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Résumé

La diminution des doses administrées ou même la cessation complète d’un traitement

chimiothérapeutique est souvent la conséquence de la réduction du nombre de neutro-

philes, qui sont les globules blancs les plus fréquents dans le sang. Cette réduction dans

le nombre absolu des neutrophiles, aussi connue sous le nom de myélosuppression, est

précipitée par les effets létaux non spécifiques des médicaments anti-cancéreux, qui, pa-

rallèlement à leur effet thérapeutique, produisent aussi des effets toxiques sur les cellules

saines. Dans le but d’atténuer cet impact myélosuppresseur, on administre aux patients

un facteur de stimulation des colonies de granulocytes recombinant humain (rhG-CSF),

une forme exogène du G-CSF, l’hormone responsable de la stimulation de la production

des neutrophiles et de leurs libération dans la circulation sanguine. Bien que les bien-

faits d’un traitement prophylactique avec le G-CSF pendant la chimiothérapie soient bien

établis, les protocoles d’administration demeurent mal définis et sont fréquemment dé-

terminés ad libitum par les cliniciens. Avec l’optique d’améliorer le dosage thérapeutique

et rationaliser l’utilisation du rhG-CSF pendant le traitement chimiothérapeutique, nous

avons développé un modèle physiologique du processus de granulopöıèse, qui incorpore

les connaissances actuelles de pointe relatives à la production des neutrophiles des cel-

lules souches hématopöıétiques dans la moelle osseuse. À ce modèle physiologique, nous

avons intégré des modèles pharmacocinétiques/pharmacodynamiques (PK/PD) de deux

médicaments : le PM00104 (Zalypsis®), un médicament anti-cancéreux, et le rhG-CSF

(filgrastim). En se servant des principes fondamentaux sous-jacents à la physiologie, nous

avons estimé les paramètres de manière exhaustive sans devoir recourir à l’ajustement des

données, ce qui nous a permis de prédire des données cliniques provenant de 172 patients

soumis au protocol CHOP14 (6 cycles de chimiothérapie avec une période de 14 jours où

l’administration du rhG-CSF se fait du jour 4 au jour 13 post-chimiothérapie). En utili-

sant ce modèle physio-PK/PD, nous avons démontré que le nombre d’administrations du

rhG-CSF pourrait être réduit de dix (pratique actuelle) à quatre ou même trois administra-

tions, à condition de retarder le début du traitement prophylactique par le rhG-CSF. Dans

un souci d’applicabilité clinique de notre approche de modélisation, nous avons investigué

l’impact de la variabilité PK présente dans une population de patients, sur les prédictions
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du modèle, en intégrant des modèles PK de population (Pop-PK) des deux médicaments.

En considérant des cohortes de 500 patients in silico pour chacun des cinq scénarios de

variabilité plausibles et en utilisant trois marqueurs cliniques, soient le temps au nadir des

neutrophiles, la valeur du nadir, ainsi que l’aire sous la courbe concentration-effet, nous

avons établi qu’il n’y avait aucune différence significative dans les prédictions du modèle

entre le patient-type et la population. Ceci démontre la robustesse de l’approche que nous

avons développée et qui s’apparente à une approche de pharmacologie quantitative des

systèmes (QSP).

Motivés par l’utilisation du rhG-CSF dans le traitement d’autres maladies, comme

des pathologies périodiques telles que la neutropénie cyclique, nous avons ensuite sou-

mis l’étude du modèle au contexte des maladies dynamiques. En mettant en évidence la

non validité du paradigme de la rétroaction des cytokines pour l’administration exogène

des mimétiques du G-CSF, nous avons développé un modèle physiologique PK/PD nova-

teur comprenant les concentrations libres et liées du G-CSF. Ce nouveau modèle PK a

aussi nécessité des changements dans le modèle PD puisqu’il nous a permis de retracer

les concentrations du G-CSF lié aux neutrophiles. Nous avons démontré que l’hypothèse

sous-jacente de l’équilibre entre la concentration libre et liée, selon la loi d’action de masse,

n’est plus valide pour le G-CSF aux concentrations endogènes et mènerait en fait à la sur-

estimation de la clairance rénale du médicament. En procédant ainsi, nous avons réussi à

reproduire des données cliniques obtenues dans diverses conditions (l’administration exo-

gène du G-CSF, l’administration du PM00104, CHOP14). Nous avons aussi fourni une

explication logique des mécanismes responsables de la réponse physiologique aux deux

médicaments.

Finalement, afin de mettre en exergue l’approche intégrative en pharmacologie adoptée

dans cette thèse, nous avons démontré sa valeur inestimable pour la mise en lumière et la

reconstruction des systèmes vivants complexes, en faisant le parallèle avec d’autres disci-

plines scientifiques telles que la paléontologie et la forensique, où une approche semblable

a largement fait ses preuves. Nous avons aussi discuté du potentiel de la pharmacologie

quantitative des systèmes appliquées au développement du médicament et à la médecine

translationnelle, en se servant du modèle physio-PK/PD que nous avons mis au point.
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Abstract

Dose-limitation or interruption of chemotherapeutic treatment is most often promp-

ted by a decrease in circulating neutrophils, the most abundant white blood cell in the

human body. Myelosuppression, or a reduction in absolute neutrophil counts (ANCs)

by anti-cancer treatments, is precipitated by the nonspecific killing effect of chemother-

apeutic drugs which have toxic effects on noncancerous cells. To mitigate this myelo-

suppressive effect, patients are frequently administered recombinant human granulocyte

colony-stimulating factor (rhG-CSF), an exogenous form of the cytokine G-CSF, which

stimulates neutrophil production and release into the blood stream. While the benefits of

adjuvant treatment rhG-CSF during chemotherapy are well recognised, the protocols with

which it is administered are not well defined and are frequently determined ad libitum by

clinicians. To quantify and address the optimisation of the administration of rhG-CSF

during chemotherapeutic treatment, we developed a physiological model of granulopoiesis

which incorporates the contemporary understanding of the production of neutrophils from

the hematopoietic stem cells in the bone marrow. To this physiological model, we incor-

porated mechanistic pharmacokinetic/pharmacodynamic (PK/PD) models of two drugs,

PM00104 (Zalypsis®), a chemotherapeutic drug, and rhG-CSF (filgrastim). Through ex-

haustive parameter estimation using first principles and no data fitting, we successfully

predicted clinical data from 172 patients for an average patient undergoing the CHOP14

protocol (6 cycles of 14-day periodic chemotherapy with rhG-CSF administered on days

4-13 post-chemotherapy). We then demonstrated that delaying the administration of rhG-

CSF to 6 or 7 days post-chemotherapy allowed for a reduction in the number of filgrastim

administrations from ten to four or even three while maintaining or improving the neu-

trophil nadir. We also investigated the effects of PK variability on the model’s predictions

by incorporating population PK (PopPK) models of both drugs. Using five different vari-

ability scenarios and cohorts of 500 in silico patients per scenario, we established that

there are no statistically significant differences between a typical patient and the popula-

tion in the model’s predictions with respect to three crucial clinical endpoints, namely the

time to ANC nadir, the ANC nadir, and the area under the concentration-effect curve.

The model’s robustness to PK variability allows for the scaling up from the individual to
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population level.

Motivated by the use of rhG-CSF in other disease-states, namely periodic pathologies

like cyclical neutropenia, we next endeavoured to contextualise the model within dynamic

diseases. By bringing to light that the cytokine paradigm is broken when exogenous cy-

tokine mimetics are administered, we developed a novel physiological PK model for G-CSF

incorporating both unbound and bound concentrations. The updated PK model prompted

changes to the PD model since we could now track the concentrations of bound G-CSF.

We showed that the mass-action equilibrium hypopthesis for bound and unbound drugs is

not valid and led to overestimations of the renal clearance of G-CSF. We also successfully

reproduced clinical data in a variety of settings (exogenous G-CSF alone, PM00104 alone,

CHOP14 protocol) and clarified the mechanisms underlying the body’s response to both

drugs. Lastly, we discussed the potential of quantitative systems pharmacology in both

drug development and translational medicine by using the physiological PK/PD model we

developed.

Keywords: quantitative systems pharmacology, granulopoiesis, mechanistic

modelling, physiologic pharmacokinetics/pharmacodynamics, systems biology.
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HSC Hematopoietic stem cell

IIV Interindividual variability

IL Interleukin

IOV Interoccasion variability

kDa Kilodaltons

LTRC Long-term repopulating cell

MC Monocyte

MEM Mixed-effects model

MEP Megakaryocyte erythroid progenitor

MKP Megakaryocyte progenitor

MNP Marginated neutrophil pool

MPP Multipotent progenitor

MTT Mean transit time

Nad ANC nadir

NCA Non-compartmental analysis

NCCN National Comprehensive Cancer Network
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Abbreviation Description

Neu Neutrophil

NIH National Institutes of Health

NK Natural killer cell

NSERC Natural Sciences and Engineering Research Council

ODE Ordinary differential equation

PBPC Peripheral blood progenitor cells

PBPK Physiologically-based pharmacokinetics

PDE Partial differential equation

PK/PD Pharmacokinetics/pharmacodynamics

PKPD Pharmacokinetics/pharmacodynamics

PLT Platelet

PopPK/PD Population pharmacokinetics/pharmacodynamics

QSP Quantitative systems pharmacology

RBC Red blood cell/erythroid

rh Recombinant human

RV Random variable

SCN Severe congenital neutropenia

T T-cell

TBGP Total blood granulocyte pool

TGF Transforming (tumour) growth factor

TMDD Target-mediated drug disposition

TNad Time to ANC nadir

TNF Tumour necrosis factor

Vd Volume of distribution

WBC White blood cell



Notation

Notation Interpretation Units

Chapter 1

Cave Average concentration etoposide −
C24 Etoposide concentration after 24 hours −
R1 Infusion rate before 28 hours −
R2 Infusion rate after 28 hours −
Ce f f Effective concentration −
E(t) Concentration-effect relationship −
WBC(t) WBC count over time −
Baseline Baseline WBC count −
Edir Direct effect −
Eobs Observed effect −
C Drug concentration −
γ1 Hill coefficient −
C50 Half-maximal concentration −
AUCEdir Area under the concentration-effect curve −
Edir max Scaling factor −
WBCpred Predicted WBC count −
Emax Maximal effect −
P Proliferating neutrophils −
Ti Transit compartment i −
N Circulating neutrophils −
N0 Baseline neutrophil count −
γ Hill coefficient −
ktr Transit rate −
kprol Rate of proliferation −
kcirc Rate of circulation −
Cp Plasma concentration of drug −
DR Concentration of drug-receptor complex −
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Abbreviation Interpretation Units

DT Tissue concentration −
Rmax Total density of surface receptors −
Vc Volume of central compartment −
kon Rate of receptor binding −
koff Rate of receptor unbinding −
km Rate of internalisation −
ksyn Rate of synthesis −
kdeg Degradation rate −

Chapters 2 and 3

Qhomeo Concentration of HSCs at homeostasis 106 cells/kg

γS HSC rate of apoptosis days−1

τS Time for HSC re-entry days

AhomeoQ HSC amplification at homeostasis

κδ HSC differentiation rate into other lineages days−1

βhomeoQ HSC rate of re-entry days−1

fQ Maximal HSC re-entry rate days−1

s2 HSC re-entry Hill coefficient

θ2 Half-maximal HSC concentration 106 cells/kg

Nhomeo
r Homeostasis concentration of reservoir 109 cells/kg

Nhomeo Homeostatic concentration of TBNP 109 cells/kg

Nhomeo
circ Homeostatic concentration of circulating neutrophils 109 cells/kg

γN Circulating neutrophil rate of removal days−1

τNP Time for neutrophil proliferation days

aNM Time for neutrophil maturation at homeostasis days

τNr Time spent in marrow reserve days

γNr Rate of removal from marrow reserve days−1

γNM Rate of removal during maturation phase days−1

κN(Nhomeo) HSC differentiation rate into neutrophil line days−1
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Abbreviation Interpretation Units

AhomeoN Neutrophil amplification at homeostasis

ηhomeoNP Neutrophil proliferation rate days−1

fN Maximal rate of neutrophil differentiation days−1

s1 Neutrophil differentiation Hill coefficient

θ1 Half maximal conc. neutrophil differentiation 109 cells/kg

fhomeotrans Homeostatic rate of transit from marrow reserve days−1

kelC Zalypsis®rate of elimination days−1

k12 Rate of exchange days−1

k21 Rate of exchange days−1

k13 Rate of exchange days−1

k31 Rate of exchange days−1

k24 Rate of exchange days−1

k42 Rate of exchange days−1

BSA Average body surface area m2

Ghomeo G-CSF concentration at homeostasis ng/mL

Gprod Rate of G-CSF production ng/mL/days

kren Rate of G-CSF renal elimination days−1

χ Normalisation factor ng/mL
109cells/kg

kint G-CSF receptor-internalisation rate days−1

kD G-CSF dissociation constant ng/mL

ka Subcutaneous filgrastim absorption rate days−1

F Filgrastim bioavailable fraction

Vd Volume of distribution (filgrastim) mL

γhomeoS HSC apoptotic homeostatic rate days−1

γminS Minimal HSC apoptotic rate days−1

γmaxS Maximal HSC apoptotic rate days−1

hS Effect of chemotherapy on HSC apoptosis

bS HSC apoptosis Michaelis-Menten parameter ng/mL

h Hill coefficient for Zalypsis®effect on proliferation
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Abbreviation Interpretation Units

EC50 Zalypsis®half-concentration on proliferation ng/mL

ηmaxNP Maximal rate of proliferation days−1

ηminNP Minimal rate of proliferation days−1

Vmax Maximal maturation velocity

γminNM Minimal apoptosis rate out of maturing phase days−1

γmaxNM Minimal apoptosis rate out of maturing phase days−1

transmax Maximal rate of transfer from marrow reserve days−1

bV Michaelis-Menten parameter (maturation speed) ng/mL

bNP Michaelis-Menten parameter (proliferation) ng/mL

bNM Michaelis-Menten parameter (maturation) ng/mL

bG Michaelis-Menten parameter (transit from pool) ng/mL

Cl PM001014 Clearance L/hr

V1 PM001014 Volume of central compartment L

Q2 PM001014 Transit rate (compartments 1 and 2) L

V2 PM001014 Volume of second compartment L/hr

Q3 PM001014 Transit rate (compartments 1 and 3) L/hr

V3 PM001014 Volume of third compartment L

Q4 PM001014 Transit rate (compartments 2 and 4) L/hr

V4 PM001014 Volume of fourth compartment L

kel Rate of renal elimination filgrastim (Krzyzanski) hr−1

Vd Volume of distribution filgrastim (Krzyzanski) L

ξ GCSFR concentration per neutrophil (Krzyzanski) fg/cell

NB0 Initial number of blood neutrophils (Krzyzanski) cells/µL

SC50 Concentration eliciting 50% of the maximal effect ng/mL

Smax1 Maximum effect (Krzyzanski)

Pj,k Individual jth PK parameter for the kth occasion

ηj IIV random variable

τj IOV random variable

TNadref Reference time to nadir days
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Abbreviation Interpretation Units

TNadtest Test time to nadir days

Nadref Reference nadir value 109 cells/kg

Nadtest Test nadir value 109 cells/kg

AUCEref Reference AUCE value 109 days cells
kg

Chapter 4

γQ HSC apoptosis rate days−1

τQ Time for HSC re-entry days

AQ HSC Amplification Factor −
fQ Maximal HSC re-entry rate days−1

s2 HSC re-entry Hill coefficient −
θ2 Half-effect HSC concentration 106 cells/kg

κδ HSC differentiation rate to other lines days−1

κmin HSC-neutrophil minimal differentiation rate days−1

κ∗ HSC-neutrophil homeo differentiation rate days−1

G∗2 Bound G-CSF concentration ng/mL

s1 HSC-neutrophil differentiation Hill coefficient −
η∗NP Neutrophil homeostasis effective proliferation rate days−1

bNP Neutrophil proliferation M-M constant ng/mL

ηminNP
Neutrophil minimal proliferation rate days−1

τNP Neutrophil proliferation time days

Vmax Maximal neutrophil maturation velocity −
bV Maturation velocity half-effect concentration ng/mL

aNM Homeostasis neutrophil maturation time days

γNM Neutrophil death rate in maturation days−1

ϕ∗NR Homeostasis Reservoir Release rate days−1

ϕmaxNR
Maximal Reservoir Release rate days−1

bG Reservoir Release half-effect concentration ng/mL

γNR Neutrophil death rate in reservoir days−1
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Abbreviation Interpretation Units

γN Neutrophil Removal Rate from Circulation days−1

Gprod Endogenous G-CSF production rate ng/mL/day

V Bound G-CSF conversion factor ng/mL
109cells/kg

kren G-CSF renal elimination rate days−1

kint G-CSF effective internalisation rate days−1

k12 Unbound to bound G-CSF compartment days−1

ng/mLPow

k21 Bound to unbound G-CSF compartment days−1

ng/mLPow

Pow Effective G-CSF binding coefficient

ϕratioNR
ϕmaxNR

/ϕ∗NR

G∗1 Free G-CSF ng/mL

GSC
dat(t) Data SC G-CSF function ng/mL

GIV
dat(t) Data IV G-CSF function ng/mL

GSC
1 (t) Simulated SC G-CSF function ng/mL

GIV
1 (t) Simulated IV G-CSF function ng/mL

χ0.95 Scaling factor

N375
dat (t) Data 375 µg neutrophil function 109cells/kg

N750
dat (t) Data 750 µg neutrophil function 109cells/kg

N375(t) Simulated 375 µg neutrophil function 109cells/kg

N750(t) Simulated 750 µg neutrophil function 109cells/kg

N
chj
dat (t) Data neutrophil function for chemo subject j 109cells/kg

N chj(t) Simulated neutrophil function for chemo subject j 109cells/kg

Q∗ HSC homeostasis concentration 106cells/kg

β(Q∗) HSC re-entry rate days−1

N∗ Homeostasis Total Blood Neutrophil Pool 109cells/kg

N∗R Homeostasis Neutrophil Reservoir Concentration 109cells/kg

N∗P Homeostasis Neutrophil Proliferation Concentration 109cells/kg

N∗M Homeostasis Neutrophil Maturation Concentration 109cells/kg

G∗2 Homeostasis bound G-CSF concentration ng/mL

τ ∗NR Homoeostasis Neutrophil mean time in reservoir days
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Abbreviation Interpretation Units

τ ∗NC Homoeostasis Neutrophil mean time in circulation days

τ1/2 Circulating Neutrophil half-removal time hours

A∗N Homeostasis neutrophil proliferation+maturation amplification −
b̃V Scaled maturation half-effect concentration ng/mL

ϕratio
NR

Ratio of maximal and homeostasis reservoir release rates −
ϕNR(0) Minimal reservoir release rate days−1

θ Ratio of rate cells leave proliferation at knockout to homeostasis −
Cko Knockout total blood neutrophil pool fraction −
µ Ratio of minimal and homeostasis proliferation rates −
Vd Volume of distribution mL

F Bioavailable fraction −
ka Subcutaneous rate of absorption days−1

kfp Rate of exchange from compartment f to p days−1

ksl1p Rate of exchange from compartment sl1 to p days−1

kpf Rate of exchange from compartment p to f days−1

kpsl1 Rate of exchange from compartment p to sl1 days−1

kelC Rate of elimination days−1

ksl2f Rate of exchange from compartment sl2 to f days−1

kfsl2 Rate of exchange from compartment f to sl2 days−1

BSA Body surface area m2

hQ Effect of chemotherapy on Q(t) −
EC50 Half-maximal effect of chemotherapy on ηNP −
sc Chemotherapy effect Hill coefficient −
ηinfNP

Rate of proliferation with an infinite chemotherapy dose days−1
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Preface

This dissertation deals with the optimisation of the use of a cytokine which stimulates

certain white blood cells after anti-cancer treatment. The motivation for this work was

three-fold: from a clinical standpoint, the ad libitum administration of the exogenous

form of this cytokine did not serve patients in the best way possible. Pharmacologi-

cally speaking, the concurrent administration of drugs presents an interesting yet complex

opportunity to understand drug-drug interactions. Finally, in terms of systems biology,

mathematical modellers have long been intrigued by the dynamics of the blood system and

the complexity of related structures. Bridging these three major perspectives required a

wholly interdisciplinary approach and has motivated several important ancillary studies.

In what follows, I will begin by situating the biological foundations of the blood and

neutrophil system, including the cytokine of interest and its clinical use to treat neutrophil

pathologies. Next, I will situate the continuously evolving pharmacometrics field by an-

choring its history to the background of models for neutrophil development.

The publications are presented in the following order:

— Craig M, Humphries AR, Bélair J, Li J, Nekka F, Mackey MC. Neutrophil dy-

namics during concurrent chemotherapy and G-CSF administration: Mathematical

modelling guides dose optimisation to minimise neutropenia. Journal of Theoretical

Biology, 385, 77–89 (2015).

— Craig M, González-Sales M, Li J, Nekka F. Impact of Pharmacokinetic Variability

on a Mechanistic Physiological Pharmacokinetic/Pharmacodynamic Model: A Case

Study of Neutrophil Development, PM00104, and Filgrastim. In Interdisciplinary

Mathematical Research and Applications (ed. B. Toni). Springer, New York. In

press.

— Craig, M., Humphries, A.R., Mackey, M.C. A mathematical model of granulopoiesis

incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil

binding and internalisation. Under review (submitted to the Bulletin of Mathemat-
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ical Biology December 21, 2015).

— Craig, M., González-Sales, M., Li, J., Nekka, F. Approaching pharmacometrics as

a palaeontologist would: Recovering the links between drugs and the body through

reconstruction. CPT: Pharmacometrics and Systems Pharmacology. In press.



Chapter 1

Introduction

1.1 Neutrophil Bone Marrow Development from the Hematopoietic Stem

Cells

This section provides an overview of the development of circulating neutrophils to the

total blood neutrophil pool from the hematopoietic stem cells. The focus is primarily

systems level physiology, although certain signalling mechanisms and fundamentals will

be discussed.

1.1.1 Hematopoietic Stem Cells: Pluripotent Regulators of

Hematopoiesis

History is littered with coincidental and peculiar developments. While the first portion

of the last century saw a nuclear arms race take hold, the focus on building atomic weapons

led to several important scientific advances, extending even to the life sciences. One such

breakthrough is the identification of cells capable of clonal repopulation [28]. Stem cells

were first discovered by Till and McCulloch [128] after injecting bone marrow into mice

spleens and observing clonal nodules in the excised organs. This pioneering work led to

many subsequent discoveries on the physiology of these pluripotent cells and the identifi-

cation of the various stem cell types. One such variety are those which generate the cells

in the blood. Hematopoietic stem cells (HSCs) give rise to cells of all blood cell lineages

and regulate hematopoiesis (the production of blood cells). HSCs produce about ten times

human body weight in blood cells per lifetime [81] yet they comprise just 0.01-0.2% of the

total bone marrow mononuclear cells in human beings [96]. The current understanding of

the production of these hematopoietic cells is highlighted in Figure 1.1, although it should

be noted that there exists several proposed models of hematopoiesis. Much remains un-

known about the mechanisms instructing lineage potential [28] and the current paradigm

of lineage determination has recently been called into question [95]. The HSC popula-

tion is fairly stable and rarely divides [102], which is likely an evolutionary mechanism
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HSC

CMP CLP

MEP GMP TNK BCP

MKP

PLT RBC

EP

MC Neu T NK BEos

Figure 1.1 – In this classical model, the pluripotent hematopoietic stem cells give rise to
the multitude of blood cells by first dividing into one of either of the primitive progenitor
cells (common myeloid progenitors or common lymphoid progenitors). These primitive
progenitor cells further differentiate into committed precursor cells (megakaryocyte ery-
throid progenitors, granulocyte-macrophage progenitors, T-cell natural killer cell progeni-
tors, and B-cell progenitors), each of which further differentiate into the lineage committed
cells (megakaryocyte progenitors and platelets, erythroid progenitors and red blood cell-
s/erythroids, monocytes, neutrophils, and eosinophils, T-cells, natural killer cells, and
B-cells). HSC: hematopoietic stem cell; CMP: common myeloid progenitor; CLP: com-
mon lymphoid progenitor; MEP: megakaryocyte erythroid progenitor; GMP: granulocyte-
macrophage progenitor; TNK: T-cell natural killer cell progenitor; BCP: B-cell progenitor;
MKP: megakaryocyte progenitor; EP: erythroid progenitor; PLT: platelet; RBC: red blood
cell/erythroid; MC: monocyte; Neu: neutrophil; Eos: eosinophil; T: T-cell; NK: natural
killer cell; B: B-cell. Background colours indicate the level of differentiation. Blue: prim-
itive progenitor cells; purple: committed precursor cells; pink: lineage committed cells.
Schematic adapted from [103].

as instabilities in the HSC population can lead to a variety of hematopoietic pathologies,

including the class of cyclical blood disorders [16, 21, 35]. Recent studies [27, 28, 95, 102]

have put forward different mechanisms for the division of HSCs and the maintenance of

their populations which include the classical model and the model of asymmetrical divi-

sion. In the classical model, hierarchical differentiation leads to lineage commitment of

multipotent progenitors (MPPs) that will become mature, circulating blood cells. This

classical model, first constructed using the blood system as a basis, has subsequently been

proposed as a model for the structure of other stem cell populations [141]. Others maintain
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that the HSCs are capable of asymmetrical division where, after division, one daughter cell

remains an HSC while the other is committed to one of the hematopoietic lineages [102].

This self-renewal process would maintain a near constant HSC population and would ac-

count for the apparent robustness of HSC numbers. Further propositions include the idea

that there are two reservoirs of HSCs: dormant and homeostatic [27]. In this hypothesis,

the homeostatic HSCs divide about once a month and maintain the homeostatic concen-

trations of blood cells whereas the dormant population (which divide once every 145 days

or so) would be called upon in times of emergency or stress. Durand and Charbord [27]

posit, contrary to the asymmetrical model of HSC division, that homeostatic HSCs likely

perform symmetric division but their fate is primarily determined asymmetrically.

The differing opinions on various aspect of HSC physiology are directly attributable to

the difficulty we have in studying them. The direct identification of an HSC is complicated.

Consequently, indirect measures are instead employed [81]. The identification and purifi-

cation of HSCs relies on the up- or down-regulation of the expression of certain proteins

on the cell’s surface. HSCs belong to the class of long-term repopulating cells (LTRCs)

and can therefore be detected in assays for LTRCs [28]. Two main methods are employed

for this identification: the competitive repopulating unit (CRU) assay, which is employed

in vivo, and the in vitro long-term culture-initiating cell or cobblestone area-forming cell

assay. In the former case, cells from another source are supplied and CRU frequencies

are measured after transplantation. In the latter method, adult bone marrow cells are

cultured in presence of steroids and are then quantified using limited dilution assays [28].

Although much remains unsettled in terms of HSC biology and physiology, what we do

understand has led to extraordinary advances in both basic science and medicine. HSCs

have an undeniable potential given their importance in transplantations, hematological

disorders, and gene therapy [81]. More broadly, the entire hematopoietic system is ideally

situated for study by mathematical modelling not only because of what remains to be

discovered about the HSC population and cellular particularities, but also as a result of

the system in which they operate: a refined complex regulated by a variety of cytokines

(cell signalling proteins) which work to maintain blood health for a lifetime. Next, we focus

one important hematopoietic lineage predominately regulated by one particular cytokine.



4

1.1.2 Neutrophil Development and Biology

After commitment into the myeloid lineage, HSCs begin the process of becoming one

of a number of terminally differentiated cells. One such blood cell is a neutrophil, the

most abundant white blood cell in the body [134]. The neutrophils are implicated as

first-line defenders in immune response and are therefore crucial to mammalian health.

The development of neutrophils occurs only in the bone marrow, where they proliferate

and mature in a process known as granulopoiesis [15]. As previously mentioned, the

differentiation of HSCs into the various hematopoietic lineages is not fully elucidated. It is

currently hypothesised that various signals, including HoxB4, Ikaros, the activated nuclear

form of Notch1, cell cycle inhibitor P21, TGF/BMP-4 family members, TNFalpha receptor

P55 signalling [144], PU.1, CCAAT enhancer binding protein (C/EBP)α, C/EBPε, and

GFI-1 [15] all play a role in HSC self-regulation, while the various colony-stimulating

factors (CSFs) and interleukins (ILs) mediate and instruct lineage commitment [144].

There is also likely a stochastic element to the differentiation of HSCs [122].

In the current understanding of hematopoietic blood cell production, HSCs initially

differentiate into multipotent progenitors (MPPs) before branching off into two distinct

progenitor types: common myeloid progenitors (CMPs) and common lymphoid progeni-

tors (CLPs). The CLPs eventually lead to lymphoid cells that are primarily constituted

by B-cells and T-cells, but also contain natural killer cells. CMPs will eventually form

platelets, red blood cells, neutrophils, monocytes, eosinophils, basophils, and mast cells.

Dendritic cells have origins in both the CMPs and the CLPs [60]. The formation of

neutrophils from the CMP niche involves several transitional steps. First, CMPs differ-

entiate into myeloblasts which are the common progenitor of all granulocytes (basophils,

eosinophils, and neutrophils) and monocytes. The next transition involves the terminal

differentiation into the neutrophil lineage. Myeloblasts become promyelocytes, myelocytes,

metamyelocytes, and band neutrophils before they proliferate and mature into neutrophils

(see Figure 1.1 in [78] and Figure 2 in [76]) [123]. These mature neutrophils are initially

stored in the bone marrow prior to their release into the circulation [101].

Circulating neutrophils have a short half-life of approximately 7-10 hours [134] before

their disappearance from the blood. A confounding factor in the reporting of neutrophil

half-life is the significance of the marginated neutrophil pool (MNP). Athens [3], studying
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70 male subjects from the Utah State Prison, reported the total blood granulocyte pool

(TBGP) to have a mean of 65×107 cells/kg, while the circulating granulocyte pool (CGP)

had a mean of 31.7×107 cells/kg, leaving a marginal granulocyte pool of 33.3×107 cell-

s/kg. The MNP exists in several tissues and organs in addition to the capillaries. During

neutrophil reinfusion, one-third of reintroduced cells were found in the liver and the bone

marrow while approximately 15% migrated to the spleen. It is further known that the

lungs harbour a significant amount of the TBNP. Higher rates of neutrophil margination

in different ethnicities may explain why some ethnicities and races exhibit curiously low

neutrophil counts while demonstrating no ill effects for the individual [134]. Further, the

division between the circulating and marginated pools is in constant flux. Exercise and

the release/administration of adrenaline tends to shift the size of the MGP to the CGP,

which is likely a protective measure [3]. The transfer of neutrophils from the blood to

the tissues/marginated pool is mediated by both integrins (receptors responsible for the

cross-talk between cells and a cell to the extra cellular matrix) and selectins (cell adhesion

molecules) [134].

After margination, neutrophil clearance is carried out by both the spleen and the liver,

though some suggest that neutrophils which have trafficked back into bone marrow may be

cleared from there [77, 101, 108, 127]. More recently, researchers have observed that there

are very few neutrophils which complete this migration back into the marrow. However,

others report that it appears that this trafficking contributes to 32% of neutrophil clear-

ance, while the liver and the spleen contribute to 29% and 31% of clearance, respectively

[1, 101]. Neutrophil removal is accomplished by the macrophages at the various sites of

clearance [101] during which they release IL-23, setting off a cascade of cytokine secre-

tion from IL-17 in the T cells thereby inducing increasing concentrations of granulocyte

colony-stimulating factor (G-CSF) [134]. G-CSF is the cytokine which predominates in

the homeostatic regulation of neutrophil production and its role and specificities will be

discussed in Section 1.3 below.

1.2 Neutrophil Pathologies

As the neutrophils are implicated in immune responses, low absolute neutrophil counts

(ANCs) contribute to an increased likelihood of acquiring infections. The most common
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neutrophil disorder is neutropenia, or a lack of neutrophils in the blood. Due to individual

fluctuations in neutrophil counts (anywhere from daily [56] to monthly [3]) small dips

below baseline are not necessarily a cause for concern. For this reason, neutropenia is

typically graded, where grade 1 corresponds to ANCs between 1.5 and 2 ×109 cells/L,

grade 2, or mild, to ANCs between 1 and 1.5 ×109 cells/L, grade 3, or moderate, to ANCs

between 0.5 and 1 ×109 cells/L, and grade 4 (severe) to ANCs less than 0.5 ×109 cells/L,

though these ranges vary with age and race [68]. Neutropenia can be classified as acute

(where the disorder is brought upon by an outside source whose removal restores ANCs)

or as chronic, and chronic neutropenia is further subdivided into congenital, syndrome-

associated, antibody-mediated, or idiopathic disorders [68].

Within the congenital disorders is severe chronic neutropenia, which itself encompasses

two notable pathologies, namely cyclical neutropenia (CN) and severe congenital neutrope-

nia (SCN). Cyclical neutropenia is a rare disease with an incidence of about one in one

million where neutrophil counts oscillate with a period of 21 days, though some patients

exhibit oscillations of over 40 days [21]. CN is a lifelong disease brought about by muta-

tions on the neutrophil elastase (or ELANE) gene [21] which carries a high risk of infection

during the times when neutrophil numbers are low (and vice versa) [68]. CN has been

fairly extensively analysed by means of mathematical models (see [21] for an extensive

review) because of the existence of an animal model which has presented a great potential

for study. As with patients with CN, grey collies also exhibit oscillations in their neutrophil

counts, although with a period of seven to 11 days [16]. This mathematical modelling of

CN has been valuable. For example, the identification of the ELANE mutation by molecu-

lar biologists was reinforced by the modelling prediction that a disruption in the apoptosis

of neutrophil progenitors caused the cycling [21]. Recently, there has been an increased

focus on aiding the clinical prediction of CN. Dale’s group at the University of Washington

has submitted to the Food and Drug Administration (FDA) of the United States for the

approval of an at-home blood sampling kit. This would aid in the diagnosis of CN by

allowing patients to easily monitor their neutrophil counts, something which would also

make rich data available to researchers [21]. Concurrently, the launch of an informal online

prediction tool has made Lomb-Scargle periodogram analysis available to practitioners so

they may more easily detect oscillations in suspected CN cases (visit the Cyclic neutrope-

http://cyclicneutropenia.org
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nia website at http://cyclicneutropenia.org). Due to the oscillatory nature of the disorder,

patients with CN may experience neutrophilia (high ANCs) whereas patients with SCN

experience chronically low neutrophil counts, leaving them exposed to life threatening in-

fections [68]. SCN is equally if not more rare than CN (affecting approximately 0.5 in

a million) and patients with the disorder are more likely to develop acute myelogenous

leukaemia or myelodysplasias. Some patients have been found to carry mutations on their

G-CSF receptors, leaving them with a reduced or even no response to treatment with ex-

ogenous G-CSF [68, 136] (discussed further in Section 1.5.1). Researchers at the University

of Washington established and maintain an international registry to track those affected

by SCN and to keep a record of their prescribed treatments and outcomes (visit the Severe

Chronic Neutropenia International Registry at https://depts.washington.edu/registry/).

Both CN and SCN are identified as rare diseases but neutropenia on the whole is not

an uncommon condition since iatrogenic causes of neutropenia contribute significantly to

the prevalence of the disorder. One such significant cause of acute neutropenia is brought

about by myelosuppressive drugs such as those used in anti-cancer treatments. As will

be discussed in Section 1.6.1, chemotherapeutic drugs work by disrupting cellular division

to quell the uncontrolled growth of cancerous cells. Unfortunately this disruption affects

cells which are particularly short-lived, such as the neutrophils, due to their continuous

production in the bone marrow (approximately 1 billion neutrophils per kilogram of body

weight are released into and disappear from the blood every day) [19, 90]. Patients un-

dergoing anti-cancer treatment are particularly prone to febrile neutropenia (neutropenia

with fevers), which leave them open to infection during an already challenging period [91].

In both the pathological or healthy case, the control of neutrophil production and blood

counts is assured through a host of chemical signals of which G-CSF is the principle actor.

1.3 Regulation of Neutrophils by G-CSF

The blood system is regulated by a diverse set of cytokines (cell signalling proteins)

whose role is to control and balance cell numbers in the blood. A broad set of sig-

nalling molecules are involved in regulating neutrophils counts, including IL-3, granulocyte-

macrophage colony stimulating factor (GM-CSF), and IL-6, though none of these have

proven to be the main drivers of granulopoiesis. In fact no defects in granulocytes were

http://cyclicneutropenia.org
http://cyclicneutropenia.org
https://depts.washington.edu/registry/
https://depts.washington.edu/registry/
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observed when IL-3, GM-CSF, or IL-6 receptors were knocked out in mice [15]. Contrary

to these results, in G-CSF(-/-) mice, only 20-30% of normal neutrophil counts are present

and the mobilisation of neutrophils from the marrow into the circulation is impaired [72].

Absolute neutropenia in humans has also been observed with deficiencies in G-CSFRs, as

is the case of an infant born with no neutrophils. She experienced SCN and was unrespon-

sive to treatment with G-CSF due to a point mutation on the extracellular domain of the

GCSFR [136]. These results suggest that G-CSF is indispensable for neutrophil regulation

and it is considered the primary cytokine driving granulopoiesis [101].

Colony-stimulating factors were initially discovered in the 1960s. The first purification

of human G-CSF occurred in 1983/1984 following its initial purification from mice in

1983 [90]. What would become the common recombinant human (rh) form of G-CSF was

successfully expressed in Escherichia coli in 1986 [137]. Today, E. coli bacteria are still

used to generate rhG-CSF for clinical uses.

Structurally, the G-CSF gene is a 174-amino acid protein with a molecular weight of

19,6 kDa and encodes a 204-amino acid protein structure (a signalling sequence at the

end of the molecule accounts for the difference in the number of amino acids). Among

mammals, a 99% similarity in G-CSF protein structures has been observed and humans

share a 74% and a 65% similarity with the G-CSF structure of mice and rats, respectively

[2]. G-CSF is formed by four alpha-helices, as shown in Figure 3 of Arvedson et al. [2]

and is a part of the long-chain subfamily which includes proteins having an average length

of 260 amino acids with helices 20 to 30 residues long [2].

The GCSFR binds to G-CSF with a primarily 2:2 stoichiometry [2, 69] although certain

groups have reportedly been able to produce a 1:1 binding in laboratory conditions [69].

The current understanding of G-CSF/GCSFR interactions was visualised in Figure 5 of

Layton et al. [69].

The action of G-CSF on the neutrophils occurs in several ways to modulate the con-

centration of neutrophils in the blood. G-CSF is a potent regulator of both neutrophil

production (by various means) and of the release of neutrophils from the marrow into cir-

culation [5, 101] but it does not seem to affect the clearance or removal of neutrophils [15].

The most immediate effect of an increase in G-CSF concentrations is emergency granu-

lopoiesis, or the rapid mobilisation of neutrophils into the blood [39, 101]. During such
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inflammatory events, the neutrophil transit from the marrow seems to also be mediated

by IL-17, though the same is not true for the maintenance of homeostasis [101]. After

the release of cells from the marrow reservoir, G-CSF acts upstream on proliferating and

maturing cells to ensure the replenishment of the reserve by increasing cell proliferation,

decreasing the speed of transit from the marrow, and ensuring the differentiation and mat-

uration of neutrophils [78]. To wit, it has been demonstrated that neutrophil precursors

are subject to higher rates of apoptosis (programmed cell death) in the absence of G-CSF

[90].

The major impetus for G-CSF action on the neutrophils is binding to GCSFRs on

the surface of the cells, whereby G-CSF is subsequently cleared from the blood. After

saturation of this mechanism, G-CSF is cleared by the kidneys [78, 90]. This dual elimi-

nation route is an important mechanism of the pharmacokinetics and pharmacodynamics

(PK/PD) of G-CSF and it has a notable effect on the half-life (t1/2) of G-CSF in the blood,

as G-CSF has a half-life of around 4.7 hours without neutrophils available for binding but

just 2 hours when neutrophils are available [90]. In a simple model, this combination of

nonlinear, saturable elimination with a linear clearance route (as is common for several

types of small molecules, including ethanol and erythropoietin) also affects the volume of

distribution, a theoretical amount relating the volume of occupancy of a drug in the body

[139, 140]. Further, the two routes of elimination are relevant to the PKs of exogenous G-

CSF administrations since the clearance of the drug will be increased as neutrophil counts

rise, which requires multiple and repeated administration to combat this effect [90].

1.4 The Use of G-CSF in a Clinical Setting

After the replication of G-CSF in E. coli, the first rhG-CSF preparation began clinical

trials in 1991, and a second derivative from hamster ovary was approved in 1993. rhG-

CSF is available in various forms, including the most common forms known as filgrastim

(NEUPOGEN®), lenograstim (Granocyte®), and KW-2228 (Nartograstim®) [90]. All

three of these forms are biosimilar to the native G-CSF molecule, albeit with the addi-

tion/deletion of an N-terminal methionine and an O-linked carbohydrate on threonine (fil-

grastim), and an allowance for radioactive labelling (KW-2228) [90]. An additional form of

rhG-CSF, known as pegfilgrastim (Neulasta®), which is formed by adding a polyethylene
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glycol moiety to the N-terminal methionine of filgrastim, bypasses the linear elimination

from the kidneys due to its increased size. As a result, although the molecule has a sim-

ilar PD action as filgrastim from the binding to neutrophil receptors, it has a markedly

increased exposure from the altered PKs.

The use of rhG-CSF in clinical practice has been approved for several applications. As

alluded to in Section 1.2, the most significant use of G-CSF mimetics is for the treatment

of neutropenia of various origins. A brief outline of the use of rhG-CSF in non-oncological

settings follows, before addressing its administration in cancer treatment.

1.5 Non-oncological Treatment with rhG-CSF

1.5.1 Severe Congenital Neutropenia

One of the major successes of treatment with rhG-CSF has been for patients affected

by SCN. Since these individuals have a mutation on the ELANE gene, they experience

higher than normal rates of apoptosis in the early proliferating neutrophil progenitors [21].

Accordingly, as G-CSF is known to increase proliferation rates, rhG-CSF is administered

daily to increase neutrophil counts [20]. Treatment of SCN with rhG-CSF has proven not

entirely straightforward, however, as phase II clinical trials showed a high variability in

the required effective dose and the time to the onset of treatment efficacy. Regardless,

fairly immediate results of the treatment were observed in the reduction of the number of

infections experienced by the participants [20].

1.5.2 Cyclical Neutropenia

One of the first clinical trials after the purification of rhG-CSF was for the treatment

of CN by IV administration, which was quickly changed to subcutaneous administration

after it was found to be equally as efficacious [20]. The treatment of CN with rhG-CSF

has proven to be an effective means of controlling the disease, using daily or once-every-

other-day administrations [22]. Those affected by CN undergoing treatment with rhG-CSF

experience fewer periods of severe neutropenia and no longer experience the mouth ulcers,

fevers, and serious infections related to the disorder [20]. Indeed, one patient has been

treated nearly daily for 20 years with exogenous G-CSF and has experienced virtually no
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significant side effects [21]. Despite these encouraging results, treatment with rhG-CSF

has not been shown to eliminate neutropenic cycling all together [22], though it has been

demonstrated to shorten the length of the cycling [21]. Mathematical modelling has been

used to address this curiosity by studying the timing of G-CSF administrations for patients

with CN [16, 21, 35]. The authors of one such study demonstrated that alternate-day

administration of rhG-CSF was as effective as daily treatment [35], though this assertion

has yet to be borne out in a clinical setting [21].

1.5.3 Stem Cell Transplantation

Myeloid growth factors, including rhG-CSF, are used during stem cell transplantation

in two notable ways. The first is to increase the mobilisation of the peripheral blood

progenitor cells (PBPCs) for stem cell collection, while they are also administered during

autologous stem cell transplantation (removal, storage, and reinjection of one’s own stem

cells) to combat neutropenia during the procedure [22, 107]. When rhG-CSF is given

repeatedly prior to autologous stem cell transplantation, PBPCs numbers are increased

and there is improved neutrophil recovery and marrow engraftment [22].

1.5.4 Further Applications and Investigational Studies

Supplementary uses of rhG-CSF within hematological disorders include the treatment of

Shwachman-Diamond Syndrome (mutations on the Shwachman-Blackfan-Diamond gene

which disrupt cellular proliferation), acquired neutropenic disorders, including neona-

tal immune and autoimmune neutropenia (disruption of maternal antibodies leading to

changes in antigen expression in infants), and chronic idiopathic neutropenia (benign neu-

tropenia of childhood) [21, 90]. Although the mechanisms with which treatment with rhG-

CSF improves outcomes for these disorders are not known, they are generally attributed

to the pro-proliferative effects of the G-CSF [21]. Outside the scope of purely hemato-

logical pathologies, rhG-CSF is used to treat neutropenia in inflammatory diseases like

rheumatoid arthritis and acquired large granular lymphocyte syndrome. Unfortunately in

these instances, a common side effect of the treatment of neutropenia with rhG-CSF is

an increase or worsening in arthritic pain. rhG-CSF is also used to effectively treat glyco-

gen storage disease type 1b, a disorder affecting the cellular trafficking of glucose across
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the membrane, certain infectious diseases (including bacterial pneumonia and meningitis,

and sepsis) [73], and has been investigated for use after stroke, myocardial infarctions,

peripheral vascular disease, liver disease, traumatic nerve damage, among others [90].

