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Abstract

Despite advancements in capacity-enhancing technologies like massive MIMO (mul-

tiple input, multiple output) and intelligent reflective surfaces, network densifica-

tion remains crucial for significant capacity gains in future networks such as 6G.

However, network densification increases interference and power consumption. Tra-

ditional cellular architectures struggle to minimize these without compromising ser-

vice quality or capacity, which necessitates a shift to a user-centric radio access

network (UC-RAN).

The UC-RAN approach offers additional degrees of freedom to ease the spectral-

energy efficiency interlock while improving the service quality. However, its in-

creased degrees of freedom make its optimal design and operation more challenging.

This dissertation introduces four novel approaches for UC-RAN optimal design and

operation. The objectives include mitigating interference, reducing power consump-

tion, ensuring diverse user/vertical service quality, facilitating proactive network

operation, risk-aware optimization, adopting an open radio access network, and

enabling universal coverage.

First, we construct an analytical framework to assess the effects of incorporating

Coordinated Multipoint (CoMP) technology into UC-RAN to reduce interference

and power consumption. We use stochastic geometry tools to derive expressions

for network-wide coverage, spectral efficiency, and energy efficiency as a function of

UC-RAN Configuration and Optimization Parameters (COPs), including data base

station densities and user-centric service zone sizes.

While the analytical framework provides insightful performance analysis that can

guide overall system design, it cannot fully capture the dynamics of a UC-RAN sys-

tem to enable optimal operation. Next, we present a Deep Reinforcement Learning

(DRL) based method to dynamically orchestrate the UC-RAN service zone size to

satisfy varying application demands of various service verticals during its opera-

xiii



tion. We define a novel multi-objective optimization problem that fairly optimizes

otherwise conflicting key performance indicators (KPIs).

DRL’s practical adaptation by the industry remains thwarted by the risk it poses to

the safe operation of a live network. To address this challenge, we propose a digital

twin-enabled approach to enrich the DRL-based optimization framework, ensuring

risk-aware COP optimization. We use Open Radio Access Network standards-based

simulations to show that the proposed risk-aware DRL framework can maximize

system-level KPIs while maintaining safe operational requirements.

Lastly, we propose a hybrid model of aerial and terrestrial UC-RAN deployment to

ensure universal coverage. We assess the impact of aerial base station parameters on

system-level KPIs, providing a quantitative analysis of the advantages of a hybrid

over a solely terrestrial UC-RAN. We develop a robust multi-objective function

solvable via our DRL-based framework to balance and optimize these KPIs in a

hybrid UC-RAN.

Our extensive analytical and system-level simulation results suggest that these con-

tributions can foster the much-needed paradigm shift towards demand-driven, elas-

tic, and user-centric architecture in emerging and future cellular networks.

xiv



CHAPTER 1

Introduction

1.1 Motivation

In the realm of 6G and beyond networks, ultra-dense networks (UDNs) will play a

vital role in offering seamless coverage, remarkably high throughput, and unparal-

leled low latency, surpassing the benefits of additional spectrum or advancements in

physical layer technologies like massive MIMO (multiple input, multiple output) or

intelligent reflective surfaces. Network operators are actively exploring the potential

of UDNs to meet the escalating demands for throughput and latency envisioned for

6G and beyond users.

While both academia and industry researchers agree that network densification is

key to enhancing the coverage and capacity of existing cellular networks, it is essen-

tial to acknowledge the inherent complexities associated with UDNs [1]. Densifying

the network reduces the average distance between users and the interferring base

stations. This leads to increased interference from neighboring base stations, which

overshadows the benefits of the decreased average distance from serving base sta-

tions. Furthermore, the deployment of a large number of small cells contributes to

an increase in the network’s power consumption.

Traditional cellular architectures encounter difficulties in addressing these issues

without compromising service quality or capacity. Therefore, there is a need to

shift the cellular network design towards a user-centric radio access network (UC-

RAN) to overcome these challenges [2]. The UC-RAN approach offers additional

degrees of freedom to relax the spectral-energy efficiency interlock while improving

the service quality [2–4]. However, its increased flexibility makes its optimal de-

1



sign and operation more challenging, particularly when considering the following

objectives:

Meeting Heterogeneous Quality-of-service (QoS) Requirements: A crucial aspect

of 6G and beyond cellular networks is the need to accommodate highly diverse

application requirements, including augmented/virtual reality, high-speed rails, in-

dustrial robots, and E-health, to name a few. Network operators are challenged with

providing heterogeneous user QoS to effectively meet the unique requirements of var-

ious applications. Consequently, it becomes imperative to redesign the traditional

one-size-fits-all user-centric cellular architecture to accommodate the heterogeneous

nature of application needs which are expected to be demand-driven, elastic, and

capable of supporting multiple services.

Facilitating Proactive Network Operation: The current reactive mode of operation

in cellular networks, with approximately two thousand tunable configuration and

optimization parameters (COPs) and numerous key performance indicators (KPIs)

in 5G [5], often leads to sub-optimal performance gains and imposes significant

operating expenditures on network operators. This complexity is expected to in-

crease in future generations of cellular networks. To achieve proactive adaptability,

agility, and intelligence in cellular network design, it is crucial to leverage artificial

intelligence tools. By harnessing artificial intelligence tools, cellular networks can

be controlled proactively, effectively catering to the diverse and evolving needs of

user applications. This approach enables near-optimal performance by maximizing

various KPIs and ensures responsiveness to dynamic network conditions. Further-

more, the proactive operation of the cellular network can result in a reduction of

operating expenditures for network operators.

Performing Risk-aware Optimization: Despite the recent popularity of data-driven

online learning frameworks, their practical deployment in cellular networks remains

limited due to their risk of deteriorating network performance during the explo-

2



ration phase. These data-driven online solutions require hit-and-trial on live net-

works before converging to optimal COPs. Unlike other domains where hit-and-trial

is acceptable during the training phase, in cellular networks, online solutions can

degrade network KPIs. To make data-driven online solutions practical for optimiz-

ing desired set of KPIs in complex environments, such as cellular networks, there

is the need to make data-driven learning algorithms capable of averting the risk

of choosing extreme exploratory COPs that can cause harm to a cellular system

(such as low quality of experience at UEs, service unavailability, etc.) during online

optimization.

Adopting Open Radio Access Network: The centralized architecture of traditional

cellular networks presents challenges in terms of scalability and feasibility, particu-

larly when combined with a data-driven automation solution. The introduction of

the Open Radio Access Network (O-RAN) and its disaggregated architecture rev-

olutionizes the radio access network (RAN) vendor ecosystem. It enables multiple

vendors to supply commercial off-the-shelf hardware that aligns with open stan-

dards and interoperability specifications [6]. This shift empowers network operators

to choose the best-of-breed solution rather than being constrained by an inflexible

one-size-fits-all approach. The O-RAN framework facilitates flexible cloud-native

functionality and interoperability among services offered by different vendors. How-

ever, it does come with its own deployment challenges. The traditional base station

is transformed into logical E2 nodes, including the radio unit (O-RU), control unit

(O-CU), and distributed unit (O-DU), which are supported through open interfaces.

These components are optimized through two types of RAN intelligent controllers

(RICs): near real-time (near-RT RIC) and non-real-time (non-RT RIC) RAN intel-

ligent controllers. Considering these factors, it is essential to design cellular architec-

ture that is interoperable with the O-RAN specifications. By embracing openness,

cellular networks can leverage the advantages of vendor diversity, interoperability,

and flexible functionality, paving the way for more scalable and future-proof network
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Fig. 1.1: Comparison of base station-centric and user-centric user association.

deployments.

Enabling Universal Coverage: Despite the goal of user-centric networks to provide

uninterrupted coverage, there is a tendency for low-priority users to suffer as high-

priority users are prioritized, resulting in delays for the low-priority users. This issue

is particularly exacerbated in hotspot areas where scheduling delays are amplified.

In order to achieve universal coverage and address these challenges, it is imperative

to devise innovative cellular architectures that offer additional flexibility to ensure

seamless coverage for users of all priorities.

1.2 User-centric Radio Access Network Architectural Overview

UC-RAN has emerged as a promising technology to address the challenges posed

by traditional base station-centric UDNs [2–4,7,8]. By forming virtual cells around

scheduled users, UC-RAN effectively mitigates inter-cell interference and provides

a significant reduction in interference impact. Architecturally, UC-RAN separates

the baseband processing unit from the radio access network (RAN), allowing for

dense deployment of cost-effective data base stations (DBSs) without incurring high

capital and operational costs associated with traditional hardware requirements [9].

The dense deployment of DBSs in UC-RAN also shortens the average distance

between users and serving base stations, resulting in relaxed transmission power
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requirements for both User Equipment (UE) and DBSs.

UC-RAN’s ability to mitigate inter-cell interference and reduce deployment/operational

costs positions it as the ideal architecture for supporting user-centric services in

ultra-dense cellular networks. A typical UC-RAN configuration consists of a tier

of low-density control base stations (CBS) with large coverage, complemented by

a tier of high-density switchable distributed base stations (DBS) with intermediate

coverage. A key feature introduced by UC-RAN is the concept of an elastic degree

of freedom known as the Service Zone (S-zone), which determines the minimal sepa-

ration gap between scheduled users. The S-zone represents the size of a user-centric

virtual cell centered around the scheduled UE. In the user-centric architecture, the

S-zone size governs the association of DBSs, while in a base station-centric architec-

ture, the association is determined by the base station cell, as illustrated in Fig. 1.1.

During each transmission time interval (TTI), the CBS activates the most suitable

DBS within S-zone centered on the UE, while ensuring no overlap occurs among

adjacent S-zones. The elastic user-centric S-zone around a UE enables (i) efficient

interference protection between scheduled UEs; (ii) dynamic coverage extension and

shrinkage by activating a single radio unit having the best channel gain among the

multiple radio units within the S-zone region; (iii) high energy efficiency due to

opportunistic activation of radio units as compared to always on radio units; and

(iv) uniform coverage and uninterrupted provision of QoS due to diminishing cell

edge users and intercell interference [2–4,7,8].

1.3 Related Work

In recent works, researchers have investigated the impact of S-zone size in a UC-

RAN using analytical models for both sub-6 Gigahertz and millimeter frequency

bands [3,4,10–12]. These studies focus on network design and propose non-overlapping

virtual cells (S-zones) around scheduled users, based on their priorities. By em-
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ploying user-centric cells and macro-diversity techniques, the S-zone size can be

optimized as a control parameter to achieve desired KPIs.

For example, the authors in [3] demonstrated through a statistical framework that

an optimal user-centric virtual cell size exists, maximizing both area spectral ef-

ficiency and energy efficiency in UC-RAN. The authors emphasized that this vir-

tual cell size depends on variations in the density of DBS and UEs, necessitating

adaptation with changes in these parameters. In another work by [3], the authors

considered Stienen cells in UC-RAN to analyze the signal-to-interference-noise ratio

(SINR) distribution, area spectral efficiency, and energy efficiency. They compared

UC-RAN with non user-centric architectures and showed that UC-RAN not only

improves SINR but also optimizes area spectral efficiency and energy efficiency by

adjusting the design parameters. The authors in [10] proposed a user-centric model

for combining base stations in millimeter-wave networks, using stochastic geometry

to determine coverage probability and optimal area spectral efficiency. They intro-

duced a framework for optimizing the clustering parameter, leading to increased

area spectral efficiency.

Additionally, while CoMP solutions have been investigated for over two decades,

their incorporation in UC-RAN-based architectures is still in early stages. The au-

thors in [11], derived analytical expressions for coverage probability in the downlink

heterogenous network with user-centric architecture and base station cooperation.

Although the numerical results were highly accurate, a closed-form expression for

the coverage probability was lacking. The authors primarily focused on the analyt-

ical model for coverage probability and did not analyze the impact of cooperation

on different KPIs in a user-centric network.

Other research works have addressed various optimization problems in UC-RAN.

The authors in [13] formulated a max-min rate problem to reduce the power con-

sumption of UC-RAN by joint optimization of beamforming weights and UE as-
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sociation with the access point. The formulated problem is first divided into two

subproblems by relaxing the energy efficiency subproblem and power consumption

subproblem and then solved separately utilizing the Lagrange duality method. Au-

thors in [14] considered transmission points cluster approaches in massive multiple-

input-multiple-output and millimeter-wave aided CRANs to reduce the overhead

cost and ensure minimum signal changes at both network and user ends. In [15],

the authors have derived approximate analytical expressions for the ergodic capacity

and coverage probability for millimeter-wave user-centric dense networks.

Despite the promises of UC-RAN as a flexible architecture, several challenges need

to be addressed before its practical adoption in O-RAN-based cellular networks.

Firstly, the non-overlapping S-zone criterion in previous UC-RAN architectures al-

lows only one UE to be scheduled per S-zone, leading to inherent rigidity that

negatively impacts UE latency satisfaction and scheduling ratio [3, 16]. Secondly,

evaluating UC-RAN’s impact on latency satisfaction from a system-level perspec-

tive requires an evaluation metric that considers the temporal domain, taking into

account the time at which the UE requests service and when it receives the service.

Additionally, although data-driven solutions have shown effectiveness in optimizing

user-centric networks [8], the increase in the number of control and optimization

parameters may result in a large optimization space, requiring extensive exploration

that can potentially adversely affect the cellular network during optimization.

While online data-driven approaches (such as, DRL) are well understood for their

convergence, optimality, and sample data efficiency, risk awareness and minimiza-

tion during training and execution has received far less attention [17,18]. A line of

previous works has used techniques to ensure risk awareness in DRL-based automa-

tion [18–24]. These techniques include: (i) expert advice [19, 20], which requires

an accurate probabilistic model of the system; (ii) constrained policy optimiza-

tion [21–24], which generally requires domain knowledge about which actions will
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lead to constraint violations; and (iii) human intervention [18], which requires a hu-

man to watch the actions coming from DRL algorithm and intervenes when needed.

The fundamental issue with these approaches is that without having prior access to

the probabilistic model of the real system, safety must be learned through interac-

tion with live network, which can violate reliability (e.g. QoS requirements) during

the initial stages of learning.

Moreover, although the UC-RAN architecture demonstrates significant enhance-

ments in QoS for high-priority users, it often has adverse effects on QoS of low-

priority users. This is primarily attributed to the preemptive scheduling of high-

priority users with large service exclusion zones that delay the scheduling of low-

priority users [8]. The impact of this issue is further intensified in hotspot areas,

where the delay in scheduling is magnified, leading to coverage holes for low-priority

users. To address these coverage gaps in cellular networks, there has been a growing

interest in leveraging cell-free ABS-aided wireless communications to extend cover-

age to areas with limited infrastructure. One such approach was proposed in [25],

where the authors introduced an ABS-assisted cell-free network for providing cov-

erage to vehicles on highways with poor cellular infrastructure. They formulated

determining ABS trajectories as a Markov decision process, accounting for vehicular

network dynamics, and used DRL to optimize ABS trajectories for maximum vehic-

ular coverage. In another study [26], the authors proposed a user-centric ABS swarm

network, where multiple ABSs form a swarm around a user to provide customized

services. They derived a semi-closed form expression for coverage probability and

average achievable data rate with respect to ABS locations.

In [27], the authors considered joint optimization of location, transmit power, alti-

tude, and bandwidth for ABS in an underlaid D2D communications network. They

proposed a low-complexity iterative algorithm to obtain closed-form solutions for

transmit power allocation and altitude planning subproblems. In [28], the authors
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considered the problem of user association and bandwidth allocation along with

ABS placement in a ABS-assisted cellular network with the aim to minimize the

overall average latency ratio while meeting the user quality of service requirements.

They formulate a cyclic iterative algorithm to decompose the primal problem into

two subproblems, i.e., the bandwidth allocation and user association problem with

ABS placement.

1.4 Research Objectives

Building upon the discussions presented in Section 1.1 and Section 1.3, this disser-

tation introduces four novel approaches for UC-RAN optimal design and operation

with the objectives of mitigating interference, reducing power consumption, ensur-

ing diverse user/vertical service quality, facilitating proactive network operation,

risk-aware optimization, adopting an open radio access network, and enabling uni-

versal coverage.

Objective 1: Investigate the benefits of a UC-RAN in mitigating interference within

ultra-dense networks while dynamically optimizing coverage and enhancing the

quality of experience (QoE) for users through spatial diversity techniques, such

as coordinated multi-point (CoMP) technology [2].

Objective 2: Develop an intelligent, proactive, demand-driven, and elastic architec-

ture based on UC-RAN to effectively mitigate interference and cater to the diverse

needs of user applications. Furthermore, leverage the additional degrees of freedom

provided by UC-RAN to enable optimal control through an online data-driven opti-

mization framework. This framework should be capable of adapting to dynamic user

demands and mobility patterns while simultaneously performing multi-objective op-

timization of system KPIs.

Objective 3: Design an interoperable architecture based on UC-RAN that leverages
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the benefits of O-RAN and the architectural flexibility offered by UC-RAN. This

architecture aims to harness the full potential of O-RAN while ensuring risk-aware

optimization of COPs in a live network environment. The optimization framework

should enable accelerated learning of data-driven solutions while simultaneously

avoiding any degradation of network performance below the minimum reliability

requirements of the system during online optimization.

Objective 4: Develop an integrated aerial network in conjunction with UC-RAN to

effectively tackle the problem of coverage holes in UC-RAN. By leveraging the agile

deployment of aerial base stations (ABSs), on-demand rapid service provision can

be achieved, providing enhanced flexibility in adapting to changing user demands

and locations. However, to fully harness the potential of aerial network-assisted

communication, optimal control of various parameters, including ABS deployment,

transmit power, altitude, and beamwidth, is crucial.

1.5 Contributions

In light of the research objectives discussed above, the key contributions of the

dissertation are outlined in the following section.

Contribution 1: We leverage stochastic geometry concepts to derive analytical ex-

pressions for coverage probability, area spectral efficiency, and energy efficiency in

a CoMP-enabled user-centric architecture. Theoretical analysis and simulation re-

sults are presented, focusing on joint optimization of area spectral efficiency and

energy efficiency within the user-centric architecture. Additionally, we explore sce-

narios where CoMP deployment can enhance network-level KPIs. This contribution

provides valuable insights into the design and planning of future user-centric net-

works, offering a comprehensive understanding of the relationship between network

parameters and system-level efficiency metrics.
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Contribution 2: We propose a user-centric architecture for demand-driven elastic

communication, catering to a diverse range of user applications. The proposed ar-

chitecture allows the elastic virtual user-centered clusters, known as service zones

(S-zones), to be malleable to specific vertical requirements. Considering the het-

erogeneous user requirements in future cellular communications, a multi-objective

problem is formulated to optimize KPIs such as area spectral efficiency, energy ef-

ficiency, user service rate, and throughput satisfaction as a function of S-zone size

for respective verticals. Given the non-stationarity of user application demands

and mobility, we propose an online data-drive solution based on deep reinforcement

learning framework to accurately learn the mapping of environment state and action

instilling intelligence in the demand-driven elastic user-centric architecture. The

proposed intelligent deep reinforcement learning framework for UC-RAN networks,

named D-RAN, dynamically allocates S-zones to users such that a Pareto-optimal

front is found for the formulated multi-objective function. We evaluate the conver-

gence, efficacy, and adaptability of D-RAN to the non-stationary environment of

the proposed approach through numerical results. We also compare D-RAN’s per-

formance against brute-force and state-of-the-art metaheuristics such as simulated

annealing. With the proposed D-RAN framework, the paradigm of traditional cellu-

lar networks could be transformed into demand-driven, elastic, user-centric systems

in future 6G and beyond networks.

Contribution 3: We present and evaluate a user-centric architecture based on O-

RAN architecture to meet the QoS requirements of various verticals. We investigate

two key UC-RAN COPs; 1) size of user-centric virtual cells (S-zones), and 2) num-

ber of UEs scheduled per S-zone, which are leveraged through an rApp to control

latency satisfaction, reliability satisfaction, area spectral efficiency, and energy effi-

ciency. Our extensive investigation show that both COPs indeed offer a powerful,

mechanism to control multiple network KPIs in a flexible and scalable fashion. To

cope with the performance deterioration risk associated with online network recon-
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figuration, which has hindered the industry uptake of online learning-based solu-

tions, we propose offline learning leveraging a digital twin instilling risk-awareness in

the DRL optimization framework. The proposed digital twin-assisted DRL frame-

work’s convergence and accumulated risk are compared against brute force results,

showing an impressive performance in reaching the near-optima in a few hundred

iterations. Furthermore, the risk-aware optimization framework indicates the via-

bility of online learning techniques in live cellular networks with controlled and safe

exploration. This contribution demonstrates a highly flexible O-RAN-based user-

centric architecture coupled with a risk-aware DRL optimization framework that

can address the fundamental tradeoff between latency, reliability, and throughput

in live emerging cellular networks.

Contribution 4: We introduce and evaluate an integrated aerial network with UC-

RAN to meet the emerging need of user applications. We present a multi-objective

optimization framework that addresses the optimization of ABS COPs. Our analy-

sis considers the tradeoffs between key system parameters, including ABSs location,

transmit power, altitude, and beamwidth. Furthermore, we propose an optimiza-

tion approach using reinforcement learning and demonstrate its superiority over

brute-force methods. These findings provide valuable insights for intelligent ABS

deployment and optimization, improving service provisioning for low-priority users

within user-centric networks.

1.6 Current and Planned Dissemination and Publications

Academic Awards:

A1. ORISE Research Fellowship at U.S. Food and Drug Administration, Oct ’21

A2. Third Prize at OU-Tulsa Research Forum 2023, Apr ’23

Peer-Reviewed Journal Articles:

12



J1. S. K. Kasi, U. S. Hashmi, M. Nabeel, S. Ekin and A. Imran, “Analysis of Area

Spectral & Energy Efficiency in a CoMP-Enabled User-Centric Cloud RAN,”

in IEEE Transactions on Green Communications and Networking, vol. 5, no.

4, pp. 1999-2015, Dec. 2021, doi: 10.1109/TGCN.2021.3093390.

J2. S. K. Kasi, U. S. Hashmi, S. Ekin, A. Abu-Dayya and A. Imran, “D-RAN: A

DRL-Based Demand-Driven Elastic User-Centric RAN Optimization for 6G &

Beyond,” in IEEE Transactions on Cognitive Communications and Network-

ing, vol. 9, no. 1, pp. 130-145, Feb. 2023, doi: 10.1109/TCCN.2022.3217785.

J3. S. K. Kasi, F. A. Khan, S. Ekin and A. Imran. “Digital Twin Empowered

Risk-aware Reinforcement Learning Framework for User-centric O-RAN,” in

IEEE Transactions on Cognitive Communications and Networking (2023).

[Submitted]

J4. S. K. Kasi, F. A. Khan, S. Ekin and A. Imran. “User-centric Communication

with Aerial Network for 6G: A Reinforcement Learning Approach.” [Under

Co-authors Review]

J5. U. B. Farooq, S. K. Kasi, U. S. Hashmi, F. A. Khan, S. Ekin and A. Imran.

“Service Exclusion Zone Based RAN Slicing for 6G: Opportunities, Challenges,

and Research Directions,” in IEEE Network Magazine (2023). [Submitted]

J6. U. B. Farooq, S. K. Kasi, M. Manalastas, C. Zhu, B. Sheen, and A. Imran.

“Optimizing Mobility in Cellular Networks: A Risk-Averse Multi-objective

Reinforcement Learning Approach.” [Under Co-authors Review]

Peer-Reviewed Conference Papers:

C1. S. K. Kasi, U. Sajid Hashmi, M. Nabeel, S. Ekin and A. Imran, “Is CoMP

Beneficial In User-Centered Wireless Networks?,” 2022 International Confer-

13

https://ieeexplore.ieee.org/document/9467338
https://ieeexplore.ieee.org/document/9467338
https://ieeexplore.ieee.org/document/9931943
https://ieeexplore.ieee.org/document/9931943
https://ieeexplore.ieee.org/document/9931943
https://ieeexplore.ieee.org/abstract/document/9830168
https://ieeexplore.ieee.org/abstract/document/9830168


ence on 6G Networking (6GNet), Paris, France, 2022, pp. 1-5,

doi: 10.1109/6GNet54646.2022.9830168.

C2. S. K. Kasi, U. Sajid Hashmi, S. Ekin and A. Imran, “Learning-Aided Demand-

Driven Elastic Architecture for 6G & Beyond,” 2023 IEEE 97th Vehicular

Technology Conference: (VTC2023-Spring), Florence, Italy, 2023. [Accepted]

C3. U. B. Farooq, S. K. Kasi, M. Manalastas, C. Zhu, B. Sheen, and A. Imran.

‘Risk Averse RL-based Multi-objective Mobility Management for Emerging

Cellular Networks.”2023 IEEE Global Communications Conference (GLOBE-

COM), Kuala Lampur, Malaysia, 2023. [Submitted]

C4. M. Shaukat, S. K. Kasi, and A. Imran. “Deep Graph Reinforcement Learning

for Optimization of Emerging User-Centric Radio Access Network.” [Under

Co-authors Review]

1.7 Organization

The dissertation is organized as follows: Chapter 2 addresses the challenge de-

scribed in research objective 1 by providing an analytical and numerical analysis

of the impact of enabling CoMP in a UC-RAN architecture. Chapter 3 addresses

the challenge described in research objective 2 by proposing an architecture for

demand-driven elastic user-centric communication to provide on-demand services

to a diverse set of user applications. This chapter also focuses on developement of

DRL-based optimization framework to learn the mapping of environment state and

action, instilling intelligence in the demand-driven elastic user-centric architecture.

