279 research outputs found

    A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment

    Get PDF
    Background: Haematotoxicity of conventional chemotherapies often results in delays of treatment or reduction of chemotherapy dose. To ameliorate these side-effects, patients are routinely treated with blood transfusions or haematopoietic growth factors such as erythropoietin (EPO) or granulocyte colony-stimulating factor (G-CSF). For the latter ones, pharmaceutical derivatives are available, which differ in absorption kinetics, pharmacokinetic and -dynamic properties. Due to the complex interaction of cytotoxic effects of chemotherapy and the stimulating effects of different growth factor derivatives, optimal treatment is a non-trivial task. In the past, we developed mathematical models of thrombopoiesis, granulopoiesis and erythropoiesis under chemotherapy and growth-factor applications which can be used to perform clinically relevant predictions regarding the feasibility of chemotherapy schedules and cytopenia prophylaxis with haematopoietic growth factors. However, interactions of lineages and growth-factors were ignored so far. Results: To close this gap, we constructed a hybrid model of human granulopoiesis and erythropoiesis under conventional chemotherapy, G-CSF and EPO applications. This was achieved by combining our single lineage models of human erythropoiesis and granulopoiesis with a common stem cell model. G-CSF effects on erythropoiesis were also implemented. Pharmacodynamic models are based on ordinary differential equations describing proliferation and maturation of haematopoietic cells. The system is regulated by feedback loops partly mediated by endogenous and exogenous EPO and G-CSF. Chemotherapy is modelled by depletion of cells. Unknown model parameters were determined by fitting the model predictions to time series data of blood counts and cytokine profiles. Data were extracted from literature or received from cooperating clinical study groups. Our model explains dynamics of mature blood cells and cytokines after growth-factor applications in healthy volunteers. Moreover, we modelled 15 different chemotherapeutic drugs by estimating their bone marrow toxicity. Taking into account different growth-factor schedules, this adds up to 33 different chemotherapy regimens explained by the model. Conclusions: We conclude that we established a comprehensive biomathematical model to explain the dynamics of granulopoiesis and erythropoiesis under combined chemotherapy, G-CSF, and EPO applications. We demonstrate how it can be used to make predictions regarding haematotoxicity of yet untested chemotherapy and growth-factor schedules.:Background; Methods; Results; Model predictions; Discussion; Conclusion

    Optimizing doxorubicin-G-CSF chemotherapy regimens for the treatment of triple-negative breast cancer

    Full text link
    La chimiothérapie cytotoxique reste une option de traitement de première intention pour la majorité des cancers. Un effet secondaire majeur dans les schémas chimio-thérapeutiques est la neutropénie. La thérapie prophylactique avec le facteur de stimulation des colonies de granulocytes (G-CSF), une cytokine endogène responsable de la régulation de la production de neutrophiles, est administrée en concomitance. Le moment et la dose exacts pour administrer la chimiothérapie et le G-CSF représentent des éléments cruciaux pour obtenir les résultats souhaités du traitement. En nous appuyant sur des travaux antérieurs qui optimisaient les schémas thérapeutiques du G-CSF, nous sommes basés sur une approche de pharmacologie quantitative des systèmes (QSP) pour étudier la fréquence et l’intensité de la dose dans le but de maximiser les effets anti-tumoraux de la chimiothérapie tout en minimisant la neutropénie. Dans ce travail, nous avons effectué une optimisation sur une large gamme de longueurs de cycle et de valeurs des doses de chimiothérapie afin d’identifier les meilleurs schémas en combinaison avec le G-CSF. Nos résultats suggèrent que la doxorubicine 45mg/BSA tous les 14 jours a un impact positif sur le contrôle de la croissance tumorale, et qu’il est préfèrable de retarder l’administration du G-CSF au septième jour après la chimiothérapie et de donner moins de doses pour minimiser le risque de neutropénie et le fardeau de ce médicament. Cette étude suggère des pistes possibles pour des schémas optimaux de chimiothérapie, avec le soutien prophylactique du G-CSF spécifiquement dans le contexte du cancer du sein triple négatif.Cytotoxic chemotherapy continues to be a first-line treatment option for the majority of cancers. A major side effect in chemotherapy regimens is neutropenia. Prophylactic therapy with granulocyte colony stimulating factor (G-CSF), an endogenous cytokine responsible for regulating neutrophil production, is administered concomitantly; the exact timing of the combination chemotherapy and G-CSF is crucial for achieving treatment results. Leveraging on previous work that optimized treatment regimens based on G-CSF timing, we developed a quantitative systems pharmacology (QSP) framework to study dose frequency and intensity of chemotherapy in order to maximize anti-tumor effects while minimizing neutropenia. In this work, we performed an optimization across a wide range of cycle lengths and dose sizes to identify the best cytotoxic chemotherapy regimens with G-CSF support. Our results suggest that doxorubicin 45mg/BSA every 14 days, has a positive impact on tumour growth control, and that to minimize the risk of neutropenia and the burden to patients it is best to delay the administration of G-CSF to day seven after chemotherapy and give fewer doses . This study suggests possible avenues for optimal chemotherapy regimens with prophylactic support of G-CSF in the context of Triple Negative Breast Cancer

