with 
the results observed in the individual hidden node and epoch experiments, in that 
improved performance requires a larger number of hidden nodes and training epochs.
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5.2.1.5 Population Size

Experiments were carried out to determine the effect of varying the size of the 
population of neural networks used during evolution. For all other experiments a 
population size of fifty individuals was used. Experiments with between ten and one 
hundred and fifty individuals reveal that an increase in the size of the population 
produces an increase in performance, (as shown in Fig. 44.) There is a decrease in the 

gradient of improvement towards a minimum.
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The effect of varying the population size on the neural networks evolved is clear from 
the number of hidden nodes, links and epochs evolved. As the population size increases 
the number of hidden nodes, links and training epochs also increases, as shown in Fig. 

45.
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5.2.2 Discontinuous Vector Fields Representing Regular and 

Irregular Quaternion Boundaries

The effects of these same factors on the more complex discontinuous vector fields 

representing quaternion based rotational constraints (as discussed in Chapter 4,) are 

examined. The results of these experiments provide evidence as to the improvements 

possible for practical applications of these techniques.

5.2.2.1 Number of Hidden Nodes

As in the previous experiments, increasing the maximum number of hidden nodes the 

genetic algorithm can evolve within the neural network reduces the MSE, as shown in 

Fig. 46. The degree of improvement is similar for both training and unseen patterns. 

Due to the time required to complete these experiments the results are insufficient to 

identify the point at which the neural network starts to over specialise, (when the test set 

performance decreases despite and increase in training set performance.) This indicates 

that further improvements are possible.
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As in the previous experiments the increase in the maximum number of hidden nodes 
leads to an increase in the number evolved, (Fig. 47,) and an increase in the number of 
training epochs evolved with respect to the increasing neural network size.
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evolved neural networks trained to model regular (RB) and Irregular (IRB) boundaries.

5.2.2.2 Training Epochs

Variation of the maximum number of training epochs evolved as part of the neural 
network structure reveals that an increase in the number of epochs results in an increase 
in the performance of the neural networks evolved, as shown in Fig. 48. As the 
maximum number of training epochs increases the gradient of this increase decreases. 
This indicates that a saturation point exists where further neural network training would 

have no further benefit.
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An increase the maximum number of training epochs which can be genetically assigned 
to any individual network results in no significant change in the neural network size, 

indicated both by the number of hidden nodes and links, as shown in figure Fig. 49.
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5.2.2.4 Training Patterns

In the 5.2.1 above the number of training patterns was investigated using a less 
complicated three-dimensional point based constraint. An increase in performance is 
observed in both regular and irregular boundaries, as the number of training patterns is 
increased. Fig. 50 shows that irregular boundaries demonstrate a marked improvement 
on the common test set (three thousand patterns). However the regular boundary 
demonstrates a very small improvement.

1.40E-03 -

1 one*— n^ -

l.OOE-03 -

u M n oniP— n^

6.00E-04 -

4.00E-04 -

2.00E-04 -

ft ftr\e+.nri -

a
A I

^..... ..............

*—————————\

(-

' " " 1
3

r——

?-------

c

• --- ••<

[...................? ...................<
.

s

........

t.......
.

»

500 1000 1500 2000 

Patterns

2500 3000

MSB - Test Set (RB)

MSB - Comnon Test (RB)

+MSB - Training Set (IRE)

iMSE - Training Set (RB) 

>USE - Test Set (IRB) 

OMSE - Comnon Test (IRB)

Fig. 50 - A graph showing the effect of training set size on the performance of the neural networks for 

both regular (RB) and irregular (IRB) boundaries.

The effect of increasing the number of patterns on the number of hidden nodes appears 
to be more pronounced in the irregular boundary results. Fig. 51 shows both an increase 
in hidden nodes and epochs indicating an increased difficulty associated with the 
inclusion of new patterns. In the case of the regular boundary this increase is not 
present, indicating that in the regular boundary case the problem does not increase in 

complexity as the number of patterns increases.
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5.2.2.5 Pattern Order

The results of the pattern order experiment showed the configuration used throughout 

the experiments, that is, valid patterns followed by invalid patterns, was superior to both 

the random order and reversed order (invalid patterns first) training sets These results 

are shown in TABLE X.

TABLE X 

THE RESULTS OF THE PATTERN ORDER EXPERIMENT

Normal

Random

Reversed

Average

4.88E-04

6.43E-04

6.49E-04

Standard Deviation

1.61E-04

1.10E-04

1.58E-04
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5.2.2.6 Pattern Distribution

Comparing the clustered and evenly distributed (non-clustered) datasets (outlined in 

5.1.5,) there is a clear improvement in the results for evenly distributed patterns. This 

can be observed in a comparison of the average network error as shown in TABLE XI.

TABLE XI

THE ERROR AND EVOLVED NODE CONSTRUCTION FOR CLUSTERED AND

NON-CLUSTERED DATASETS

No Clusters

Clusters At Boundaries

Avg. 

MSE

4.88E-04

7.85E-04

Avg. Hidden 

Nodes

17

17.8

Avg. 

Links

144.2

164.6

Avg. 

Epochs

458

492.8

The neural networks evolved were of comparable size and required a similar amount of 

training epochs as shown in TABLE XI. As shown by the number of hidden nodes, 

links and training epochs evolved by the genetic algorithm over the five test networks 

also shown in TABLE XI.

5.2.2.7 Activation Function Evolution

All experiments studying the effect of the activation function on neural network 

performance are presented in the following section. This holistic approach gives the 

results context.

The section begins with a general overview of the results obtained for the network 

architectures investigated. These results and the evolution of activation functions 

concern only the four-dimensional vector fields representing the quaternion based 

constraints and the earlier constraints of lower dimensionality. Later the template based
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spline activation function neural networks are compared to sigmoid-linear neural 

networks for one, two, three and four dimensional vector fields.

The performances of evolved topology neural networks with a number of hidden and 

output layer activation functions were examined. Sigmoid activation functions in both 

the hidden and output layer produced very poor performance. This was countered by the 

introduction of a linear output layer (this is described as the sigmoid-linear neural 

network.) Several authors have used bipolar sigmoid (or hyperbolic tangent) neural 

networks for vector field approximations [54, 55, 57].

The use of evolution in assigning the activation functions produced some improvement 

over the sigmoid-linear neural network in terms of the average MSB over five evolved 

neural networks. Sigmoid linear neural networks produced a lower minimum error than 

both pure evolved activation function and evolved template based spline activation 

function neural networks, but also produces a higher maximum error. These results are 

shown in TABLE XII.

TABLE XII

TABLE DETAILING THE PERFORMANCE OF NEURAL NETWORKS WITH 

DIFFERENT ACTIVATION FUNCTIONS

Network Construction 

Hidden / Output

Cubic Spline / Linear

Evolved / Evolved

Sigmoid / Linear

Sigmoid / Sigmoid

Avg. 

MSE

5.46E-04

6.19E-04

6.22E-04

1.01E-01

Std. MSE

7.64E-05

2.25E-04

2.12E-04

1.26E-04

Max 

MSE

6.72E-04

9.18E-04

9.67E-04

1.01E-01

Min MSE

4.42E-04

3.68E-04

3.18E-04

1.01E-01

The topologies of the neural networks evolved by the genetic algorithm were varied. 

The neural network with sigmoid hidden and output layers produced the smallest 

network but the high error makes them of little use. The sigmoid-linear neural network 

evolved a number of nodes close to the maximum of twenty hidden nodes to produce
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reasonable performance (TABLE XIII). The evolved and cubic spline neural networks 

give better performance on average and require fewer hidden nodes to achieve this, as 

shown in TABLE XIII.

TABLE XIII

TABLE DETAILING THE TOPOLOGY OF NEURAL NETWORKS WITH 

DIFFERENT ACTIVATION FUNCTIONS

Network Construction 

Hidden / Output

Cubic Spline / Linear

Evolved / Evolved

Sigmoid / Linear

Sigmoid / Sigmoid

Avg. Hidden Nodes

14.4

14.6

17

8.6

Avg. Links

124.8

119.6

129.6

56.6

Avg. Epochs

485.6

433.2

475.8

430.6

When evolving the activation functions of the hidden and output nodes via pure 

evolution, some patterns in the evolved activation functions can be identified. The 

performance of the five neural networks is shown in Fig. 52 along with the distribution 

of the evolved functions. There is correlation between the number of patterns and the 

performance of the network, with larger hidden layers showing better performance. The 

results also suggest that an increase in the number of hidden nodes with Gaussian, 

bipolar sigmoid (or hyperbolic tangent) and Sinus functions improved the performance 

of the neural network, this coincides with a decrease in the number of hidden nodes 

with sigmoid functions.
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Fig. 52 - Graph detailing the comparative performance of activation functions in the hidden layers of the 

evolved networks.

Evolving the output layer seems to have less influence. A wide variety of activation 
function combinations are observed but there is no correlation between the activation 
functions and the performance of the evolved neural networks. Sinus and linear 
activation functions are most prevalent, few Gaussian or sigmoidal activation functions 

were evolved.

The dataset used in these experiments has four distinct regions (discussed in some detail 
in section 5.1.5) and provide a clear indication of the performance in each of these 
regions. The results (shown in Fig. 53) indicate that all three networks demonstrate 
similar performance on the inner constrained region (shown as the green region in Fig. 
34) though the pure evolved activation function network is least capable. In the second 
region inside the constraint but adjacent to the boundary (shown in red in Fig. 34) 
Sigmoid linear and spline linear networks display similar performance, and purely 
evolved neural network give lower error. These regions are within the constraint 
boundary and so the corrective response in both cases is the identity quaternion.
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The invalid regions where a more complex mapping exists i.e. from the invalid rotation 
to the correction produced more interesting results. The sigmoid-linear neural network 
out performs the purely evolved activation function neural network by 0.044 and the 
spline activation function neural by 0.028 in the region adjacent to the boundary on the 
invalid side (the region depicted in pink in Fig. 34.). The evolved spline neural network 
outperforms the evolved activation function neural network by 0.027 and the sigmoid- 
linear neural network by 0.049 in the invalid region furthest from the boundary (as 
shown in Fig. 53.) In general the spline activation function gives very similar results to 
the sigmoid-linear but out performs it in the outer region (Fig. 53). Despite this fewer 

nodes are required as shown in TABLE XIII.

The comparison of sigmoid and (evolved template based) cubic spline activation 
functions in the hidden layer (as shown in Fig. 54,) indicates that in several cases 
networks with a cubic spline hidden layer were out performed (on average) by their 
sigmoid based counterparts. These include the spherical boundary in three-dimensional 
space (a difference of 1.61E-04) and both quaternion examples (a difference of 7.59E- 
05 for the regular boundary and 1.52E-04 for the irregular boundary).
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Fig. 54 - A comparison of evolved spline and sigmoid activation functions in the hidden layer.

The manifestation of this improvement in performance can be clearly identified by 
observing the error around the boundary, paying close attention to the region that 
corrects to the discontinuity. This is shown in Fig. 55.

(a)

Fig. 55 - The figure on the left (a) represents the spline activation function neural network while that on 
the right (b) represents the sigmoid linear neural network. The same datasets were used in each case the 
reduction in the number of red points indicates that a significant improvement has taken place in the area 

around the discontinuity.
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Comparing the neural networks evolved by the genetic algorithms it is noted that the 
number of hidden nodes in the cubic spline activation function network has in each case 
fewer nodes than its sigmoid-linear counterpart, as shown in Fig. 56.
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Fig. 56 - A graph showing the effect of activation function variation on the topologies and training 

requirements of the evolved neural networks.