Chapter 4 addresses the challenge described in research objective 3 by introducing

a novel framework for accelerating DRL training using a digital twin. Chapter 5

addresses the challenge described in research objective 4 by proposing a solution

to improve service provision for low-priority users in user-centric networks using an
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aerial network. Finally, Chapter 6 presents the conclusion and outlines potential

future work.
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CHAPTER 2

Analysis of Area Spectral and Energy Efficiency in a

CoMP-Enabled User-Centric RAN

2.1 Introduction

2.1.1 Motivation

UC-RAN has emerged as a promising technology to address the high interference

challenge introduced by UDNs. UC-RAN with its centralized architecture is con-

sidered an ideal architecture to support CoMP [29], which enhances KPIs such as

coverage probability, SINR, and area spectral efficiency. In this chapter, we inves-

tigate the benefits of UC-RAN with CoMP in reducing interference within UDNs

while simultaneously improving coverage and enhancing user QoE.

Unlike existing literature on CoMP that lacks analytical analysis of CoMP-enabled

UC-RAN, this chapter focuses on analyzing average aggregate interference, area

spectral efficiency, and energy efficiency in UC-RANs with CoMP. We aim to derive

closed-form expressions for these KPIs and provide close bounds to numerical re-

sults. Additionally, we extend the analysis to different CoMP schemes as described

in Section 2.2. By developing analytical and numerical models, we calculate opti-

mal parameters such as S-zone size, density of distributed base stations (DBSs), and

other system parameters in terms of area spectral efficiency and energy efficiency.

2.1.2 Contributions

The contributions of this chapter can be summarized as follows:
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• First, we extend the user-centric architecture proposed in [4] to include co-

operation between DBSs in an S-zone. We characterize the activated DBS

density followed by the average interference experienced by a scheduled UE

in UC-RAN using the stochastic geometry tools. (Section 2.4).

• In contrast to previous works, we derive a closed-form expression character-

izing the lower bound on the probability of coverage for a scheduled UE in a

CoMP enabled UC-RAN (Section 2.4). The lower bound is further utilized to

derive the area spectral efficiency in UC-RAN (Section 2.4).

• We then proceed to quantify the energy consumption model for UC-RAN to

support CoMP communication and the associated overhead for discovering

DBS(s) providing the highest channel gains at each scheduled UE. The power

consumption model is used to derive the energy efficiency of CoMP-enabled

UC-RAN (Section 2.5).

• Next, we provide a comparative performance analysis of different realizations

of the joint transmission mode of CoMP in UCRANs. The three realizations

are categorized based on the selection strategies of cooperative DBSs in an

S-zone (Section 2.6).

• Finally, the derived analytical framework is used to investigate the impact of

new degrees of freedom, i.e., the S-zone size and DBS density, on the area spec-

tral efficiency, and energy efficiency of CoMP-enabled UC-RAN. The results

indicate that for any number of cooperative DBSs in an S-zone, an optimal

operating point for the S-zone size and density of DBS exists that maximizes

the area spectral efficiency and energy efficiency. However, the S-zone size

optimal for area spectral efficiency does not need to also be optimal for en-

ergy efficiency, therefore, we provide an analysis on the tradeoff of these KPIs

using the new degrees of freedom (Section 2.6).
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2.1.3 Chapter Organization and Notation

Throughout this chapter, the boldface small case letter (such as x) is used to repre-

sent a vector, and ||x|| is used to denote the L2 norm of vector x in Euclidean space.

The symbol / denotes the set subtraction, whereas ∈ denotes the set membership.

The notations EZ(.) and fZ(.) are used to denote the average value and probability

distribution of a random variable, respectively. The symbol Z ∼ U(a, b) indicates a

uniform distribution for values between a and b. The symbol Z ∼ exp(µ) represents

an exponential distribution with average value µ. The symbol 1(x > y) denotes a

characteristic function and b(x, r) represents a circle centered at a point x with a

radius of size r. Finally, the Poisson point process (PPP) is denoted by Π.

The rest of the chapter is organized as follows. The problem description and re-

search challenges are discussed in Section 2.2. The network model is explained in

Section 2.3. The quantification of area spectral efficiency and energy efficiency are

derived in Sections 2.4 and 2.5, respectively. System evaluation is conducted in

Section 2.6. Finally, the outcomes of the chapter are concluded in Section 2.7.

2.2 Problem Description and Design Issues

In this Section, we first discuss the CoMP-enabled UC-RAN architecture in detail.

We then identify the key challenges in CoMP-enabled UC-RAN architecture fol-

lowed by the discussion of various methods through which CoMP can be employed.

2.2.1 CoMP-enabled UC-RAN Architecture

In a UC-RAN model, the S-zone of a predefined radius is created around all sched-

uled UEs during each TTI. An arbitrary UE is scheduled depending on its service

requirements which is then served by one or more activated DBSs within an S-zone.

The set of serving DBSs around a scheduled UE may change across TTIs depending
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Fig. 2.1: Graphical realization of CoMP for different values of M where the different
colors of DBSs correspond to DBSs of different S-zones.

on the spatial distribution of DBSs, user’s mobility, and wireless channel conditions.

If more than one DBS is activated, then a mechanism for cooperation is required

to simultaneously transmit data to the scheduled user.

For LTE-advanced, 3GPP has identified three major downlink coordination tech-

niques based on the complexities of implementation and required backhaul ca-

pacity [30]. These techniques can be categorized as (1) joint transmission (JT),

(2) dynamic point selection (DPS), and (3) coordinated beamforming/scheduling

(CB/CS). In JT, channel state information (CSI) and user data are shared between

the coordinated set of transmission points. The mode of operations of DPS is very

similar to JT except that the data is transmitted by one transmission point at a

specific TTI. Unlike JT and DPS, CB/CS requires only CSI to be shared between

the transmission points. Even though the backhaul bandwidth requirement of JT is

the highest amongst all the aforementioned coordination techniques, the maximum

gain in performance is also offered by JT [29].
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In this chapter, we mainly focus on the realization of JT for enabling cooperation

between the transmitting DBSs in an S-zone. To make a comparative analysis, we

consider that at any specific TTI, the number of cooperative DBSs in an S-zone

cannot exceed M ∈ Z+, where Z+ is the set of positive integers. An exact bound

on the number of cooperative DBSs is not considered because the number of DBSs

in an S-zone depends on the density of DBSs, therefore, it is not realistic to assume

that each S-zone will have at least a certain number of DBSs. In Fig. 2.1, we show

the graphical realization of CoMP enabled UC-RAN for different values of M . An

important point to consider here is that in each S-zone, no more than M DBSs

coordinate to simultaneously transmit the same data to the scheduled UE. Also, if

the number of DBSs is less than M in any S-zone then all of them will be activated

by the BBU to serve a scheduled UE (as shown in Fig. 2.1 for M = 4 scenario).

2.2.2 CoMP Clustering Challenges in UC-RAN

CoMP is often realized with small clusters of DBSs due to the complexity required

for coordination which increases exponentially with the increase in coordinated cells

in a cluster [29]. An innate question that arises is whether the benefits of CoMP

exceed the complexities involved in enabling it in a UC-RAN. Although CoMP has

been widely studied in HetNets, there has been limited work on CoMP in UC-RAN.

Therefore, we discuss the challenges faced by enabling CoMP in UC-RAN which

can be classified as:

Is it spectral-efficient and energy-efficient to realize CoMP? As briefly discussed

in Section 2.1, gains through enabling CoMP are achieved at the expense of energy

efficiency. However, the underlying assumption that realizing CoMP increases the

area spectral efficiency in any network may be too much of an exaggeration. The

two important points to notice in the UC-RAN architecture shown in Fig. 2.2 are

that: (i) there are no cell-edge users because virtual cells are created around the
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users, and (ii) increasing coordinating DBSs in an S-zone leads to more number of

activated DBSs in the overall network increasing the number of interferers in the

network. By enabling CoMP, the dominant interferers are virtually removed which

intuitively should reduce the overall interference experienced by a UE. However, in

an architecture such as shown in Fig. 2.2 where S-zones are non-overlapping and

DBSs are activated “on-demand” of a UE within a specific user-centric cell area

(S-zone), the existence of dominant interferers is unfounded. Both of these observa-

tions are directly related to the spectral gains achieved by realizing CoMP because:

(i) the major feature of CoMP, which is to mitigate cell-edge user interference, is

not applicable in UC-RAN architecture with non-overlapping S-zones, and (ii) in-

terference is minimum only when one DBS is activated in every S-zone. However,

ideal CoMP gains can only be achieved if the increase in received signal powers

at the scheduled UEs through coordination is much more than the increase in the

aggregate interference in the network.

It must be noted that by enabling CoMP, the number of coordinating DBSs in-

creases but so does the number of interferers because more DBSs are activated in

other S-zones. In the UC-RAN architecture discussed in this chapter, the selec-

tion combining diversity technique is used to activate no more than M DBSs that

provide the highest channel gains to a scheduled UE in an S-zone. Because of this

reason, even if the number of coordinating DBSs is increased, the dominant impact

on received signal power at a scheduled UE (in most cases) will be from the DBS

providing the largest channel gain. The disparity in the channel gains from coordi-

nating DBSs increases for higher values of the path-loss exponent. Contrarily, the

increase in the number of interferers due to an increase in the number of activated

DBSs will increase the overall interference experienced at a scheduled UE. This phe-

nomenon increases the interference roughly by M fold while received signal power

is not increased by the same factor leading to a decrease in SIR due to uncoordi-

nated interference out of the S-zone. Based on the discussion, it is quite evident
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that whether CoMP transmission in UC-RAN architecture will enhance spectral

and energy efficiency is not a trivial research problem.

What is the optimal S-zone size? Another key parameter involved in the design of

UC-RAN is the size of the cooperative cluster or S-zone created around a scheduled

UE. Increasing the S-zone size causes: (i) an increase in the average distance between

scheduled UE and interfering DBSs, (ii) an increase in the possible set of DBSs

within a cooperative cluster yielding high macro-diversity gain, and (iii) a possible

decrease in the total number of activated DBSs because the number of activated

DBSs in an S-zone is bounded by M in the UC-RAN architecture shown in Fig. 2.2;

meaning that if the total number of S-zones are decreased in a network, then the

total number of activated DBSs will also decrease. Hence, larger the S-zone size,

lesser the number of scheduled UEs and consequently activated DBSs serving those

scheduled UEs. Conversely, larger S-zone sizes may lead to a decrease in the overall

DBSs power consumption and increase spectrum reuse such that more number of

scheduled UEs can be served simultaneously. Given these insights, we investigate

the optimal S-zone size that yields an ideal tradeoff between area spectral efficiency,

energy efficiency, or some combination of both in a CoMP-enabled UC-RAN.

Which DBSs to activate/deactivate? Another important design parameter is to

decide which DBSs should be kept activated and which DBSs should remain deacti-

vated assuming that measurements of average received signal powers from all DBSs

are available at a scheduled UE. In [31], the authors have discussed two schemes by

which DBSs in JT can be activated/deactivated. In scheme 1, M DBSs that provide

the best average received powers are activated while others are kept deactivated.

In scheme 2, a cooperative DBS is only considered for CoMP if the received sig-

nal power from the DBS is above some percentage of the maximum received signal

power. For example, if the maximum received signal power from all DBSs is Pmax,

then the received signal power from the cooperative DBSs PCoMP should be greater
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Fig. 2.2: CoMP-enabled UC-RAN architecture with activation region of radius
Rszone for a scheduled UE.

than β × Pmax, where β can be any value between 0 and 1. Another method by

which DBSs are activated/deactivated, termed as a random scheme, is to randomly

activate DBS(s) in the S-zone while deactivating other DBSs. Therefore, DBSs

activation/deactivation and its impact on area spectral efficiency, and energy effi-

ciency in a CoMP-enabled UC-RAN architecture is another research problem that

we investigate in this chapter.

2.3 Network Model

2.3.1 Spatial and Channel Model

In this chapter, we consider an underlaid cloud radio access network with an ultra-

dense DBS deployment scenario. The ultra-dense deployment of DBSs is an imag-

inable scenario in future networks [32]. Both DBSs and UEs are spatially modeled

as independent stationary Poisson point processes ΠDBS and ΠUE with densities

λDBS and λUE, respectively. The average number of DBSs in an S-zone is given
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by λDBSπR
2
szone that is characterized by λDBS and Lebesgue measure [33] of a disc

with radius Rszone.

The communication channel between an arbitrary user x ∈ ΠUE and DBS y ∈ ΠDBS

is modeled by hxyℓ||x − y||, where hxy ∼ exp(1) is a exponential random variable

with unit mean representing the effects of Rayleigh fading and ℓ||x−y|| is the large-

scale path loss model. The large-scale path loss model is given by the frequency-

dependent constant K, distance between the UE and DBS ||x − y||, and path loss

exponent α > 2 such that ℓ||x−y|| = ||x−y||−α. All DBSs are assumed to transmit

at equal power levels PDBS, and each DBS and UE is equipped with a single antenna.

We also assume that the thermal noise is negligible, hence, the communication is

interference-limited.

2.3.2 User-centric Clustering in UC-RAN

In this chapter, we use the user-centering cluster mechanism given in Algorithm 1 [4]

for UC-RAN. The UEs are scheduled at each TTI by the macro-cell or BBU accord-

ing to their scheduling priorities which are marked according to a uniform random

distribution pUE ∼ U(0, 1). The lower the mark value of a UE, the higher the

scheduling priority it possesses. For the UEs which are not scheduled yet, their

scheduling priorities increase in the subsequent TTIs until they are scheduled to be

served.

A UE x is scheduled (i.e., pxsch = 1) iff its scheduling priority is the highest in its

neighborhood which is characterized by the cluster radius Rszone. To be succinct,

this means that within a circle of radius Rszone centered at UE, there is no other

UE with a higher scheduling priority, and the minimum distance between any two

S-zones should be at least 2Rszone. Note that this circle (S-zone) is commensurate

to the size of the cooperative cluster. The dynamic change in S-zone size allows

the flexibility to activate DBSs in an S-zone depending on which scheme of joint
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Algorithm 1: UE Scheduling Algorithm in CoMP-based UC-RAN

Input : ΠUE, ΠDBS, Rszone

Output: Π′
UE, Π′

DBS

Initialize the set of UEs and the activated DBS(s) as Π′
UE ← ∅, Π′

DBS ← ∅.;
Assign random priorities to each UE based on pUE ∼ U(0, 1).;
foreach x ∈ ΠUE do

pxsch ← 1;
foreach y ∈ ΠUE do

if y ∈ b(x, 2Rszone) and pUE(y) > pUE(x) then
if y ̸= x then

pxsch ← 0;

if pxsch = 1 then
Π′
UE ∪ x;

foreach m ∈ Π′
UE do

DBS ← ∅;
foreach n ∈ ΠDBS do

if n ∈ b(m,Rszone) ̸= Φ then
DBS ∪m;

Rank DBS in order of smallest path-loss criteria such that path-loss
(DBSi) < path-loss (DBSj), ∀i < j;
if |DBS| ≤M then

Π′
DBS ∪DBSi, ∀DBSi ∈ DBS;

else
Π′
DBS ∪DBSi, DBSi ∈ DBS, i ≤M ;

Scheduled users Π′
UE are served from the coordinating DBSs Π′

DBS;

transmission is used to service a scheduled UE. A macro-cell or BBU is responsible

for both the activation of DBSs in a cooperative cluster and delegating the size of

a cooperative cluster to scheduled UEs.

The on-demand activation of DBSs makes UC-RAN capable of self-organizing its

coverage according to the spatiotemporal variation in the user demography. Though,

for the UC-RAN architecture to avoid coverage holes in areas where there are no

DBSs available to provide coverage to a scheduled UE, DBSs need to be deployed

densely so that at any time there is at least 1 DBS available to provide services

to a scheduled UE. In the case of a void cluster, which is an unlikely scenario, the
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scheduled UE can be clustered together to nearby scheduled UEs using clustering

strategies discussed in [34].

2.3.3 Signal Model and Probe Cluster

Consider a scheduled UE x ∈ Π
′
UE, where Π

′
UE is the PPP representing scheduled

UEs. Π
′
UE unlike ΠUE is a non-stationary Poisson point process that can be modeled

as a type II Matern hardcore process [33]. The density of scheduled UEs can be

approximated by an equidistant stationary Poisson point process [35] given as:

λ
′

UE =
1− exp(−λUE4πR2

szone)

4πR2
szone

. (2.1)

For a scheduled UE x, let Π
′C
DBS = Π

′
DBS ∩ b(x,Rszone) be the set of DBSs that

are activated by the BBU to serve x based on a scheduling criterion [4]. Π
′
DBS

represents the spatial distribution of no more than M activated DBSs in an S-zone.

Similarly, let Π
′I
DBS = Π

′
DBS\Π

′C
DBS be the set of DBSs which are simultaneously

transmitting to the scheduled UE u ∈ Pi′UE where u ̸= x. Given these observations,

we model the received signal at a particular scheduled UE as:

qx =
∑

i∈Π′C
DBS

√
PDBShixℓ||x− i||sx +

∑
u∈Π′

UE\x

∑
j∈Π′I

DBS

√
PDBShjxℓ||x− j||su, (2.2)

where sx is the signal transmitted to a scheduled UE x. Capitalizing on the station-

ary characteristics of the scheduled UE’s PPP, focusing on a typical UE is sufficient.

As maintained by Silvnyak’s theorem [33], the addition of a single point does not

affect the law of stationary PPP, therefore, a probe UE is added at the origin. Addi-

tionally, the received signal qx can be simplified with ℓ||i−y|| = ||i−y||−α = ||i−o||−α

where the index o is the location of a typical UE.
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2.4 Characterizing the Area Spectral Efficiency of a UC-RAN

A typical UE is served by at most M DBSs in an S-zone centered at origin o with

a ball area of b(o,Rszone) where Rszone is the radius of the ball. The cooperative

cluster is defined as:

C = argr1,r2,...,rn⊂Π
′
DBS

n∑
i=1

hir
−α
i , (2.3)

where n ≤M , ri denotes the distance between serving DBS i and scheduled UE, hi

captures the effect of Rayleigh fading, and Π
′
DBS is the resultant PPP of activated

DBS with density λ
′
DBS. With the joint transmission mode of CoMP, all the DBSs

in a cooperation set jointly transmit the same message to a scheduled UE on the

same time-frequency resource [36,37]. Therefore, the signal-to-interference ratio at

a typical UE in an interference-limited environment can be expressed as:

SIR = ΓUE =

∑
i∈Π′C

DBS
hir

−α
i∑

j∈Π′I
DBS

hjr
−α
j

. (2.4)

The noise power at a scheduled UE is at much lower levels as compared to the

aggregate interference which is why the assumption of an interference-limited en-

vironment is valid even with the induced spatial repulsion between scheduled UEs

and activated DBSs in other S-zones [11].

2.4.1 Expected Aggregate Interference and Modified Density of Acti-

vated DBSs

According to reduced Palm measure and Slivnyak’s theorem [33], the expected

aggregate interference at a typical UE can be expressed as:
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EI[I] = E
( ∑
j∈Π′I

DBS

hjr
−α
j

)
. (2.5)

According to Campbell’s theorem [33], the expectation term in above expression

can be simplified to:

EI[I] =

∫ ∞

Rszone

2πλ
′

DBSE[H]r1−αdr, (2.6)

where λ
′
DBS is the density of activated DBSs and E[H] is the expected value of

small-scale fading. By integrating and substituting E[H] = 1, we get:

EI[I] =
2πλ

′
DBS

(α− 2)(Rα−2
szone)

. (2.7)

The density of activated DBSs λ
′
DBS can be approximated as pACTλDBS, where λDBS

is the density of original DBSs distribution and pACT is the activation probability

of DBSs in an S-zone.

Theorem 1. The activation probability of DBSs in a CoMP-enabled UC-RAN can

be expressed as follows:

pACT =
(

1− exp(−λ′

UEπR
2
szone)

)
.

(
Γ(M + 1, X)

γ(M + 1)
+

exp(−X)

[
M(X)M+1

2F2(1,M + 1;M + 2,M + 2;X)

(M + 1)γ(M + 2)
− 1

])
, (2.8)

where pFq(a1, ..., ap; b1, ..., bq; z) is the generalized hypergeometric function, γ(x) is

the complete gamma function, Γ(x, y) is the upper incomplete gamma functions

and X = λDBSπR
2
szone is the average number of DBSs in a circle.

Proof: See Appendix A. ■

From Eq. 2.7 and Eq. 2.8, we make the following remarks:

• Expected aggregate interference increases with the increase in the density of
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activated DBSs which is a function of M , Rszone, λ
′
UE and λDBS. However,

for a fixed density of scheduled UEs and DBSs, the only tunable parameters

are M and Rszone. Both parameters will have a direct impact on the average

aggregate interference experienced at a typical scheduled UE.

• It can be observed that by enabling CoMP, i.e., M > 1, the average aggregate

interference will increase with the increase inM . Likewise, reducing the S-zone

size will increase the overall number of DBSs activated for serving scheduled

UEs, thereby leading to an increase in average aggregate interference.

2.4.2 Coverage Probability

A typical UE’s probability of coverage can be defined as the probability of received

SIR to be greater than a desired SIR threshold value (γth). The mathematical

expression of the coverage probability can be simplified as:

Pcov(γth, Rszone) = Pr(ΓUE ≥ γth) = 1− Pr(ΓUE < γth). (2.9)

Substituting the value of ΓUE from Eq. 2.4 in Eq. 2.9, we obtain:

Pcov(γth, Rszone) = 1− Pr
(∑

i∈Π′C
DBS

hir
−α
i∑

j∈Π′I
DBS

hjr
−α
j

< γth

)
. (2.10)

Pcov(γth, Rszone) = 1− Pr
( ∑
i∈Π′C

DBS

hir
−α
i < γth

∑
j∈Π′I

DBS

hjr
−α
j

)
. (2.11)

Considering the aggregate interference in the above expression as a random variable,

we can average the SIR distribution over all instances of interference between non-

cooperating active DBSs that will allow us to simplify the above expression as:
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Pcov(γth, Rszone) = 1− EI

[
Pr

(
S < γthI

)]
, (2.12)

where S =
∑

i∈Π′C
DBS

hir
−α
i and I =

∑
j∈Π′I

DBS
hjr

−α
j denote the desired signal power

and aggregated interference strength, respectively.

Theorem 2. The lower bound on the coverage probability of the typical user in a

CoMP-enabled UC-RAN can be given as follows:

Pcov(γth, Rszone) ≥ 1− exp

−
λDBSπ

1−δδγ

(
δ,
γth2πλ

′
DBSR

2
szone

α− 2

)
(γth2λ

′
DBS)δ(Rszone)−δ(α−2)(α− 2)−δ

 , (2.13)

where δ = 2
α

and γ(a, b) =
∫ b
a
ta−1 exp(−t)dt is the lower incomplete Gamma func-

tion.

Proof: See Appendix B. ■

2.4.3 Area Spectral Efficiency

Building on the coverage probability metric obtained, we define the area spectral

efficiency (ASE) performance metric in this Section. The average area spectral

efficiency can be defined as [38],

ASE = λ
′

UE log2(e)

∫ ∞

0

Pcov(γth, Rszone)

1 + γth
dγth, (2.14)

where λ
′
UE is the modified density of the PPP representing scheduled users. Un-

der the assumption that all users transmit at the same rate log2(1 + γth) and the

transmission is considered successful only if the received SIR is above the desired

threshold γth, the ASE metric can be lower bounded [39] as:

ASE = λ
′

UE log2(1 + γth)Pcov(γth, Rszone). (2.15)
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Given a desired threshold, the average area spectral efficiency metric represents the

sum of the maximum of average bits transmitted per unit Hertz bandwidth per unit

area. It is worth noting that ASE is dependent on the density of scheduled UEs,

γth and coverage probability. The bound for coverage probability and density of

scheduled UEs will be tight for any value of γth, however, the multiplication of term

log2(1 + γth) with coverage probability and density of scheduled UEs is expected to

slightly loosen the bound of ASE values for higher values of γth.

Similar to the coverage probability, ASE is also coupled with the size of the S-zone

and the density of activated DBSs. While an increase in the cluster size reduces the

density of scheduled UEs, it also improves SIR due to a reduction in the number

of interfering DBSs. Similarly, by enabling CoMP, an increase is expected in the

received signal power at a typical UE. However, CoMP also increases the number

of interfering DBSs. Therefore, both these parameters can be treated as the design

parameters of a UC-RAN architecture for which there exist optimal values which

maximize the network-wide ASE.

2.5 Characterizing The Energy Efficiency Of A UC-RAN

In this Section, we quantify the energy efficiency (EE) performance of the proposed

CoMP-enabled UC-RAN architecture. Enabling CoMP and exploiting spatial di-

versity gain by activating DBS(s) with maximum channel gains will increase the

energy consumption cost. At the same time, only activating some DBSs will im-

prove the energy efficiency compared to the mechanism in which all the DBSs are

kept ON [40,41]. The energy efficiency can be formulated as [3]:

EE =
log2(1 + Γcran)

Pcran
, (2.16)
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Table 2.1: CoMP-enabled UC-RAN simulation parameters.

Symbol Parameter Name Parameter Value
- Dimensions of Simulation Re-

gion
100m× 100m

λUE UE’s average density 10−1\m2

λDBS DBS’s average density 3 × 10−2 − 1.3 × 10−1\m2

(Variable)
α, αnear, αfar Path-loss exponents 3, 3, 6
Rszone S-zone Size 1m− 10m (Variable)
M Maximum Number of Cooper-

ative DBSs
1− 5 (Variable)

where Pcran is the average power consumption of the whole network and Γcran is

the effective SIR [3]. In the power consumption model, we focus on the overhead

associated with enabling CoMP and discovering the best DBS(s) for the scheduled

user association. During the discovery process, each DBS estimates the channel

gain from the scheduled UE which will contribute to the energy consumption of the

network.