A major use of rhG-CSF beyond its application in treating hematological disorders is

for the treatment of human immunodeficiency virus (HIV). With the advent of combina-

tion antiretroviral treatment (ARV), the prognosis of those affected by HIV has steadily

improved [51, 124] implying there is a greater need to manage the now lifelong comorbidi-

ties associated with the infection. Early in the HIV/acquired immunodeficiency syndrome

(AIDS) epidemic, neutropenic infections were identified as a critical concern for the care

of patients whose HIV had progressed to AIDS [51]. Though recent progress in the man-

agement of HIV has markedly increased life expectancies for those with HIV, neutropenia

remains present within the patient community due to ART resistance and non-compliance

[51, 124]. Beyond the decreased number of circulating neutrophils associated with HIV,

it is also known that the infection (and other viral infections) causes defects on the neu-

trophils themselves which affect their ability to perform chemotaxis, phagocytosis, the

respiratory or oxidative burst, and their microbicidal capacity [51]. Neutropenia in pa-

tients with HIV is an ongoing concern due to the increased risk of bacterial infections

and invasive aspergillosis for those with hematological malignancies [51]. Treatment with

filgrastim during HIV has been shown to induce a 56% reduction in mortality in a ret-

rospective study [24]. Regrettably, treatment with filgrastim during HIV infection has

been known to cause disseminated intravascular coagulation, hepatitis, and pancreatitis

in addition to the usual bone pain, fever, and other symptoms typically experienced by

patients without HIV [51]. Ultimately, since the majority of HIV-affected individuals live

in the developing world (some 23.5 million people out of the 34 million globally infected

in Sub-Saharan Africa alone [130]), the most significant drawback to rhG-CSF treatment

for HIV patients is drug costs [51], a concern echoed in other clinical settings.

1.6 Oncological Settings: Treating Cancer with Chemotherapy

Cancer, in its various presentations, is a public health concern across the globe. In

Canada, the Canadian Cancer Society (CCS) estimates that 42% of women and 45% of

men will face a cancer diagnosis during their lifetime [13]. In 2012, the number of new
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incidences of cancer in Canada rose to 175 310 [12], while that number is estimated to reach

196 900 in 2015 [13]. A slim (51%) majority of these new cases are lung, breast, colorectal,

and prostate cancers, though there are some 100 different types of cancer known to affect

humans [13]. Cancer is a broad class of cellular growth disorders, where cells undergo

increased division and unmitigated growth due to a disruption in the cell cycle [85]. This

cycle is generally represented as four distinct phases: G1, S, G2, and M, however Burns

and Tannock [10] wrote of the existence of the G0 phase (a quiescent, resting phase, or

extended G1 phase) in 1970. Cells exiting the G0 phase committed to divide will enter G1

and the precursory mechanisms of cell division are commenced. Next, the cell enters the

S phase, or DNA synthesis phase. Here, signals within the cell control the copying of the

DNA inside the nucleus and 4N or tetraploid content is produced. Next, the cell rests in

the G2 phase before entering the mitotic M phase where cellular division occurs [85]. The

mitotic phase comprises the separation of the cell’s chromosomes, the cleavage of the cell

by the microtubules, and the production of two daughter cells. Cancer/tumour kinetics

disrupt this usually well-performed process in three important ways:

1. the time of the cell cycle is disrupted (cells divide faster),

2. the fraction of cells undergoing cellular division is increased,

3. the total number of cancerous cells increases.

These three factors determine the growth rate of cancerous tumours [85]. To address

the overall uncontrolled growth of cancer cells, anti-cancer treatment in the form of ra-

diotherapy or chemotherapy (or a combination thereof) is administered with the goal of

disrupting this rapid cellular division. Herein, we focus on chemotherapeutic options.

1.6.1 Chemotherapy: Mechanism of Action and Hematological Toxicities

Current anti-cancer treatment with chemotherapy focuses on combination therapy, which

aims to maximise the cellular killing effects of each drug while minimising their toxicities

[85]. Chemotherapeutic drugs fall into several classes, among them alkylating agents,

nitrosoureas, platinum agents, antimetabolites, antitumour antibiotics, anthracyclines,

epipodophyllotoxins, vinca alkaloids, taxanes, and camptothecin analogs [86], all of which

disrupt cellular division through various mechanisms of action.
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The two most general means by which chemotherapeutic agents disrupt the uncontrolled

growth of cells is by disturbing DNA synthesis (during the S phase) and by interfering with

microtubule elongation and contraction, which leads to the inability of the cell to properly

cleave. The former action is performed by drugs in the alkylating agents, nitrosoureas,

platinum agents, antimetabolites, antitumour antibiotics, anthracyclines, epipodophyllo-

toxins, and camptothecin analogs classes. Vinca alkaloids and taxanes perform the latter

action, although they disrupt the assembly of microtubules in opposite ways. Vinca alka-

loids inhibit assembly by binding to the tubulin which forms the subunits of microtubules.

Taxanes, an important class of anti-cancer drugs which include paclitaxel and docetaxel,

induce microtubule polymerisation and result in increased cellular apoptosis.

Unfortunately, the nature of the cell-killing mechanism of chemotherapeutic agents and

their efficacy in vivo lead to cytotoxic secondary effects which limit their use [34, 79]. Of

particular concern is the myelosuppressive action of chemotherapy and the induction of

acute neutropenia in patients receiving treatment. To account for the somewhat rapid

disappearance of the circulating neutrophils due to their half-life of around 7 hours, the

neutrophil precursors in the bone marrow must be steadily dividing to replenish blood

neutrophil counts and so these latter cells undergo fairly rapid division. Consequently,

during anti-cancer treatment, circulating neutrophil numbers can become significantly re-

duced, leading to either dose adaptation or complete cessation of treatment [106]. Further,

febrile neutropenia from the chemotherapy’s cytotoxicity leaves the patient susceptible to

infections, which increases the risk for hospitalisation and complications from morbidi-

ties. Moreover, modern chemotherapy combinations are administered in periodic cycles,

which is believed to progressively reduce the number of cancerous cells. However, this

periodic administration worsens the myelosuppression due to the repeated exposure of

the neutrophils to the cytotoxic drug. Accordingly, ANC counts and the response of the

hematopoietic system to chemotherapy are often used as surrogates for the successfulness

of the treatment [21].

1.7 The Use of rhG-CSF to Mitigate Myelosuppressive Chemotherapy

To address the onset of neutropenia in patients receiving chemotherapy, rhG-CSF is

administered concurrently, frequently prophylactically. In 1991, the FDA approved the
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use of rhG-CSF for patients undergoing myelosuppressive chemotherapy [106]. Currently,

the American Society of Clinical Oncology (ASCO) recommends the use of G-CSF during

chemotherapeutic treatment as a primary prophylactic measure when there is a 20% or

more risk of febrile neutropenia [79, 106] and both ASCO and the National Comprehen-

sive Cancer Network (NCCN) have also expanded this recommendation to patients with

a risk between 10% and 20% based on clinical experience and trial reviews [106]. For pri-

mary prophylactic use, Canadian recommendations followed suit with those of ASCO, the

NCCN, and the European Organisation for Research and Treatment of Cancer (EORTC).

The Canadian guidelines call for treatment with CSFs when the risk of neutropenia ex-

ceeds 20%, there are previous comorbidities and/or neutropenic events, and when the

risk of neutropenia is between 10% and 20% based on expected benefits considering a

variety of factors (clinical, laboratory, patient risk, and disease factors) [63]. The factors

determining the risk of neutropenia for a patient undergoing treatment with chemother-

apy include advanced age, poor performance status, the presence of other complicating

disease-statuses, and atypical baseline counts [79]. Older patients are regularly singled out

as having a higher propensity for neutropenia and are, accordingly, labelled as high-risk

by the EORTC [79]. Identifying those patients who present an increased chance of devel-

oping neutropenia has also been addressed by the regulatory cancer organisations. ASCO

provides a worksheet for clinicians to evaluate their patients’ likelihood of developing neu-

tropenia [79]. The EORTC published the decision tree presented in Figure 1.2 to help

guide clinicians in their expectation of risk [79]. Canadian recommendations combined

those of the EORTC and ASCO, as seen in Figure 1.3 [63]. All told, regulatory agencies

have put forward methods for standardising clinical decisions on the prophylactic use of

rhG-CSF in oncological settings to appropriately triage patients for effective care during

chemotherapeutic treatment. Differences in recommendations exist between the different

organisations owing to the prevalent practices of their respective regions [79].

While ASCO, the NCCN, and the EORTA have put forward advice for systematic

risk assessment, guidelines for treatment of neutropenia during chemotherapy and the

timing of this treatment are more vague. Canadian recommendations based on recent

meta-analyses indicate that filgrastim therapy should begin soon after chemotherapeutic

administration and continue until the ANC nadir is observed to be raised above 1.5×109
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High risk Age ≥ 65 years

Increased risk (Levels I and II evidence) Advanced disease
History of prior febrile neutropenia
No antibiotic prophylaxis, no G-CSF use

Other factors (Levels III and IV evidence) Poor performance and/or nutritional status
Female gender
Haemoglobin < 12 g/dL
Liver, renal, or cardiovascular disease

Step 1: 
Assess the frequency of febrile neutropenia with the  

planned chemotherapy regimen

Febrile neutropenia risk ≥ 20% 10% ≤ Febrile neutropenia risk ≤ 20% Febrile neutropenia risk < 10%

Step 2: 
Assess factors that increase the frequency/risk of febrile neutropenia 

Step 3: 
Define the patient’s overall febrile neutropenia risk or planned chemotherapy regimen 

Overall febrile neutropenia risk ≥ 20% Overall febrile neutropenia risk < 20%

Prophylactic G-CSF recommended G-CSF use not included

Figure 1.2 – The European Organisation for Research and Treatment of Cancer decision
tree guidelines for the prophylactic use of G-CSF during chemotherapy. Adapted from
[21].

cells/L, although this nadir value is also somewhat ill-defined and ANCs of 1-1.5×109

cells/L are recommended prior to treatment cessation. Treatment with rhG-CSF after

chemotherapy is prescribed to continue until after the nadir has passed, necessitating

some clinical intuition as ANCs are known to drop moderately between the time when

rhG-CSF treatment is stopped and the next chemotherapy period begins. The duration

and timing of the treatment with rhG-CSF depends on the time to the nadir and on the

grade of the neutropenia [63]. The difficulties in making these determinations are further

compounded due to the uncertainty of an individual’s tolerance for chemotherapy.

1.8 An Interdisciplinary Approach to Guide the Clinical Practice

Mathematical modelling is well-positioned to respond to the need to predict the ANC

nadir after chemotherapeutic administration. Predictions based on modelling work can

help to standardise treatment protocols and take out the guesswork for clinicians, leading
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Step 1: Assess the frequency of febrile neutropenia with the planned chemotherapy regimen
-The patient’s FN risk should be routinely assessed prior to each chemotherapy cycle 

-Dose-dense chemotherapy regimens should always be considered high risk for FN (FN risk ≥ 20%) 
-Patients with NHL > 65 years old receiving curative  chemotherapy should be considered at high risk of FN

FN risk > 20% FN risk 10-20% FN risk < 10%

Overall FN risk ≥ 20%

Prophylactic G-CSF recommended G-CSF use not recommended

-Age=65 years 
-Advanced disease 

-Previous episode of FN 
-Open wounds or active infections 

-Poor performance status 
-Poor nutritional status 
-Serious comobidities 

-Combined chemoradiotherapy 
-Cytopenias due to tumour bone marrow involvement 

-Female gender 
-Hemoglobin < 120 g/L

Step 2: Assess factors that may increase FN risk

Overall FN risk < 20%

Figure 1.3 – The combined European Organisation for Research and Treatment of Cancer
and American Society of Clinical Oncologists decision tree guidelines for the prophylactic
use of G-CSF during chemotherapy. Adapted from [63].

to an increased evidence-based practice [21, 132].

The approach undertaken in this dissertation is one which is interdisciplinary and fo-

cussed on patient outcomes. It combines our most current understanding of granulopoiesis

within an appropriate mathematical framework and incorporates key pharmacological con-

siderations, all while maintaining a focus on clinical realism.

To situate the articles highlighted in Chapters 2 to 5, it is important to understand

the historical evolution of the fields of pharmacometrics and pharmacology. The following

sections will contextualise the broad swath of studies undertaken to respond to the need

for guidance where myelosuppressive chemotherapy is concerned.

1.9 Early Studies of Myelosuppression and Statistical Approaches

Initial work to predict a neutrophil response during chemotherapy centred on more sta-

tistical approaches, as is consistent with the beginnings of the PK/PD field as a whole.

Two important early works were authored by Karlsson et al. [58, 59], the latter of which
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focussed mainly on a more generalised approach. In the work of [58], measures for the

average concentration of etoposide (a topoisomerase inhibitor) contribute to an effect on

the white blood cells (WBCs) by an Emax model (a saturating sigmoidal response func-

tion), as seen in Equations (1.1). Due to a statistical relationship between the average

plasma concentration of etoposide, the albumin in the blood, and bilirubin (blood pro-

teins), a correlated function of the effective concentration was used as the driver of the

WBC response:

Cave =
C24

(
28 + 44R1

R2

)
72

Ce f f = Cave
3.7

ALB
(1 + θBILI(BILI − 0.5))

E(t) =
Emax(t)C

γ
ave

Cγ
ave + Cγ

50

WBC(t) = Baseline(1− E(t)),

(1.1)

where Cave is the average concentration of etoposide, C24 is the concentration of etoposide

24 hours after the beginning of infusion, R1 and R2 are the rates of infusion before and af-

ter 28 hours, Ce f f is the effective concentration, ALB is the covariate for albumin, BILI

is the covariate for bilirubin, E(t) is the modelled concentration-effect relationship, Emax

is the maximal effect, γ is the steepness of the Emax curve, C50 is the concentration of

etoposide which generates half of the maximal effect, WBC(t) is the modelled WBC count

over time, and Baseline is the baseline WBC before drug infusion. The authors of [59]

undertook a similar statistical relationship analysis to predict WBC counts during treat-

ment with paclitaxel, although here the drug served as an example for a more generalised

model, the principle equations of which are presented in Equations (1.2) below.

Edir =
Cγ1

Cγ1 + Cγ1
50

Eobs =
Eobs maxAUC

γ2
dir

AUCEγ2
dir 50 + AUCEγ2

dir

WBCpred(t) = Baseline

(
1− Emax(t)AUC

γ2
dir

AUCEγ2
dir 50 + AUCEγ2

dir

)
,

(1.2)
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where Edir is the direct (unobserved) effect of the chemotherapeutic drug, Eobs is the

observed effect, C is the concentration of the drug, γ1 determines the slope of the sigmoidal

effect, C50 is the concentration of the drug eliciting 50% of the maximal effect, AUCEdir

is the area under the Edir-time curve, Edir max is a scaling factor set to 1, AUCEdir 50 is

the AUCE which gives 50% of the maximal effect, γ2 determines the slope of the sigmoidal

effect, WBCpred(t) is the predicted WBC count over time, and Emax is the maximal effect

over time.

Both models lack a physiological impetus and are mainly determined by statistical

analyses [36]. Though these studies appeared in the mid-to-late 1990s, the development of

increasingly refined models for the prediction of neutrophil counts parallels the maturation

of the PK/PD modelling field and modelling trends in PK/PD over time.

Though the earliest PK study can be traced back to 1919 in the work of Widmark

[4, 138], it wasn’t until the late 1960s that PK/PD modelling truly began expanding

[4, 18] with the pioneering studies from the Sheiner lab. The pharmacokinetics outlined

in [115] are simple one-compartment models, but what was important in this work was

the computational framework that would later serve as the basis for the gold-standard

software in the field (see Section 1.13). In 1979, Sheiner readapted this model to account

for the time delay in the effects of d-tubocurarine, a neuromuscular blocking drug in

producing paralysis [118] based on work developed by Segre [4, 114]. This model included

a hypothetical effects compartment in which drug concentrations related directly to a

drug’s pharmacological actions. This pioneering model quickly became standard in the

field and compartmental analysis developed into the dominant modelling philosophy [42].

Although compartmental methods took off, the ease with which summary parame-

ters can be obtained through non-compartmental analysis (NCA) meant that this latter

methodology remains a straightforward initial means to obtain parameter estimates [42].

NCA, also known perhaps somewhat anomalously model-independent, makes no illusions

as to its empirical nature, having been developed from the statistical moment closure tech-

niques of Yamaoka [4, 42, 142]. NCA rests primarily on the assumption of a kinetically

homogenous central compartment from which clearance takes place and is frequently relied

upon to predict drug exposure in the form of the area under the (concentration) curve,

or AUC [42]. As in the WBC models of [58] and [59], no explicit physiology is accounted
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for, which can be viewed as advantageous by some (more generalisable, less assumptive,

directly related to observed behaviours [42]) while others would argue this to be a defect

of the method [71, 94].

NCAs are usually concerned with the estimation of a few key PK parameters: clearance

(CL), volume of distribution (Vd), and AUCE and may also deal with the concept of mean

residence time (the time a drug remains in the system). Due to the assumption of a single

central compartment, one of the main properties of a NC system is the terminal, mono-

exponential phase in the concentration-time evolution [42]. For this reason, NCA can be

viewed as a generalisation of equivalent compartmental models. If one is primarily con-

cerned with physiological inference, however, NCA is not an appropriate framework due to

the broad hypotheses underlying the approach [42]. Though the initial models of myelo-

suppression weren’t necessarily realised with NCA, they were overwhelmingly performed

using similar empirical methods, frequently relying upon clinical data of neutrophil num-

bers, time above a toxicity threshold, or exposure in the form of AUC [29, 30, 38, 88, 129].

These statistical approaches were not generalisable and lacked insight into the origins of

neutropenia. Parallel to the push in the PK/PD field toward incorporating more and

more physiological mechanisms into models, the next major development in PKPD mod-

elling applied to forecasting the neutrophil response to chemotherapy was to approach the

problem with an increased emphasis on the inner-workings of the blood system.

1.10 The Friberg Model and Semi-mechanistic Approaches

Perhaps the most well-known and well-used model of myelosuppression during chemother-

apy in the PK/PD literature is the Friberg model developed at Uppsala University in the

lab of Karlsson [36]. Prompted by the idea of separating physiological parameters from

PK ones, the authors of [36] concentrated on developing a model which could be appli-

cable across drugs but which remained system-related and interpretable. As previously

mentioned, the model was the result of an earlier call for increasingly mechanistic PK/PD

models of leukocyte behaviour during chemotherapy.

In 1998, Minami et al. [89] published an indirect PD model of the surviving fraction of

leukocytes after chemotherapy. In this compartmental PD model, each of the two parti-

tions represented a separate region occupied by the neutrophils, namely the bone marrow
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and the blood. A fractional inhibition dependent on drug exposure relayed the effects of

chemotherapy on the system and the addition of the bone marrow compartment indirectly

accounted for the time delay between drug administration and observable effects [89]. This

division of the body into central (blood/plasma) and ‘other’ (tissues, bone marrow) mim-

ics the principle modelling strategy of the PK field in compartmental modelling and also

represents a step forward from the previous direct effect PD measures [25].

As introduced in Section 1.9, one of the fundamental modelling approaches to drug

disposition has been, and continues to be, compartmental analysis. In this approach, tis-

sue systems are grouped together to form compartments in a rational way to represent

the kinetics of drug concentrations in the blood [40]. The relationships between these

compartments are modelled with ordinary differential equations (ODEs), frequently lin-

ear ODEs, which correspond to mono- (one compartment) or poly-exponential solutions.

This decaying solution type is supported by the presence of linear relationships in the

log(concentration) vs time space, indicating an exponential relationship in the concentra-

tion vs time space. ODEs are well understood and characterised mathematical objects

and similarly well-defined simulation techniques exist for their numerical analysis [42]. As

such, compartmental modelling approaches evolved in step with advances in ODE theory

and numerical techniques [18]. The indirect PD model of [89], with its compartmental

division of physiological space, was a step forward towards more physiologically driven PD

models of myelosuppression [36]. A schematic comparison of direct vs indirect PD models

is given in [25] and is adapted here in Figure 1.4.

Following the work of [89], the Karlsson group continued incorporating physiological ele-

ments into PD models but within specific drug contexts [37, 38]. However, these studies be-

gan incorporating transit compartments into the PD model as a means of accounting for the

observed delays between the administration of each drug (2’-deoxy-2’-methylidenecyidine

and 5-flourouracil, respectively) and their myelosuppressive effects. Building upon this

semi-physiological construction, Friberg et al. then generalised this approach in [36].

In Friberg’s seminal work, the development of neutrophils in the bone marrow is com-

prised of a proliferative compartment (cells undergoing division), followed by a certain

number of transit compartments before reaching the circulation. The transit compart-

ments represent the maturation phase and inherently account for the observed delays in
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Figure 1.4 – Comparison of direct and two indirect pharmacodynamic effect models. A) In
a direct model, concentrations in the central compartment drive the PD effect. B) Indirect
model where concentrations in the peripheral compartment produce the effect. C) Indirect
model with a hypothetical effects compartment is responsible for the PDs. Adapted from
[25].

chemotherapeutic cytotoxicity. The sum of the time spent in passage between these com-

partments is referred to as the mean transit time (MTT). Since chemotherapy acts to

interrupt cell division, the effect of the drug is modelled as an effect on the rate of self-

renewal in the proliferative compartment. Last, due to the effects of G-CSF to replenish

circulating neutrophil counts, a negative feedback control from the circulating compart-

ment to the proliferative compartment was added. See Figure 1.5 for a generalisation of

the model presented in [36].

Friberg et al. originally presented a myelosuppressive model with three transit com-

partments accounting for the delay between proliferation and circulation. However, since

the number of transit compartments is estimated from data, a more general model is

represented by n transit compartments, as in Equations (1.3).
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Figure 1.5 – Schematic representation of the general semi-mechanistic model of neutrophil
development developed by Friberg. Proliferative cells self-renew at rate kprol or begin
the transition to the circulation by exiting with rate ktr (the rate of transit). The delay
between the time cells leave proliferation to when they enter the circulation is called the
mean transit time and is equally divided between n transit compartment, each connected
by the rate of transit. Once cells enter the circulation, they die with rate kcirc. The number
of circulating cells has a negative feedback on the proliferation rate of the proliferative cells.
The myelosuppressive action of the drug is assumed to also effect kprol. Figure adapted
from [36].

dP

dt
= kprolP (1− Edrug)

(
N0

N

)γ
− ktrP

dT1

dt
= ktrP − ktrT1

dT2

dt
= ktrT1 − ktrT2

. . .

dTn
dt

= ktrTn−1 − ktrTn
dN

dt
= ktrTn − kcircN,

(1.3)

where P are the proliferative cells, kprol is the rate of proliferation, Edrug is the PD model

of the myelosuppressive action of the drug, N0 is the baseline neutrophil count, N is

the current number of circulating cells, γ modulates the effect of the feedback from the

circulating compartment to the proliferative compartment, ktr is the rate of transit, Ti

(i = 1, . . . , n) is the ith transit compartment, and kcirc is the rate of exit from the circulating

compartment.

As with compartmental PK models, the model in [36] quickly became adopted in a
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great deal of studies of myelosuppression after its publication, in its original form or with

slight adaptations (see [14, 31, 45, 53, 55, 97, 98, 100] for a representative sample). It

remains perhaps the most well-known neutrophil model in the pharmaceutical sciences

community. Given the growing shift towards entirely physiological models in the field to

better inform the drug development cycle [23, 25, 40, 133], researchers are increasingly

recognising the limitations of the approach [8, 64, 113, 132]. One of the major criticisms

of the transit compartment model is the dependence upon data which determines its

structure. As with the corresponding compartmental PK models, basing the structural

form of a model entirely on clinical data instead of assimilating a priori physiological

knowledge at the outset requires researchers only demonstrate that the model is a good fit

to data in relation to a statistical objective. This does not mean that the physiology is well-

represented within the model and limits the generalisability of its predictions [42, 94]. To

respond to these limitations, modellers began branching into two different methodologies

somewhat in parallel.

1.11 Physiologically-Based PK/PD Studies and Target-Mediated Drug Dis-

position Models

The realisation that the prevailing compartmental models were in need of more physi-

ological basis paved the way for physiologically-based pharmacokinetic models, or PBPK

models [94]. Since the cytotoxicity of anti-cancer agents is driven first by the concentration

of drug reaching the proliferating neutrophil precursors, this formalism was a natural fit

for those seeking to increase the physiological realism of models of myelosuppression [97].

PBPK models relate drug kinetics to a physiologically-informed compartment structure, as

opposed to the lumping together of physiological systems that is customary in traditional

compartmental models. Typically, these numerous physiological compartments represent

the various organ systems in the body and are linked by the rate of blood perfusion to the

system [94]. Parameter estimation in PBPK modelling still incorporates clinical data but

less emphasis is made on constructing the model from data. Instead, the model is con-

structed from hypotheses governing the inclusion/exclusion of certain corporal systems

before making use of available clinical and preclinical data. Generally, the major organs

like the heart, liver, kidneys (if the drug is renally excreted), and fat tissues (for lipophilic
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drugs) are included by default. Other systems associated with the particular compound

of interest are also incorporated, as are tissues that are known to be implicated in the

drug’s kinetics. If there is clinical data available for an organ or tissue that has yet to

be included, they may also be modelled [104]. At this stage, any available data for the

rates of exchange between compartments, compartment volume, tissue permeability etc.

is used for parameter estimation keeping in mind the targeted population, the intended

pharmacological use of the drug of interest, and allometric data [94]. To this end, several

authors have put forward broad reviews of typical parameter values for PBPK models

[9, 11, 104].

Groups based in optimal control particularly took to this approach when they set forth

to model myelosuppression and toxicity following anti-cancer treatment. The interest of

the control theorists in PBPK/PD modelling of drug toxicity is not unforeseen. Though

PBPK/PD models do integrate more detailed physiology, the mathematical objects with

which they do so are no more sophisticated or complicated than the ODEs used in tradi-

tional compartmental modelling. Further, there is more emphasis on the prior method for

parameter estimation [99] and less reliance on statistical fitting in the PBPK methodology.

Accordingly, PBPK/PD models are ideal candidates for analysing in an optimal control

setting. Such studies have been put forward in [14, 46, 53], and [97]. These models incor-

porated not only the classical PBPK/PD approach but also integrated the diverse range

of cell types and kinetics involved in the WBC and inflammatory response [14]. Further,

optimal control served to determine dosing schedules for chemotherapeutic drugs which

would minimise the neutropenic risk to the patient [46].

Though it is clear that PBPK/PD models of neutropenia have extra compartments in-

corporating a more complex understanding of physiology, limitations remain. One conspic-

uous shortcoming of PBPK and PBPK/PD modelling is the static nature of the approach

[4]. The compartmentalisation with exchange rates between the various organs and tis-

sues does not allow for any reorganisation or dynamic dependence to changing conditions,

implying that PBPK and PBPK/PD are appropriate when systems are stationary during

observation, which is not necessarily the case in studies of myelosuppression [54]. The

haematological system, and the neutrophil lineage in particular, is a compelling dynamic

system [21] which suggests that PBPK/PD modelling of cytotoxicity is not the most nat-
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ural framework for analysis of these systems. Given the natural association between such

models and optimal control systems, PBPK/PD remains a valid methodology given one’s

specific interests.

Concurrent to the development of PBPK/PD models of myelosuppression, advances

were being made on target-mediated drug disposition (TMDD) models [83]. TMDD mod-

els are used to describe the interaction of ligands demonstrating a high affinity binding

to their targets [26]. The principle ideas of ligand-receptor binding date back to the de-

velopment of fundamental chemical principles [26] though the inspiration for the work of

[83] traces perhaps more directly back to the work of [74]. The major hypothesis behind

TMDD is that an important proportion of the drug will become bound to its receptor.

Contrary to the assumption of compartmental models, where it is assumed that the bind-

ing of an agent has an inconsequential effect on the PKs of the drug, TMDD models do

not presuppose this hypothesis [84]. A general TMDD model as presented in [83] is pro-

vided in Equations (1.4) below. Let Cp be the concentration of the drug in the central

compartment and consider the exogenous administration of a drug be modelled by I(t).

Considering the interactions of the drug with the tissues and receptors, let DT be the

tissue compartment, DR be the concentration of the drug-receptor complex, and Rmax be

the total density of surface receptors. Then a general TMDD model can be expressed as

dCp
dt

= I(t)− (kel + kpt)Cp + ktp

(
DT

Vc

)
− kon(Rmax −DR)Cp + koffDR

dDT

dt
= kptCpVc − ktpDT

dDR

dt
= kon(Rmax −DR)Cp − (koff + km)DR

dRmax

dt
= ksyn − kmDR − kdeg(Rmax −DR),

(1.4)

where kel is the rate of elimination from the central compartment, ktp is the rate of distri-

bution, Vc is the volume in the central compartment, koff is the rate of dissociation, kon

is the rate of association, kpt is the rate unbound drug binds to nonspecific tissues, ksyn

is the zero-order production constant, km is the rate of internalisation and degradation of

the complex, and kdeg is the degradation rate of unbound receptors.

Krzyzanski, who has worked extensively on TMDD models for exogenous cytokine
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mimetics, applied the idea of TMDD to drugs that altered cell behaviours in [66]. Therein,

several key cell cycle behaviours were introduced, including senescence (biological aging)

and the PDs were predicated on indirect link models, like that of [89]. This general

model was later applied specifically to the case of rhG-CSF in the form of filgrastim [67].

Krzyzanski has also applied lifespan models to hematopoietic stem cell modelling, which

is described in Section 1.12.1.

Since TMDD models are conceived with ligand-receptor dynamics forming their basis,

crucial features specific to cytokines like G-CSF are easily incorporated. As seen in Sec-

tion 1.3, the major means of elimination of G-CSF is through receptor internalisation on

the GCSFR of the neutrophils. Further as the action of G-CSF is initiated by the associa-

tion of the molecule to its receptor, it cannot be assumed that its binding has little effect

on its PKs. As such, TMDD is well-suited as a model for G-CSF kinetics. In [67], an

adaptation of the Friberg model [36] and the general TMDD model are combined to ac-

count for the kinetics of neutrophil development and the contribution of the neutrophils to

the clearance of G-CSF (see Figure 1 in [67]). In such TMDD models, it is not uncommon

that PD effects are modelled using Michaelis-Menten dynamics [87] which, together with

the Hill function [52], account for our fundamental understanding of how enzyme kinetics

and ligand binding occur.

The increased realism achieved through by accounting for ligand/receptor dynamics in

the TMDD models does not overcome the use of the semi-mechanistic model of gran-

ulopoiesis. As discussed in Section 1.10, the reliance on clinical data to determine the

appropriate number of transit compartments limits the scope of application of this class

of models. Further, the rate of transit between compartments is typically taken to be con-

stant (see, for example, [45, 67, 135] among others) which is not physiologically realistic

(since G-CSF modulates the rate of proliferation and maturation within the bone marrow

[34]). The shortcomings in terms of the explicit physiological mechanisms of the TMDD

models leave room for the continued refinement of granulopoiesis models. Parallel to the

development of the models discussed thus far is the establishment of more traditional sys-

tems biology approaches to hematological modelling, as will be broached in the following

section.
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1.12 Systems Biology Approaches and Quantitative Systems Pharmacology

Developments

The importance of interdisciplinary approaches is increasingly recognised but it is clear

that this has not always been the case. Unfortunately the mathematical biology and the

pharmaceutical sciences communities have developed fairly independently without much

exchange of ideas [133]. This is particularly evidenced by the lateral efforts of the mathe-

matical biology community to model hematopoiesis and granulopoiesis in particular, which

failed to inform the similar undertakings in the PK/PD community. Mathematicians tend

to seek out models which are capable of explaining many situations at once [64], something

which is not at all possible with an empirical or statistical fitting modelling approach and

are further interested in investigating dynamic presentations of hematopoietic diseases (in-

cluding cyclical neutropenia). For example, cyclical hematopoietic diseases were addressed

as early as the late 1960s by many [125]. Morley in particular was interested by cyclical

neutropenia [92], a fascination later picked up by Mackey [80], who would become a pivotal

figure in the field [21]. As is customary, models of hematopoiesis arising in the mathemat-

ical biology literature took a systems approach [133]. Models were constructed using first

principles with physiological hypothesis at the basis. Parameter estimation using the prior

method (although it should be noted that this term is not widely used in the mathematical

biology community) were undertaken and did not frequently include any parameter fit-

ting, contrary to the methods being concurrently developed in the pharmaceutical sciences

community. The mathematics community, however, did not have extensive exposure to

PK/PD modelling implying that relevant drug kinetic and drug effect models were largely

absent until more recently [21].

In 1975, Rubinow published a model of neutrophil production in humans [105]. This

model is comprised of two proliferative and three maturation compartments and included

feedback control mechanisms to regulate blood neutrophil counts. The interest was not

only in reproducing some quantitative measurements of the granulocytes but in also study-

ing the dynamical properties of the model. Outside of the work of the Mackey lab, the

details of which will follow, the Segal Lab of Computational Biology in Rehovot, Israel also

contributed heavily to mechanistic modelling of granulocytes [119–121]. The abstraction

by the authors of [121], in particular, contributed to the understanding of the physiological
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mechanisms regulating neutrophils and their control by G-CSF concentrations. Another

group in Israel led by Agur have also been instrumental in the construction of sophisti-

cated models of neutrophil development [131, 132]. In [132], Vainstein et al. put forward

a model which accounted for the major physiological developments in the bone marrow

and also incorporated accepted PK models of G-CSF. This is perhaps the first instance of

the fusing of systems biology and PK/PD modelling in the story of granulopoiesis mod-

elling. This model later served as the basis for the development of proprietary software

destined to individualise chemotherapy treatment (PrediCare suite of products, visit the

Optimata web site at http://www.optimata.com). They also determined that delaying

the first administration of G-CSF after treatment with chemotherapy improves the neu-

tropenic status of the patient [131]. The latter group was not the only one to combine

mathematical biological approaches with traditional PK/PD ones. The Löffler group in

Leipzig, Germany has also published extensively in this area. In 1994, Schmit et al. (in-

cluding Löffler) published a study on the origins of cyclic neutropenia [111]. Two years

later, the group successfully delineated the effects of G-CSF and GM-CSF scheduling on

the dynamics of granulopoiesis using mathematical modelling [112]. More recent work

has focused on modelling the effects of chemotherapy and G-CSF on the granulocytes

[109, 113] and on extending these models to the hematopoietic system as a whole [110].

The common element in the granulopoiesis modelling of this group is the compartmental-

isation of the neutrophil progenitors in the bone marrow, similar to that of [36], however

much more detail into the biology of these early cells is included. Further, the PD effects

of both the myelosuppressive drug and G-CSF are included at the specific level of action

(on each compartment of proliferating cells, for example). A typical model is presented

in Figure 1 of [113]. In this paper, a dose-dependent effect on the bioavailability of sub-

cutaneous rhG-CSF was discerned and is an example of how systems biological modelling

can inform the drug development cycle. Though this group tends to use ODE modelling

for the hematopoietic system, they also recently examined a novel modelling philosophy

combining agent-based models (ABMs) with the traditional ODE structure [64]. ABMs

are rooted in a chemical reactions formalism [41] and have become increasingly used to

model systems which do not satisfy the general hypotheses of ODE models (homogenous

mixing, probable reactions). In [64], the ABM is employed to model the HSCs and is

http://www.optimata.com
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compared to a corresponding ODE model. Their results show that the ABM improved

the modelling of the proliferative stem cells. Whether this novel approach proves itself to

be fruitful is still undetermined.

The work of the Mackey group at McGill University in Montreal, Canada spans the

longest period of the systems biology groups working on granulopoiesis. Much of Mackey’s

work has been centred on understanding cyclical neutropenia [16, 35, 47–50, 70] but more

recent work has focused on both the exogenous administration of G-CSF and the reaction

of the system to chemotherapeutic treatment [8, 17, 34]. What is notable in the work of

this group is the progressive approach to model construction. Although differences in the

models across these studies are present, most if not all retain certain physiological compo-

nents. This consistency is directly attributable to the first principles modelling philosophy

where models are built by mapping what is known of the physiology mathematically as

opposed to determining the structure from data. Key findings about the timing of G-CSF

administration are attributable to the work of this group. For example, the authors of

[35] demonstrated that once every-other-day as opposed to daily G-CSF treatment was

as effective for avoiding neutropenia in patients with cyclical neutropenia. Similar to the

findings of [131] in the same year, the authors of [8] found that delaying the first adminis-

tration of G-CSF post-chemotherapy was more successful for staving off neutropenia than

administering G-CSF the day of anti-cancer treatment. As seen in Chapter 2, this delayed

treatment protocol was again found to be optimal when more refined PK/PD models of

G-CSF and a chemotherapeutic drug were incorporated into the model [17]. As alluded

to, until recently, the PK models used within this group, specifically in [34] and [8] did

not make use of current studies from the pharmaceutical sciences literature and were ac-

cordingly limited in scope. The models of this group were equivalently less known to those

working in PK/PD on account of the mathematical objects used in these studies, briefly

introduced in the following section.

1.12.1 Delay Differential Equations, Age-Structured Models, and Lifespan

Models in Hematopoiesis

The physiological models used by Mackey and associated authors are based on delay

differential equations (DDEs) and are not typically familiar for those working in traditional
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PK/PD modelling. DDEs are infinite dimensional functional-state extensions of ODEs

which inherently incorporate time delays as the current solution depends on the past [62].

A general DDE takes the form

dx(t)

dt
= f(x(t), x(t− τ)), (1.5)

where f(x, x(t − τ)) is a function depending on the current state and a past state, and

τ > 0 is a time delay [93]. One of the most famous DDEs is possibly the logistic growth

equation

dN

dt
= rN(t)

[
1− N(t− T )

K

]
,

(r,K, T > 0) as the logistic map (the difference equation reformulation of the above

equation) leads to period doubling bifurcations and chaos for increasing r. Mackey and

Glass are also well-known for their similarly chaos-producing eponymous Mackey-Glass

equation

dx

dt
= β

x(t− τ)

1 + xn(t− τ)
− γx, (1.6)

for γ, β, n > 0, which arose from modelling of respiration and hematopoietic cells [43,

44, 93]. In population biology, delay equations are particularly useful for modelling birth

processes which exhibit time lags [93]. For example, as discussed in [82], a general equation

for a DDE modelling a time-delayed birth process subject to a population-dependent

destruction rate is

dx(t)

dt
= −γx(t) + F (x(t− τ)), (1.7)

where γ is this constant destruction rate, F (x(t− τ)) is a production rate which depends

on past behaviour, and τ > 0 is the birth process delay in the system. The construction of

DDEs for populations exhibiting age structures (like those of hematopoietic cells, animals

with age-dependent reproduction rates, diseases with age-dependent infection rates etc.

[75]) typically begins from age-structured partial differential equations (PDEs). These

PDEs are then integrated along characteristics from a1 to a2, where a1 is the earliest age

of each stage and a2 is the oldest age of the corresponding stage, producing the DDE. A
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detailed derivation can be found in the appendix of [33] and also in [75]. An application

of this process is available in [7] and a derivation specific to the model studied in this

dissertation is provided in Chapter 4.

Models using DDEs are more flexible than the semi-mechanistic approach and the delays

in their systems are more explicitly expressed which makes them a natural counterpart to

the usual transit compartment model [62]. Indeed, in general (as described in [62]), letting

yn(t) = x1(t) + . . . xn(t)

be the total sum of a transit compartment model with n compartments and a fixed MTT

of n/k, then

lim
n→∞

yn(t) = y(t),

where y(t) is the solution to the simple DDE

dy(t)

dt
= kin(t)− kiny(t− T ), (1.8)

where kin it the production, or birth rate, and T is the MTT. The above equation is referred

to as a lifespan model [62] and, as mentioned, has been used to study hematopoietic cell

populations by Krzyzanski [65]. This model for populations with specific lifespans, similar

to that of equation (1.7), is useful to account for the birth and death process of the

population of interest but does not necessarily incorporate all of the physiological details

of the age-structured hematopoietic cell lines. Nonetheless, it is a good first introduction

to DDE modellers and has gained exposure within the PK/PD community [65].

One recognisable difference in systems biological approaches to modelling hematopoiesis

versus those from pharmaceutical sciences is the absence of any estimation of variability in

the classic PK/PD sense. An introduction to population PK/PD (PopPK/PD) modelling

is given in the following section, where PopPK/PD approaches to models of myelosuppres-

sion are also introduced.
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1.13 Population Pharmacokinetics/Pharmacodynamics and their Application

to Myelosuppression

PopPK/PD was first introduced by Sheiner in 1972 [18, 115] and later refined in 1977 in

a paper that would transform and mould the PK/PD modelling field [116, 117]. Broadly

speaking, population approaches are a means of quantifying the differences between in-

dividuals in a population while simultaneously characterising this same population. In

particular, the PopPK/PD technique is used to discern the individual differences present

in the drug concentration and the effects produced from the individual concentration with

reference to the studied population [126]. The method described by [115] and [116] used

mixed effects regression model for the analysis of a population to be able to delineate both

interindividual and intraindividual variability within the population [143]. Mixed effects

modelling (MEMing) is a statistical model which accounts for average (fixed) effects and

random effects. These random effects are used in PopPK/PD modelling to account not

only for explained (interindividual/intraindividual variability) but unexplained variability

[143]. Later the introduction of interoccasion variability (the random change in parame-

ters between study occasions) was also included [57]. As detailed in Chapter 3, in general,

a population model with both interindividual and interoccasion variability (IIV and IOV,

respectively) has parameters which take the form

Pj,k = P ∗eηjτk , (1.9)

where Pj,k is the jth PK parameter estimate for the kth occasion and P ∗ is the average (or

fixed) value of the population for this parameter P . The random variable (RV) represent-

ing IIV is ηj and it is independent and normally distributed, as is τk, the RV accounting for

the IOV. Both RVs have zero mean and a variance of ω2
p and π2

p, respectively. PopPK/PD

models have been used to provide parameter estimates from clinical data since their intro-

duction [18, 126, 143]. Beyond the methodological acceptance gained by this approach, a

contributing factor to the adoption of the MEMing approach was the introduction in 1984

of NONMEM, a black box software to perform model determination and parameter esti-

mation for population models [6, 18]. The rise of NONMEM and its recognition as the gold

standard software used in pharmacometrics and the pharmaceutical sciences [61] paved the
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way for the inclusion of PK/PD modelling in the FDA approval requirements for new drugs

[32]. The existence of software packages that perform similar analyses should however also

be noted here and include Monolix, Phoenix® WinNonlin®, and ADAPT from the Univer-

sity of Southern California (Monolix software website (http://www.lixoft.eu), WinNonlin®

software website (http://pharsight.com/products/prod winnonlin trial.php), and ADAPT

software website (https://bmsr.usc.edu/software/adapt/)).

Studies of myelosuppression and neutrophil dynamics from the pharmacometrics com-

munity have generally included MEMs into their analyses. The Friberg model of [36]

incorporated population analysis from its initial publication and similarly for subsequent

studies using this model [31, 45, 55, 98, 100, 135]. The TMDD and lifespan model stud-

ies of Krzyzanski [65, 67] also incorporated population parameter estimation as did the

more physiologically oriented work of Vainas [131]. As noted in [94], the inclusion of vari-

ability and population models to the class of physiologically-based models is notoriously

complex and remains a problem to solve. In line with this observation, the physiologically-

based work of Parker and his collaborators[14, 46, 53, 97] were entirely deterministic. The

Mackey group, which is firmly rooted in systems biological approaches to neutrophil mod-

elling has also not included PopPK/PD into their approach. However, owing to their

interest in neutrophil pathologies, recognition of individual variability has been addressed

[16, 35]. Further, as seen in Chapter 3, there may be some flexibility as to the inclusion of

PopPK/PD analysis in systems pharmacological approaches within certain frameworks.

1.14 Objectives

As mentioned in the Preface, this dissertation was motivated by an interest in improving

clinical protocols of G-CSF administration for patients undergoing anti-cancer treatment.

As put forward in the previous introductory sections, this is a multifaceted problem which

has been addressed by a number of groups. The chief goal of this work is to answer to

the needs of patients. However, to persuade clinicians and researchers of our findings, one

also must respond to a number of methodological questions.

In the first portion of this dissertation (Chapter 2), the optimisation of G-CSF regimens

in an oncological setting is carried out by the development and numerical analysis of

the physiological model of neutrophil production which serves as the basis of this thesis.

http://www.lixoft.eu
http://pharsight.com/products/prod_winnonlin_trial.php
http://pharsight.com/products/prod_winnonlin_trial.php
https://bmsr.usc.edu/software/adapt/
https://bmsr.usc.edu/software/adapt/
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Therein, we develop a combined physiological and PK/PD approach, demonstrate the

model’s predictive ability by comparison to clinical data, and optimise administration

protocols for a specific treatment regimen.

Chapter 3 outlines the inclusion of IIV and IOV into the PK models of both the

chemotherapeutic drug of interest (PM00104) but also filgrastim. In this section, we

show that the physiological model is robust to PK variability.

Chapter 4 details the development of the DDE physiological model from an age-structured

PDE model and describes the methods used for parameter estimation at homeostasis and

in dynamic situations, like the exogenous administration of G-CSF. This article also de-

velops a novel PK model for G-CSF using physiology as the basis.

The penultimate section of this dissertation (Chapter 5) examines the methodological

implications of Chapters 2 through 4 and situates physiological modelling in the context of

systems pharmacology. Finally, Chapter (6) presents conclusions and future perspectives.
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The focus of the following article was the improvement of rhG-CSF regimens during anti-

cancer treatment. For this, we developed a physiological DDE model of granulopoiesis and

incorporated PK/PD models of filgrastim and Zalypsis®, a chemotherapeutic drug. Using

no statistical parameter fitting, we successfully reproduced clinical data of 172 patients un-

dergoing CHOP14 chemotherapy treatment, which prescribes 10 filgrastim administrations

per cycle. We then optimised dosing regimens by demonstrating that delaying filgrastim

administration post-chemotherapy improves the ANC nadir for an average patient. This

work was published in the Journal of Theoretical Biology (Craig, M., Humphries, A.R.,

Nekka, F., Bélair, J., Li, J., and Mackey, M.C. (2015). Journal of Theoretical Biology,

385. 77–89).