5.3 Discussion

5.3.1 Discontinuous Vector Fields Representing Three-Dimensional 

Constraints

The results of varying the maximum number of hidden nodes evolved by the genetic 
algorithm indicate that increasing the size of the neural network increased performance 
on the training and test set until the maximum number of evolved hidden nodes reached 
around sixty. Here the neural network began to 'over train'. Mehrotra, Mohan, and 
Ranker describe this as the neural network 'memorizing' the test set after which it is 

unable to generalize when faced with fresh examples [49].
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The increase in the number of hidden nodes leads an increase in the number of links. 

This is to be expected as the number of links is related to the number of hidden nodes. 

There is also an increase in the number of training epochs evolved. This indicates that as 

the number of hidden nodes increased the amount of training required increased this 

confirms a connection between these two factors highlighted by Huber, Mayer and 

Schwaiger[81].

Varying the number of epochs evolved by the genetic algorithm demonstrates that 

increasing the training epochs also leads to an increase in performance. The shape of the 

plot (shown in Fig. 49) indicates that the gradient of performance decreases as the 

number of epochs increases. It can be inferred from this that at some point increasing 

the size of the network will no longer lead to a productive gain in performance. The 

network would over train giving further increases in performance on the training set 

only indicating a reduction in the neural networks generalisation ability. A trade off 

exists between the time taken to training the network (greatly affected by the number of 

epochs evolved) and the network performance.

Increasing the maximum number of epochs that the genetic algorithm can evolve leads 

to an increase in the number of epochs evolved in each case. This indicates that 

additional epochs would yield networks with higher performance. There is also a 

corresponding increase in the numbers of nodes and links, indicating that bigger 

networks were not previously evolved due to a lack of epochs to train them. This 

confirms the earlier results indicating a link between the number of hidden nodes and 

the volume of training required.

Increasing the number of generations increases the length of the genetic algorithms 

search and with each additional generation it approaches a maximum fitness, (the best 

network it can find to suit the problem.) In support of this the results show that the as 

the number of generations increases the performance of the neural networks evolved on 

both the test and training sets is increased. The increase in performance however is less 

each time indicating that a saturation point exists where an increase in the number of 

generations will have little effect on the performance.

An increase in the number of links, hidden nodes and training epochs evolved is 

observed as the number of generations over which the neural network is evolved
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increases. Evidently as the evolutionary process continues the networks evolve towards 

the evolutionary constraints and an improvement in performance. These results 

reinforce those discussed earlier regarding the number of hidden nodes, and epochs.

An increase in the number of training patterns provided to train the three-dimensional 

discontinuous vector field representing a spherical constraint in three-dimensional space 

appears to improve the results in terms of their average MSB. As the number of training 

patterns was increased the improvement in performance decreased indicating a 

saturation point. This was accompanied by an attenuated increase in the number of 

training epochs required.

Increasing the size of the population with a fixed number of generations appears to 

improve neural network performance up to a saturation point. At this point the number 

of generations becomes the limiting factor and an increase in population size no longer 

produces an increase in performance. A large population requires more generations to 

evolve but produces better neural networks, as it does not suffer from allele loss. 

Increasing the size of the population increases the performance as allele loss is reduced 

while there are sufficient generations to evolve the population.

5.3.2 Discontinuous Vector Fields Describing Regular and Irregular 

Boundary Quaternion Constraints

Investigating performance issues for these vector fields representing quaternion based 

joint constraints with complex boundaries provide an opportunity to assess the 

performance increases and to compare the regular and irregular boundaries based on the 

complexities of the neural network evolved to learn them.

Increasing the maximum number of hidden nodes evolved seems to improve both the 

training set and the test set, indicating that the point where over training occurs has not 

been reached and further performance increases may be possible. A significant 

difference in the average MSE between the regular and irregular boundaries is observed 

and that this distance is maintained, further demonstrating that the irregular boundary is 

more complex than its regular counterpart.
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An increase in the maximum number of evolved hidden nodes, leads to a proportional 
increase in the number of links, accompanied by an increase in the number of evolved 

training epochs required. This confirms that an increase in nodes results in an increased 
requirement for neural network training epochs.

Increasing the number of training epochs increases the performance, as for three- 

dimensional vector based constraints. The gradient of the improvement decreases, 

indicating a saturation point at this point the network will over train that is, the 
performance on the training set will continue to increase while the performance on the 
test set will decrease as the neural network looses its ability to generalise. The results 

for the four-dimensional vector fields representing the regular and irregular quaternion 
boundaries remain an almost identical distance apart, indicating that the improvement to 

both networks is comparable. There is little or no effect on the size of the networks 
evolved as observed for the three-dimensional vector fields representing spherical 
constraints.

The effect of the number of training patterns appears to be different for discontinuous 
vector fields representing regular and irregular quaternion rotational boundaries. For 
irregular boundaries the results are similar to the vector fields representing spherical 
constraints described earlier in this chapter. There appear to be some anomalies in the 
results attributed to averaging multiple neural networks results. In the irregular 
boundary case the number of hidden nodes and links increase as the number of patterns 

increases. Increasing the number of patterns increases the complexity of the constraint, 
due to the irregularity of the boundary. As more patterns are added the boundary is 
more clearly defined and the genetic algorithm evolves networks capable of dealing 

with this higher level of complexity.

In the case of regular boundaries there is no significant performance improvement as the 
number of patterns increases and there is no increase in the number of hidden nodes, 
links or epochs. The number of patterns does not affect the complexity in this case.

The performance of the neural network was significantly affected by the order of the 
training patterns, attributed to the global learning properties of the multi-layer feed­ 

forward perceptron. Presenting the invalid patterns first led to poor performance, 

indicating that the valid patterns affected the learning that had taken place for invalid
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patterns. Similar results are observed in the random case for the same reason. The 

performance is greatly improved when the valid patterns are presented first, indicating 

that the valid patterns have a disruptive effect on the learned invalid patterns but not 

vice versa. Disruption of previously learned patterns to this extent is termed 

'catastrophic interference', it is a radical manifestation of a more general problem 

termed the 'plasticity-stability' problem [111]. This is summarised by French [111] as 

being the problem of designing "a system that is simultaneously sensitive to, but not 

radically disrupted by, new input." A reduction in the overlap of internal distributed 

representations reduces the extent of catastrophic interference [111]. As the back 

propagation-learning algorithm updates all nodes, not just those associated with the 

erroneous response it appears the magnitude of the updates required in the case of the 

valid inputs are sufficient to erase previously learned patterns but not vice versa.

In distributing the training patterns it was discovered that an even distribution gives a 

much better result than clustering the points at the boundary, which led to sparse regions 

away from the clusters. The evenly distributed data set provides clear representation of 

the mapping as a whole without the focus on individual sections, improving the 

generalisation of the neural networks evolved. This indicates that the high concentration 

of patterns depicting the local features had an effect on the global learning of the 

network.

Experiments investigating the effect of neuron activation function on neural network 

training show that pure evolution of the activation function can provide distinct 

advantages over neural networks with fixed sigmoid activation functions. Experiments 

show that in some regions the pure evolution neural network is better suited than the 

other approaches investigated (Fig. 53), though overall its MSB is higher than that of 

the evolved sigmoid hidden layer neural networks.

The activation functions evolved in the pure evolution approach are interesting in 

themselves some correlation can be identified between the functions evolved and the 

result. Results improve with the inclusion of both Gaussian and bipolar sigmoid 

(hyperbolic tangent) functions, researchers have found mixed activation function 

networks with two layers composed of these functions to perform well [53, 65, 83, 85]. 

Researchers have used the hyperbolic tangent, or bi-polar sigmoid function in the field 

of function approximation [54, 55, 57].
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Shibata [85] used a mixture of Gaussian and Sigmoid activation functions and found the 

Gaussian function added a local learning component to the global learning of the feed 

forward sigmoid neural network. The results show that evolution tends towards an 

increase in Gaussian activation functions to improve performance, though an increase in 

local learning cannot be identified. This is possibly due to the increased number of free 

variables the genetic algorithm needs to optimise an increase in generations may 

provide this improvement.

The results of the evolved spline activation function experiments demonstrate that on 

average, template based evolved cubic spline activation functions offered some small 

improvements over their sigmoid hidden layered counterparts. This seems to be 

reversed when error is very high (when the mapping is at its most complex). In isolation 

this slight improvement in performance means very little, however combined with a 

lower network size for each of the spline networks this result becomes significant.

The regular boundary results with varied activation functions (shown in Fig. 53,) 

indicate that evolving cubic spline activation functions reduces the three-dimensional 

error in some regions but not in others. This may be an indication of better local 

learning in this region, however in the regions where local learning should have the 

largest influence (those regions closest to the boundary) the results do not support this.

In earlier results regarding irregular boundaries it was found that performance in the 

concave section was particularly low these were attributed in part to the poor local 

learning capabilities of the sigmoid activation function neural network. Spline activation 

function neural networks have been shown to have better local learning properties than 

their sigmoid-based counterparts [63, 64, 81, 90, 93-95]. The results support this with 

the evolved spline activation function neural network providing an improvement in the 

neural network performance reflected both by the MSB (Fig. 54) and the Pythagorean 

error (visualised as coloured points in Fig. 55).

Several researchers have identified improvements in performance when using spline 

activation functions, however there seems to be some disagreement on the origin of this 

performance increase. A number of authors [84, 87, 97] indicate that the adaptive spline
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activation functions provide improved local learning as in the case of mixed activation 

function neural networks such as the gauss-sigmoid neural network [85].

Huber, Mayer and Schwaiger [63, 64] found that using spline activation functions 

reduced network complexity and increased performance for simple examples. They 

attribute this to a shift in complexity from the neural network (number of hidden nodes 

and links) to the activation functions of the hidden layer. In this case where the size of 

the hidden layer is less than optimal (due to the constraints imposed to reduce training 

times) the complex hidden layer neurons of the spline activation function neural 

networks give them a slight advantage over the sigmoid linear neural network.

5.4 Conclusions

Significant improvements can be made by removing the constraints placed on the 

evolution and training of the networks to minimise training times. The effect of each of 

these parameters on the evolved neural network is dictated by the complexity of the 

mapping.

The neural network and genetic algorithm performance was improved towards some 

maximum by increasing the duration of each, i.e. the number of epochs the neural 

networks were trained for and the number of generations over which the neural 

networks were evolved. This was also the case with regards to the population size - a 

larger population with more diverse individuals when provided with sufficient 

generations over which to evolve produced an improvement in the results.

In each experiment the number of hidden nodes tended towards the maximum, despite 

the secondary fitness function (fewer links) attempting to limit this rise. This seems to 

indicate that many more neurons are needed to obtain the maximum performance from 

evolved neural networks with sigmoid activation functions in their hidden neurons. 

Increases in the number of hidden layer neurons were accompanied by increases in the 

number of training epochs, indicating that an increased number of weight updates were 

required to sufficiently train the additional neurons.
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Increasing the number of training patterns in most cases improves the results by 

providing clarification of the mapping. The network complexity and training 

requirement (evolved training epochs) did not increase, demonstrating that the mapping 

complexity was not changed. In the case of irregular boundaries, clarification of the 

mapping led to an increased complexity as the irregularities of the boundary became 

more clearly defined.

The pattern order selected for use in earlier experiments - valid patterns followed by 

invalid patterns, out performs both a random and an invalid patterns first approach. 

Learning one region has a disruptive effect on the other this is caused by the single set 

of weights used within the network and is described as catastrophic interference [111]. 