The power consumption model proposed in this chapter is inspired from [42], wherein

the authors proposed an accurate model for power dissipation considering parame-

ters such as cooling, power amplifiers, baseband processing, and antenna interface.

A related but modified model designed specifically for C-RAN was provided in [43]

that uses parameterization specific to C-RAN efficiency.

The average power consumption can be modeled as:

Pcran = ωcran(N, θ)PO + Psp + ∆uPu + Pou, (2.17)

where PO is the power consumption of the DBS allowing it to operate in listening

mode, Pu is the transmission power of a UE, ∆u is a factor for radio frequency

module of power consumption at the UE, Pou is the circuit power consumed at

the UE, and Psp is the power consumption due to signal processing overhead. The

UC-RAN coefficient is directly proportional to the average number of cooperative
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Table 2.2: CoMP-enabled UC-RAN power consumption parameters.

Symbol Parameter Name Parameter Value
Pu UE transmit power 1 W
PO DBS fixed power consumption 6.8 W
∆u Radio frequency component’s power consumption 4 W
Pou UE device discovery circuit power consumption 4.3 W

DBSs in each S-zone (represented by N) and a parameter θ which characterizes the

implementation efficiency. By using a simple linear parameterization, the UC-RAN

coefficient can be modeled as ωcran(N, θ) = θN where 0 ≤ θ ≤ 1. In this chapter,

θ is set to 1 to realize the least efficient UC-RAN implementation in terms of fixed

power consumption of activated DBSs.

Further, enabling CoMP requires additional power consumption for signal process-

ing. The signal processing overhead required for CoMP is calculated as [44],

Psp = 58(0.87 + 0.03N2), (2.18)

where N is the average number of cooperative DBSs activated in each S-zone and

is given by N = λ
′
DBS/λ

′
UE. The network power consumption can now be given as:

Pcran = NPO + 58(0.87 + 0.03N2) + ∆uPu + Pou. (2.19)

From the expression given in Eq. 2.15, it can be observed that EE is a function of

the size of the S-zone, density of activated DBSs, and the number of cooperating

DBSs. However, the optimal values of these parameters will be different for ASE

and EE leading to an important design question as to what values should be chosen

to maintain a balance between the system’s area spectral efficiency, and energy

efficiency. In the next Section, we discuss the system evaluation considering the

above-mentioned design question.
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Fig. 2.3: Average activated DBS density (λ
′
DBS) in the network for different numbers

of maximum cooperating DBSs (M) within an S-Zone.

2.6 System Evaluation

In this Section, we evaluate the performance of the proposed CoMP-enabled UC-

RAN using MATLAB simulations by setting the simulation parameters as shown in

Table 2.1. The service area under consideration is a square of 100 m×100 m. In the

service area, UEs and DBSs are distributed through Poisson point processes with

densities λUE and λDBS, respectively. At each TTI, UEs are scheduled according to

the algorithm initially proposed in [4] and discussed in Section 2.3. The size of the

virtual cell (S-zone) and density of DBSs are varied across different experiments to

study their impact on ASE and EE of a CoMP-enabled UC-RAN. The transmission

power value of each activated DBS is set to 1 Watt and the path-loss exponent is

set to 3. The maximum size of cooperative DBSs is set to M and Monte-Carlo

simulations are employed for 104 realizations in each experiment.
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2.6.1 Validation of the Modified Density of DBSs

Fig. 2.3 presents the validation of the analytical model for the modified density

of DBSs expressed in Eq. 2.8. For different values of M , the theoretical values

are consistent with the simulated values of DBSs modified density. As expected,

the density of activated DBSs λ
′
DBS increases with an increase in M due to more

number of activated DBSs in each S-zone.

Similarly, the impact of average number of DBSs within a circular region (calculated

as X = λDBSπR
2
szone) can be observed by varying the DBS deployment density

(λDBS) and the radius of the S-zone (Rszone). For X approximately equal to 8,

6, and 5, the density of activated DBSs decreases as the value of X is decreased.

This is mainly because X is the average number of DBSs in a circle that can vary

across different S-zones depending on the random distribution of the Poisson point

process. However, if M << X then for different values of X, there will be little or

no impact on the density of activated DBSs as each S-zone will probably have at

least M DBSs.

2.6.2 Validation of Coverage Probability for JT scheme 1

Fig. 2.4 compares the analytical and simulated results of coverage probability with

different values of desired SIR thresholds γth for both CoMP-enabled and no-CoMP

scenarios. It can be observed that with the increase in the value of γth, cover-

age probability is decreased. Moreover, the analytical coverage probability curves

provide a lower bound to the simulated curves (as discussed in Section 2.4).

It is also important to note that there is a slight offset in the analytical and simulated

curves for different values of the maximum number of cooperative DBSs in an S-

zone, i.e., M . This offset, also observed by authors in [45], can be explained by

recalling the derivation of expected aggregate interference expression in Section 2.4.
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Fig. 2.4: Coverage probability for different SIR requirements (γth) and numbers of
maximum cooperating DBSs (M) within an S-Zone.

In the devised analytical model, the Campbell theorem assumes an infinite number

of interferes in the network. However, in our simulations, we can only consider a

finite service region consequentially resulting in a finite number of interferers. The

difference in the analytical and simulated aggregate interference contributes to the

offset observed in the coverage probability curves.

Another interesting observation in Fig. 2.4 is the difference in the coverage prob-

abilities of CoMP-enabled and no-CoMP UC-RAN architectures. As discussed in

Section 2.2, the UC-RAN architecture with non-overlapping S-zones removes the

possibility of cell-edge UEs, therefore, the major feature of CoMP to alleviate cell-

edge interference is not applicable. Without any cell-edge UE, the only constructive

impact of CoMP is the increase in accumulated signal powers due to coordination

in an S-zone. However, by activating DBSs according to scheme 1 of JT (spatial

diversity technique), the DBS chosen first will always be a dominant contributor

towards the accumulated signal power. Therefore, when CoMP is enabled, the sig-

nal powers will only increase by a small fraction due to the random deployment of
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(a) Scheme 1. (b) Scheme 2.

(c) Scheme 3.

Fig. 2.5: Performance comparison of coverage probabilities for scheme 1, scheme 2
and scheme 3 of joint transmission mode.

DBSs and the path-loss model. On the other hand, the aggregate interference will

increase linearly resulting in the degradation of coverage probability at a typical

UE.

2.6.3 Comparison of JT Schemes Coverage Probability

In Section 2.2, we discussed different schemes of joint transmission mode based on

which DBSs are activated. In Fig. 2.5, we compare the performance of different

schemes in terms of coverage probabilities. By employing scheme 2 of joint trans-

mission, we only choose DBSs for cooperation if PCoMP > 0.9Pmax, where PCoMP

is the received signal power of cooperative DBS and Pmax is the maximum of all
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(a) λDBS = 0.03. (b) Rszone = 6m.

(c) M = 2

Fig. 2.6: Area spectral efficiency of the CoMP-enabled UC-RAN with varying S-
zone radius, DBS density and M for γth = 4 dB.

received signal powers in an S-zone.

As discussed in the previous subsection that the dominant contributor in signal

power is always the DBS that provides the maximum channel gain, therefore, occa-

sionally, the signal power of the second maximum or third maximum DBS satisfies

the criterion of scheme 2. For this reason, in Fig. 2.5 (b), it can be observed that

the coverage probabilities for CoMP or no-CoMP are approximately the same. En-

abling CoMP in UC-RAN architecture using schemes 1 and 2 does not improve the

coverage probabilities at an arbitrary UE. Hence, it buttresses our claim that en-

abling CoMP in UC-RAN with the proposed architecture degrades the performance

in terms of coverage probability, ASE, and EE (as further shown in Fig. 2.6 and
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7). However, employing a random scheme of DBS selection where no more than M

DBSs are randomly selected in each S-zone will show the improvement in terms of

coverage probability in a CoMP-enabled UC-RAN (as shown in Fig. 2.5 (c)). Nev-

ertheless, the random selection of base stations is not a realistic scenario since in

most cellular networks the base station offering the strongest channel link between

UE and base station is selected for communication. Though for the test of concept,

we show the results for the random scheme of JT in Fig. 2.5 (c).

JT with random selection of DBSs is one such instance where employing CoMP in

a UC-RAN architecture with non-overlapping S-zones will not degrade the perfor-

mance in terms of coverage probability. However, notice that the coverage prob-

ability for M = 1 in a random scheme is much less than the coverage probability

for M = 1 in scheme 1 and scheme 2 because spatial diversity is not utilized in the

random scheme.

From the results shown in Fig. 2.5, we can establish that the joint transmission

technique of CoMP will not benefit the user-centric network, however with the re-

quirement that: (i) the user-centric virtual clusters (S-zones) are non-overlapping,

(ii) DBSs are activated using selection combining in an S-zone, and (iii) the com-

munication path between scheduled UE and activated DBSs are not blocked by

blockages. If any of the three conditions are not met, then the one-to-one link be-

tween the transmission technique of CoMP and its benefits in a user-centric scenario

cannot be established.

2.6.4 Optimal S-zone Radius and DBS Density for ASE

In Fig. 2.6 (a), the area spectral efficiency is plotted for different values of S-zone

radius and M . We anticipate the existence of an optimal S-zone size at which the

network-wide ASE is maximum. Further, the optimal S-zone radius to maximize

ASE is expected to be smaller in magnitude as compared to S-zone size which
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maximizes EE. With the increase in the S-zone radius, the density of scheduled

UEs reduces, thereby affecting the network ASE. Similarly, a decrease in the S-zone

radius increases the density of scheduled UEs at the risk of spatially closer S-zones

that increases interference levels. Therefore, as mentioned previously, the optimal

S-zone radius should be a small value but not too negligible.

In Fig. 2.6 (a), we note that the optimal S-zone radius is 1.5 m which is slightly

larger than the minimum considered S-zone radius of 1 m, hence, supporting our

hypothesis. We also observe that the performance in terms of ASE is consistent

across different M . This is mainly because ASE is dependent on the density of

scheduled UEs, desired SIR threshold, and coverage probability. The desired SIR

threshold does not change and the change in coverage probability is almost negligible

when CoMP is employed. Therefore, the optimal S-zone size is not overly sensitive

to the value of M unless the coverage probability change is significant between

CoMP and no-CoMP scenarios.

In addition to S-zone radius, the density of DBSs that can maximize ASE is also an

important design parameter from the perspective of a network operator. In Fig. 2.6

(b), the area spectral efficiency is plotted for different values of DBS density and

M . From the figure, we can see that ASE increases monotonically with an increase

in DBS deployment density for a fixed S-zone size. This is mainly because with

larger DBS density, (i) the chances of coverage holes where no DBSs are available

to provide service to a scheduled UE decrease, and (ii) there exist more options to

activate the DBS(s) with strongest channel gains to further exploit spatial diver-

sity. Also, for lower DBS density, employing CoMP significantly reduces the ASE,

whereas, for higher DBS density, the performance in terms of ASE is consistent

across different M .

Finally, the network ASE is plotted for different values of S-zone size and DBS

density. For an optimal S-zone radius, ASE improves with the increase in the den-
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Fig. 2.7: Energy efficiency of the CoMP-enabled UC-RAN with varying S-zone
radius and M for γth = 4 dB.

sity of DBSs. Contrarily, given a fixed DBS density, ASE after an initial jump at

Rszone = 1.5m is decreased with the increase in S-zone radius. From these observa-

tions along with the observations reported in Fig. 2.6 (a) and (b), we can conclude

that the radius of S-zone, DBS density, and the maximum number of cooperative

DBSs greatly impact ASE. To maximize ASE, all of these inter-linked parame-

ters should be jointly optimized through a self-organizing framework in subsequent

chapters.

2.6.5 Optimal S-zone Radius for EE

In Fig. 2.7, the energy efficiency is plotted for different values of S-zone radius and

M . The power consumption parameters are summarized in Table 2.2. Similar to

ASE, the existence of an optimal S-zone size for which the EE will be maximum

is obvious. However, the S-zone radius that will maximize EE is expected to be

different than the S-zone radius that would maximize ASE. Intuitively, the S-zone
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radius that maximizes EE should be larger because by increasing the S-zone radius,

the density of activated DBSs reduces resulting in lesser power consumption. From

Fig. 2.7, we observe a similar trend where the EE is maximum for the largest S-

zone radius. Also, for a fixed S-zone radius, enabling CoMP increases the power

consumption of the network due to increased signal processing and additional power

consumption overhead resulting in the degradation in EE of the system. Thus, we

can easily conclude that EE degrades by enabling CoMP in UC-RAN architecture

with non-overlapping S-zones.

These results further second the need for an AI-assisted self-organizing framework

that can capture the tradeoff of ASE and EE to jointly maximize both KPIs given

the new degrees of freedom such as S-zone radius and density of DBSs. Also, the

results support the hypothesis presented in Section 2.1 that employing CoMP will

not only affect the system’s energy efficiency but will also negatively impact the

area spectral efficiency as well as coverage probability in UC-RAN.

2.6.6 Performance Comparison for Mean Serviced UEs’ ratio

Fig. 2.8 shows the comparison of the average number of UEs that are serviced out of

the total scheduled UEs for varying values of S-zone radius, SIR desired threshold,

and M . A UE is offered service iff: (i) there is at least 1 DBS present in the S-

zone, and (ii) the average received SIR at the UE is greater than the desired SIR

threshold. From the result shown in Fig. 2.8, a similar trend can be observed in the

mean serviced UEs’ ratio as observed in the coverage probability (scheme 1) with

the enabling of CoMP. The decrease in the mean serviced UEs’ ratio for M > 1

can be attributed to the increased interference in the network that affects the SIR

received at a typical UE. We also observe that with an increase in SIR requirement

threshold values (γth), the mean serviced UEs’ ratio also decreases.

Additionally, the impact of Rszone on the mean scheduling UEs’ ratio is demon-
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Fig. 2.8: UE servicing ratio comparison of proposed UC-RAN approach.

strated in Fig. 2.8. Intuitively, for a larger S-zone radius: (i) the inter-cell sepa-

ration increases effectively reducing the interference at a typical UE, and (ii) the

average number of DBSs available in an S-zone is increased effectively increasing

the probability that there will be at least 1 DBS within the S-zone. For both of the

above reasons, we observe a trend shown in Fig. 2.8 in which the mean service UEs’

ratio increases when Rszone is increased from 3 to 6.

2.6.7 Performance Comparison with Traditional HetNet

Fig. 2.9 shows performance improvement in area spectral efficiency for the proposed

CoMP-enabled UC-RAN architecture (with S-zone radius = 2m) in comparison to

a traditional heterogeneous network architecture discussed in [46]. From the figure,

we can observe that there is a massive increase (of the order of x100 and more)

in the ASE of the proposed UC-RAN approach as compared to the traditional

HetNet. This is mainly because the traditional HetNet architecture can experience

extreme inter-cell interference in a dense network due to its cell-centric architecture.
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To overcome inter-cell interference, the proposed UC-RAN architecture not only

provides a certain minimum separation between scheduled UEs but also provides

dynamic coverage to each UE effectively resulting in higher ASE.

Another interesting observation from Fig. 2.9 is the existence of an optimal SIR

threshold γth for which the ASE is maximized in CoMP-enabled UC-RAN. The

reason is more mathematical rather than conceptual and can be better explained

by referring to the expression given in Eq. 2.14. For the same Rszone and user

density, the density of scheduled UEs remains constant. The ASE thus changes

with fluctuations in the SIR threshold or coverage probability. Now as the SIR

threshold increases, two interactions are happening simultaneously which affect the

ASE. First, with the increase in the SIR threshold, the term log2(1 + γth) also

increases resulting in increased ASE. Secondly, an increase in the SIR threshold,

as observed in Fig. 2.4, reduces the coverage probability. Due to these contrasting

effects, we observe a high jump in ASE values which then plummets as coverage

probability approaches zero.

2.6.8 CoMP-enabled UC-RAN with Dynamic Blockages

After reviewing the simulation analysis hitherto, a reader may question the appli-

cability of CoMP in user-centric networks where cell-edge users are diminished. Till

now, we have shown that enabling CoMP for UEs that maintain a certain minimum

repulsion with other UEs degrades the network performance in terms of important

KPIs such as coverage probability, area spectral efficiency, and energy efficiency.

However, there are many possible scenarios in which CoMP may be able to provide

better reliability effectively enhancing the system’s area spectral efficiency.

In this Section, we briefly discuss one such scenario where DBSs operate on high-

frequency bands that are highly sensitive to blockages. We assume a simplified

scenario in which the line of sight (LOS) link between DBSs and UEs is affected
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Fig. 2.9: ASE comparison of proposed UC-RAN approach and traditional HetNet
for different values SIR requirements.

(a) Area spectral efficiency. (b) Area energy efficiency.

Fig. 2.10: Performance comparison of CoMP-enabled UC-RAN with dynamic block-
ages with varying DBS densities and M for γth = 4 dB, Rszone = 6m, αnear = 3 and
αfar = 6.

by the presence of blockages. The presence of blockages divides the network region

into two parts, near-field, and far-field regions. The near-field and far-field regions

can be best described by a dual-slope path loss model (DSPM) that have different

path-loss exponents αnear and αfar for near-field and far-field, respectively, where

αfar ≥ αnear > 2 [47]. Note that higher values of αfar will result in sufficiently large

45



path-loss, effectively causing the interference caused by DBSs beyond a critical

distance (dc) to approach zero. Also, we assume that a non-LOS link within an S-

zone may not be able to provide sufficient signal strength to the UE, thus changing

the state of the DBS-UE link to outage when affected by an obstacle. The standard

dual path-loss model is given as [48]:

DSPM(x) =


||x||−αnear ; with 1− pblockage(x)

d
αdiff
c ||x||−αfar ; with pblockage(x),

(2.20)

where αdiff = αfar − αnear, dc > 0 is the critical distance assumed to be equal to 1

meter and x is the distance (in meters) between the DBS and UE.

The blockage/non-LOS probability proposed by 3GPP is given as [49]:

pblockage(x) = 1−
(

0.5−min

(
0.5, 5 exp

(
−156

x

)
+ min

(
0.5, 5 exp

(
− x

30

)))
.

(2.21)

We expect that due to random blockages, the communication between serving DBSs

and UEs will be highly affected. In such a scenario, CoMP will be able to provide

second-tier protection from service degradation due to blockages. In Fig. 2.10 (a),

the area spectral efficiency is plotted for different values of DBS densities and M .

We observe that the network performance in terms of ASE improves by enabling

CoMP. For instance, as the network shifts from a non-CoMP mode to a CoMP

enabled UC-RAN (i.e. from M = 1 to M = 2), we observe approximately 8%

increase in ASE. This is mainly because if the closest UE-DBS link within an S-

zone is affected by a blockage, there is a very low probability that the second closest

UE-DBS link will also be affected by a blockage, thus ensuring the service reliability

constraints at a typical UE. Besides, the dual-slope path loss model ensures that

most of the interference dies out beyond the S-zone region. These two notions in

parallel provide improvement in the ASE of the system with the enabling of CoMP.

46



An interesting observation is the consistency of area spectral efficiency values for

any value of M > 1. There is an almost unnoticeable improvement when M is

increased from beyond 2 as also noticed in [50]. This is mainly linked with the

blockage probability considered in the network. In an environment, where it is

highly probable that 2 or more serving DBSs can be simultaneously affected by

blockages, we may be able to observe a noticeable increase in the ASE with an

increase in M beyond 2. The change in the area spectral efficiency values concerning

DBS density is due to the reasons discussed in Section 2.6. Since M = 1 reflects the

scenario of UC-RAN with single DBS activation, the result in Fig. 2.10 (a) shows

that when random blocking is considered, the CoMP-based UC-RAN with multiple

DBS activations within an S-zone outperforms our earlier works [3, 4].

The performance in terms of area energy efficiency (AEE), which is defined as the

ratio of area spectral efficiency and power consumption, is shown in Fig. 2.10 (b)

for different values of DBS density and M . Intuitively, by enabling CoMP, the

AEE should decrease because of higher power consumption by the activated DBSs.

The results reveal that AEE decreases as more DBSs are enabled for cooperation.

However, due to the dependence of AEE on ASE, the major drop in AEE occurs

when M is increased from 1 to 2. The decrease in AEE values when M is changed

from 1 to 2 is approximately 3.5%, whereas the increase in ASE is approximately

8%. Therefore, there is a visible trade-off between ASE and AEE values based on

the number of cooperative DBSs that the network operators can utilize to design

the network based on the service requirements of the users.

2.7 Conclusion

In this chapter, we provided an analytical and numerical analysis on the impact

of enabling CoMP in a UC-RAN architecture. Contrary to the existing literature

on analytical models of CoMP in UC-RAN, we derived closed-form analytical ex-
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pressions for activated data base station density, aggregate interference, coverage

probability, area spectral efficiency, and energy efficiency. For CoMP, we presented

a comparative analysis of three joint DBS transmission methods via cooperative

DBSs in a user-centered virtual cell or an S-zone.

Through our analysis which was supported by extensive Monte Carlo simulations,

we showed that employing CoMP in a UC-RAN architecture, with non-overlapping

S-zones that uses spatial diversity for DBS activation with no blockages in the wire-

less communication channel, not only reduces the energy efficiency of the network

but also degrades the coverage probability at a typical UE and consequentially the

network-wide area spectral efficiency. However, we also discussed scenarios, in par-

ticular highly blockage sensitive propagation, where the proposed design offered an

improved area spectral efficiency. The analysis presented in this chapter provides a

baseline on the design and planning of futuristic UC-RAN based cellular networks.

We also investigated the impact of new degrees of freedom such as S-zone size and

density of data base stations on the mean serviced UEs, area spectral efficiency,

and energy efficiency of the network. The numerical results based on the derived

analytical model revealed an interesting interplay between S-zone size and the den-

sity of data base stations. It is observed that for any number of cooperative data

base stations in an S-zone, there exists an optimal size of S-zone and DBS density

that maximizes the area spectral efficiency, and energy efficiency. However, the

values of optimal S-zone size and data base station density that maximizes area

spectral efficiency are quite different from the values that maximize network-wide

energy efficiency. Therefore, there is a need for an artificial intelligence-assisted self-

organizing framework proposed in the next chapter that is capable of dynamically

orchestrating these network design parameters to offer the ideal tradeoff between

these KPIs for a network operator.
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CHAPTER 3

D-RAN: A Deep Reinforcement Learning-based Demand-Driven

Elastic User-Centric RAN Optimization for 6G and Beyond

3.1 Introduction

3.1.1 Motivation

6G networks are envisioned to cater to a wide range of user services with assorted

throughput and latency requirements [51]. In order to meet this requirement, there

is a need for an elastic architecture that can tailor to the needs of each service, as op-

posed to traditional one-size-fits-all architecture. This, along with the interference-

limited nature of UDNs, has prompted a shift to a UC-RAN paradigm from tradi-

tional networks. [52–54]. Although the existing literature on UC-RAN (discussed

in the related work section in 1.3) provides some useful information, it has two

shortcomings. First, it deals with static S-zone size for all UEs with the assumption

that all UEs will have similar throughput and latency requirements which is not a

practical assumption. Second, although the analytical models in above studies are

highly detailed, they lack the interaction of controlling parameters (S-zone) with the

spatiotemporal changes in the wireless network such as dynamic user application

demands and mobility.

Recognizing the significance of user-centric services in future cellular communica-

tions, particularly in 6G, this chapter introduces an elastic and demand-driven

UC-RAN model, as outlined in Section 3.2. We formulate a multi-objective op-

timization problem to maximize important KPIs such as area spectral efficiency,

network energy efficiency, user service rate, and throughput satisfaction. The S-
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zone size serves as a control parameter to form a Pareto-optimal trade-off among

these KPIs.

The core research objective of this chapter is to develop a solution that can dy-

namically solve this multi-objective optimization problem in UC-RAN to achieve

a Pareto-optimal solution in real-time based on changes in the varying application

demands and user mobility. Inspired by our earlier work on utilizing wireless net-

work telemetric big data for enabling zero touch optimization in future wireless

networks [55], we propose a deep reinforcement learning (DRL)-based framework

to solve this problem. This framework is hereafter referred to as D-RAN: a deep

reinforcement learning-based user-centric RAN optimization framework under dy-

namic user application demands and network conditions. D-RAN uses the massive

amount of control, signaling, and contextual data in UC-RAN network to update

network parameters dynamically to optimize the KPIs of interest in real-time.

Driven by the above motivations, this chapter studies the deep reinforcement learn-

ing approach owing to its ability to adapt to dynamic environments to determine the

optimal S-zone size for each QoS category intelligently so that network KPIs such

as area spectral efficiency, energy efficiency are maximized as well as throughput,

and latency requirements of each QoS category are met.

3.1.2 Contributions

Specifically, the contributions of this chapter are summarized as follows.

• An architecture for demand-driven elastic user-centric communication is pro-

posed with the aim of providing on-demand services to a diverse set of user

applications ranging from augmented/virtual reality to industrial robots to

E-health applications, and more. The proposed architecture allows the elastic

user-centered S-zone to be malleable to specific QoS category requirements.
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• Considering the heterogeneous user requirements in future cellular commu-

nications, a multi-objective problem is formulated to optimize KPIs such as

area spectral efficiency, energy efficiency, user service rate, and throughput

satisfaction as a function of S-zone size for respective QoS categories. Given

the stringent requirement of very high throughput and ultra-low latency, the

multi-objective problem is geared towards meeting users’ throughput and la-

tency requirements while also maximizing the area spectral efficiency and

network energy efficiency.