As the earliest study in this thesis, some clarification should be given for specific pas-

sages which were not necessarily fully elaborated due to space constraints. Specifically

“a downside of using transit compartment models to study neutrophil dynamics is the

dependency of the parameters on the data upon which they are constructed” could be

expanded upon. Here the intention is to impress upon the reader that given the quality

of the data collected for any particular study, the parameter estimates could widely vary

(as mentioned following this passage in the text). The point can be made that without a

physiological guidance as to a range of possible values, statistical techniques may only rely

on minimisation of the objective function [29]. Although there may be widely accepted

approaches (for example, least squares or maximum likelihood optimisation [29]), the ques-

tion remains as to the appropriate definition of the objective function and the suitable tol-

erance of its minimisation. Further, the assertion that “the resulting physiological models,

which do not generally depend on specific patient datasets for their parameter estimation,

are flexible across pathologies and across clinical scenarios,” highlights what differentiates

first-principles modelling approaches from more traditional ones often applied in PK/PD

modelling. Systems approaches can more easily be applied to different scenarios (be they

drug regimens or diseases) because of their generic nature and their dependency on the

physiology which determines their structure. Since the underlying nature of the system

does not generally undergo structural changes, physiological models can be implemented

in the study of new diseases without changes to their framework but to their parameter

values, which can again be ascertained by the prior method of estimation. Nonetheless, it
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is paramount that models in translational research remain capable of characterising and

quantifying data, which is where the traditional PK/PD approaches continue to play a

role. The conclusions drawn in Chapter 5 serve as an elaboration of the point raised in

this passage, namely that traditional empirical approaches in pharmacology need to be

developed in tandem with mechanistic and physiologically driven modelling approaches

to ensure a well-rounded pharmacometric stratagem is applied to decision-making in drug

development and the betterment of patient outcomes.
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statistique, Université de Montréal, Montréal, QC, Canada H3T 1J4, 5 Departments of

Physiology and Physics, McGill University, Montreal, QC, Canada H3G 1Y6

Keywords

myelopoiesis; physiological mathematical modelling; pharmacokinetics; pharmacodynam-

ics

Abstract

The choice of chemotherapy regimens is often constrained by the patient’s tolerance

to the side effects of chemotherapeutic agents. This dose-limiting issue is a major con-

cern in dose regimen design, which is typically focused on maximising drug benefits.

Chemotherapy-induced neutropenia is one of the most prevalent toxic effects patients expe-

rience and frequently threatens the efficient use of chemotherapy. In response, granulocyte

colony-stimulating factor (G-CSF) is co-administered during chemotherapy to stimulate
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neutrophil production, increase neutrophil counts, and hopefully avoid neutropenia. Its

clinical use is, however, largely dictated by trial and error processes. Based on up-to-date

knowledge and rational considerations, we develop a physiologically realistic model to

mathematically characterise the neutrophil production in the bone marrow which we then

integrate with pharmacokinetic and pharmacodynamic (PKPD) models of a chemothera-

peutic agent and an exogenous form of G-CSF (recombinant human G-CSF, or rhG-CSF).

In this work, model parameters represent the average values for a general patient and

are extracted from the literature or estimated from available data. The dose effect pre-

dicted by the model is confirmed through previously published data. Using our model,

we were able to determine clinically relevant dosing regimens that advantageously reduce

the number of rhG-CSF administrations compared to original studies while significantly

improving the neutropenia status. More particularly, we determine that it could be ben-

eficial to delay the first administration of rhG-CSF to day seven post chemotherapy and

reduce the number of administrations from ten to three or four for a patient undergoing

14-day periodic chemotherapy.

2.1 Introduction

Mammalian hematopoiesis is an ideal system in which to study the control of cellular

proliferation and differentiation. This is because of the rapid division of hematopoietic

precursor cells and the morphologically well characterised stages that these cells go through

in their progression to mature and functional white cells, red cells and platelets. Just as

experimentalists have exploited these characteristics in their laboratory studies, so have

biomathematicians utilised this system to sharpen their modelling tools to understand

hematological dynamics drawing on a spectrum of clinically interesting diseases in their

quest to understand the nature of hematopoietic control [12, 17]. These dynamics include

a variety of periodic hematological diseases [12] as well as the observed response of the

normal hematopoietic system to periodic perturbation as a side effect of chemotherapy

[3, 44].

Chemotherapy is widely used to reduce the spread of malignant cells by interrupt-

ing their growth and eventual proliferation. Unfortunately the nonselective nature of

chemotherapeutic drugs also disrupts development in non-malignant cell lines, including
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the blood cells. Neutropenia, a condition characterised by a diminished number of neu-

trophils, is a common dose-limiting side effect of chemotherapy. In this acute condition,

the production of neutrophils in the bone marrow is disrupted. In a healthy individual, cir-

culating neutrophils are created from the commitment of a hematopoietic stem cell (HSC),

which undergoes division, maturation, and remain in a reservoir within the bone marrow

before being released into the systemic circulation. Patients with low neutrophil counts are

susceptible to infection, and to stimulate the production of neutrophils post-chemotherapy,

recombinant human granulocyte colony-stimulating factor (rhG-CSF) is administered.

In this paper, we adopt a phenomenological physiological modelling approach to granu-

lopoiesis. Herein, we extend our previous modelling of the regulation of neutrophil dynam-

ics [3, 12, 44] in three significantly novel ways. First, we take into account the sequestering

of mature neutrophils into a reservoir in the bone marrow before their release into circula-

tion, which is crucial for the rapid mobilisation of the neutrophils into the plasma. Second,

we account for the marginated pool of neutrophils in the blood, leading to increased ac-

curacy in the parameter estimation and a greater correspondence between the parameters

and the physiology. Finally, we include a physiologically realistic representation of the

action of a recently developed chemotherapeutic drug (Zalypsis®), and extend our previ-

ous models for the effects of rhG-CSF. These extensions to previous work on neutrophil

dynamics, combined with our determination of relevant model parameters from the phys-

iological and clinical literature, have led to a model that is physiologically realistic and

comprehensive.

A number of authors have previously addressed the issue of post-chemotherapy neu-

tropenia through mathematical models, with or without the administration of rhG-CSF

(see [3, 11, 13, 18, 23, 37, 42] among others). Within these, a range of methodologies is

used to study the dynamics of neutrophils, including the similarly named but conceptually

divergent physiological modelling and physiologically-based modelling, both of which are

described below.

Physiological modelling techniques arise frequently in systems biology, where the system

of interest is modelled using an appropriate framework (a variety of differential equation

approaches, difference equations etc.) and parameters are identified from a variety of

data sources. Accordingly, the importance of physiological models in pharmacometric
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applications has increased over the past fifteen years [24]. Typically, these models are

constructed using a set of hypotheses (first principles) related to the mechanisms of the

system of interest before parameter estimation occurs. In the case of hematopoiesis, delay

differential equation (DDE) models are a natural representation as a result of the presence

of delays in the system, and a variety of authors have applied this approach to model

neutrophil development including Brooks et al. [3], Foley and Mackey [11], Vainas et al.

[41], and Vainstein et al. [42]. The resulting physiological models, which do not generally

depend on specific patient datasets for their parameter estimation, are flexible across

pathologies and across clinical scenarios [6, 12, 24]. Additionally, we have also recently

shown that this class of mechanistic models demonstrate a robustness to PK variability,

thereby underlining their rational construction and establishing their utility in clinical

settings by extending their applicability to the population level [7].

Physiologically-based pharmacokinetic (PBPK) models aim to track drug disposition in

the body by tracking the complex drug transport interactions in a physiologically-realistic

way [29]. While traditional pharmacokinetic (PK) modelling is based on the optimisation

to patient data, generally using mixed effects modelling (MEM) statistical techniques,

PBPK uses a mix of both empirical (as in the traditional case) and mechanistic knowledge

of the physiological system to predict drug concentrations. The resulting PBPK models

use a system of ordinary differential equations to relate the flow of blood (and therefore

drug concentrations) using mass-balance. It is generally recognised that PBPK models

provide more insight into the physiological origin of drug disposition than traditional em-

pirical models but the implementation of variability, especially population-level variability,

persists in being an important consideration [29]. Notwithstanding the increased level of

anatomical detail present in PBPK models, the problem of relating the drug’s concen-

tration to its effect persists. While PBPK models incorporate more detailed physiological

considerations by describing the drug disposition process to closely mimic the true corporal

processes, physiological models generally target the dynamic evolution of cells and their

interaction with the drug. In the case of hematopoiesis, models for the pharmacodynamic

(PD) effects of chemotherapy and/or G-CSF on the neutrophil system are generally based

on the semi-mechanistic model of Friberg and Karlsson [13]. Therein, the developmental

stages of the marrow neutrophils are modelled using transit compartments and the de-



58

lays present in the system are estimated using MEM. Several authors have since adapted

and extended this model and incorporated PBPK approaches to optimise chemotherapy

treatment using optimal control theory [16], and even to study separate pathologies, no-

tably sepsis [5, 40]. These models take a range of signalling pathways and cell populations

(stromal cells, T-cells) into consideration and provide more physiological accuracy than

traditional PK approaches. A downside of using transit compartment models to study

neutrophil dynamics is the dependency of the parameters on the data upon which they

are constructed. For example, the mean transit time of the neutrophils in the marrow

estimated by MEM techniques varies greatly [13, 15, 35], while irradiation studies of neu-

trophil development in the bone marrow reveal much more consistent neutrophil transit

times [9, 34]. Further, phenomenological insight into the origins of given effects, like the

increased speed of maturation, and the correspondence of the model’s parameters to a

physiological meaning can be absent, implying that more traditional PKPD models are

not able to predict long-term drug effects [41].

By adopting a physiological approach in this work, we reproduce recently published

data on the temporal neutrophil response in a population of 172 patients receiving periodic

chemotherapy every 14 days without any model fitting to the data. Furthermore, using this

extended model for neutrophil regulation we have examined the response of the model to

the administration of rhG-CSF following simulated chemotherapy. We predict that a

significant reduction (from 10 to 3 or 4) in the number of days of administration of rhG-

CSF will still result in a clinically satisfactory outcome. If this prediction is borne out

in a clinical setting it will have a significant impact on the cost of post-chemotherapy

treatment, as well as decreasing patient inconvenience.

This paper is structured as follows: Section 2.2.1 provides the motivation and details

the construction of the myelopoiesis model by updating our group’s previously published

works ([3, 6] and [11]). Section 2.2.2 develops the pharmacokinetic models for both the

chemotherapeutic drug Zalypsis®and rhG-CSF (filgrastim) which have been adapted from

previously developed models (particularly [15] and [21]). The hematopoietic effect of both

drugs is modelled in Section 2.2.3.1. Results are presented in Section 2.3, where the

model is first validated against published data on a population of 172 patients receiv-

ing chemotherapy (Section 2.3.2.1) and then used to examine dose optimisation (Sec-
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tion 2.3.2.2). The paper concludes with a discussion of our findings in Section 4.7. Details

on the estimation of model parameter from the physiological and clinical literature are to

be found in the Appendix.

2.2 The Model

2.2.1 Development of a Physiological Model of Granulopoiesis

In the following, the reader may find it useful to refer to the schematic representation of

neutrophil production in Figure 3.1. The production of a single neutrophil from an HSC in

the bone marrow can be summarised into five distinct steps: differentiation, proliferation,

maturation, sequestration, and exit, whether by random loss or through entry into the

blood stream/tissues. Once in circulation, neutrophils die at random through apoptosis.

The physiological model we present here is an extension of previously proposed models

([3, 11] and [23]), with the notable addition of a neutrophil reservoir that holds newly

mature neutrophils in the bone marrow so the body may react rapidly in response to

falling neutrophil blood counts or infection [14, 36]. Our model also differs from the

models in [3, 11] and [23] by accounting for the difference in the sizes of the total blood

neutrophil pool and the circulating neutrophil pool due to margination.

The production of circulating neutrophils begins with the hematopoietic stem cells

(HSCs, population Q in units of 106 cells/kg). The HSCs are generally considered to

be in the quiescent stage, though they may enter the proliferative stage at rate β ( days−1)

which occupies a period of τS ( days), differentiate into the neutrophil line at a rate κN(N)

(units days−1), or enter the erythroid or platelet lineages at a rate of κδ ( days−1). The

HSCs undergo apoptosis at rate γS ( days−1) during their proliferative phase and their

total amplification during their proliferative phase is given by AQ(t). Once committed to

the neutrophil lineage, cells divide at rate ηNP ( days−1) before entering a maturing phase

with variable aging velocity VN(t) where they remain for a period of τNM(t) days. Upon

beginning the maturation process, neutrophil precursors grow in volume but are no longer

proliferating and experience random cell death at a rate of γNM ( days−1). The total ampli-

fication of committed precursors is AN(t). Once mature, cells do not exit the bone marrow

directly but are sequestered into a reservoir pool (population Nr in units of 109 cells/kg)

and a steady stream of reserved, mature neutrophils transition into the blood with rate
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ftrans(G(t)) (in units of days−1) which depends on the circulating concentration of G-CSF

(G(t) in ng/mL). Indeed, in the case of reduced circulating numbers or infection, G-CSF

concentrations rise and mature neutrophils are rapidly mobilised from the reserve pool.

Cells that do not reach the blood exit the reservoir pool at a rate γNr ( days−1). Neu-

trophils in the blood may be circulating or marginated. We let N (in units of 109 cells/kg)

be the size of the total blood neutrophil pool (TBNP) which is composed of both the cir-

culating neutrophil pool (CNP) and the marginated neutrophil pool (MNP). We assume

free exchange and identical kinetics in the CNP and MNP, and also that the ratio of their

sizes is constant over time. Neutrophils (population N in units of 109 cells/kg) are then

removed from the TBNP at a rate of γN days−1. This implies that the average lifespan

of a neutrophil within the TBNP is 1/γN . Overall, the time from the entrance of a stem

cell into the neutrophil line to the exit of progeny into the blood is τN = τNP + τNM(t)

( days).

The entire process of granulopoiesis is regulated by G-CSF, which stimulates entry

into the neutrophil lineage, promotes proliferation, speeds up maturation, and increases

mobilisation from the reservoir pool. The circulating neutrophils and the concentration

of G-CSF are under constant feedback control so the concentration of G-CSF is increased

when neutrophil counts decrease, thereby stimulating the production of more neutrophils

to be released into the circulation which, in turn, reduces G-CSF levels.

In our model, the production of neutrophils is described by a system of three differential

equations describing the temporal evolution of hematopoietic stem cells (Q(t)), the mature

neutrophil reservoir pool in the marrow (Nr(t)), and the total blood neutrophil pool (N(t)).

Two of these differential equations involve delays and so the model is described by a system

of delay differential equations (DDEs). The equations are derived from an age-structured

partial differential equation (PDE) model with appropriate boundary conditions. Careful

attention must be paid here to the derivation of the DDEs from the PDEs due to the

dependency of the maturation speed upon G-CSF, implying that we are dealing with an

age-structured model with variable aging rate and threshold maturation condition. A

detailed derivation can be found in [8] and explanations of all of the parameters can be

found in Table 2.I.
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Figure 1: Schematic representation of the production of circulating neutrophils in the bone marrow. Stem cells (Q) undergo the usual cell cycle

and mitosis (at rate �(Q)) where they die at rate �S or return to the quiescent stage. They then remain at rest until di↵erentiation into the neutrophil

lineage (at rate N (N)) or other blood lines at rate �. After entering the neutrophil lineage, a period of successive divisions (proliferation) at rate

⌘NP is followed by a maturing phase with velocity VN . The mature neutrophils then reach the neutrophil reservoir (Nr) in the bone marrow. Mature

reserved cells are maintained within the bone marrow for rapid mobilisation if needed (Furze and Rankin, 2008); the rate of transfer from the pool

into the circulation ( ftrans) is determined by G-CSF concentrations in the central compartment (plasma). Mature reserved neutrophils that do not

reach the circulation die from the reservoir at rate �Nr . Circulating neutrophils N disappear from the circulation by apoptosis at rate �N . The time

for the hematopoietic stem cell proliferative phase cycle is ⌧S . The process of the development of a neutrophil takes time ⌧N from their entry into

the neutrophil line to their appearance in the blood, which includes the time for proliferation (⌧NP), maturation (⌧NM), and marrow sequestration

(⌧Nr).
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Figure 2.1 – Schematic representation of the production of circulating neutrophils in the
bone marrow. Stem cells (Q) undergo the usual cell cycle and mitosis (at rate β(Q))
where they die at rate γS or return to the quiescent stage. They then remain at rest until
differentiation into the neutrophil lineage (at rate κN(N)) or other blood lines at rate κδ.
After entering the neutrophil lineage, a period of successive divisions (proliferation) at rate
ηNP is followed by a maturing phase with velocity VN . The mature neutrophils then reach
the neutrophil reservoir (Nr) in the bone marrow. Mature reserved cells are maintained
within the bone marrow for rapid mobilisation if needed [14]; the rate of transfer from
the pool into the circulation (ftrans) is determined by G-CSF concentrations in the central
compartment (plasma). Mature reserved neutrophils that do not reach the circulation die
from the reservoir at rate γNr. Circulating neutrophils N disappear from the circulation by
apoptosis at rate γN . The time for the hematopoietic stem cell proliferative phase cycle is
τS. The process of the development of a neutrophil takes time τN from their entry into the
neutrophil line to their appearance in the blood, which includes the time for proliferation
(τNP ), maturation (τNM), and marrow sequestration (τNr).
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The model’s equations are given by

dQ(t)

dt
= − (κN(N(t)) + κδ + β(Q(t)))Q(t) + AQ(t)β (Q(t− τS))Q(t− τS) (2.1)

dNr(t)

dt
= AN(t)κN(N(t− τN))Q(t− τN)

(
VN(G(t))

VN(G(t− τNM(t)))

)
−
(
γNr + ftrans(G(t))

)
Nr(t) (2.2)

dN(t)

dt
= ftrans(G(t))Nr(t)− γNN(t). (2.3)

The remaining terms of Equations (3.1)–(3.3) will be defined later in this section. Herein,

the initial condition of the above equations is taken to be homeostasis (Q(t) = Qhomeo,

Nr(t) = Nhomeo
r , N(t) = Nhomeo, for all t 6 t0, where t0 marks the beginning of treatment).

In our model N(t) represents the total blood neutrophil pool (TBNP). If we are interested

in only circulating neutrophil numbers for comparison with clinical measurements, we

simply multiply N(t) by the fraction of circulating cells. This calculation is detailed in

Appendix A.

Neutrophils are relatively large and have long transit times through smaller capillaries,

particularly in the lungs and spleen, which largely results in their nonuniform distribution

in the blood, and the difference in the size of the circulating neutrophil pool (CNP)

as measured from blood samples, and the TBNP. In the models of [3, 11] and [23] the

quantity N(t) was taken to directly represent the CNP, but like us they modelled the

total production of neutrophils in the bone marrow. However, since the size of the CNP

is significantly smaller than the TBNP, the models in [3, 11] and [23] required very large

apoptosis rates in the maturation phase of the neutrophils. Essentially, in those models

the neutrophils that should have been destined for the marginated neutrophil pool (MNP)

in the blood were instead removed from the maturation phase by apoptosis, since those

models contained no MNP for those cells to enter. By letting N(t) represent the total

blood neutrophil pool in the current model we avoid the necessity of artificially elevated

apoptosis rates in the maturation phase and mature neutrophil reservoir pool.

In the current model above, we have that
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β(Q) = fQ
θs22

θs22 +Qs2
(2.4)

κN(N) = fN
θs11

θs11 +N s1
, (2.5)

and the previously mentioned amplification rates of the stem cells (AQ(t)) and of the

neutrophils (AN(t)) are defined as

AQ(t) = 2 exp

[
−
∫ t

t−τS
γS(s)ds

]
(2.6)

AN(t) = exp

[∫ t−τN (t)+τNP

t−τN (t)

ηNP(s)ds−
∫ t

t−τN (t)+τNP

γNM(s)ds

]
. (2.7)

Numerical implementation of the amplification rates of Equations (4.7) and (4.14) is

obtained by differentiating the integral expressions to obtain the following DDEs

dAQ
dt

= AQ(t) [γS(t− τS)− γS(t)] , (2.8)

dAN
dt

= AN(t)

[(
1− dτN(t)

dt

)
(2.9)

×
(
ηNP (t− τN(t) + τNP ) + γNM(t− τN(t) + τNP )− ηNP (t− τN(t))

)
− γNM(t)

]
,

where dτN(t)/dt is defined by Equation (3.20) detailed below (the temporal-evolution of

the maturing phase delay depends on the speed of maturation). The initial conditions of

Equation (4.39) and Equation (4.15) are the homeostatic value of the amplification rates

(i.e. AhomeoQ and AhomeoN ).

2.2.2 Pharmacokinetic Modelling

2.2.2.1 Zalypsis®Pharmacokinetics

Zalypsis®is a cytotoxic agent whose mechanism of action is thought to disrupt the cell

cycle and inhibit transcription through binding to cells’ DNA [30]. It has been shown to
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have a significant killing action in several tumour sites in vivo while demonstrating strong

suppression of proliferation in vitro [30]. The population pharmacokinetic (PopPK) study

of [30] determined that a four-compartment model significantly improved the fit of the

mixed effect model when compared to a three-compartment model, implying that the

drug is highly distributed in the tissues. It was further determined that Zalypsis®has but

one principal channel of elimination from the central compartment. This same study also

concluded that no covariates were linked to the pharmacokinetics of Zalypsis®, mean-

ing that the physical parameters selected for investigation were not found to influence

interindividual variability in the model.

Using the commonly relied-upon transit compartment model of the neutrophil lineage

of [13], it has been reported that a power function effects model was sufficient to repro-

duce the neutropenic effects of Zalypsis®in vivo [15]. The same study also identified two

equivalently optimal dosing regimens for the administration of Zalypsis®, having deter-

mined that the incidence and severity of the drug’s neutropenic effects were both dose- and

frequency-dependent. Owing to this dose-dependency, a more frequent dosing schedule per

chemotherapy cycle was determined to be possible providing the total dose remained un-

changed over a full chemotherapy treatment cycle of 12 weeks. For the phase II clinical

trial, the authors reported that a 2.0 mg/m2 dose administered over a 1-h infusion three

times per 28 day cycle (on days 1, 8, and 15) produced similar neutropenic effects as a 4.0

mg/m2 dose infused over 1-h once every 21 days [15].

As previously mentioned, a four-compartment Pop-PK model of Zalypsis®was found

to best fit the available data and was subsequently accepted for PopPK and PopPKPD

analyses ([15, 30]). These four compartments represent drug molecules that distribute to

and from the plasma into fast-exchange and slow-exchange tissues before inevitably being

cleared from the blood. Accordingly, we adapt this four-compartment model in this work.

The PK model is given by the following system of ODEs
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dCp
dt

=
DoseZal

∆t

+ k21Cfast + k31Cslow1 − (k12 + k13 + kelC )Cp (2.10)

dCfast

dt
= k12Cp + k42Cslow2 − (k21 + k24)Cfast (2.11)

dCslow1

dt
= k13Cp − k31Cslow1 (2.12)

dCslow2

dt
= k24Cfast − k42Cslow2 , (2.13)

where Cp is the systemic concentration of Zalypsis®(traditionally referred to as the central

or first compartment), Cfast is the concentration of Zalypsis®in the fast-exchange tissues

(second compartment), and Cslow1 and Cslow2 are the concentrations in the slow-exchange

tissues (third and fourth compartments, respectively), kij are constants expressing the

rate of transfer between the ith and jth compartments, and kelC is the rate of elimination

from the central compartment. As is typical in PK studies, this rate of elimination can

be expressed as kel = Cl
V1

, or the rate of clearance Cl over the volume of the central

compartment V1. The rate of IV infusion of Zalypsis®is the division of the IV dose

(DoseZal) by the duration of the infusion ∆t (typically one hour).

2.2.2.2 G-CSF Pharmacokinetics

Filgrastim is a commercially-available form of rhG-CSF which is used in diverse appli-

cations including as an adjuvant to promote neutrophil production during chemotherapy.

It acts as endogenous G-CSF but is an unglycosylated molecule which is cleared quickly

(half-life of around 3.5 hours) by the kidneys [1]. Its clinical administration is mainly

subcutaneous and it is available in two formats (300 µg and 480 µg), implying that ad-

ministered doses calculated per body weight are rounded to the nearest size to minimise

waste [1, 26]. Current dosing protocols state that the administration of filgrastim should

begin one day post-chemotherapy and continue until neutrophil counts reach 10 000 mm−3

[1], though its clinical use can vary based on institutional practices and may be adminis-

tered for between 7 to 10 days post-chemotherapy [26].

We express the changes in concentration of circulating G-CSF by accounting for G-CSF

concentrations entering the blood stream (G(t)in) and G-CSF concentrations exiting the
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blood stream (G(t)out) per unit time

dG(t)

dt
=
dG(t)in

dt
− dG(t)out

dt
,

where

G(t)in = G(t)endo +G(t)admin

G(t)out = Rren +Rint.

The endogenous production rate of G-CSF is believed to be constant [10, 19], implying

that

G(t)endo = Gprod,

where Gprod (in ng/mL/day) is the zero-order rate of endogenous production. In oncolog-

ical settings, rhG-CSF is administered subcutaneously and several authors have proposed

models for fractionated absorption after subcutaneous administration (see, for example,

[28] and [33]). We selected the model of [21], which neglects a subcutaneous pool compart-

ment in favour of a decreasing exponential rate of diffusion from the subcutaneous tissue,

because it did not introduce additional compartments to the filgrastim model:

G(t)admin =
kaF (DoseGCSF )

Vd
e−katinj . (2.14)

Through the term e−katinj (tinj being the time since the subcutaneous injection), the

amount of rhG-CSF absorbed from the subcutaneous pool decreases with increasing time.

Here F is the bioavailable fraction, DoseGCSF is the administered dose ( ng), ka is the

absorption constant ( days−1), and Vd is the volume of distribution ( mL).

The removal of G-CSF from the body is accomplished through two mechanisms: by

renal elimination and through binding and internalisation by the neutrophils [3, 22]. We

account for the renal elimination with

Rren = krenG(t),
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where kren is the first-order rate constant of renal elimination. The internalisation of G-

CSF by the neutrophils is modelled using the Hill equation for receptor-complex formation.

Since G-CSF binds to neutrophil receptor sites with a 2:2 stoichiometry [22], the Hill

coefficient for the receptor dynamics is taken to be 2. We then have

Rint = kint
G2(t)

G2(t) +K2
D

N(t), (2.15)

where kint is the rate of internalisation and KD is the usual dissociation constant. Hence

G(t)in = Gprod +
kaF (DoseGCSF )

Vd
e−katinj

G(t)out = krenG(t) + kint
G2(t)

G2(t) +K2
D

N(t)

and, finally, the model for the pharmacokinetics of G-CSF is given by

dG(t)

dt
=
kaF (DoseGCSF )

Vd
e−katinj +Gprod − krenG(t)− χkint

G(t)2

G(t)2 +K2
D

N(t), (2.16)

where χ = Ghomeo/Nhomeo (with Ghomeo the homeostatic concentration of G-CSF and

similarly for Nhomeo) is a normalisation factor necessary to obtain the equilibrium at

homeostatic conditions (absence of rhG-CSF administration–refer to Appendix A).

2.2.3 Determination of Pharmacodynamic Models for Drug Effects

Generally speaking, the usual empirical Michaelis-Menten and Hill equations serve to

model most PD effects in this section.

2.2.3.1 Myelosuppressive Effects of Chemotherapy

Since chemotherapy usually acts to disrupt cellular division, we assume that the systemic

concentration of the chemotherapeutic agent affects only proliferating cells. This implies

that the death rate of the proliferating stem cells will increase during administration of

chemotherapy. To our knowledge, no studies report the direct effects of chemotherapy on

the hematopoietic stem cells, so we retain, for simplicity, a linear model for the PDs of
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Zalypsis®on the population Q [3]. Accordingly, we model the increase in the death rate

for the stem cells during chemotherapy as

γchemoS (Cp(t)) = γhomeoS + hSCp, (2.17)

where γchemoS relates the effect of chemotherapy on the rate of apoptosis in the proliferative

HSCs through the increase of γhomeoS (the homeostatic rate of apoptosis of the proliferative

HSCs) by the effect hS of the plasma concentration of the chemo-agent.

Concurrently, the rate of proliferation of the neutrophils in the bone marrow will decrease

during exposure to chemotherapeutic agents. To model this effect, we modified the usual

Imax (inhibitory Michaelis-Menten) PD model given by

E =
EmaxC

h
p

ECh
50 + Ch

p

to incorporate the two main assumptions on the effects of chemotherapy on the neutrophil

proliferation rate. In the above equation, E is the observed effect, Emax is the maximal

observed effect, Cp is the plasma concentration of the drug, EC50 is the concentration

of drug inducing 50% of the maximal effect, and h is the usual Hill coefficient which

determines the slope of the concentration-effects curve.

For our purposes, we consider that neutrophil proliferation would be completely halted

when the plasma concentration of the chemotherapeutic agent is at a maximum (at supra-

therapeutic levels, so C∞p � EC50, , where C∞p is an intolerably high dose of continuous

chemotherapy). This implies that ηchemoNP (C∞p ) = 0. Further, when no chemotherapy is

given (Cp(t) = 0), the proliferation rate remains at the steady state homeostatic rate, so

that ηchemoNP (0) = ηhomeoNP , where ηhomeoNP is the homeostatic rate of neutrophil proliferation.

Together, these conditions imply that the above Imax model is instead expressed as

ηchemoNP (Cp(t)) = ηhomeoNP

(EC50)h

(EC50)h + (Cp(t))
h
. (2.18)
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2.2.3.2 Myelostimulative Effects of G-CSF

Following [12, 39, 43], G-CSF reduces cell death rates in the HSCs and the random

loss rates of the maturing neutrophils (decreasing γS and γNM , respectively) while also

increasing the rate of proliferation of the marrow neutrophils (increasing ηNP ). In what

follows, the bi, i = S,N,NP, V are parameters relating the half-maximal concentration of

G-CSF (see Appendix C for details on the estimation of these parameters). We consider

the death rate out of the neutrophil marrow reservoir γNr to be constant for simplicity.

The rate of loss of the HSCs is given by

γS(G(t), Cp(t))) = γminS − (γminS − γchemoS )bS
G(t)−Ghomeo + bs

, (2.19)

and is subject to the simultaneous effects of the chemotherapy and G-CSF in the stem cell

compartment acting as an indirect feedback loop from the circulating neutrophil numbers.

Here, γminS is the minimal rate of apoptosis in the HSCs proliferative phase. The effects of

G-CSF on cells committed to the neutrophil lineage are expressed as

ηNP(G(t), Cp(t)) = ηchemoNP (Cp(t)) (2.20)

+
(ηmaxNP − ηchemoNP (Cp(t)))(G(t)−Ghomeo)

G(t)−Ghomeo + bNP

γNM(G(t)) = γminNM −
(γminNM − γhomeoNM )bNM
G(t)−Ghomeo + bNM

, (2.21)

where ηmaxNP is the maximal proliferation rate of the neutrophils and γminNM is the minimal

rate of random cell loss of the maturing neutrophils. As is the case for the HSCs, the

proliferation rate ηNP (G(t), Cp(t)) is subject to the simultaneous effects of chemotherapy

and G-CSF. Additionally, it is known that visibly immature neutrophils appear in the

circulation after exogenous G-CSF administration [36]. Since our system is a DDE model

with variable aging rate, we express this effect by a dependency of the maturation time

on G-CSF (decreasing τNM(t)), which implies an increase in the speed of maturation

(increasing VN(t)) modelled by
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VN(G(t)) = 1 + (Vmax − 1)
G(t)−Ghomeo

G(t)−Ghomeo + bV
, (2.22)

where Vmax is the maximal aging velocity of the maturing neutrophils (see Appendix C).

The maturation time τNM(t) is defined by the threshold condition

∫ t

t−τNM (t)

VN(G(s))ds = aNM , (2.23)

where aNM is a constant equal to the maturation time at homeostasis. Differentiating

Equation (2.23) gives

dτN(t)

dt
=
dτNM(t)

dt
= 1− VN(G(t))

VN(G(t− τNM(t)))
. (2.24)

Finally, the concentration of G-CSF determines the mobilisation of mature neutrophils

in the marrow reserve into the circulation. The functional form of this effect was previously

proposed in [37] and has been generalised here to be

ftrans(G(t)) = transhomeo
transratio(G(t)−Ghomeo) + bG

G(t)−Ghomeo + bG
. (2.25)

The parameter transhomeo relates the homeostatic rate of transit from the neutrophil

bone marrow reservoir into the circulation. This rate of exit can, under changing G-

CSF concentrations, be either increased or decreased by an empirically determined ratio

transratio = transmax

transhomeo
, so more neutrophils exit the reservoir into the circulation under

higher G-CSF concentrations.

2.3 Results

Parameter values, their interpretation, units as well as sources of references are reported

in Table 2.I. Parameter estimation can be found in the Appendices.
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Parameter Interpretation Value Unit Reference

Stem cells

Qhomeo Concentration of HSCs at homeostasis 1.1 106 cells/kg [23]

γS HSC rate of apoptosis 0.1 days−1 [3]

τS Time for HSC re-entry 2.8 days [3]

AhomeoQ HSC amplification at homeostasis 1.5116 * Eq. (4.39)

κδ HSC differentiation rate into other lineages 0.0140 days−1 * Eq. (3.1)

βhomeoQ HSC rate of re-entry 0.043 days−1 [25]

fQ Maximal HSC re-entry rate 8 days−1 **

s2 HSC re-entry Hill coefficient 2 **

θ2 Half-maximal HSC concentration 0.0809 106 cells/kg * Eq. (3.4)

Neutrophils

Nhomeo
r Homeo.conc. of reservoir 2.26 109 cells/kg [9]

Nhomeo Homeo. conc.of TBNP 0.3761 109 cells/kg [9]

Nhomeo
circ Homeo. conc. of circulating neutrophils 0.22 109 cells/kg [9]

γN Circulating neutrophil rate of removal 2.1875 days−1 *

τNP Time for neutrophil proliferation 7.3074 days *

aNM Time for neutrophil maturation at homostasis 3.9 days ** [34]

τNr Time spent in marrow reserve 2.7 days **

γNr Rate of removal from marrow reserve 0.0064 days−1 * Eq. (2.28)

γNM Rate of removal during maturation phase 0.1577 days−1 * Eq. (3.2)

κN (Nhomeo) HSC differentiation rate into neutrophil line 0.0073 days−1 ** Eq. (2.26)

AhomeoN Neutrophil amplification at homeostasis 103 780 * Eq. (4.15)

ηhomeoNP Neutrophil proliferation rate 1.6647 days−1 *

fN Maximal rate of neutrophil differentiation 0.0088 days−1 **

s1 Neutrophil differentiation Hill coefficient 2 [22]

θ1 Half maximal conc. neutrophil differentiation 0.8409 109 cells/kg * Eq. (3.5)

fhomeotrans Homeostatic rate of transit from marrow reserve 0.3640 days−1 * Eq. (3.5)

Zalypsis®

kelC Zalypsis®rate of elimination 132.0734 days−1 [30]

k12 Rate of exchange 90.2752 days−1 [30]

k21 Rate of exchange 18.2222 days−1 [30]

k13 Rate of exchange 8.2936 days−1 [30]

k31 Rate of exchange 0.6990 days−1 [30]

k24 Rate of exchange 9.2296 days−1 [30]

k42 Rate of exchange 62.5607 days−1 [30]

BSA Average body surface area 1.723 m2 [30]

G-CSF

Ghomeo G-CSF concentration at homeostasis 0.0246 ng/mL [21]

Gprod Rate of G-CSF production 0.2535 ng/mL/days * Eq. (3.15)

kren Rate of G-CSF renal elimination 10.3 days−1 [37]

χ Normalisation factor 0.0654 (ng/mL)/(109cells/kg) **

kint G-CSF receptor-internalisation rate 114.48 days−1 [37]

kD G-CSF dissociation constant 1.44 ng/mL [21]

ka Subcutaneous filgrastim absorption rate 13.5 days−1 [37]

F Filgrastim bioavailable fraction 0.6020 [21]

(*=Calculated, **=Estimated) Continued on next page
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Table 2.I – Continued from previous page

Parameter Interpretation Value Unit Reference

Vd Volume of distribution (filgrastim) 1788 mL * Appendix B

PD parameters

Chemotherapy

γhomeoS HSC apoptotic homeostatic rate 0.1 days−1 [3]

γminS Minimal HSC apoptotic rate 0.1 days−1 [3]

γmaxS Maximal HSC apoptotic rate 0.4 days−1 [3]

hS Effect of chemotherapy on HSC apoptosis 0.1 **

bS HSC apoptosis Michaelis-Menten parameter 11.2679 ng/mL * Eq. (2.31)

h Hill coefficient for Zalypsis®effect on proliferation 3 [35]

EC50 Zalypsis®half-concentration on proliferation 2.3056 ng/mL [35]

G-CSF

ηmaxNP Maximal rate of proliferation 2.544 days−1 [3]

ηminNP Minimal rate of proliferation 0.4 days−1 [3]

Vmax Maximal maturation velocity 10 * [34]

γminNM Minimal apoptosis rate out of maturing phase 0.12 days−1 [3]

γmaxNM Minimal apoptosis rate out of maturing phase 0.67 days−1 [3]

transmax Maximal rate of transfer from marrow reserve 1.456 days−1 [39]

bV Michaelis-Menten parameter (maturation speed) 3.5 ng/mL * [34]

bNP Michaelis-Menten parameter (proliferation) 11.2679 ng/mL * Eq. (2.31)

bNM Michaelis-Menten parameter (maturation) 11.2679 ng/mL * Eq. (2.31)

bG Michaelis-Menten parameter (transit from pool) 11.2679 ng/mL * Eq. (2.31)

Table 2.I – Table of parameter values used for an average patient undergoing chemotherapy
with filgrastim support.

2.3.1 Numerical Simulations

The mathematical modelling of hematopoiesis, Zalypsis®, and filgrastim was supple-

mented by numerical simulation. All models were simulated using the ddesd solver in

Matlab [27], which is an adaptive Runge-Kutta solver for DDEs with state-dependent de-

lays. Since our model’s delays are explicitly physiological and not artificially imposed by

the modelling structure, defining several parameters in our model required extrapolation

from published neutrophil studies, particularly [4] and [9]. Some digitisation was carried

out using Matlab [27] to facilitate the estimation.

2.3.2 The Use of Physiological Models

The regulation of myelopoiesis is a dynamical system which implies that any periodic

administration of a perturbation (for our purposes, chemotherapy) can induce oscilla-

tions where there were none previously. Additionally, in a phenomenon known as reso-
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nance [3], the cyclical administration of myelosuppressive chemo-agents can worsen the

neutrophil nadir when administered during specific periods in the oscillating cycle. We

therefore sought to study how a periodic chemotherapeutic regimen affects neutrophil

counts and how the timing of the administration of filgrastim post-chemotherapy influ-

ences the patient’s neutropenic status. This combines previous work addressing the effects

of period-shortening in poly-chemotherapy ([31, 32]; Section 2.3.2.1–see below) and dose

optimisation to minimise neutropenia during treatment with Zalypsis®[15].

2.3.2.1 Verifying the Model’s Predictions

CHOP21, an established treatment for lymphoma, involves the concomitant adminis-

tration of cyclophosphamide, doxorubicin, vincristine, and prednisone given over 21-day

cycles, with G-CSF administration determined ad libitum by the individual patient’s neu-

trophil count. Investigations into period-condensing in the CHOP protocol (14-day in-

stead of 21-day) have concluded that a shorter cycle length leads to better survival rates

in younger patients (less than 60 years old) and less toxicity in older patients [31, 32]. The

CHOP14 14-day protocol calls for G-CSF administration (300 µg/day or 480 µg/day de-

pending on the patient’s body weight) to begin 4 days post-chemotherapy and to continue

until day 13 post-chemotherapy (for a total of 10 days). Recent work on model develop-

ment for granulopoiesis has made available extensive data sets from the initial CHOP14

studies [20]. Reported are patients’ absolute neutrophil count (ANC) in quartiles for a

6-cycle CHOP treatment, thereby giving an idea of the variability in patients’ response to

chemotherapy with pre-defined G-CSF support.

Our first focus was to compare our model’s predictions using a previously optimised

dose of Zalypsis®for a 21-day cycle (4 mg/m2) to the CHOP14 protocol in a manner

analogous to the investigations of [32] and [31]. While it may seem counterintuitive to

compare mono- and polytherapies, it is important to note that in the context of our fully

mechanistic model, myelosuppressive drugs will have similar effects on the renewal rate

of the HSCs (β(Q)) and on the proliferation rate of the neutrophils (η(G(t), Cp(t))) since

chemotherapeutic drugs are explicitly administered for their ability to disrupt cellular

division. Moreover, we were limited by the availability of data in the literature and, as

such, made use of the data sets at our disposal (accessed through [20]). Accordingly,
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we simulated six 14-day period administrations of 4 mg/m2 of Zalypsis®with 10 daily

administrations of 300 µg of subcutaneous filgrastim beginning on the fourth day post-

chemotherapy, as was prescribed for the CHOP14 study. We then compared the model

prediction to the CHOP14 data of N = 172 patients (data was available in quartiles),

which is highlighted in Figure 2.2. It should be noted here that no model fitting was

undertaken from clinical data. The parameter estimation herein was performed through

published PK models for Zalypsis®or filgrastim or from physiological studies of neutrophil

production. In this work, our intention was to reproduce the major characteristics of the

system’s dynamics under the CHOP14 protocol. As our simulated result falls within the

interquartile ranges from [31, 32] through simple comparison, it is apparent that the model

sufficiently reproduces the neutrophils’ behaviour to the level of anticipated detail.

Figure 2.2 – Model predictions (pink) compared to CHOP14 protocol described in [31, 32]
(data from N = 172 patients arranged in quartiles from [20]–shaded regions). x-axis: time
( days); y-axis: ANC (109 cells/L). The CHOP14 protocol outlined in [31] is compared to
the model’s prediction. Data from the CHOP14 study available from [20] is divided into
quartiles (shaded regions). The simulation results (in pink) shows the model’s solution
for the typical patient (sampled at clinical sampling points-once daily for 100 days) and
compares positively to the study’s findings. Note that no model fitting was performed to
obtain the prediction.
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2.3.2.2 Applying the Model to G-CSF Dose Optimisation

As previously mentioned, the utility of fully mechanistic models is related to their abil-

ity to explain and unravel how the underlying physiological mechanisms dictate a drug’s

effects and efficacy. In parallel, physiological models should afford predictive abilities and

help guide dosing decisions. In that vein, our main focus was to optimise the use of G-CSF

during anti-cancer treatment. This was achieved by reducing the number of doses admin-

istered during each chemotherapy period in comparison to the CHOP14 protocol, thereby

minimising the cost and the burden to patients. No optimisation of chemotherapy dose

amount or period was undertaken. In this work, dose optimisation refers to the minimisa-

tion of the undesirable neutropenic effect of chemotherapeutic treatment. Accordingly, we

used the accepted classifications of the grade of severity of neutropenia to minimise toxi-

city (Grade 1: ANCs between 1500 and 2000 cells/mm3, Grade 2 (Mild): ANCs between

1000 and 1500 cells/mm3, Grade 3 (Moderate): ANCs between 500 and 1000 cells/mm3,

and Grade 4 (Severe): ANCS less than 500 cells/mm3).

As the model captures the dynamics of the published CHOP14 data (as shown in Fig-

ure 2.2), we used the CHOP14 chemotherapy protocol (6 cycles of chemotherapy admin-

istered 14 days apart with 10 administrations of 300 µg of filgrastim beginning 4 days

post-chemotherapy) as a baseline reference case. To establish optimal dosing regimens,

we simulated a baseline standard by administering 4 mg/m2 dose of Zalypsis®(previously

determined to be an optimal dose for Zalypsis®[15]) every 14 days for 6 cycles in total.

Next we ran simulations in the (tpost−chemo, nadmins, padmins)-space by varying both start day

(tpost−chemo), the number of filgrastim administrations (nadmins), and the period between fil-

grastim doses (padmins–up to a maximum of 3 days to minimise the impact of the filgrastim

period upon adherence). We then progressively ranked each (tpost−chemo, nadmins, padmins)-

triplet against the reference by visual predictive check looking for improvement in the

ANC nadir with regards to the neutropenic grade experienced by the average patient dur-

ing anti-cancer treatment. To ensure clinical relevancy, optimal regimens were labelled as

those which reduce the number of administrations of filgrastim over each chemotherapy

cycle while simultaneously maintaining or, even better, increasing the ANC nadir observed

in the complete CHOP14 study.