It was found that learning the invalid patterns after the valid patterns is less disruptive 

than learning the invalid first or the patterns in random order, this suggests that this 

arrangement of patterns produces a reduction in the overlap of internal distributed 

representations reduces the extent of catastrophic interference thus improving 

performance as suggested by French [111].

This chapter also shows that improvements can be made by using evolving neuron 

activation functions to suit the purpose. What the results do not clarify is the source of 

these improvements. Does the specialisation of the neurons improve the local learning 

[84, 87, 97] or the scope for additional complexity created when some of the network 

complexity is transferred to the activation functions [63, 64, 81]? Further investigation 

is needed to explore this question.

In a practical context a neural networks with smaller computational cost can be trained 

with the benefit of good generalization [81] an important consideration in any practical 

application. Further improvements could be made by the use of a gating network as 

used in the work of several other researchers [136-140]. Here the approximation of 

discontinuous functions is achieved by a number of continuous approximations 

separated at the discontinuities. However to achieve this an appropriate expert is 

required to differentiate between valid and invalid regions. Such an expert may be 

useful in improving the performance of the neural networks by limiting their application 

to invalid constraints. The following chapter will investigate the training of neural 

networks to group rotations as valid or invalid.
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6. Binary Constraints in S3 Space

Though the focus of this work lies in creating corrective constraints, binary constraints 

are implemented by a number of authors, either alone [6] or as a precursor to corrective 

constraints [2, 4, 5, 36]. These are simple equality type constraints in the case of Euler 

angles and more complex point in polygon tests in the case of two and three- 

dimensional polygon representations (for example [36]). Lee [6] implemented a set of 

simple binary quaternion constraints which could easily be combined into more 

complex constraints. Herda [4, 5] and Johnson [2] implemented binary quaternion 

constraints as a precursor to corrective constraints. These approaches all required the 

projection of the unit quaternions to a lower dimensional space, requiring additional 

processing and introducing singularities.

From a neural network point of view the mapping of an invalid constraint to a valid one 

can be considered as the learning of a discontinuous vector field. The problem of 

identifying valid and invalid constraints may be considered a classification problem. 

There are many machine learning techniques capable of solving multi-dimensional 

classification problems [49, 141]. Binary constraints in a number of dimensions were 

implemented using a Support Vector Machine (SVM) neural network.

6.1 Methodology

A number of experiments were designed to evaluate the use of SVMs for configuration 

classification. Initial experiments concerned the classification of one, two and three- 

dimensional vectors representing constraints of various sizes. With each increase in 

spatial dimensionality there was an accompanying increase in the complexity of the 

constraint, one-dimensional equality constraints were followed with circular constraints 

then spherical constraint. Encouraged by the results of these more complex quaternion 

based constraints, limited to regular shaped constraint boundaries similar to those of Lee 

[6] were attempted.
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Experiments were also carried out towards finding the most appropriate kernel function 

and improving on the results of the quaternion-based experiments by increasing the 

number of patterns used in training.

6.1.1 Dataset Generation

The dataset generation software created to model corrective constraints was modified in 

each case such that it produced a single binary output indicating which of the two 

groups (valid or invalid) the input data represented. The dataset creation processes for 

one, two and three-dimensional constraints are detailed in sections 3.1 and those for the 

quaternion based constraints in section 4.1.

Two datasets were created for each experiment, the training set was used to train the 

SVM and the test set provided measurement of the SVMs generalisation capabilities. 

SVMLight provides a plethora of statistics regarding its performance on each test set 

and the success of the training.

6.1.2 SVMLight

SVMLight is a state of the art SVM implementation, it is based on the original ideas of 

Cotes and Vapnic [73] refined in conjunction with other researchers [66, 67, 71, 73]. 

The SVM methodology was discussed in section 2.3.1, SVMLight implements these 

principles with extensions to improve computation efficiency.

These improvements allow the use of a larger set of training patterns which would 

otherwise be limited by the size of the matrix containing the training patterns and more 

conventional computational improvements such as cashing [72]. The development of 

SVMLight is discussed in detail by Joachims [72] whose training algorithm;

- Decomposes the training set into manageable chunks avoiding the problems 

of memory allocation with large training sets.
- Successively reduces the size of the training set, by removing those patterns 

most unlikely to become support vectors.
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- Implements computational improvements such as caching.

SVMLight was developed by T. Joachims who has published substantial material on 

improving the performance of the SVM [72]. He has very kindly made his work 
available for non-commercial purposes.

6.1.3 Training Configuration

Unlike the earlier experiments with neural networks and genetic algorithms there is no 

random component in the training process and so two SVMs trained with the same 

training set will give the same result hence there is no requirement to repeat the results 

to obtain an average.

SVMLight provides several different kernel functions including linear, polynomial, 

sigmoid and radial basis (Gaussian). Earlier research discussed the power of different 

activation functions in a neural network setting this is also true in terms of kernel 

functions for SVMs [71].

6.2 Results

The results show that the SVM is able to classify the joint configurations as valid or 

invalid to a high degree of accuracy. In the case of one-dimensional constraints shown 

in Fig. 57 it is noted that for small constraints the linear kernel out performed the other 

kernel types this trend however was reversed above sixty degrees. The results for 

polynomial, radial basis, and sigmoid kernel types were very similar though where the 

results differ significantly the sigmoid kernel function appears to correctly classify the 

highest percentage of patterns.
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Fig. 57 - Performance of the SVM on a one-dimensional constraint.

The performance of the SVM decreases between one-dimensional and two-dimensional 
vector based constraints. However the pattern of results remains the same, there is a 
steady increase in performance as the size of the constraint increases for the linear, 
sigmoid and polynomial kernels. The opposite is true in the case of the linear kernel 
where performance decreases as the size of the constraint increases. The performance of 
the polynomial and radial basis kernel functions are very similar to each other perhaps 
indicating some advantage provided by a common aspect of their shape. These results 

are shown in Fig. 58.
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Fig. 58 - Performance of the SVM on a two-dimensional (spherical) constraint.

Moving to three dimensions there is a further decrease in the performance of the SVM 
compared to two and three-dimensional constraints. The polynomial and radial basis 
kernel functions again out perform the sigmoid and linear kernel types. Though for all 
kernel functions the results have decreased compared to earlier results as shown in Fig. 
59. For the polynomial and radial basis kernel functions an increase in performance is 
observed as the size of the constraint region increases. However for linear and sigmoid 
kernel functions there are less definite variations, though there are indications of an 
overall increase in the sigmoid performance with range and a decrease in the linear 

kernel function performance.
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Fig. 59 - Performance of the SVM on a 3D constraint

Moving to more complex quaternion based constraints an improvement is observed in 
performance, a similar improvement is observed in neural networks trained for 
corrective constraints between constraints of the same complexity. The performance for 
the quaternion-based constraint (a two dimensional regular boundary on the surface of a 
three dimensional sphere, described using quaternion) demonstrates a significant 
improvement in performance. The sigmoid kernel function does not perform very well 
with a maximum correct classification of less than 60%. The results for linear, 
polynomial and radial basis kernel functions demonstrate much better performance and 
all follow a similar pattern. Their results are almost symmetrical around a ninety 
degrees radius as the constraint covers half the sphere hence the size of the regions is 

equal. These results are shown in Fig. 60.
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Fig. 60 - Performance of the SVM on a quaternion based constraint with a regular boundary.

Attempts were made to improve on these results by increasing the number of patterns 
used in training. A constraint of twenty degrees radius was selected as the results 
showed scope for improvement. The results show that increasing the number of 
training patterns does make some improvement in the case of the linear, polynomial and 
radial basis kernel functions, but not however in the case of the sigmoid function 
performance decreases as the number of patterns increases. The increase in these results 
seems to attenuate as the number of patterns increases hence the benefits of increasing 
the number of patterns are negligible above a threshold.

6.3 Discussion

The results show that SVMs are capable of classifying valid and invalid vectors in a 
vector field in one, two and three dimensions and indicate an increase in problem 
complexity (by their decrease in performance,) as the dimensionality of the constraint 

and the problem space increase.

Polynomial and radial basis kernel functions perform consistently well for each 
however there is a decrease in their performance as the number of dimensions and
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therefore complexity increases. Sigmoid kernel functions perform poorly for all but the 

one-dimensional constraint and the performance of the linear kernel function 

(effectively not using a kernel transform) decreases in its effectiveness as the number of 

dimensions increases.

Considered in terms of the distribution of the points in their respective problem space, it 

is clear why the performance of the linear separator decreases, moving to two and then 

three dimensions the boundaries formed are circular and spherical respectively and 

therefore better separated when moved into a higher dimensional space.

The local learning capabilities exhibited by neural networks which used Gaussian or 

polynomial activation functions is well established in the literature [85, 96], and 

likewise the poor local learning exhibited by feed forward neural networks with sigmoid 

activation fictions [85]. The limitations of this kernel type have been acknowledged, 

though due to their global learning capabilities in neural networks their development 

and inclusion in SVMs is an open issue [142].

There is a definite contrast between the results of the one, two and three-dimensional 

constraints and those of the quaternion based constraints. Thought there are only two 

dimensions related by the constraint several additional constraints are required by the 

quaternion representation. It appears however that the neural network finds it easier to 

classify the quaternion constraints than any of the previous constraints with fewer 

dimensions. This indicates that the increase in dimensionality of initial mapping 

provided better results when moved to a higher dimensional space by the kernel 

functions.

There is a strong indication that the density or distribution of data changes significantly 

between three and four dimensions giving a decease in classification error. Current 

results do not provide a basis for quantifying these factors and this may be considered in 

future work.

With regards to the performance of the SVM it was found that the polynomial and RBF 

kernel types were superior and provided the best results in all cases. It was also found 

that the effect of increasing the number of patterns improved classification results
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though there were no significant gains after two thousand patterns. This is the result of 

increasing the number of support vectors present in the dataset.

6.4 Conclusions

In conclusion SVMs are capable of implementing constraints in one, two and three 

dimensions to a reasonable degree of accuracy. More importantly they can classify valid 

and invalid quaternion based orientation constraints like those suggested by Lee [6] to a 

very high degree of accuracy. Unlike the approach of Lee no decomposition or 

reformatting of the quaternion representing the joints rotation is required. SVMs 

provide a significant advantage in that they can be created based on subject data rather 

than being a combination of abstract shapes.

Furthermore it can be concluded that the quaternion rotational representation offers 

further advantages in this case as due to its higher dimensionality the SVM is more 

successful in defining a boundary between valid and invalid points in the high 

dimensional kernel space.
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7. Discussion

This work has focused on neural network learning of discontinuous multidimensional 

vector fields applicable to the implementation of corrective angular constraints to 

simulate anatomical joints. Initially constraints represented by vector fields in one, two 

and three dimensions were studied as a precursor to quaternion representations. An 

initial investigation was also carried out into the neural network classification of valid 

and invalid vectors representing joint configurations, building from low dimensional 

representations to those in quaternion space.

7.1 Binary Constraints

It has been found that Support Vector Machines (SVMs,) are capable of classifying 

valid and invalid vectors in a vector field in one, two and three dimensions. The results 

here indicate an increasing complexity as the number of related dimensions in the 

constraint increase.

As the complexity of the constraints increases in terms of the related dimensions that 

describe the constrained region, it was found that the suitability of the tested SVM 

transfer functions changes. One-dimensional constraints can be separated using a 

support vector machine with linear kernel functions, though these kernels are incapable 

of separating more complex constraints in two and three dimensions. Radial Basis 

(Gaussian) and polynomial activation functions have shown the best performance 

indicating that applying these kernel transformations makes the data easier to separate in 

the more complex cases.