    Computational approaches for translational oncology: Concepts and patents

    Get PDF
    Background: Cancer is a heterogeneous disease, which is based on an intricate network of processes at different spatiotemporal scales, from the genome to the tissue level. Hence the necessity for the biomedical and pharmaceutical research to work in a multiscale fashion. In this respect, a significant help derives from the collaboration with theoretical sciences. Mathematical models can in fact provide insights into tumor-related processes and support clinical oncologists in the design of treatment regime, dosage, schedule and toxicity. Objective and Method: The main objective of this article is to review the recent computational-based patents which tackle some relevant aspects of tumor treatment. We first analyze a series of patents concerning the purposing the purposing or repurposing of anti-tumor compounds. These approaches rely on pharmacokinetics and pharmacodynamics modules, that incorporate data obtained in the different phases of clinical trials. Similar methods are also at the basis of other patents included in this paper, which deal with treatment optimization, in terms of maximizing therapy efficacy while minimizing side effects on the host. A group of patents predicting drug response and tumor evolution by the use of kinetics graphs are commented as well. We finally focus on patents that implement informatics tools to map and screen biological, medical, and pharmaceutical knowledge. Results and Conclusions: Despite promising aspects (and an increasing amount of the relative literature), we found few computational-based patents: There is still a significant effort to do for allowing modelling approaches to become an integral component of the pharmaceutical research

    Improving the use of G-CSF during chemotherapy using physiological mathematical modelling : a quantitative systems pharmacology approach