• Given the non-stationarity of user application demands and mobility, we pro-

pose a deep reinforcement learning framework to accurately learn the mapping

of environment state and action instilling intelligence in the demand-driven

elastic user-centric architecture. The proposed intelligent deep reinforcement

learning framework for UC-RAN networks, named D-RAN, dynamically al-

locates S-zones to users such that a Pareto-optimal front is found for the

formulated multi-objective function.

• We evaluate the convergence, efficacy, and adaptability of D-RAN to the non-

stationary environment of the proposed approach through numerical results.

We also compare D-RAN’s performance against brute-force and state-of-the-

art metaheuristics such as simulated annealing. The simulation results show

that D-RAN can achieve a gain of up to 45% in the network-wide utility

compared to an simulated annealing-based solution. The proposed framework

has the potential to change network mode from rigid cell-centric to elastic

user-centric through the use of an intelligent module (D-RAN) that allows

optimization of S-zones in real-time, resulting in enhanced user experience,

greater system capacity, and improved energy savings.
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Fig. 3.1: Dynamic S-zone UC-RAN architecture with M different S-zone region of
radius Rc for scheduled UE’s.

3.1.3 Chapter Organization

The remainder of the chapter is organized as follows. The system model is discussed

in Section 3.2. A multi-objective optimization problem as a function of S-zone size

is formulated in Section 3.3.2. A brief summary of deep reinforcement learning and

simulated annealing algorithms are presented in Section 3.4. The details of the pro-

posed approach and the results of the numerical analysis are presented in Section 3.5

and Section 3.6, respectively. Finally, the chapter is concluded in Section 3.7.

3.2 System Model

This section presents the UC-RAN architecture, S-zones scheduling algorithm, net-

work model, and channel model.
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3.2.1 UC-RAN Architecture with QoS Category Specific S-zones

Fig. 3.1 provides a graphical illustration of a UC-RAN network with virtual user-

centric cell boundaries for UEs belonging to different QoS categories. These cate-

gories are classified according to the UEs’ latency and throughput requirements as

illustrated in Fig. 3.1.

A critical design parameter in UC-RAN is the size of S-zone which is defined by

the radius of circular disk around the UE. In the proposed model, the DBSs falling

within the S-zone of a UE are only allowed to associate with that UE in a given

TTI. Increasing the S-zone size ensures (i) larger distances between a UE and inter-

fering DBSs resulting in high link-level SINR (hence, link-level high throughput and

spectral efficiency); (ii) yields high macro diversity gain through selection among

the larger number of DBSs in the S-zone and (iii) offers high energy efficiency as

large S-zones keep more DBSs deactivated as compared to small S-zones. However,

larger S-zones also yield low user scheduling ratio and low spectrum reuse resulting

in negative impact on the system-level capacity. Given these insights, the S-zone

size serves as a controlling parameter that yields an ideal tradeoff between area

spectral efficiency, energy efficiency, and other system-level KPIs.

In UC-RAN, a scheduled user in each TTI is allocated the full bandwidth of the

system for two reasons: i) to make the system capable of providing maximum

throughput to a user that the total system bandwidth allows; ii) to keep the radio

resource scheduling at DBS simple and thus keep DBS cost and energy consumption

low. The spectrum waste is avoided by managing the temporal scheduling where

a user needing a lower throughput is scheduled after larger number of TTIs. The

temporal gap in TTIs after which a user is scheduled is inversely proportional to

user bandwidth/throughput requirement.

Besides, to make the spectrum allocation more efficient, there is a need to intel-
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Algorithm 2: UE Scheduling Algorithm

Initialize the set of UEs and the DBS(s) ;
Assign priorities to UEs based on their latency requirements ;
Sort UEs in the descending order according to their priorities ;
for each UE in the sorted list do

if DBS available in S-zone region of UE and UE is not overlapping with
other scheduled UEs then

Schedule UE

ligently allocate both physical resource blocks and S-zone size to scheduled users

according to their needs. Since the D-RAN framework is proposed mainly to estab-

lish that the S-zone size of multiple QoS categories (with varied QoS demands) can

be intelligently controlled to optimize the desired KPIs, the joint optimization of

S-zone size and physical resource blocks will be addressed in future research. It is

also important to mention that the intelligent allocation of physical resource blocks

in 5G cellular systems has already been proposed in several publications [56,57].

3.2.2 UE Scheduling Algorithm

In this chapter, we propose a scheduling mechanism to meet the heterogeneous

latency requirement of UEs in UC-RAN. Latency requirements of UEs are drawn

from a uniform distribution and rounded off to specified bins of latency requirements

corresponding to the QoS categories. Each UE x is marked with platencyx ∼ U(a, b)

by the BBU where a and b are measured in milliseconds (ms) and are determined by

the minimum and maximum latency of the considered QoS categories. The lower

the value of mark platencyx ∼ U(a, b), the higher will be the scheduling priority.

The BBU based on these scheduling priorities schedules a UE x if and if only the

scheduling priority of UE x is highest in the neighborhood which is characterized

by the S-zone size Rc for a specific QoS category. This means that within a circle

of radius Rc centered at UE x, no other UE has a higher priority than UE. For

example, the scheduled UEs shown in Fig. 3.2 have a lower latency requirement
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Fig. 3.2: Graphical illustration of UEs scheduling with varied latency requirements.

than any other UE in the S-zone of the respective QoS category. Note that larger

the S-zone size of QoS categories, lesser the number of UEs will be scheduled with

non-overlapping S-zones.

Once the UE is scheduled, a single DBS providing the highest channel gain within

the S-zone of the respective UE is activated by the BBU to serve the UE. It is

important that the DBSs are deployed densely, so at least one DBS is available

within an S-zone to provide coverage to a scheduled UE and thus avoid coverage

holes in areas where no DBSs are available within the user-centric circular disk.

3.2.3 Network Model

A downlink of a two-tier UDN is considered consisting of a CBS and DBSs operating

on sub 6 GHz frequencies. The DBSs and UEs are randomly distributed following

two independent and homogeneous Poisson point processes ΠDBS and ΠUE with
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intensities λDBS and λUE respectively. The location of each UE acts as a centering

point for the user-centric virtual cell (S-zone) which bounds the UE to be associated

with DBS only within the S-zone region. This implies that each DBS can at most

serve a single UE. This chapter defines the S-zone as a disk of radius Rc, where c ∈ C

is a QoS category present in the network model. The network model in Fig. 3.1 for

example, includes three QoS categories: augmented/virtual reality, E-health, and

monitoring sensors.

3.2.4 Channel Model

The communication channel between an arbitrary user x ∈ ΠUE and activated

DBS i ∈ Π
′
DBS is modeled to experience both large-scale and small-scale fading

given by hl−PLE, where h is an exponential random distribution with unit mean, lxi

represents the propagation distance between x and i, PLE is the pathloss exponent,

and Π
′
DBS is the Poisson point process of activated DBSs. UE and DBS are equipped

with a single antenna and the transmission power of DBS is assumed to be equal.

Each scheduled user is served by a DBS providing the highest channel gain within

an S-zone of radius Rc whose SINR (Γx) is given as:

Γx =
hxil

−PLE
xi∑

j∈Π′
DBS

hxjl
−PLE
xj + no

, (3.1)

where i ̸= j and no denotes the additive white Gaussian noise.

3.3 Problem Formulation

This section characterizes the KPIs, followed by the formulation of a multi-objective

optimization problem.
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3.3.1 Characterizing Key Performance Indicators

This chapter measures system performance in terms of area spectral efficiency, net-

work energy efficiency, user service rate, and throughput satisfaction as the desired

set of KPIs. We selected these KPIs to reflect that the objective is to meet through-

put and latency requirements while maximizing area spectral efficiency and network

energy efficiency.

Area Spectral Efficiency

The area spectral efficiency refers to the amount of information that can be trans-

mitted from a DBS per unit bandwidth channel per unit area to a UE, which can

be defined as follows for each QoS category c:

Ac =

∑
x∈Nc

log2(1 + Γx)

Å
, (3.2)

where Nc is the set of UEs belonging to QoS category c, and Å is the target area

considered in the simulations model. The formulation of area spectral efficiency in

this chapter differs from that in Chapter 2 as we consider the area spectral efficiency

for each QoS category separately.

There is a strong relationship between the QoS category’s S-zone size and area spec-

tral efficiency [4, 7]. Intuitively, increasing the S-zone size decreases the scheduling

ratio of UEs. Nevertheless, decreasing the S-zone size increases the SINR (due to

the higher number of neighboring interfering DBSs). There is, therefore, an optimal

size for S-zones that balances these two opposing effects to maximize the attainable

area spectral efficiency. To optimize the area spectral efficiency, intelligent real-

time optimization is needed to calibrate the S-zone size of multiple QoS categories

simultaneously.
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Table 3.1: D-RAN power consumption parameters.

Symbol Parameter Name Parameter Value
Pf DBS fixed power consumption 1.932 W
PDBS DBS transmit power 10 W
∆DBS Radio frequency component’s power consump-

tion at DBS
23.22 W

PUE UE transmit power 1 W
∆UE Radio frequency component’s power consump-

tion at UE
4 W

Pdisc UE cell discovery circuit power consumption 4.3 W

Energy Efficiency

According to [4, 58], the network-wide energy efficiency is defined as the ratio of

area spectral efficiency and total power consumed for all scheduled UE’s. The

power consumption model in this chapter is inspired by project Earth [42], in that

it represents the power consumption of CBS and DBSs as a linear combination of

fixed power and load-dependent power consumption components. Since energy effi-

ciency is measured network-wide, these power consumption values are summed for

all scheduled users. The total power consumption can be mathematically calculated

as follows:
P = λDBSPf + λ′DBS∆DBSPDBS + λ′UE(∆UEPUE + Pdisc), (3.3)

where λDBS is the density of all deployed DBSs, λ′DBS is the density of activated

DBSs, λ′UE is the density of scheduled UEs, Pf is the fixed DBS power consumption

required for DBS to operate in listening mode, PDBS is the DBS transmission power,

∆DBS is the radio frequency component power at DBS, PUE is the UE transmission

power, ∆UE is the radio frequency component power at UE, Pdisc is the power

required at UE for discovery of the DBS with the highest channel gain. The typical

values of these variable are summarized in Table 3.1 [4]. The energy efficiency

therefore can be given as:

E =

Å×
∑
c∈C

Ac

P
. (3.4)
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In a cellular DBS, radio frequency components and data transmission account for

the majority of total power consumption [59]. DBSs can save significant amounts

of energy when they are dynamically activated, particularly in dense deployments.

The direct relationship between energy efficiency and area spectral efficiency man-

dates that the S-zone size of QoS categories will also influence network energy

efficiency. Intuitively, increasing the S-zone size decreases the number of activated

DBSs (decreasing the average power consumption). The contrasting trends of area

spectral efficiency and power consumption raise an important design question: what

S-zone size should be selected for QoS categories to optimize network-wide energy

efficiency.

UE Service Rate

The UEs’ heterogeneous latency requirements necessitate scheduling more UEs

within each TTI while meeting UE quality of experience requirements. The mean

UE service rate (user service rate) for any QoS category c can be calculated as:

Uc =
λserviceUEc

λUEc
, (3.5)

where λUEc is the density of all UEs belonging to QoS category c and λserviceUEc
is the

density of UEs belonging to QoS category c whose minimum throughput require-

ment is met.

The S-zone size of QoS categories influences the user service rate in two different

ways. A decrease in the S-zone size leads to the scheduling of more users. However,

decreasing the S-zone size also increases the average distance between UE and DBS,

thus, affecting the average SINR. Due to these contrasting results with the change

in S-zone size, we anticipate that optimizing user service rate will require intelligent

optimization of S-zone sizes of QoS categories.
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Throughput Satisfaction

There can be a wide variety of throughput requirements for UEs belonging to differ-

ent QoS categories. Operators must satisfy the minimum throughput requirements

of each QoS category as part of their objective. Moreover, network operators must

ensure that they are utilizing their resources efficiently by avoiding scenarios in

which excess throughput is allocated to a few UEs (or categories of UEs) while

other UEs’ minimum requirements are not met. For this reason, this chapter uses

the difference between required and obtained throughput, a metric we define as

throughput satisfaction (throughput satisfaction), to measure system performance.

Throughput satisfaction for a specific QoS category c is given as:

Tc =
∏
x∈Nc

∣∣∣∣tp⋆x − tp♢x∣∣∣∣|Nc|, (3.6)

where tp⋆x and tp♢x are the obtained and required throughput for an arbitrary UE

x respectively. The required throughput values for UEs are drawn from a uniform

distribution and rounded off to specified bins of throughput requirement of QoS

categories. While the obtained throughput values are obtained by mapping the

SINR values of UEs to its physical layer throughput given in [60].

Intuitively, the increase in S-zone size of QoS category is expected to improve the

average SINR (and throughput obtained) at the UE. However, the mere increase

in throughput of a few users is not the desired behavior. Instead, the S-zone size

should be adjusted such that the throughput achieved at UEs belonging to a QoS

category float near the throughput requirement of that specific QoS category. This

entails that the S-zone size of QoS categories should be carefully calibrated to ensure

satisfaction is achieved throughput across all QoS categories.
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3.3.2 Multi-objective Optimization Problem Formulation

Hitherto, the above definition of KPIs demonstrate the need for optimizing S-zone

size of QoS categories to maximize area spectral efficiency, energy efficiency, UE

service rate and throughput satisfaction individually. The challenge from a network

operator’s perspective is that all these KPIs should be optimized simultaneously,

leading to a Pareto-optimal tradeoff between them. To account for this tradeoff,

this chapter defines the multi-objective optimization problem as follows:

max
Rc,c∈C

( ∑
c∈C

A′
c

)α( ∑
c∈C

U′
c

)β(
E′
)1−α−β

∑
c∈C

T′
c

s.t. Rmin ≤ Rc ≤ Rmax;∀c,

(3.7)

where 0 ≤ α, β ≤ 1, α + β ≤ 1, A′
c is area spectral efficiency normalized between

[0, 1], E′ is energy efficiency normalized between [0, 1], U′
c is UE service rate normal-

ized between [0, 1], T′
c is throughout satisfaction normalized between [1, 2], Rmin

and Rmax are the minimum and maximum allowable size for S-zone of QoS cat-

egories. To bring it to the reader’s attention, throughput satisfaction is included

in denominator to ensure that the increase in the difference between required and

obtained throughput of UEs reduces the utility of the solution.

The rationale behind the proposed objective function formulation is to optimize

holistic system-level performance by combining network operators’ four most impor-

tant and common KPIs of interest. However, these KPIs have different scales/units.

This issue makes combining the multiple KPIs in a single objective function far from

a straightforward problem. In this chapter, we address this problem by normaliz-

ing each KPI value with its minimum and maximum value. These minimum and

maximum KPI values are determined through pseudo brute force method. The

pseudo brute force method sweeps the solution space (with a pre-defined step size)

in numerous independent runs. Given the step sizes are large enough to explore the
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possible extrema in the search space within an affordable computational effort, this

pseudo brute force method gives values of KPIs that can be taken as approximation

of minimum and maximum values for the normalization purposes. This way of ap-

proximating the true Pareto optimal front is quite common in general reinforcement

learning problems [61].

The solution obtained from the pseudo brute force search is then used to linearly

scale/normalize the value of each KPI, allowing the effective KPIs to be unitless and

combined in a multi-objective optimization problem. The real goal of the system

is to maximize the area spectral efficiency, energy efficiency, and user service rate

while keeping the gap between target and achieved throughput values minimum.

To be reflective of the real goals of the system, Eq. 3.7 is designed such that the

normalized values of area spectral efficiency (between 0 and 1), energy efficiency

(between 0 and 1), and user service rate (between 0 and 1) are multiplied in the

numerator to jointly maximize these KPIs while the normalized value of throughput

gap (between 1 and 2) is included in the denominator to minimize the difference be-

tween throughput obtained and achieved by the users. This gap-based formulation

to model user satisfaction, instead of simple threshold based KPI where throughput

is maximized for some users without a cap, is used as a clever way to avoid wasteful

resource allocation. Compared to alternative simpler formulation where all KPIs

are maximized as linear sum or product, this formulation is chosen to minimize

intrinsic conflict QoS KPIs has with other two KPIs of area spectral efficiency and

energy efficiency.

These four KPIs are representative of one of the four key aspects of network perfor-

mance, either at the network level or user level. For instance, area spectral efficiency

is representative of network spectral efficiency, energy efficiency is representative of

network energy efficiency, user service rate is representative of scheduling maximum

users while satisfying a certain data rate requirement, and throughput satisfaction
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is representative of meeting specific user throughput requirements. Note that us-

ing these many KPIs is not common in academia due to the intractability of the

analytical models with complex multi-objective optimization functions. However,

optimizing tens of KPIs simultaneously is a standard practice in real-time network

optimization.

With the formulated optimization problem, a BBU controls the S-zone size of QoS

categories such that desired KPIs (area spectral efficiency, energy efficiency, user

service rate, and throughput satisfaction) are optimized while keeping the S-zone

size within a specified range of Rmin and Rmax. The problem in Eq. 3.7 is a mixed-

integer nonlinear programming problem with complexity of the order of O
(
(Rmax−

Rmin + 1)|C|). It is computationally difficult to achieve an optimal solution for

a non-convex multi-objective problem in a dynamically changing network, which

makes its application in real-time optimization systems impossible.

The legacy approaches to address such problem relies either on analytical modeling,

or simulation-based modeling or more recently data-driven modeling. Our choice

to leverage deep reinforcement learning instead of aforementioned approaches is

motivated by its superiority to all three alternatives for the particular problem

in hand. This superiority stems from the following reasons. Deep reinforcement

learning-based framework is better than analytical model-based framework due to

its ability to capture network dynamicity and complexity that analytical models

miss to achieve due to the abstraction needed to obtain tractility. Compared to

a simulator model-based offline optimization approach, deep reinforcement learn-

ing can tune optimization parameters of interest using live responses that reflect

real-network behavior instead of an offline simulator behavior. Finally, deep re-

inforcement learning is advantageous compared to pure data-driven model-based

optimization (e.g., using deep learning) as deep reinforcement learning does not re-

quire deluge of data that would be required to train a complex system-level network
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behavior data-driven model for performing the optimization. To this end, this chap-

ter proposes a D-RAN (DRL-based) framework that is capable of determining the

optimal S-zone size for all QoS categories with the objective of maximizing network

KPIs.

3.4 Preliminaries

The following section gives a primer on deep reinforcement learning and simulated

annealing algorithms.

3.4.1 Deep Reinforcement Learning

In a general reinforcement learning (RL) problem, an agent takes an action by

observing the state from the environment and receives a scalar reward in an iterative

manner. An RL agent aims to maximize the future cumulative rewards for different

states of environments to learn the best course of action. Based on the specified

set of actions, the RL algorithm generates a mapping between these actions and

environment states. An implementation of RL includes these elements:

• Observations : Observations O ∈ Rp are a set of measurements provided by

the environment where p indicates the number of measurements observed.

• States : States st ∈ S are a subset of observations vector observed at each

epoch t either through handcrafted or non-handcrafted features where an

epoch is a discretized time interval, signifying a single forward or backward

pass of training samples.

• Actions : Actions at ∈ A are a discrete/finite set of allowed choices that an

RL agent can send to the environment as an input at each epoch t. Ideally,

the choice of action should have an influence on the state of the environment
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such that the input of action changes the state of the environment from st to

st+1.

• Policy : A policy π(s, a) is the mapping between the state of the environment

and an agent’s action.

• Value function: The value function (also called Q-function) under a given

policy is given as Qπ(s, a) which represents the discounted future expected

return for a state-action pair. The value function determines the value of

being at a particular state and taking a specific action at that state [62].

• Rewards : The reward signal rt+1 ∈ R is a scalar value returned by the envi-

ronment when an action at influences the state of the environment from st to

st+1.

These elements in conjunction drive the RL agent to maximize the future cumulative

reward which is given as:

G =
∞∑
t=0

γtrt+1, (3.8)

where γ ∈ [0, 1] is the discount factor. Through iterative updates, the Q-function

values are estimated using the Bellman equation in a traditional Q-learning algo-

rithm:

Qt+1(st, at) = (1 − κ)Qt(st, at) + κ(rt+1 + γmax
a

Qt(st+1, at+1)), (3.9)

where κ ∈ (0, 1] is the learning rate.

It is theoretically proven that Q-Learning algorithms converge under certain con-

ditions [62]. However, the drawback of Q-learning is that it requires the agent to

store a matrix of the size of state space times the size of action space, which is

impossible for most real-world problems. To assuage that, deep neural networks are

utilized in RL algorithms, to act as universal Q-function approximators and learn

the handcrafted features representation. The input dimension of deep reinforcement
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learning represents the number of states in the state space |S|, while the output

dimension represents the number of possible actions |A|. The loss function with

θQ as the trainable weights is used to train deep reinforcement learning is given

below [63]:

L(θQ) = E
[
rt+1 + γmax

at+1
Qt(st+1, at+1|θQ)−Qt(st, at|θQ)

]2
. (3.10)

3.4.2 Simulated Annealing

The simulated annealing technique approximates the global optimum of nonlinear

and non-convex objective functions by a series of iterative searches. Simulated an-

nealing methodology is cognate to metallurgical annealing in which a metal is heated

to a specific temperature before slowly cooling it down. Simulated annealing begins

its global optimum search with a very high-temperature parameter Temp, which

enables it to explore a relatively wide area and then decreases the temperature,

progressively narrowing the exploration area as it iteratively follows the steepest

descent.

A fitness function associates a fitness value to each solution depending on the ob-

jective function. In each iteration, simulated annealing compares the fitness value

of the current solution to the solutions that are available in the local neighborhood

W . If the neighboring solution has a higher fitness value than the current solution,

then the neighboring solution is chosen for the next iteration. The simulated an-

nealing uses an acceptance probability to avoid adhering to a local optimum. The

acceptance probability is given as follows [64]:

Acceptance Probability = exp

(
− Fcurr − Fneig

Temp

)
,∀ neig ∈ W, (3.11)

where Fcurr represents the fitness value of current solution.
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3.5 Proposed Solution

This section discusses the design of the proposed D-RAN framework. The multi-

objective problem formulated in Eq. 3.7, even though a mixed-integer nonlinear

programming problem with high complexity, can be solved using various optimiza-

tion techniques including DRL-based approaches and meta-heuristics such as sim-

ulated annealing. To compare the effectiveness of proposed D-RAN framework

(DRL-based approach) to a meta-heuristic approach, we have included a simulated

annealing solution. As simulated annealing is also known to yield near optimal

solutions for optimization problems [65], it offers a benchmark to evaluate the per-

formance of the proposed D-RAN framework. A BBU implements the optimization

agent, which collects the network parameters and specifies the S-zone size for each

QoS category. This centralized implementation facilitates the independence of pro-

cessing times from UE and DBS densities, thus allowing for practical realizability

and scalability of the optimization framework.

3.5.1 D-RAN Framework

A D-RAN framework is described in detail in terms of state space, action space,

reward function, and the procedure of agent training and testing.

State Space

Section 3.3.1 establishes the linkage between the S-zone size of QoS categories and

KPIs considered in this chapter. These KPIs define the state of the environment

which if probed further can be decomposed into three parts:

• The average SINR of each QoS category is impacted by the change in S-zone

size of QoS categories as divulged in Eq. 3.1, which has an impact on the
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Fig. 3.3: Block diagram of the proposed D-RAN framework.

area spectral efficiency, energy efficiency, user service rate, and throughput

satisfaction. Increasing the S-zone size is expected to increase the average

SINR inherently for two reasons: (i) a large S-zone yields a large minimal

separation gap and hence reduction in interference between a scheduled UE

and nearest interfering DBS; and (ii) a larger S-zone should lead to a higher

macro-diversity gain due to selection among the larger number of DBSs in
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the S-zone. However, average SINR’s impact on the listed KPIs makes it a

suitable choice for defining environment state. The average SINR of each QoS

category can be given as:

φc =

∑
x∈Nc

Γx

|Nc|
,∀c ∈ C. (3.12)

• The user service rate of each QoS category given in Eq. 3.5 determines the

ratio of UEs from each QoS category that gets served, thus directly impacting

the learning objective.

• The throughput satisfaction of each QoS category given in Eq. 3.6 relates to

how well the achieved throughput compares to the throughput demanded by

UEs in each QoS category.

In conjunction, the state vector of the proposed D-RAN framework with the cardi-

nality of 3|C| is defined as:

st = {φt1, ..., φt|C|,U
t
1, ...,U

t
|C|,T

t
1, ...,T

t
|C|}. (3.13)

Action Space

For each QoS category, the action is to either increase or decrease the S-zone radius

by d unit (measured in meters) or to keep it the same, that is, atc = {−d, 0, d}.

Having a centralized agent responsible for adjusting the S-zone size for all QoS

categories in the network will result in a combined action set.

The incremental action space has been selected to circumvent the combinatorically

large action space that can be obtained by considering each combination of the

QoS categories as an individual action, affecting the learning and convergence of

the deep reinforcement learning agent greatly. Even with the incremental action
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space, the size of combined action space is 3|C| for all QoS categories, which grows

exponentially with QoS categories.

Motivated by the method to reduce deep reinforcement learning’s large action space

in [66, 67], the action space of each QoS category in D-RAN is considered as a

separate action branch that controls an individual degree of freedom for each QoS

category. By allowing individual action dimensions to operate independently, this

approach ensures a linear increase in the size of combined action space with the

number of QoS categories, of the order of 2|C| + 1. For example, if |C| = 2, the

following binary coding with |C|+ 1 bits is used to represent the action space:

a =



101; increase R1 by d meters.

