15 research outputs found

    Modelling and performance evaluation of non-uniform two-tier cellular networks through Stienen model

    Get PDF
    In this paper we introduce Stienen's model for analysing the performance of a non-uniform two-tier networks. The topology of the network consists of a set of macro base stations (MBSs) uniformly deployed, and a set of femtocell access points (FAPs) deployed only outside exclusion areas (discs) surrounding the MBSs. The MBSs serve users within the innermost areas of each macrocell, while the femtocells are restricted to serve users located in the outermost areas towards the edge of the macrocells. Results show that the edge user performance in terms of coverage is highly increased by the addition of femtocells. Moreover, the coverage in the macrocell tier can be also increased in comparison with a macrocell-only network if the number of femtocells deployed is judiciously selected. Furthermore, a well balanced network can be achieved, where the same performance is expected throughout the entire area

    Stochastic geometric analysis of energy efficiency in two-tier heterogeneous networks

    Get PDF
    The exponential growth in the number of users of cellular mobile networks (and their requirements) has created a massive challenge for network operators to cope with demands for coverage and data rates. Among the possible solutions for the ever increasing user needs, the deployment of Heterogeneous Networks (HetNets) constitutes both a practical and an economical solution. Moreover, while the typical approach for network operators has been to consider the coverage and data rates as design parameters in a network, a major concern for next generation networks is the efficiency in the power usage of the network. Therefore, in recent years the energy efficiency parameter has gathered a great deal of attention in the design of next generation networks. In the context of HetNets, while the densification of the network in terms of the number of base stations deployed can potentially increase the coverage and boost the data rates, it can also lead to a huge power consumption as the energy used escalates with the number of base stations deployed. To this end, the purpose of this thesis is to investigate the energy efficiency performance of different deployment strategies in a HetNet consisting of macro- and femtocells. We make use of well established tools from stochastic geometry to model the different strategies, as it provides a theoretical framework from which the scalability of the network in terms of the design parameters can be taken into account. Those strategies consisted first, on the analysis of the effect of using multiple antennas and diversity schemes on both, the throughput and the energy efficiency of the network. The optimum diversity schemes and antenna configurations were found for an optimal energy efficiency while keeping constraints on the quality of Service of both tiers. Then, the effect of the vertical antenna tilt was analyzed for both, a traditional macrocell only network and a two-tier network. The optimum antenna tilt in terms of energy efficiency was found while keeping constraints on the Quality of Service required. Finally, an energy efficient deployment of femtocells was proposed where the smart positioning of femtocells derived into improvements of coverage probability, effective throughput and energy efficiency of the network. The proposed model also improved in general the performance of the cell edge user which in turn resulted in a more balanced network in terms of the overall performance