Our results indicate that the number of administrations of G-CSF post-chemotherapy
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plays a dominant role on therapeutic outcomes. Indeed, our predictions indicate that the

timing of the first administration of G-CSF post-chemotherapy becomes less important

when the number of administrations are increased within each chemotherapy cycle (Fig-

ures 2.3 and 2.4). This supports the current clinical dosing scheme of G-CSF in oncological

settings which begins one-day post-chemotherapy and continues daily for seven to ten days,

depending on the ANC status of the patient [1]. Our results further indicate that adminis-

tering the first dose of filgrastim seven days post-chemotherapy improves the neutropenic

status of the average patient. This is to be expected based on the time it takes to produce

and release a mature neutrophil after proliferation has been disturbed by chemotherapy

(τNM(t) + τNr) and supports the findings’ of previous modelling work on G-CSF timing

[3, 41]. Indeed, starting G-CSF one week after the chemotherapy dose, we demonstrate

that as few as three or four daily administrations of G-CSF are sufficient to completely

avoid moderate neutropenia (three administrations) or nadirs characteristic of neutrope-

nia altogether (four administrations). Figure 2.5 reveals that these dosing regimens are

optimal in comparison with the CHOP14 protocol, implying a reduction of six to seven

G-CSF doses per chemotherapy cycle. Such dosing regimens could lead to significant cost

reductions and alleviate the physical and hematopoietic burdens on patients undergoing

chemotherapy. We determined that daily dosing of filgrastim is preferable over extending

the period between administrations: increasing the time between administrations allowed

for more severe reductions in ANC (not shown) and would not support patient adher-

ence. This last result is again attributable to the underlying physiology of neutrophil

production, as exogenous G-CSF stimulates the release of reserved marrow neutrophils,

which in turn increases ANC (an increase which then triggers a decrease in G-CSF con-

centrations through saturated internalisation and renal elimination). ANC then returns to

homeostatic levels after briefly fluctuating above and below the baseline value. When ad-

ministration periods were increased past one day, ANCs had time to rise and fall between

rhG-CSF doses. Once daily administrations of rhG-CSF staved off the rapid decline after

peak ANCs because of the frequent dosing and therefore prevented worsening nadirs.
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Figure 2.3 – The effect of the day of administration of G-CSF post-chemotherapy. x-
axis: time ( days); y-axis: ANC (109 cells/L). Horizontal lines indicate thresholds for mild
(1000 cells/µL 6 ANC 6 1500 cells/µL), moderate (500 cells/µL 6 ANC 6 1000 cells/µL),
and severe (ANC 6 500 cells/µL) neutropenia and these classifications were used to iden-
tify optimal regimens. As the number of administrations of filgrastim post-chemotherapy
increase, the importance of the first day of administration diminishes. Six cycles of
chemotherapy with 14-day periods are compared for different filgrastim protocols. Seven
administrations of filgrastim beginning on day 7 achieve results similar to seven adminis-
trations beginning on day 3. A regimen where seven administrations of filgrastim begin 1
day post-chemotherapy is not sufficient to avoid neutropenia.

2.4 Discussion

In this paper, we have extended an age-structured model for myelopoiesis [3] by the

addition of a neutrophil reservoir in the bone marrow that is known to play a role in

the rapid mobilisation of neutrophils into the blood during infection or falling circulating

neutrophil numbers [14, 36]. We also accounted for the marginated neutrophil pool in

the blood. The fully mechanistic physiological model of neutrophil production is then

integrated with up-to-date PKPD models for a chemotherapeutic-drug and an adjuvant

[21, 30] to characterise the hematopoietic response to periodic chemotherapy with a sup-

portive agent. Parameter estimation was performed in a progressive and logical fashion

by establishing the pivotal mechanisms of myelopoiesis from the relevant literature from

both physiological studies and PKPD analyses. Proceeding in this manner leads to an im-
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Figure 2.4 – Effect of fixing the starting day post-chemotherapy while increasing the num-
ber of G-CSF administrations. x-axis: time ( days); y-axis: ANC (109 cells/L). Horizontal
lines indicate thresholds for mild, moderate, and severe neutropenia as in Figure 2.3. These
classifications were used to identify optimal regimens. Six cycles of chemotherapy with
14-day periods are compared for different filgrastim protocols. Increasing the number
of filgrastim administrations from 7 to 9 allows filgrastim dosing to begin 1 day post-
chemotherapy while avoiding neutropenia, which is not the case in the 7 administration
regimen, as shown in Figure 2.3.

proved strategy for parameter identification, one that is capable of evolving in-step with

experimental work and physiological knowledge of neutrophil production. Utilising these

parameter values directly, the model successfully reproduced the neutrophil data from the

CHOP14 studies of 14-day periodic chemotherapy with filgrastim support [31, 32].

We also determined improved dosing regimens for 14-day periodic chemotherapy with

the filgrastim adjuvant. We began by studying the optimal timing of the first rhG-CSF

dose after the administration of chemotherapy and established that delaying the first dose

of filgrastim improved the patient’s neutropenic status (Figure 2.3). This lead us to the

determination that the number of filgrastim administrations could be significantly reduced

(from 10 to three or four) by delaying its first dose post-chemotherapy (Figure 2.5). This

is a novel result which is simultaneously capable of improving the patient’s neutropenic

status by raising the neutrophil nadir, of alleviating the patient’s drug burden, and of

reducing the costs associated with filgrastim support during chemotherapy. It is therefore
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Figure 2.5 – Optimal dosing regimens compared to the CHOP14 protocol. x-axis: time
( days); y-axis: ANC (109 cells/L). Horizontal lines indicate thresholds for mild, moder-
ate, and severe neutropenia as in Figure 2.3. These classifications were used to identify
optimal regimens. Model predictions for 6 chemotherapy cycles with 14-day periods. The
CHOP14 protocol which studied 10 administrations of filgrastim beginning four days post-
chemotherapy is compared to regimens where filgrastim administrations begin seven days
post-chemotherapy, with three or four administrations per cycle. Delaying the first ad-
ministration of filgrastim allows for a reduction in the number of administrations per cycle
while showing improvement in the neutropenic status for the average patient.

an important observation for the clinical practice and one which bears further investigation

through collaboration with clinicians.

Inspired by the results in this paper, we are interested in applying the model to the case

of cyclical neutropenia, with the aim of depicting the influence of G-CSF on oscillatory

dynamical hematopoietic diseases. Future work will also include a full characterisation

of the impact of PK variability in the PD response. Through sensitivity analysis, this

depiction will help us discern the principle mechanisms of neutrophil production. Indeed,

the rational construction of the myelopoiesis model affords us the ability to delineate the

role of individual variables on the predicted behaviour, a particularly salient advantage

of physiological models. Moreover, owing to this careful construction, the hematopoietic

model is applicable across pathologies without major parameter re-estimation. Outlining

which processes significantly impact on myelopoiesis and portraying how these processes

affect neutrophil production is inherent to the physiological modelling paradigm. This
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work highlights that hypothesis-driven mathematical modelling contributes considerably

to the problem of attenuating chemotherapy-induced neutropenia in the PKPD scope and

beyond. Indeed, the mechanistic model we have developed provides predictive ability

in addition to hypothesis elimination, meaning it can both confirm previous results and

repudiate unconfirmed concepts, which has broad implications for patients, clinicians, and

researchers alike.
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[32] M. Pfreundschuh, L. Trümper, M. Kloess, R. Schmits, A.C. Feller, C. Rudolph, et al.

Two-weekly or 3-weekly CHOP chemotherapy with our without etoposide for the

treatment of elderly patients with aggressive lymphomas: Results of the NHL-B2

trial of the DSHNHL. Blood, 104:634–641, 2004.

[33] C.J.H. Porter and S.A. Charman. Lymphatic transport of proteins after subcutaneous

administration. Journal of Pharmaceutical Sciences, 89:297–310, 2000.

[34] T.H. Price, G.S. Chatta, and D.C. Dale. Effect of recombinant granulocyte colony-

stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood,

88:335–340, 1996.

[35] A.L. Quartino, L.E. Friberg, and M.O. Karlsson. A simultaneous analysis of the

time-course of leukocytes and neutrophils following docetaxel administration using a

semi-mechanisitic myelosuppression model. Investigational New Drugs, 30:833–845,

2012.

[36] S.M. Rankin. The bone marrow: A site of neutrophil clearance. Journal of Leukocyte

Biology, 88:241–251, 2010.

[37] M. Scholz, S. Schirm, M. Wetzler, C. Engel, and M. Loeffler. Pharmacokinetic and

-dynamic modelling of G-CSF derivatives in humans. Theoretical Biology and Medical

Modelling, 9:1497–1502, 2012.

[38] E. Shochat and V. Rom-Kedar. Novel strategies for granulocyte colony-stimulating

factor treatment of severe prolonged neutropenia suggested by mathematical model-

ing. Clinical Cancer Research, 14:6354–6363, 2008.

[39] E. Shochat, V. Rom-Kedar, and L.A. Segel. G-CSF control of neutrophils dynamics

in the blood. Bulletin of Mathematical Biology, 69:2299–2338, 2007.



85

[40] S.O.K. Song, J. Hogg, Z.Y. Peng, R.S. Parker, J.A. Kellum, and G. Clermont. En-

semble models of neutrophil trafficking in severe sepsis. PLoS Computational Biology,

8:e1002422, 2012.

[41] O. Vainas, S. Ariad, O. Amir, W. Mermershtain, V. Vainstein, M. Kleiman, O. Inbar,

R. Ben-Av, A. Mukherjee, S. Chan, and Z. Agur. Personalising docetaxel and G-CSF

schedules in cancer patients by a clinically validated computational model. British

Journal of Cancer, 107:814–822, 2012.

[42] V. Vainstein, Y. Ginosar, M. Shoham, D.O. Ranmar, A. Ianovski, and Z. Agur.

The complex effect of granulocyte colony-stimulating factor on human granulopoiesis

analyzed by a new physiologically-based mathematical model. Journal of Theoretical

Biology, 235:311–327, 2005.

[43] B. Wang, T.M. Ludden, E.N. Cheung, G.G. Schwab, and L.K. Roskos. Popula-

tion pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in

healthy volunteers. Journal of Pharmacokinetics and Pharmacodynamics, 28:321–342,

2001.

[44] C. Zhuge, J. Lei, and M.C. Mackey. Neutrophil dynamics in response to chemotherapy

and G-CSF. Journal of Theoretical Biology, 293:111–120, 2012.

2.5 Appendices

2.5.1 Appendix A: Homeostatic Hematopoietic Parameter Estimation

There are two main points to address in the parameter estimation for the physiological

variables. The first issue is interpreting appropriate values from laboratory and clinical

studies while the second is assuring that homeostatic levels are consistent when the equa-

tions are at steady states. A thorough explanation of the homeostatic parameter values is

available in [8]; we will briefly summarise the parameter identification for the hematopoi-

etic values in the absence of chemotherapy and G-CSF and then describe the estimation

of parameter values in the PKPD model with both drugs.
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We begin with the stem cell line. From [2] and [23], we take Qhomeo = 1.1× 106 cells/L

and set the rate of apoptosis in the stem cell pool to be γS = 0.1 days−1 as in [3]. From

Equation (4.7) at homeostasis, we have

AhomeoQ = 2 exp(−τSγS) = 1.512.

Using an average from the mouse data in [25], we calculate the re-entry rate in the stem

cell compartment to be

β(Qhomeo) =
0.02 + 0.053 + 0.057

3
= 0.043 days−1.

Clinically determining the rate of differentiation into the neutrophil lineage is difficult

and we are not aware of any data estimating this value. Consequently, we use the equilib-

rium requirement for Equation (3.1) which gives

κtot = (AhomeoQ − 1)β(Qhomeo) = 0.0220 days−1, (2.26)

where κtot = κN(Nhomeo) + κδ. From this total differentiation rate, we can roughly esti-

mate the differentiation into the neutrophil line as 1
3
κtot, since for our purposes, we consider

the hematopoietic stem cells to differentiate into three distinct lineages (neutrophils, red

blood cells, and platelets). This implies that κN(Nhomeo) = 0.0073 days−1. From Equation

(3.4), we have

β(Qhomeo) =
fQ

1 +
(
Qhomeo

θ2

)s2 . (2.27)

We take s2 = 2 and fQ = 8 days−1, which within the Hill function interpretation can be

interpreted to mean that the number of molecules capable of binding to any given stem cell

to initiate re-entry is two while the maximal rate of re-entry is 8 days−1 [6]. Rearranging

Equation (2.27), we get
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θ2 =

[
(Qhomeo)s2β(Qhomeo)

fQ − β(Qhomeo)

] 1
s2

= 0.0809× 106 cells/kg.

Turning now to the neutrophil line, from [9], we take the size of the reservoir and total

blood neutrophils (respectively) as

Nhomeo
r = 2.26× 109 cells/kg

Nhomeo = 0.22/0.585× 109 cells/kg.

The factor 0.585 accounts for the reported average recovery rate in [9] and implies that

the baseline circulating neutrophil count is 0.22 × 109 cells/kg. From the usual half-life

equation for an exponential decay,

γN =
ln 2

t 1
2

=
35

16
= 2.1875 days−1,

by rounding the half-life value from [9] of t 1
2

= 7.6 days. At homeostasis, the rate of

entry into the reservoir will equal the rate of exit from the pool, giving

ftrans(G
homeo)Nhomeo

r = γNN
homeo

or, equivalently,

ftrans(G
homeo) = transhomeoN =

γNN
homeo

Nhomeo
r

=
2.1875× 0.4

2.26
= 0.387.

We take aNM = 3.9 days which implies, by the constraints detailed in [8], that τhomeoNr

is within the interval (2.4432, 2.589). Accordingly, we select τNr = 2.5 days. The average

time a neutrophil spends in the reservoir is given by
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τhomeoNr =
1

ftrans(Ghomeo) + γNr
. (2.28)

Thus the average transit time of a neutrophil in the marrow reservoir is the recip-

rocal of the means with which it exits the reservoir: by transiting into the circulation

(ftrans(G
homeo)) or through random cell death (γNr). Rearranging Equation (2.28), we

have then that the rate of random cell loss from the marrow reserve is

γNr =
1

τhomeoNr

− ftrans(Ghomeo)

=
1

2.5
− 0.387 = 0.0064 days−1.

From the age-structured PDE model structure, we determined that

AhomeoN = 103777.178 and ηhomeoNP = 1.665 days−1. These values correspond to approxi-

mately 17.55 effective divisions within the proliferative phase. We have also calculated

τNP to be equal to 7.307 days, implying there is one effective division every 10 hours in

the proliferative stage [8]. Finally, we can determine the parameters relating to the differ-

entiation rate from the HSCs to the neutrophils. Recall that by Equation (2.26), we have

set κN(Nhomeo) = 1
3
κtot = 0.0073 days−1. From this estimate, we calculate the parame-

ters of Equation (3.5) in a manner similar to Equation (3.4). From [22], we set s1 = 2

on account of the 2:2 stoichiometry between G-CSF and its receptor. We have observed

bifurcation from a steady homeostatic equilibrium to a steady limit cycle solution with

increases to fN , which indicates a switch from a hematopoietically normal individual to

one exhibiting a pathology similar to cyclical neutropenia. To ensure solutions remain

stable at homeostasis, we take fN = 1.2κN(N∗). θ1 is then estimated by

θ1 =

[
(Nhomeo)s1κN(Nhomeo)

fN − κN(Nhomeo)

]−s1
= 0.8409× 109 cells/kg.

2.5.2 Appendix B: PK-related Parameter Estimation

All Zalypsis®parameters are taken directly from [30] and reported in Table 2.I. An

effort was made for G-CSF PK parameter consistency with a number of studies namely
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[37, 38, 42] and particularly [21]. The endogenous concentration of G-CSF at homeostasis

is estimated from [21] as the mean of the observed baseline values in that study, there-

fore for our purposes, Ghomeo = 0.0246 ng/mL. In terms of endogenous production and

elimination, we estimated Gprod = 0.2535 ng/(mL days), which is a consequence of the

homeostatic condition of Equation (3.15). The renal clearance rate kren is taken from the

parameter estimation performed in [37] and is estimated as kren = 10.3 days−1. Particu-

lar attention should be paid when estimating the rate of internalisation of G-CSF by the

neutrophils. [21] measured a value of 0.105 hours−1, while it is estimated in [37] that the

maximum Michaelis-Menten elimination to occur at a rate of 4.77 hours−1, and a litera-

ture value of 0.015 pM/hour is reported in [42]. [21] note that their estimate is lower than

anticipated. We therefore opted to estimate the rate of internalisation from [37], giving

kint = 114.48 days−1. It is worth noting, however, that model predictions were not sig-

nificantly different when we used the internalisation rate reported in [21] (not shown). A

quasi-equilibrium assumption is used in [21] to calculate the dissociation constant kD given

by (C)(R)
RC

= kon
koff

= kD, where C is the concentration of G-CSF, R the concentration of

G-CSFR receptors, and RC the concentration of receptor complexes in the same manner

as in our model by using the law of mass-action (see derivation in [11]). Accordingly we

took the dissociation constant they reported and set kD = 1.44 ng/mL.

The subcutaneous absorption rate of filgrastim is reported as 0.161 hours−1 in [37] and

as 0.651 hours−1 in [21]. As we readapted the latter’s absorption model we selected a ka

similar to the value reported therein, namely ka = 0.5625 hours−1 = 13.5 days−1. The

bioavailability of filgrastim was found to be dose-dependent in [37]. We estimated F =

0.602 from [21], which turns out to be higher than the value found in Figure 3 of [37]

who report a value close to F = 0.3 based on their model simulations accounting for

losses in the subcutaneous tissues. Future work should address this discrepancy through a

sensitivity analysis of our model. Finally, the volume of distribution Vd of filgrastim is set

at 1788 mL, between the values used in [37] (1.156 L) and [21] (2.42 L) since both studies

utilise Vd in the central compartment only.
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2.5.3 Appendix C: PD-related Parameter Estimation

The parameter estimation of the previous section deals solely with the model at home-

ostasis for a healthy individual. We now turn to the estimation of parameters related

directly to the PD effects of Zalypsis®and filgrastim (the rhG-CSF drug studied). In the

absence of data reporting effect versus concentration curves for the mechanism of interest,

we derived a theoretical measure for the EC50 values of the Michaelis-Menten equations.

In a typical study of saturating effects, we allow for 5% variation in the Cmin values (start-

ing point) and 15% in the end points Cmax (saturating concentration). We can equivalently

vertically translate the dose-response curve to allow for 0% variation in the start point

(implying C = 0 gives E = 0) and 20% variation in the target endpoint (or that C = Cmax

implies E > 0.8Emax). In this latter case, the dose-response curve is described by

E =
EmaxC

EC50 + C
. (2.29)

Let x be the observed effect, which is some fraction of the maximal effect Emax so that

we report the measured effect as xEmax. Then at C = Cmax we have from Equation (2.29)

xEmax =
EmaxCmax
EC50 + Cmax

⇐⇒ x =
Cmax

EC50 + Cmax

⇐⇒ xEC50 = Cmax(1− x)⇐⇒ EC50 = Cmax

(
1

x
− 1

)
.

Further, suppose that a uniform distribution characterises the variability at the end

point, meaning that the probability of reaching 0.8Emax is equal for each observed dose-

response curve. Then by the last equivalency above, we calculate that

EC50 = Cmax

(
1

0.8
− 1

)
=
Cmax

4
. (2.30)

Practically this indicates that the half-maximal concentration occurs at after the first

25% (quartile) of concentrations in the case of a uniform distribution between dose-

response curves. Using this theoretical relationship, we were able to calculate EC50s

in absence of clinical data. For our purposes, we express Equation (2.30) as
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EC50 = Cmin +
(Cmax − Cmin)

4
. (2.31)

From the PK model and clinical studies, we are able to measure Cmin = Ghomeo and Cmax

and then give an estimate for the half-maximal concentrations which is independent of the

target effect. This has the potential to be an important method for the determination of

EC50 concentrations when only the PK models are reported. One is also able to attribute

other probability distributions at the end points if there is one that is preferable over

others. Using Equation (2.31) in conjunction with Equation (3.15), we calculated

bS = bNP = bNM = bG = Cmin +
(Cmax − Cmin)

4
= 11.2679 days−1,

for the half-maximal concentrations of Equations (3.16), (4.9), (3.18), and (3.21). The

remaining half-maximal concentration parameter relates the effect of G-CSF on the matu-

ration velocity of the marrow neutrophils (Equations (4.10) to (3.20)). For this determina-

tion, we make use of the data reported in Figure 3 in [34] which reports the time-evolution

of the appearance of irradiated cells in the circulation after 5 successive days of G-CSF

dosing (with daily blood samples and ANC analysis). Assuming the 300µg dose induced

the maximal observed effect, we determined that Vmax = 10 by first calculating the differ-

ence that [34] measured for the total production time at the high dose compared to the

reported baseline for the whole production time. This difference was then subtracted from

our baseline neutrophil maturation time estimation of aNM = 3.9. Assuming that the renal

elimination is the dominant method of G-CSF excretion during exogenous administration,

we can neglect the internalisation elimination and calculate a closed-form solution from

dGestimate

dt
=
kaF (DoseGCSF )

Vd
e−katinj +Gprod − krenG(t)

to obtain

Gestimate(t) =

kaF (DoseGCSF )
Vd

e−krent−t(ka−kren)

kren − ka
+
Gprod

kren
+ e−krent

Ghomeo − kaF (DoseGCSF )
Vd

kren − ka − Gprod
kren

.

(2.32)

Then, the 30 µg dose is used to find bV making use of Matlab’s fzero function [27] to
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solve for bV from Equation (2.23) (τNM is determined from the data curve of [34] and aNM

is again taken to be 3.9 days). This gave bV = 3.5 ng/mL.

Finally, [39] cite a range of (8−16)×bminN for their Bmax
N , which accounts for the maximal

birth rate. We take our similar parameter under the cited range since the additional

processes of proliferation and maturation accounted for in our model contribute to the

‘birth’ of neutrophils in our study. With this in mind, we take transmax to be 4 times the

homeostatic transition rate, or transmax = 4transhomeo.
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The analyses of the previous chapter pertained particularly to an average patient owing

to the parameter estimation undertaken therein. Accordingly, we sought to demonstrate

the applicability of our predictions by answering to the impact PK variability has on

the model’s outcomes. The following chapter outlines the inclusion of PopPK models for

both filgrastim (from [14]) and PM001014, or Zalypsis ® (from [19]). IIV and IOV were

included according to their previously estimated values and in silico variability scenarios

were performed. A total of five such combinations were analysed in terms of three pertinent

clinical endpoints: the time to ANC nadir, the nadir’s value, and the area under the

concentration-effect curve (AUCE). Our results indicate that PK variability’s impact on

the model’s prediction was not statistically significant and, as such, the physiological model

is robust to PK variability. This work is accepted for publication (Craig, M., González-

Sales, M., Li, J., Nekka, F. (2015-to appear). In: Interdisciplinary Mathematical Research

and Applications. Springer PROMS. B. Toni (ed.)).

For clarity, a magnification of Figure 3.7 is provided at the end of this chapter.
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Abstract

Interindividual variability (IIV) is considered a crucial factor for the general use of mathe-

matical modelling in physiology. However, mechanistic models of physiological systems are

commonly built for an average patient, raising the question of their applicability at the pop-

ulation level. Using our previously developed physiological model of neutrophil regulation,

which accounts for the detailed hematopoietic mechanisms as well as the pharmacokinet-

ics (PKs) of a chemotherapeutic agent (PM00104) and a granulostimulant (filgrastim), we

incorporated the reported population pharmacokinetic (PopPK) models of each drug to in-

vestigate the impact of PK variability on fully mechanistic models. A variety of scenarios,

including multiple doses of PM00104, were simulated for cohorts of 500 in silico patients

to analyse the model’s predictability in terms of several pharmacological indicators, such

as the time to neutrophil nadir, the value of the nadir, and the area under the effect curve.

Our results indicate the robustness of our model’s predictions in all considered scenarios.

Based on our findings, we conclude that for drugs with short-lived PKs in comparison to
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their pharmacodynamics (PDs), models that “sufficiently” account for physiological mech-

anisms inherently assimilate PK deviations, making the further inclusion of PK variability

unnecessary.

3.1 Introduction

One of the most important considerations in modern pharmacometrics is the determina-

tion of the dose-response relationship. This can be obtained through data-driven models

[13, 14, 19] but can also be achieved through techniques stemming from mathematical

biology using physiologically-driven mechanistic modelling [2, 4, 5, 9, 10, 12]. While both

approaches use mathematics to describe the disposition of drugs in the body, each handles

the problem from a unique vantage point. On one hand, data-driven models are based on

various components: the structural model (typically compartmental), a set of statistical

models (with assumptions for probabilistic distributions around model parameters as well

as error structure), and covariate models (when relevant). To this end, population pharma-

cokinetic/pharmacodynamic (Pop-PK/PD) modelling is the most representative approach

and is now widely used in drug research and development. Even so, the construction of

data-driven models highly depends on the available data and the required statistical op-

timisation procedures. The poor quality of data can induce model misspecification and

hamper the generalisability of the models outside of the context in which they were built.

On the other hand, mechanistic models of human processes tackle the problem using

the so-called bottom-up strategy. These models are constructed directly from the system

being studied by applying the available physiological knowledge to drive their predictions.

During this process, a number of hypotheses are generated and translated using various

mathematical techniques. Generally, the model parameters are derived or estimated from

experimentally determined values available from a diverse cross-section of fields (physiolog-

ical, chemical, physical, etc.), and utilise patients’ average values [3]. Physiological models

are used to explore a variety of complex situations. For example, the model of neutrophil

development studied herein can be applied in oncological settings or in the study of hered-

itary disorders like cyclical neutropenia. Mechanistic models are useful for explaining an

observed effect in relation to its components as a result of their physiologically-detailed

construction. However, constructing a physiological model can be time-consuming and re-
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quires advanced mathematical knowledge to ensure the models’ validity. This complexity

makes this approach more popular in academia but work still needs to be done to expand

its use in routine data analysis.

Since physiological models are frequently developed for an average patient, an inves-

tigation of the impact of PK variability on their predictions is crucial to extend their

applicability to patient populations. Considering the complexity of these models, testing

their robustness by simulating credible scenarios of patient variability will determine their

suitability for general use. For instance, it is pertinent to know whether drug regimens

identified for an average patient through these models can be extended to the population

level. We have previously published a physiological model of myelopoiesis [5], with in-

tegrated PK models of both PM00104 [19] and filgrastim (adjuvant recombinant human

granulocyte colony-stimulating factor (G-CSF), used to increase neutrophil counts to pre-

vent and/or recover from neutropenia) [14], which studied the impact of the time of admin-

istration of supportive filgrastim during chemotherapy. Using published or well-derived

parameters from the literature for an average patient, our model successfully predicted

clinical data and identified beneficial regimens. Therein, we determined that delaying the

administration of rhG-CSF after PM00104 by 7 days mitigated the neutropenic impact

of anti-cancer treatment, resulting in a reduction from 10 administrations per cycle to 3

or 4 and a reduction in the burden to the patient [5]. The current study will address the

extendibility of this regimen to a population by investigating the impact of PK interindi-

vidual variability (IIV), and of the reported interoccasion variability (IOV) of PM00104,

on relevant indicators, such as the time to neutrophil nadir and the nadir level.

From a systems pharmacology point of view, the PKs of the previously mentioned drugs

are short-lived in comparison to their PDs. Indeed, the PK half-lives of both PM00104

and filgrastim are on the order of hours (24 and from 6-10, respectively) whereas it can

take several days to observe their effects on cells in circulation due to the production

time of neutrophils in the bone marrow (up to 14 days) [5, 19]. In the current work,

we focused on the impact that IIV components of the data-driven models of [14, 19] can

have on our physiological model [5]. Based on numerical simulations, the sensitivity of

the physiological model to the impact of IIV variability was quantified and statistically

analysed. Using a variety of scenarios that cover a large number of clinical situations, our
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physiological PK/PD model, though developed for an average patient, proved to be robust

in terms of PK IIV when clinically relevant PD criteria are tested, advocating its general

applicability to a large population.

3.2 A Hypothesis-driven Physiological/PK/PD Model of Granulopoiesis Dur-

ing Chemotherapy With Supportive Adjuvant

A mechanistic physiological model of myelopoiesis was constructed [5] by extending the

previous work of [2, 4, 9, 10] through the addition of neutrophil reservoir pools in the bone

marrow and other tissues, and then subsequently incorporating comprehensive PK/PD

models for PM00104 (Zalypsis®), a chemotherapeutic drug, and filgrastim (rhG-CSF),

a supportive adjuvant, to determine dosing schemes that provide the most benefit (least

harm) for patients. The physiological model translates the physiological mechanisms of

neutrophil production mathematically using delay differential equations (DDEs) to char-

acterise the cellular transition delays.

The neutrophil model is a three-dimensional set of delay differential equations with

variable aging rate and general delays obtained from an age-structured partial differential

equation model with appropriate boundary conditions. A schematic diagram of the model

is given in Figure 3.1. Beginning in a quiescent state, a hematopoietic stem cell (HSC-

population Q(t) in units 106 cells/kg), which is capable of self-renewal at rate β(Q) (in

units days−1) and which is subject to apoptosis at rate γS (in units days−1), undergoes

differentiation into one of three blood cell lines. In this model, we consider any differentia-

tion into the erythrocyte or platelet lineages to occur at rate κδ (in units days−1) whereas

differentiation into the neutrophil line occurs at rate κN(N) (in units days−1). Note that

while κδ is taken herein to be constant, the rate of entry of the HSCs into the neutrophil

lineage depends on the concentration of circulating neutrophils (population N(t) in units

109 cells/kg). Once committed to the neutrophil line, cells undergo proliferation-a period

of successive divisions-at a rate of ηNP (in units days−1) for a total of τNP days. Cells

then cease division and mature at a velocity of VN (in units days−1) for a total of τNM(t)

days. During this maturation period, cells are subject to random cell death at a rate of

γNM (in units days−1). Newly mature neutrophils are then sequestered within the bone

marrow in the mature neutrophil reservoir (population Nr(t) in units 109 cells/kg). These
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reserved cells are mobilised from the bone marrow into circulation at a rate of transN

(in units days−1) or, failing to reach the circulation, die from the reservoir at rate γr

(in units days−1). The mature pool is a crucial aspect of the neutrophil lineage, as it

contains ten times the number of circulating neutrophils and is necessary for the rapid

restocking of the blood neutrophils in case of falling ANCs or infection [11, 22]. Cells

reaching the circulation subsequently disappear from the blood at a rate of γN (in units

days−1). Beginning with a quiescent hematopoietic stem cell (HSC) differentiating into

the neutrophil lineage, we model the proliferation and maturation of neutrophilic cells in

the bone marrow. The mature neutrophils then settle into the marrow reservoir before

appearing in circulation (release from the reservoir can be steady, or homeostatic, or rapid

mobilisation in the case of emergency). Once a mature neutrophil reaches the circulation,

it disappears fairly rapidly (half-life of around 7 hours) through apoptosis or margination

into the tissues. Equations (3.1) – (3.3) below highlight the primary model equations.

dQ(t)

dt
=− (κN(N(t)) + κδ + β(Q(t)))Q(t) + AQ(t)β (Q(t− τS))Q(t− τS) (3.1)

dNr(t)

dt
=AN(t)κN(N(t− τN))Q(t− τN)

(
VN(G(t))

VN(G(t− τNM(t))

)
(3.2)

dN(t)

dt
=ftrans(G(t))Nr(t)− γNN(t). (3.3)

Delays are indicated by t − τ , where τ is a physiologically present delay in the system

(time of HSC self-renewal, time of proliferation, time of maturation, time of residence in the

marrow reservoir, and the total time it takes to produce a neutrophil from differentiation to

appearance in the circulation). Equations (3.1) – (3.3) are subject to the initial condition of

homeostasis (Q(t) = Qhomeo, Nr(t) = Nhomeo
r , N(t) = Nhomeo, for all t 6 t0, where t0 marks

the beginning of treatment). In [5], parameter estimation for an average patient was carried

out in an consistent way using data available in the literature. Typical values of the PK

models of PM00104 and G-CSF were adapted from [19] and [14], respectively. In this study,

IIV and IOV components of the PK parameters were added where necessary. All parameter

values in the current work were kept as in [5] and any exceptions will be indicated explicitly

below. Particular attention was paid to capturing the dominant processes implicated in

the development of a circulating neutrophil within the bone marrow.
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Fig. 6: Schematic representation of the production of circulating neutrophils in
the bone marrow. Stem cells (Q) undergo the usual cell cycle and mitosis (at rate
�(Q)) where they die at rate �S or return to the quiescent stage. They then remain
at rest until di↵erentiation into the neutrophil lineage (at rate N (N)) or other
blood lines (red blood cells-RBCs or platelets-PLTs) at rate �. After entering
the neutrophil lineage, a period of successive divisions (proliferation) at rate ⌘NP

is followed by a maturing phase with velocity VN . The mature neutrophils then
reach the neutrophil reservoir (Nr) in the bone marrow. Mature reserved cells are
maintained within the bone marrow for rapid mobilisation if needed [9]; the rate
of transfer from the pool into the circulation (ftrans) is determined by G-CSF
concentrations in the central compartment (plasma). Mature reserved neutrophils
that do not reach the circulation die from the reservoir at rate �Nr. Circulating
neutrophils N disappear from the circulation by apoptosis at rate �N . The time
for the hematopoietic stem cell proliferative phase cycle is ⌧S . The process of the
development of a neutrophil takes time ⌧N from their entry into the neutrophil
line to their appearance in the blood, which includes the time for proliferation
(⌧NP ), maturation (⌧NM ), and marrow sequestration (⌧Nr). Figure adapted from
[5]

Figure 3.1 – Schematic representation of the production of circulating neutrophils in the
bone marrow. Stem cells (Q) undergo the usual cell cycle and mitosis (at rate β(Q))
where they die at rate γS or return to the quiescent stage. They then remain at rest
until differentiation into the neutrophil lineage (at rate κN(N)) or other blood lines (red
blood cells-RBCs or platelets-PLTs) at rate κδ. After entering the neutrophil lineage, a
period of successive divisions (proliferation) at rate ηNP is followed by a maturing phase
with velocity VN . The mature neutrophils then reach the neutrophil reservoir (Nr) in the
bone marrow. Mature reserved cells are maintained within the bone marrow for rapid
mobilisation if needed [11]; the rate of transfer from the pool into the circulation (ftrans)
is determined by G-CSF concentrations in the central compartment (plasma). Mature
reserved neutrophils that do not reach the circulation die from the reservoir at rate γNr.
Circulating neutrophils N disappear from the circulation by apoptosis at rate γN . The
time for the hematopoietic stem cell proliferative phase cycle is τS. The process of the
development of a neutrophil takes time τN from their entry into the neutrophil line to
their appearance in the blood, which includes the time for proliferation (τNP ), maturation
(τNM), and marrow sequestration (τNr). Figure from [5]
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As in our previous work, multiplying N(t) by the fraction of circulating cells is neces-

sary for comparison to data since N(t) herein represents the total blood neutrophil pool

(TBNP). The HSC’s feedback rate and amplification rates of both the HSCs and the blood

neutrophils are modelled as

β(Q) = fQ
θs22

(θs22 +Qs2)
(3.4)

κN(N) = fN
θs11

(θs11 +N s1)
(3.5)

AQ(t) = 2 exp

[
−
∫ t

t−τS
γS(s)ds

]
(3.6)

AN(t) = exp

[∫ t−τN (t)+τNP

t−τN (t)

ηNP(s)ds−
∫ t

t−τN (t)+τNP

γNM(s)ds

]
. (3.7)

The entire process of neutrophil development is regulated by the concentration of G-

CSF, G(t) in units ng/ml), which acts in negative feedback with the blood neutrophil

numbers in that its concentration falls when neutrophil numbers increase and vice versa.

G-CSF acts the whole length of the neutrophil development cycle to maintain neutrophil

counts at homeostatic levels. It is implicated in the recruitment of HSCs into the neutrophil

line, in the regulation of the rates of proliferation and maturation, and controls the release

of mature neutrophils from the bone marrow reservoir into circulation [9]. Details on the

PD effects modelled herein are given in Figure 3.2 and in the following sections.

3.3 Pharmacokinetics and Pharmacodynamics of PM00104

The pharmacokinetics of PM00104 were characterised using a catenary four compart-

ment disposition model with linear elimination [19]. The differential equations describing

the system were as follows
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dA1

dt
= −

(
CL

V1

+
Q2

V1

+
Q3

V1

)
A1 +

Q2

V2

A2 +
Q3

V3

A3 (3.8)

dA2

dt
= −Q2

V2

A2 −
Q4

V2

A2 +
Q2

V1

A1 +
A4

V4

A4 (3.9)

dA3

dt
= −Q3

V3

A3 +
Q3

V1

A1 (3.10)

dA4

dt
= −Q4

V4

A4 +
Q4

V2

A2, (3.11)

where A1, A2, A3 and A4 represent the amount of PM00104 in compartments 1, 2, 3, and

4, CL represents the clearance (in units L/hr), Q2 is the inter-compartmental clearance

between compartments 1 and 2 (in units L/hr), Q3 is the intercompartmental clearance

between compartments 1 and 3 (in units L/hr), Q4, is the intercompartmental clearance

between compartments 2 and 4 (in units L/hr), V1 is the volume of distribution in the

central compartment (in units L), V2 is the volume of distribution in compartment 2 (in

units L), V3 is the volume of distribution in compartment 3 (in units L), and V4 is the

volume of distribution in compartment 4 (in units L). Concentrations in each compartment

are given by dividing the amount of the drug Aj (j = 1, . . . , 4) by the volume in the

respective compartment Vj (j = 1, . . . , 4).

The above model and results of [13] and [19] were incorporated into [5] in a physiologically-

consistent way. Since the main function of a chemotherapeutic agent is to quell the un-

controlled division of cells by reducing/destroying their ability to replicate. In the blood

system, the effects of this reproductive cessation are assumed to be twofold: first, the

HSCs experience an increase in the rate of cell death in the proliferative phase (effectively

reducing their proliferative capabilities) and second, the rate at which the neutrophils un-

dergo successive divisions is greatly reduced. These two effects are modelled, respectively,

as

γchemoS (Cp(t)) = γhomeoS + hSCp, (3.12)

where Cp is the concentration of PM00104 in the first, or plasmatic, compartment, γchemoS
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is the rate of apoptosis of the proliferative HSCs during chemotherapy, γhomeoS is their

rate of apoptosis at homeostasis. Due in large part to the absence of data relating the

effects of chemotherapy on the HSCs, we took a linear effect from chemotherapy upon γS,

modulated by the effects parameter hS, and

ηchemoNP (Cp(t)) = ηhomeoNP

(
(EC50)h

(EC50)h + (Cp(t))
h

)
. (3.13)

Here ηchemoNP is the rate of neutrophil proliferation during chemotherapeutic treatment,

ηhomeoNP is the homeostatic rate of proliferation, EC50 is the usual half-effects constant, and

h is the Hill coefficient of the effect.

3.4 Pharmacokinetic and Pharmacodynamic Model of G-CSF

As previously alluded to, G-CSF is an endogenous cytokine which stimulates the pro-

duction of neutrophils. It is also used in an exogenous form as a prophylactic to help

patients with low neutrophil counts rescue their circulating ANCs [9]. In terms of its PK

properties, G-CSF is believed to have a constant production rate [14] and to have two

modes of elimination, namely an nonsaturable process from renal elimination, and a sat-

urable process driven by internalisation by the neutrophils [15]. Accordingly, as in [5], we

model the endogenous concentration of G-CSF as:

dG

dt
= Gprod − krenG− χkint

G2

G2 + k2
d

N, (3.14)

where Gprod is the endogenous constant production rate of G-CSF (in units ng/ml/day,

kren is the rate of renal elimination (in units days−1), kint is the rate of internalisation by

the neutrophils (in units days−1), kd is the usual dissociation constant (in units ng/mL),

and χ is a scaling factor to correct for the units of Equation (3.14). The choice of Hill

coefficient is due to the 2:2 stoichiometry of G-CSF binding to its G-CSFR receptor on

the neutrophils [16]. When G-CSF is given exogenously, primarily in subcutaneous form,

we model its administration as in [5], and originally in [14] as



103

dG

dt
=
F (Dose)ka

Vd
e−kat +Gprod − krenG− χkint

G2

G2 + k2
d

N, (3.15)

where F is the bioavailable fraction, Dose is the administered subcutaneous dose (in ng),

ka is the rate of absorption from the subcutaneous pool (in units days−1), and Vd is the

volume of distribution (in units mL).

The pharmacodynamic action of G-CSF is multifaceted. From the beginning of a neu-

trophil as a stem cell, G-CSF reduces the rate of cell death in the proliferating HSC

compartment (decreasing γS), increases the rate of neutrophil proliferation in the bone

marrow (increases ηNP ), increases the speed of neutrophil maturation (increases VN(N)

or, equivalently, decreases τNM [22]), decreases neutrophil death out of the marrow mat-

uration compartment (decreases γNM), and modulates the rate of transfer between the

mature neutrophil reservoir and the circulation in function of the ANC (modulates ftrans)

[2, 9, 14, 21]. These effects are modelled as follows, with bi, i = S,N,NP, V the parameters

relating the half-maximal concentration of G-CSF. In the HSC compartment,

γS(G(t), Cp(t))) = γminS − (γminS − γchemoS )bS
G(t)−Ghomeo + bs

, (3.16)

where γminS is the minimal rate of apoptosis in the HSCs proliferative phase. Note that

the rate of cell death of the HSCs is dependent both on the concentration of G-CSF and

on the concentration of the chemotherapeutic agent. The details of the latter dependency

are given in Equation (3.18) below.

Neutrophils undergoing proliferation are also subject to the effects of chemotherapeutic

drugs (Equation (3.13) and details above) and to the concentration of G-CSF

ηNP(G(t), Cp(t)) = ηchemoNP (Cp(t))

+
(ηmaxNP − ηchemoNP (Cp(t)))(G(t)−Ghomeo)

G(t)−Ghomeo + bNP
(3.17)

γNM(G(t)) = γminNM −
(γminNM − γhomeoNM )bNM
G(t)−Ghomeo + bNM

. (3.18)

Here ηmaxNP is the maximal proliferation rate of the neutrophils and γminNM is the minimal
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rate of random cell loss of the maturing neutrophils.

When G-CSF concentrations are high, the speed with which the neutrophils in the mar-

row age increases, thereby decreasing the time they spend maturing. These simultaneous

effects are given by

VN(G(t)) = 1 + (Vmax − 1)
G(t)−Ghomeo

G(t)−Ghomeo + bV
, (3.19)

where Vmax is the maximal aging velocity of the maturing neutrophils, and

dτN(t)

dt
=
dτNM(t)

dt
= 1− VN(G(t))

VN(G(t− τNM(t)))
. (3.20)

The details of the derivation of Equation (3.20) are given in full in [5].

Finally, the recruitment of a reserved neutrophil to the blood given as

ftrans(G(t)) = transhomeo
transratio(G(t)−Ghomeo) + bG

G(t)−Ghomeo + bG
, (3.21)

where transhomeo relates the homeostatic rate of transit from the neutrophil bone marrow

reservoir into the circulation, and transratio = transmax

transhomeo
, is an empirically determined ratio

modulating the fraction of neutrophils released from the reservoir [23, 26].

3.5 Incorporating Variability Into the Physiological PK/PD Model

By incorporating the PK variability reported for PM00104 and filgrastim in [19] and

[14] into our average patient model [5], we now study the impact of PK variability on our

model’s predictions. In the case of PM00104, the fixed effects were assumed to follow a

lognormal distribution according to the following equation:

Pj,k = P ∗eηjτk , (3.22)

where Pj,k is the individual jth PK parameter for the kth occasion, P ∗ is the typical value

of the parameter of interest, and ηj and τk are independent and normally distributed
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Fig. 1: Schematic representation of the e↵ects of PM00104 (solid/dotted lines) and
G-CSF (dashed). Model summary as in Figure 6 below. PM00104 (Zal) acts to
disrupt cellular division resulting in a higher rate of death out of the hematopoietic
stem cell (HSC) compartment, and a decrease in the rate of neutrophil prolifera-
tion in the bone marrow. G-CSF acts throughout the neutrophil lineage to stabilise
the numbers of circulating neutrophils by regulating their exit out of the marrow
reservoir, their proliferation, and their maturation. Concurrently, it acts upon the
HSCs by regulating their di↵erentiation into the neutrophil lineage and their death
rate (to stabilise their population numbers). The complete model is given in the
Appendix and is taken from [5]. HSC: hematopoietic stem cells at rest, 1: divid-
ing HSCs, 2: proliferating marrow neutrophils, 3: maturing marrow neutrophils,
4: other blood cell lines, Reservoir: mature marrow neutrophil reservoir, Zal1:
central compartment of PM00104, Zal2: second compartment of PM00104, Zal3:
third compartment of PM00104, Zal4: fourth compartment of PM00104, G-CSF:
granulocyte colony-stimulating factor, SC: subcutaneous pool

Figure 3.2 – Schematic representation of the effects of PM00104 (solid/dotted lines) and
G-CSF (dashed). Model summary as in Figure 3.1 in Section 3.2. PM00104 (Zal) acts
to disrupt cellular division resulting in a higher rate of death out of the hematopoietic
stem cell (HSC) compartment, and a decrease in the rate of neutrophil proliferation in the
bone marrow. G-CSF acts throughout the neutrophil lineage to stabilise the numbers of
circulating neutrophils by regulating their exit out of the marrow reservoir, their prolif-
eration, and their maturation. Concurrently, it acts upon the HSCs by regulating their
differentiation into the neutrophil lineage and their death rate (to stabilise their popu-
lation numbers). The complete model is taken from [5]. HSC: hematopoietic stem cells
at rest, 1: dividing HSCs, 2: proliferating marrow neutrophils, 3: maturing marrow neu-
trophils, 4: other blood cell lines, Reservoir: mature marrow neutrophil reservoir, Zal1:
central compartment of PM00104, Zal2: second compartment of PM00104, Zal3: third
compartment of PM00104, Zal4: fourth compartment of PM00104, G-CSF: granulocyte
colony-stimulating factor, SC: subcutaneous pool
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interindividual and interoccasion (IOV) random variables with zero-mean and variance ω2
p

and π2
p, respectively. The magnitude of the IIV and the IOV were expressed as coefficient

of variation (CV). The parameter estimates and their associated precisions, measured as

percentage of relative standard error (%RSE), are presented in Table 3.I.

Parameter (Units) Interpretation Estimate %RSE
Fixed Effect θ
Cl (L/hr) Clearance 43.7 3.43
V1 (L) Volume of central compartment 32.7 12.4
Q2 (L) Transit rate (compartments 1 and 2) 123 5.76
V2 (L) Volume of second compartment 162 8.33
Q3 (L/hr) Transit rate (compartments 1 and 3) 11.3 13.2
V3 (L) Volume of third compartment 388 11.8
Q4 (L/hr) Transit rate (compartments 2 and 4) 62.3 9.00
V4 (L) Volume of fourth compartment 239 9.00
Interindividual CV%
variability
Cl IIV of Cl 34.1 24.6
V1 IIV of V1 82.5 37.7
V2 IIV in V2 65.1 41.8
Q3 IIV of Q3 87.7 31.2
V3 IIV of V3 52.0 25.2
(Cl, V2) Correlation between Cl and V2 0.555 78.6
(Cl,Q3) Correlation between Cl and Q3 0.572 33.6
(V2, Q3) Correlation between V2 and Q3 0.522 84.0
Interoccasion CV%
variability
Cl IOV of Cl 14.1 96.0

Table 3.I – Summary of the PopPK model parameters of PM00104 reported in [19]. In-
terindividual variability (IIV), correlations between interindividual random effects, and
interoccasion variability (IOV) were reported as percentage of coefficient of variation (CV)

The filgrastim model used in this study is given by Equation (3.15) in Section 3.4.