The Support Vector Machine classifies the quaternion based binary constraints more 

accurately than constraints with fewer dimensions. This indicates that the higher 

dimensionality of the quaternion representation provides better results when moved to a 

higher dimensional space by the kernel functions. This improvement may indicate that 

the density or distribution of data changes significantly between three and four
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dimensions giving a decrease in classification error. The quantification of these factors 

is a subject for further study.

The performance of the SVM was improved by increasing the number of patterns 

though no significant increases were observed after two thousand patterns. This is the 

result of increasing the number of support vectors present in the dataset, which in turn 

improves the positioning of the separating function.

7.2 Corrective Constraints

Corrective constraints in all cases involve genetically evolved neural networks learning 

a discontinuous vector field. In initial experiments simple one, two and three- 

dimensional discontinuous vector fields representing constraints with continuous 

boundaries were trained. A discussion of these simple cases follows moving towards 

quaternion-based constraints.

Each increase in the dimensionality of the discontinuous vector field results in the 

inclusion of additional relationships between dimensions these define both the vector 

field and implicitly the discontinuity. The neural network requires sufficient patterns to 

learn both the vector field and the discontinuity. As increases in the dimensionality of 

the vector field and constraint were not matched by increases the number of training 

patterns there are fewer patterns present representing each relationship and consequently 

the neural network performance decreases, as shown in Fig. 9. Experiments undertaken 

to improve the performance of the neural network showed that increasing the number of 

patterns increased performance (Fig. 40).

Monitoring the evolution of the networks formed in each case showed that as the vector 

field and discontinuity increased in complexity more complex networks were required 

to maintain performance. This increase is less pronounced between results for 

discontinuous vector fields representing constraints in two and three-dimensional space 

with constrains of equal dimensionality to the problem space, as shown in Fig. 9. This is 

attributed to the constraints imposed on the maximum hidden nodes evolved (imposed 

to restrict the temporal cost of experiments.) Removing the hidden node constraint
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where more complex networks were required resulted in an increase in performance 

Fig. 36.

The decrease in performance in relation to the increasing size of the discontinuous 

region (representing the constrained region,) can be attributed to the distribution of 

training patterns. Large valid regions are easily learned as the majority of inputs map to 

a single vector however, the reduction in exposure to patterns outside this region (where 

the input vector is mapped to a correction) reduces neural network exposure to complex 

inter-relationships between vector elements and between input and correction vectors. 

The technique is applicable to various sizes of constrained region and that despite the 

increase in error with the size of the constraint as the overall MSB of the results is low, 

the results are shown Fig. 9.

The evolution and training parameters of the neural networks were initially limited and 

these limitations were found to affect performance and became the subject of further 

investigation (detailed in Chapter 5). Several parameters with a direct effect on 

performance were identified. Increasing the number of generations allowed further 

evolution and improving results (in Fig. 43.) Several limiting factors such as the number 

of nodes and epochs evolved further towards their constrained maximums.

Increasing the limit on the number of hidden nodes increased performance. Resulting in 

an increase in the number of training epochs required these additional epochs being 

required to refine the additional nodes. Increasing the number of training patterns and 

training epochs improved the neural networks performance though the scale of the 

improvements decreased. Extending the adaptive processes, i.e. evolution via the 

number of generations and neural network training via the number of epochs leads to an 

increase in performance. Increasing the population size produces a steady increase in 

performance due to the reduction of allele loss until the number of generations required 

to evolve the population became a limiting factor.

Having considered the training of less complicated vector fields (those with fewer 

dimensions,) focus moves towards vector fields representing regular two-dimensional 

boundaries on the surface of a unit sphere. Here vectors represent both the initial 

position and correction. A high rate of correct approximation was observed for a range 

of constraint radii (as shown in Fig. 9). This technique can be used to implement simple
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angular constraints similar to spherical polygon [36] and cone based [41] constraints 

considered in the literature review (Chapter 2).

The error recorded for these neural networks is higher that of the circular boundary in 

two-dimensional space and that of the spherical boundary in three-dimensional space. 

Despite the dimensionality of the input space being the same as that of the output space 

the constraint itself is more complex. This confirms that the complexity of the vector 

field discontinuity has an effect on the neural networks performance. It is also the case 

that an increase in dimensionality of the problem space has an effect on performance for 

networks of limited size as indicated by Grzeszczuk, Terzopoulos and Hinton [56].

The experiments for vector fields representing a circular constraint on the surface of a 

sphere were extended such that the corrective component was no longer a vector but a 

quaternion representing the required corrective rotation. A decrease in MSB is observed 

when the output component is encoded as a quaternion and the error is more consistent 

(as shown in Fig. 9.) Examination of the three-dimensional Pythagorean error (as 

shown in Fig. 11,) identifies isolated patterns of high error. These errors can be 

attributed to a lack of test data in the region of an additional discontinuity by visualising 

them in the context of the training and validation patterns.

This additional discontinuity is opposite the valid region where points are equally close 

to opposite sides of the spherical boundary. To simplify future discussion discontinuity 

between the valid and invalid region is described as the boundary discontinuity and the 

discontinuity in the region opposite the valid region equidistant to two positions on the 

boundary as the correctional discontinuity. The correctional discontinuity results from 

the corrections in three-dimensional space and is implied in quaternion space like the 

boundary discontinuity. The true effect of this discontinuity is difficult to judge from 

the results presented as the metrics used (MSE and Pythagorean distance between 

corrected virtual limbs) both measure against the test set and not the proximity to the 

boundary of the corrected orientation.

This explains why the high error patterns are isolated each is similar to neighbouring 

patterns corrected to the other side of the sphere. The neural network successfully 

corrects the point to the boundary, however, as this is not the boundary indicated by the 

test set a large error is reported.
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Orientations effected by the correctional discontinuity are some distance from the 

boundary, in a practical application it is unlikely that the limb would reach these 

extremes before being corrected. Improvement in neural network training may partially 

eliminate these errors and the creation of an error metric that recorded error in relation 

to the distance of the virtual limb from the boundary would give a more accurate 

representation of network error. The networks created here could be used to implement 

corrective constraints for some of the spherical polygon and cone boundaries described 

by earlier researchers [36, 40, 41].

Continuing with the two-dimensional constraint boundary on the surface of a unit 

sphere quaternions are used to represent both current rotation of the limb and the 

required correction. Though the complexity of the discontinuity represented remains 

constant the dimensionality of the vector field increases. A direct comparison of the 

MSE of the discontinuous vector fields in S2 with those in S 3 (quaternion) is 

meaningless as the latter represent rotational and the former proximal error. An increase 

in the MSE of the neural network is observed as the complexity of the vector field 

increases.

Neural networks can be successfully evolved and trained to learn discontinuous vector 

fields in quaternion space, which produce quaternion rotations to correct a given 

quaternion rotation to a regular constraint boundary. Thus implementing similar 

boundaries to those of Gyi et al [40], Korein [36], and Lee [6]. The approach 

introduced here does not require the dimensionality of the quaternion to be reduced 

unlike other joint constraint approaches [4, 5, 46]. Reducing the dimensionality of the 

quaternion representation incurs a similar penalty to converting between rotational 

formats for constraint and introduces singularities. Also unlike the approaches of Lee 

[6] and Liu and Prakash [3] there is no requirement to decompose the quaternion into 

quaternions representing planar rotations, this again incurs a similar penalty to 

converting between parameterisations.

Discontinuous vector fields trained to imply a constrained circular region of various 

radii produces positive results with average errors less than one percent using networks 

with less than twenty hidden nodes. An increase in error matched by an increase in 

network size indicates an increased complexity between constraint sizes of 45 and 135

157



degrees in radius (Fig. 18). PCA reveals that there are significant changes in the 

distribution of the quaternion in quaternion space that account for the increase for this 

angular range, the orientation of the principle components of the dataset change as 

shown in Fig. 18. These changes in the distribution of patterns in quaternion space may 

increase the overlap of internal distributed representations French suggests this can 

increase the extent of interference between patterns which inhibit learning [111].

The regions of the vector field representing constraint correction and the constrained 

region are continuous with a single discontinuity between them. This is with the 

exception of the vector field representing the circular constraint boundary on the surface 

of a unit sphere. Here a discontinuity is present in the region of the vector field 

representing the correction due the corrective discontinuity discussed earlier. This 

discontinuity is implied within the problem space and so the neural network reports a 

high error, as the network results do not match the ideal. Despite the high error reported 

by both MSB and three-dimensional metrics the corrections made by the neural network 

are to configurations close to the boundary in most cases.

As the complexity of the evolved networks increases with respect to the range, the 

standard deviation of the number of hidden nodes evolved decreases. This combined 

with the high average number of hidden nodes indicates all the networks evolved for 

these ranges were close to the constrained maximum. Limiting the number of hidden 

nodes in combination with the regularization function prevented an increase in 

complexity and contributed to the increase in error.

The axis chosen to mark the centre of the constraints has an effect on the results. PCA 

can be used to link this to the distribution of patterns in quaternion space this becomes 

more regular as the constraint centre is moved from the y-axis to x-axis and from x-axis 

to the z-axis. According to the Pythagorean metric a dataset with a more regular shape 

gives superior results as in the case of quaternion ambiguity. A possible reason for this 

is that the more regular datasets are better distributed in quaternion space French [111] 

suggests that increasing the distribution of patterns reduces interference.

The order in which the patterns were presented to the neural network provided an 

interesting insight into the learning process. The patterns were presented with valid 

patterns followed by invalid patterns, and results (TABLE X) have shown that this out
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performs datasets with both a random and an invalid patterns first ordering. Learning 

one region clearly has a disruptive effect on the other this is caused by the single set of 

weights used within the network and is described as catastrophic interference [111]. 

Learning the invalid patterns after the valid patterns is less disruptive than learning the 

invalid first or the patterns in random order, this suggests that this arrangement of 

patterns produces a reduction in the overlap of internal distributed representations 

reduces the extent of catastrophic interference thus improving performance as suggested 

by French [111].

The Pythagorean error between the ideal correction and the neural network correction 

shows that the network performs well for all but a few patterns. Only 3.7 x lO'Vo of 

patterns demonstrated an average error greater than 2% of the maximum possible error 

(with an average neural network size of 16 hidden neurons, and an average of 471 

training epochs). In practice where these patterns occupy regions a large distance from 

the constraint this is not critical as it is unlikely in kinematics systems that the joint 

would move far beyond the boundary between corrections. It is important to note that 

these plots (shown in Fig. 21) represent the average error over the networks, when 

observing the plots for all five separately individual neural network performances vary 

from region to region.

The Pythagorean error is generally highest at the boundary discontinuity and at the 

correctional discontinuity. Similar results were observed in the case of circular 

boundaries on the surface of a unit sphere described using vectors (shown in Fig. 11,) 

and that ambiguity is the cause of many of the problems associated with neural network 

training.

Sparse data offers an explanation for a number of individual high error results 

(highlighted in Fig. 24). However despite the high error the correction is to a 

configuration close to or inside the boundary, in practice iterative approaches could be 

used to improve these results. Sparse regions of data had a similar impact on 

performance in earlier experiments of lower dimensional order.

The results demonstrate that evolved neural networks of low complexity can be used to 

implicitly model simple spherical joint constraints similar to those modelled in other 

approaches [6]. However the evolved neural network constraints described here are able
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to provide the necessary correction without reducing the dimensionality of the 

quaternion like contemporary approaches [2-5].