001; decrease R1 by d meters.

110; increase R2 by d meters.

010; decrease R2 by d meters.

000; keep R1 & R2 unchanged.

(3.14)

In a similar way, the combined action space dimensionality reduction approach is

scalable to networks with a greater number of QoS categories.

Reward Function

The reward function in D-RAN primarily focuses on two aspects for the S-zone

size estimation in a dynamic environment: 1) finding the optimal trade-off between

system-wide KPIs formulated as a multi-objective function given in Eq. 3.7, and

2) penalizing the agent for failure to satisfy the S-zone radius constraint given in

Eq. (3.7). The utility function (ut) at each TTI t is given as the objective function

given in Eq. 3.7. Subsequently, the reward is calculated as follows:
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rt =


eζ(u

t−1) if constraint given in Eq. 3.7 is met.

Z otherwise,

(3.15)

where ζ > 1 in the exponential term is used to amplify the difference between values

of the utility function and −1 < Z < 0 is a negative constant to punish the agent

for choosing an S-zone size that is not within the specified bounds of Rmin and

Rmax. The exponential scaling of the reward against utility values allows the deep

reinforcement learning agent to give a much higher reward when it achieves higher

utility values and much lesser when it achieves lesser or mid-range utility values.

The reward function is designed to obtain values between -1 and 1 to accelerate the

stochastic gradient descent algorithm in the deep neural network [68,69].

Agent Training & Testing Procedure

The schematic diagram of the proposed D-RAN framework is shown in Fig. 3.3.

The learning agent located in BBU collects state information from the environment

and aims to find the optimal action policy (S-zone size for all QoS categories)

such that the reward function given in Eq. 3.15 is maximized. The deep neural

network includes four fully connected layers, and three rectified linear unit activation

functions with input layer neurons equal to the number of state variables 3|C| and

output layer equivalent to the number of actions 2|C|+ 1.

As part of the training process, the agent stores the experience tuple {st, at, rt, st+1}

in the experience pool with buffer size D and updates the deep neural network

weights in Eq. 3.10 by applying the stochastic gradient descent algorithm to a mini-

batch of data at each epoch t (equivalent to a TTI) as detailed in Algorithm 3. As

part of the execution/testing process, the agent collects the state information from

the environment and outputs the action in each TTI. In every episode, consisting

of T epochs/TTIs, the agent is initialized at Rinit for all QoS categories, and the
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Algorithm 3: D-RAN Framework

Data: A, P, T, η, ϵ, ϵmax, ϵmin, ϵdecay, E,Rinit

Initialize state, action, reward, and experience replay buffer D ;
while converged or aborted do

violate := 0;
Initialize S-zone size of QoS categories as Rc := Rinit ∀c ∈ C ;
while t ≤ T do

Observe environment state st;
ϵ := max(ϵmin, ϵ− (ϵmax − ϵmin)ϵdecay);
if zt ∼ U(0, 1) < ϵ then

Select an action at ∈ A randomly;
else

Select an action at = arg max
at

Qt(st, at|θQ);

if at violate Rmin and Rmax for any Rc then
Assign penalty P ;
violate := violate+ 1;
if violate > ηT then

Abort the episode;

Compute reward using Eq. 3.15;
Observe next environment state st+1;
Store experience tuple {st, at, rt, st+1} in the experience pool;
Prioritize experiences using Eq. 3.16;

Sample experiences in minibatch from D ey ≜ {sy, ay, ry, sy+1};
Perform stochastic gradient descent on L(θQ) given in Eq. (3.10);
Update weight parameter θQ;
st := st+1;

environment is initialized with different random seeds to generate different mobility

patterns. An episode is ended prematurely only if the agent chooses S-zone of any

QoS category that is beyond the allowed limits of S-zone size (Rmin and Rmax) for

more than ηT times, where 0 ≤ η ≤ 1 is a design parameter used to limit the

proportion of wrong actions to ensure that the agent learns “what not to learn” [70].

The experiences drawn from experience replay during training are prioritized accord-

ing to the importance of the tuple, which is dependent on the temporal difference

that measures the unexpected deviation from the state transition value [71]. The

prioritized experience replay algorithm stores the subsequent temporal difference

error with each state transition and assigns high priority to experiences that have
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high temporal difference error and are recent. A stochastic sampling method is

used in the D-RAN framework to interpolate experience samples between greedy

and uniform random sampling by using the following formula:

Y =
pυy∑
z p

υ
z

, (3.16)

where py > 0 is the priority of transition y and the exponent υ determines the

prioritization weightage, with υ = 0 corresponding to the uniform random sampling.

The prioritized experience replay model ensures stability and avoids local minimum

convergence. To further assist stability in D-RAN training, a target deep neural

network is used to predict the target Q-values that are updated after every U steps.

D-RAN adopts an exploration algorithm with the exploration variable ϵ initialized

at ϵmax and decayed linearly at a rate of ϵdecay until ϵmin is reached. If the current

exploration rate ϵ is greater than a random uniform distribution sample, then the

deep reinforcement learning agent chooses a random action. Learning is deemed to

have converged when the average reward function is flat and no longer increases in

the last E episodes. The Algorithm 3 steps can be summarized as follows:

• Initialize the environment and agent parameters.

• Observe the state of the environment at TTI t.

• Select the action at TTI t.

• Compute the reward for the action taken based on Eq. 3.15.

• Train the prioritized experience replay with the experience tuples.

• Repeat the above steps until learning has converged or aborted.
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Algorithm 4: Simulated Annealing Framework

Data: K, N,Rinit

Initialize S-zone size of QoS categories as Rc := Rinit ∀c ∈ C ;
while t ≤ T do

current := {R1, R2, ..., R|C|};
Compute utility using Eq. 3.7 for curr;
Append N neighboring solutions of curr to neigh by choosing the adjacent
combinations in K;

Compute utility using Eq. 3.7 for neigh;
Compute acceptance probability AP using Eq. 3.11;
if acceptance probability of ith neigh > curr then

curr := neigh(i);
else

curr := curr

3.5.2 Simulated Annealing Framework

Implementing a meta-heuristic such as simulated annealing for S-zone optimization

in principle is similar to implementing a D-RAN framework, as the optimization

agent is embedded in the BBU that adjusts the size of S-zones for all QoS categories.

Instead of observing the environment state, the simulated annealing algorithm takes

into account the current solution, defined as the concatenation of S-zones sizes of all

QoS categories; thus, curr = {R1, R2, ..., R|C|}. The simulated annealing algorithm

traverses several neighboring solutions at each TTI and calculates the fitness of

each of them. The neighboring solution space is derived from the entire solution

search space K that includes the combinations of allowed S-zone size of all QoS

categories such that its size will be (Rmax−Rmin+1
d

)|C|. As such, the neighboring

search space will be defined as the S-zones combinations that are adjacent to the

current solution in K. If the utility value of the neighboring solution is greater than

the current solution or its acceptance probability is greater than a certain threshold,

the neighboring solution is accepted. The acceptance probability is calculated using

the formula given in Eq. 3.11 which is sensitive to temperature parameter Temp

with the fitness function is equivalent to the utility function given in Eq. 3.7 as
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Table 3.2: D-RAN simulation and training parameters.

Symbol Parameter Name Parameter Value
λUE UE average density 103\km2

λDBS DBS average density 103\km2

PLE Path-loss exponent 3
Rmin Minimum S-zone size 10m
Rmax Maximum S-zone size 80m
Rinit Initial S-zone for each QoS category (Rmax +Rmin)/2m
d Action space stepsize 3m
α, β Weightage parameters in Eq. 3.7 0.4, 0.4
P Penalty for wrong action -1
T Number of epochs/TTIs 1000
η Percentage of wrong actions allowed 5

ϵmax Maximum exploration rate 1.0
ϵmin Minimum exploration rate 0.1
ϵdecay Exploration rate decay 0.0002/|C|
U Target deep neural network update epochs 50
E Convergence episodes 50
N Number of neighbor solutions 2

detailed in Algorithm 4.

3.6 Experimental Evaluation

Unlike the physical layer, not much data can be gathered to build pure data-driven

models for system-level optimization problems. This is mainly because: 1) network

operators cannot afford to try all the parameter ranges in a live network for empirical

data generation, and 2) real-network data is not currently available because novel

architectures, such as the user-centric architecture investigated in this chapter, are

still a concept that will be implemented in 6G and beyond networks. While D-

RAN does not require deluge of data from live network before-hand for training an

explicit and static network behavior model, it does require some interaction on the

live network, or some data from the network to build an implicit dynamic sketch

of the model. As, no UC-RAN-based 6G or beyond network yet exist, we resort

to a system-level simulator to meet this requirement. Although we use simulator-
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generated data in this chapter to train D-RAN, the insights gained remain valid for

real scenarios, when the proposed D-RAN will be eventually built using data from a

live network, once the proposed architecture shows benefit and is deployed in real-

networks. Even in that case, pre-training the D-RAN using synthetic data from a

simulator and then fine-tuning the model from live network data might be needed

to address the data scarcity challenge, making the proposed synthetic data-aided

deep reinforcement learning training approach worthy of investigation.

This section presents the performance of proposed D-RAN framework with system

model presented in Section 3.2. The target coverage area of CBS is 1 square kilome-

ter. The UEs and DBSs are distributed through an homogeneous Poisson point pro-

cesses within the CBS coverage region. This chapter considers a maximum of three

QoS categories with throughput and latency requirements of 1: virtual/augmented

reality, 2: E-health, and 3: monitoring sensor networks, respectively. The number

of QoS categories is determined by the network operator depending on the dominant

traffic types in a specific CBS coverage area. The minimum and maximum S-zone

size considered in this chapter are 10 meters and 80 meters, respectively with the

action space step size of 3 meters. The choice of these user-centric cells (S-zone)

size limits are inspired by industry standards [72].

Python 3.6 and Pytorch are utilized to conduct these experiments. The number

of maximum epochs / TTIs (T ) in each training and evaluation episode is set to

1000, where each TTI’s duration is set to 1 ms. Both deep neural networks used in

the main and the target network have three hidden layers containing 128-256-128

neurons. A careful choice of depth and width of these deep neural networks is made

to avoid underfitting or overfitting of the nonlinear mapping between inputs and

outputs. The size of the minibatch for deep neural network training is set to 64, and

the target network is updated after every 50 TTIs. The rest of the network parame-

ters and hyperparameters required to tune deep reinforcement learning-assisted and
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Fig. 3.4: Comparison of brute-force solution for different UE placement realizations
in a two-dimensional S-zone space.

simulated annealing-assisted frameworks are shown in Table 3.2.

3.6.1 Brute-Force Solution

The brute-force S-zone selection attempts to solves the optimization problem given

in Eq. 3.7 by exhaustively searching the S-zone space of size (Rmax−Rmin+1
d

)|C|. With

the considered values of Rmax and Rmin, the brute-force solution may be a feasible

option if the size of search space is less than a million combinations (|C| < 4). How-

ever, the size of S-zone space is not the only deterrent in making a brute-force solu-

tion infeasible. UE mobility have a direct effect on SINR, which in turn impacts the

KPI values used in the utility function in Eq. 3.7, making a static solution for S-zone

selection infeasible due to its complexity of the order of O
(

(Rmax−Rmin+1
d

)|C|×T
)

.

Fig. 3.4a and Fig. 3.4b shows the averaged normalized utility function for the dif-

ferent realizations of UEs positions for |C| = 2. While the concave envelope of max-

imum utility is somewhat maintained in the Fig. 3.4 (blue region), the individual

utility values corresponding to each S-zone size combination as well as the apex of

the utility function is shown to change. For example, the maxima of utility function

(black square) changes from (R1 = 27, R2 = 18) in Fig. 3.4a to (R1 = 22, R2 = 17)

in Fig. 3.4b. Because UE mobility follows random way point model, these values
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Fig. 3.5: Convergence of the average episodic reward values for varying number of
QoS categories. To improve readability, these curves are smoothed with a moving
average taken over 20 episodes. The shade represents the standard deviation.

may change in each TTI, which makes it necessary to assign S-zone sizes to the

QoS categories dynamically and intelligently by interacting with the environment.

To this end, deep reinforcement learning is a more appropriate choices in solving

non-deterministic and real-time optimization of S-zone sizes.

3.6.2 Convergence Comparison for Varying Number of QoS Cate-

gories

The convergence of the proposed D-RAN framework with dynamicity in the network

due to heterogeneous user application demands is shown for different numbers of

QoS categories in Fig. 3.5. The value of the utility function is normalized with

the upper and lower limits, determined by the brute-force solution so that the

reward function can have a maximum and minimum value of 1 and -1, respectively.
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Fig. 3.6: Convergence of the average episodic reward values for varying maximum
UE speeds. To improve readability, these curves are smoothed with a moving aver-
age taken over 20 episodes. The shade represents the standard deviation.

For each of the considered cases in Fig. 3.5, the learning converges towards higher

reward function values after a certain amount of training episodes. The greater the

number of QoS categories, the longer it takes to converge due to a larger state space,

action space, and search space, requiring more TTIs to explore the environment.

Additionally, as the number of QoS categories increases, the reward function tends

to converge to a lower reward value. This is mainly due to the expansion of S-zone

space and the increase in the minimum required number of TTIs to reach to optimal

S-zone (R∗
c) from the initial S-zone (Rinit

c ) for each QoS category.

3.6.3 Convergence Comparison for Non-stationary UEs

Fig. 3.6 shows the convergence of D-RAN framework with varying maximum UE

mobility speeds for |C| = 2. In each episode, a different random seed is used in
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Fig. 3.7: Evaluation of the proposed D-RAN framework against simulated annealing
framework for maximum UE speeds equal to 10 km/h.

the random waypoint mobility model, effectively changing the mobility pattern of

UEs allowing the agent to learn the dynamics of the environment. The purpose of

training with non-stationary UEs distribution is to determine whether the D-RAN

framework can dynamically adjust S-zone size as the distribution of UEs changes.

In the figure, it can be seen that the reward function tends to converge for each

of the considered cases with a decrease in steadiness as the UE speed increases.

This is mainly because the higher the UE speed, the more significant the change

in the user distribution, leading to highly non-stationary maxima of the utility

function causing the oscillations in convergence. However, the reward function on

average converges to higher reward values, with the gap between converged reward

values and maximum possible reward depicting the minimum required number of

TTIs to reach to optimal S-zone (R∗
c) from the initial S-zone (Rinit

c ) as discussed in

Section 3.6.2.
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3.6.4 Evaluation for Different QoS Categories

In this experiment, the proposed D-RAN and simulated annealing-assisted frame-

works are tested for varying number of QoS categories. The D-RAN framework is

evaluated using the trained weights (state-action mapping), while the simulated

annealing-assisted framework is evaluated using heuristic optimization. Perfor-

mance is measured by averaging 1000 TTIs for 100 testing scenarios based on the

utility function given in Eq. 3.7. To compare the performance in relative terms to

maximum achievable utility, the utility values are normalized from maximum and

minimum utility values obtained from the brute-force solution.

Compared to a brute-force solution that requires large computations and cannot

scale, the D-RAN framework exhibits better adaptability to changing environmen-

tal conditions and maintains utility at a near-optimal level, as shown in Fig. 3.7.

Additionally, the D-RAN framework surpasses the performance of the simulated

annealing-assisted framework due to the slow convergence of simulated annealing

optimization and the high sample complexity required to reach a reasonable solu-

tion if the search space is too large. Fig. 3.7 illustrates this phenomenon, where

simulated annealing performances decrease as the number of QoS categories and the

combinatorial search space increase. On the other hand, D-RAN framework man-

age to maintain a level of uniformity in terms of average utility scores across the

QoS categories due to their ability to solve combinatorial optimization problems.

Note that the D-RAN framework is not learning on the channel fading values di-

rectly since predicting/learning channel fading is too complex a task for any learning

framework, particularly at a short time scale at which fast fading changes. How-

ever, the channel fading does introduce randomness in the state values and reward

function of the D-RAN agent, which it considers as a random perturbation of the

environment. The deep reinforcement learning agents have generally been shown to

better explore the environment with random perturbations caused due to the slight
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imperfection of the state values or reward function. The authors in [73] have also

made a similar observation where the deep reinforcement learning agent observing

noisy reward sometimes even outperforms the case with the true reward, which they

attribute to the implicit exploration introduced by the perturbations in the reward.

3.6.5 Proactive Real-time S-zone Optimization

The epoch / TTI-wise S-zone size optimization is shown in Fig. 3.8. To maximize

the utility function, the proposed D-RAN framework adjusts the S-zone size for

each QoS category to obtain the Pareto-optimal solution for area spectral efficiency,

energy efficiency, user service rate, and throughput satisfaction. The S-zone size for

each QoS category begins with an initial S-zone size of Rmax−Rmin
2

= 45m and then

move towards the near-optimal S-zone size for each category as shown in Fig. 3.8. It

can be observed that D-RAN continuously adjusts S-zone size of each QoS category

with the changing network dynamics resulting in the maximization of the normalized

utility. Fig. 3.9 shows the changes in S-zone size for |C| = 1 with associated utility

scores during the exploration and exploitation stages of D-RAN. In the exploration

stage, the D-RAN agent explores the environment by executing random actions so

as to gain knowledge of it as shown in Fig. 3.9a. While in the exploitation stage,

the agent uses its current knowledge (deep neural network weights and state-action

mapping) to change S-zones size to gain higher rewards as shown in Fig. 3.9b.

The results in Fig. 3.9b show that the utility function is higher (near-optimal)

in the exploitation stage, indicating good learning of state-action mapping of the

environment.

3.6.6 S-zone’s Elasticity Impact on area spectral efficiency

Fig. 3.10 compares the one-size-fits-all S-zone size (green circles) and elastic S-zone

size for |C| = 2. This result supports the claim in Section 3.1.2 that assigning
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Fig. 3.8: Proactive real-time S-zone size optimization for |C| = 2. To improve
readability, these curves are smoothed with a moving average taken over 50 TTIs.
The shade represents the standard deviation.

(a) Exploration stage. (b) Exploitation stage.

Fig. 3.9: TTI-wise normalized utility comparison for exploration and exploitation
stages of D-RAN training for |C| = 1. To improve readability, these curves are
smoothed with a moving average taken over 50 TTIs. The shade represents the
standard deviation.

the same S-zone to all categories may not be optimal for accommodating heteroge-

neous throughput and latency requirements. The figure shows that the maximum
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Fig. 3.10: One-size-fits-all versus elastic user-centric cell size comparison for area
spectral efficiency.

achievable area spectral efficiency (black square) does not even lie within a one-size-

fits-all S-zone space. The elastic S-zone architecture, however, allows for adaption

to heterogeneous QoS requirements, which maximizes area spectral efficiency for

the whole network.

3.6.7 Comparison of User-centric with Non-user-centric architecture

To compare the performance of the proposed user-centric approach with a non-user-

centric approach, we simulate a Cloud Radio Access Network (C-RAN) model which

considers similar assumptions as taken for a user-centric architecture to ensure a fair

comparison between the two architectures. These assumptions are: (i) the DBSs

are deployed in high density, (ii) each UE is allocated the full bandwidth of the

system, (iii) there is a one-to-one association between UE and DBS, and (iv) the

UE is associated with a DBS providing the maximum channel gain. With these

assumptions, the only contrasting factor in C-RAN and UC-RAN architectures is
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Fig. 3.11: Comparison of user-centric (UC-RAN) and non-user-centric (C-RAN)
networks.
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the S-zone parameter which ensures minimal separation between the scheduled UEs.

Fig. 3.11 shows the average SINR and number of scheduled UEs plots for varying

UE densities. It can be observed that the average SINR in the case of C-RAN falls

drastically with the increase in the density of UEs in the network. At the same time,

UC-RAN architecture with the additional degree of freedom (S-zone size) is able

to achieve much higher average SINRs at the cost of lesser scheduled UEs. The S-

zone size controls the separation between the scheduled UEs, impacting the average

SINR and the number of scheduled UEs. From Fig. 3.11, it can be hypothesized

that the C-RAN (traditional Heterogenous network) architecture will not be able

to perform better in a network with dense DBS deployment, which is envisaged

for 6G and beyond networks. On the other hand, the UC-RAN architecture can

provide an effective solution to this problem by incorporating an additional degree

of freedom (S-zone size). Manually selecting the S-zone size will only be applicable

if the environment is not dynamic and the solution space is too small. Therefore,

intelligent control of S-zone size is needed to optimally choose the S-zone size in a

dynamic environment with more than one QoS category.

3.7 Conclusion

In this chapter, we proposed D-RAN: a deep reinforcement learning-based user-

centric RAN optimization framework under dynamic user application demands and

network conditions. Unlike previous cellular network approaches, D-RAN employs

a concept of elasticity within user-centric systems that employ non-uniform virtual

cells (also called S-zones) for different QoS categories (e.g., Augmented/Virtual Re-

ality and E-health applications). To avoid searching exhaustively using brute-force

or meta-heuristics, a D-RAN framework has been developed to adjust S-zone sizes

based on changing network dynamics such as user mobility. D-RAN introduces a

less complex approach than brute-force or meta-heuristic techniques by accurately
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learning the mapping of environmental conditions to S-zone size of corresponding

QoS categories. A multi-objective problem is optimized in real-time in the proposed

architecture based on KPIs like area spectral efficiency, energy efficiency, UE service

rate, and throughput satisfaction. Simulated results indicate that D-RAN frame-

work is nearly as effective as brute-force and surpasses meta-heuristics like simulated

annealing, but with lower complexity and is adaptable to dynamic changes in the

network. In general, this chapter aims to introduce intelligence into user-centric

elastic networks to accommodate user applications’ non-uniform throughput and

latency requirements. Even though the proposed D-RAN framework is shown to

intelligently control UC-RAN COPs, many challenges must be addressed to incor-

porate user-centric architecture with an online optimization framework in practical

cellular networks. To that end, the following chapter will discuss the user-centric ar-

chitecture based on Open radio access network specifications that is able to minimize

the risk associated with online optimization to make it practical for implementation.
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CHAPTER 4

Digital Twin Empowered Risk-aware Reinforcement Learning

Framework for User-centric O-RAN

4.1 Introduction

4.1.1 Motivation

With approximately two thousand tunable COPs and numerous KPIs in 5G [5],

which are expected to increase further in future generations of cellular networks,

the current data-driven methods to automate cellular networks online (such as DRL)

will almost certainly break the system due to its unreliable exploratory behavior [18].

To address the safe optimization challenge in cellular architectures based on O-RAN

specifications, we propose a digital twin (DT)-empowered risk-aware optimization

framework in which we train a DRL on DT and use it to expedite the learning of

DRL and reliably tune COPs during online optimization of live cellular networks

(UC-RAN).

Recently DT paradigm has gained traction as a promising tool for cellular network

design, experimentation, and optimization [74]. The core concept of DT is to create

an accurate digital replica of the cellular network that incorporates wireless chan-

nel environment, antenna patterns, mobility models, antenna power consumption

models, user traffic patterns, and many more, along with the capability to sup-

port emerging cellular network features such as user-centric radio access network

(UC-RAN), vehicle-to-everything, to name a few. While DTs can be used for syn-

thetic data generation or offloading computational burden from physical cellular

network [75], we propose the incorporation of DT in a DRL framework to ensure
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accelerated risk-aware tuning of COPs in live cellular networks.

By utilizing DTs to perform DRL training which will be used during online DRL

optimization of cellular networks, we can significantly minimize risks associated

with COP optimization without compromising on convergence guarantees. This

approach leverages the virtualized digital platform of DTs to tune cellular network

COPs without any associated risk to real user satisfaction and network operator

revenue. The use of DT technology can lead to efficient and safe optimization of

cellular networks, enabling data-driven online solutions to become practical to tune

COPs for optimizing complex KPIs in live cellular networks. To investigate the

DT-empowered risk-aware optimization framework in O-RAN compatible flexible

architecture suitable for future generations of cellular communications, we utilize

UC-RAN for its ability to cater to the varying needs of wide-ranging quality-of-

service (QoS) demands of user applications and verticals suitable for 6G networks,

including telemedicine, virtual/augmented reality, industry automation, intelligent

transportation, public safety networks, and metaverse [76].

4.1.2 Contributions

Specifically, the key contributions of this chapter include the following:

• To serve UEs belonging to different verticals (with eclectic QoS requirements),

we propose a set of COPs (scheduled users per S-cluster and S-zone sizes for

each vertical). Through experimental analysis, we establish the impact of

these COPs on system-level KPIs representative of latency, reliability, and

capacity tradeoff along with network energy efficiency. We formulate a multi-

objective optimization problem to jointly optimize a set of KPIs by controlling

proposed COPs.

• Owing to the cellular network’s complexity and scarcity of real-network data,
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we propose a DRL-assisted solution based on soft actor-critic algorithm [77]

to solve the formulated multi-objective optimization problem in real-time.

The proposed DRL-assisted solution is designed as rApp (O-RAN network

automation applications) hosted at the non-real-time radio intelligence con-

troller (Non-RT RIC) to provide data-driven policy-based guidance to xApps

hosted at the near-real-time radio intelligence controller (near-RT RIC).