    Get PDF
    La diminution des doses administrées ou même la cessation complète d'un traitement chimiothérapeutique est souvent la conséquence de la réduction du nombre de neutrophiles, qui sont les globules blancs les plus fréquents dans le sang. Cette réduction dans le nombre absolu des neutrophiles, aussi connue sous le nom de myélosuppression, est précipitée par les effets létaux non spécifiques des médicaments anti-cancéreux, qui, parallèlement à leur effet thérapeutique, produisent aussi des effets toxiques sur les cellules saines. Dans le but d'atténuer cet impact myélosuppresseur, on administre aux patients un facteur de stimulation des colonies de granulocytes recombinant humain (rhG-CSF), une forme exogène du G-CSF, l'hormone responsable de la stimulation de la production des neutrophiles et de leurs libération dans la circulation sanguine. Bien que les bienfaits d'un traitement prophylactique avec le G-CSF pendant la chimiothérapie soient bien établis, les protocoles d'administration demeurent mal définis et sont fréquemment déterminés ad libitum par les cliniciens. Avec l'optique d'améliorer le dosage thérapeutique et rationaliser l'utilisation du rhG-CSF pendant le traitement chimiothérapeutique, nous avons développé un modèle physiologique du processus de granulopoïèse, qui incorpore les connaissances actuelles de pointe relatives à la production des neutrophiles des cellules souches hématopoïétiques dans la moelle osseuse. À ce modèle physiologique, nous avons intégré des modèles pharmacocinétiques/pharmacodynamiques (PK/PD) de deux médicaments: le PM00104 (Zalypsis®), un médicament anti-cancéreux, et le rhG-CSF (filgrastim). En se servant des principes fondamentaux sous-jacents à la physiologie, nous avons estimé les paramètres de manière exhaustive sans devoir recourir à l'ajustement des données, ce qui nous a permis de prédire des données cliniques provenant de 172 patients soumis au protocol CHOP14 (6 cycles de chimiothérapie avec une période de 14 jours où l'administration du rhG-CSF se fait du jour 4 au jour 13 post-chimiothérapie). En utilisant ce modèle physio-PK/PD, nous avons démontré que le nombre d'administrations du rhG-CSF pourrait être réduit de dix (pratique actuelle) à quatre ou même trois administrations, à condition de retarder le début du traitement prophylactique par le rhG-CSF. Dans un souci d'applicabilité clinique de notre approche de modélisation, nous avons investigué l'impact de la variabilité PK présente dans une population de patients, sur les prédictions du modèle, en intégrant des modèles PK de population (Pop-PK) des deux médicaments. En considérant des cohortes de 500 patients in silico pour chacun des cinq scénarios de variabilité plausibles et en utilisant trois marqueurs cliniques, soient le temps au nadir des neutrophiles, la valeur du nadir, ainsi que l'aire sous la courbe concentration-effet, nous avons établi qu'il n'y avait aucune différence significative dans les prédictions du modèle entre le patient-type et la population. Ceci démontre la robustesse de l'approche que nous avons développée et qui s'apparente à une approche de pharmacologie quantitative des systèmes (QSP). Motivés par l'utilisation du rhG-CSF dans le traitement d'autres maladies, comme des pathologies périodiques telles que la neutropénie cyclique, nous avons ensuite soumis l'étude du modèle au contexte des maladies dynamiques. En mettant en évidence la non validité du paradigme de la rétroaction des cytokines pour l'administration exogène des mimétiques du G-CSF, nous avons développé un modèle physiologique PK/PD novateur comprenant les concentrations libres et liées du G-CSF. Ce nouveau modèle PK a aussi nécessité des changements dans le modèle PD puisqu’il nous a permis de retracer les concentrations du G-CSF lié aux neutrophiles. Nous avons démontré que l'hypothèse sous-jacente de l'équilibre entre la concentration libre et liée, selon la loi d'action de masse, n'est plus valide pour le G-CSF aux concentrations endogènes et mènerait en fait à la surestimation de la clairance rénale du médicament. En procédant ainsi, nous avons réussi à reproduire des données cliniques obtenues dans diverses conditions (l'administration exogène du G-CSF, l'administration du PM00104, CHOP14). Nous avons aussi fourni une explication logique des mécanismes responsables de la réponse physiologique aux deux médicaments. Finalement, afin de mettre en exergue l’approche intégrative en pharmacologie adoptée dans cette thèse, nous avons démontré sa valeur inestimable pour la mise en lumière et la reconstruction des systèmes vivants complexes, en faisant le parallèle avec d’autres disciplines scientifiques telles que la paléontologie et la forensique, où une approche semblable a largement fait ses preuves. Nous avons aussi discuté du potentiel de la pharmacologie quantitative des systèmes appliquées au développement du médicament et à la médecine translationnelle, en se servant du modèle physio-PK/PD que nous avons mis au point.Dose-limitation or interruption of chemotherapeutic treatment is most often prompted by a decrease in circulating neutrophils, the most abundant white blood cell in the human body. Myelosuppression, or a reduction in absolute neutrophil counts (ANCs) by anti-cancer treatments, is precipitated by the nonspecific killing effect of chemotherapeutic drugs which have toxic effects on noncancerous cells. To mitigate this myelosuppressive effect, patients are frequently administered recombinant human granulocyte colony-stimulating factor (rhG-CSF), an exogenous form of the cytokine G-CSF, which stimulates neutrophil production and release into the blood stream. While the benefits of adjuvant treatment rhG-CSF during chemotherapy are well recognised, the protocols with which it is administered are not well defined and are frequently determined ad libitum by clinicians. To quantify and address the optimisation of the administration of rhG-CSF during chemotherapeutic treatment, we developed a physiological model of granulopoiesis which incorporates the contemporary understanding of the production of neutrophils from the hematopoietic stem cells in the bone marrow. To this physiological model, we incorporated mechanistic pharmacokinetic/pharmacodynamic (PK/PD) models of two drugs, PM00104 (Zalypsis), a chemotherapeutic drug, and rhG-CSF (filgrastim). Through exhaustive parameter estimation using first principles and no data fitting, we successfully predicted clinical data from 172 patients for an average patient undergoing the CHOP14 protocol (6 cycles of 14-day periodic chemotherapy with rhG-CSF administered on days 4-13 post-chemotherapy). We then demonstrated that delaying the administration of rhG-CSF to 6 or 7 days post-chemotherapy allowed for a reduction in the number of filgrastim administrations from ten to four or even three while maintaining or improving the neutrophil nadir. We also investigated the effects of PK variability on the model's predictions by incorporating population PK (PopPK) models of both drugs. Using five different variability scenarios and cohorts of 500 in silico patients per scenario, we established that there are no statistically significant differences between a typical patient and the population in the model's predictions with respect to three crucial clinical endpoints, namely the time to ANC nadir, the ANC nadir, and the area under the concentration-effect curve. The model's robustness to PK variability allows for the scaling up from the individual to population level. Motivated by the use of rhG-CSF in other disease-states, namely periodic pathologies like cyclical neutropenia, we next endeavoured to contextualise the model within dynamic diseases. By bringing to light that the cytokine paradigm is broken when exogenous cytokine mimetics are administered, we developed a novel physiological PK model for G-CSF incorporating both unbound and bound concentrations. The updated PK model prompted changes to the PD model since we could now track the concentrations of bound G-CSF. We showed that the mass-action equilibrium hypopthesis for bound and unbound drugs is not valid and led to overestimations of the renal clearance of G-CSF. We also successfully reproduced clinical data in a variety of settings (exogenous G-CSF alone, PM00104 alone, CHOP14 protocol) and clarified the mechanisms underlying the body's response to both drugs. Lastly, we discussed the potential of quantitative systems pharmacology in both drug development and translational medicine by using the physiological PK/PD model we developed