Having considered discontinuous vector fields representing regular boundaries (circular 

boundaries) on the surface of a unit sphere the discussion turns to constraints with 

irregular boundaries on the surface of a unit sphere. An increase in both neural network 

error and three-dimensional Pythagorean error is observed compared with regular 

boundaries. High error is once more observed between valid and invalid configurations 

(at the boundary discontinuity), opposite the boundary (at the correctional 

discontinuity,) and in areas of sparse training patterns.

High error recorded around the convex region of the irregular boundary is attributed to 

the complexity of the vector field in this region. In the centre of each concave region of 

the boundary is another vector field discontinuity as quaternions are proximally 

equidistant from valid configurations on either side, (these are referred to as concave 

region discontinuities.) As in the case of the correctional discontinuity the network may 

produce a correction that returns the limb to the boundary but not to the side of the 

boundary indicated by the test set, resulting in a high Pythagorean error.

Additional irregular boundaries demonstrate the capabilities of neural networks in 

learning discontinuous vector fields to represent anatomical boundaries. The error in 

three dimensions is low and there is a good correlation with the ideal corrections. An 

interesting limitation is identified, where the boundary of the discontinuity is concave or 

convex these local features are sometimes lost. This can be attributed to two factors, the 

first being pattern distribution. There is little difference in shape between the large (Fig. 

32 (b)) and small (Fig. 32 (c)) boundaries yet a noticeable difference in performance is 

observed. This is attributed to the density of patterns, the smaller boundary has the same 

number of patterns within the constraint but confined to a smaller region.

The second factor that may affect the error at the discontinuous boundary is the learning 

method of the sigmoid-based neural network. This demonstrates good global learning 

that is it learns large general mappings well. It is however insensitive to local features 

such as the concave and convex regions of the boundary, this results in the learned 

boundary being an attenuated version of the original.
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An interesting discovery was made regarding the vector field representation of 

quaternion rotational constraints. The regular boundary experiments (which generated 

data sets by converting a random rotation to a quaternion) generated all valid and the 

majority of invalid quaternion on one half of the quaternion hyper-sphere. There was no 

ambiguity in quaternion space as there was only one boundary to which all the 

quaternions were corrected.

There is ambiguity in the rotations represented by unit quaternions, in that the 

quaternion sphere represents 4n rotations. In an attempt to improve performance this 

ambiguity was removed by forcing the quaternion to one side of the quaternion hyper- 

sphere. The results deteriorated in performance for larger constraints, this is attributed 

to a change in the continuity of the continuous parts of the vector field and or the 

implied boundary in quaternion space. The increase in error is accompanied by a 

change in the distribution of data in quaternion space.

A comparable case in two dimensions can be visualised (Fig. 61), where a group of 

valid and invalid points lie across the centre of the region. If the size of this region is 

halved and the points projected to their equals on the opposite side the distribution of 

the data changes reflected the principle components. The divergence of results at a 

given constraint radius (reflected in Fig. 26,) may indicate that below a given radius the 

continuity of the regions is not affected. Above this radius a number of points key to the 

implicit representation of the boundary are moved, as in the two-dimensional case 

shown in Fig. 61.

A B

Fig. 61 - The diagram presents a simplified demonstration of the effect of moving patterns to one side of 

the quaternion hyper sphere. A shows the points distributed evenly, B shows the points forced to one 

side.
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The irregular boundary experiments used a sampling dataset generator that generated a 

quaternion representing the rotation of a control limb being manipulated in three- 

dimensional space. The dataset generated is more widely distributed over the surface of 

the quaternion hyper-sphere. This caused ambiguity, as there were two valid regions on 

either side of the quaternion hyper-sphere. The quaternion space vector field now 

contained a second discontinuity, the network had to perform mapping of quaternions to 

the appropriate boundary on the quaternion hyper-sphere. Neural network training 

failed to produce any networks with acceptable performance for these datasets.

To overcome this, the valid dataset and the boundary used to calculate corrections were 

moved to one side of the quaternion hyper-sphere. The neural network is capable of 

learning the vector field which now contains a single discontinuity, between invalid and 

valid quaternion, that is correction and no correction.

The choice of constraint centre seems to affect the mean squared error and the actual 

error in three-dimensional space in different ways. It is clear from the principle 

component analysis that the distribution of patterns in quaternion space is more regular 

with the constraint centred on the y-axis than on the x-axis or z-axis. More regularly 

shaped dataset appear to give better results according to the three-dimensional metric.

Increasing the maximum number of hidden nodes evolved by the genetic algorithm 

produced an increase in performance. Though for discontinuous quaternion vector fields 

the experiments do not identify the point at which over-training occurred due to the time 

required to complete the experiments. Increasing the number of training epochs evolved 

also increased performance to a saturation point, with uniform increases in performance 

observed for both regular and irregular boundaries.

Regular boundaries were found to be insensitive to an increase or decrease in the 

number of patterns used. This indicates fewer patterns were sufficient for the neural 

network to learn the regular case and that in this case the number of patterns is not the 

limiting factor. In the case of irregular boundaries the increase in the definition of the 

boundary irregularities improved the neural networks learning of these complex 

structures. Earlier experiments with different shaped boundaries identified that the 

increasing density of patterns describing the implied boundary as being significant.

162



Global and local learning were briefly mentioned earlier in this chapter regarding the 

global learning nature of multi-layer perceptron type networks and its possible adverse 

effects on the results. As indicated in the literature survey (Chapter 2) several 

researchers have attempted to introduce local learning to the multi-layer perceptron via 

evolutionary techniques. In Chapter 5 two of these approaches are investigated, the 

evolution of static neural network functions in the hidden layer of a neural network 

(similar to [65, 86]) and the template based evolution of cubic spline activation function 

in hidden layer neurons (similar to [63]).

On average, template based evolved cubic-spline activation functions offered some 

small improvements over their sigmoid counterparts. This seems to be reversed when 

the vector field is at its most complex. In isolation this slight improvement in 

performance means very little, however combined with a reduction in network size this 

result becomes significant as smaller networks have better generalisation capabilities.

Mayer and Schwaiger [63, 64] found that using spline activation functions reduced 

network complexity and increased performance for simple examples. This is because 

the complexity shifts from the neural network (number of hidden nodes and links) to the 

activation functions of the hidden layer. In this case where the size of the hidden layer is 

less than optimal (due to the constraints imposed to reduce training times) the complex 

hidden layer neurons of the spline activation function neural networks give them a slight 

advantage over their competitors.

Indirectly measuring the quaternion error has proved very useful and provides an insight 

into the behaviour of this technique when applied to simple anatomical models. For 

regular boundaries errors in quaternion space are proportional to those in three- 

dimensional space. Principle Component Analysis (PCA) has also proved useful in 

determining the shape and orientation of datasets in quaternion space.
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8. Conclusions

This thesis details an investigation into the use of Evolved Topology Neural Networks 

for anatomical constraints. The conclusion, and contribution to knowledge, is that 

evolved generalised multi-layer perceptrons are capable of modelling vector fields in 

quaternion space suitable implementation of correctional rotational constraints on a 

virtual limb. The main findings of this work that support this conclusion are outlined 

below...

• Evolved topology neural networks can model implicit boundaries 

(discontinuities) between continuous regions within vector fields in a number of 

dimensions, specifically one, two, three and four-dimensional quaternion space. 

In terms of vector fields suitable for the creation of corrective joint constraints it 

was found that a number of three-dimensional factors needed to be taken into 

consideration. An additional discontinuity was identified where a point was 

equally close to more than one point on the boundary. These must be taken into 

account when creating the datasets and evaluating neural network performance.

• The distribution of the training data in quaternion space had a significant effect 

on the performance of evolved neural networks in learning the discontinuous 

vector field. It was found that the implied boundary between continuous regions 

must be located on one side of the hyper sphere (despite the equality of its polar 

equivalent), to maintain continuity of the both valid and invalid regions. A 

number of factors concerning the dataset were found to influence neural network 

training these were primarily concerned with the distribution of the training set 

in quaternion space. Appropriately orientated evenly distributed datasets 

produce an improvement in performance this is attributed to a reduction in the 

overlap of internal distributed representations which reduces the extent of 

interference [111].

• The implicit boundaries between continuous regions can be applied to the 

representation of anatomical constraints this research focuses on rotational 

constraints concerning rotation of (but not along) a virtual limb in three- 

dimensional space. The technique has been shown to be successful for two-
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dimensional constraints on a unit sphere represented by both vectors 

(representing the free end of a virtual limb) and quaternion (representing the 

orientation of a virtual limb). Constraints can be trained in quaternion space 

utilising the quaternion representation for both regular and irregular boundaries, 

an important consideration if anatomical boundaries are to be considered. The 

vector fields in these cases are similar despite an increase in the dimensionality 

of both the problem space and the constraint.

• The complexity of the quaternion vector field mapping is affected by the 

distribution (shape and orientation) of the dataset in quaternion space, resulting 

in fluctuations in the error recorded. Despite which, neural networks were 

trained (using limited training) such that error in three-dimensions is on average 

0.99%, by neural networks with less than twenty hidden nodes. 

Representational ambiguity must be removed such that the neural network 

corrects to only one boundary from any point on the quaternion hyper sphere.

• Evolved topology neural networks were found to be capable of modelling 

constraints of equal dimensionality to the problem space, and of lower 

dimensionality. Increases in dimensionality result in an increase in the 

complexity of the network, if network complexity is limited the network error 

increases. Where the dimensionality of the constraint is lower than the 

dimensionality of the problem space, the error is significantly lower than when 

the constraint and problem dimensionality are the same.

• Evolved topology neural networks successfully trained a number of regular 

boundaries in quaternion space with different ranges the success of the training 

is dependent on the distribution of patterns in quaternion space. These results 

produced average errors of 0.99% in three-dimensions, with the highest error at 

11.67% and the lowest at 0.0063%. Only 3.7 x 10"*% of patterns resulted in 

errors greater than 2% with an average neural network size of 16 hidden nodes.

• A number of irregular boundaries were also investigated performance on these 

boundaries was dependent on the boundary shape. The presents of concave 

regions on the boundary introduced boundary correction ambiguities decreasing 

performance. These results produced average errors of 2.15% in three-
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dimensions, with the highest error at 24.71% and the lowest at 0.017%. Only 

0.032% of patterns resulted in errors greater than 7.5% with an average network 

size of 18.4 hidden nodes.

These findings have implications in a number of areas where joint constraints of high 

accuracy and performance are required. In animation a requirement for more 

sophisticated joint specific constraints was identified by Shao and Ng-Thow-Hing [1]. 

Such standard body constraints are however limited in scenarios where other factors 

affect a joints range of motion. For example, an animated character designed with heavy 

shoulder armour may be constrained to avoid contact with the armour during the 

animation process. Using present techniques an irregular boundary could be defined by 

an animator, training data could then be generated manually or automatically and the 

network trained. Unlike other approaches [3-6, 46] no prior processing of the 

quaternion is required at use time.

In terms of execution time it was found that in the one two and three-dimensional case 

the correction of the dataset generator (written in C) was faster than the Java based 

neural network. In the quaternion case the C based generator for the regular boundary in 

quaternion space was faster than the Java based neural network. Re-writing the regular 

boundary correction generator in Java made little difference to the execution time. The 

Java based neural network was however significantly faster than the dataset generator 

for irregular boundaries. As most anatomical joints have non-spherical joint constraint 

limits this is the most significant.