• Data-driven or DRL-based optimization approaches, as highlighted in Sec-

tion 4.1.1, can compromise the minimum level of reliability required for op-

timizing real-world environments, as they tend to search the solution space

for optimal control policies by performing unreliable explorations [17]. To ad-

dress this issue, we propose a novel framework that leverages the concept of

training a base DRL model on DT, which is then used to accelerate the train-

ing of live cellular networks reliably via DRL online optimization. We define

a metric that assesses the risk associated with DRL action in live networks

based on the uncertainty in the choice of its actions (measured as high entropy

policy) and the divergence of its action policy from that of a DT action policy

(measured using Manhattan distance). We also introduce an adjustable hy-

perparameter (α) that can control the exploration/exploitation trade-off and

can be fine-tuned based on the environment and fidelity of DT. We refer to

DT enhanced DRL-assisted optimization framework as “risk-aware” rApp be-

cause it is designed to be aware of the risks involved in online optimization. In

contrast, the standard DRL-assisted optimization framework, “risk-oblivious”

rApp, lacks the capability to learn from DT and is, therefore, more prone to

risky actions.

• To realize the system-oriented view of latency and reliability for different ver-

ticals in UC-RAN, we propose a new evaluation metric that measures the

latency satisfaction and reliability satisfaction of UE’s belonging to a partic-
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ular vertical. We conduct manifold experiments to evaluate the convergence

and risk of proposed risk-oblivious and risk-aware rApps against the brute

force results. Our results show that the proposed novel risk-aware rApp can

deliver impressive performance by converging to the near-optimal in less than

a few hundred iterations. In addition, the risk-aware rApp significantly im-

proves the convergence and associated risk by a factor of ten compared to

risk-oblivious rApp by leveraging offline learning from the DT.

4.1.3 Chapter Organization

The rest of this chapter is organized as follows. In Section 4.2 and Section 4.3,

the DT system model is presented, and a multi-objective optimization problem is

formulated consisting of a set of COPs and KPIs, respectively. In Section 4.4, we

discuss the novel interaction of the DRL agent and DT in O-RAN architecture

to control the UC-RAN COPs optimally. Section 4.5 demonstrates the proposed

frameworks’ effectiveness in reliably optimizing a cellular network. Finally, this

chapter is concluded in Section 4.6.

4.2 System Model

4.2.1 O-RAN-based UC-RAN Architecture

Fig. 4.1 shows the UC-RAN architecture based on O-RAN specifications where we

consider a set of low-power ultra-dense open radio units (O-RUs) connected via a

fronthaul link to a group of open distributed units (O-DUs). O-RU is a logical node

that hosts lower physical layer functions such as fast Fourier transform, inverse fast

Fourier transform, physical random-access channel, and radio-frequency operations.

O-DU is a logical node that hosts higher physical layer, medium access control, and

radio link control functions. O-DUs are connected via a midhaul link to the open
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central unit (O-CU), which is a logical node that hosts packet data convergence

protocol and radio resource control functions. The management, configuration,

security, fault resolution and performance assessment of these components (O-RU,

O-DU, and O-CU) is performed by a logical node called service management and

orchestration (SMO) [6].

In addition, intelligence is integrated into the O-RAN architecture through the RAN

Intelligent Controller (RIC) composed of two vital inter-communicating modules; 1)

near-RT RIC and 2) Non-RT RIC. The near-RT RIC is a logical node that hosts one

or more xApps to provide control/optimization of RAN elements by collecting near

real-time information. Non-RT RIC is a logical function within SMO that hosts one

or more rApps to provide policy-based guidance, learning model management, and

enrichment information at a granularity of greater than one second to the near-RT

RIC via the A1 interface [6]. Network operators, vendors, or developers can create

and deploy these artificial intelligence-enabled rApps and xApps to automate and

optimize network performance.

In this chapter, we propose an rApp controlling two key UC-RAN COPs; the number

of scheduled users per S-cluster and vertical specific S-zone size. The vertical specific

S-zones (virtual user-centric cells for UEs with similar QoS requirements such as

latency, throughput, etc.) are formed around UEs in each transmission time interval

(TTI). Unlike the traditional UC-RAN, [3,7,8,16], where a single user was scheduled

per S-zone, we introduce flexibility in the UC-RAN architecture by serving more

than one users within an S-cluster. S-cluster can be of arbitrary shape and contains

no more than M scheduled users, where M is a tunable parameter. In Section 4.3.2,

we discuss the impact of UC-RAN COPs on a set of KPIs, where it can be observed

that an appropriate choice of M can significantly improve latency satisfaction, area

spectral efficiency, and energy efficiency.

Fig 4.1 shows a graphical representation of the proposed UC-RAN architecture
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Fig. 4.1: UC-RAN architecture aligned with O-RAN specifications. The number
of scheduled users per S-cluster is set to two in this graphical illustration. Three
different verticals are defined for normal, meta-verse, and telemedicine users.

based on O-RAN abstraction where different S-zone sizes are allocated to UEs

belonging to N = 3 different verticals and the scheduled UEs per S-cluster is set

to 2, i.e., M = 2. The size of S-zone (defined by the radius of the virtual circle)

determines the UE and O-RU association; in other words, only the O-RUs that fall

within the S-zone region of UE are permitted to provide it service. The O-RU, which

offers the best cell coverage (typically measured in terms of the reference signal’s

received power (RSRP)), serves the UE within its S-zone region by allocating its
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full bandwidth. O-DU deactivates the O-RUs which are not associated with any

UE. UEs are scheduled in each TTI by the O-CU based on its scheduling priorities

if and only if: (i) there are less than M scheduled users per S-cluster ; and (ii) there

is at least one O-RU available in the S-zone region with which it can associate.

The UE priorities are derived from its latency requirements, i.e., lower the latency

requirement, higher the scheduling priority. UEs which are not scheduled at a

certain TTI are scheduled in the subsequent TTI’s. Note that these UC-RAN

COPs are adjusted by the network operator depending upon the requirement of the

enterprise customer and the corresponding vertical.

4.2.2 Digital Twin Model

With no real cellular network implementation of O-RAN based UC-RAN archi-

tecture, we rely on our DT to accurately model two crucial aspects: the 3GPP-

compliant propagation model and UE/O-RU association. While more detailed

modeling is necessary for a DT to accurately mimic a cellular network, such as mo-

bility models and traffic patterns, the implemented steps lay a solid foundation for

developing a DT-empowered risk-aware optimization framework for a cellular net-

work. For the DT, we consider the O-RAN-based UC-RAN architecture illustrated

in Fig. 4.1, where the UEs and O-RUs are distributed following two independent

Poisson point processes ΦUE and ΦRU with densities λUE and λRU , respectively.

Downlink is considered and the O-RUs serve the UEs on the sub-6 GHz frequency

bands. The RSRP at UE u ∈ ΦUE from serving O-RU r ∈ ΦRU can be mathemati-

cally expressed as:

RSRPr
u = PrGuGrδ

r
uυ

r
uPL(dru), (4.1)

where Pr is the transmit power of serving O-RU r, Gu is the receiver antenna

gain of UE u, Gr is the transmitter antenna gain of serving O-RU r towards UE

u, δru is the shadowing observed from O-RU r at the location of UE u modeled
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as a Gaussian random variable with standard deviation of 4 dB (see [78]), υru is

the small-scale fading observed from O-RU r at the location of UE u modeled as

exponential distribution with unit mean, dru is the distance between the serving O-

RU r and UE u, and PL(dru) is the linear dual slope path loss model derived from

the Third Generation Partnership Project (3GPP) Technical Report 38.901 UMi

Street Canyon line-of-sight model [78]. The non-linear dual slope path loss (in dB)

is expressed as follows:

PL(dru) =

 PL1; 10m ≤ dru ≤ dBP

PL2; dBP < dru ≤ 5km
, (4.2)

where PL1 = 32.4+21 log10(d
r
u)+20 log10(fc), PL2 = 32.4+40 log10(d

r
u)+20 log10(fc)−

9.5 log10(d
2
BP + (hr − hu)

2), dBP is the breakpoint distance, fc is the carrier fre-

quency, hr is the height of serving O-RU r, and hu is the height of UE u. From the

above derivation, the signal-to-interference-plus-noise-ratio (SINR) experienced at

UE u ∈ ΦUE:

SINRr
u =

RSRPr
u

N0 +
∑

r′∈Φ′
RU ,

r′ ̸=r
RSRPr′

u

, (4.3)

where Φ′
RU is the Poisson point processes of activated O-RUs, and N0 denotes the

noise power.

4.3 Problem Formulation

This section first provides a detailed account of KPIs used in this chapter followed

by the formulation of a multi-objective optimization problem.

4.3.1 Key Performance Indicators

With the goal of addressing the latency, reliability, and capacity tradeoff while

optimizing network energy efficiency, we assess system performance in terms of
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latency satisfaction, reliability satisfaction, area spectral efficiency, and network

energy efficiency.

Latency Satisfaction

3GPP defines user plane latency as the time span for unidirectional data transfer

from the access point’s radio protocol layer to the UE’s radio protocol ingress point,

assuming the UE is in active state [79]. To quantify 3GPP’s definition of latency,

we measure latency satisfaction as the weighted sum of the percentage of UEs (from

each vertical) served with the required data rate within its latency constraint. The

data rate is measured in each TTI when the UE requests service. If the sum of the

measured data rate across TTIs satisfies the latency bound of UE, then the latency

requirement of that user is said to be served. Mathematically,

Latency Satisfaction =
N∑
i=1

ẇi


∑|Φi|

j=1 1
{(∑Tij+li

τ=Tij
Γijτ

)
≥γi

}
|Φi|

 , (4.4)

where 1{.} is the characteristic function, N is the number of verticals, |Φi| represent

the number of UEs belonging to vertical i, Tij is the TTI at which UE j belonging

to vertical i requests service, li is the latency requirement for each vertical, γi is

the data rate requirement for each vertical during each TTI, Γijτ represents the

measured data rate at UE j belonging to vertical i during each TTI, and ẇi ≥ 0, ∀i

and
∑N

i=1 ẇi ≤ 1 are network operator-defined weights assigned to prioritize latency

requirements of specific verticals. Note that latency satisfaction metric is calculated

for every L TTIs where L = max(li), ∀i ≤ N .
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Reliability Satisfaction

3GPP defines reliability as the capability of transmitting a given amount of traffic to

UE from the application server within the required time constraint with high success

probability [79]. To quantify 3GPP’s definition of reliability, we measure reliability

satisfaction as the weighted sum of the averaged probability of packets received

correctly for UEs belonging to each vertical. The Block Error Ratio (BLER) is a

measure of the ratio of erroneous blocks received to the total number of blocks sent,

calculated at each Transmission Time Interval (TTI). The UE reports a Channel

Quality Indicator (CQI) which is used in conjunction with a SINR defined in Eq. 4.3

to map the CQI to a corresponding BLER value [80]. Mathematically,

Reliability Satisfaction =
N∑
i=1

ẅiEτ

[∑|Φ′
i|

j=1(1− βijτ )
|Φ′

i|

]
, (4.5)

where |Φ′
i| represent the number of scheduled UEs belonging to vertical i, βijτ

represents the BLER at UE j belonging to vertical i, Eτ [.] represents averaging over

several TTIs, and ẅi ≥ 0, ∀i and
∑N

i=1 ẅi ≤ 1 are network operator-defined weights

assigned to prioritize the reliability satisfaction of specific verticals.

Area Spectral Efficiency

The area spectral efficiency is the time-averaged total throughput of active UEs per

bandwidth channel per unit area. Mathematically,

Area Spectral Efficiency =
Eτ
[∑N

i=1

∑|Φ′
i|

j=1 Γijτ

]
A×B

, (4.6)

where A is the area of the target region and B is the channel bandwidth.

97



Network Energy Efficiency

The network energy efficiency is defined as the ratio of area spectral efficiency and

network-wide power consumption, which includes: (i) power required to operate

O-RU in listening mode; (ii) O-RU transmission power; (iii) power required for the

UE to discover O-RUs; and (iv) UE transmission power. Mathematically,

Energy Efficiency =
A× Area Spectral Efficiency

λRUPf + λ′RU∆RUPRU + λ′UE∆UEPUE
, (4.7)

where λ′RU is the density of activated O-RUs, λ′UE is the density of scheduled UEs,

Pf is the fixed power required to operate O-RU in listening mode, PRU is the O-RU

transmission power, ∆RU is the O-RU radio frequency component power, PUE is

the UE transmission power, and ∆UE is the UE radio frequency component power.

The typical values of these variables are such that: Pf = 1.932 Watts, PRU = 10

Watts, ∆RU = 23.22 Watts, PUE = 1 Watts, and ∆UE = 4 Watts [3].

4.3.2 Impact of UC-RAN COPs on KPIs

In this section, we discuss UC-RAN COPs (scheduled users per S-cluster and S-

zone size of different verticals) impact on KPIs (latency satisfaction, reliability

satisfaction, area spectral efficiency, and energy efficiency) discussed above.

S-zone Size of Verticals

We begin by analyzing the impact of the S-zone size of different verticals on KPIs

by fixing the number of verticals and number of scheduled UEs per S-cluster to

three. The latency and throughput requirement for each vertical is set differently,

such that vertical 1 has high-throughput but relaxed-latency requirement, vertical

2 has low-throughput and ultra-low latency requirement, and vertical 3 has low-
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(a) Latency satisfaction. (b) Reliability satisfaction.

(c) Area spectral efficiency. (d) Energy efficiency.

Fig. 4.2: Impact of S-zone size of verticals on latency satisfaction, reliability satisfac-
tion, area spectral efficiency, and energy efficiency with maximum COP combination
labeled as red circle.
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throughput and relaxed-latency requirement. Intuitively, the decrease in S-zone size

enables scheduling more users at the expense of high interference from neighboring

O-RUs activated for other scheduled UEs. These contrasting trends impact the

KPIs differently.

For instance, Fig. 4.2a shows the impact of three verticals S-zone size on latency

satisfaction metric, where the optimal region is represented in yellow shade and the

optimal COP combination (46, 37, 34) is annotated with a red circle. The optimal

S-zone size is different for each vertical because of the throughput and latency

requirement we set for UEs belonging to respective verticals. UEs belonging to a

vertical with low-latency requirement demand a smaller S-zone size such that UEs

can be scheduled without any delay, whereas UE belonging to a vertical with high-

throughput requirement demand a larger S-zone size such that the average distance

between scheduled UE and activated O-RU to increase leading to decrease in the

interference (hence, increase in SINR and throughput).

The relation of larger S-zones leading to high SINR is more evident in Fig. 4.2b,

where the optimal region for reliability satisfaction metric is at larger S-zone sizes

signifying the positive impact of large S-zone size on low BLER (hence, high SINR).

As the reliability satisfaction metric is calculated for scheduled UEs only, it aims

to minimize the BLER of scheduled UEs by maximizing the S-zone size without

considering the negative impact of increased S-zone size on latency.

Fig. 4.2c shows the impact of S-zone size on area spectral efficiency. Area spec-

tral efficiency is a metric dependent on the number of scheduled UEs and SINR

(throughput). Therefore, the optimal S-zone region will balance these two opposing

effects to maximize area spectral efficiency, as shown in the yellow shaded region

in Fig. 4.2c. The direct relationship between network energy efficiency and area

spectral efficiency mandates that the S-zone size of verticals will influence network

energy efficiency similarly to area spectral efficiency. However, the large S-zone
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(a) Latency satisfaction. (b) Reliability satisfaction.

(c) Area spectral efficiency. (d) Energy efficiency.

Fig. 4.3: Combined impact of scheduled UEs per S-cluster and S-zone Size of ver-
ticals on latency satisfaction, reliability satisfaction, area spectral efficiency, and
energy efficiency with maximum COP combination labeled as red circle.

size of verticals leads to less power consumption (high energy efficiency) since fewer

O-RUs will be activated in the network. These trends can be observed in Fig. 4.2d,

where the optimal region of network energy efficiency is similar to area spectral

efficiency with peaks at the maximum S-zone size of verticals.

Scheduled UEs Per S-cluster and S-zone Size of Verticals

We analyze the combined impact of the scheduled users per S-cluster and S-zone

size of verticals on the system performance. Intuitively, with the increase in the

scheduled UEs per S-cluster, more UEs are allowed to be scheduled in a specific

TTI. However, higher scheduling would diminish the interference protection be-

tween scheduled UEs and activated O-RUs of neighboring scheduled UEs, leading

to decreased SINR.
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These contrasting trends impact can be observed in Fig. 4.3 where the impact of the

S-zone size of vertical 1, S-zone size of vertical 2, and scheduled users per S-cluster is

shown on the above-mentioned KPIs. From the plots shown in Fig. 4.3a, 4.3c, 4.3d,

it can be observed that latency satisfaction, area spectral efficiency, and energy

efficiency’s optimal region in terms of verticals S-zone size remains the same as

observed in Fig. 4.2. However, with the increase in scheduled UEs per S-cluster,

the values of these KPIs increase signifying the positive impact of the increase in

the number of scheduled UEs per S-cluster on latency satisfaction, area spectral

efficiency, and energy efficiency metrics.

Opposite trends can be observed for reliability satisfaction, where the increase in the

number of scheduled UEs per S-cluster negatively impacts the reliability satisfaction

metric. Revisiting the inherent rigidity of previous UC-RAN architectures [3, 7, 8]

to limit the scheduled UEs per S-cluster to one, it is apparent from Fig. 4.3 that

scheduling a single UE does not give the best performance in terms of latency

satisfaction, area spectral efficiency, and energy efficiency.

4.3.3 Multi-Objective Optimization Problem

The contrasting impact of UC-RAN COPs (scheduled users per S-cluster and S-zone

size of different verticals) on KPIs, discussed in Section 4.3.2, raises an important

design question; how to jointly optimize these COPs to maximize KPIs? From the

network operator’s point of view, each of these KPIs should be maximized while

considering the network’s dynamicity, such as varying UE and O-RU distributions,

QoS requirements, and number of verticals.

Optimization Objective Function

To achieve this, we formulate a multi-objective optimization problem given in

Eq. 4.8, which minimizes the difference between latency satisfaction, reliability sat-
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minimize
M,C

∣∣∣∣√κ1(ζ − ζtarget)2 + κ2(ς − ςtarget)2 + κ3(ρ− ρtarget)2 + κ4(ξ − ξtarget)2
∣∣∣∣

subject to Mmin ≤M ≤Mmax,

Cmin ≤ Ci ≤ Cmax;∀Ci ∈ C = {C1, C2, ..., CN},
0 ≤ κ1, κ2, κ3, κ4 ≤ 1,

0 ≤ κ1 + κ2 + κ3 + κ4 ≤ 1
(4.8)

isfaction, area spectral efficiency, and energy efficiency KPIs with their respective

target values set by the network operator. In Eq. 4.8, the optimization variables

are; number of scheduled UEs per S-cluster, denoted as M , and S-zone size of N

verticals, C = {C1, C2, ..., CN}. (Mmin,Mmax) is the optimization range for the

number of scheduled UEs per S-cluster, (Cmin, Cmax) is the optimization range for

the S-zone size of verticals, ζ, ς, ρ, and ξ denotes normalized values of latency

satisfaction, reliability satisfaction, area spectral efficiency, and energy efficiency,

respectively, target subscript correspond to the target values for ζ, ς, ρ, and ξ, and

κ1, κ2, κ3 and κ4 are network operator-defined weights that can be used to adjust

the relative importance of these KPIs.

With the formulated optimization problem in Eq. 4.8, the rApp hosted at Non-RT

RIC aims to solve multiple objectives. First, it addresses the latency, reliability,

and throughput tradeoff along with network energy efficiency from a system-level

perspective by controlling the UC-RAN COPs. Second, it enables priority access

to specific vertical(s) through network operator-defined weights in individual KPIs

such as ẇ in latency satisfaction and ẅ in reliability satisfaction. Third, it combines

a set of KPIs in a rather sophisticated way where all KPIs aim to get nearer to the

target values set by the network operator minimizing the inherent conflict between

latency, reliability, area spectral efficiency, and energy efficiency KPIs. Fourth,

these multi-dimensional KPIs are combined by normalizing each KPI value with its

utopia and nadir values. We determine utopia and nadir approximate values for
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each KPI by a psuedo brute force method which sweeps the solution space (with

a predefined step size) in multiple independent simulation iterations, a standard

method in general reinforcement learning problems [61].

Complexity

Optimizing multiple COPs to maximize diverse and multifaceted KPIs is all but a

trivial task. The multi-objective problem formulated in Eq. 4.8 is a mixed-integer

nonlinear programming problem with the complexity of the order of O
(

(Mmax −

Mmin + 1)× (Cmax − Cmin + 1)N
)

. The computational difficulty required to solve

such a complex multi-dimensional problem with dynamically varying UE and O-RU

distribution with diverse QoS requirements is a mammoth task. The conventional

methods to solve such problems rely on analytical or heuristics-based models. These

methods either fail to capture network complexity by making simple assumptions

about underlying network conditions or utilize a deluge of offline data for opti-

mization, which is not representative of real-world network behavior and is often

unavailable.

4.4 Digital Twin Empowered Risk-aware Optimization Framework

The DRL approach, as opposed to the conventional methods discussed above, al-

lows network operators to optimize COPs online by learning from the live responses

of real networks, which embodies the dynamic and complex nature of cellular net-

works. However, DRL’s powerful decision-making ability without utilizing offline

data comes at a cost. This cost is paid by compromising on the system’s reliability

by learning through interactions with the environment which often includes actions

that compromise on the required safety [17]. For example, consider an inefficient

air traffic control system deployed in a city. Using DRL to improve air traffic con-
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trol system performance is highly desirable; however, DRL should never allow the

system to perform worse than the existing suboptimal solution as this might result

in anomalous cascading effects that can cause severe problems in air traffic control.

To ensure the DRL performance does not fall below the necessary reliability re-

quired for optimizing live cellular networks, we leverage UC-RAN’s DT to reliably

accelerate the learning process of the DRL model. To this end, we propose risk-

oblivious and risk-aware rApps based on DRL framework in O-RAN architecture

to solve the optimization problem formulated in Eq. 4.8. The risk-oblivious rApp

learns to optimize the set of COPs based on the real network responses. On the

other hand, the risk-aware model utilizes real network responses and offline learning

from UC-RAN’s DT to diminish the risk of choosing extreme exploratory actions

in optimizing live cellular networks.

We use the state-of-the-art soft actor-critic algorithm [77] as an enabler to im-

plement DRL in the proposed risk-oblivious and risk-aware rApps. Our choice of

soft actor-critic is mainly motivated by its ability to efficiently explore large action

spaces. In addition to its applicability to problems with large action space, the

soft actor-critic method offers high sample efficiency and avoids brittleness to hy-

perparameters. Details of soft actor-critic method with policy and value function

networks are included in Appendix C. Ergo, we first discuss the proposed rApps

deployment architecture aligned with the O-RAN specifications, followed by the

discussion on risk-oblivious and risk-aware rApps framework.

4.4.1 Deployment Architecture in O-RAN

Fig. 4.4 shows the deployment framework for proposed risk-oblivious and risk-aware

rApps in the O-RAN architecture, which can be summarized as:

• The low-level performance indicators, such as RSRP, SINR, measured data
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Fig. 4.4: High-level deployment framework for the proposed risk-oblivious and risk-
aware rApps in the O-RAN architecture.

rate, BLER, number of scheduled UEs, etc., along with vertical-specific iden-

tifiers and system-level KPIs such as latency satisfaction, reliability satisfac-

tion, area spectral efficiency, energy efficiency, etc., are collected via the O1

interface at the data lake residing in SMO.

• The data lake collects low-level performance indicators, system-level KPIs,

and COPs to perform any required data cleaning operations. Note that the

low-level performance indicators data is utilized to calculate system-level KPIs

discussed in Section 4.3.1 with the additional knowledge of the data rate and

latency requirement for each vertical.

• Data statistics from data lake are sent to Non-RT RIC residing in the SMO.

rApps, running in the Non-RT RIC, uses this information to make intelligent

decisions on the choice of COPs (scheduled UEs per S-cluster, S-zone size

of verticals) to maximize the combination of KPIs in an online manner. It

is important to note that rApps proposed in this chapter are assumed to be
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(b) SHAP values for predicting reliability
satisfaction.
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(c) SHAP values for predicting area spec-
tral efficiency.
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(d) SHAP values for predicting energy effi-
ciency.

Fig. 4.5: Feature importance analysis using SHAP values of average RSRP, SINR
and UE scheduling ratio on latency satisfaction, reliability satisfaction, area spectral
efficiency, and energy efficiency.

capable of DRL model training, inference, and updates.

• Some rApps may require additional information, such as risk-aware rApp (dis-

cussed in Section 4.4.2), which requires access to an offline trained model from

UC-RAN’s DT.

• The action policy obtained from risk-oblivious or risk-aware rApps is sent to

near-RT RIC. With the proposed deployment framework, the action policy

from rApp will change at a timescale of more than one second.

• xApps, hosted at near-RT RIC, will trigger the change in scheduled UEs per

S-cluster and S-zone size for verticals via the E2 interface. Note that xApps in

the proposed deployment framework only apply the policy recommended by

rApps (hosted at Non-RT RIC) at O-CU (consisting of both the control and

user planes), which further applies this policy to O-DUs via the F1 interface.
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4.4.2 Main Components of the Framework

Markov Decision Process Formulation

As depicted in Fig. 4.4, the proposed risk-oblivious and risk-aware rApps use DRL

for optimization. Hence the selected COPs-KPIs of UC-RAN are formulated as a

Markov decision process in terms of system state space, action space, and reward,

which will be described in the following:

System State Space: On closer inspection of the KPIs discussed in Section 4.3.1,

it can be noticed that the UC-RAN COPs primarily influence three main network

features (RSRP, SINR, and UE scheduling ratio), which in turn impacts latency sat-

isfaction, reliability satisfaction, area spectral efficiency, and energy efficiency KPIs.