    Cloning and Co-Expression of hG-CSF and hSCF in E.coli

    Get PDF
    Granulocyte Colony Stimulating Factor (G-CSF) is a hematopoietic growth factor that controls the proliferation, differentiation and the function of neutrophils. G-CSF is clinically used in human for the treatment of neutropenia in diseases such as AIDS, aplastic anaemia, myelodysplastic syndrome, and congenital or chemotherapy-induced neutropenia. However, the bioactivity and stability of commercially available recombinant hG-CSF such as Filgrastim and Lenograstim are lower than endogenous G-CSF. The objective of the present study is to express recombinant hG-CSF in E.coli along with SCF as a fusion partner to improve the bioactivity. In the present study, in silico analyses were performed for finding the possible mutant variants of G-CSF which may increase the stability of the recombinant hG-CSF for its incorporation into hG-CSF by site-directed mutagenesis and also analyse the binding affinity of the G-CSF-SCF fusion protein with G-CSF receptor (G-CSF-R) and SCF receptor (SCF-R). A total of 5 mutant variants of hG-CSF was generated and docked with GCSF-R using Hex dock 8.0 software. In order to analyse the binding affinity of the G-CSF-SCF fusion protein, docking analyses of the fusion protein with GCSF-R and SCF-R were performed using patch dock server. Human G-CSF gene (547 bp) was isolated from human Umbilical Cord Blood and U-87 cell line. The hG-CSF gene was cloned into TOPO-TA vector for sequencing followed by cloning into the pET14b vector for expression using Nde I and Bam HI restriction ends. Human GCSF gene was then end modified to fuse with the fusion partner. Besides, Human SCF gene (567 bp) was purchased from GenScript in the pUC57 cloning vector. It was restriction digested from the pUC57 vector using Bam HI and Xho I restriction enzymes. The restriction digested hG-CSF, SCF inserts were inserted into pET14b vector containing Nde I and Xho I restriction ends. The ligated expression vectors were then transformed into chemically competent DH5α cells followed by plasmid extraction and transformation into expression host E.coli BL21 (DE3).The expression of human G-CSF and G-CSF-SCF protein in E.coli was confirmed using SDS-PAGE analysis. Further expression profile of the proteins was optimized to increase the protein expression. From the in silico analysis, it was found that the mutant variant 5 may have improved biostability than the wild type G-CSF variant. The study was also found that the G-CSF-SCF fusion protein has high binding affinity to G-CSF-R and SCF-R from the global energy values. Furthermore, increased level of G-CSF and G-CSF-SCF fusion protein observed under optimized IPTG concentration of 1mM, post-induction duration of 8h and at 3% of ethanol concentration