The neural network manager used in NetJEN is BOONE (Basic Object Orientated 

Neural Evaluator) which was written and designed by August Mayer and is available 

under the GNU Public Licence (GPL). Viewing the code it is apparent that rather than 

firing the layers sequentially to obtain an output the network fires the nodes sequentially 

until there are no farther changes to the activations of any of the nodes. Through 

correspondence with the author it was found that this method was selected over the 

more efficient alternative to allow BOONE the flexibility to deal with recurrent and 

cyclic neural networks.

In summary evolved generalised multi-layer perceptrons are capable of modelling 

discontinuous vector fields in quaternion space suitable for the correction of rotational
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constraints on a virtual limb subject to a number of conditions concerning the 

distribution of patterns. Their ability to model irregular rotational boundaries gives 

them an advantage of approaches using coarse spherical approximations [6]. Their 

ability to utilise quaternions without pre-processing (conversion or dimensional 

reduction) and their potential for hardware [121, 143, 144] and vector based [145] 

implementations gives them the potential for performance increases over existing 

approaches.
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9. Future Work

9.1 Introduction

Previous chapters have demonstrated the capabilities of evolved topology neural 

networks in modelling discontinuous vector fields suitable for the representation of joint 

constraints using a quaternion representation. In this section a number of possible 

extensions to the work undertaken are considered. These are intended to overcome 

limitations of the current study and look towards applying the constraints developed in 

other areas.

9.2 Development of the Current Work

9.2.1 Performance of Spline Based Neural Networks

In Chapter 5 improvements in performance were identified when using spline activation 

functions. This has been previously demonstrated by a number of researchers however 

there seems to be some disagreement on the origin of this performance increase.

Shen et al [87], Guarnieri, Piazza and Uncini [97], and Vecci, Piazza and Uncini [84] 

indicate that the adaptive spline activation functions provide improved local learning as 

in the case of mixed activation function neural networks such as the gauss-sigmoid 

neural network [85].

Huber, Mayer and Schwaiger [63, 64] found that using template based spline activation 

functions reduced network complexity and increased performance for simple examples. 

They attribute this to a shift in complexity from the neural network (number of hidden 

nodes and links) to the activation functions of the hidden layer. The results presented in 

Chapter 5 supports both and further work is required to resolve the exact reason for the 

performance increase.

Catastrophic interference was significantly reduced by changing the alignment of the 

centre of the constrained region, Seipone [129] has suggested that evolution can reduce
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interference between patterns. Further research into the effects of pattern order on the 

structure of the neural networks evolved may give some insight into the changes in the 

internal representations described by French [111].

Recent work by Bullinaria [146] suggests that learning strategies may have a significant 

effect on the performance of neural network evolution, advances have also been made in 

the constraint of the genetic algorithms search domain limiting it to feasible individuals 

using genetic techniques similar to RNA repair [147].

9.2.2 Performance Metrics for Joint Constraint Vector Fields

Current methods for assessing the error produced by the neural networks developed 

may not reflect the networks true performance in each case. At present the 

measurements used, SSE (used to assess neural network fitness during evolution), MSE 

(used to calculate network error during training,) and the Pythagorean error metric (used 

in reporting the results and comparing representations,) all depend on the comparison of 

the current output with the test set. A more useful error metric would be the distance of 

the corrected virtual limb from the boundary. This would provide more representative 

results in cases such as the correctional discontinuity where the vector is corrected to a 

diametrically opposite position on the boundary. Future work may consider the 

development of an error metric of this kind and possibly the development of a 

backpropagation based learning algorithm based on this error metric.

9.2.3 The Constraint of Rotation around the Limb

The previous chapters have focused on the development of quaternion-based constraints 

for the rotation of the limb in three-dimensional space. It has not however considered 

the rotation around the limb itself. The rotations being performed are better described as 

the swing and twist respectively [37]. This is an important consideration if the approach 

presented here is to be used in the constraint of anatomical limbs in three-dimensional 

space. Preliminary research has been carried out into this area with the training of a 

simple one-dimensional constraints representing rotation around the limb and 

combining these with constraints on the rotation of the limb.
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9.2.3.1 Methodology

As in previous experiments a Generalised Multi-Layer Perceptron (GMLP) was used to 
model discontinuous vector fields representing quaternion constraints. Vector fields 
were trained to model both constraints on the rotation around the limb and combining 
both rotation of the limb and rotation around the limb. Initially the rotation around the 
limb was considered alone with the rotation of the limb constrained to a radius of 
twenty degrees. These constraints were then combined with those on the rotation of the 
limb. The datasets were created using similar method to that described in 4.1.1 with the 
addition of a second quaternion generated and combined with the first to represent the 
rotation around the limb. Its negation was stored and used as the initial component of 
the correction. The parameters for training and evolution were as shown in TABLE I.

9.2.3.2 Results

The results of preliminary experiments show that the neural network successfully 
learned discontinuous vector fields representing corrective quaternion based constraints 
on both the rotation of and around the limb. The results for a constraint on the rotation 
around the limb with a constant rotation of the limb show invariable results Fig. 62.

170



oi 
S

4 50E O T

4.00E-03 - 

3.50E 03 -

3.00E-03 - 

2.50E-03 - 

2.00E-03 - 

1 .50E-03 - 

l.OOE-03 - 

5.00E-04 - 

n nr»ir*nn

--——-•,

••

A 
A

...............

• Rot

..A...........

ation Arc

A

•

und The I

A

.imb A

"
Rotation Of The LI

A

rab

0 20 40 60 80 100 120 140 160

Angle / Radius

Fig. 62 - A graph showing the effect of the additional constraint on the rotation around the axis. The red 
triangle marker shows the effect of changing the limb rotation constraint with a constant rotational 
constraint around the limb of twenty degrees. The green square marker shows the error resulting from the 
increase in the constraint on rotation around the axis with a constant constraint on the rotation of the limb.

Distinct changes in the pattern of error are observed when a constant rotation around the 

limb (of 20°,) and varying the rotation of the limb are considered. An increase occurs as 
the constraint increases in size (Fig. 62) up to 90° followed by a decrease the error is to 

some extent symmetrical around 90°. In both cases there is an increase in the error 

compared to earlier constraints where no constraint on the rotation around the limb was 

enforced (shown in Fig. 18).

9.2.3.3 Discussion & Conclusions

The results indicate that the introduction of a secondary constraint on the rotation 

around the limb has a significant effect on the performance of the neural network, 

possibly caused by a further increase in the complexity of the discontinuous vector field 

that the neural network is required to learn. As the size of the constraint on the rotation 

of the limb increases error increases towards a radius of ninety degrees above this it 

decreases. Based on previous observations it is postulated that the shape and orientation 

of the dataset in quaternion space becomes more difficult to learn at this point. More
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work is required to understand how the distribution of the quaternion vector-field 

changes and its effect on the performance of the neural network.

The results suggest that while there is an increase in error when the rotation of the limb 

is increased it may be possible to implement constraints on the rotations around the limb 

separately. It is observed (in Fig. 62,) that where the constraint on rotation of the limb 

is very small there is an increase in performance, indicating if the rotation of the limb 

was zero and a system considering only the rotation around the limb a suitable 

constraint of any size could be trained with high performance. Hence a quaternion 

based constraints system could be employed to constrain the rotation of and rotation 

around the limb separately. However one of the benefits of using quaternion based 

constraints, the ability to model these the relationships between these constraints, is lost.

Future work may investigate the factors the shape and orientation of the quaternion 

space vector field and how the errors observed can be reduced possibly investigating 

some of the performance related factors uncovered in Chapter 5. More complex 

networks may form part of any future solution.

9.2.4 Reduced Coordinate Encoding

Previous approaches to the constraint of both the rotation of and around the limb have 

reduced the dimensionality of the quaternion representation. Herda et al [5, 8] reduced 

the dimensionality of the sampled rotations by ensuring all scalar components were 

positive and omitting them as the quaternion is unit length (and the scalar positive,) 

these can be recovered from the three remaining components. Johnson [2] who 

projected one half of the unit quaternion hyper sphere onto a three-dimensional tangent 

space. Chapter 3 demonstrated the capabilities of evolved topology neural networks in 

the approximation of vector fields in three-dimensional space. It may be feasible to 

apply these techniques to vector fields representing joint constraints using reduced 

coordinate mappings in order to improve results or include rotation around the limb.
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9.2.5 Multiple Dependent Joints

The internal bio mechanical constraints of anatomical joint are often linked to the 

orientation of other joints as muscles and tendons often contributed to the constraint of 
more than one joint. For example what is often referred to as the ankle is anatomically 
two joints the ankle itself that provides anterior and posterior movement and the 
subtalar joint that provides medial and lateral movement [23, 148].

This work has only considered the constraint of individual joints however inter-joint 
dependencies have been modelled in other approaches [1]. It is feasible to model 
multiple joints using the presented approach however the input space would have to 
include the orientations of all related joints in the system, a significant increase in 

dimensionality. Research into dynamics systems for animated multi-jointed limbs 
suggests a hierarchical approach to combat the disproportionate increase in network size 
with problem space dimensionality [56]. A number of previous approaches have 
reduced the dimensionality of the problem space to three dimensions [2, 4, 5] though 
this would not significantly reduce problem space dimensionality. Research also 
suggests that complex vector fields may be simplified by conversion to basis fields 
[105] this may reduce the complexity of the vector field to be learned in each case.
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9.2.6 Training from Sampled Data

To date only topologically evolved feed forward neural networks that undergo 

supervised learning have been considered. This is suitable for a number of applications 

where a dataset can be constructed detailing the whole of the vector field in the case of 

joint constraints this means the valid and invalid regions. In animation systems this is 

not a problem, as the animator would typically create the constraint boundary in an 

editor from which training data could be generated. In other application areas such as 

medical research where patient biomechanics are being recorded this is almost certainly 

impossible, as acquisition of data relies on motion capture techniques or mechanical 

measuring.

In order to utilise neural networks for applications where a complete vector field cannot 

be measured recurrent neural networks may be utilised. One-dimensional discontinuous 

functions have been approximated using recurrent neural network and reinforcement 

learning [88, 101, 102]. Pose constraints whose underlying representation is comparable 

to joint constraints were learned by a Scaled Gaussian Process Latent Variable Model 

(SGPLVM) in an approach which uses exponential maps rotated to avoid singularities 

[47].

Research has shown the inclusion of domain knowledge in learning algorithms can 

produce significant improvements in the learning of continuous two dimensional vector 

fields [104, 105]. Other techniques have considered the simplification of the vector field 

using such techniques as basis vectors [105]. These techniques may be applied within 

the framework of the evolved neural networks where full vector fields and a traditional 

back-propagation training algorithm were used.

9.3 Application of the Techniques Developed 

9.3.2 Kinematic Modelling

The generation of character specific joint constraints may be a useful addition to 

character animation tools. It is feasible using the techniques described for creating 

irregular boundaries to create a character specific joint boundary limited for example by 

clothing or injury. Such constraints may have advantages in maintaining consistency
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where procedural animation is used and where multiple individuals animate a single 
model. The approach also gives the potential advantage of a quaternion representation 
for all aspects of rotation within the system as indicated by a number of authors [6, 46]. 
The potential improvements in performance offered by these techniques may add to 
these benefits.

9.3.3 Biomechanical Modelling

Recent studies suggest that current joint constraint approaches are only capable of 
modelling gross motion and are unsuitable for surgical purposes such as simulation of 
surgical outcomes [149, 150]. Proposed solutions rely on moving frame 
implementations [149] leading to difficulties in constraint interrogation, increased 
complexity and lacking the benefits of a quaternion based approach, (such as the 
avoidance of singularities).