To quantify each features’ impact, SHAP (SHapley Additive exPlanations) [81],

which is a game theoretic approach to interpret the output of machine/deep learn-

ing algorithms, is utilized on the brute force simulated data. The horizontal axis in

Fig. 4.5 show SHAP values which shows the impact of these three features (average

RSRP, average SINR, UE scheduling ratio) in predicting the values of KPIs. In

addition, each data point’s color represents the value of a feature from high to low

(for instance, yellow colored data point of SINR features represents a high value of

SINR) and the vertical thickness of data points indicates the density of data points.

From domain knowledge, we know that high values of these features impacts latency

satisfaction positively, where in particular, UE scheduling ratio and SINR has the

most impact on latency satisfaction. The same is evident from the SHAP values

plotted in Fig. 4.5a. Similarly, reliability satisfaction is a metric highly dependent on

the BLER, which has an inverse relationship with SINR, hence the observed high

feature importance of SINR on reliability satisfaction is noticeable in Fig. 4.5b.

Both area spectral efficiency and energy efficiency have an interdependent relation

with UE scheduling ratio, average RSRP, and SINR, which can be observed in
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Fig. 4.5c and Fig. 4.5d. These plots illustrate that higher values of SINR impacts

area spectral efficiency and energy efficiency positively, while the high values of

scheduling ratio impacts these KPIs inversely, due to the low SINR and high power

consumption of large number of activated O-RUs.

In light of the above observations, since these features notably impact the considered

KPIs, they will enable the learning algorithm to determine the state of the network

accurately. Therefore, we combine these three features, for each vertical, to define

the system state.

State Vector: Directly using these instantaneous feature values as the system state

may not reflect the KPIs discussed in Section 4.3.1, which are measured across

several timestamps or TTIs. For this reason, the system state is defined by stacking

the values of RSRP, SINR, and UE scheduling ratio for a predefined number of TTIs,

L. Due to its ability to capture latent time flow encoded information effectively, we

employ FLARE (Flow of Latents for Reinforcement Learning) method which uses

the difference of feature values between current and subsequent timestamps, as a

state variable [82]. To that end, the system state se at epoch e can be defined as:
se = {x1,y1, z1, ...,xN ,yN , zN}, (4.9)

where xi = {xt−Li , xt−L−1
i − xt−Li , ..., xti − xt−1

i }, yi = {yt−Li , yt−L−1
i − yt−Li , ..., yti −

yt−1
i }, and zi = {zt−Li , zt−L−1

i − zt−Li , ..., zti − zt−1
i } represents the stacked values of

the ith vertical, for the previous L TTIs, for RSRP, SINR, and UE scheduling ratio

features, respectively, and t = (e+ 1)L.

Cardinality of the State Space: These features values (RSRP, SINR, and scheduling

ratio) are calculated for all UEs belonging to the same vertical; therefore, the size

of system state space S is independent of the number of UEs with a cardinality of

3× L×N .

System Action Space: The optimization variables in Eq. 4.8 are; number of sched-

uled UEs per S-cluster (M) and S-zone sizes (Ci ∀Ci ∈ C = {C1, C2, ..., CN}) for
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re = ω

(
1−

∣∣∣∣√κ1(ζ − ζtarget)2 + κ2(ς − ςtarget)2 + κ3(ρ− ρtarget)2 + κ4(ξ − ξtarget)2
∣∣∣∣)

(4.10)

the N verticals. Therefore, the system action ae at each epoch e is defined as:

ae = {M,C1, C2, ..., CN}.

Cardinality of the Action Space: The size of the system action space A is defined by

the number of verticals (N), range of scheduled UEs per S-cluster (Mmax−Mmin+1)

and S-zone size (Cmax −Cmin + 1), such that, |A| = (Mmax −Mmin + 1)× (Cmax −

Cmin + 1)N .

System Reward: The system reward should capture the objective function value

formulated in Eq. 4.8 corresponding to an action ae taken at state se. Due to the

normalization of KPIs and constraints on the values of network operator-defined

weights, the objective function values are in the range, [0, 1]. Thus, by subtracting

the objective function value from 1, the minimization objective can be transformed

into a maximization objective, resulting in system reward which is given in Eq. 4.10.

Here the ω parameter scales the reward to higher values since the soft actor-critic

algorithm is shown to work better with larger rewards magnitude [77].

Risk-oblivious rApp Framework

This section introduces the risk-oblivious rApp, which tends to explore the envi-

ronment unreliably and can degrade network performance to intolerable levels, as

demonstrated in Section 4.5. As a result, the risk-oblivious rApp will serve as a base-

line for comparing the performance of the risk-aware rApp, which will be discussed

in Section 4.4.2. With the above derivation of system state, action, and reward, the

risk-oblivious rApp executes the action ae via A1 interface at the current state se,
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Fig. 4.6: Risk-oblivious rApp framework for UC-RAN COPs optimization.

which changes the environment to the next state se+1, returning a reward signal re

characterizing the utility for taking action ae on UC-RAN. Note that the system

and reward are observed using observations sent via the O1 interface to Non-RT

RIC.

Fig. 4.6 shows the framework for risk-oblivious rApp for UC-RAN COPs optimiza-

tion where the system state, action, reward, and next state in combination form

an experience tuple (se, ae, re, se+1) sent forward to the replay buffer at each epoch

e. This tuple is utilized when training function approximators using stochastic

gradient.

The actor and critic networks are defined as:

• The actor network πψ(se), with parameter ψ trained using Eq. 6.17, estimates

the mean and standard deviation of the conditional Gaussian probability dis-

tribution for each continuous action ae when in state se.

• The critic network includes: (i) two soft Q-functionsQθ1(se, ae) andQθ2(se, ae),

with parameters θ1 and θ2 trained using Eq. 6.15, takes state se and action ae

as input to return the corresponding expectation of value function; and (ii)

two target state value functions Vϑ(se) and Vϑ−(se), with parameters ϑ and

ϑ− trained using Eq. 6.16, to improve the stability of the optimization. Each
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soft Q-function and corresponding target state value function have the same

structure and parameterization.

The actor and critic network parameters update come from randomly sampling mini-

batch of experiences from the replay buffer. Recall that the actor in the soft actor-

critic method generates the mean and standard deviation of a Gaussian probability

distribution for each action dimension, where an action is randomly chosen based

on this distribution. These generated actions are unbounded since the mean and

standard deviation are estimations from the actor network. To bound the action

space, the network applies hyperbolic tangent function, such that, the continuous

action for each dimension can be bounded within the range, [−1, 1] [77].

Note that the action space for UC-RAN COPs is not continuous but a large discrete

multi-dimensional space that can be mapped to continuous action space by means

of quantization. To exemplify the continuous action to discrete action mapping,

assume that there are three possible discrete actions for S-zone size such that,

A = {20, 21, 22}meters then the bounded continuous actions are mapped to discrete

actions in the following manner: [−1,−0.33) → 20 meters, [−0.33, 0.33) → 21

meters, and [0.33, 1)→ 22 meters.1

The pseudo-code of risk-oblivious rApp is presented in Algorithm 5. The soft actor-

critic network parameters are initialized, such that, each critic and its target (soft

Q-function and subsequent state value function) is initialized with same values. The

environment is randomly explored in the warm start period by random selection of

system actions. The number of warm start epochs is a hyperparameter that will

require optimization depending on the type of problem at hand. Once the warm

start period is completed, the system actions are selected using the policy πψ(.|se).

System actions are executed in the UC-RAN environment, followed by observing

the system next state and reward as feedback from the UC-RAN environment.

1In Section 4.5, the S-zone size used for experimental evaluation is discretized into intervals of
1 meter, ranging from 10 to 70 meters.
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Algorithm 5: Psuedo-code for risk-oblivious rApp.

initialize network parameters θ1, θ2, ψ;
ϑ = θ1, ϑ

− = θ2;
for each epoch do

initialize system state se;
if epoch < warm start epochs then

select system action ae ∈ A randomly
else

select system action ae ∼ πψ(.|se)
execute system action in the UC-RAN environemnt;
observe system reward re using Eq. 4.10 and obtain next state se+1

feedback from UC-RAN environment;
store experience (se, ae, re, se+1) in replay buffer D;
for each gradient step do

sample experience mini-batches from replay buffer D;
update the soft Q-functions according to Eq. 6.15;
update the state value functions according to Eq. 6.16;
update the policy network according to Eq. 6.17;

Experience tuple in the form of (se, ae, re, se+1) are stored in the replay buffer D. A

mini-batch of experiences are sampled randomly to train actor and critic network

parameters using stochastic gradient by minimizing the corresponding loss equations

derived in Eq. 6.15, Eq. 6.16, and Eq. 6.17.

Risk-aware rApp Framework

The proposed risk-oblivious rApp framework operates online to optimize UC-RAN

COPs, starting with a warm start during which it explores the solution space. Even

though such a data-driven exploratory optimization technique performs the much

needed optimization, it does so at the risk of choosing unreliable exploratory actions

(COPs) that may harm the system. While optimizing cellular networks in an online

fashion, the proposed risk-aware rApp utilizes an offline action policy trained on the

DT to foster an improved and risk-aware action policy. Fig. 4.7 shows the risk-aware

rApp framework for UC-RAN COPs optimization where the system state, action,

reward, and learning algorithm’s training procedure is similar to risk-oblivious rApp
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framework except for three notable differences:

• Under the risk-aware framework, if the learning agent’s action is deemed risky,

we use the offline-trained DT policy; otherwise, the online learning policy is

used.

• A learning agent’s action policy is determined to be risky based on the un-

certainty in the choice of its actions (measured as high entropy policy) and

the divergence of its action policy from that of a DT action policy (measured

using Manhattan distance).

• A penalized reward paired with the learning agent’s action policy is included

in the experience tuple (se, ae, r̂e, se+1) to encourage the learning agent to

avoid risky/unreliable actions.

The pseudo-code of risk-aware rApp is presented in Algorithm 6. The soft actor-

critic network parameters initialization, warm start period, and gradient step up-

dates procedure remain the same as the risk-oblivious rApp. Below discussed are a

few novel characteristics of the risk-aware rApp.

Offline Policy from Digital Twin: At each epoch e, the risk-aware rApp has

access to offline trained action policy obtained from training on UC-RAN’s DT.

The offline trained policy comprises of system state/action mapping. Note that

the cellular network operators have the ability to design and control digital twins,

meaning that RL convergence can be tested multiple times on the DT giving the

network operator confidence about the superiority of the DT action policy. It is also

pertinent to note that Non-RT RIC will have access to the offline trained model

since O-RAN specifications define the Non-RT RIC as an enabler to utilize external

and contextual information for optimization, which is often unavailable at RANs or

near-RT RIC.
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Fig. 4.7: Risk-aware rApp framework leveraging DT for UC-RAN COPs optimiza-
tion.

Assessing Risk and Exploration/Exploitation Trade-off Hyperparame-

ter (α): The learning agent’s action risk is determined by the action policy’s:

(i) entropy which determines the uncertainty; and (ii) its distance from the DT’s

action policy which determines its divergence from the DT action policy. Recall

that in soft actor-critic, the output of the policy network is the mean and standard

deviation of Gaussian distribution for each action dimension. In our rApps, each

action dimension is an individual COP. For instance, a UC-RAN environment with

three verticals will have four action dimensions (COPs), where one dimension is

for the scheduled UEs per S-cluster, and the other three dimensions are for each

vertical’s S-zone size. In other words, each of these four action dimensions will have

a separate mean and standard deviation.

The entropy of a Gaussian policy is defined as Hai = 0.5 + 0.5 log(2π) + log(σai),

where σai is the standard deviation of the action dimension ai ∈ ae. Therefore,

the standard deviation of a Gaussian policy is solely determined by its entropy. To

that end, based on the standard deviation of each action dimension, we measure

the uncertainty in the learning agent’s action and compute the distance between
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Algorithm 6: Psuedo-code for risk-aware rApp.

initialize network parameters θ1, θ2, ψ;
ϑ = θ1, ϑ

− = θ2;
for each epoch do

initialize system state, se;
if epoch < warm start epochs then

select system action, ae ∈ A, randomly
else

select system action, ae ∼ πψ(.|se)
for each action dimension ai ∈ ae do

Reliable Action := 1{
exp
(
−σai

(∣∣aDT
i −µai

∣∣)>α};

if Reliable Action = 1 then
äi := ai;

else
äi := aDT

i ;

execute risk-aware system action, äe, in the UC-RAN environment;
observe system reward, re, using Eq. 4.10 and obtain next state, se+1,
feedback from UC-RAN environment;
if äe = ae then

store experience, (se, äe, re, se+1), in replay buffer, D;
else

calculate entropy-dependent hyperparameter ρ :=
∑

ai∈ae σai ;

calculate penalized reward r̂e := reward× exp

(
− ρ× ∥äe − ae∥2

)
;

store experience (se, äe, re, se+1) and (se, ae, r̂e, se+1) in replay buffer D;

for each gradient step do
sample experience mini-batches from replay buffer D;
update the soft Q-functions according to Eq. 6.15;
update the state value functions according to Eq. 6.16;
update the policy network according to Eq. 6.17;

the learning agent’s mean action and the DT’s action. Since both the standard

deviation and distance cannot be a negative value, these two terms are combined

in the power of a negative exponential function to limit its values in the range of

0 and 1. The value of this exponential term is compared against hyperparameter

0 ≤ α ≤ 1, which controls the exploration/exploitation tradeoff in a risk-aware

rApp framework. The higher the value of α, the more “risk aware” the combined

action policy will be. Nevertheless, if the DT action policy is not of high or medium
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fidelity, doing so would reduce the exploration of the learning algorithm, resulting

in convergence to local optima.

It is important to notice that a high-entropy policy does not necessarily mean that

a learning agent is taking actions haphazardly, as a high-entropy policy also en-

courages stochastic behavior in order to train policies that achieve optimal (or

near-optimal) with more diverse strategies/trajectories compared to deterministic

(or low entropy) policies that always follow the same trajectory. However, per-

forming extreme exploration in a real cellular network with a high-entropy policy

during online optimization can lead to deteriorating performance. For this reason,

the proposed algorithm allows for the adjustment of policy entropy based on the

hyperparameter α. A high value of α will encourage a more stochastic policy, while

a low value of α will encourage a more deterministic policy. The optimal value of

α will depend on the specific environment, fidelity of DT and the desired level of

exploration. In addition to the entropy of action policy, the risk of a policy is also

quantified by the divergence of the policy from the DT’s action policy. A high di-

vergence indicates that the policy is taking actions significantly different from those

taken in the DT by the learning agent. This can be a sign of risk, as it suggests that

the policy may not be able to achieve the same level of performance as it achieved

in the DT.

Penalized Reward: Even though the action policy from the DT and the learning

algorithm is combined to avert risk, the learning algorithm’s unreliable action needs

to be reprimanded. The penalty is essential to allow the learning algorithm to

eventually be certain of its actions without doing unreliable (extreme) exploration

of the environment. To do so, a fabricated reward phenomenon is included to give

a penalized reward to the learning algorithm’s action if it is deemed unreliable.

The penalized reward is a scaled version of the original reward. Several factors

are taken into account when scaling the reward, such as the uncertainty of the
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algorithm’s action policy and the distance between the risk-aware action and the DT

policy’s action. Similar to the expression of determining action reliability, we use a

negative exponential term to combine these two terms (standard deviation signifying

entropy/uncertainty of action policy and Euclidean distance between risk-averse and

learning algorithm’s action policy). Note that the higher the uncertainty of action

policy (standard deviation) and divergence from DT action policy, the lower will be

the penalized reward.

Extent of Trust on the Fidelity of Digital Twin: The proposed risk-aware

rApp framework does not assume access to a high-fidelity DT of a UC-RAN network.

A high-fidelity DT model of a cellular network must encompass the complete sys-

tem, including the realistic wireless environment, antenna patterns, traffic, mobility,

varying user quality of service requirements, handovers, and multi-connections, to

name a few. However, with rapid advancements and innovations in cellular technol-

ogy, the assumption of having access to a high-fidelity DT for all types of cellular

networks may not be applicable. This poses a challenge in a scenario when the

DT used to avert risk in risk-aware rApp framework is not of a high-fidelity. The

above challenge can be addressed by the right choice of exploration/exploitation

hyperparameter α, whose natural interpretation as the inverse of the DT’s fidelity

provides good intuition for adjusting it.

4.5 Performance Evaluation

The performance of the proposed risk-oblivious and risk-aware rApps is evaluated

and compared against pseudo brute force maximum using a 3GPP-compliant event-

driven system-level DT with advanced features such as heterogeneous traffic genera-

tion, user-centric virtual cells, O-RU activation/deactivation, and UE/O-RU associ-

ation. A pseudo brute force algorithm approximates the maximum for each KPI and

multi-objective function formulated in Eq. 4.8 by exhaustively traversing through
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all possible combinations of COPs with a predefined step size. Given the step size is

not too large, the pseudo brute force method is expected to approximate the actual

maximum. In addition to comparing with the pseudo brute force maximum, the

proposed rApps are evaluated based on risk associated with the optimization.

Risk in this chapter is defined to reflect the idea of reaching to near-optimal in the

most efficient way, that is, without harming the system performance. We consider

the risk score to be representative of the multi-objective function, such that, the

multi-objective function defined in Eq. 4.8 is transformed to a maximization function

by subtracting it from 1, a value hereafter referred to as utility equivalent to unscaled

system reward. To this end, the risk score is defined as the sum of indicator function

values of the utility falling below a certain percentage (q) of maximum achievable

utility which is obtained from pseudo brute force. Mathematically,

Risk Score =

num epochs∑
e

1{Utilitye< q% of maximum utility}. (4.11)

As, no real cellular network based on UC-RAN conforming to O-RAN specifications

is yet developed, we resort to our 3GPP-compliant event-driven system-level DT

with different UE/O-RU deployments to differentiate the real cellular network from

DT used in this chapter. To show the performance of the proposed risk-aware rApp

with different fidelity DTs, we use different cellular network parameters such as

shadowing, path loss, etc, than those used for real cellular network simulation.

We consider three verticals representing different data/latency requirements. All

UEs belong to either of these three verticals. The path loss model and UE/O-

RU deployment are adopted in accordance with the system model presented in

Section 4.2 with 500 UEs/O-RU per the simulations region of 1 square kilometer.

We consider the bandwidths of all sub-channels to be 100MHz and TTI duration to

be 1 millisecond. The minimum and maximum values for COPs are: (i) 1 to 3 for
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the number of scheduled UEs per S-cluster ; and (ii) 10 meters to 70 meters for the S-

zone size of each vertical with step size of 1 meter. Note that the considered number

of verticals, their requirements and the range of COPs values are representative use-

cases without loss of generality. The target value for each KPI in Eq. 4.10 is set to

1.

The neural network architectures for the actor and critic networks consist of one

hidden layer with 256 neurons and a rectified linear unit activation function. The

learning weight is set to 0.003, discount factor γ is set to 0.99, target network update

frequency is set to 20 epochs, mini-batch size is set to 256, replay buffer size is set to

10000, and warm start period is set to 300 epochs. We use PyTorch to implement

the proposed frameworks in Python and average the simulation results for a number

of random seed numbers.

The performance evaluation section first analyzes the performance of risk-oblivious

rApp on different KPIs optimization. We then compare the performance of risk-

aware and risk-tolerant rApps to show the applicability of risk-aware rApp in live cel-

lular network optimization. Later, we analyze the impact of exploration/exploitation

hyperparameter α on the convergence and risk-awareness capability of the proposed

risk-aware rApp with different fidelity DTs. Finally, the proposed rApps are evalu-

ated with different QoS requirements.

4.5.1 Learning Efficiency Analysis of Risk-oblivious rApp

In the learning efficiency analysis, we evaluate the performance of the proposed risk-

oblivious rApp in terms of convergence to pseudo brute force maximum and risk

score associated with the optimization. To prove the applicability of the proposed

risk-oblivious rApp, we optimize individual KPIs (such as latency satisfaction, relia-

bility satisfaction, area spectral efficiency, and energy efficiency) and a combination

of KPIs in the form of utility with κ1 = κ2 = κ3 = κ4 = 0.25.
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Fig. 4.8: Evaluating the risk-oblivious rApp convergence for normalized key perfor-
mance indicators as a function of number of epochs.

In Fig. 4.8, we show the normalized KPIs score of the risk-oblivious rApp across

a number of training epochs with different KPIs. As shown in the figure, due to

random exploration during the warm-up period (0-300 epochs), the normalized KPIs

start with rather sub-optimal values. As the training progresses, the normalized

KPIs score improves until it converges to the maximum achievable KPIs score.

Note that the maximum achievable KPIs score are obtained from the pseudo brute

force method. This indicates that the proposed risk-oblivious rApp can converge

to near-optimal on an average of 1200 epochs (except for reliability satisfaction

which converges much quicker due to the large optimal solution space as observed

in Fig. 4.2b). Even though the proposed risk-oblivious rApp can converge to near-

optimal, it does so at some risk (defined in Eq. 4.11 for q = 60). The risk score

associated with optimizing these KPIs varies; the more complex the solution space,

the more the risk score.
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Fig. 4.9: Different fidelity DT impact on risk-aware rApp convergence.

4.5.2 Optimization in an Efficient Way Using Risk-aware rApp

In practical cellular networks, where network operators can afford such exploratory

optimization as indicated by risk-oblivious approach, it is highly desirable to reach

the optimal in a reliable way; hence the risk-aware rApp comes into play. In the

following experiment, soft actor-critic is used as the underlying optimization algo-

rithm for obtaining an offline action policy trained on DT. The DT action policy

can be categorized into three levels: high-fidelity, medium-fidelity, and low-fidelity.

The DRL agent is trained on these different fidelity DTs for 1500 epochs and the

state/action mapping obtained at the last epoch is used as the offline action policy

for risk-aware rApp.

From the training curves shown in Fig. 4.9 with utility to optimize, it can be ob-

served that for high and medium fidelity DTs; risk-aware rApp performs optimiza-

tion with much lesser exploration and quick convergence to maximum derived from

pseudo brute force. It can also be observed that risk-aware rApp reduces the risk

122



(a) High-fidelity DT action policy.

(b) Medium-fidelity DT action policy.

(c) Low-fidelity DT action policy.

Fig. 4.10: Impact of exploration/exploitation hyperparameter in risk-aware rApp.
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score over risk-oblivious rApp by a factor of ten. These results confirm that lever-

aging DT (with high and medium fidelity) for obtaining offline action policy on

top of a state-of-the-art learning algorithm (such as soft actor-critic) significantly

reduces the risk score without compromising convergence. However, when using a

low-fidelity DT, the risk-aware rApp approach fails to reduce risk score or converge

to maximum. This is an expected outcome since the risk-aware rApp leverages the

DT action policy to circumvent the unreliable exploration during the warm start

period by imitating the DT’s action policy. The results show that by integrating

DT technology, the environment can be explored with reliability and the warm-up

time for optimizing real cellular networks can be minimized.

4.5.3 Balancing the Exploration/Exploitation Tradeoff

We use the exploration/exploitation tradeoff hyperparameter α used in the risk-

aware rApp to control the exploration depending on DT fidelity level. In Fig. 4.10,

we use the different values of α for each of high, medium, and low fidelity DT action

policies to analyze its impact on convergence to its utility function’s maximum.

Intuitively, the higher the value of α, the more trusted the DT action policy, hence

less exploration in the risk-aware rApp. Consequently, this will lead to poor con-

vergence if the DT action policy is of low-fidelity. Contrarily, the lower the value of

α, the lower will be the confidence upon the DT action, and the learning algorithm

will rely on its exploration to optimize the solution space at the cost of choosing

unreliable actions during exploration. This impact of α can be observed in Fig. 4.10,

where the higher value of α (i.e. α = 1) works best for high-fidelity DT action policy.

The medium range value of α (i.e. α = 0.8) works for medium-fidelity DT action

policy. Similarly, the low values of α (i.e. α = 0.3) work best for low-fidelity DT

action policy. Notice that even though when a low-fidelity DT is used, α parameter

can recover the convergence capability of the optimization framework albeit at a
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(a) Latency service rate of verticals.

(b) S-zone size of verticals and scheduled UEs per S-cluster.

Fig. 4.11: Evaluating priority access capabilities of UC-RAN for different verticals.

high risk score. The above results support our earlier claim of the choice of α being

the inverse of the quality of DT.
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4.5.4 Priority Access Capabilities

Despite the obvious utility of serving vertical use cases from a common core and

RAN architecture, the diverse requirements of these verticals are often addressed

from the perspective of the physical layer technologies. To show the efficacy of UC-

RAN in enabling priority access to different verticals, we show the latency service

rate for each vertical in Fig. 4.11. Mathematically,

Latency Service Rate =

∑|Φi|
j=1 1

{(∑Tij+li
τ=Tij

Γijτ

)
≥γi

}
|Φi|

, (4.12)

where |Φi| represent the number of UEs belonging to each vertical i ∈ N , τ = Tij

is the TTI at which UE j belonging to vertical i requests service, li is the latency

requirement for each vertical, γi is the data rate requirement for each vertical, and

Γijτ represents the measured data rate at UE j belonging to vertical i during each

TTI.

The three considered verticals have varied latency requirements, with vertical 1

having a medium latency requirement, vertical 3 having a low latency requirement,

and vertical 2 having a tolerant latency requirement. These latency requirements

can be incorporated in the network operator-defined weights in Eq. 5.10 with weights

natural interpretation as the inverse of the latency requirement of verticals; that

is, the lower the latency requirement, higher the weight. From the curves shown

in Fig. 4.11a, we can observe that the network operator-defined weights can enable

prioritized access to UEs belonging to vertical 3 with the lowest latency requirement.

The respective convergence of S-zone size of verticals and scheduled UEs per S-

cluster is shown in Fig. 4.11b, where the vertical 1 is allocated the S-zone size of

approximately 40 meters, vertical 2 is allocated the S-zone size of approximately

35 meters and vertical 3 is allocated the S-zone size of approximately 30 meters.