    Drone-Assisted Wireless Communications

    Get PDF
    In order to address the increased demand for any-time/any-where wireless connectivity, both academic and industrial researchers are actively engaged in the design of the fifth generation (5G) wireless communication networks. In contrast to the traditional bottom-up or horizontal design approaches, 5G wireless networks are being co-created with various stakeholders to address connectivity requirements across various verticals (i.e., employing a top-to-bottom approach). From a communication networks perspective, this requires obliviousness under various failures. In the context of cellular networks, base station (BS) failures can be caused either due to a natural or synthetic phenomenon. Natural phenomena such as earthquake or flooding can result in either destruction of communication hardware or disruption of energy supply to BSs. In such cases, there is a dire need for a mechanism through which capacity short-fall can be met in a rapid manner. Drone empowered small cellular networks, or so-called \quotes{flying cellular networks}, present an attractive solution as they can be swiftly deployed for provisioning public safety (PS) networks. While drone empowered self-organising networks (SONs) and drone small cell networks (DSCNs) have received some attention in the recent past, the design space of such networks has not been extensively traversed. So, the purpose of this thesis is to study the optimal deployment of drone empowered networks in different scenarios and for different applications (i.e., in cellular post-disaster scenarios and briefly in assisting backscatter internet of things (IoT)). To this end, we borrow the well-known tools from stochastic geometry to study the performance of multiple network deployments, as stochastic geometry provides a very powerful theoretical framework that accommodates network scalability and different spatial distributions. We will then investigate the design space of flying wireless networks and we will also explore the co-existence properties of an overlaid DSCN with the operational part of the existing networks. We define and study the design parameters such as optimal altitude and number of drone BSs, etc., as a function of destroyed BSs, propagation conditions, etc. Next, due to capacity and back-hauling limitations on drone small cells (DSCs), we assume that each coverage hole requires a multitude of DSCs to meet the shortfall coverage at a desired quality-of-service (QoS). Hence, we consider the clustered deployment of DSCs around the site of the destroyed BS. Accordingly, joint consideration of partially operating BSs and deployed DSCs yields a unique topology for such PS networks. Hence, we propose a clustering mechanism that extends the traditional Mat\'{e}rn and Thomas cluster processes to a more general case where cluster size is dependent upon the size of the coverage hole. As a result, it is demonstrated that by intelligently selecting operational network parameters such as drone altitude, density, number, transmit power and the spatial distribution of the deployment, ground user coverage can be significantly enhanced. As another contribution of this thesis, we also present a detailed analysis of the coverage and spectral efficiency of a downlink cellular network. Rather than relying on the first-order statistics of received signal-to-interference-ratio (SIR) such as coverage probability, we focus on characterizing its meta-distribution. As a result, our new design framework reveals that the traditional results which advocate lowering of BS heights or even optimal selection of BS height do not yield consistent service experience across users. Finally, for drone-assisted IoT sensor networks, we develop a comprehensive framework to characterize the performance of a drone-assisted backscatter communication-based IoT sensor network. A statistical framework is developed to quantify the coverage probability that explicitly accommodates a dyadic backscatter channel which experiences deeper fades than that of the one-way Rayleigh channel. We practically implement the proposed system using software defined radio (SDR) and a custom-designed sensor node (SN) tag. The measurements of parameters such as noise figure, tag reflection coefficient etc., are used to parametrize the developed framework

    Designing data-aided demand-driven user-centric architecture for 6G and beyond networks

    Get PDF
    Despite advancements in capacity-enhancing technologies like massive MIMO (multiple input, multiple output) and intelligent reflective surfaces, network densification remains crucial for significant capacity gains in future networks such as 6G. However, network densification increases interference and power consumption. Traditional cellular architectures struggle to minimize these without compromising service quality or capacity, which necessitates a shift to a user-centric radio access network (UC-RAN). The UC-RAN approach offers additional degrees of freedom to ease the spectral-energy efficiency interlock while improving the service quality. However, its increased degrees of freedom make its optimal design and operation more challenging. This dissertation introduces four novel approaches for UC-RAN optimal design and operation. The objectives include mitigating interference, reducing power consumption, ensuring diverse user/vertical service quality, facilitating proactive network operation, risk-aware optimization, adopting an open radio access network, and enabling universal coverage. First, we construct an analytical framework to assess the effects of incorporating Coordinated Multipoint (CoMP) technology into UC-RAN to reduce interference and power consumption. We use stochastic geometry tools to derive expressions for network-wide coverage, spectral efficiency, and energy efficiency as a function of UC-RAN Configuration and Optimization Parameters (COPs), including data base station densities and user-centric service zone sizes. While the analytical framework provides insightful performance analysis that can guide overall system design, it cannot fully capture the dynamics of a UC-RAN system to enable optimal operation. Next, we present a Deep Reinforcement Learning (DRL) based method to dynamically orchestrate the UC-RAN service zone size to satisfy varying application demands of various service verticals during its operation. We define a novel multi-objective optimization problem that fairly optimizes otherwise conflicting key performance indicators (KPIs). DRL's practical adaptation by the industry remains thwarted by the risk it poses to the safe operation of a live network. To address this challenge, we propose a digital twin-enabled approach to enrich the DRL-based optimization framework, ensuring risk-aware COP optimization. We use Open Radio Access Network standards-based simulations to show that the proposed risk-aware DRL framework can maximize system-level KPIs while maintaining safe operational requirements. Lastly, we propose a hybrid model of aerial and terrestrial UC-RAN deployment to ensure universal coverage. We assess the impact of aerial base station parameters on system-level KPIs, providing a quantitative analysis of the advantages of a hybrid over a solely terrestrial UC-RAN. We develop a robust multi-objective function solvable via our DRL-based framework to balance and optimize these KPIs in a hybrid UC-RAN. Our extensive analytical and system-level simulation results suggest that these contributions can foster the much-needed paradigm shift towards demand-driven, elastic, and user-centric architecture in emerging and future cellular networks