Table 3.II summarises the estimated model parameters of filgrastim and their associated

precisions, expressed as %RSE.

As we were primarily concerned with PK variability, and owing to the differences in the

current model’s PD effects (Equations (S20)-(S25)), the IIV reported by the SC50, Smax1 ,

and NB0 parameters were not considered in the present analysis.
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Parameter (Units) Interpretation Estimate %RSE
Fixed Effect θ
kel (hr−1) Rate of renal elimination 0.152 16.6
Vd (L) Volume of distribution 2.42 6.8
ξ (fg/cell) Proportionality constant 0.181 45.5

([GCSFR] per neutrophil)
NB0 ( cells/µL) Initial number of blood neutrophils 1.55 17.9
SC50 (ng/mL) Serum concentration eliciting 3.15 21.0

50% of the maximal effect
Smax1 Maximum effect 34.7 36.0
Interindividual variability ω2

kel IIV of kel 0.194 33.1
Vd IIV of Vd 0.138 25.9
ξ IIV of ξ 5.87×10−2 65.6
SC50 IIV of SC50 0.764 25.0
Smax1 IIV of Smax1 1.88×10−4 133
NB0 IIV of NB0 0.109 29.1

Table 3.II – Summary of the PopPK/PD model parameters of filgrastim, adapted from
[14]. Interindividual variability (IIV) was reported as variances. Only those values which
were found to be impacted by IIV are reported

3.6 Quantification of the Impact of IIV Using Computer Simulation

To rigorously quantify the impact of IIV on the physiological granulopoiesis model, in

silico simulations of 500 patients were performed. All simulations were carried out in Mat-

lab 2013a [17]. The physiological model of neutrophil production, consisting of a three-

dimensional system of delay-differential equations (DDEs), and the associated PK/PD

models were previously implemented using the ddesd solver in Matlab as described in [5].

To incorporate the IIV of the PK models provided in Tables 3.I and 3.II, each parame-

ter value subject to a random effect was sampled from a normal or multivariate normal

distribution and a simulation was performed for these values. This sampling technique

was performed 500 times to simulate 500 patients in each scenario. Parameter values were

sampled using the normrnd and mvnrnd functions in Matlab. The following variability

scenarios were covered:

(a) 6.892 mg (1 hour infusion) PM00104 alone with variability.

(b) 350 mg filgrastim alone with variability.

(c) 6.892 mg (1 hour infusion) PM00104 with variability and 350 mg filgrastim without
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variability.

(d) 6.892 mg (1 hour infusion) PM00104 without variability and 350 mg filgrastim with

variability.

(e) 6.892 mg (1 hour infusion) PM00104 and 350 mg filgrastim, both with variability.

The additional considered scenario without any variability was previously treated in [5]

and serves as a reference in the present analysis.

3.6.1 Statistical Analyses

For each variability scenario, a hypothesis test was carried out in Matlab using the ttest

function; one-sample Student t-tests about the mean time to nadir (TNad), mean ANC

nadir (Nad), and mean area under the effect curve (AUEC) were performed. These three

metrics were chosen as evaluation criteria for the determination of optimal regimens, as

previously carried out in [5, 25]. Further, the 95% asymptotic confidence interval (CI)

of the mean differences between the model with (test) and without (reference) variability

were computed to check the narrowness of the CI. The mean difference is then judged

significant if 0 is outside of CI, implying the null hypothesis (H0) cannot be rejected.

Finally, in a manner analogous to a bioequivalence trial, the ratios of the test to the

reference for the mean TNad, mean Nad, and AUEC were computed. Accordingly, if the

ratio was within the range of 80% to 125% [8], both models were considered equivalent

implying no difference was observed in terms of this indicator.

3.7 Results

3.7.1 No Statistically Significant Differences in Time to Nadir Between the

Model With and Without Variability

Visually, the five simulated scenarios produced TNads close to the mean for most, if

not all, of the 500 in silico patients (Figure 3.7). Indeed, no significant difference in the

time to nadir was found when testing for differences in the means between the test and

reference models. While the mean TNad varies owing to the particular drug combination

being tested, all five of the scenarios examined herein produced no difference to the time

to the nadir onset and the asymptotic 95% CI of the difference in each case was narrow
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and always included H0 (see Table 3.III). Further, all ratios of the test model (with IIV) to

the reference model (without IIV) were within the 80% and 125% range in every scenario.

Consequently, the test models can be considered equivalent to the reference model (see

Table 3.III).

Scenario Mean TNadref Mean TNadtest Ratio 95% CI of
(days) (days) difference

(a) 11.47 11.47 100.0% 10−4×([-1.77, 1.77])
(b) 6.26 5.77 92.1% 10−2×([-3.90, 3.90])
(c) 6.79 6.56 96.7% 10−4×([-4.93, 4.93])
(d) 6.79 6.57 96.8% 10−3×([-7.30, 7.30])
(e) 6.79 6.58 96.9% 10−2×([-2.07, 2.07])

Table 3.III – Results of the test for significance in the time to nadir of each of the studied
scenarios: (a) PM00104 alone with variability, (b) Filgrastim alone with variability, (c)
PM00104 with variability with filgrastim without variability, (d) PM00104 without vari-
ability and filgrastim with variability, (e) PM00104 and filgrastim, both with variability.
Ratios computed as (test/reference)×100. In all cases, differences were determined to be
statistically insignificant at the α = 5% level (all p-values were 1). TNadref : time to nadir
of the reference model, TNadtest: time to nadir of the test model, CI: confidence interval

3.7.2 No Statistically Significant Differences in the Value of the Nadir Be-

tween the Models With or Without Variability

On the other hand, and similar to the time to nadir, both visually (Figure 3.4) and

statistically speaking, no significant differences were found in the nadir values. In all

scenarios, the asymptotic 95% CI of the difference remains narrow, indicating small stan-

dard errors, as seen in Table 3.IV. In addition, the calculated ratios of the nadir value of

the test models versus the reference model were within the interval of 80% to 125% and,

accordingly, the models with variability were equivalent to the reference model.

3.7.3 No Statistically Significant Differences in the Area Under the Effects-

time Curve Between the Model With or Without Variability

Furthermore, no statistically significant differences in the AUECs were found. While

the previous tests of the time to nadir and the nadir value decomposed the results into

one direction at a time (x and y, respectively), the AUEC metric provides insight into the
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(a) (b)

(c) (d)

(e)

Figure 3.3 – Time to nadir results of each in silico patient in each scenario: (a) PM00104
alone with variability, (b) Filgrastim alone with variability, (c) PM00104 with variability
with filgrastim without variability, (d) PM00104 without variability and filgrastim with
variability, (e) PM00104 and filgrastim, both with variability. Solid horizontal lines rep-
resent the mean of each scenario
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Scenario Mean Nadref of Mean Nadtest Ratio 95% CI of
(109 cells/L) (109 cells/L) difference

(a) 4.08 4.08 100.7% 10−3×([-1.60, 1.60])
(b) 6.88 6.35 92.4% 10−2×([-4.72, 4.72])
(c) 4.04 4.14 102.3% 10−4×([-8.04, 8.04])
(d) 4.04 4.10 101.5% 10−2×([-1.20, 1.20])
(e) 4.04 4.11 101.7% 10−2×([-1.28, 1.28])

Table 3.IV – Results of the test for significance in the nadir value of each of the studied
scenarios: (a) PM00104 alone with variability, (b) Filgrastim alone with variability, (c)
PM00104 with variability with filgrastim without variability, (d) PM00104 without vari-
ability and filgrastim with variability, (e) PM00104 and filgrastim, both with variability.
Ratios computed as (test/reference)×100. In all cases, differences were determined to be
statistically insignificant at the α = 5% level (all p-values were 1). Nadref : nadir of the
reference model, Nadtest: nadir of the test model, CI: confidence interval

simultaneous xy-behaviour of the predictions. Further, as we are no longer simply looking

a single nadir point but over the entire 50 simulated days, this last measure synthesises

the full temporal nature of the simulated solutions. In the case of the AUECs, as in the

previous two tests, all the asymptotic 95% CI of the difference included 0. Finally, all

ratios were within the 80% and 125% range and can therefore be considered equivalent

(Table 3.V). Figure 3.5 reveals the consistency of the statistical analysis of the AUEC

values. That being said, in each scenario involving the full variability model for filgrastim,

AUEC values are less uniform. Indeed, because the AUEC investigation shifts the focus

to the full time-course studied, the longer-term effects of G-CSF serving to replenish

the neutrophil reservoir, such as increased speed of maturation (VN), increased rate of

neutrophil proliferation (ηNP ), and increased rate of differentiation from the HSCs (κN),

can be seen.

3.7.4 Full Time Courses of Neutrophil Counts

The full time courses of each patient’s ANCs over 50 days were simulated and the results

presented in Figure 3.6. Each subfigure corresponds to one of the five different scenarios

used to discern the influence of IIV on the prediction. As is consistent with the previously

presented results, variability in filgrastim leads to larger variations in the ANC compared

to variability in PM00104, which does not cause deviations on the same scale due to its

limited involvement in neutrophil development. PM00104 disrupts cellular transcription
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(a) (b)

(c) (d)

(e)

Figure 3.4 – Nadir value per in silico patient in each scenario: (a) PM00104 alone with
variability, (b) Filgrastim alone with variability, (c) PM00104 with variability with filgras-
tim without variability, (d) PM00104 without variability and filgrastim with variability,
(e) PM00104 and filgrastim, both with variability. Solid horizontal lines represent the
mean of each scenario

in a variety of ways, leading to apoptosis through the arrest of the S-phase [20]. We there-

fore consider that those cells that are no longer dividing, notably neutrophils that have

finished proliferation (postmitotic–maturing neutrophils, neutrophils in the marrow reser-

voir, and circulating and/or marginated neutrophils), are no longer subject to its effects.
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Scenario Mean AUECref Mean AUECtest Ratio 95% CI of
((109 cells/L) days) ((109 cells/L) days) difference

(a) 404.30 404.30 100.0% 10−2×([-1.74, 1.74])
(b) 501.25 478.80 95.5% 10−1×([-6.91, 6.91])
(c) 432.73 428.52 99.0% 10−2×([-2.39, 2.39])
(d) 432.73 429.92 99.4% 10−1×([-4.07, 4.07])
(e) 432.73 429.68 99.3% 10−1×([-4.08, 4.08])

Table 3.V – Results of the test for significance in the area under the effects curve (AUEC) of
each of the studied scenarios: (a) PM00104 alone with variability, (b) Filgrastim alone with
variability, (c) PM00104 with variability with filgrastim without variability, (d) PM00104
without variability and filgrastim with variability, (e) PM00104 and filgrastim, both with
variability. Ratios computed as (test/reference)×100. In all cases, differences were deter-
mined to be statistically insignificant at the α = 5% level (all p-values were 1). AUECref :
area under the effect-time curve of the reference model, AUECtest: area under the effect-
time curve of the test model, CI: confidence interval

Accordingly, since these non-dividing cells constitute the bulk of the neutrophils in the

lineage (postmitotic neutrophils are estimated to be about 77% of the marrow neutrophils

[6]), the PDs of PM00104 will have a more limited role on neutrophils developing in the

marrow.

3.7.5 Assessing the Impact of PK Variability on Regimens Identified by the

Physiological Model

The value of the neutrophil nadir following the administration of PM00104 was previ-

ously used in [5] to determine those regimens which best mitigated neutropenia and which

reduced the number of administrations of filgrastim per 21-day periodic cycle over six

cycles. Although the nadir is not affected by the PK IIV, as shown for the single dose

scenario reported above, the presence of interoccasion variability (IOV) was reported for

PM00104 [19], which may have an impact on dosing regimen decisions. Hence, to extend

our findings to the optimal regimens we previously reported, we investigated the impact

of IOV on the physiological model by simulating three cycles of 21-day periodic adminis-

tration of 6.892 mg (1 hour infusion) of PM00104 with both IIV and IOV models as in

[19] for another group of in silico patients. However, no significant impact on the modelÕs

predictions could be observed with this additional source of variability (not shown). Since

all clinical markers used in this study are in fact not affected by the presence of PK IIV,
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(a) (b)

(c) (d)

(e)

Figure 3.5 – Area under the effects curve (AUEC) results per in silico patient in each
scenario: (a) PM00104 alone with variability, (b) Filgrastim alone with variability, (c)
PM00104 with variability with filgrastim without variability, (d) PM00104 without vari-
ability and filgrastim with variability, (e) PM00104 and filgrastim, both with variability.
Solid horizontal lines represent the mean of each scenario

and IOV did not have significant impact on the prediction of nadir, it is reasonable for

us to extend the regimens identified for the average patient using the physiological model

to the population as reported in [19]. Consequently, in line with the findings of [5], it

may be prudent to delay the first administration of filgrastim after the administration of
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(a) (b)

(c) (d)

(e)

Figure 3.6 – Absolute neutrophil counts of each in silico patient in the five studied scenar-
ios: (a) PM00104 alone with variability, (b) Filgrastim alone with variability, (c) PM00104
with variability with filgrastim without variability, (d) PM00104 without variability and
filgrastim with variability, (e) PM00104 and filgrastim, both with variability
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chemotherapy to lessen the impact of the anti-cancer drug(s) on the neutrophil lineage.

3.8 Discussion

Physiological modelling is increasingly in-demand as a means to deepen our under-

standing of the mechanisms underlying drug fate and effects and to allow for an increased

incorporation of physiology beyond the more popular data-driven physiologically-based

models. Although the most widespread model evaluation criteria are based on the good-

ness of fit of the model to data, this approach can overlook subtle mechanisms behind the

physiological system that may be essential to explain outcomes. When these mechanisms

become the key to ensuring the model’s generalisability, concerns could be raised about

the transferability of the model’s findings and its applicability to a variety of situations.

To bridge this gap, it is natural to root the model in contemporary scientific theories since

their development inevitably leads to a deeper understanding of the principle processes

of the systems under study. Physiological PK/PD models use rigorous mathematical ex-

pressions to characterise processes on the causal path between xenobiotics, the body, and

pathologies, and are intended to improve our capacity for extrapolation and prediction [7].

As a result of the complexity of this tri-relationship, these kinds of models frequently use

an average representation to reconstruct the entire process. While one can admit that this

average portrayal greatly serves to demystify the physiological mechanisms being studied

in addition to their interactions with drugs and diseases, its application to a population

can be challenged by the presence of different sources of variability. The robustness of

these physiological PK/PD models to IIV, a pervasive concern in PopPK/PD, has to be

investigated to ensure clinical applicability.

This is precisely the objective of the current study; herein, we were concerned by the

impact of IIV on the predictive quality of a physiological PK/PD model that we previously

developed to study the production of neutrophils for use in chemotherapeutic contexts [5].

This model was predicated upon detailed hematopoietic mechanisms and incorporated the

pharmacokinetics of a chemotherapeutic agent (PM00104) and a granulostimulant (filgras-

tim) to successfully reproduce the behaviour of this lineage with respect to a variety of

oncological protocols. In this study, we have added the reported IIV of the PopPK models

of the two previously considered drugs, PM00104 [19] and filgrastim [14], to investigate
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the impact of IIV on this model. Five variability scenarios were considered to assess the

impact of IIV for each separate drug model in addition to combinations thereof. First,

single doses of PM00104 and filgrastim were administered alone to two separate cohorts of

500 in silico patients using each drug’s respective variability model. Second, both drugs

were administered together to two other sets of 500 in silico patients taking into account

just the fixed effects of one drug, and the fixed and random effects of the other. Last,

the variability models of both drugs were applied together to another set of 500 patients

to evaluate the full impact of the IIV of both drugs. In all situations, no significant im-

pact of IIV was observed on any chosen clinical indicator, namely the time to ANC nadir,

the mean ANC value of the nadir, and the mean AUEC, nor did IOV significantly im-

pact the predictions. These findings confirm the applicability of the physiological PK/PD

neutrophil model beyond the case of an average patient. For example, on the basis of

our current findings, the administration regimen previously judged to be optimal to avoid

moderate to severe neutropenia during 21-day periodic administration of PM00104 over 6

cycles (G-CSF given on days 7 through 10 following the administration of PM00104) can

now be extended beyond the average patient to a population of patients [5]. We attribute

the robustness of the model’s predictions to pharmacokinetic IIV to the fact that both

drugs (PM00104 and filgrastim) have short elimination half-lives in comparison to the lifes-

pan of the neutrophils they affect, a factor inherently incorporated into the physiological

model. Since the physiological PK/PD model was built to reproduce the sequential events

leading to the formation of neutrophils (recruitment of HSCs into the neutrophil line, pro-

liferation, maturation, and release of mature neutrophils into circulation) and specifically

identifies where each drug has an effect on the appearance of a neutrophil in the blood

stream, the model is able to directly relate each drug’s concentration in the plasma with

the chain of events it will induce over the course of a neutrophil’s lifespan. Thus, because

both PM00104 and filgrastim have shorter PK timespans than their PDs, the magnitude

of their IIV is also shorter lived and these differences will only marginally influence the

effects on the physiology.

The results presented in this work provide evidence that physiological modelling is a

valuable alternative to the widely used data-driven modelling approach. Once their gen-

eral applicability has been proved, as it is the case for the present model, physiological
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models can even transcend the means for which they are intended, thereby justifying the

effort required for their construction. A large number of physiological models have been

developed for which a combination with PK/PD models can be envisaged. It would be ad-

visable to systematically submit these models to a “variability screening test” to guarantee

their general applicability prior to any clinical validation. Designing such standard tests

remains a challenge that has to be addressed. Indeed, the National Institutes of Health

(NIH) in the United States has identified quantitative systems pharmacology (QSP) as

ideally situated to develop quantitative and predictive methods able to identify the im-

pact of individual variability [24]. Fortunately, systems biologists and pharmacologists

have access to a variety of databases [1] which facilitate both the formation/instatement

and the evolution of standardised variability screening tests. Ultimately, a concerted and

coordinated effort between industry, academia, and regulatory agencies, as exemplified

by the partnership between the NIH and the Food and Drug Administration (FDA), is

required to ensure that variability is addressed when performing QSP approaches.

In conclusion, this study not only substantiates and situates the use of physiological

modelling in pharmacometrics, it provides incentives to continue to improve our under-

standing of the underlying physiological mechanisms of a given system. In a broader sense,

this work testifies to the necessity of building bridges between diverse actors from differ-

ent backgrounds (pharmaceutical scientists, clinicians, biomathematicians, statisticians,

engineers, etc.) in the pharmacometrics community to best serve patients and their needs.
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Figure 3.7 – Magnification of the time to nadir results of each in silico patient in each
scenario: (a) PM00104 alone with variability, (b) Filgrastim alone with variability, (c)
PM00104 with variability with filgrastim without variability, (d) PM00104 without vari-
ability and filgrastim with variability, (e) PM00104 and filgrastim, both with variability.
Solid horizontal lines represent the mean of each scenario
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Following the work in the preceding chapters, we endeavoured to apply our physiological

model to the study of cyclical neutropenia (CN) and the optimisation of the use of rhG-

CSF for patients with the disease. However, as CN is an inherently dynamic disease

characterised by sustained oscillations in neutrophil numbers, we first needed to refine the

physiological and PD models to account for the high neutrophil counts with high G-CSF

concentrations observed during treatment with exogenous G-CSF. The work presented in

this chapter grew out of the failure of the single unbound G-CSF model to account for data

for the single administration in the log-scale. In this work, we develop a novel PK model

for G-CSF which accounts for both unbound and bound concentrations and modify the PD

model accordingly. We also demonstrate the derivation of the DDEs used in our model of

granulopoiesis from an age-structured PDE model. Several intricate fitting procedures are

then employed to estimate the parameters not available in the literature or unobtainable

through model constraints. A comparison with the CHOP14 data presented in Chapter 2

is again included. This work is significant in that it demonstrates that the mass-action

equilibrium hypothesis for endogenous hormones given exogenously in mimetic form is not

satisfied at homeostasis. This suggests that this hypothesis should be revisited in other

pharmacokinetic studies. The article is under review by the Bulletin of Mathematical

Biology (submitted December 21, 2015; BMAB-D-16-00010).
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Abstract

We develop a physiological model of granulopoiesis which includes explicit modelling of

the kinetics of the cytokine granulocyte colony-stimulating factor (G-CSF) incorporating

both the freely circulating concentration and the concentration of the cytokine bound to

mature neutrophils. G-CSF concentrations are used to directly regulate neutrophil pro-

duction, with the rate of differentiation of stem cells to neutrophil precursors, the effective

proliferation rate in mitosis, the maturation time, and the release rate from the mature

marrow reservoir into circulation all dependent on the level of G-CSF in the system.

The dependence of the maturation time on the cytokine concentration introduces a state-

dependent delay into our differential equation model, and we show how this is derived from

an age-structured partial differential equation model of the mitosis and maturation, and

also detail the derivation of the rest of our model. The model and its estimated param-
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eters successfully predict the neutrophil and G-CSF responses to a variety of treatment

scenarios, including the combined administration of chemotherapy and exogenous G-CSF.

This concomitant treatment was reproduced without any additional fitting to characterise

drug-drug interactions.

Keywords

granulopoiesis; mathematical modelling; state-dependent delay differential equations; phys-

iologically constructed pharmacokinetics; G-CSF; bound and unbound drug concentrations

4.1 Introduction

We present a new model of granulopoiesis, in which the production of neutrophils is

governed by a negative feedback loop between the neutrophils and granulocyte colony

stimulating factor (G-CSF). G-CSF is the principal cytokine known to regulate neutrophil

production and in our model it is used to moderate differentiation of stem cells, apoptosis

of proliferating neutrophil precursors, the speed at which neutrophils mature and the

rate that mature neutrophils are released from the marrow reservoir. To facilitate this,

we derive not only new functions for the pharmacodynamic effects of G-CSF, but also a

new model of the G-CSF kinetics which incorporates cytokine binding and internalisation

by the neutrophils. We dispense with the mass action law assumption made in some

previous models and directly model the concentration of both circulating G-CSF and

G-CSF bound to neutrophils. This improved kinetic model furnishes us with G-CSF

concentrations which are considerably more accurate than our previous models so we are

able to use them to directly drive the pharmacodynamic effects and finally form a fully

closed cytokine-neutrophil feedback loop.

At homeostasis the dominant removal mechanism for G-CSF is internalisation by neu-

trophils after it binds to receptors on these cells [32]. This gives rise to a negative feedback

mechanism on the G-CSF pharmacokinetics (PKs) whereby large concentrations of neu-

trophils result in G-CSF being removed from circulation, in turn leading to low concen-

trations of circulating G-CSF. On the other hand if neutrophil concentrations are reduced

then G-CSF is not cleared from circulation as quickly and circulating concentrations in-

crease as a result. The feedback loop is completed by the pharmacodynamic (PD) effects
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of the G-CSF: elevated (depressed) G-CSF levels lead to increased (decreased) neutrophil

production. Due to this feedback, using the simple paradigm that neutrophil concentra-

tion is a cipher for the cytokine concentration (with one low when the other is high), it is

possible to derive granulopoiesis models without explicitly modelling the cytokines. This

is particularly useful because it is not universally agreed where or how the multitude of

identified cytokines all act.

The mathematical modelling of granulopoiesis has a long and rich history [4, 5, 9, 11,

18, 20, 25, 27, 28, 53, 54, 56, 57, 61, 65, 66, 68, 72] but one of the earliest and most com-

plete treatments is that of Rubinow [49] which incorporates a number of features that we

retain in our model, including active proliferation, maturation, a marrow reservoir and free

exchange between the circulating and marginal blood neutrophil pools. Rubinow’s model,

however, predates the discovery and characterisation of G-CSF and so it uses neutrophil

concentrations as a cipher for the cytokine and its effects. Subsequent physiological models

have also all incorporated at least some elements of this cytokine paradigm in their mod-

elling. Some authors have been principally interested in neutrophil pathologies, including

cyclical neutropenia, chronic myeloid leukemia, and myelosuppression during chemother-

apy, while others have primarily studied the effects of G-CSF mimetics. Many models

of cyclic neutropenia, including [9, 18, 25, 33] and [55] acknowledge the role of G-CSF

in neutrophil production and pathologies but rely on the cytokine paradigm to drive the

pharmacodynamic responses. A number of modelling approaches have been proposed, in-

cluding compartmental ODE models [21, 22, 30, 46, 53, 69], delay differential equations

(DDEs) incorporating statistical distributions to model delays [65, 66], and DDEs derived

from age-structured partial differential equation (PDE) models, like the one developed in

this work [5, 11, 20].

In recent years, synthetic forms of G-CSF have been developed and are administered

to patients for a variety of reasons, including to treat cyclical neutropenia or as an adju-

vant during chemotherapy [12, 13, 40]. However, the administration of exogenous G-CSF

breaks the cytokine paradigm and it is possible for neutrophil and G-CSF concentrations

to both be elevated at the same time. This breakdown of the natural feedback relationship

can cause physiological models that use the paradigm to mischaracterise the elimination

dynamics of G-CSF. For example, both [30] and [11] overestimate the renal clearance of
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G-CSF so much as to essentially eliminate the contribution of neutrophil-mediated in-

ternalisation, even though they each include this nonlinear clearance in their models. If

elevated neutrophil concentrations are used to drive the system dynamics on the assump-

tion that corresponding G-CSF concentrations are reduced when they are in fact elevated,

the modelled effects will act in the opposite sense to the physiology. As a consequence,

the model will either develop instabilities and/or give a poor fit to observed dynamics.

The mischaracterisation of G-CSF elimination dynamics was the impetus for the current

work. Consequently, we will not use the neutrophil concentration as a cipher for the G-CSF

concentration, but will model both the G-CSF pharmacokinetics and pharmacodynamics

(PK/PD) in detail. For this, we develop a novel pharmacokinetic model of G-CSF which

includes both unbound and bound blood concentrations. The G-CSF concentrations given

by this kinetic model are then used to drive the pharmacodynamic effects of the cytokine,

in a fully formed negative feedback loop.

We begin by summarising the granulopoiesis model in Section 4.2. Its development is

then extensively detailed in Section 4.3, beginning from the stem cells in Section 4.3.1. The

novel pharmacokinetic G-CSF model incorporating bound and unbound blood concentra-

tions is motivated and developed in Section 4.3.2. There we show how the hypothesis of

an equilibrium between bound and unbound concentrations is not satisfied for G-CSF,

necessitating the inclusion of more complex kinetics in its pharmacokinetic model. Next,

the derivation of the DDE granulopoiesis model is given in Section 4.3.3 and the phar-

macodynamic model of G-CSF is developed in Section 4.3.4. Models of the exogenous

drugs considered in our study are detailed in Section 4.3.5. Having laid the foundations

of our model, the various methods of parameter estimation and fitting used for our anal-

yses are subsequently explained in Section 4.4. These approaches include model-specific

constraints, as seen in Sections 4.4.1 and 4.4.3, while fitting procedures from published

data are described in Sections 4.4.2, 4.4.4, and 4.4.5. The resulting parameters are then

summarised in Section 4.5. Finally in Section 4.6 we put our model to the acid test of

predicting (not fitting) the population neutrophil response in a group of patients undergo-

ing simultaneous chemotherapy and G-CSF administration [42, 43] and obtain excellent

agreement between the model predicted behaviour and the clinical data. We conclude

with a short discussion in Section 4.7.
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4.2 Model Summary

Here we define the variables and summarise the equations that define our granulopoiesis

model. A detailed derivation is contained in Section 4.3. Figure 4.1 shows a schematic

diagram describing the main elements of the hematopoietic system that we model.

The hematopoietic stem cell (HSC), neutrophil and G-CSF model is a set of five differ-

ential equations including constant and state-dependent delays. Let Q(t) be the concen-

tration of HSCs at time t, NR(t) be the concentration of mature neutrophils in the marrow

reservoir, and N(t) be the concentration of the total blood neutrophil pool (TBNP) at

time t (which includes both circulating and marginated neutrophils). Further, let G1(t)

be the concentration of unbound, circulating G-CSF and G2(t) be the concentration of G-

CSF bound to receptors on mature neutrophils (in the reservoir or in the blood neutrophil

pool).

The production of neutrophils from the HSCs is modelled by

d
dt
Q(t) = −

(
κ(G1(t)) + κδ + β(Q(t))

)
Q(t)

+ AQ(t)β (Q(t− τQ))Q(t− τQ) (4.1)

d
dt
NR(t) = AN(t)κ(G1(t− τN(t)))Q(t− τN(t))

VNM(G1(t))

VNM(G1(t− τNM(t)))

−
(
γNR + ϕNR(G1(t))

)
NR(t) (4.2)

d
dt
N(t) = ϕNR(GBF (t))NR(t)− γNN(t), (4.3)

with the concentrations of G-CSF (unbound and bound to neutrophil G-CSF receptors)

given by

d
dt
G1(t) = IG(t) +Gprod − krenG1(t)

− k12([NR(t) +N(t)]V −G2(t))G1(t)
Pow + k21G2(t) (4.4)

d
dt
G2(t) = −kintG2(t) + k12

(
[NR(t)+N(t)]V−G2(t)

)
G1(t)

Pow− k21G2(t), (4.5)

where IG(t) indicates input of exogenous G-CSF, which we assume is filgrastim (the most

common bio-similar exogenous form of G-CSF). Filgrastim has very similar PK/PD prop-

erties to endogenous G-CSF, so we will not distinguish between the two types of G-CSF
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Fig. 1: Schematic representation of the production of circulating neutrophils in
the bone marrow and the interaction of the system with G-CSF. Hematopoi-
etic stem cells (HSCs-Q) enter the neutrophil lineage, the other blood lines, or
are removed from the HSC pool. Di↵erentiated HSCs then undergo successive
divisions during the proliferative phase. Cells then mature before being stored
in the marrow reservoir, or dying o↵ during maturation. Neutrophils remain in
the reservoir until they are removed randomly or enter the circulation, where
they disappear rapidly from the blood. Freely circulating G-CSF may bind
to receptors on the neutrophils. The concentration of bound G-CSF drives
its pharmacodynamic e↵ects. The concentration of G-CSF bound to mature
neutrophils, G2, determines the rate of release from the marrow reservoir. The
concentration of G-CSF bound to neutrophil precursors, assumed proportional
to G1 the concentration of freely circulating G-CSF, determines the rate of
di↵erentiation from the HSCs, the speed of maturation, and the rate of pro-
liferation. For all four e↵ects, speed and rates increase with increasing G-CSF
concentration.

in (2) from an age-structured partial di↵erential equation (PDE) model of the
mitosis and maturation with variable aging rate of the neutrophil precursors.
The G-CSF equations (4),(5) are explained in detail in Section 3.2.

In the stem cell equation (1), as explained in Section 3.1, we have

�(Q) = fQ
✓s2
2

✓s2
2 + Qs2

, (6)

AQ(t) = A⇤
Q = 2e��Q⌧Q . (7)

Figure 4.1 – Schematic representation of the production of circulating neutrophils in the
bone marrow and the interaction of the system with G-CSF. Hematopoietic stem cells
(HSCs-Q) enter the neutrophil lineage, the other blood lines, or are removed from the
HSC pool. Differentiated HSCs then undergo successive divisions during the proliferative
phase. Cells then mature before being stored in the marrow reservoir, or dying off during
maturation. Neutrophils remain in the reservoir until they are removed randomly or enter
the circulation, where they disappear rapidly from the blood. Freely circulating G-CSF
may bind to receptors on the neutrophils. The concentration of bound G-CSF drives its
pharmacodynamic effects. The concentration of G-CSF bound to mature neutrophils, G2,
determines the rate of release from the marrow reservoir. The concentration of G-CSF
bound to neutrophil precursors, assumed proportional to G1 the concentration of freely
circulating G-CSF, determines the rate of differentiation from the HSCs, the speed of
maturation, and the rate of proliferation. For all four effects, speed and rates increase
with increasing G-CSF concentration.
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in our model.

The derivation of these equations is given in Section 4.3. In Section 4.3.3, particular

attention is paid to the derivation of the state-dependent delay terms in (4.2) from an

age-structured partial differential equation (PDE) model of the mitosis and maturation

with variable aging rate of the neutrophil precursors. The G-CSF equations (4.4),(4.5) are

explained in detail in Section 4.3.2.

In the stem cell equation (4.1), as explained in Section 4.3.1, we have

β(Q) = fQ
θs22

θs22 +Qs2
, (4.6)

AQ(t) = A∗Q = 2e−γQτQ . (4.7)

Only in the case of administration of chemotherapy is the stem cell amplification factor

AQ(t) non-constant. During chemotherapeutic treatment AQ(t) will be modified by re-

placing (4.7) with (4.38) as discussed in Section 4.3.5. Stem cells commit to differentiate

to neutrophil precursors at a rate given by

κ(G1) = κ∗ + (κ∗ − κmin)

[
Gs1

1 − (G∗1)s1

Gs1
1 + (G∗1)s1

]
. (4.8)

Here, and throughout, the superscript ∗ denotes the homeostasis value of a quantity. The

rationale for using (4.8) to describe the pharmacodynamic effect of the G-CSF on the

differentiation of the HSCs, along with the other G1-dependent functions is explained in

Section 4.3.4.

After entering the neutrophil lineage, cells undergo mitosis at a variable rate (ηNP (G1(t)))

given by

ηNP (G1(t)) = η∗NP + (η∗NP − η
min
NP

)
bNP
G∗1

(
G1(t)−G∗1
G1(t) + bNP

)
(4.9)

for a proliferation time τNP , considered to be constant. Cells subsequently mature at a

variable aging rate given by

VNM(G1(t)) = 1 + (Vmax − 1)
G1(t)−G∗1

G1(t)−G∗1 + bV
, (4.10)

until they reach age aNM so the time τNM(t) it takes for a neutrophil maturing at time t to



132

mature satisfies the integral relationship∫ t

t−τNM(t)

VNM(G1(s))ds = aNM . (4.11)

At homeostasis, VNM(G∗1) = 1, and thus aNM is the homeostatic maturation time. The

total time it takes a neutrophil to be produced (from HSC differentiation to release into

the reservoir pool) is

τN(t) = τNP + τNM(t), (4.12)

and we can differentiate equation (4.11) to obtain the following DDE for both τN and τNM

d
dt
τN(t) = d

dt
τNM(t) = 1− VNM(G1(t))

VNM(G1(t− τNM(t)))
. (4.13)

Maturing neutrophils are assumed to die at a constant rate given by γNM . The amplification

factor AN(t) between differentiation from HSCs to maturation that appears in (4.2) is then

given by

AN(t) = exp

[∫ t−τNM(t)

t−τN (t)

ηNP (G1(s))ds− γNM τNM(t)

]
(4.14)

as derived in Section 4.3.3. Numerical implementation of the neutrophil amplification rate

is obtained by differentiating the integral expressions in (4.14) using Leibniz’s Rule to

obtain

d
dt
AN(t) = AN(t)

[(
1− d

dt
τNM(t)

)(
ηNP (G1(t−τNM(t)))− ηNP (G1(t−τN(t)))

)
− γNM d

dt
τNM(t)

]
. (4.15)

After maturation neutrophils are sequestered into the marrow neutrophil reservoir. Mature

neutrophils exit the reservoir either by dying with constant rate γNR , or by being released

into circulation with a rate ϕNR depending on the fraction GBF (t) of neutrophil receptors

that are bound by G-CSF. We define

GBF (t) =
G2(t)

V [NR(t) +N(t)]
∈ [0, 1], G∗BF =

G∗2
V [N∗R +N∗]

, (4.16)



133

and let

ϕNR(GBF (t)) = ϕ∗NR + (ϕmax
NR
− ϕ∗NR)

GBF (t)−G∗BF
GBF (t)−G∗BF + bG

. (4.17)

Neutrophils are removed from circulation with constant rate γN .

In equations (4.1)–(4.5) we use units of 109 cells per kilogram (of body mass) for the

reservoir and circulating neutrophils, and 106cell/kg for the stem cells. The scaling fac-

tors ensure that computations are performed with numbers of similar magnitude which

improves numerical stability. Circulating and bound G-CSF concentrations are measured

in standard units of nanograms per millilitre of blood. The differing units for neutrophils

and G-CSF are only problematical in equations (4.4),(4.5) where quantities in both units

appear; see Section 4.4.2 for the derivation of the conversion factor V .

Its also important to note that N(t) measures the total blood neutrophil pool, including

both the circulating and marginated neutrophils. To convert N(t) to an absolute neu-

trophil count/circulating neutrophil numbers NC(t) (or vice versa) there is a conversion

factor; see (4.93).

4.3 Model Development

Here we describe the development of our granulopoiesis model leading to the equations

presented in Section 4.2. The equation for the stem cells (4.1) is described briefly in

Section 4.3.1. The size of the mature neutrophil reservoir is described by (4.2). The

first term on the right-hand side of this equation gives the rate that mature neutrophils

enter the reservoir. This term is derived from an age-structured PDE model described

in Section 4.3.3 below. Neutrophils are assumed to leave the reservoir either by dying

at rate γNR or by entering into circulation at rate ϕNR , and are removed from circulation

at a constant rate γN . In Section 4.3.2 we describe our new G-CSF model (4.4),(4.5) of

the unbound freely circulating G-CSF (G1), and the G-CSF bound to receptors on the

neutrophils (G2). This model allows us to model the pharmacodynamic effects of the G-

CSF directly as detailed in Section 4.3.4. Finally, Section 4.3.5 outlines our models for the

exogenous drugs we will consider in later sections.
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4.3.1 Stem Cells

Equation (4.1) for the stem cell dynamics was previously used in [5, 8, 9, 11, 20, 33,

35, 45]. In particular, see [4] for a detailed derivation. Here, we remove the dependence

of γQ upon G-CSF as the HSC population is relatively stable and infrequently dividing

[16, 48] and, to our knowledge, no direct evidence of G-CSF’s action upon HSC apoptosis

currently exists. Craig [11] uses

AQ(t) = 2 exp

[
−
∫ t

t−τQ
γQ(s)ds

]
, (4.18)

and in the absence of chemotherapy we take the apoptotic rate γQ to be constant so this

becomes (4.7).

4.3.2 A physiologically constructed pharmacokinetic G-CSF model

A new pharmacokinetic model of G-CSF, already stated in (4.4),(4.5) is used to model

the concentrations of both unbound and bound G-CSF. We do not distinguish between

endogenous and exogenous G-CSF in the model, which constrains us to only consider

biosimilar forms of exogenous G-CSF. Accordingly, we focus on filgrastim, the most widely-

available form of exogenous G-CSF. However, other less common forms of biosimilar exoge-

nous G-CSF are available and include lenograstim and Nartograstim® [40]. The pegylated

form of rhG-CSF has greatly reduced renal clearance relative to endogenous G-CSF, which

would require a different model, so we will not consider it in this work.

In equations (4.4),(4.5) G1 is the concentration of freely circulating G-CSF and G2 is the

concentration of G-CSF which is bound to receptors on the neutrophils. Since the bone

marrow is well perfused. G-CSF can bind to mature neutrophils in the marrow reservoir as

well as neutrophils in circulation. In the model kren denotes the nonsaturable removal rate

of circulating G-CSF (mainly renal). kint denotes the removal rate of bound-G-CSF, which

we refer to as the effective internalisation rate. This term models the removal of bound

G-CSF both by internalisation after binding and through the removal of the neutrophil

itself from circulation (along with its bound G-CSF molecules). k12 is the rate of binding

of free G-CSF to the neutrophils, and Pow is the effective binding coefficient. The G-CSF

receptor has a 2:2 stoichiometry in in vitro studies [32], so a simple chemical reaction
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model would suggest Pow = 2. However, the number of ligands binding to a receptor only

provides an upper bound on the corresponding Hill coefficient [51]. Accordingly, we use

an effective binding coefficient Pow ∈ [1, 2].

In this model the bound G-CSF concentration is saturable, with V [NR(t) +N(t)] being

the capacity of this compartment. G2 = V [NR(t)+N(t)] would indicate that every receptor

on every neutrophil in the reservoir and circulation was bound to two G-CSF molecules.

Thus the removal rate of neutrophils by internalisation is saturable. G-CSF also binds to

immature neutrophils and precursors, which will be important for the pharmacodynamics,

but since these cells are fewer in number and/or have fewer receptors than the mature

neutrophils we neglect this effect on the pharmacokinetics. Finally, k21 is the rate of

unbinding (transformation from bound G-CSF to circulating G-CSF), and IG(t) denotes

exogenous administration of G-CSF, discussed in Section 4.3.5.

If we were to assume that there is no net transfer between the bound and circulating

G-CSF then letting Ñ(t) = [NR(t) +N(t)], equations (4.4),(4.5) imply

k12(V Ñ(t)−G2)GPow
1 − k21G2 ≈ 0. (4.19)

Rearranging (4.19) we obtain

G2(t) ≈ [G1(t)]Pow

[G1(t)]Pow + k21/k12

V Ñ(t).

Now, adding (4.4) and (4.5)

d
dt

(G1 +G2) ≈ IG(t) +Gprod − krenG1 − kintG2,

and assuming that G1 � G2 and that d
dt

(G1 +G2) ≈ d
dt
G1, and finally replacing the ≈ by

an equality we have

d
dt
G1 = IG(t) +Gprod − krenG1 − kintV Ñ(t)

[G1(t)]Pow

[G1(t)]Pow + k21/k12

. (4.20)

Equations similar to (4.20) have been used to model G-CSF pharmacokinetics in many

papers including [5, 11, 20, 29, 30, 69], but usually with Ñ(t) = N(t) the concentration of

circulating neutrophils, as opposed to Ñ(t) = [NR(t) +N(t)] as (4.4),(4.5) suggest.
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Figure 4.2 – Data from Wang [69] for G-CSF concentrations after a 750µg 25 minute IV
infusion and five different simulations: (i) the full neutrophil and G-CSF model (4.1)–
(4.5) (ii) the G-CSF only model (4.68),(4.69), (iii) the reduced G-CSF model (4.20) with
kint = 0, (iv) the reduced G-CSF model (4.20) with kint = 30 and Ñ(t) = N(t) and
neutrophil concentrations taken from the Wang [69] and (v) the full neutrophil model
(4.1)–(4.3) and the reduced G-CSF model (4.20) with kint = 25 and Ñ(t) = [NR(t)+N(t)].
In ii) Ntot = 4.1457 and G∗2 and Gprod are determined by Equations (4.74) and (4.76),
respectively. In (ii), (iv) and (v) kren = 4.12 and Gprod is determined by (4.20). All other
parameters take values specified in the third columns of Tables 4.I and 4.II.

The usual derivation of (4.20) is from the law of mass action, but this is equivalent

to the assumption (4.19) that the bound and circulating G-CSF are in quasi-equilibrium.

However, the equilibrium hypothesis (4.19) cannot hold at homeostasis, since if (4.19) holds

and kint > 0 then d
dt
G2 < 0 which is contradictory. Clinical evidence [52, 64] suggests that

at homeostasis, binding and internalisation is the dominant removal mechanism for G-

CSF, so not only does (4.19) not hold but the net transfer from unbound to bound G-CSF

should be more than 0.5 × Gprod. Another important situation where (4.19) will fail is

during exogenous administration of G-CSF, which will initially increase the concentration

of unbound G-CSF (often by orders of magnitude).

Figure 4.2 illustrates some of the issues involved in modelling the kinetics of G-CSF. This

figure shows data from a 750 µg intravenous (IV) infusion digitised from Figure 6 of Wang

[69], along with a number of simulations of the protocol using different G-CSF kinetic mod-
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els. The data in Figure 4.2 seems to have at least two different slopes, suggesting that the

G-CSF time course could be approximated by the sum of two exponentials. This naturally

leads to two compartment pharmacokinetic models [15]. Such a two-compartment G-CSF

model was previously considered by Kuwabara [31] for Nartograstim®. Consistent with

general two-compartment models in pharmacology, the two compartments corresponded

to the blood and the tissues, and generic saturable and nonsaturable removal of the G-CSF

both occurred from the blood compartment. This differs from our model where elimination

occurs from the two compartments (which instead represent unbound and bound G-CSF

concentrations), both of which are subject to linear elimination. By contrast, in our model

one compartment is saturable with nonsaturable elimination (the bound G-CSF), which

corresponds to known G-CSF removal mechanisms. The assignment of elimination to the

first or second compartments also has significant effects on the estimation of correspond-

ing pharmacokinetic parameters so the mischaracterisation of these elimination dynamics

could have significant effects on the model’s predictions and behaviours [73].

The circulating G-CSF concentration time course for a simulation of our full model (4.1)–

(4.5) tracks the measured G-CSF data very closely in Figure 4.2. It slightly overestimates

the G-CSF, but note that the data points are average values from a number of subjects

and we will see in Section 4.4.2 that our G-CSF concentrations are well within the data

range for several of administration protocols.

Also shown in Figure 4.2 is a simulation of a simplified version of the G-CSF equa-

tions (4.4),(4.5) where the time dependent neutrophil term [NR(t) + N(t)] is replaced by

a constant Ntot, so the G-CSF kinetic equations become independent of the neutrophil

dynamics. The resulting equations are stated as (4.68),(4.69) in Section 4.4.2 where they

are used to determine the pharmacokinetic parameters that appear in (4.4),(4.5). The

constant Ntot can be thought of as a time average of the term [NR(t) + N(t)]. As seen

in Figure 4.2, this stand-alone simplified G-CSF model gives G-CSF concentrations very

close to those of the full model, which justifies using it to determine the kinetic parameters.