    Modélisation pharmacocinétique/pharmacodynamique par une approche de population de l’effet du G-CSF chez des patients traités avec du carboplatine

    Get PDF
    Une des stratégies pour limiter les neutropénies induites par la chimiothérapie est l’utilisation de granulocyte-colony stimulating factor (G-CSF). Nous avons développé, par une approche de population, un nouveau modèle pharmacocinétique/pharmacodynamique capable de décrire la cinétique des neutrophiles des patients traités au carboplatine, qu’ils aient ou non reçu du G-CSF. Les simulations réalisées à partir de ce modèle ont montré que le G-CSF n’était pas bénéfique chez tous les patients et que la formulation à action longue semblerait plus efficace que les autres formulations. Nous avons également établi des règles de décision permettant d’une part de prédire le risque de neutropénie sévère, et d’autre part d’identifier précocement les patients pour lesquels le G-CSF peut avoir un effet bénéfique. ABSTRACT : Granulocyte colony-stimulating factor (G-CSF) is often used in cancer patients receiving cytotoxic drugs to prevent or reduce high grade neutropenia. We developed a new population pharmacokinetic/pharmacodynamic model to describe neutrophil time-course in carboplatin-treated patients, whether or not they received G-CSF. Model simulations showed that G-CSF was not as beneficial as expected in some patients and that the onceper- cycle formulation was more efficient than other formulations. Model-based decision rules were also built to anticipate prolonged high grade neutropenia and early identify patients for whom G-CSF was beneficial

    Modélisation pharmacocinétique/pharmacodynamique par une approche de population de l'effet du G-CSF chez des patients traités avec du carboplatine

    Get PDF
    Une des stratégies pour limiter les neutropénies induites par la chimiothérapie est l utilisation de granulocyte-colony stimulating factor (G-CSF). Nous avons développé, par une approche de population, un nouveau modèle pharmacocinétique/pharmacodynamique capable de décrire la cinétique des neutrophiles des patients traités au carboplatine, qu ils aient ou non reçu du G-CSF. Les simulations réalisées à partir de ce modèle ont montré que le G-CSF n était pas bénéfique chez tous les patients et que la formulation à action longue semblerait plus efficace que les autres formulations. Nous avons également établi des règles de décision permettant d une part de prédire le risque de neutropénie sévère, et d autre part d identifier précocement les patients pour lesquels le G-CSF peut avoir un effet bénéfique.Granulocyte colony-stimulating factor (G-CSF) is often used in cancer patients receiving cytotoxic drugs to prevent or reduce high grade neutropenia. We developed a new population pharmacokinetic/pharmacodynamic model to describe neutrophil time-course in carboplatin-treated patients, whether or not they received G-CSF. Model simulations showed that G-CSF was not as beneficial as expected in some patients and that the onceper- cycle formulation was more efficient than other formulations. Model-based decision rules were also built to anticipate prolonged high grade neutropenia and early identify patients for whom G-CSF was beneficial.TOULOUSE-INP (315552154) / SudocSudocFranceF

    Dynamics of erythroid progenitors and erythroleukemia

    Get PDF
    International audienceThe paper is devoted to mathematical modelling of erythropoiesis, production of red blood cells in the bone marrow. We discuss intra-cellular regulatory networks which determine self-renewal and differentiation of erythroid progenitors. In the case of excessive self-renewal, immature cells can fill the bone marrow resulting in the development of leukemia. We introduce a parameter characterizing the strength of mutation. Depending on its value, leukemia will or will not develop. The simplest model of treatment of acute myeloid leukemia with chemotherapy allows us to determine the conditions of successful treatment or of its failure. We show that insufficient treatment can worsen the situation. In some cases curing may not be possible even without resistance to treatment. Modelling presented in this work is based on ordinary differential equations, reaction-diffusion systems and individual based approach
    corecore