    5G Outlook – Innovations and Applications

    Get PDF
    5G Outlook - Innovations and Applications is a collection of the recent research and development in the area of the Fifth Generation Mobile Technology (5G), the future of wireless communications. Plenty of novel ideas and knowledge of the 5G are presented in this book as well as divers applications from health science to business modeling. The authors of different chapters contributed from various countries and organizations. The chapters have also been presented at the 5th IEEE 5G Summit held in Aalborg on July 1, 2016. The book starts with a comprehensive introduction on 5G and its need and requirement. Then millimeter waves as a promising spectrum to 5G technology is discussed. The book continues with the novel and inspiring ideas for the future wireless communication usage and network. Further, some technical issues in signal processing and network design for 5G are presented. Finally, the book ends up with different applications of 5G in distinct areas. Topics widely covered in this book are: • 5G technology from past to present to the future• Millimeter- waves and their characteristics• Signal processing and network design issues for 5G• Applications, business modeling and several novel ideas for the future of 5

    5G Outlook – Innovations and Applications

    Get PDF
    5G Outlook - Innovations and Applications is a collection of the recent research and development in the area of the Fifth Generation Mobile Technology (5G), the future of wireless communications. Plenty of novel ideas and knowledge of the 5G are presented in this book as well as divers applications from health science to business modeling. The authors of different chapters contributed from various countries and organizations. The chapters have also been presented at the 5th IEEE 5G Summit held in Aalborg on July 1, 2016. The book starts with a comprehensive introduction on 5G and its need and requirement. Then millimeter waves as a promising spectrum to 5G technology is discussed. The book continues with the novel and inspiring ideas for the future wireless communication usage and network. Further, some technical issues in signal processing and network design for 5G are presented. Finally, the book ends up with different applications of 5G in distinct areas. Topics widely covered in this book are: • 5G technology from past to present to the future• Millimeter- waves and their characteristics• Signal processing and network design issues for 5G• Applications, business modeling and several novel ideas for the future of 5

    Best Environmental Management Practice in the Telecommunications and ICT Services sector: Learning from front runners

    Get PDF
    The steady growth over the past decades of the Telecommunications and ICT Services sector, and its uninterrupted progress with the constant provision of renewed and ever-faster services as well as new applications, has transformed many aspects of our society and lives but has also spurred the development of ever more power- and resource-hungry systems, contributing to the sector’s ever-growing environmental footprint. On the basis of an in-depth analysis of the actions implemented by environmental front runners and of existing EU and industry initiatives addressing the environmental performance of the sector, this report describes a set of best practices with high potential for larger uptake. These are called Best Environmental Management Practices (BEMPs). The BEMPs, identified in close cooperation with a technical working group comprising experts from the sector, cover improvement of environmental performance across all significant environmental aspects (energy consumption, resource consumption, etc.) at the different life cycle stages (planning and design, installation, operation, end-of-life management, etc.) and for different ICT assets (software, data centres, etc.). Besides actions aimed at reducing the environmental impact of Telecommunications and ICT Services operations (with a special focus on data centres and telecommunications networks), the report also identifies best practices in the ICT sector that contribute towards reducing the environmental impact of other sectors of the economy ("greening by ICT" measures). The report gives a wide range of information (environmental benefits, economics, indicators, benchmarks, references, etc.) for each of the proposed best practices in order to be a source of inspiration and guidance for any company in the sector wishing to improve its environmental performance. In addition, it will be the technical basis for a Sectoral Reference Document on Best Environmental Management Practice for the Telecommunications and ICT Services sector, to be produced by the European Commission according to Article 46 of Regulation (EC) No 1221/2009 (EMAS Regulation).JRC.B.5-Circular Economy and Industrial Leadershi

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    YOUMARES 8 – Oceans Across Boundaries: Learning from each other

    Get PDF
    This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presenters’ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research
    corecore