Three different simulations of the single G-CSF equation (4.20) are also shown in Fig-

ure 4.2 to illustrate the difficulties in dealing with reduced models. One simulation has

kint = 0 so that the elimination of G-CSF is purely renal and it is clear that the nuances

of the G-CSF kinetics are lost.
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A simulation of (4.20) with kint > 0 and Ñ(t) = N(t) (with values for N(t) taken

from the Wang data) gives even worse results than the purely renal elimination case. The

problem with this model is that for the first few hours while the neutrophil concentration is

low, the elimination of the G-CSF is mainly renal and the solution closely tracks the results

from the purely renal elimination simulation. But as soon as the circulating neutrophil

concentrations get high enough the elimination of G-CSF by binding becomes dominant

and quickly drives the G-CSF concentration to very low levels. Similar results are seen if

our full neutrophil model (4.1)–(4.3) is coupled to (4.20) with Ñ(t) = [NR(t) +N(t)].

The tendency of the internalisation term to quickly drive the G-CSF concentrations

down, along with the propensity for parameter fitting with linear scales resulted in several

previous models using versions of (4.20) to take kinetic parameters for which the elimina-

tion of G-CSF is always renal dominated. This is seen both when the G-CSF kinetics is

coupled to physiological models as in [5, 11] and when using traditional empirical models

as in [30, 69], which consequently all have elimination dynamics which are always renal

dominated.

This is true in both the models of Craig [11], which used (4.20) with Ñ(t) = N(t), and

Krzyzanski [30] which used an equation similar to (4.20) but taking account of binding

to all available receptors. In both, elimination by internalisation is included in the math-

ematical models but occurs at an insignificant rate compared to the renal elimination,

contrary to the clinical understanding that elimination of G-CSF by internalisation is the

dominant removal mechanism at homeostasis.

From our numerical experiments it seems impossible to fit the single G-CSF equation

(4.20) to data when Ñ(t) is taken to be N(t). The mature marrow neutrophil reservoir is

an order of magnitude larger than the total blood neutrophil pool, and the receptors on

the mature neutrophils need to be taken into account in the kinetics as in (4.4),(4.5) to

obtain a good fit to data. But taking account of all the receptors is not sufficient to obtain

a model that fits the physiology closely. This is evidenced by the very poor fit obtained

in Figure 4.2 when coupling our neutrophil model to the reduced G-CSF equation (4.20)

with Ñ(t) = [NR(t) + N(t)], and also from models such as that of Krzyzanski [30] that

take account of the G-CSF receptors in marrow, but still obtain renal dominated kinetics.

The study of congenital diseases like cyclical neutropenia (CN)–an inherently oscilla-



139

tory and dynamic disease– and exogenous dosing regimens (such as during chemotherapy)

necessitate that the dynamics of G-CSF be well-characterised. Hence we use the more

realistic model (4.4),(4.5) for G-CSF pharmacokinetics rather than the single equation

reduction (4.20).

4.3.3 Modelling Granulopoiesis

The first term on the right hand side of (4.2) gives the rate that mature neutrophils

enter the bone marrow reservoir at time t, and is obtained by modelling the differentiation

of stem cells at time t− τN(t) through mitosis of neutrophil precursors to time t− τN(t) +

τNP = t − τNM(t) followed by maturation of the cells until time t. The time variation

of τN(t) and τNM(t) is solution dependent so this term involves state-dependent delays.

Granulopoiesis models incorporating state-dependent delay have been employed before in

[5, 19, 20], but the derivation of those models was inaccurate and they missed the important

VNM(G1(t))/VNM(G1(t − τNM(t))) term. Here we will show in detail how the mitotic and

maturation stages of the neutrophil precursors can be modelled by age-structured PDE

models, whose solution by the method of characteristics leads to the state-dependent delay

terms in (4.2).

We do not model the cell-cycle process during mitosis, nor do we differentiate between

the different maturation stages of dividing cells (myeloblasts, promyelocytes, myelocytes).

Rather, to simplify the modelling and the resulting differential equations we model mitosis

as an exponential process from the moment the HSC commits to differentiate to the end

of the mitosis. The proliferation rate ηNP is assumed to be independent of which stage

in mitosis the cell has reached. There is evidence that the cytokine G-CSF affects the

differentiation of HSCs and the effective proliferation rate during mitosis, as explained

in [17], and so we allow both the differentiation rate κ and the proliferation rate ηNP to

vary with G1, the circulating G-CSF, as seen in equations (4.8),(4.9), and explained in

Section 4.3.4.

We let np(t, a) be the cell density as a function of time t and age a during proliferation.

We assume that cells age at a constant rate, ȧ = 1, from age 0 to age τNP , so τNP is also

the time period that cells spend in proliferation, and the proliferation rate is τNP (G1(t)).
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Figure 4.3 – During maturation the aging rate is variable with ȧ(t) = VNM(G1(t)), so age
is not trivially related to time, and the maturation time τNM(t) is variable.

Then, differentiating,

ηNP (G1(t))np(t, a) =
dnp
dt

=
∂np
∂t

+
da

dt

∂np
∂a

=
∂np
∂t

+
∂np
∂a

so the age-structured PDE model for proliferation is

∂np
∂t

+
∂np
∂a

= ηNP (G1(t))np(t, a), t > 0, a ∈ [0, τNP ], (4.21)

which, by the method of characteristics has solution

np(t, a) = np(t− a, 0) exp

[∫ t

t−a
ηNP (G1(s))ds

]
, t > 0, a ∈ [0,min{t, τNP }]. (4.22)

If τNP > a > t > 0 the solution depends on the initial condition np(0, a− t), but a similar

expression applies. Here we have taken homeostasis as the initial condition throughout

and so the solution in (4.22) is all that is required.

We model the maturing neutrophil precursors (metamyelocytes and bands) as a single

homogeneous compartment. There is evidence that G-CSF affects the time that cells spend

in maturation [3, 63] and the speed up in maturation has been measured experimentally

[44]. Since the exact mechanism by which G-CSF affects maturation time is unknown, we

will model this process by decoupling time from age and demanding that cells age by an

amount aNM , but allowing them to mature at a variable aging rate ȧ(t) = VNM(G1(t)) where

VNM(G1) is a monotonically increasing function with VNM(0) > 0 and limG1→∞ VNM(G1) =
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Vmax <∞.

See Section 4.3.4 for further discussion of the function VNM(G1). We assume that the

rate of cell death, γNM , during maturation is constant independent of the concentration of

G-CSF.

We let nm(t, a) be the cell density as a function of time t and age a during maturation

for t > 0 and a ∈ [0, aNM ]. Then the age-structured maturation model is

∂nm
∂t

+ VNM(G1(t))
∂nm
∂a

=
∂nm
∂t

+
da

dt

∂nm
∂a

=
dnm
dt

= −γNMnm(t, a). (4.23)

The characteristics are defined by ȧ = VNM(G1(t)), and along characteristics for t > τNM(t)

we obtain

nm(t, aNM ) = nm(t− τNM(t), 0)e−γNM τNM(t). (4.24)

Age-structured PDE models have been used in hematopoiesis models many times pre-

viously [9, 11, 20, 33], but special care needs to be taken to interpret nm(t, a) when the

maturation has variable velocity, or an incorrect solution will be obtained.

Cells which mature at time t enter maturation at time t − τNM(t) and so differentiated

from HSCs at time t − τNM(t) − τNP = t − τN(t). The rate at which cells differentiate at

time t− τN(t) is κ(G1(t− τN(t)))Q(t− τN(t)), and hence

np(t− τN(t), 0) = κ(G1(t− τN(t)))Q(t− τN(t)).

Then by (4.22)

np(t−τNM(t), aNM ) = np(t− τN(t), 0) exp

[∫ t

t−aNM

ηNP (G1(s))ds

]

= κ(G1(t− τN(t)))Q(t− τN(t)) exp

[∫ t

t−aNM

ηNP (G1(s))ds

]
. (4.25)

To obtain the boundary condition for the maturation phase, note that np(t, τNP ) is

the rate at which cells leave proliferation and enter maturation. Hence, to leading order,

np(t, τNP )δt cells enter maturation in the time interval [t, t+δt]. Cells that enter maturation

at time t will already have age VNM(G1(t))δt by time t + δt. Since np(t, a) and nm(t, a)

describe the density of cells in the proliferation and maturation phases, to avoid the
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Figure 4.4 – Transition from proliferation to maturation.

spontaneous creation or destruction of cells at the transition between proliferation and

maturation we require

∫ VNM(G1(t))δt

0

nm(t+ δt, a)da−
∫ t+δt

t

np(t, τNP )dt = O(δt2).

Then

VNM(G1(t))nm(t, 0) = lim
δt→0

1

δt

∫ VNM(G1(t))δt

0

nm(t+ δt, a)da

= lim
δt→0

1

δt

∫ t+δt

t

np(t, τNP )dt = np(t, τNP ), (4.26)

and hence the boundary condition for the maturation compartment is

nm(t− τNM(t), 0) = np(t− τNM(t), τNP )/VNM(G1(t− τNM(t))). (4.27)

Combining (4.24), (4.25), (4.27) and (4.14) we obtain

nm(t,aNM ) =
np(t− τNM(t), τNP )

VNM(G1(t− τNM(t)))
e−γNM τNM(t)

=
κ(G1(t− τN(t))Q(t− τN(t))

VNM(G1(t− τNM(t)))
exp

[∫ t−τNM(t)

t−τN (t)

ηNP (G1(s))ds− γNM τNM(t)

]

=
κ(G1(t− τN(t)))Q(t− τN(t))

VNM(G1(t− τNM(t)))
AN(t). (4.28)

Again because of the variable aging-rate there is a correction factor to apply to nm(t, aNM )

to obtain the rate that cells leave maturation. To calculate this rate notice that cells which

reach age aNM at time t have age aNM − VNM(G1(t))δt + O(δt2) at time t − δt. Thus the
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number of neutrophils that mature in the time interval [t− δt, t] is

aNM∫
aNM−VNM(G1(t))δt

nm(t− δt, a)da+O(δt2) = VNM(G1(t))nm(t, aNM )δt+O(δt2).

Hence, the rate that cells leave maturation is VNM(G1(t))nm(t, aNM ), which using (4.28)

can be written as

κ(G1(t− τN(t)))Q(t− τN(t))AN(t)
VNM(G1(t))

VNM(G1(t− τNM(t)))
, (4.29)

which is the first term on the right-hand side of (4.2). The correction factor VNM(G1(t))/VNM(G1(t− τNM(t)))

was omitted from the state-dependent DDE models in [5, 20].

4.3.4 G-CSF Pharmacodynamics

G-CSF in concert with many other cytokines regulates important parts of granulopoiesis.

The precise mechanisms by which it does this are not fully understood (and would proba-

bly be beyond the level of detail that we would want to model mathematically even if they

were) but it is known that G-CSF acts along several signalling pathways in complex pro-

cesses which activate and generate secondary signals that regulate neutrophil production

[23, 59, 70].

The initiation of signalling pathways and the transfer of the resulting signals respon-

sible for the various effects of a given drug may be driven directly by receptor binding

and/or the internalisation of the drug. Assuming the rate at which a drug is internalised

is proportional to its bound concentration, we do not need to distinguish between the

different possible pathways and will use the concentration of the bound drug to drive the

pharmacodynamics and produce the effects in the body.

Many previous models applied the cytokine paradigm mentioned in the introduction

to model cytokine effects directly from the circulating neutrophil concentrations. For

example in [5, 8, 9, 11, 20, 33], the differentiation function was taken to be a monotonically

decreasing function of the circulating neutrophil concentration. Some authors preferred

instead to introduce simplified pharmacodynamic models using direct and indirect PD

effects related to the concentration of unbound G-CSF [60, 69] while other more detailed
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approaches have also been studied [58, 65, 66].

The cytokine paradigm breaks down when G-CSF is given exogenously. Immediate

responses of the hematopoietic system to G-CSF administration include releasing neu-

trophils from the marrow reservoir into circulation, and increasing the maturation speed

of neutrophils, so the circulating concentration of neutrophils and the total number of

neutrophils in the reservoir and circulation both increase, which results in G-CSF and

neutrophil concentrations being high concurrently. Consequently we will use G-CSF con-

centrations from (4.4),(4.5) to directly model the pharmacodynamic effects of G-CSF on

the differentiation rate of HSCs κ, the effective proliferation rate of neutrophil precur-

sors in mitosis ηNP , the aging rate of maturing neutrophils VNM, and the release rate of

neutrophils from the bone marrow reservoir ϕNR .

We use Hill and Michaelis-Menten functions to model the G-CSF dependency of these

effects. There is some disagreement in the literature over exactly which cytokines are

important in different parts of the process, and we may be assigning some effects to G-

CSF that are actually due to GM-CSF or one of the other myriad of cytokines that regulate

granulopoiesis. If these other cytokines are mostly in quasi-equilibrium with G-CSF, using

G-CSF as a cipher for all the cytokines should produce very similar effects without the

extraordinary complexity that would be inherent in modelling each one of the cytokines.

Mammalian studies [6, 24, 34] reveal that neutrophils are still produced even in the

absence of G-CSF, presumably because other cytokines are acting. Accordingly, we will

construct our effects functions to have non-zero activity even in the complete absence of

G-CSF. Moreover, in Section 4.4.3 we will consider the case of G-CSF knockout mathemat-

ically with our model to derive a parameter constraint to reduce the number of unknown

parameters.

Recall that the concentration of G-CSF bound to mature neutrophils satisfies the

inequality G2(t) 6 V [NR(t) + N(t)] with equality only if every G-CSF receptor were

bound to two G-CSF molecules. We suppose that the rate that mature neutrophils

are released from the marrow reservoir into circulation is dependent on the fraction

GBF (t) = G2(t)/(V [NR(t) + N(t)]) of their receptors which are bound to G-CSF. The
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rate is then given by the Michaelis-Menten function ϕNR(G1) defined by (4.17). Letting

ϕratio
NR

=
ϕmax
NR

ϕ∗NR
> 1, (4.30)

this function is also similar to the one used by Shochat [60] that was adapted in Craig [11]

except that we use the fraction of bound receptors to drive the function. At homeostasis

(4.16) and (4.17) imply that

ϕNR(G∗BF ) = ϕNR(G∗2/[V (N∗ +N∗R)]) = ϕ∗NR .

The parameter bG defines the half-effect concentration with

ϕNR(G∗BF + bG) =
1

2
(ϕ∗NR + ϕmax

NR
),

while the condition ϕNR(0) > 0 implies the constraint

bG > ϕratio
NR

G∗BF =
G∗2ϕ

ratio
NR

V (N∗R +N∗)
. (4.31)

To model the effects of G-CSF on the differentiation, proliferation and maturation some

care must be taken. We posit that it is cytokine signalling that drives these processes, and

G2(t) denotes the concentration of bound G-CSF, which is proportional to the rate that

G-CSF is internalised. So it would be tempting to use G2(t) to govern these processes,

and indeed initially we tried this without success. The problem is that G2(t) models the

concentration of G-CSF bound to mature neutrophils in the marrow reservoir and circula-

tion. Through (4.4) and (4.5) this gives a very good model of the removal of G-CSF from

circulation because although the neutrophil progenitor cells also have G-CSF receptors,

these cells are relatively few in number and have relatively few receptors, hence they can

be ignored when modelling the G-CSF kinetics. However, when modelling the pharmaco-

dynamic effects of G-CSF it appears to be crucial to take account of the binding of G-CSF

to the neutrophil precursors, and it is the freely circulating G-CSF which is available to

bind to the G-CSF receptors on the immature neutrophils and precursors. Consequently,

we should use G1(t) to govern the cytokine dependent differentiation, proliferation, and

maturation.
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Another way to see that it should be the circulating G-CSF G1(t), and not the G-

CSF bound to mature neutrophils G2(t) that should govern these processes is as follows.

If the concentration of mature neutrophils is decreased then the concentration of bound

G-CSF will also decrease because the number of receptors available to bind to will be

decreased, but the concentration of unbound G-CSF will increase because the rate the

G-CSF is removed by internalisation is reduced. However, with a reduced concentration

of neutrophils, an elevated cytokine concentration is needed to increase differentiation,

proliferation and maturation speed.

We model the differentiation rate from HSCs to neutrophil precursors using the Hill

function (4.8). Very little is known about how the differentiation rate changes in function

of G-CSF, but we suppose that it will not vary by orders of magnitude, since this would

lead to instability in the HSC population, while the HSC population is observed to be very

stable in healthy subjects [48]. It is then convenient to assume that the homeostatic rate

is at the midpoint of the range of possible differentiation rates so

κ∗ =
1

2
(κmin + κmax). (4.32)

With this assumption (4.8) is a standard sigmoidal Hill function with minimum differenti-

ation rate κ(0) = κmin, and with κ(G1) increasing monotonically with G1 and such that at

homeostasis κ(G∗1) = κ∗, while for large concentrations limG1→∞ κ(G1) = κ∗+(κ∗−κmin) =

κmax. To ensure that neutrophils are still produced in the complete absence of G-CSF we

will require that κmin > 0.

G-CSF is believed to increase the effective rate of mitosis during proliferation by re-

ducing apoptosis. Thus we use a monotonically increasing Michaelis-Menten function

ηNP (G1(t)) defined by (4.9) to describe the G-CSF dependent effective proliferation rate

(which measures the difference between actual proliferation and apoptosis). This function

looks a little different than the other Michaelis-Menten functions we will use, but this is

simply because it has been scaled to give the correct minimal and homeostasis effects with

ηNP (0) = ηmin
NP

> 0 and ηNP (G∗1) = η∗NP , with ηNP (G1) a monotonically increasing function

of G1.
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Letting

ηmax
NP

= lim
G1→∞

ηNP (G1) = η∗NP +
bNP
G∗1

(η∗NP − η
min
NP

),

we see that
bNP
G∗1

=
ηmax
NP
− η∗NP

η∗NP − η
min
NP

,

so the parameter bNP > 0 determines the relative position of η∗NP ∈ [ηmin
NP

, ηmax
NP

] with

η∗NP > (ηmin
NP

+ ηmax
NP

)/2 when bNP ∈ (0, G∗1) and η∗NP < (ηmin
NP

+ ηmax
NP

)/2 when bNP > G∗1.

G-CSF is known to affect the time that neutrophils spend in maturation [3, 63], an

acceleration in maturation that Price [44] measured experimentally, but the mechanism

by which G-CSF speeds up maturation is not well understood. We choose to model this

process by decoupling time from age and demanding that cells age by an amount aNM ,

but allowing them to mature at a variable aging rate ȧ(t) = VNM(G1(t)) where VNM(G1) is

a monotonically increasing Michaelis-Menten function given in (4.10). This is similar to

the form used in Craig [11] which was adopted from Foley [20], and is also functionally

equivalent to (4.17).

bV is the half effect parameter for the aging velocity with VNM(G∗1 + bV ) = (1 + Vmax)/2.

We require that VNM(0) > 0, which from (4.10) is equivalent to

bV > G∗1Vmax. (4.33)

This constraint ensures that the aging velocity VNM(G1) is strictly positive for all G1 > 0.

The function VNM(G1) also satisfies the homeostasis condition VNM(G∗1) = 1, so that at

homeostasis the aging rate is 1. The aging rate saturates with limG1→∞ VNM(G1) = Vmax <

∞.

Notice that, using (4.13)

d
dt

(t− τNM(t)) = 1− d
dt
τNM(t) =

VNM(G1(t))

VNM(G1(t− τNM(t)))
, (4.34)

and positivity of VNM(G1) assures that t − τNM(t), and similarly t − τN(t), are monoton-

ically increasing functions of t. This is important in state-dependent DDE theory for

existence and uniqueness of solutions. Physiologically, it assures that cells which have

exited proliferation or maturation never re-enter those phases.
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The responses of our new model and the model of Craig [11] to exogenous administration

of G-CSF are very different. With our new model both differentiation and proliferation

are increased with increased G-CSF so that after some time delay the marrow reservoir

gets replenished. In the previous model, the G-CSF triggered an immediate release of

neutrophils from the marrow reservoir into circulation and the resulting high circulating

neutrophil count would cause differentiation and proliferation to be decreased. This meant

the the marrow reservoir would suffer a double depletion with increased release into circu-

lation combined with reduced production of new mature neutrophils, which could lead to

instabilities in the model that ought not to be occurring in the granulopoiesis of healthy

subjects.

Since the four functions (4.8),(4.9),(4.10) and (4.17) describe the effects of G-CSF on

granulopoiesis, rather than modelling the processes that lead to the effects, the parameters

in these functions do not correspond to physiological quantities that can be measured

directly. Nevertheless these parameters can be determined by fitting the response of the

system to experimental data as described in Section 4.4.4.

4.3.5 Modelling exogenous drug administration

As noted following (4.4), IG(t) denotes the input of exogenous G-CSF. The adminis-

tration of rhG-CSF (in our case filgrastim) typically takes two forms: IV infusion (where

the drug is given intravenously over a period of time) or subcutaneously (injection under

the skin). In the former case, the drug passes directly into the bloodstream meaning the

bioavailable fraction (the percentage of the administered dose that enters the blood) is

100%. In this case, we express the single exogenous administration as

IG(t) =


Do
tinfVd

, t0 6 t 6 tinf

0 otherwise,
(4.35)

where Do is the administered dose, t0 is the start of the infusion, tinf is the time of infusion

and Vd is the volume of distribution. The volume of distribution is a pharmacokinetic pa-

rameter which relates the hypothetical volume a drug would occupy to the concentration it

is observed in the plasma. It is typically calculated for a drug by dividing the administered
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dose by the concentration in the blood immediately following an administration for the

simplest case of IV bolus administration (instantaneous administration into the blood).

Drugs given subcutaneously do not immediately reach the bloodstream. Instead, a certain

proportion of the medication remains in the subcutaneous tissue pool before diffusing into

the plasma. Some previous studies, notably [5, 20] used an extra transition compartment

to model the administered G-CSF concentration in the tissues before reaching the blood

and allowed for the free exchange between this central (blood) compartment and the tis-

sue compartment. Owing to the specifics of the pharmacokinetics of filgrastim, we will

instead use the following direct input functions from [30] and [11] to model subcutaneous

administration as

IG(t) =


kaDoF
Vd

ekat, t > t0

0 t < t0,
(4.36)

where ka is the constant of absorption, and F is the bioavailable fraction (the fraction

of non-metabolised dose which enters the system). This direct form is preferred over the

two compartment method previously employed in [5, 20] because of the relatively small

volume of distribution exhibited by filgrastim (the bio-similar exogenous form of G-CSF),

which is to say that Vd is less than the standard 70L measure of highly distributed drugs

[11] and that the drug does not have a strong tendency to redistribute into the tissues.

The pharmacokinetic model of the chemotherapeutic drug (Zalypsis®) used in this paper

is the same as in [11]. Briefly, the concentration of chemotherapeutic drug in the system

is modelled using a set of four ordinary differential equations which was determined to be

suitable through population pharmacokinetic analysis [41]. The PK model of Zalypsis®

is given by

d
dt
Cp(t) = IC(t) + kfpCf (t) + ksl1pCsl1(t)− (kpf + kpsl1 + kelC )Cp(t)

d
dt
Cf (t) = kpfCp(t) + ksl2fCsl2(t)− (kfp + kfsl2)Cf (t) (4.37)

d
dt
Csl1(t) = kpsl1Cp(t)− ksl1pCsl1(t), d

dt
Csl2(t) = kfsl2Cf (t)− ksl2fCsl2(t),

where Cp is the concentration in the central (blood) compartment, Cf is the concentration

in the fast-exchange tissues, and Csl1 and Csl2 are the concentrations in the slow-exchange

tissues, kij are traditional rate constants between the ith and jth compartments (i, j =
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p, f, sl1, sl2), and kelC is the rate of elimination from the central compartment. We consider

the chemotherapeutic drug to be administered by IV infusion, so IC(t) = DoseZal/∆t,

where DoseZal is the administered dose and ∆t is the time of infusion.

In contrast to the pharmacodynamic effects of G-CSF, chemotherapy has negative effects

on the neutrophil (and other blood) lineages. Chemotherapy (and radiotherapy) works by

disrupting the cell-cycle of tumours [37] but this interference also affects all cells which are

dividing, including the neutrophil progenitors. The cytotoxic side effects chemotherapeutic

treatment has on the neutrophils is called myelosuppression and it is a leading cause of

treatment adaptation and/or cessation for patients undergoing chemotherapy [11]. Since

chemotherapy’s myelosuppressive action only affects cells capable of division, we model

the pharmacodynamic effects of chemotherapy on the HSCs, which rarely divide, and the

neutrophil progenitors in the proliferative phase, which divide regularly until they exit the

mitotic phase.

Since the effects of chemotherapy on the HSCs are not clear, we model the antiprolifer-

ative effect as a simple linear decrease of the rate of apoptosis experienced by these cells

by replacing γQ in equation (4.18) by γQ + hQCp(t) where Cp(t) is the concentration of

the chemotherapeutic drug in the central blood compartment given by (4.37), and hQ is a

factor to be determined (as outlined in Section 4.4.5). Then (4.18) gives

AQ(t) = 2e
−γQτQ−hQ

∫ t
t−τQ

Cp(s)ds
. (4.38)

It is convenient to numerically implement (4.38) as a differential equation, and applying

Leibniz’s Rule to (4.38), similar to the derivation of (4.15), we obtain

d
dt
AQ(t) = (hQ(Cp(t− τQ)− Cp(t)))AQ(t), (4.39)

and we replace (4.7) by (4.39) when chemotherapy is administered.

The second effect of chemotherapeutic drugs is to reduce the effective proliferation rate

of the mitotic neutrophil progenitors. We model this by replacing ηNP of (4.9) by

ηchemoNP
(G1(t), Cp(t)) = ηinfNP +

ηNP (G1(t))− ηinfNP
1 + (Cp(t)/EC50)sc

, (4.40)
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which is a modification of the model used in [11]. Here ηinfNP corresponds to the effective

proliferation rate in the presence of an infinite dose of the drug. We require ηinfNP < ηmin
NP

to

ensure that effective proliferation is reduced, so ηchemoNP
(G1(t), Cp(t)) < ηchemoNP

(G1(t)) when-

ever Cp(t) > 0. We will allow the possibility of ηinfNP < 0, which would correspond to nega-

tive effective proliferation (more death than division in the mitotic phase) in the presence

of very large concentrations of the chemotherapeutic drug, though we note that because

the drug is cleared from circulation relatively quickly we will have ηchemoNP
(G1(t), Cp(t)) > 0

most of the time even if ηinfNP < 0. If ηinfNP ∈ (0, ηmin
NP

) then effective cell division is reduced

but never completely halted however large the concentration of the chemotherapeutic drug.

EC50 is the concentration of chemotherapeutic drug which gives the half-maximal effect,

and sc is a Hill coefficient. The parameters hQ, ηinfNP , EC50, and sc will all be estimated

using fitting techniques described in Section 4.4.5.

4.4 Parameter Estimation and Equation Constraints

In this section we show how our mathematical model imposes constraints on its own

parameters to be self-consistent, and how experimental data can be used to determine

model parameters. We begin in Section 4.4.1 by studying the model at homeostasis and

deriving inequalities that the parameters must satisfy, as well as showing how experimen-

tally measured quantities can be used to directly determine some parameters in the model.

In Section 4.4.2 we show how the G-CSF pharmacokinetic parameters can be determined

using a combination of model equation constraints and parameter fitting to experimental

data from single administrations of G-CSF. In Section 4.4.3, G-CSF knockout is used to

derive further parameter constraints and relationships. Finally in Section 4.4.4 we show

how the pharmacodynamic parameters in the neutrophil equations can be determined by

fitting the model to experimental data for the circulating neutrophil concentrations after

a single IV or subcutaneous administration of G-CSF.

4.4.1 Neutrophil Steady-State Parameter Determination and Constraints

At homeostasis let Q∗ be the stem cell concentration and denote the sizes of the four

neutrophil compartments at homeostasis by N∗P (proliferation) , N∗M (maturation), N∗R

(marrow reservoir), N∗ (total blood neutrophil pool), and the average time that a cell
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spends in one of these stages at homeostasis by τNP , aNM , τ ∗NR and τ ∗NC , respectively. With

the exception of τNP , all of these quantities have been determined experimentally, but

unfortunately only τNP and aNM actually appear in our model. In this section we show

that our model imposes some constraints on the values of these parameters, and also how

the values of κ∗, N∗P , N∗M , N∗R, N∗, aNM , τ ∗NR and τ ∗NC can be used through the model to

determine values for the parameters τNP , η∗NP , γNM , γNR , γN and ϕ∗NR which do appear in

the model in Section 4.2.

At homeostasis equations (4.1)–(4.3) become

0 = −
(
κ∗ + κδ + β(Q∗)

)
Q∗ + A∗Qβ(Q∗)Q∗, (4.41)

κ∗Q∗A∗N = (ϕ∗NR + γNR)N∗R, (4.42)

ϕ∗NRN
∗
R = γNN

∗. (4.43)

Equation (4.41) has the trivial solution Q∗ = 0 with other solutions given by

κ∗ + κδ = (A∗Q − 1)β(Q∗) (4.44)

To the best of our knowledge, there is no experimental data to determine the relative

rates of differentiation to the three cell lines (erythrocytes, neutrophils, thrombocytes)

at homeostasis. In the absence of any evidence to the contrary, we will assume that

these are all equal. Since κ∗ denotes the differentiation rate to the neutrophil line and κδ

differentiation to erythrocyte and thrombocyte precursors we obtain

κ∗ = 1
2
κδ = 1

3
(A∗Q − 1)β(Q∗). (4.45)

At homeostasis neutrophil precursors are assumed to enter the mitotic phase at rate

κ∗Q∗. They then proliferate at a rate η∗NP for a time τNP . The total number of cells in the

proliferative phase at homeostasis is thus

N∗P =

∫ τNP

0

κ∗Q∗e
η∗NP

s
ds = κ∗Q∗

e
η∗NP

τNP − 1

η∗NP
, (4.46)
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and cells leave proliferation and enter maturation at a rate R∗P given by

R∗P = κ∗Q∗e
η∗NP

τNP . (4.47)

At homeostasis from (4.10) we have VNM(G∗2) = 1, and thus from (4.11), the time spent

in maturation at homeostasis is aNM . The number of cells of age s for s ∈ [0, aNM ] in the

maturation phase is then κ∗Q∗ exp(η∗NP τNP − γNMs), and the total number of cells in the

maturation phase is

N∗M =

∫ aNM

0

κ∗Q∗e
η∗NP

τNP−γNM s
ds = κ∗Q∗e

η∗NP
τNP

1− e−γNM aNM

γNM
. (4.48)

Writing

A∗N = exp
(
η∗NP τNP − γNMaNM

)
, (4.49)

which corresponds to (4.14) at homeostasis, we can rewrite (4.48) as

N∗M = κ∗Q∗A∗N
eγNM aNM − 1

γNM
. (4.50)

Now the rate at which cells leave the maturation phase is

κ∗Q∗e
η∗NP

τNP−γNM aNM = κ∗Q∗A∗N .

The average time, τ ∗NC , that neutrophils spend in circulation in the blood (in the total

blood neutrophil pool) has been measured a number of times. However, what is actually

measured is the half removal time, τ1/2, which gives γN , the removal rate from circulation

by

γN =
1

τ ∗NC
=

ln 2

τ1/2

. (4.51)

Equation (4.43) ensures that at homeostasis the rate neutrophils leave the reservoir and

enter circulation equals the rate at which they are removed from circulation. From this

we obtain

ϕ∗NR =
γNN

∗

N∗R
. (4.52)

The rate at which neutrophils exit the mature marrow reservoir is given by (ϕ∗NR+γNR)N∗R
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where ϕ∗NR is the transition rate constant for cells entering circulation and γNR is the random

death rate. Thus the average time that cells spend in the reservoir at homeostasis is

τ ∗NR =
1

ϕ∗NR + γNR
. (4.53)

Hence the random death rate in the reservoir, γNR > 0, is given by

γNR =
1

τ ∗NR
− ϕ∗NR , (4.54)

and we require that

τ ∗NRϕ
∗
NR

6 1 (4.55)

to ensure that γNR > 0. That said, using (4.51) and (4.52), we can rewrite (4.55) as

τ ∗NR
τ ∗NC

6
N∗R
N∗

. (4.56)

The apoptosis rate during the maturation phase, γNM > 0, is calculated by eliminating

κ∗Q∗A∗N from (4.42) and (4.50). Also making use of (4.54), we obtain

FM(γNM ) := N∗R(eγNM aNM − 1)− γNM τ ∗NRN
∗
M = 0. (4.57)

It is easy to see that FM(0) = 0 and hence γNM = 0 is one solution of (4.57). Since

F ′′M(γ) > 0 for all γ > 0, if F ′M(0) < 0 there is a unique γNM > 0 such that FM(γNM ) = 0,

and no positive value of γ such that FM(γ) = 0 if F ′M(0) > 0. Since cell death is known

to occur in the maturation compartment (see [36]), we should choose our parameters so

that (4.57) admits a solution γNM > 0. The condition F ′M(0) > 0 is equivalent to

N∗R
N∗M

<
τ ∗NR
aNM

, (4.58)

and to include apoptosis in the maturation compartment our parameters must be chosen

to satisfy (4.58).

Equation (4.56) can be interpreted as a lower bound on τ ∗NR , and (4.58) as an upper
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bound. Eliminating τ ∗NR from these two bounds we find that the parameters must satisfy

aNM
τ ∗NC

<
N∗M
N∗

(4.59)

for the constraints (4.56) and (4.58) to be consistent. Then τ ∗NR must satisfy

τ ∗NR ∈
(
aNM

N∗R
N∗M

, τ ∗NC
N∗R
N∗

)
(4.60)

for both (4.56) and (4.58) to be satisfied as strict inequalities. All the quantities in (4.60)

have been estimated experimentally. To be consistent with our model the values must

satisfy both (4.59) and (4.60). In Section 4.5 we state parameters that satisfy these

constraints. With those parameters we take γNM > 0 to be the unique strictly positive

solution to (4.57).

Equation (4.42) ensures that the rate cells enter and leave the reservoir are equal at

homeostasis. Rearranging and using (4.52) we obtain

A∗N =
N∗R

κ∗Q∗τ ∗NR
, (4.61)

which determines A∗N . Now from (4.49) we have

e
η∗NP

τNP = A∗Ne
γNM aNM , (4.62)

which determines e
η∗NP

τNP , and it remains to determine one of η∗NP or τNP in order to be

able to find the other. However (4.46) implies that

η∗NP = κ∗Q∗
e
η∗NP

τNP − 1

N∗P
= κ∗Q∗

A∗Ne
γNM aNM − 1

N∗P
(4.63)

and now from (4.62) we have

τNP =
1

η∗NP
ln
(
A∗Ne

γNM aNM
)
. (4.64)

In Section 4.5 we use the equations of this section to determine parameter values for our

model.
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4.4.2 Estimation of G-CSF Pharmacokinetic Parameters

Following [2, 26, 30, 71] we take the homeostasis concentration of the free circulating

G-CSF to be G∗1 = 0.025 ng/mL. The parameter V in (4.5) is the same parameter V

as appears in (4.20). But V is difficult to interpret directly from (4.20), and although

published values are available, they vary widely between sources. For the pharmacokinetic

G-CSF model (4.4),(4.5) the meaning of V is clear; its simply the conversion factor that

converts a neutrophil concentration N in units of 109 cells per kilogram of body mass, into

the corresponding G-CSF concentration V N in units of nanograms per millilitre when

every receptor on the neutrophils is bound.

To compute V , we first note that the molecular mass of G-CSF is 18.8 kDa = 18800 g/mol

[30] or dividing by Avogadro’s constant, the equivalent weight of G-CSF is Gmw =

3.12× 10−11 ng/molecule. We take the number of receptors per neutrophil to be R = 600,

which is in the middle of the range that Barreda [2] cites, though we note that both smaller

and larger numbers can be found in the literature. Then given N , the number of receptors

per millilitre is

R× 70

5000
× 109 ×N,

where we assume body mass of 70 kg and 5000 mL of blood. Since two molecules bind to

each receptor the maximum concentration of bound G-CSF is

V N = 2×Gmw ×R×
70

5000
× 109 ×N = 0.525N ng/mL

and hence

V = 0.525 (ng/mL)/(109cells/kg). (4.65)

Values have been published for several of the other parameters in the G-CSF equations

(4.4),(4.5), but these have been largely based on in vitro experiments and/or simpler G-

CSF models using mixed-effects estimation techniques, and so are not directly applicable

to our model [30, 52, 58, 69].

At homeostasis, equations (4.4),(4.5) give

G∗2 =
(G∗1)Pow

(G∗1)Pow + (kint + k21)/k12

V [N∗R +N∗], (4.66)
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and

Gprod = krenG
∗
1 + kintG

∗
2

= krenG
∗
1 + kintV [N∗R +N∗]

(G∗1)Pow

(G∗1)Pow + (kint + k21)/k12

. (4.67)

Once values of kint, k12, k21, kren and Pow are determined as we describe below, (4.66)

and (4.67) determine values for G∗2 and Gprod.

The remaining parameters might be determined by simulating the full model with ex-

ogenous G-CSF administration and fitting the response of the model to published data

for such experiments. However, that would involve also fitting the as yet undetermined

pharmacodynamic parameters in equations (4.1)–(4.17) which would create a very large

optimisation problem, with the potential for interactions between the pharmacokinetic and

pharmacodynamic parameters to create a complicated functional with many local minima.

To avoid this, we prefer to determine the pharmacokinetic and pharmacodynamic parame-

ters separately. Here we determine the PK parameters by decoupling the G-CSF equations

(4.4)-(4.5) from the neutrophil dynamics.

There have been a number of studies tracking the response of the hematopoietic system

to a single administration of exogenous G-CSF including Wang [69] and Krzyzanski [30]. If

data were available for circulating neutrophil and marrow reservoir neutrophil concentra-

tions as functions of time it would be possible to treat equations (4.4)-(4.5) separately from

the rest of the model as a system of two ordinary differential equations with [NR(t)+N(t)]

treated as a known non-autonomous forcing term determined by the data. But unfor-

tunately it is not known how to directly measure either marrow neutrophil reservoir or

bound G-CSF concentrations, and such values are not reported in the literature.

In the absence of marrow neutrophil data we will decouple the G-CSF kinetic equations

(4.4)-(4.5) from the rest of the model by replacing the time dependent term [NR(t)+N(t)]

by the constant Ntot to obtain

d
dt
G1(t) = IG(t) +Gprod − krenG1(t)

− k12(NtotV −G2(t))G1(t)
Pow + k21G2(t) (4.68)

d
dt
G2(t) = −kintG2(t) + k12

(
NtotV−G2(t)

)
G1(t)

Pow − k21G2(t). (4.69)
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In (4.68) and (4.69) the constant Ntot represents the constant total number of neutrophils

available for G-CSF binding, and will be treated as an extra parameter to be determined

during the fitting. It should correspond approximately to an average value of [NR(t)+N(t)]

across the time course of the data.

With data for bound G-CSF unavailable we are constrained to fit (4.68),(4.69) to data

for the unbound G-CSF. To do this we use digitisations of two sets of data from Wang [69]

from a 750µg intravenous (IV) administration of G-CSF and from a subcutaneous (SC)

administration of the same dose. SC administrations necessarily include the absorption

kinetics of a drug, as outlined in equation (4.36), whereas IV administrations reach the

blood directly and can be modelled more simply as in (4.35). For these reasons, both IV

and SC data were used simultaneously during the fitting procedure to best characterise

the parameters. Rather than fitting directly to the data from Wang [69], to obtain robust

parameter fits we took the G-CSF data from the SC and IV administrations and fit a spline

through each to define functions GSC
dat(t) and GIV

dat(t) over the time intervals 0 6 t 6 2 days

for which the data were taken. With postulated parameter values we then use the Matlab

[38] ordinary differential equation solver ode45 to simulate (4.68),(4.69) over the same

time interval to define functions GSC
1 (t) and GIV

1 (t). We measure the error between the

simulated solutions and the data using the L2 function norm defined by

‖G‖2
2 =

∫ T

0

G(t)2dt. (4.70)

For the IV data which varies over orders of magnitude, as seen in Figure 4.2, we use a

log scale, while for the SC data a linear scale is appropriate. We define a combined error

function for both simulations by

Err = ‖ log(GIV
1 )− log(GIV

dat)‖2
2 + χ0.95‖GSC

1 −GSC
dat‖2

2, (4.71)

where the scale factor χ defined by

χ =
maxt∈[0,T ] log(GIV

dat(t))−mint∈[0,T ] log(GIV
dat(t))

maxt∈[0,T ] GSC
dat(t)−mint∈[0,T ] G

SC
dat(t)

, (4.72)

effectively rescales the data so that both data sets have equal weight. (Since χ < 1 the
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power 0.95 in (4.71) works to give slightly more weight to the SC data).

Fitting was performed using the Matlab [38] lsqcurvefit least squares solver, with the

error function Err evaluated numerically by sampling the functions at a thousand equally

spaced points. It is convenient to define the constant

Nelim = 1− krenG
∗
1

Gprod

(4.73)

where Nelim is the fraction of G-CSF clearance performed through internalisation at home-

ostasis (obtained in (4.73) as one minus the fraction of renal clearance at homeostasis). The

estimation was performed for the G-CSF parameters: k12, k21, Pow, kint, the neutrophil

constant Nelim, and the pharmacokinetic drug parameters ka, and F . The elimination

fraction Nelim was either fixed (Nelim = 0.6 and 0.8 in Table 4.I) or fitted (the other en-

tries in Table 4.I). At each step of the optimisation the candidate k12, k21, Pow, kint and

Nelim are used to determine the dependent parameters G∗2, kren, and Gprod, which from

(4.68),(4.69) and (4.73) are given by

G∗2 = V Ntot
(G∗1)Pow

(G∗1)Pow + (k21 + kint)/k12

(4.74)

kren =

(
−1 +

1

Nelim

)
V kint(G

∗
1)(Pow−1) Ntot

(G∗1)Pow + (k21 + kint)/k12

(4.75)

Gprod = kintG
∗
2 + krenG

∗
1. (4.76)

The following fitting procedure was employed. First parameters were fit from IV data

for a 750µg administration [69] on the log scale to ensure that behaviour at both high and

low concentrations were properly characterised. Next initial SC parameters were fit from

750µg SC data in linear scale. Using the parameters from these two fits as seed values,

we next obtain final parameter values by fitting both log-concentration IV and linear SC

data simultaneously using the norm defined in (4.71). Finally, as the pharmacokinetic

parameters related to the SC administration have been shown to be dose-dependent [58],

we re-estimate F and ka for lower doses of 300µg and 375µg [30, 69]. Since Vd is typically

calculated by the ratio of the dose to the initial concentration in the blood for IV admin-

istrations [15], we have applied the same calculation here to scale the G-CSF prediction

to the first measured data point. Accordingly, the volume of distribution was recalculated



160

Name Value 1 Value 2 Value 3 Value 4 Value 5 Units
Nelim 0.097478 0.6 0.71678 0.8 0.87358 −
kren 1.3142 0.45064 0.2456 0.16139 0.094597 days−1

k12 2.3004 2.2519 2.1342 2.2423 2.878 days−1

k21 407.1641 198.2403 168.2588 184.8658 259.8087 days−1

kint 394.5111 459.2721 275.2744 462.4209 632.0636 days−1

Pow 1.7355 1.4418 1.4631 1.4608 1.4815 −
Ntot 3.9496 4.1767 4.1457 4.2009 3.606 109 cells/kg

Do = 750µg, Vd = 2178.0 mL
F 0.99752 0.75 0.75 0.75 0.98271 −
ka 3.8154 5.2142 5.0574 5.143 4.1931 days−1

Err 0.16352 0.15716 0.17901 0.18543 0.21130 −
Do = 300µg, Vd = 4754.7 mL

F 1 0.63361 0.62299 0.64466 0.71424 −
ka 6.3783 8.0804 8.0628 8.0236 7.4367 days−1

Do = 375µg, Vd = 2322.9 mL
F 0.89831 0.4801 0.48549 0.49964 0.57618 −
ka 4.18161 6.7326 6.6324 6.6133 6.1259 days−1

Table 4.I – Pharmacokinetic parameter estimates from the simplified G-CSF model
(4.68),(4.69) for different homeostasis elimination fractions of Nelim. Err is defined by
(4.71) for the 750µg dose. As described in the text, dose-dependent drug parameters were
only recalculated for the lower doses.

to fit the administered dose. The resulting parameters are reported in Table 4.I.

Figure 4.5 compares the solutions from the fitting procedure of the simplified model

(4.68) (4.69) for the parameter set with Nelim = 0.80 from Table 4.I to the Wang [69] data

for 750µg IV and SC doses in log and linear scales, respectively.

Figure 4.6(a-b) gives linear and log scale plots of the simulations of (4.68),(4.69) with

the Nelim = 0.80 parameter set from Table 4.I for an IV administration from Krzyzanski

[30]. In this case no fitting was performed; the Krzyzanski [30] protocol is simulated using

parameters obtained from fitting to the Wang data, and a good fit to the data is still

obtained. Figure 4.6(c) shows another simulation for a slightly larger SC dose, with the

same G-CSF parameters (only the the dose-dependent drug parameters ka and F were fit,

as already noted), and we again obtain good agreement with the data.

Figure 4.6(d) validates the use of the Ntot simplification used for (4.68),(4.69) by com-

paring Ntot to NR(t)+N(t) from the solution of the full model (4.1)-(4.17) and to N∗R+N∗.
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Figure 4.5 – G-CSF PK parameter fitting results of (4.68),(4.69) with parameter values
taken from Table 4.I with Nelim = 0.80. In both panels, a 750 µg dose is administered
following the protocol described in Wang [69]. Blue lines with data: digitised data median
values, red solid lines: model solution with estimated parameters, black dashed lines:
maximum and minimum values of the digitised data.