Skeletal models with joint constraints are used extensively in the study of lower body 

motion. At present simplified skeletons with various mechanical joints and crude 

constraints are advocated for cleaning up motion capture data [150]. Accurate joint 

modelling in this case is essential esspecialy in the case of pathological patients who 

may have abnormal joint motions [150].

The techniques proposed here may be applied in this area creating more accurate 

constraints based on patient specific data. Using current techniques a rotational 

boundary could be recorded by the patient and training data created based on the 

techniques used for irregular boundaries.

9.3.4 Dynamics Modelling

The description of joints in dynamics simulations is often associated with a number of 
constraints that produce specified joint behaviour. These constraints provide forces 
which prevent the limbs from drifting apart and may provide angular constraint by 
reducing the degrees of freedom of a joint [151, 152]. Constraint forces are also used 
when objects intersect a joint is formed between the two components and repulsive 

forces calculated to reduce intersection to zero [151, 152].
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In terms of constraint of the rotational movement, of for example, a virtual limb 
connected to a ball and socket joint whose constrained region of rotational motion is 
described as a bounding polygon, (with the body of this polygon describing the invalid 
region). It may be feasible to treat the intersection of the bounding polygon and virtual 
limb as a collision and generate forces to reduce the intersection. This would produce a 
force on the virtual limb that would translate into rotational force being applied to the 
virtual limb validating the constraint. Using the approach presented here it may be 
possible to develop a neural network based constraint that produces a corrective 
rotational force based on the position of the limb end point or orientation. This would 
reduce the computational complexity of the implementation with the additional 
advantage that the constraint boundary could be trained using data from various sources.

9.3.5 Pose Constraints

There has been some research into the combination of pose and joint constraints these 
include approaches which only consider pose constraints and assume (not unreasonably) 
that a favoured pose would not contain invalid joint configurations [47]. Johnson [2] 
presents a system of statistically based quaternion constraints which enforces pose and 
joint constraints in quaternion space. The inclusion of pose constraints may be 
considered in future work simplifying the modelling of joint constraints significantly as 
the set of poses that for example maintain balance is smaller than the set of all possible 
configurations for the limbs concerned. Such techniques however are not applicable to 
falling bodies where there may be no appropriate pose to maintain.

9.3.6 Camera Constraint

The discontinuous vector fields modelled in this work were created specifically to 
represent joint constraints. There are however other applications where these techniques 
may prove useful. One of these is the stabilization of a camera being rotated between 
orientations via spherical linear interpolation (SLERP), without a constraint it is 
impossible to ensure that the camera remains upright a limitation in the use of 
quaternions for camera control [153]. It may be possible to employ the constraints 

developed in this work to solve this problem.
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9.4 Conclusion

The work undertaken in this thesis provides a building block for further research into 

the use of neural networks for anatomical joint constraint. A number of areas of future 

work have been identified based around both the improvement of the current techniques 

and their application in various domains. The application of the techniques is 

particularly important in order to obtain insight into the relationship between 

experimental performance and performance within an application.
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ABSTRACT

The accurate simulation of anatomical joint models is becoming increasingly important for both medical 
and animation applications. We propose the use of Artificial Neural Networks to accurately simulate 
joint constraints based on recorded data. This paper describes the application of Genetic Algorithm 
approaches to neural network training in order to model corrective piece-wise linear / discontinuous 
functions required to maintain valid joint configurations. The results show that Artificial Neural Networks 
are capable of modelling continuous boundary shapes for a range of constraint sizes.

KEYWORDS: anatomical joint constraint, NetJEN, GMLP, piece-wise linear, discontinuous, neural 
networks

INTRODUCTION

Anatomical joint models are important 
constituents of anatomical models, they are 
used in simulation to retain anatomically 
correct movement and ensure limbs do not 
separate or intersect. Anatomical models are 
used in both medicine and animation to create 
model humans as characters, teaching aids or 
to evaluate the benefits of surgical or 
prosthetic intervention (Zajac 2003, Watt and 
Watt 1992, Manal, et al. 2002).

Many current techniques are limited by their 
underlying representation or their abstraction 
of the joint function and there is increasing 
demand for anatomically correct joints for 
both animation and medicine. However in 
current applications, increasing accuracy 
leads to increasing complexity which requires 
additional computation (Watt and Watt 1992, 
Zhang and Wang 2002, D'Souza, et al. 2001).

The long term aim of this work is to create an 
anatomically correct joint model trained using 
person specific data (from non-invasive 
(Hamel, et al. 2003) or invasive (Yang, et al. 
1996) sources). This will provide an accurate 
representation of an individual's mobility. 
The accurate representation of joint 
constraints by Artificial Neural Networks 
(ANN) has advantages over methods which 
use coarse approximations and 
computationally expensive recursive or 
iterative techniques.

This paper investigates the application of ANN 
techniques to model a joint constraint system. 
From the training data given, the network learns 
discontinuous corrective functions which model 
the behaviour of the joint and ensure the joint 
configuration remains valid during movement. 
Using evolutionary techniques based on genetic 
algorithms, the topology of the network is 
configured dynamically to approximate the piece- 
wise linear properties inherent in discontinuous 
functions (Selmic and Lewis 2000).

BACKGROUND

Inverse Kinematics (IK) techniques attempt to 
resolve one or more constraints which constitute a 
constraint system. This problem is compounded 
by the existence of zero or more solutions (Watt 
and Watt 1992). Numerical techniques are 
favoured over analytical techniques as the 
inversion of forward kinematics functions 
becomes more difficult as the systems complexity 
increases. Common approaches are based on 
resolved motion rate (Madhavapeddy and 
Ferguson 1998, Baerlocher and Boulic 2004) and 
optimization techniques (Badler, et al. 1993, Zhao 
and Badler 1994, Nelson 1988).

Speed and complexity limitations associated with 
IK have been overcome using ANNs (Guez and 
Ahmad 1988). Recurrent neural networks have 
been used to identify optimum solutions to 
inverse kinematics problems (Ding and Wang 
1999, Ding and Tso 1999, Zhang, et al. 2003, 
Zhang and Wang 2002, Zhang, et al. 2002, Xia 
and Wang 2001, D'Souza, et al. 2001) and have



also been developed to overcome problems in 
numerical techniques which use Jacobian 
inversion (Wang 1997). This operation is 
difficult, especially when the matrix is non- 
square as in the case of redundant 
manipulators (Watt and Watt 1992).

The problem of constructing anatomical joints 
has been approached in several ways. Engin 
(Engin and Turner 1993) classifies these as 
'anatomically based' and 'phenomenological' 
joints. Anatomically-based joints represent 
the joint through the interaction of 
geometrical models that represent the physical 
components of the joint whereas 
phenomenological joints use mathematical 
models to describe the behavior of the joint 
without reference to its constituent parts.

Primitive joint constraints have been 
parameterized using Euler angles (Faraway, et 
al. 1999, Eng and Winter 1995, Furuta, et al. 
2001). Inter-dimensional dependencies cannot 
be easily represented using Euler angles 
(Baerlocher 2001), and singularities or 
"Gimbal Lock" are encountered. Feikes et al 
(Feikes, et al. 2003) used special orthogonal 
matrices, a rotational parameterization not 
susceptible to "Gimbal Lock", to overcome 
this.

N-dimensional boundary representations 
preserve the relationships between rotational 
degrees of freedom. Conceptually a number 
of points along the boundary are obtained 
through measurement, and then approximated 
to an n-dimensional shape. Pioneered by 
Korein (Korein 1984) whose 2D spherical 
polygons constrained the movement of 
robotic arms, this technique has also been 
employed to constrain the 'swing' component 
in a swing-twist parameterization specifically 
for ball and socket joints (Baerlocher and 
Boulic 2000, Korein 1984). Cone based 
polygons using one (Engin and Turner 1989) 
or more (Manurel and Thalmann 2000) cones 
have also been suggested for the complex 
shoulder joint. The quaternion iso-surface 
approach of Herda et al both preserves the 
relationship between the degrees of freedom 
and avoids singularities found in Euler angles 
(Herda, et al. 2003, Watt and Watt 1992). 
Here a subject's arm movements were 
recorded and represented in quaternion space. 
A boundary between valid and invalid 
rotations of the arm was then defined on the 
surface of the unit sphere in quaternion space. 
Iterative approaches were then employed to 
resolve invalid joint configurations.

Artificial neural networks are inspired by the 
structure of the human brain. Like biological 
neural networks they are composed of

neurons which are linked together to form 
complex networks. However, they are 
significantly different in terms of complexity and 
the way nodes in the network communicate. 
There are many types of network architecture, 
from auto-associative memories such as the 
Hopfield network to unsupervised networks such 
as Kohonen's SOM (Self-Organising 
Map)(Mehrotra, et al. 1997). The most popular 
type of architecture is the feed-forward network 
such as the Multi-layer Perception. These are 
trained to give certain outputs in response to 
given inputs by repeatedly adjusting the strengths 
of the interconnections between neurons within 
the network. Typically, neural networks use an 
optimization process to learn the best boundary to 
delineate regions within a multi-dimensional 
feature space. Recent developments have 
introduced the use of genetic algorithms to find 
the optimum network configuration and topology 
for a given network (Huber, et al. 1995).

EXPERIMENTS

This paper describes the application of genetic 
algorithm approaches to neural network training 
in order to model piece-wise linear / 
discontinuous functions that approximate the 
behaviour of anatomically correct joint 
constraints.

We trained a Generalised Multi-Layer Perceptron 
(GMLP) model to learn joint behaviour in one 
(Euler angle), two and three dimensions. Each 
point in the feature space represents the rotation 
of a given joint model. For each point, we want 
to model the appropriate correction to map a 
given joint configuration to the nearest valid joint 
configuration. So for valid rotations, there is no 
correction, while for invalid rotations, a vector is 
stored to move the rotation to the nearest valid 
rotation. Discontinuities arise at the joint 
constraint boundary where the valid and invalid 
joint configurations meet. A range of 
experiments were undertaken to model different 
rotational constraint sizes in 1, 2 and 3 
dimensions.

The NetJEN system used in our work is a Java 
based application which grew out of NetGEN 
(Huber, et al. 1995) developed for research 
purposes at the University of Salzburg. NetJEN 
boasts several impressive features and provides an 
implementation of Huber et al's (Huber, et al. 
1995) work in topology evolution. A hybrid 
system is employed using genetic algorithms with 
the back-propagation learning algorithm.

In each experiment the network was configured as 
follows. The input layer represents the current 
joint rotation, while the output layer represents 
the correction vector. The number of hidden



nodes and connection topology are 
randomized and then evolved during the 
learning process using Generic Algorithms. 
The weights of the interconnections are 
randomized and updated using the back- 
propagation algorithm. In each case the 
inputs and outputs were mapped to the range - 
1 to +1, the evolution and training parameters 
were set as shown in Table 1. We restricted 
the number of generations and training cycles 
to reduce training times. Each experiment was 
repeated five times to ensure the consistency 
of the results.

Three datasets were prepared for each of the 
experiments; a training set, used to train each 
generation of ANN, a validation set, used to 
assess the fitness of the ANN for genetic 
selection and a test set which provided an 
unseen set of data on which to test the ANN. 
In creating the datasets we aimed to cluster 
patterns around the boundary representing the 
discontinuity between the valid and invalid 
joint regions.