This demonstrates how Ntot effectively averages NR(t) +N(t) over most of the simulation.

We characterize the parameter sets found for the simplified G-CSF model (4.68),(4.69)

by the fraction Nelim of the G-CSF that is cleared by binding and internalisation at home-

ostasis. For 0 6 Nelim < 1/2 the elimination is renal dominated at homeostasis, while

for 1/2 < Nelim 6 1 the pharmacokinetics are internalisation dominant. As already men-

tioned in Section 4.3.2, from a clinical standpoint, it is believed that Nelim > 1/2, while a

number of previously published models including [11, 30, 69] have Nelim close to zero.

When we included Nelim as a parameter to be fit the results were very sensitive to the

seed values used to start the optimisation and had a tendency to produce parameter sets

with very low or very high Nelim (see the Nelim = 0.097 and Nelim = 0.87358 parameter

sets in Table 4.I), but we also found a good fit with Nelim = 0.71678 and were able to find

good fits for any fixed value of Nelim, as seen in Figure 4.5 (see Table 4.I for parameter

sets with Nelim = 0.6 and 0.8). Our results seem to indicate that there is at least a one

parameter family of plausible parameter sets with each set characterised by the value of

Nelim. This arises because we are fitting the simplified model (4.68),(4.69) without any

data for the bound G-CSF concentrations. If the model (4.68),(4.69) were linear then
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Figure 4.6 – G-CSF pharmacokinetic parameter fitting results of (4.68),(4.69) with param-
eter values taken from Table 4.I with Nelim = 0.80 compared for different administration
types, doses, and datasets. a) & b) A simulation of (4.68),(4.69) is compared to data from
[30] in linear and log scales. c) A simulation compared to data from [69]. d) Neutrophil
concentrations (blue line) of the full neutrophil model (4.1)-(4.17) compared to the value
of Ntot and N∗R + N∗. For a to c: blue line with data: digitised data median values, red
solid line: model solution from estimated parameters, black dashed lines–digitised data
maximum and minimum values.
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parameter identifiability theory would require data from both components of the solution

in order to identify unique parameters in the model. Even though (4.68),(4.69) is nonlinear,

the lack of any bound G-CSF data allows us to fit the unbound G-CSF concentrations with

different parameter sets, which will result in different solutions for the unmeasured bound

G-CSF concentrations. In Section 4.4.4 we will see that different G-CSF kinetic parameter

sets will result in similar G-CSF responses, but markedly different neutrophil dynamics.

The small differences in the reported errors Err in Table 4.I are not sufficient alone to make

a definitive judgement of which is the optimal parameter set. In the following sections we

will study the response of the full system (4.1)-(4.17) not just to exogenous G-CSF but

also chemotherapeutic treatment (both alone and with prophylactic exogenous G-CSF)

which will lead us to conclude that the PK parameters from Table 4.I with Nelim = 0.80

produce the best model responses to a variety of scenarios.

As seen in Table 4.I, the estimates obtained for Ntot are significantly larger than [N∗R +

N∗]. However as Figure 4.6(d) shows for a 750µg dose administered by a 25 minute

IV infusion, Ntot is an approximate average for [NR(t) + N(t)] over the initial part of the

simulation. This, along with the similarity between the results given by (4.4)-(4.5) and the

full model (as illustrated in Figure 4.2) gives us confidence not only in the simplified model

(4.68)-(4.69) for estimating the G-CSF kinetic parameters, but also provides additional

confirmation that the marrow reservoir neutrophils NR(t) must be included along with the

total blood neutrophil pool N(t) in the full kinetic G-CSF model (4.4)-(4.5) in order to

reproduce the observed physiological response.

4.4.3 Parameter estimates from G-CSF knockout

Several murine studies [6, 34] have looked at the effects of G-CSF knockout by produc-

ing mice lacking G-CSF receptors and measuring the differences in circulating neutrophil

counts compared to wild type mice. The conclusion of these studies is that even in the

case of complete incapacity of the neutrophils to bind with G-CSF, neutrophil counts were

still between 20 and 30% of normal levels. This is consistent with G-CSF not being the

sole cytokine to regulate neutrophil production. Consequently we will ensure that our

model produces reduced but non-zero circulating neutrophil concentrations in the com-

plete absence of G-CSF, and so in this section we consider the behaviour of the equations
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defining neutrophil production when G1 ≡ G2 ≡ 0. In that case the four G-CSF depen-

dent functions take values κ(0) = κmin, ηNP (0) = ηmin
NP

, VNM(0) ∈ (0, 1) (by (4.33)), and

ϕNR(0) ∈ (0, ϕ∗NR) (by (4.31)).

We let N∗ko denote the total blood neutrophil pool under G-CSF knockout and define

the ratio

Cko = N∗ko/N
∗. (4.77)

Let θ = RPko/R
∗
P be the ratio of the rate of cells leaving proliferation in the absence of

G-CSF to the rate of cells leaving proliferation at homeostasis. Using (4.47) and a similar

calculation for RPko we obtain

θ =
RPko

R∗P
=
κminQ∗e

τNP η
min
NP

κ∗Q∗e
τNP η

∗
NP

=
κmin

κ∗
e
τNP η

∗
NP

(µ−1)
, (4.78)

where we also introduce the second auxiliary parameter

µ = ηmin
NP

/η∗NP 6 1, (4.79)

which measures the fractional reduction in the proliferation rate at knockout. In (4.78)

we have assumed that the number of stem cells is unchanged at knockout. Since the

differentiation rate to neutrophils will be decreased from κ∗ to κmin in the absence of

G-CSF, the number of stem cells will actually increase, but using (4.44) and (4.6) this

increase can be calculated and is found to be less than 1% for our model parameters.

For given values of θ, µ and e
τNP η

∗
NP we will use (4.78) to determine the ratio κmin/κ∗.

Since κmin 6 κ∗ (see (4.32)), (4.78) implies that θ 6 e
τNP η

∗
NP

(µ−1)
. Rearranging this gives

a lower bound for µ, from which obtain the constraint

µ ∈
(

1 +
ln(θ)

τNP η
∗
NP

, 1

)
. (4.80)

Here µ = 1 corresponds to a constant proliferation rate independent of G-CSF, with the

reduced production of neutrophils at knockout caused by a reduction of the differentiation

rate κ. If µ is equal to its lower bound then κ is constant independent of G-CSF con-

centration, and the reduced production of neutrophils is caused by the reduced effective

proliferation rate ηNP . For intermediate values of µ, both κmin and ηmin
NP

are reduced from
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their homeostasis values, and µ acts as a tuning parameter to weight the relative contribu-

tion of each mechanism with κmin/κ∗ a monotonically decreasing function of µ = ηmin
NP

/η∗NP .

A value for θ can be computed by studying the dynamics in the absence of G-CSF

after the proliferation stage. Letting N∗ko and N∗Rko denote the number of neutrophils at

knockout in the total blood pool and in the marrow reservoir respectively, the rate that

cells enter and leave circulation should be equal implying that γNN
∗
ko = ϕNR(0)N∗Rko, or

N∗Rko =
1

ϕNR(0)
γNN

∗
ko. (4.81)

The rate RMko that mature neutrophils are created at knockout is then equal to the rate

that neutrophils enter and leave the marrow reservoir, and hence

RMko = (ϕNR(0) + γNR)N∗Rko = γNN
∗
ko

(
1 +

γNR
ϕNR(0)

)
. (4.82)

During G-CSF knockout, the maturation time is given by aNM/VNM(0), during which cells

die at a constant rate γNM (which is not affected by G-CSF). Hence the rate RPko that

cells exit proliferation in the absence of G-CSF is related to RMko by

RPkoe
−γNM

aNM
VNM

(0) = RMko.

Thus,

RPko = e
γNM

aNM
VNM

(0)RMko = γNN
∗
ko

(
1 +

γNR
ϕNR(0)

)
e
γNM

aNM
VNM

(0) . (4.83)

A similar calculation yields R∗P , the rate that cells leave proliferation at homeostasis (with

G-CSF), as

R∗P = γNN
∗
(

1 +
γNR
ϕ∗NR

)
eγNM aNM . (4.84)

Then

θ =
RPko

R∗P
= Cko

ϕNR(0) + γNR
ϕ∗NR + γNR

exp
[
aNMγNM

( 1

VNM(0)
− 1
)]
, (4.85)

where Cko is defined by (4.77).
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4.4.4 Estimating the Pharmacodynamic Parameters

We still require estimates for six parameters, µ, bNP , Vmax, bV , bG and ϕmax
NR

in the

functions defining the pharmacodynamic effects of G-CSF on the neutrophil production

and mobilisation.

We digitised data from Wang [69] for average circulating neutrophil concentrations for

three days following a 375µg and a 750µg 25-minute IV infusion. The data also contained

circulating G-CSF concentrations, but we did not use the G-CSF concentrations for fitting.

As in Section 4.4.2, instead of fitting directly to the data points we used it to to define

two continuous functions N375
dat (t) and N750

dat (t), one for each dose, and fit the response of

the full model (4.1)-(4.17) to these functions.

The fitting is difficult because no data is available for reservoir or stem cell concentra-

tions, and the circulating neutrophil concentrations are only measured for three days after

the infusion. Since the proliferation time for neutrophil precursors is about a week, this

data cannot be used to fit any stem cell parameters, as no cells that commit to differentiate

to the neutrophil line after the infusion will reach circulation during this time (which is

why we do not re-estimate any stem cell parameters in the current work). Although at

homeostasis it also takes about a week for cells to traverse maturation and the marrow

reservoir, these processes are greatly sped up after G-CSF administration, and cells that

are in proliferation at the time of the infusion can reach circulation within a day, enabling

us to estimate relevant parameters.

After three days the neutrophil concentrations have not returned to their homeostatic

values. If parameters are fit just using this short interval of data, we found parame-

ters which gave good fits to the circulating neutrophil concentrations over the first three

days, but for which the neutrophil concentrations then under went very large deviations

from homeostasis values lasting months or more. There is no evidence of a single G-

CSF administration destabilising granulopoiesis [39]. Accordingly, we will require that

the fit parameters result in stable dynamics. We do this by adding artificial data points

for 7 6 t 6 21 days. Accordingly we construct N375
dat (t) and N750

dat (t) over two disjoint

time intervals as splines through the data points for t ∈ [0, 3] and as constant functions

Ndose
dat (t) = N∗ for t ∈ [7, 21]. Since we have no data for t between 3 and 7 days describing

how the neutrophils return to homeostasis, we do not define values for Ndose
dat (t) for this
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time interval.

For candidate parameter values, we then used Matlab’s [38] delay differential equation

solver ddesd to simulate (4.1)-(4.17) over the full 21-day time interval. This defined the

functions N375(t) and N750(t), from which we were able to measure the error between the

data and the simulated solutions using an L2 function norm similar to the one defined in

(4.70). For the disjoint time intervals, we have two integrals to perform, and rescale them

to carry equal weight and hence define

‖N‖2
2 =

1

3

∫ 3

0

N(t)2dt+
1

14

∫ 21

7

N(t)2dt, (4.86)

with corresponding fitting error

Err = ‖N375
dat (t)−N375(t)‖2

2 + ‖N750
dat (t)−N750(t)‖2

2. (4.87)

Parameter estimation was performed using the fmincon function in Matlab [38]. As

in the G-CSF fitting described in Section 4.4.2, the error was evaluated by sampling the

functions at one thousand points (with 500 in each time interval because of the scaling in

(4.86)).

Instead of directly fitting the six parameters specified at the start of this section, we let

b̃V = bV /Vmax and fit to the six parameters µ, bNP , Vmax, b̃V , ϕNR(0) and ϕratio
NR

. This set of

parameters is easier to fit to because the constraints (4.31) and (4.33) then become simply

ϕNR(0) > 0 and b̃V > G∗1, while the original constraints both involve more than one of the

unknown parameters. From (4.17),(4.30) and (4.78), at each step of the optimisation the

six fitting parameters define the remaining parameters via

ηmin
NP

= µ η∗NP , ϕmax
NR

= ϕratio
NR

ϕ∗NR , bV = b̃V Vmax,

κmin = θκ∗e
(τNP η

∗
NP

(1−µ))
, bG = G∗BF

ϕmax
NR
− ϕNR(0)

ϕ∗NR − ϕNR(0)
.

(4.88)

where θ itself is calculated from (4.85). The Hill coefficient of (4.8) was set to be s1 = 1.5,

midway within its plausible range of values, as explained in Section 4.5.

The estimation of µ requires some caution as its lower bound in (4.80) changes at each

iteration of the optimisation as θ varies, and we see from (4.85) that θ itself depends on
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three of the parameters to which we are fitting. Nonsensical results are obtained if the

model is simulated with µ outside its bounds. Since the constraint is difficult to apply, to

ensure that (4.80) is respected we use a penalty method. Consequently, (4.80) is checked

at each iteration of the optimisation and if µ is outside of its bounds µ is reset to the bound

and after the simulation is computed Err is multiplied by the penalty factor e|µ−µbound|
1/2

which is larger than 1 when µ 6= µbound. The error function thus penalised cannot have a

minimum with µ outside of its bounds, and so the optimisation routine is forced to find

values for µ within the permissible range.

A family of G-CSF kinetic parameter sets was reported in Table 4.I in Section 4.4.2.

Estimates for the pharmacodynamic parameters were performed for every parameter set

in Table 4.I. The resulting pharmacodynamic parameters are reported in Table 4.II.

Name Value 1 Value 2 Value 3 Value 4 Value 5 Units

N simp
elim 0.097478 0.6 0.71678 0.8 0.87358 −

Nelim 0.3631 0.4508 0.6204 0.7033 0.8153 −
µ 0.96381 0.86303 0.85482 0.84458 0.90768 −
bNP 0.125 0.026182 0.025994 0.022868 0.024908 ng/mL
Vmax 7.9932 7.9881 7.9697 7.867 7.994 −
b̃V 0.031250 0.031251 0.031255 0.031283 0.031261 ng/mL

ϕNR(0) 0.072801 0.026753 0.023154 0.020056 0.049852 days−1

ϕratio
NR

10.9606 11.7257 11.9442 11.3556 11.9706 −
ηmin
NP

1.6045 1.4367 1.4231 1.406 1.5111 days−1

ϕmax
NR

3.9897 4.2682 4.3478 4.1335 4.3574 days−1

bV 0.24979 0.24964 0.24909 0.24611 0.2499 ng/mL
bG 6.3999×10−5 0.0002107 0.00019058 0.00018924 0.00018725 −
θ 0.45978 0.18895 0.17099 0.15096 0.32529 −

κmin 0.0052359 0.0073325 0.0073325 0.0073325 0.0073325 days−1

Err 0.3482 0.3153 0.2928 0.2843 0.3762 −

Table 4.II – Parameter estimation results for the pharmacodynamic parameters. N simp
elim

refers to Nelim value of the corresponding kinetic parameters for the simplified G-CSF
model given in Table 4.I. Nelim is the corresponding value for the full model, then stated
are the six fit parameters, followed by the dependent parameters. The approximation error
to the data is found by integrating (4.3) as in (4.87) and comparing to Wang’s data [69]
for a 375 µg and 750 µg IV infusion of 25 minutes.

Since G∗2 in the full model (4.1)-(4.17) is given by (4.66) which differs from the value

given by (4.74) for the simplified model (4.68),(4.69), the values of Gprod and Nelim derived
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for the two models will also be different. In Table 4.II the values from Section 4.4.2 for

the simplified model are referred to as N simp
elim , and we also state the corresponding value

of Nelim for the full model from (4.73) using (4.67).

It is important to note that if µ were close to 1 and far from its lower bound, then

κmin/κ∗ � 1, and the wide variation in possible differentiation rates could have potentially

destabilising effects on the stem cells. However, for most of the investigated parameter

sets (except for N simp
elim = 0.097478) with the added ‘stabilising’ data, µ was found to be

essentially equal to its lower bound. In this case κmin is almost equal to κ∗, and the

rate of differentiation out of the stem cell compartment is essentially constant and (4.8) is

virtually independent of the influence of G-CSF. For the current model with the imposed

stabilising data, this implies that any change in production is produced by variations in

the effective proliferation rate of (4.9). Without the additional data points, we found pa-

rameter estimates where µ was far from its lower bound and κmin was similarly lower than

κ∗ but these led to unstable dynamics. As seen in Sections 4.4.5 and 4.6, the parameter

estimates obtained are shown to successfully reproduce protocols for chemotherapy-alone

and chemotherapy with adjuvant G-CSF. Accordingly, differentiation from the hematopoi-

etic stem cells is likely close to constant in reality but from our results, we cannot conclude

that differentiation is independent of G-CSF.

Figure 4.7, compares the resulting model solutions for three different values of Nelim,

two of which are shown to be less optimal. Also included are the corresponding G-CSF

predictions without any re-estimation from the values obtained in Section 4.4.2. For

Nelim = 0.097478, the G-CSF response is well predicted as seen in Figure 4.7b but be-

cause of the renal domination of these parameters, the cytokine paradigm fails in the

endogenous-only case. Moreover, repeated administrations of exogenous G-CSF will not

accumulate per clinical observations. The G-CSF response seems to be well characterised

by the N simp
elim = 0.87358 parameters in Figure 4.7f however the dynamics of the neutrophil

response in Figure 4.7e do not stay within the data bounds, and so are not a good fit.

Using N simp
elim = 0.80, both the neutrophil and G-CSF responses are successfully predicted

in Figures 4.7c and 4.7d. The two sets with the lowest errors (N simp
elim = 0.71678 and

N simp
elim = 0.8) were used to determine parameters relating to the pharmacodynamic effects

of chemotherapy, which is discussed in Section 4.4.5.
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Figure 4.7 – Simulations of the full model (4.1)-(4.17) for various parameter sets with
different Nelim values. Left: Circulating neutrophil concentrations in 109cells/kg over 21
days, with the first three days shown as an inset. Right: The corresponding circulating
G-CSF concentrations. Blue lines with data: digitised data from Figure 7 (neutrophil
concentrations) and Figure 6 (G-CSF concentrations) of Wang [69], red solid lines: model
solution, black dashed lines: maximum and minimum digitised data values from Figure 7
and Figure 6 of [69], yellow dashed lines: respective homeostatic values.
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4.4.5 Estimation of Chemotherapy Related Parameters

To estimate parameters in (4.38) and (4.40), data from the results of the Phase I clinical

trial of Zalypsis® were digitised from González-Sales [22]. Unlike the data used for fitting

in Sections 4.4.2 and 4.4.4, here the protocols differ from one subject to the next and are

reported per patient. All dosing regimens were as stated [22] with doses scaled by body

surface area (BSA). Since the subjects were patients undergoing anti-cancer treatments,

deviations from the prescribed protocols were frequent. Thus only subjects in the top row

(A, B) and bottom row (D, E) of Figure 3 in [22] were retained for our analyses.

As with the parameter estimation of the two previous sections, we define the function

N
chj
dat (t) from a spline fit to the data, where j = A,B,D,E corresponds to each of the

retained subjects. Likewise, the function N chj(t) was defined from the solution from the

DDE solver ddesd in Matlab [38] for each patient. When the subject was administered

two or more cycles of chemotherapy, we took time intervals corresponding to the first two

cycles. Thus, the time spans differed for each subject-specific fitting procedure and were:

tspanA = [0, 43], tspanB = [0, 41], tspanC = [0, 47], and tspanD = [0, 61]. As explained in

Section 4.5, to account for each subject’s baseline ANC, we adjust a scaling factor so our

homeostasis N∗ value matches each individual’s. We have previously shown the robustness

of a similar model to pharmacokinetic interindividual and interoccasion variability which

substantiates this adjustment and the use of average values in physiological models [10].

For each of the four patients, we define the integrals

1

|tspanj |

∫ max(tspanj )

min(tspanj )

N(t)2dt, (4.89)

where j = A,B,D,E. To find average parameter values which fit to all four patients

together, we further defined the average error in the L2 function norm of (4.70) between

the simulated solutions and the data by

Err =
1

4

∑
j

‖N chj(t)−N chj(t)
dat ‖

2
2. (4.90)

Parameters hQ, ηinfNP
, sc, and EC50 were then estimated using the lsqcurvefit optimisation

routine in Matlab [38] and similarly averaged. These values are reported in Table 4.III



172

Name Value 1 Value 2 Units

N simp
elim 0.71678 0.8 −

Nelim 0.6204 0.7033 −
hQ 0.0071122 0.0079657 −
EC50 0.78235 0.72545 ng/mL
sc 0.90568 0.89816 −
ηinfNP

0 0 days−1

Err 0.17068 0.16965 −

Table 4.III – Results of the parameter estimation of chemotherapy effects values.

and the results of Figure 4.8 were obtained from simulations using these parameters. For

each of hQ, EC50, sc, and ηinfNP
, similar estimates were obtained for N simp

elim = 0.71578

and N simp
elim = 0.8, although the average error of N simp

elim = 0.8 is slightly smaller and was

accordingly retained as optimal.
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Figure 4.8 – Results from the chemotherapy parameter fitting for N simp
elim = 0.80 parameters

over two chemotherapy cycles. Model solutions were obtained using the parameters given
in Table 4.II and by simulating the full model (4.1)-(4.17). Chemotherapeutic concentra-
tions are obtained via (4.37) and (4.40). Equation (4.18) is replaced by (4.38) and solved
by using (4.39) Data and experimental protocols from Figure 3 of Gonzàlez-Sales [22].
Blue lines with data: digitised data, red solid lines: model solution.
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4.5 Parameter Values

Here we summarise the parameter values we use in the full model taken from experi-

mental results and the fitting procedures described in Section 4.4. For the model to be

self-consistent these parameters must be positive and satisfy the parameter constraints

that we derived above, namely: (4.30), (4.31), (4.33), (4.59), (4.60) and (4.80).

The main model parameters are stated in Table 4.IV. For the stem cells we reuse pa-

rameter values for Q∗, γQ, τQ, fQ, s2 and β(Q∗) from previous modelling (sometimes

rounding them to fewer significant figures). The value of θ2 is obtained by evaluating (4.6)

at homeostasis and rearranging to obtain

θ2 =

[
(Q∗)s2β(Q∗)

fQ − β(Q∗)

] 1
s2

. (4.91)

In Table 4.IV we quote a value of θ2 to five significant figures, but in our computations

all parameters defined by formulae are evaluated to full machine precision. This ensures

that our differential equation model has a steady state exactly at the stated homeostasis

values.

For the neutrophil parameters we mainly take experimental values from the work of

Dancey [14] and use the formulae of Section 4.4.1 to determine the related model parameter

values. However, some choices and adjustments need to be made to ensure that the values

are consistent with the model. Dancey [14] measured the circulating neutrophil pool to

be 0.22 × 109cells/kg and the recovery rate to be 0.585 from which we obtain the total

blood neutrophil pool N∗ (including the marginated pool) to be

N∗ =
0.22

0.585
≈ 0.3761× 109cells/kg. (4.92)

Since N(t) measures the total blood neutrophil pool in units of 109cells/kg some care needs

to be taken when comparing to data, where absolute neutrophil counts (ANC) measure

the circulating neutrophil pool in units of cell/µL. Based on 70 kg of body mass and

5 litres of blood we have the default conversion factor for healthy subjects of

ANC = 0.585× 70

5
× 1000×N(t) = 8190N(t) cell/µL. (4.93)
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Name Interpretation Value Units Source
γQ HSC apoptosis rate 0.1 days−1 [5, 11]
τQ Time for HSC re-entry 2.8 days [4, 11, 33, 35]
A∗Q HSC Amplification Factor 1.5116† − Eq. (4.7)
fQ Maximal HSC re-entry rate 8 days−1 [4, 5, 11]
s2 HSC re-entry Hill coefficient 2 − [4, 5, 11]
θ2 Half-effect HSC concentration 0.080863† 106cells/kg Eq. (4.91)
κδ HSC differentiation rate to other lines 0.014665† days−1 Eq. (4.45)
κmin HSC-neutrophil minimal differentiation rate 0.0073325† days−1 Eq. (4.88)
κ∗ HSC-neutrophil homeo differentiation rate 0.0073325† days−1 Eq. (4.45)
s1 HSC-neutrophil differentiation Hill coefficient 1.5 − Eq. (4.96)
η∗NP Neutrophil homeostasis effective proliferation rate 1.6647† days−1 Eq. (4.63)
bNP Neutrophil proliferation M-M constant 0.022868 ng/mL Fit Table 4.II
ηmin
NP

Neutrophil minimal proliferation rate 1.4060 days−1 Eq. (4.88)
τNP Neutrophil proliferation time 7.3074† days Eq. (4.64)
Vmax Maximal neutrophil maturation velocity 7.8670 − Fit Table 4.II
bV maturation velocity half-effect concentration 0.24611 ng/mL Eq. (4.88)
aNM Homeostasis neutrophil maturation time 3.9 days [14, 25] & (4.95)
γNM Neutrophil death rate in maturation 0.15769† days−1 Eq. (4.57)
ϕ∗NR Homeostasis Reservoir Release rate 0.36400† days−1 Eq. (4.52)
ϕmax
NR

Maximal Reservoir Release rate 4.1335† days−1 Eq. (4.88)
bG Reservoir Release half-effect concentration 1.8924× 10−4 − Eq. (4.88)
γNR Neutrophil death rate in reservoir 0.0063661† days−1 Eq. (4.54)
γN Neutrophil Removal Rate from Circulation 35/16 days−1 Eq. (4.51)
G∗1 Homeostasis Free G-CSF Concentration 0.025 ng/mL [2, 26, 30, 71]
G∗BF Homeostasis neutrophil receptor bound fraction 1.5823× 10−5 − Eq. (4.16)
Gprod Endogenous G-CSF production rate 0.014161† ng/mL/day Eq. (4.67)

V Bound G-CSF conversion factor 0.525 ng/mL
109cells/kg

Eq. (4.65)

kren G-CSF renal elimination rate 0.16139 days−1 Fit Table 4.I
kint G-CSF effective internalisation rate 462.42 days−1 Fit Table 4.I
k12 G-CSF Receptor binding coefficient 2.2423 (ng/mL)−Powdays−1 Fit Table 4.I
k21 G-CSF Receptor unbinding rate 184.87 days−1 Fit Table 4.I

Pow Effective G-CSF binding coefficient 1.4608 − Fit Table 4.I

Table 4.IV – Model Parameters. † – these parameters are displayed to 5 significant figures
here, but the value is actually defined by the stated equation, and in simulations/compu-
tations we use the stated formula to define the value to machine precision.

This gives a baseline homeostasis ANC of 8190N∗ = 3080 cell/µL, well within the accepted

normal range of 1800 − 7000 cells/µL [50]. When comparing our model to data for indi-

viduals with different baseline ANCs (as in Section 4.4.5) we adjust the conversion factor

(4.93), but not the parameter values in our model, so that N∗ gives the homeostasis ANC
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Name Interpretation Value Units Source

Q∗ HSC homeostasis concentration 1.1 106cells/kg [4, 11, 33]
β(Q∗) HSC re-entry rate 0.043 days−1 [11, 35]

N∗ Homeostasis Total Blood Neutrophil Pool 0.22/0.585 109cells/kg Eq. (4.92)
N∗R Homeostasis Neutrophil Reservoir Concentration 2.26 109cells/kg [14]
N∗P Homeostasis Neutrophil Proliferation Concentration 0.93 109cells/kg Eq. (4.94)
N∗M Homeostasis Neutrophil Maturation Concentration 4.51 109cells/kg Eq. (4.94)

G∗2 Homeostasis bound G-CSF concentration 2.1899× 10−5 ng/mL Eq. (4.66)

τ∗NR Homoeostasis Neutrophil mean time in reservoir 2.7 days [14, 25] & (4.95)

τ∗NC Homoeostasis Neutrophil mean time in circulation 16/35 days [14]

τ1/2 Circulating Neutrophil half-removal time 7.6 hours [14]

A∗N Homeostasis neutrophil proliferation+maturation amplification 1.0378× 105† − Eq. (4.61)

b̃V scaled maturation half-effect concentration 0.031283 ng/mL Fit Table 4.II

ϕratio
NR

Ratio of maximal and homeostasis reservoir release rates 11.356 − Fit Table 4.II

ϕNR(0) Minimal reservoir release rate 0.020056 days−1 Fit Table 4.II

θ Ratio of rate cells leave proliferation at knockout to homeostasis 0.15096 − Eq. (4.85)
Cko Knockout total blood neutrophil pool fraction 0.25 − [6, 34]
µ Ratio of minimal and homeostasis proliferation rates 0.84458 − Fit Table 4.II

Table 4.V – Auxiliary Parameters which are not in the model in Section 4.2, but whose val-
ues are used to define other parameters. † – these parameters are displayed to 5 significant
figures here, but the value is actually defined by the stated equation, and in simulations/-
computations we use the stated formula to define the value to machine precision.

of the data.

Dancey [14] measures the proliferation and maturation phases at homeostasis to beN∗P =

2.11×109cells/kg (mainly promyelocytes and myelocytes) and N∗M = 3.33×109cells/kg

(metamyelocytes and bands). Using these numbers in the calculations in Section 4.4.1

results in a proliferation time τNP defined by (4.64) of about 26 days. In our model τNP is

the time from when the HSC first commits to differentiate to the neutrophil line to the end

of proliferation of the neutrophil precursors. Although this time has never been definitively

measured, 26 days seems to be too long. This is confirmed by the time to neutrophil

replenishment in the blood after both allogenic and autologous stem cell transplantation

[1, 7], where circulating neutrophils are seen two weeks after the transplant. We suspect

that this overly long proliferation time results from the simplification in our model of

considering proliferation as a single homogenous process as detailed in Section 4.3.3.

To obtain a more realistic proliferation time of around a week, close to the 6.3 days

that Smith [62] states, we keep the total of N∗P + N∗M = 5.44×109cells/kg as found by
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Dancey [14], but redistribute cells between proliferation and maturation and set

N∗P = 0.93×109cells/kg, N∗M = 4.51×109cells/kg. (4.94)

Dancey [14] measured the half removal time of neutrophils from circulation to be t1/2 =

7.6 hrs. Accordingly, using (4.51) and rounding, we set γN = 35/16 = 2.1875 days−1 and

obtain τ ∗NC as the reciprocal of this. Then equation (4.58) imposes the constraint that

aNM < 5.4823 days. If we set aNM = 3.9 days close to the value of 3.8 days found by

Hearn [25], then (4.60) imposes the constraint that τ ∗NR ∈ (1.9543, 2.7472). Hence we take

aNM = 3.9 days, τ ∗NR = 2.7 days, (4.95)

so that both constraints are satisfied, and aNM + τ ∗NR = 6.6 days, the value given in [14].

The rest of the neutrophil homeostasis parameters are calculated using the formulae of

Section 4.4.1, paying attention in (4.61) to multiply Q∗ by 10−3 to convert it to the same

units as N∗R.

The G-CSF pharmacokinetic parameters are fit using the simplified G-CSF model

(4.68),(4.69) as described in Section 4.4.2. This produces multiple, but equally plausi-

ble, parameter sets but as described in subsequent sections not all of these result in good

fits to data when we consider the neutrophil response of the full model (4.1)-(4.17) to

administrations of G-CSF or of chemotherapy. Consequently as stated in Section 4.4.5,

to obtain the best responses of the system to these scenarios we use the fourth set of

pharmacokinetic parameters from Table 4.I which for the simplified G-CSF model have

N simp
elim = 0.8 to define kren, k12, k21, kint and Pow, as well as the exogenous G-CSF param-

eters Vd, F , ka (where the last three are dose dependent). Equations (4.66), (4.67) and

(4.73) then define G∗2, Gprod and Nelim = 0.7033 for the full model.

At G-CSF knockout, from [6, 34] we have Cko ∈ [0.2, 0.3], so it is natural to set Cko =

0.25.

For the pharmacodynamic parameters, similar to Pow, arguments could be made for

choosing s1 = 1 or s1 = 2, but having fit Pow and finding it close to 1.5, we will simply

set

s1 = 1.5 (4.96)
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to reduce the number of parameters that need to be fit by one. The remaining pharma-

codynamic parameters µ, bNP , Vmax, b̃V , ϕNR(0) and ϕratioNR
were then fit as described in

Section 4.4.4, with these parameters defining values of the dependent parameters ηminNP
,

ϕmaxNR
, bV and bG via (4.88). From Section 4.4.3 we also obtain values for θ from (4.85)

and κmin from (4.88). Each set of kinetic parameters from Table 4.I defines a different set

of pharmacodynamic parameters as reported in Table 4.II, but as noted already we prefer

the parameter set for N simp
elim = 0.80 which corresponds to Nelim = 0.7033.

The full set of parameter values for our combined neutrophil and G-CSF model (4.1)-

(4.17) are given in Table 4.IV, along with their units, interpretation and source. Since

some of these parameters are defined by equations involving auxiliary parameters that

do not explicitly appear in the full model we state these parameters and their source in

Table 4.V. Parameters related to the pharmacokinetics and pharmacodynamics of both of

the exogenous drugs which have not previously been stated are given in Table 4.VI.

4.6 Model evaluation and functional responses

Having estimated the G-CSF pharmacokinetic, homeostasis related, and chemotherapy

pharmacodynamic parameters individually as described in Sections 4.4.2, 4.4.4, and 4.4.5,

a convincing evaluation of the ability of the model is to successfully predict data obtained

during the concurrent administration of both exogenous drugs. For this, as in [11], we

simulated the CHOP14 protocol described in [43] and [42] which includes the administra-

tion of both chemotherapy and exogenous G-CSF. Although the chemotherapeutic drug

modelled in Section 4.3.5 is not part of the combination therapy of the CHOP14 regimen,

the cytotoxic effects of the anticancer drugs are presumed to be similar. To compare to the

CHOP14 data published in [29], we simulated a regimen of six cycles of 14-day periodic

chemotherapeutic treatment with rhG-CSF treatment beginning four days after the ad-

ministration of chemotherapy and continuing for ten administrations per cycle. As in [11],

the simulated dose of 4 µg of Zalypsis® was selected from the optimal regimens identified

in [22] and per the CHOP14 protocol outlined in [42, 43], ten 300 µg doses of subcutaneous

G-CSF were simulated per cycle. The lower dose of 300 µg was selected since we assumed

an average weight of 70kg per patient throughout.

Figure 4.9 shows the result of the neutrophil response comparison of the model’s predic-
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Name Interpretation Value Units Source
Filgrastim

300 mcg dose
Vd Volume of distribution 4754.7 mL Fit Table 4.I
F Bioavailable fraction 0.64466 − Fit Table 4.I
ka Subcutaneous rate of absorption 8.0236 days−1 Fit Table 4.I

375 mcg dose
Vd Volume of distribution 2322.9 mL Fit Table 4.I
F Bioavailable fraction 0.49964 − Fit Table 4.I
ka Subcutaneous rate of absorption 6.6133 days−1 Fit Table 4.I

750 mcg dose
Vd Volume of distribution 2178.0 mL Fit Table 4.I
F Bioavailable fraction 0.75 − Fit Table 4.I
ka Subcutaneous rate of absorption 5.143 days−1 Fit Table 4.I

Zalypsis®

kfp Rate of exchange from compartment f to p 18.222 days−1 [41]
ksl1p Rate of exchange from compartment sl1 to p 0.6990 days−1 [41]
kpf Rate of exchange from compartment p to f 90.2752 days−1 [41]
kpsl1 Rate of exchange from compartment p to sl1 8.2936 days−1 [41]
kelC Rate of elimination 132.0734 days−1 [41]
ksl2f Rate of exchange from compartment sl2 to f 62.5607 days−1 [41]
kfsl2 Rate of exchange from compartment f to sl2 9.2296 days−1 [41]
BSA Body surface area 1.723 m2 [41]
hQ Effect of chemotherapy on Q(t) 0.0079657 − Fit Table 4.III
EC50 Half-maximal effect of chemotherapy on ηNP 0.75390 − Fit Table 4.III
sc Chemotherapy effect Hill coefficient 0.89816 − Fit Table 4.III

ηinfNP
Proliferation rate with infinite chemotherapy dose 0 days−1 Fit Table 4.III

Table 4.VI – Exogenous drug administration parameters determined by parameter fitting
as explained in Sections 4.4.2 and 4.4.5. For Zalpysis®, p: plasma/central compartment,
f : fast-exchange tissues, sl1: first slow-exchange tissues, sl2: second slow-exchange tissues.

tion to the clinical data. Unlike experimental settings where information on the HSCs, the

marrow neutrophils, and the bound G-CSF concentrations are unavailable, the model’s

solutions for Q(t), NR(t), and G2(t) are easily obtainable and provide insight into not only

the mechanisms responsible for myelosuppression during chemotherapy, but also ways

in which this toxicity might be avoided. In Figure 4.10, the HSCs, neutrophils in the

marrow reservoir, and bound and unbound G-CSF are all seen to converge to periodic

responses. However, while the reduction in HSC concentrations is minimal (Figure 4.10a)
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Figure 4.9 – Comparison of the predicted neutrophil response to the CHOP14 protocol
[42, 43] for N simp

elim = 0.80. In this regimen, 4 µg of Zalypsis® given by a 1 hour IV infusion is
administered 14 days apart, beginning on day 0, for 6 cycles (84 days total). Per cycle, ten
administrations of 300 µg subcutaneous doses of filgrastim are given beginning four days
after the start of the chemotherapeutic cycle and continuing to day 13 post-chemotherapy.
The simulation is compared to data from [29], presented in quartiles. In pale green: the
first quartile, in pale pink: median range, in pale blue: third quartile. Black line with
sampling points: model prediction sampled every day at clinical sampling points, solid
purple line: full model prediction.

the neutrophil marrow reservoir is seen in Figure 4.10b to become severely depleted. This

depletion is caused by the delayed effects of the administration of chemotherapy but also

the rapid transit of cells from the reservoir into the blood caused by the introduction of

exogenous G-CSF four days post-chemotherapy (see Figure 4.11e below). This in turn

prevents ANC recoveries from depressed values, despite the administration of G-CSF. As

in [66] and [11], it is likely that delaying the beginning of prophylactic G-CSF support

during chemotherapy would help to combat myelosuppression, but this will is a future

avenue of investigation.

It can also be illuminating to study how each of the model’s functions correspond to

the estimated parameters to obtain further insight on the mechanisms of granulopoiesis.

Figure 4.11 shows the functions κ(G1), ηNP (G1), ηchemoNP
(G1), VNM(G1), and ϕNR(GBF ) and
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Figure 4.10 – Model responses to the CHOP14 protocol as described in Section 4.6. In a)
Q(t) over the six CHOP cycles detailed above, b), c), and d) NR(t), G1(t), and G2(t) over
three CHOP cycles.
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Figure 4.11 – Visualisation of the granulopoiesis model’s mechanisms as functions of their
variables (solid blue lines) with their respective homeostatic and half-effect values (purple
triangles), when relevant. Red circles: homeostasis values.
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identifies their respective homeostatic levels. We can see that ϕNR(GBF ) in Figure 4.11e,

has a homeostasis concentration ϕNR(G∗BF ) very close to ϕNR(0). This reflects the ability

of the granulopoietic system to respond rapidly in the case of emergencies [47] but also

supports the hypothesis that early prophylactic support with G-CSF during chemotherapy

may hasten the emptying of the reservoir due to the responsiveness of ϕNR(GBF (t)) in

particular.

4.7 Discussion

Clinically relevant translational models in medicine must not only accurately depict

different and independent treatment regimes [66], they must also be able to reconstruct

homeostatic and pathological cases which may be intervention independent. The granu-

lopoiesis model we have developed is physiologically-relevant and, perhaps most impor-

tantly, provides insight beyond that which is clinically measurable. The updated phar-

macokinetic model of G-CSF, novel in that it explicitly accounts for unbound and bound

concentrations, correctly accounts for G-CSF dynamics whereas previous one compart-

ment models all resulted in renal dominated dynamics. The new pharmacokinetic model

also further allows us to comment on the principle mechanisms driving the production of

neutrophils. Although the relatively small number of neutrophil progenitors do not have a

significant effect on G-CSF kinetics, our results suggest that differentiation, proliferation

and maturation speed are driven primarily by signalling from G-CSF bound to neutrophil

progenitors, and not from signalling of G-CSF bound to mature neutrophils. We can

further characterise the principle processes governing myelosuppression during the concur-

rent administration of chemotherapy and prophylactic G-CSF, which we have determined

lies in the simultaneous depletion of the marrow reservoir by high doses of exogenous G-

CSF combined with fewer neutrophils reaching the reservoir due to the cytotoxicity of the

anti-cancer drug.

The modelling reported here combines a number of original approaches to the concep-

tualisation of physiological, pharmacokinetic, and pharmacodynamics models and to the

estimation of parameters and model verification. For example, traditional least squares

estimation was redefined using functions which ensured robustness and allowed for com-

parisons of predictions to data over richly sampled intervals instead of at fewer data points.
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Moreover, the model’s physiological realism served as a means of evaluating the suitability

of optimised parameter values so we were not relying solely on goodness-of-fit, which can

obfuscate the biological relevance of results [67]. The inclusion of the detailed charac-

terisations of physiological mechanisms in our model therefore serves as a litmus test of

suitability in addition to providing intuition about the processes driving granulopoiesis.

The broader implications of the approaches outlined in this work extend into various

domains. The derivation of a delay differential equation model with variable ageing rate

from an age-structured PDE, as described in Section 4.3.3, is mathematically significant

and its intricate nature has previously led to previous modelling errors. As mentioned, the

fitting procedures outlined in Sections 4.4.2, 4.4.4, and 4.4.5 motivate the development of

more refined least squares methods and parameter estimation techniques. Additionally,

the novel pharmacokinetic model of G-CSF has ramifications with respect to the usual

approaches used by PK/PD modellers. The mischaracterisation of the elimination dy-

namics, despite the inclusion of internalisation terms, has led to models which contradict

what is known of the physiology. While they can characterise certain clinical situations,

like the single administration of exogenous G-CSF, they fail when applied to more complex

scenarios. Without accounting for the entire process of neutrophil development or using

physiological rationale for a model’s parameters, one is unable to judge whether a model

captures the complicated dynamics of granulopoiesis. In the model we have developed,

we have ensured the accuracy of its predictions and the appropriateness of its parame-

ters through careful construction. In turn, this rational approach has implications for the

clinical practice where it can serve to optimise dosing regimens in oncological settings and

also serve to pinpoint the origins of dynamical neutrophil disorders like cyclic neutropenia,

ultimately contributing to the improvement of patient care and outcomes.
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Chapters 2 to 4 have demonstrated the translational applicability of our physiological

model of granulopoiesis and also introduced novel concepts in PK model construction.

The final article of this dissertation takes a methodological look at model design and

conception by situating physiological modelling within quantitative systems pharmacology.

The following paper is accepted for publication in CPT: Pharmacometrics and Systems

Pharmacology (date of acceptance: February 16, 2016. PSP-2015-0207DR).
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Introduction

Our knowledge of dinosaurs comes primarily from the fossil record. Notwithstanding the

condition of these vestiges, palaeontologists reconstruct early reptilian life by comparison

to previously discovered specimens. When relics are missing, reasonable deductions are

used to fill in the gaps.

Likewise, one can draw parallels to systems pharmacology/mechanistic modelling–the

explicit depiction of the causality between drug exposure and response [5]–which gives a

more complete picture of drugs in the human body.
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Modelling and the Systems Pharmacology

Mathematical modelling in pharmacokinetics/pharmacodynamics (PK/PD) continues

to become increasingly refined, in step with improvements to both computational and

mathematical analytical techniques and our understanding of human physiology. In that

vein, mechanistic models, which offer phenomenological insights absent from traditional

empirical, data driven modelling techniques, are a useful tool for subsequent pharmacomet-

ric research [2]. The parameters involved in systems models bear a direct correspondence

to the physiological system of interest and have a “fundamental basis in our understanding

of the biological/pharmacological system” [7]. In practice, these models are constructed

in consortium with clinicians and other scientists to ensure a rational and realistic con-

struction to improve their reliability. Generally, given the specificity of each of the model’s

parameters and the paucity of available datasets, parameters are identified through estab-

lished sources (deemed the prior method [9]). Models are then evaluated and refined by

comparison to published experiments and can be used to predict the behaviour of the sys-

tem in a variety of scenarios. As a result of the generic nature of the model’s construction,

their application to a diverse range of patients and pathologies is possible.

It is well recognised that drug concentrations act as surrogates for their action in the

body and that plasma concentrations are only proxies for drug effect sites that are located

outside the blood [2]. Physiological modelling replies directly to this issue by taking the

whole system into account. With the aim to recreate the processes underlying drug effects

as faithfully as possible, physiological models are able to better represent the true action

of xenobiotics and are therefore well-positioned for hypothesis generation and verification

[7].

Despite the increasing use of physiological modelling in systems pharmacology, the ap-

proach is under represented in the literature when compared to traditional approaches

where the main goal is to successfully mimic the data. This can be attributed to the

relative mathematical complexity of the techniques involved in physiological modelling,

which require time to understand the system, construct the model, and determine param-

eters. Further, as is the case with the more common physiologically-based pharmacokinetic

(PBPK) model, the role of PK and PD variability upon systems-level models has not been

fully addressed [7]. In response, using a physiological model of granulopoiesis we devel-
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oped for the optimisation of chemotherapy [3], we have recently shown that when the

physiology is sufficiently detailed, the model inherently explains and reduces the previ-

ously estimated population PK variability [4]. This is likely attributable to its bottom-up

construction since development from first principles suggests that variability is explicated

and incorporated into the minute details of the resulting models and their parameters [2].

Incertitude, included by design, is thereby progressively reduced throughout the model’s

construction [10]. Nevertheless, we maintain that an ideology-free methodology should be

adopted when addressing the quantification of drug-effects to best balance the feasibil-

ity and benefits of any given approach. Calls for the integration of quantitative systems

pharmacology (QSP) along the drug discovery pathway have come from scientific bodies

as the recognition of the indispensability of translational models increases [2, 10]. Several

authors have previously highlighted numerous applications of QSP from early discovery

to late stage drug development [1, 2]. Publishing such case studies is important to both

situate QSP in the current scientific environment and to highlight their essentiality to the

future of translational drug discovery.

A Physiological Model of Granulopoiesis Applied to Chemotherapeutic Dose

Optimisation

An illustrative example of the use of mechanistic modelling in systems pharmacology

is in applications to hematology where there is a need to predict the neutrophil response

to chemotherapeutic treatment ([3] and references therein). In a PK/PD setting, the

most common strategy to study myelosuppression-related neutropenia is to relate dose

or concentrations to neutrophil numbers using mixed effects modelling techniques and

transit compartment modelling [6]. These semi-mechanistic models estimate the transit

time from progenitor neutrophil cells to circulating neutrophils from clinical data and

mimic the developmental stages of neutrophils in the bone marrow. Since the underlying

model structure is fairly straightforward, parameter estimates from data are available in a

reasonable timeframe and can be used early in the drug development pipeline. Crucially, a

downside to using data to estimate the model structure and its parameters is the disconnect

from the physiology.

Indeed, while we can easily register patient blood counts, measuring the proliferation,
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the cytokine-dependent rate of maturation, and reservation within the marrow is more

complicated and rarely performed. As in the case of mixed effects modelling applied to

PKs, blood counts (concentrations) reflect the upstream marrow processes and the interac-

tion of the regulatory cytokines with the blood system [2]. To advance our understanding

of granulopoiesis for applications to both different pathologies and to different experi-

mental conditions, physiological models developed with systems biology approaches are

warranted [7].

Underlying the physiological model of neutrophil development is a particular attention

to first principles modelling and the translation of the current knowledge of the system’s

inner workings mathematically [8]. These physiological models are flexible in that they

do not rely on empirical data for their construction and can be applied to various exper-

imental models [7]. Their development can take longer than the data driven approaches

since in-depth mathematical and physiological knowledge is required. Accordingly, here

we do not make the case for the abolishment of empirical methods. Instead, we caution

against discounting the power of mechanistic modelling in pharmacology altogether in

favour of quicker or more direct methods. We recently refined a physiological model for

granulopoiesis and applied it to the problem of dose optimisation in oncological settings

[3]. The basis of our approach was a physiological model of marrow neutrophil develop-

ment that accounts for hematopoietic stem cells, proliferating and maturing neutrophils,

the marrow neutrophil reservoir, circulating neutrophils, and the marginal pool. The com-

plete model is comprised of three delay differential equations with state-dependent delays

and a variable aging rate (see the model schematic in Figure 1 of [3]). Together with the

physiological model, we incorporated validated PK models of a chemotherapeutic drug

(PM00104) and filgrastim, a recombinant-human form of granulocyte colony-stimulating

factor (G-CSF) and predicted clinical data of 172 patients undergoing the CHOP14 proto-

col, a 14-day periodic chemotherapeutic treatment. In the original protocol, filgrastim was

administered 10 times, from day 4 to day 13 of each chemotherapy cycle. We were able

to demonstrate that delaying the first dose of filgrastim post-chemotherapy administra-

tion to day 7 reduced the number of doses of filgrastim necessary to mitigate neutropenia

from 10 to four or even three, which is supported by the physiology of neutrophil marrow

development since the delayed response to chemotherapeutic drugs and to G-CSF are di-
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rectly related to the time it takes for cells to reach and subsequently be released from the

marrow reservoir. In this model, parameters were estimated from a broad swath of the

literature for an individual patient and no data fitting was undertaken. Additionally, the

myelosuppression model was shown to be generalisable across different chemotherapy regi-

mens (PM00104 vs combination chemotherapy in the CHOP14 protocol), highlighting the

flexibility presented by QSP modelling developed using first-principles. The robustness of

the model’s prediction was demonstrated by incorporating the full PK variability profiles

of both drugs and checking for statistical differences in the model’s output [4]. Despite

the presence of variability in the PKs, we found no statistically significant change in the

model’s prediction with reference to three critical clinical endpoints.

Perspectives

The debates and advances of the naturalists in the early nineteenth century subsequently

reimagined our understanding of the species that walked our planet. These early scientists’

capacities for abstraction and their appeal to a systems-level organisational structure filled

in the gaps in not only the knowledge of the day, but the missing pieces in the records

left behind. QSP, which exists at the confluence of systems biology and pharmacometrics,

provides a return to this macroscopic examination of drugs and their interactions with

the body. Systems pharmacology is increasingly recognised for its dual impact on drug

development and patient care and models of adverse drug reactions have been identified as

a crucial goal of QSP [10]. The field does and will play an increasingly important role as

drug targets become progressively complex and elusive and as we seek to not just explain

data, but to understand the fundamentals of physiology that drive the response to drugs.

The model discussed in this manuscript serves as an example of the application of systems-

level modelling to translational medicine and is demonstrative of the influence of systems

modelling on both drug development and on the means with which we respond to patient

needs. Broadly, it is important to recognise that physiological modelling is not applicable

in all settings or for all problems due to the more complex nature of model construction

and the difficulty of estimating and identifying parameters. Nevertheless, there is room

within the pharmacometrics community to develop both empirical and mechanistic models

in concert as they respond to different philosophical questions: how do we explain our data
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(traditional PK/PD) and what drives the response observed within patient populations

(systems pharmacology)? Acknowledging and making use of approaches outside of those

traditionally used in PK/PD modelling will allow pharmacometricians to answer elemental

questions about drugs and improve patient care, which remains the ultimate task of our

discipline.
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Chapter 6

Discussion

The work presented in this dissertation had the primary goal of adapting the use of

rhG-CSF during concurrent anticancer treatment to reduce the incidences of neutropenia

during periodic chemotherapy. For this, a physiological DDE model of granulopoiesis

derived from an age-structured PDE was constructed and PK/PD models of filgrastim

and PM001014 (Zalypsis®) were incorporated. Resulting from the initial project were

supplemental investigations that emphasise the selected modelling philosophy. Ultimately,

this thesis has the double implication of developing a translational model that could impact

patients’ prognoses and advancing methodological considerations in the pharmaceutical

sciences.

Chapter 2 of this thesis focussed on the construction of the physiological model of gran-

ulopoiesis with detailed PK/PD models and demonstrated its predictive ability through

comparison to clinical data. Regimen optimisation during the concurrent chemotherapeu-

tic treatment with rhG-CSF prophylactic administration was ensured by analysis of the

physiological principles driving the neutrophil response to cytotoxic drugs and myelostim-

ulation as well as numerical simulations. Using in silico simulations of 500 individuals in

five different variability scenarios, this dose adaptation was validated in Chapter 3 when

PopPK models were added to the physiological PK/PD model and no statistically signif-

icant differences between typical patients and the population in predictions were found

with regards to three important clinical endpoints. In Chapter 4, a novel physiologically-

motivated PK model of filgrastim with updated pharmacodynamic models further refined

the granulopoiesis model. Detailed overviews of the derivation of the DDE model and of

parameter estimation approaches for physiological models were outlined and can serve as

representative cases for others wishing to adopt a similar approach. Crucially, we also

demonstrated that the mass-action equilibrium hypothesis for unbound and bound drugs

does not hold for G-CSF in homeostatic conditions, a finding with potential consequences

for a variety of PK approaches. In Chapter 5, a methodological survey of physiological

approaches in systems pharmacology was addressed using the granulopoiesis model as a
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case study. A call for a balanced approach to PK/PD modelling was presented.

The use of physiological models to study hematopoiesis has an extensive history in

mathematical biology, but is perhaps just beginning to gain recognition in pharmaco-

metrics and systems pharmacology. While the approach may yet to have found traction

within the pharmaceutical sciences community, the advantages it offers should solidify its

use. Most notably, physiological models constructed from first principles are flexible across

pathologies, requiring only minor parameter re-estimation and not a complete model re-

structuring due to the separation of system-specific and drug-specific parameters [1]. As

we tend towards a personalised view of medicine, the identification of the mechanisms at

the heart of patient-specific reactions becomes increasingly significant [4]. Consequently,

a purely empirical approach is no longer warranted and, indeed, is likely to fail when

one wishes to provide rationale for the diversity of observed drug responses. Increasingly,

based both on translational and drug development factors, there is a recognition of the

necessity to account for physiological mechanisms underlying drug responses [1, 4, 5]. The

model studied here, which has been demonstrated to be predictive and robust, is a prime

example of fulfilling these dual roles and underscores the evolving approach to PK/PD

modelling in translational drug analysis. Further, the conceptual philosophies highlighted

herein stress the importance of interdisciplinary research for modelling xenobiotics since

approaches incorporating mechanistic understandings of the system of interest afford un-

paralleled insight into the physiological principles driving the body’s response to drugs.

Even so, there remain much to address in quantitative systems pharmacology approaches

to granulopoiesis and beyond. As described in the preceding sections, we have already

studied the regimen adaptation of the use of G-CSF during chemotherapy by minimising

cytotoxicity. To this study, it would also be compelling to include a model for tumour

growth. In this combined model, the adaptation of both the chemotherapeutic and rhG-

CSF regimens would simultaneously weigh treatment benefits (tumour reduction) with the

limitation of the undesired effects (myelosuppression) which, in turn, would give a more

complete view of such concomitant administration protocols. Additionally, as eluded to

in Chapter 1, the stochastic influences on HSC differentiation which have not yet fully

been elucidated likely warrant further investigation [3]. It has been suggested that these

random effects may lie at the heart of hematopoietic stem cell pathologies like chronic
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myeloid leukaemia (CML) and cyclical neutropenia [2]. The granulopoiesis model devel-

oped herein is well-positioned to respond to further investigations of stem cell and neu-

trophil pathologies but there remains room for the incorporation of stochastic elements

and the investigation of their impact. The physiological model could also be applied to

stem cell transplant treatments to better delineate the mechanisms governing the success

or failure of allogenic or autologous transplantations. For this, it will be important to have

a more global model of the hematopoietic system which includes the principle lineages and

their respective cytokines, and this is work we are currently undertaking. The complete

model of hematopoiesis is complicated by cellular cross-talk and the non-specificity of cer-

tain cytokines acting on various cell types. Accordingly, both bench science and modelling

work must be relied upon to address the complex interplay of the blood system as a whole.

As always, mathematical modelling must remain informed by laboratory and clinical work.

However, ultimately there also needs to be recognition of the inverse relationship and an

increasing acceptance that models and their predictions can instruct both experimental

and clinical approaches.

Although comparative discussions on modelling philosophies may seem to be purely aca-

demic, the establishment of quantitative systems pharmacology departments at the major

pharmaceutical companies indicates otherwise. It could even be argued that, outside of

a handful of scholarly groups working on the advancement of the field, industry is driv-

ing the push towards increasingly mechanistic approaches in PK/PD in their efforts to

discover new molecules addressing complex pathologies. Recognition of the role systems

pharmacology modellers have to play, not only early in the drug development pipeline but

perhaps more principally as integrative translational researchers, will positively influence

the quality of research and ameliorate the predictive strengths of the resulting modelling

work. Ultimately, the central interest underlying improvements in pharmaceutical mod-

elling remains bettering patient care. As such, regardless of the philosophical motivations

we make as researchers, care should be taken to ensure that the preeminent concern is

invariably addressing patients’ needs.
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Appendix I

Simulation Code for the Physiological

PK/PD Neutrophil Model with Exogenous

Drug Administration

1 NeutrophilCode2016.m

2 %This is the driver for the full system as described in the

manuscript submitted to BMB in December 2015.

3

4 close all

5 clear all

6

7 %y(1)=Stem cells

8 %y(2)=Neutrophils

9 %y(3)=G-CSF (unbound)

10 %y(4)=ODE expression of tau_NM(t)

11 %y(5)=Central compartment of Zalypsis

12 %y(6)=ODE expression of A_Q (stem cell amplification)

13 %y(7)=ODE expression of A_N (neutrophil amplification)

14 %y(8)=Second compartment of Zalypsis (fast -exchange with

blood)

15 %y(9)=Third compartment of Zalypsis (slow -exchange with blood

)

16 %y(10)=Neutrophils in the reservoir

17 %y(11)=Fourth compartment of Zalypsis (another slow -exchange

with blood)

18 %y(12)=G-CSF (G2-bound)

19
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20 tic %Times the simulation time

21 datestr(now) %Displays the actual time

22

23 %Parameters for stem -cells

24

25 PA.Qstar =1.1;%Homeostasis concentration of HSCs

26 PA.gamma_s =0.1;%Apoptosis of HSCs

27 PA.tau_s =2.8; %Stem -cell maturation time

28 PA.AQstar =2*exp(-PA.gamma_s*PA.tau_s);

29 PA.fQ=8;%Maximal rate of HSC self -renewal THIS VALUE IS FROM

SUSPECT SOURCES AND HAS NOT BEEN RATIFIED

30 PA.s2=2;%Hill coefficient for self -renewal rate of stem -cells

31 PA.BetaQstar =0.043;%HSC self -renewal rate at homeostasis

32 PA.theta2 =((PA.Qstar ^(PA.s2)*PA.BetaQstar)/(PA.fQ -PA.

BetaQstar))^(1/PA.s2);%Measures differentiation rate of

stem -cells

33

34 %Parameters related to neutrophils

35

36 %Set population sizes at homeoestasis for neutrophil stages

37

38 PA.Np =0.93;%Steady -state mitotic neutrophil concentration

39 PA.Nm =4.51;%Steady -state maturing neutrophil concentration

40 PA.Nrstar =2.26;%Steady -state marrow reservoir concentration

41 PA.Nstar =(0.22/0.585);%Circulating neutrophil count at

homeostasis

42

43 %Calculate gamma_N

44

45 PA.gamma_N =35/16;%Circulating neutrophil apoptosis rate

46
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47 %Find average time spent in circulation

48

49 PA.tauNC =1/PA.gamma_N;

50

51 %Calculate the homeostatic transition rate (pool to

circulation)

52

53 PA.trans_homeo =(PA.gamma_N*PA.Nstar)/(PA.Nrstar);

54

55 %Set maturation time and time spent in reservoir

56

57 PA.aNM =3.9;%Maturation time

58 PA.tauNR =2.7;%Time spent in reservoir

59

60 %Calculate apoptosis rate out of the reservoir

61

62 PA.gammaNr =(1/PA.tauNR)-PA.trans_homeo;

63

64 %Solve transcendental equation for maturation apoptosis rate

65

66 fgam = @(x) PA.Nrstar *(exp(x*PA.aNM) -1)-x*PA.tauNR*PA.Nm;

67

68 %Approximate root (truncating exponential to quadratic)

69

70 gamapprox =2*((PA.tauNR*PA.Nm)/(PA.aNM*PA.Nrstar) -1)/PA.aNM;

71 PA.gammaNM=fzero(fgam ,gamapprox);

72

73 %Calculate homeostatic differentiation rate

74

75 %PA.kappaNstar =(PA.gammabarN*PA.Npoolstar+PA.gamma_N*PA.Nstar

)/(PA.Qstar*1E-3*PA.ANstar);
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76 PA.kappaNstar =(1/3) *(PA.AQstar -1)*PA.BetaQstar;

77

78 %Calculate the differentiation rates to other cell lines

79

80 PA.kappa_delta =(-(PA.kappaNstar+PA.BetaQstar)*PA.Qstar+(PA.

AQstar*PA.BetaQstar*PA.Qstar))/PA.Qstar;

81 PA.kappa_delta1 =(2/3) *(PA.AQstar -1)*PA.BetaQstar;

82

83 %Calculate amplification rate

84

85 %PA.ANstar=exp(PA.etaNP_0*PA.tauNP -PA.gamma0_0*PA.tauNM);

86 PA.ANstar=PA.Nrstar /(PA.kappaNstar*PA.Qstar*1E-3*PA.tauNR);

87

88 %Calculate amplification in proliferative phase

89

90 PA.etaNPTAU=PA.ANstar*exp(PA.gammaNM*PA.aNM);

91

92 %Calculate proliferation rate

93

94 PA.etaNP_h=PA.kappaNstar*PA.Qstar*1E-3*(( PA.etaNPTAU -1)/PA.Np

);

95

96 %Calculate time in proliferative phase

97

98 PA.tauNP =(1/PA.etaNP_h)*log(PA.ANstar*exp(PA.gammaNM*PA.aNM))

;

99

100 %Check the conditions on parameters

101

102 %Bounds on time spent in pool from Equation 1.68

103
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104 PA.tauNRlessthan=PA.tauNC*PA.Nrstar/PA.Nstar;

105 PA.tauNRgreaterthan=PA.aNM*PA.Nrstar/PA.Nm;

106

107 if PA.tauNR > PA.tauNRlessthan

108 disp(PA.tauNR)

109 disp(PA.tauNC)

110 disp(PA.Nrstar)

111 disp(PA.Nstar)

112 error( ' tauNR > tauNC*Nr/N ' )

113 elseif PA.tauNR < PA.tauNRgreaterthan

114 error( ' tauNR < aNM*Nr/Nm ' )

115 end

116

117 %Three conditions of Equations 1.64, 1.66, and 1.67

118

119 disp([ ' Bound 1: Need ' ,num2str(PA.tauNR/PA.tauNC), ' less than

' ,num2str(PA.Nrstar/PA.Nstar)])

120 disp([ ' Bound 2: Need ' ,num2str(PA.aNM/PA.tauNR), ' less than '

,num2str(PA.Nm/PA.Nrstar)])

121 disp([ ' Bound 3: Sufficient that ' ,num2str(PA.tauNR/PA.tauNP),

' less than ' ,num2str(PA.Nrstar/PA.Np)])

122

123 disp( ' Effective number of divisions in proliferative phase is

' )

124 disp(num2str(log2(exp(PA.etaNP_h*PA.tauNP))))

125 disp( ' Effective number of divisions in proliferative and

maturation phase is ' )

126 disp(num2str(log2(exp(PA.etaNP_h*PA.tauNP -PA.gammaNM*PA.aNM))

))

127 disp( ' These numbers should be about 18 and 15 ' )

128
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129 %Checks for steady -state in equations

130

131 disp( ' Stem -cell equation at homeostasis ' )

132 disp(num2str(-(PA.kappaNstar+PA.BetaQstar+PA.kappa_delta)*PA.

Qstar+PA.AQstar*PA.BetaQstar*PA.Qstar))

133 disp( ' Circulating neutrophil equation at homeostasis ' )

134 disp(num2str(PA.trans_homeo*PA.Nrstar -PA.gamma_N*PA.Nstar))

135 disp( ' Neutrophil reservoir equation at homeostasis ' )

136 disp(num2str(PA.ANstar*PA.kappaNstar *1E-3*PA.Qstar -(PA.

gammaNr+PA.trans_homeo)*PA.Nrstar))

137

138 %PK parameters for the G-CSF

139

140 PA.kren =0.16139;%Rate of renal elimination of G-CSF (linear)

141 PA.kint =462.4209;%Rate of G-CSF internalisation

142 PA.k12G =2.2423;%Rate of binding

143 PA.k21G =184.8658;%Rate of unbinding

144 PA.Gstar =0.025;%Concentration of G-CSF at homeostasis

145 PA.V=0.525;%Bound G-CSF conversion factor

146 PA.pow =1.4608;%Hill coefficient of G-CSF binding relationship

147

148 %Calculate G2 homeostasis concentration

149 PA.G2_h=(PA.k12G*PA.Gstar^PA.pow*PA.V*(PA.Nstar+PA.Nrstar))/(

PA.kint+PA.k12G*PA.Gstar^PA.pow+PA.k21G);

150 %Calculate production rate of G1 (unbound G-CSF)

151 PA.Gprod=PA.kren*PA.Gstar+PA.k12G*PA.Gstar^PA.pow*PA.V*(PA.

Nstar+PA.Nrstar)-PA.k12G*PA.Gstar^PA.pow*PA.G2_h -PA.k21G*PA

.G2_h;

152

153 %Check for steady state

154
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155 disp( ' Unbound G-CSF at homeostasis ' )

156 disp(num2str(PA.Gprod -PA.kren*PA.Gstar -PA.k12G *((PA.Nstar+PA.

Nrstar)*PA.V-PA.G2_h)*PA.Gstar^PA.pow+PA.k21G*PA.G2_h))

157 disp( ' Bound G-CSF at homeostasis ' )

158 disp(num2str(-PA.kint*PA.G2_h+PA.k12G *((PA.Nstar+PA.Nrstar)*

PA.V-PA.G2_h)*PA.Gstar^PA.pow -PA.k21G*PA.G2_h))

159

160 %Parameters for the chemotherapy (Zalypsis)

161

162 PA.Cl =43.7*24;%Rate of clearance

163 PA.V1 =32.7;%Volume in central compartment

164 PA.Q2 =123*24;%Amount of transit (second compartment)

165 PA.V2=162;%Volume of second compartment

166 PA.Q3 =11.3*24;%Amount of transit (third compartment)

167 PA.V3=388;%Volume of third compartment

168 PA.Q4 =62.3*24;%Amount of transit (fourth compartment)

169 PA.V4 =23.9;%Volume of fourth compartment

170 PA.k10=PA.Cl/PA.V1;%Rate of elimination

171 PA.k12=PA.Q2/PA.V1;%Rate of transit from compartment 1 to 2

172 PA.k21=PA.Q2/PA.V2;%Rate of transit from compartment 2 to 1

173 PA.k13=PA.Q3/PA.V1;%Rate of transit from compartment 1 to 3

174 PA.k31=PA.Q3/PA.V3;%Rate of transit from compartment 3 to 1

175 PA.k24=PA.Q4/PA.V2;%Rate of transit from compartment 2 to 4

176 PA.k42=PA.Q4/PA.V4;%Rate of transit from compartment 4 to 2

177 PA.BSA =1.723;%Average body surface area

178

179 % Neutrophil parameters that need to be determined

180

181 %Parameters determined through fitting

182 PA.Ntot =4.2009;%Constant accounting for average N+Nr (for

reduced G-CSF model)
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183 PA.muval =0.844575731873359;%Ratio of minimal and homeostasis

proliferation rates

184 PA.bNP =0.022867963747985;%Neutrophil proliferation Michaelis -

Menten constant

185 PA.Vmax =7.866997674083609;%Maximal neutrophil maturation

velocity

186 PA.trans_ratio =11.355614184371277;%Ratio of maximal and

homeostasis reservoir release rates

187 PA.ftrans0 =0.020055920452792;%Minimal reservoir release rate

188 PA.bvtilde =0.031283425611887;%Scaled maturation half -effect

concentration

189

190 PA.bv=PA.bvtilde*PA.Vmax;%Maturation velocity half -effect

concentration

191

192 %Set parameters

193

194 Cko =0.25;%Knockout total blood neutrophil pool fraction

195 VN0 =1+(PA.Vmax -1)*(-PA.Gstar /(PA.bv-PA.Gstar));%Maturation

velocity at knockout

196 theta =(Cko*(PA.ftrans0+PA.gammaNr)/(PA.trans_homeo+PA.gammaNr

))*exp(PA.aNM*(PA.gammaNM/VN0 -PA.gammaNM));%Ratio of rate

cells leave proliferation at knockout to homeostasis

197 PA.s1=1.5;%HSC -neutrophil differentiation Hill coefficient

198

199 %Parameters calculated from fit parameters

200

201 %Calculate neutrophil minimal proliferation rate

202 PA.etaNP_min=PA.muval*PA.etaNP_h;

203 %Calculate HSC -neutrophil minimal differentiation rate
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204 PA.kappaN_min=theta*PA.kappaNstar*exp(PA.tauNP*PA.etaNP_h *(1-

PA.muval));%

205 %Calculate homeostasis neutrophil receptor bound fraction

206 GBFstar=PA.G2_h/(PA.V*(PA.Nstar+PA.Nrstar));

207 %Calculate reservoir Release half -effect concentration

208 PA.bG=GBFstar *((PA.trans_ratio*PA.trans_homeo -PA.ftrans0)/(PA

.trans_homeo -PA.ftrans0));

209 %Calculate maximal Reservoir Release rate

210 PA.trans_max=PA.trans_ratio*PA.trans_homeo;

211

212 %Chemotherapy PD parameters

213

214 PA.EC50 =0.75390;%Half -maximal effect of chemotherapy on etaNP

215 PA.sc =0.89816;%Chemotherapy effect Hill coeffcient

216 PA.hQ =0.0079657;%Effect of chemotherapy on HSCs

217 PA.eta_NPneg =0;%Proliferation rate with infinite chemotherapy

dose

218

219 %The next two if statements administer the doses of

chemotherapy and G-CSF over a given infusion time (Delta_C

for chemo and s for G-CSF).

220

221 %Administer chemo (0=no , 1=yes)

222 PA.AdminChemo =0;

223

224 %Administration parameters

225

226 PA.DoseChemo =4000;%Chemotherapy dose (mcg/m^2)

227 PA.TotalDose=PA.DoseChemo*PA.BSA;%Chemotherapy dose (mcg)

228 PA.DeltaC =1/24;%Duration of chemotherapy infusion (IV

infusion)
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229

230 %Administer SC -dose of G-CSF (0=no , 1=yes; if IV G-CSF

administered automatically)

231 PA.AdminGCSF =1;

232

233 PA.Dose =375000;%G-CSF dose

234

235 %Dose -dependent SC parameters

236

237 if PA.Dose ==300000

238

239 %Dose =300 mcg

240

241 PA.F=0.64466;

242 PA.ka =8.0236;

243 PA.Vd =2322.9;

244

245 elseif PA.Dose ==375000

246

247 %Dose =375 mcg

248

249 PA.F=0.49964;

250 PA.ka =6.6133;

251 PA.Vd =4754.7;

252

253 elseif PA.Dose ==750000

254

255 %Dose =750 mcg

256

257 PA.F=0.75;

258 PA.ka =5.143;
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259 PA.Vd =2178.0;

260

261 else

262

263 disp( ' No PK parameters for this SC dose ' )

264 return

265

266 end

267

268 %Parameters defining the IV administration of G-CSF

269

270 PA.ivt0 = -25/60/24;%Time IV infusion begins (in days)

271 PA.tinf =25/60/24;%Duration of IV infusion (in days)

272

273 %Determine chemotherapy and G-CSF administration regimens

274

275 PA.Period =21;%Period of chemotherapy treatment

276 PA.DayAdminChemo =0;%Day chemotherapy is administered

277 PA.NumAdminsChemo =1;%Number of chemotherapy administrations

278

279 PA.GCSFPeriod =1;%Time between G-CSF repeated doses

280 PA.AdminsGCSF =1;%Number of G-CSF administrations post -chemo

281 days =1;%The number of days post -chemotherapy after which

exogenous G-CSF is administered

282

283 % Define integration time interval & initial conditions

284

285 % Integration time interval (in days)

286 totaltime =[0 PA.Period *(PA.NumAdminsChemo +4)];

287

288 %Define initial conditions
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289 IC=[PA.Qstar ,PA.Nstar ,PA.Gstar ,PA.aNM ,0,PA.AQstar ,PA.ANstar

,0,0,PA.Nrstar ,0,PA.G2_h];

290

291 %Solve the DDEs (choose either subcutaneous G-CSF or IV

infusion)

292

293 %If G-CSF is given subcutaneously

294 [sol]= Main_Chemo4(totaltime ,IC,PA,days);%zalypsis chemo

regimen

295

296 %If G-CSF is given by IV

297

298 %[sol]= Main_Chemo4IV(totaltime ,IC,PA ,days);% zalypsis chemo

regimen

299

300 toc %Displays simulation time

301

302 %Various plots

303

304 figure (1); g1=plot(sol.x,sol.y(1,:), ' r ' );hold on;

305 g2=plot ([0 max(totaltime)],[PA.Qstar PA.Qstar], ' -- ' );

306 xlabel( ' Time (days) ' , ' FontSize ' ,10)

307 ylabel( ' HSC Concentration (10^9 cells/kg) ' , ' FontSize ' ,10)

308 legend ([g1 g2], ' Model solution ' , ' Homeostastic Concentration ' )

309

310 figure (2); g1=plot(sol.x,sol.y(2,:) .*0.585.*(70/5) , ' r ' );hold

on;

311 g2=plot ([0 max(totaltime)],[PA.Nstar *0.585*(70/5) PA.Nstar

*0.585*(70/5)], ' -- ' );

312 xlabel( ' Time (days) ' , ' FontSize ' ,10)
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313 ylabel( ' Circulating neutrophils (10^9 cells/kg) ' , ' FontSize '

,10)

314 legend ([g1 g2], ' Model solution ' , ' Homeostastic Concentration ' )

315

316 figure (3); g1=plot(sol.x,sol.y(2,:), ' r ' );hold on;

317 g2=plot ([0 max(totaltime)],[PA.Nstar PA.Nstar], ' -- ' );

318 xlabel( ' Time (days) ' , ' FontSize ' ,10)

319 ylabel( ' Neutrophil Concentration (10^9 cells/L) ' , ' FontSize '

,10)

320 legend ([g1 g2], ' Model solution ' , ' Homeostastic Concentration ' )

321

322 figure (4); g1=plot(sol.x,sol.y(3,:), ' r ' );hold on;

323 g2=plot ([0 max(totaltime)],[PA.Gstar PA.Gstar], ' -- ' );

324 xlabel( ' Time (days) ' , ' FontSize ' ,10)

325 ylabel( ' Unbound G-CSF concentration (ng/mL) ' , ' FontSize ' ,10)

326 legend ([g1 g2], ' Model solution ' , ' Homeostastic Concentration ' )

327

328 GBF=(sol.y(3,:).^PA.pow)./( sol.y(3,:).^PA.pow+(PA.kint+PA.

k21G)/PA.k12G);

329 GBFstar =(PA.Gstar.^PA.pow)./(PA.Gstar.^PA.pow+(PA.kint+PA.

k21G)/PA.k12G);

330

331 figure (5); g1=plot(sol.x,GBF , ' r ' );hold on;

332 g2=plot ([0 max(totaltime)],[GBFstar GBFstar], ' -- ' );

333 set(gca , ' FontSize ' ,10);

334 xlabel( ' Time (days) ' , ' FontSize ' ,10)

335 ylabel( ' Bound Fraction GBF ' , ' FontSize ' ,10)

336 legend ([g1 g2], ' Model solution ' , ' Homeostastic Concentration ' )

337

338 figure (6); g1=plot(sol.x,sol.y(10 ,:), ' r ' );hold on;

339 g2=plot ([0 max(totaltime)],[PA.Nrstar PA.Nrstar], ' -- ' );
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340 xlabel( ' Time (days) ' , ' FontSize ' ,10)

341 ylabel( ' Neutrophil Concentration in Marrow Reservoir (10^9

cells/kg) ' , ' FontSize ' ,10)

342 legend ([g1 g2], ' Model solution ' , ' Homeostastic Concentration ' )

1 function [sol] = Main_Chemo4(totaltime ,IC,PA ,days)

2 %This function simulates the neutrophil model (as in the BMB

paper submitted December 2015) for periodic chemotherapy

and/or subcutaneous G-CSF

3

4 PA.AdminDay=days;%Define day the G-CSF treatment begins post -

chemotherapy

5

6 %Call the DDE solver and set options

7

8 %Set solver options

9 opts = ddeset( ' RelTol ' ,1e-6, ' AbsTol ' ,1e-6, ' MaxStep ' ,1e-2);

10 %Call solver (which calls RHS below)

11 sol = ddesd_f5 (@Chemo4 ,@(t,y) delayP(t,y,PA),IC ,totaltime ,

opts);

12

13 function dydt = Chemo4(t,y,Z)

14

15 %Initialise history function vectors

16

17 ylag1 = Z(:,1); %Creates solution vector with lag tau_S

18 ylag2 = Z(:,2); %Creates solution vector with lag tau_N

19 ylag3 = Z(:,3); %Creates solution vector with lag tau_N+

tau_NP

20 ylag4 = Z(:,4); %Creates solution vector with lag tau_NM

21

22 %Initialise administration parameters
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23 Infusion =0;%Chemotherapy infusion parameter

24 GCSF_Dose =0;%G-CSF administration parameter

25

26 if PA.DayAdminChemo <= t && t <= PA.DayAdminChemo + (PA.

Period*PA.NumAdminsChemo)%If time is within chemo infusion

time

27

28 tchemomod=mod(t-PA.DayAdminChemo ,PA.Period);%Calculate

modulo start of infusion time

29

30 if PA.AdminChemo ==0

31

32 Infusion =0;%Infusion =0 since no chemotherapy is

administered (PA.AdminChemo =0)

33

34 elseif PA.AdminChemo ==1 && tchemomod < PA.DeltaC

35

36 Infusion=PA.TotalDose/PA.DeltaC;%Administer

chemotherapy and calculate dose over infusion time

37

38 end

39

40 tgcsfmod=mod(tchemomod -PA.AdminDay ,PA.GCSFPeriod);%

Calculate time since chemotherapy admin began

41 tGCSFend=PA.AdminDay+PA.GCSFPeriod*PA.AdminsGCSF;%

Calculate time when G-CSF administrations will end

42

43 if PA.AdminDay <= tchemomod && tchemomod <= tGCSFend

44

45 if PA.AdminGCSF == 0

46
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47 GCSF_Dose =0;%Administer no G-CSF (PA.AdminGCSF =0)

48

49 else

50

51 GCSF_Dose=PA.ka*PA.F*(PA.Dose/PA.Vd)*exp(-PA.ka*

tgcsfmod);%Calculate G-CSF dose to administer (

subcutaneous)

52

53 end;

54

55 end;

56

57 end;

58

59

60 %Calculate maturation velocity at current time and with delay

61 V_n=((PA.Vmax -1)*(y(3)-PA.Gstar)/(y(3)-PA.Gstar+PA.bv))+1;%

Used to calculate V_n(t)

62 V_n_lag =((PA.Vmax -1)*(ylag4 (3)-PA.Gstar)/(ylag4 (3)-PA.Gstar+

PA.bv))+1;%Used to calculate V_n(t-tau_NM(t))

63

64 %Calculate proliferation rate at current time and with delay

65 eta_NPlag2=eta_NP_chemo(PA,ylag2 (3),ylag2 (5));%Value of

neutrophil proliferation rate with lag tau_N(t)

66 eta_NPlag3=eta_NP_chemo(PA,ylag3 (3),ylag3 (5));%Value of

neutrophil proliferation rate with lag tau_N(t)-tau_NP

67

68 %Expression for the derivative of AN (used in RHS of solver)

69 Deriv=y(7)*(( V_n/V_n_lag)*( eta_NPlag3 -eta_NPlag2) -(1-(V_n/

V_n_lag))*PA.gammaNM);

70
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71 %Differential equations for chemo model

72

73 %RHS of model with Ntot (use for reduced G-CSF model)

74

75 % dydt = [ -(Beta(y(1),PA)+kappaN(y(3),PA)+PA.kappa_delta)*

y(1) +(2* exp(-(PA.gamma_s+PA.hS*(y(5)./PA.V1))*PA.tau_s)*

Beta(ylag1 (1),PA))*ylag1 (1)%Stem -cell differential equation

76 % f_trans(PA ,y(12),PA.Ntot/2,PA.Ntot /2)*y(10)-PA.

gamma_N*y(2)%Neutrophils differential equation

77 % GCSF_Dose+PA.Gprod -PA.kren*y(3)-PA.k12G*y(3)^PA.

pow*PA.V*(PA.Ntot)+PA.k12G*y(3)^PA.pow*y(12)+PA.k21G*y(12)%

DE for unbound G-CSF (G1)

78 % 1-(V_n/V_n_lag)%DE for tau_N=tau_NM

79 % Infusion -(PA.k10+PA.k12+PA.k13)*y(5)+PA.k21*y(8)+

PA.k31*y(9)%Chemo 1 compartment DE

80 % 0

81 % Deriv%DE for amplification of neutrophils

82 % -(PA.k21+PA.k24)*y(8)+PA.k12*y(5)+PA.k42*y(11)%

Chemo 2 compartment

83 % -PA.k31*y(9)+PA.k13*y(5)%Chemo 3 compartment

84 % (y(7)*1E-3* kappaN(ylag2 (3),PA))*ylag2 (1)*(V_n/

V_n_lag)-y(10)*( f_trans(PA,y(12),y(2),y(10))+PA.gammaNr)%

Pool

85 % -PA.k42*y(11)+PA.k24*y(8);% Chemo 4 compartment

86 % -PA.kint*y(12)+PA.k12G*(PA.Ntot*PA.V-y(12))*y(3)^

PA.pow -PA.k21G*y(12) ];%DE for bound G-CSF (G2)

87

88

89 %RHS of full model

90 dydt = [ -(Beta(y(1),PA)+kappaN(y(3),PA)+PA.kappa_delta)*y

(1)+(y(6)*Beta(ylag1 (1),PA))*ylag1 (1)%Stem -cell
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differential equation

91 f_trans(PA,y(12),y(2),y(10))*y(10)-PA.gamma_N*y(2)%

Neutrophils differential equation

92 GCSF_Dose+PA.Gprod -PA.kren*y(3)-PA.k12G*y(3)^PA.pow*

PA.V*(y(2)+y(10))+PA.k12G*y(3)^PA.pow*y(12)+PA.

k21G*y(12)%DE for unbound G-CSF (G1)

93 1-(V_n/V_n_lag)%DE for tau_N=tau_NM

94 Infusion -(PA.k10+PA.k12+PA.k13)*y(5)+PA.k21*y(8)+PA.

k31*y(9)%Chemo 1 compartment DE

95 y(6)*(PA.hQ*( ylag1 (5)/PA.V1 -y(5)/PA.V1))

96 Deriv%DE for amplification of neutrophils

97 -(PA.k21+PA.k24)*y(8)+PA.k12*y(5)+PA.k42*y(11)%Chemo

2 compartment

98 -PA.k31*y(9)+PA.k13*y(5)%Chemo 3 compartment

99 (y(7)*1E-3* kappaN(ylag2 (3),PA))*ylag2 (1)*(V_n/

V_n_lag)-y(10)*( f_trans(PA,y(12),y(2),y(10))+PA.

gammaNr)%Pool

100 -PA.k42*y(11)+PA.k24*y(8);%Chemo 4 compartment

101 -PA.kint*y(12)+PA.k12G *((y(2)+y(10))*PA.V-y(12))*y

(3)^PA.pow -PA.k21G*y(12)];%DE for bound G-CSF (G2)

102

103 end

104

105 end

1 function [sol] = Main_Chemo4IV(totaltime ,IC ,PA,days)

2 %This function simulates the neutrophil model (as in the BMB

paper submitted December 2015) for an IV infusion of G-CSF

with NO chemotherapy

3

4 PA.AdminDay=days;

5



l

6 %Call the DDE solver and set options

7

8 opts = ddeset( ' RelTol ' ,1e-6, ' AbsTol ' ,1e-6, ' MaxStep ' ,1e-2);

9 sol = ddesd_f5 (@Chemo4 ,@(t,y) delayP(t,y,PA),IC ,totaltime ,

opts);

10

11 function dydt = Chemo4(t,y,Z)

12

13 %Initialise history function vectors

14

15 %Create lag solution vectors

16 ylag1 = Z(:,1); %Creates solution vector with lag tau_S

17 ylag2 = Z(:,2); %Creates solution vector with lag tau_N

18 ylag3 = Z(:,3); %Creates solution vector with lag tau_N+

tau_NP

19 ylag4 = Z(:,4); %Creates solution vector with lag tau_NM

20

21 %Initialise administration parameters

22 Infusion =0;%Chemotherapy infusion parameter

23 GCSF_Dose =0;%G-CSF administration parameter

24

25 %Statements for IV infusion administration (G-CSF only)

26 if t<PA.ivt0 || t > PA.ivt0+PA.tinf

27

28 GCSF_Dose =0;%Administer no G-CSF since outside of infusion

time

29

30 else

31

32 GCSF_Dose=PA.Dose/PA.Vd/PA.tinf;%Calculate administered

dose
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33

34 end

35

36 %Calculate maturation velocity at current time and with delay

37 V_n=((PA.Vmax -1)*(y(3)-PA.Gstar)/(y(3)-PA.Gstar+PA.bv))+1;%

Used to calculate V_n(t)

38 V_n_lag =((PA.Vmax -1)*(ylag4 (3)-PA.Gstar)/(ylag4 (3)-PA.Gstar+

PA.bv))+1;%Used to calculate V_n(t-tau_NM(t))

39

40 %Calculate proliferation rate at current time and with delay

41 eta_NPlag2=eta_NP_chemo(PA,ylag2 (3),ylag2 (5));%Value of

neutrophil proliferation rate with lag tau_N(t)

42 eta_NPlag3=eta_NP_chemo(PA,ylag3 (3),ylag3 (5));%Value of

neutrophil proliferation rate with lag tau_N(t)-tau_NP

43

44 %Expression for the derivative of AN (used in RHS of solver)

45 Deriv=y(7)*(( V_n/V_n_lag)*( eta_NPlag3 -eta_NPlag2) -(1-(V_n/

V_n_lag))*PA.gammaNM);%Derivative of A_N

46

47 %Differential equations for ChemoX model

48

49 %RHS of full model

50 dydt = [-(Beta(y(1),PA)+kappaN(y(3),PA)+PA.kappa_delta)*y

(1)+(y(6)*Beta(ylag1 (1),PA))*ylag1 (1)%Stem -cell

differential equation

51 f_trans(PA,y(12),y(2),y(10))*y(10)-PA.gamma_N*y(2)%

Neutrophils differential equation

52 GCSF_Dose+PA.Gprod -PA.kren*y(3)-PA.k12G*y(3)^PA.pow*

PA.V*(y(2)+y(10))+PA.k12G*y(3)^PA.pow*y(12)+PA.

k21G*y(12)%DE for unbound G-CSF (G1)

53 1-(V_n/V_n_lag)%DE for tau_N=tau_NM
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54 Infusion -(PA.k10+PA.k12+PA.k13)*y(5)+PA.k21*y(8)+PA.

k31*y(9)%Chemo 1 compartment DE

55 y(6)*(PA.hQ*( ylag1 (5)/PA.V1 -y(5)/PA.V1))

56 Deriv%DE for amplification of neutrophils

57 -(PA.k21+PA.k24)*y(8)+PA.k12*y(5)+PA.k42*y(11)%Chemo

2 compartment

58 -PA.k31*y(9)+PA.k13*y(5)%Chemo 3 compartment

59 (y(7)*1E-3* kappaN(ylag2 (3),PA))*ylag2 (1)*(V_n/

V_n_lag)-y(10)*( f_trans(PA,y(12),y(2),y(10))+PA.

gammaNr)%Pool

60 -PA.k42*y(11)+PA.k24*y(8);%Chemo 4 compartment

61 -PA.kint*y(12)+PA.k12G *((y(2)+y(10))*PA.V-y(12))*y

(3)^PA.pow -PA.k21G*y(12)];%DE for bound G-CSF (G2)

62

63 end

64

65 end

1 function Beta=Beta(y,PA)

2 %This function calculates the rate of self -renewal (beta) in

the HSC compartment

3 Beta=PA.fQ*(PA.theta2^PA.s2)/(PA.theta2^PA.s2+y^PA.s2);

1 function d = delayP(t,y,PA)

2 %This function sets up the delay vectors necessary for the

DDE solver.

3

4 %Delays in order are: tau_S , tau_N , tau_N+tau_NP , and tau_NM

5

6 d = [t-PA.tau_s ,t-tauN(PA,y(4)),t-tauN(PA,y(4))+PA.tauNP ,t-y

(4)];

7
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8 end

1 function eta_NP_chemo=eta_NP_chemo(PA ,y,C)

2 %This function calculates the effect of chemotherapy on the

rate of proliferation eta_Np

3

4 eta_NP_chemo=PA.eta_NPneg +( eta_NP(PA,y)-PA.eta_NPneg).*(PA.

EC50^(PA.sc)./(PA.EC50^(PA.sc)+(C./PA.V1).^(PA.sc)));

1 function eta_NP=eta_NP(PA,y)

2 %This function calculates the rate of proliferation eta_Np

3

4 eta_NP=PA.etaNP_h+PA.bNP*((PA.etaNP_h -PA.etaNP_min).*(y/PA.

Gstar -1))./(y+PA.bNP);

1 function f_trans=f_trans(PA ,y,N,NR)

2 %This function calculates nu_Nr (formerly ftrans) which is

the rate of release out of the marrow reservoir into

circulation.

3

4 %Model with Ntot

5 % fact1=y./(PA.V*PA.Ntot);

6 % fact2=PA.G2_h/(PA.V*PA.Ntot);

7 % f_trans=PA.trans_homeo .*(PA.trans_ratio .*(fact1 -fact2)+PA.

bG)./(fact1 -fact2+PA.bG);

8

9 %Full model

10 fact1=y./(PA.V*(N+NR));

11 fact2=PA.G2_h/(PA.V*(PA.Nstar+PA.Nrstar));

12 f_trans=PA.trans_homeo .*(PA.trans_ratio .*(fact1 -fact2)+PA.bG)

./(fact1 -fact2+PA.bG);



liv

1 function gamma_s_chemo=gamma_s_chemo(PA ,C)

2 %This function calculates the effect of chemotherapy on the

rate of apoptosis in the HSC compartment (gammaS is now

expressed as gammaQ)

3

4 gamma_s_chemo=PA.gamma_s+PA.hQ.*(C./PA.V1);

1 function gamma_s=gamma_s(PA ,G,C)

2 %This function calculates gammaQ (formerly gammaS)

3

4 gamma_s=PA.gamma_s +( gamma_s_chemo(PA,C)-PA.gamma_s);

1 function kappaN=kappaN(y,PA)

2 %This function calculates the differentiation rate kappaN out

of the HSC compartment

3

4 kappaN=PA.kappaN_min +(2.*( PA.kappaNstar -PA.kappaN_min).*y.^PA

.s1)./(y.^PA.s1+PA.Gstar.^PA.s1);

1 function tauN=tauN(PA,tauNM)

2 %This function calculates tauN=tauNp+tauNm

3

4 tauN=PA.tauNP+tauNM;
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