Table 1 : Evolution and Training Settings

Parameter
Regularization 
function
Hidden Nodes

Number of 
Generations

Population Size

Fitness Function

Evolve number 
of Links

Evolve number 
of Hidden
Nodes
Evolve number 
of training 
cycles
Learning Rate

Stopping Error

Training 
Function

Max Epochs

Description
Secondary fitness 
function.
Maximum no. of 
hidden nodes.
No. of generations 
over which the 
ANN were 
evolved.
Size of the 
populations 
evolved.
Primary fitness 
function.
Networks are 
pruned down from 
fully connected 
networks.
Evolves the no. of 
hidden nodes.

Evolves the no. of 
training cycles

Learning rate used 
when training the
ANN.
MSE at which the 
ANN arc stopped.
Training function 
used to train the 
weights of the
ANN.
Maximum number 
of training epochs

Setting
Number of links

20

50

20

Inverse SSE

On

On

On

0.1

0.001

Resilient back- 
propagation

500

RESULTS

The results of the first experiment show that 
though each of the networks trained 
successfully and the Mean Squared Error 
(MSE) of the network was low, the

performance of the network decreased as the 
number of dimensions increased, demonstrated by 
the increase in the MSE, (figurel.) In each case 
the functions describe both continuous and 
discontinuous regions. These are of comparable 
size so the decrease in accuracy is proportional to 
the number of degrees of freedom being 
modelled. There was little difference in the 
performance on test and training sets, suggesting 
the network performed well on unseen patterns.

Figure 1: Average MSE vs. Constraint Size

The number of hidden nodes and the number of 
inter-connections, which are to a certain extent 
linked, also increased as the number of 
dimensions increased, though only between the 
one and two dimension constraints. This indicates 
that the number of inter-connections and nodes 
required to approximate a constraint in two 
dimensions was sufficient also to approximate a 
constraint in three dimensions.

The second experiment varied the size of the 
constraint, hi each case the network performed 
well. However, it was noted that in each case the 
network performance decreased as the size of the 
constrained region increased, (figure 1.) For each 
of the ranges tested the size of the evolved 
networks varied little. The increase in the MSE in 
relation to the size of the constraint can be 
attributed to the distribution of training patterns. 
This shows that the technique is applicable to 
various sizes of constrained region, which is 
important if we are to model anatomical joints.

CONCLUSION AND FUTURE WORK

Our results show that a Generalised Multi-Layer 
Perceptron (GMLP) with evolved structure can 
model a corrective joint function in 1, 2 and 3 
dimensions to a reasonable degree of accuracy. 
Experimental results are encouraging with regards 
to the use of such networks for neural network 
constraint modelling. Through experimentation, 
we found that the best results were obtained when 
the network evolved a hidden layer with sigmoid 
transfer functions and an output layer with linear 
transfer functions.



Future work will look at applying this 
network architecture to more general rotation 
models using the quaternion representation.

ACKNOWLEDGEMENTS

The authors would like to thank; Helmut 
Mayer (University of Salzburg) for all his 
advice in optimizing the configuration of the 
NetJEN system; August Mayer (University of 
Salzburg) for his advice and continued 
development and support of the NetJEN 
system and Carl Davies (ISeLS - University 
of Glamorgan) for additional hardware and 
technical support.

REFERENCES

Badler, N. I.; C. B. Phillips and B. L. Webber. 
1993. Simulating Humans: Computer 
Graphics, Animation, and Control., Oxford 
University Press, Oxford.

Baerlocher, P. and R. Boulic. 2000. 
"Parameterization and Range of Motion of the 
Ball and Socket Joint" In IFIP TC5/WG5.10 
DEFORM' 2000 Workshop and AVATARS' 
2000 Workshop on Deformable Avatars

Baerlocher, P. 2001. "Inverse Kinematics 
Thechniques for the Interactive Posture 
Control of Articulated Figures". PhD thesis 
from Department D'lnformatique, Ecole 
Polytechnique Federal De Lausanne, 
Lausanne

Baerlocher, P. and R. Boulic. 2004. "An 
Inverse Kinematics Architecture Enforcing an 
Arbitrary Number of Strict Priority Levels" 
The Visual Computer: International Journal of 
Computer Graphics, 20, No 6, 402-217.

Ding, H. and S. K. Tso. 1999. "A Fully 
Neural Network-Based Planning Scheme for 
Torque Minimization of Redundant 
Manipulators" IEEE Transactions on 
Industrial Electronics, 46, No 1, 199-206.

Ding, H. and J. Wang. 1999. "Recurrent 
Neural Networks for Minimum Infinity-Norm 
Kinematic Control of Redundant 
Manipulators" IEEE Transactions on System, 
Man and Cybernetics: Part A, 29, No 3, 269- 
276.

D'Souza, A.; V. S. and S. Stefan. 2001. 
"Learning Inverse Kinematics" In 
International Conference on Intelligent 
Robots and System, (Maui, Hawaii, USA)

Eng, J. and D. A. Winter. 1995. "Kinematic 
Analysis of the Lower Limbs During Walking: 
What Information Can Be Gained from a 3d 
Model" Journal of Biomechanics, 28, No 6, 753- 
758.

Engin, A. E. and S. T. Turner. 1989. "Three 
Dimensional Kinematic Modelling of the Human 
Shoulder Complex Part 1: Physical Model & 
Determination of Joint Sinus Cone." Journal of 
Biomecahnical Engineering, 111, 107-112.

Engin, A. E. and S. T. Turner. 1993. "Improvised 
Dynamic Model of Human Knee Joint and Its 
Response to Loading" Journal of Biomechanical 
Engineering, 115, No 2, 137-142.

Faraway, J. J.; X. Zhang and D. B. Chaffin. 1999. 
"Rectifying Postures Reconstructed from Joint 
Angles to Meet Constraints" Journal of 
Biomechanics, 32, No 7, 733-736.

Feikes, J. D.; J. J. O'Connor and A. B. Zavatsky. 
2003. "A Constraint-Based Approach to 
Modelling the Mobility of the Human Knee Joint" 
Journal of Biomechanics, 36, No 1, 125-129.

Furuta, T.; T. Tawara; Y. Okumura; M. Shimizu 
and K. Tomiyama. 2001. "Design and 
Construction of a Series of Compact Humanoid 
Robots & Development of Bipedal Walking 
Control Strategies" Robotics and Autonomous 
Systems, 37, 81-100.

Guez, A. and Z. Ahmad. 1988. "Solution to the 
Inverse Problem in Robotics by Neural Network" 
In IEEE International Conference on Neural 
Networks, 2, (San Diego, CA), 617-624

Hamel, A. J.; N. A. Sharkey; F. L. Buczek and J. 
Michelson. 2003. "Relative Motions of the Tibia, 
Talus and Calcareous During the Stance Phase of 
Gait" Gait and Posture, 20, No 2, 153-157.

Herda, L.; R. Urtasun; P. Fua and A. Hanson. 
2003. "Automatic Determination of Shoulder 
Joint Limits Using Quaternion Field Boundries" 
International Journal of Robotics Research, 22, 
No 6, 419-444.

Huber, R.; H. A. Mayer and R. Schwaiger. 1995. 
"Netgen - a Parallel System Generating Problem- 
Adapted Topologies of Artificial Neural 
Networks by Means of Genetic Algorithms" In 
Beitrage zum 7. Fachgruppentreffen Maschinelles 
Lernen der GI-Frachgruppe 1.1.3, (Dortmund), 
91-98

Korein, J. U. 1984. A Geometric Investigation of 
Reach, MIT Press, Massachusetts. 
Madhavapeddy, N. and S. Ferguson. 1998. 
"Specialised Constraints for an Inverse



Kinematics Animation System Applied to 
Articulated Figures" In Eurographics'98, 
(Leeds, United Kingdom), 215-223

Manal, K.; X. Lu; M. K. Nieuwenhuis; P. J. 
M. Helders and T. S. Buchanan. 2002. "Force 
Transmission through the Juvenile Idiopathic 
Arthritic Wrist: A Novel Approach Using a 
Sliding Rigid Body Spring" Journal of 
Biomechanics, 35, 203-218.

Manurel, W. and D. Thalmann. 2000. 
"Human Shoulder Joint Modelling Including 
Scapulo-Thoratic Constraints and Joint Sinus 
Cones." Computers and Graphics, 24, 203- 
218.

Mehrotra, K.; C. K. Mohan and S. Ranka. 
1997. Elements of Artificial Neural Networks, 
MIT Press, Massachusetts.

Nelson, D. 1988. "Constraint Jacobians for 
Constant-Time Inverse Kinematics and 
Assembly Optermization". Report No. 
University of Utah, Utah

Selmic, R. R. and L. L. Lewis. 2000. 
"Deadzone Compensation in Motion Control 
Systems Using Neural Networks" IEEE 
Transactions on Automatic Control, 45, No 4, 
602-613.

Wang, J. 1997. "Recurrent Neural Networks 
for Computng Pseudoinverses of Rank- 
Deficient Matrices" SIAM Journal of 
Scientific Computing, 18, No 5, 1479-1493.

Watt, A. and M. Watt. 1992. Advanced 
Animation and Rendering Techniques, ACM 
Press, New York.

Xia, Y. and J. Wang. 2001. "A Dual Neural 
Network for Kinematic Control of Redundant 
Robot Manipulators" IEEE Transactions on 
System, Man and Cybernetics: Part B, 31, No 
1,147-154.

Yang, D. N.; D. N. Condie; M. H. Granat; J. 
P. Paul and D. I. Rowley. 1996. "Effects of 
Joint Motion Constraints on the Gait of 
Normal Subjects and Their Implications on 
the Further Developments of Hybrid Fez 
Orthosis for Paraplegic Persons." Journal of 
Biomechanics, 29, No 2, 217-226.

Zajac, F. E. 2003. "Biomechanics and Muscle 
Coordination of Human Walking Part 2: Lessons 
from Dynamical Simulations and Clinical 
Implications" Gait and Posture, 17, 1-17.

Zhang, Y. and J. Wang. 2002. "A Dual Neural 
Network for Constrained Torque Optimization of 
Kinematically Redundant Manipulators" IEEE 
Transactions on System, Man and Cybernetics: 
Part B, 32, No 5, 654-662.

Zhang, Y.; J. Wang and Y. Xu. 2002. "A Dual 
Neural Network for Bi-Criteria Kinematic Control 
of Redundant Manipulators" IEEE Transactions 
on Robotics and Automation, 18, No 6, 923-931.

Zhang, Y.; J. Wang and Y. Xia. 2003. "A Dual 
Neural Network for Redundancy Resolution of 
Kinematically Redundant Manipulators Subject to 
Joint Limits and Joint Velocity Limits" IEEE 
Transactions on Neural Networks, 14, No 3, 658- 
667.

Zhao, J. and N. I. Badler. 1994. "Inverse 
Kinematics Positioning Using Non-Linear 
Programming for Highly Articulated Figures" 
Transactions on Graphics, 14, No 4, 313-336.

AUTHOR BIOGRAPHIES

Mr. Glenn Jenkins is a PhD Research Student at 
the University of Glamorgan, studying towards a 
PhD in Computer Science focusing on the 
Simulation of Anatomical Joint Constraints using 
Neural Networks. His research interests include 
artificial neural network evolution, spline and 
mixed activation function artificial neural 
networks, the simulation of anatomical joint 
constraints and their implementation.

Dr. Paul Angel is a Senior Lecturer in the School 
of Computing at the University of Glamorgan, 
specialising in Computer Graphics, Visualisation 
and software design. His research interests 
include volumetric modelling and visualisation, 
image analysis, artificial neural networks and 
concurrent / parallel programming techniques. He 
obtained his PhD in Computer Science focusing 
on the application of wavelet feature extraction 
techniques applied to biological image data.