Recall that the smaller S-zone size and larger scheduled number of UEs per S-cluster
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lead to higher latency satisfaction which can be observed in these plots. Also, the

scheduled UEs per S-cluster is increased to maximum allowed limit of 3 which as

observed in Fig. 4.3a maximizes the latency satisfaction metric. With prioritized

access capabilities, the proposed rApps can adjust the S-zone size of respective

verticals and scheduled UEs per S-cluster to prioritize specific vertical(s), ensuring

reliable communication without competing with other verticals.

4.6 Conclusion

To cope with the performance deterioration risk associated with online network

reconfiguration, which has hindered the industry uptake of online learning-based

solutions, we propose offline learning leveraging a DT instilling risk-awareness in

the DRL optimization framework. The proposed DT-assisted DRL framework’s

convergence and accumulated risk are compared against brute force results, show-

ing an impressive performance in reaching the near-optimal in a few hundred iter-

ations. Furthermore, the risk-aware optimization framework indicates the viability

of online learning techniques in live cellular networks with controlled and reliable

exploration. On the other hand, the multifaceted requirements of 5G and beyond

applications demand for a system capable of supporting multiple combinations of

prioritized access, reliability, throughput, and energy efficiency. In this chapter, we

present and evaluate a UC-RAN based on O-RAN architecture to serve the QoS

requirements of various verticals. We introduce and investigate two key UC-RAN

configuration and optimization parameters; 1) size of user centric virtual cells (S-

zones), and 2) number of UEs scheduled per S-zone, which are leveraged through

an rApp to control latency satisfaction, reliability satisfaction, area spectral effi-

ciency, and energy efficiency. Overall, this chapter demonstrates a highly flexible

O-RAN-based user-centric architecture coupled with a DT-empowered risk-aware

DRL optimization framework that can address the fundamental tradeoff between
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latency, reliability, and throughput with accelerated and reliable optimization in

live emerging cellular networks.
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CHAPTER 5

User-centric Communication with Aerial Network for 6G: A

Reinforcement Learning Approach

5.1 Introduction

5.1.1 Motivation

UC-RAN, introduced in recent works [2–4, 7, 8] and previous chapters, utilize vir-

tual Lean, Elastic, Agile, and Proactive Service exclusion Zones (LEAP S-Zones)

to provide very high-throughput within ultra-low latency bounds. While the vir-

tual LEAP S-Zones-based architecture has significantly improved the quality of

service for high-priority verticals, it often negatively impacts low-priority verticals

due to the preemptive scheduling of high-priority verticals with large service exclu-

sion zones, which delays the scheduling of low-priority verticals [8]. This problem

is further exacerbated in hotspot areas where the delay in scheduling will further

increase due to the service exclusion zones.

Aerial deployment can provide a potential cost-efficient solution to this problem,

with an overlay network deployment to provide service to all verticals and improve

user satisfaction [83]. This approach of integrating virtual LEAP S-Zones-based

terrestrial architecture with an aerial network can offer dual advantages: (i) seamless

coverage for diverse verticals with varying needs, where the terrestrial network caters

to high-priority verticals for next-generation use cases, and the aerial network serves

low-priority verticals that experience scheduling delays from the terrestrial network;

and (ii) cost-effective provision of rapid on-demand communications through the

agile deployment of aerial base stations (ABSs), allowing for greater flexibility in
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movement between locations, making it an ideal solution for next-generation wireless

systems [84].

To fully exploit the benefits of aerial network-assisted communication, it is impera-

tive to intelligently control the configuration and optimization parameters (COPs)

of ABSs, including their locations, transmit powers, altitudes, and beamwidths.

However, the increase in the number of ABSs in the aerial network leads to an ex-

ponential increase in the combinations of these COPs, which can result in scalability

issues for heuristic and brute force optimization approaches. Furthermore, the dy-

namicity of the cellular network due to user mobility and traffic demands requires

these COPs to be adjusted dynamically. To overcome these challenges, we propose

a comprehensive analysis of the impact of aerial network COPs on key performance

indicators (KPIs), including coverage, latency satisfaction, average spectral effi-

ciency, and energy efficiency. We propose a DRL optimization framework, hence-

forth referred to as AIR-DRL: AerIal netwoRk Optimization through DRL, that

enables intelligent control of these COPs to optimize multiple KPIs jointly in a dy-

namic cellular environment. Our ultimate objective is to introduce a novel two-tier

cellular network architecture that synergistically combines an artificial intelligence-

empowered aerial network with a user-centric terrestrial network, with the goal of

fulfilling the evolving requirements of emerging verticals.

While the existing studies mentioned in related work section in 1.3 have addressed

the optimization of specific KPIs for ABS-aided wireless communications, they do

not consider multi-objective optimization of system-level KPIs that are crucial for

6G networks. Such KPIs include, but are not limited to, coverage, latency satisfac-

tion, average spectral efficiency, and energy efficiency. Additionally, to the best of

our knowledge, no previous work has investigated the performance of ABSs in con-

junction with a LEAP S-Zones-based terrestrial architecture which has been shown

in [2–4, 7, 8] to provide services to various verticals based on their diverse service
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requirements.

5.1.2 Contributions

The key contributions of this chapter can be summarized as below:

• We integrate an aerial network with the LEAP S-Zones-based terrestrial ar-

chitecture to fully leverage its advantages. We analyze the impact of this

integration on a comprehensive set of KPIs, including coverage, latency satis-

faction, average spectral efficiency, and energy efficiency. Through this anal-

ysis, we demonstrate that our integrated architecture can provide services to

all verticals for 6G networks, unlike traditional heterogeneous networks and

standalone LEAP S-Zones-based UC-RAN.

• To balance the tradeoff between key aerial network design parameters, such

as ABSs locations, transmit powers, altitudes, and beamwidths, we formulate

a multi-objective optimization problem. Moreover, we discuss two methods of

combining multiple KPIs (linear optimization and targeted optimization) to

ensure each KPI has an equal contribution in the multi-objective formulation,

rather than biased optimization towards an individual or a few KPIs.

• Analytical approaches and offline learning solutions are complex and inefficient

for performing real-time online optimization. Therefore, we formulate the

system multi-objective optimization problem as a Markov Decision Process

and propose the AIR-DRL framework based on the state-of-the-art soft actor-

critic algorithm to solve it.

• To evaluate the convergence of our proposed AIR-DRL framework against

brute force results, we conduct numerous experiments. Our results show that

the proposed framework converges system-level KPIs in just a few thousand

iterations without biasing towards any individual or a set of KPIs. Further,
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we evaluate the performance of the proposed AIR-DRL framework in a much

larger solution space, showcasing the utility of our approach beyond brute

force and heuristic methods.

5.1.3 Chapter Organization

The chapter is structured as follows. In Section 5.2, we introduce the system model,

followed by the formulation of a multi-objective optimization problem with ABS

COPs and system-level KPIs in Section 5.3. In Section 5.4, we present a Markov

decision process formulation of the optimization problem and propose an AIR-DRL

framework to control the ABS COPs intelligently to optimize system-level KPIs

jointly. Section 5.5 presents the results of experiments that demonstrate the effec-

tiveness of the proposed AIR-DRL framework. Finally, we conclude the chapter in

Section 5.6.

5.2 System Model

The system model, as shown in Fig. 5.1, considers three separate verticals to cater to

the diverse needs of users. The categorization of UEs into these verticals is based on

their specific throughput and latency requirements. The model defines M hotspot

regions located at (xhotspotm , yhotspotm ), where m ≤ M . Since the hotspots can change

spatiotemporally due to user mobility, their number and locations are considered

variables. With a densely deployed terrestrial network, the size of LEAP S-Zones,

defined by the radius of the virtual circle, determines the minimum region where

no other UE can be scheduled. While this approach can provide high throughput

with ultra-low latency to high-priority verticals, as shown in [8], it can also create

coverage holes in the network for low-priority verticals.

To provide coverage to unscheduled UEs, a set N of N ABSs, indexed by n =
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Fig. 5.1: Integrated aerial network with terrestrial user-centric RAN. Three different
verticals are defined for normal, meta-verse, and telemedicine terrestrial users.

1, 2, ..., N , with altitude HABS
n with horizontal and vertical location (xABS

n , yABS
n )

are deployed and connected to a centralized baseband processing unit to obtain

power supply. A set U of U UEs, indexed by u = 1, 2, ..., U , with fixed height HUE
u

are distributed using a Poisson point process ΦUE1 with density λUE1 and a Poisson

cluster process ΦUE2 with density λUE2 . The horizontal and vertical locations of

the UEs can be denoted as (xUE
u , yUE

u ). Similarly, a set O of O data base stations

(DBSs), indexed by o = 1, 2, ..., O, with fixed height HDBS
o are distributed using

a Poisson point process ΦDBS1 with density λDBS1 and a Poisson cluster process

ΦDBS2 with density λDBS2 . The horizontal and vertical locations of the DBSs can be

denoted as (xDBS
o , yDBS

o ). Note that hotspots’ centers are set as the parent location

for Poisson cluster processes ΦUE2 and ΦDBS2 . In the following, we discuss the aerial

channel path loss model and terrestrial channel path loss model where the downlink

133



scenario is considered in sub-6 GHz frequency bands, and the centralized baseband

processing unit shares the backhaul spectrum equally between aerial network and

LEAP S-Zones-based terrestrial network to minimize cross-tier interference.

5.2.1 Aerial Channel Path Loss Model

ABSs are equipped with directional transmit antennas with gains expressed as:

Gnu = 2(κn + 1) cosκn(θnu), (5.1)

where κn = − log(2)
log(cos(Bn/2))

defines the maximum directivity of the antenna of ABS n

with beamwidth Bn, θnu = cos−1

(
HABS
n −HUE

u

d2Dnu

)
defines the radiation angle between

ABS n and UE u with θnu ∈ [−π/2, π/2], d2Dnu =
√

(xABS
n − xUE

u )2 + (yABS
n − yUE

u )2 is

two-dimensional Euclidean distance between ABS n and UE u, HABS
n and HUE

u are

the heights of ABS n and UE u, respectively. It should be noted that the antenna

gain between ABS n and UE u is symmetric along the vertical direction, meaning

it is independent of the azimuth angle. This symmetry is commonly observed in

antenna designs such as horn or uniform linear array antennas [85,86].

Further, the ABS-to-ground channel can be characterized in terms of probabilities

of line-of-sight (LoS) and non-line-of-sight (NLoS) scenarios between ABS n and

UE u. These LoS probabilities can be estimated as follows [84]:

LoSnu = 0.01a− 0.01(a− b)
1 +

(
θnu−c
d

)e , (5.2)

where (a, b, c, d, e) are the set of environment-dependent empirical parameters which

are given for high-rise urban scenario as a = 352, b,= −1.37, c = −53, d = 173.8,

and e = 4.67 [84]. Similarly, the probability of NLoS scenario between ABS n and

UE u can be expressed as NLoSnu = 1− LoSnu.

The signal transmitted from the ABS n to UE u is modeled to be affected not only
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by free space path loss but also by radiation angle-dependent shadowing, whose

mean and standard deviation can be modeled as follows [84].

µshadowing
nu =

qµ + θnu
rµ + sµθnu

, (5.3)

σshadowing
nu =

qσ + θnu
rσ + sσθnu

, (5.4)

where (qµ, rµ, sµ, qσ, rσ, sσ) are frequency-dependent empirical parameters which are

given for 3.5 GHz frequency band as qµ = −92.90, rµ = −3.14, sµ = 0.0302, qσ =

−89.06, rσ = −8.63, sσ = 0.0921 [84].

The received signal strength at UE u from ABS n in LoS and NLoS scenarios, as a

function of path loss and antenna gain, can be expressed as:

RLoS
nu = Tn − 20 log

(
4πfnd

3D
nu

c

)
+Gnu −XLoS

nu , (5.5)

RNLoS
nu = Tn − 20 log

(
4πfnd

3D
nu

c

)
+Gnu −XNLoS

nu −XShadowing
nu , (5.6)

where RLoS
nu and RNLoS

nu are the received signal strength (in dBm) at UE u from ABS

n for LoS and NLoS communication paths, Tn is the transmit power (in dBm)

of ABS n, c is the speed of light, fn denotes the carrier frequency of ABS n,

d3Dnu =
√

(xABS
n − xUE

u )2 + (yABS
n − yUE

u )2 + (HABS
n −HUE

u )2 is the three-dimensional

Euclidean distance between ABS n and UE u, XShadowing
nu is shadow fading repre-

sented as Gaussian random variable with mean µshadowing
nu and standard deviation

σshadowing
nu , XLoS

nu and XNLoS
nu are location dependent randomness in the received sig-

nal represented as log normal distribution with mean zero and standard deviation

σLoS
nu and σNLoS

nu (in decibels), respectively. The variable XShadowing
nu is only included

in NLoS scenario because shadowing is a phenomenon that occurs exclusively in

NLoS scenarios due to the presence of obstacles that affect wave propagation.
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5.2.2 Terrestrial Channel Path Loss Model

The DBS o, which provides best cell coverage, serves the UE u by utilizing the full

bandwidth allocated to the terrestrial network. The centralized baseband processing

unit deactivates any DBSs that are not associated with any UE. The DBS schedules

UEs in each transmission time interval (TTI) according to its scheduling priorities

only if: (i) there are no other scheduled users within a UE’s LEAP S-Zone; and (ii)

there is at least one available DBS with which it can associate. The UE priorities

are determined by their latency requirements, meaning that the lower the latency

requirement, the higher the scheduling priority. It is important to note that the

vertical-specific LEAP S-Zones are adjusted by the network operator to meet the

needs of each corresponding vertical. These values must be set appropriately as

they serve as proxy parameters that control interference between scheduled UEs.

The received signal strength between DBS o and UE u can be modeled as:

Rou = To − PLou +Gou −XShadowing
ou , (5.7)

where To is the transmit power (in dBm) of DBS o, Gou is the antenna gain between

DBS o and UE u, XShadowing
ou is shadow fading represented as Gaussian random vari-

able with zero mean and standard deviation of 4 dB (see [78]), and PLou is the linear

dual slope path loss model derived from the Third Generation Partnership Project

(3GPP) Technical Report 38.901 UMi Street Canyon line-of-sight model [78]. The

non-linear dual slope path loss (in dB) is expressed as follows:

PLou =

 PL1; 10m ≤ dou ≤ dbreakpoint

PL2; dbreakpoint < dou ≤ 5km
, (5.8)

where PL1 = 32.4 + 21 log10(dou) + 20 log10(fo), PL2 = 32.4 + 40 log10(dou) +

20 log10(fo)− 9.5 log10(d
2
breakpoint + (HDBS

o −HUE
u )2), dbreakpoint is the breakpoint dis-
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tance, fo is the carrier frequency of DBS o, HDBS
o is the height of serving DBS o, and

d3Dou =
√

(xDBS
o − xUE

u )2 + (yDBS
o − yUE

u )2 + (HDBS
o −HUE

u )2 is the three-dimensional

Euclidean distance between DBS o and UE u.

5.3 Problem Formulation

In this section, we discuss the KPIs used to assess system performance, followed by

the formulation of multi-objective optimization problems.

5.3.1 Key Performance Indicators

The system performance in this chapter is assessed in terms of coverage, latency

satisfaction, average spectral efficiency, and network energy efficiency.

Coverage

Coverage is measured as the percentage of UEs receiving signal-to-interference-noise

ratio (SINR) beyond a minimum threshold. Achieving the desired level of coverage

in terms of SINR is a critical aspect of network planning and optimization and

requires careful selection of ABS COPs such as placement, transmit power, height,

and beamwidth. Mathematically,

Coverage = Eτ

[
U∑
u∈U

1{
Γuτ≥γ

}] (5.9)

where Γuτ = Riu
N0+

∑
i′∈I,
i′ ̸=i

Ri′u
represents the measured SINR at UE u served by ter-

restrial network (i = o and I = O) or aerial network (i = n and I = N ) during

each TTI τ , 1{.} is the characteristic function, U is the number of users, γ is the

minimum SINR requirement for each user, N0 denotes the noise power, and Eτ [.]

represents averaging over several TTIs.
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Latency Satisfaction

The definition of user plane latency, according to 3GPP, refers to the time required

for unidirectional data transfer from the access point’s radio protocol layer to the

UE’s radio protocol ingress point, assuming the UE is in an active state [79]. To

determine whether a given network meets the 3GPP’s definition of latency, we

quantify latency satisfaction as the weighted sum of the percentage of UEs from

each vertical, which are served with the required data rate within their latency

constraints. Mathematically,

Latency Satisfaction =
V∑
v=1

ẇv


∑Uv

uv=1 1
{(∑Tuv+lv

τ=Tuv
Ωuvτ

)
≥ωv

}
U

 , (5.10)

where V is the number of verticals, Uv represents the number of UEs belonging to

vertical v, Tuv is the TTI at which UE u belonging to vertical v requests service,

lv is the latency requirement for each vertical, ωv is the data rate requirement

for each vertical during each TTI, Ωuvτ represents the measured data rate at UE

u belonging to vertical v during each TTI, and ẇv ≥ 0, ∀v and
∑V

v=1 ẇv ≤ 1

are network operator-defined weights assigned to prioritize latency requirements of

specific verticals. Note that latency satisfaction metric is calculated for every Z

TTIs where Z = max(lv), ∀v ≤ V .

Average Spectral Efficiency

The average spectral efficiency is the time-averaged spectral efficiency per band-

width channel. Mathematically,

Average Spectral Efficiency =
Eτ
[∑U

u=1 Ωuτ

]
B

, (5.11)

where Ωuτ represents the measured data rate at UE u during each TTI and B is

the channel bandwidth.
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Network Energy Efficiency

The energy consumption of a network relies on two crucial factors: area spectral

efficiency and power consumption. In this chapter, we adopted an ABS mechanical

power consumption model inspired by [87]. This model provides an estimation

of the energy needed for ABS to stay in air and propel itself forward, effectively

counteracting the forces of gravity, wind, and air density. Expanding upon the

model proposed in [87], we define the minimum mechanical power required for ABS

n to achieve forward motion as follows:

Pmechmin
n = (velin + veln sinαn)Dn, (5.12)

where velin is the induced velocity required for a given thrust Dn, veln is the average

ground speed of the ABS and αn is the pitch angle of nth ABS. The required thrust

Dn of nth ABS is given as:

Dn = (massbodyn +massbattn )g + F drag
n , (5.13)

where massbodyn is the mass of ABS body, massbattn is the mass of battery, g is the

gravitational constant and F drag
n is the total drag force of nth ABS. The drag force

is estimated as follows:

F drag
n = 1/2ρvel2a(C

body
n Abodyn + Cbatt

n Abattn ), (5.14)

where ρ is the density of air, vela is the velocity in air, Cbody
n , Cbatt

n and Abodyn , Abattn are

the drag coefficients and projected area of nth ABS body and battery, respectively.

Given the drag force, the pitch angle αn of nth can be expressed as follows:
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αn = tan−1

(
F drag
n

(massbodyn +massbattn )g

)
. (5.15)

With the derivation of the above terms, the induced velocity can be calculated by

solving the following non-linear equation:

velin =

(
2Dn

πbyρ
√

(veln cosαn)2 + (veln sinαn + velin)2

)
, (5.16)

where y is the number of rotors with diameter b. Therefore, the theoretical me-

chanical power consumption in Eq. 5.12 can be used to find the expanded power

by dividing the minimum power consumption with power efficiency ε of ABS, such

that Pmech
n = Pmechmin

n /ε. The total flying energy required for nth ABS to travel

distance dn can be given as Pmech
n = Pmech

n dnvn. Note that the above formulation

depends on the altitude of ABS as air density changes with altitude. With this said,

the total power conumsption of nth ABS can be given as:

Pn = P comm
n + Pmech

n , (5.17)

where Pcomm is the power consumed during communication which depends on the

transmit power of ABSs.

Therefore, energy efficiency can be defined as:

Energy Efficiency =
Area Spectral Efficiency∑N

n Pn
. (5.18)

5.3.2 Impact of ABS COPs on KPIs

In this section, we explore the impact of altitude and beamwidth of ABS COPs on

KPIs such as coverage, latency satisfaction, average spectral efficiency, and energy
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(a) Coverage (b) Latency satisfaction.

(c) Average spectral efficiency. (d) Energy efficiency.

Fig. 5.2: Impact of ABS COPs (altitude, beamwidth) on coverage, latency satisfac-
tion, average spectral efficiency, and energy efficiency.

efficiency. To investigate the relation between COPs and KPIs, we conduct simu-

lations of four hotspots with four ABSs positioned at the center of each hotspot,

where the transmit power of each ABS was fixed at 23 dBm. We varied the altitude

values within the range of 100 and 400 meters, and the beamwidth values within

the range of 35 and 65 degrees in a network spanning 1 square kilometer.

First, we examine the influence of ABS altitude on KPIs. As the altitude of ABS

directly affects the signal strength received by UEs, it has a significant impact

on coverage, latency satisfaction, average spectral efficiency, and energy efficiency.

Higher altitudes result in larger coverage areas, but they also lead to a reduction

in the received signal strength at UE and increased power consumption, which

can decrease energy efficiency. We show the impact of altitude of each ABS on the

considered KPIs in Fig. 5.2 which demonstrates that higher altitudes have a positive

impact on all considered KPIs. While higher altitudes can lead to increased power
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minimize
L,T,H,B

f(ς, ζ, ρ, ξ)

subject to Lmin ≤ Ln ≤ Lmax; ∀Ln ∈ L = {L1, L2, ..., LN},
Tmin ≤ Tn ≤ Tmax;∀Tn ∈ T = {T1, T2, ..., TN},
Hmin ≤ Hn ≤ Hmax;∀Hn ∈ H = {H1, H2, ..., HN},
Bmin ≤ Bn ≤ Bmax;∀Bn ∈ B = {B1, B2, ..., BN},
0 ≤ η1, η2, η3, η4 ≤ 1,

0 ≤ η1 + η2 + η3 + η4 ≤ 1

(5.19)

ftarget =
√
η1(ς − ςtarget)2 + η2(ζ − ζtarget)2 + η3(ρ− ρtarget)2 + η4(ξ − ξtarget)2

(5.20)

flinear = η1ς + η2ζ + η3ρ+ η4ξ (5.21)

consumption, the effect on the energy efficiency KPI is relatively minor. This is

attributed to the advantages of improved area spectral efficiency at higher altitudes,

which outweigh the slight increase in power consumption. It is worth noting that

the power consumption of ABS does increase with altitude, as air density varies, but

this change is insignificant for altitude differences smaller than a thousand meters.

Next, we analyze the impact of ABSs beamwidth on KPIs. As the beamwidth

of ABSs antenna controls the directionality and spreading of signals, it has a sig-

nificant impact on coverage, latency satisfaction, average spectral efficiency, and

energy efficiency. Narrower beamwidth translates to more directional beam with

stronger signal strength over a smaller area, while wider beamwidths have less di-

rectional beam and spread out over a larger area. We observe a similar pattern in

Fig. 5.2, where wider beamwidths improve coverage but negatively impact latency

satisfaction, average spectral efficiency, and energy efficiency. Relatively moderate

beamwidths are more effective in improving these KPIs. Considering the impact of

ABSs altitude and beamwidth, we hypothesize that these COPs, including ABSs

location and transmit power, will require intelligent control, and the contrasting

trends of KPIs with respect to COPs motivate multi-objective optimization.
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5.3.3 Multi-Objective Optimization Problem

We formulate a multi-objective optimization problem that considers several opti-

mization variables, including ABSs locations, transmit power, altitude, and beamwidth

while aiming to achieve specific targets for coverage, latency satisfaction, average

spectral efficiency, and energy efficiency. Since these KPIs are measured on differ-

ent scales, we normalize their values using the min-max normalization technique.

To approximate the minimum and maximum values of each KPI, we use a pseudo

brute force method that sweeps the solution space for reduced combinations of the

optimization variables [61].

In the objective function of Eq. 5.19 with f(ς, ζ, ρ, ξ) = ftarget in Eq. 5.20, we aim

to minimize the difference between the normalized value of each KPI and its target

value, which is set by the network operator. We define the optimization variables

as follows: the location of N ABSs denoted as L, the transmit power of N ABSs

denoted as T, the altitude of N ABSs denoted as H, and the beamwidth of N

ABSs denoted as B. We also use ς to denote the normalized values of coverage,

ζ to denote the normalized values of latency satisfaction, ρ to denote the normal-

ized values of average spectral efficiency, and ξ to denote the normalized values of

energy efficiency. Moreover, we use ζtarget to represent the target value for latency

satisfaction, ςtarget to represent the target value for coverage, ρtarget to represent

the target value for average spectral efficiency, and ξtarget to represent the target

value for energy efficiency. Finally, we use η1, η2, η3, and η4 to denote the network

operator-defined weights that can be used to adjust the relative importance of the

KPIs.

Our objective with the optimization problem presented in Eq. 5.19 is to effectively

balance a set of KPIs to approach their respective target values set by the net-

work operator, while minimizing the inherent conflicts between them. An alter-

native approach to combining these KPIs is through a linear combination using

143



operator-defined weights and normalized KPIs, as demonstrated in Eq. 5.21 where

f(ς, ζ, ρ, ξ) = flinear. In Section 5.5, we will explore the advantages of formulating

optimization problems as target minimization, which allows for a non-biased con-

vergence of multiple KPIs, as opposed to the biased impact that some KPIs may

have in linear minimization.

It is important to note that the multi-objective problem presented in Eq. 5.19 is

a mixed-integer nonlinear programming problem with a complexity of O((Lmax −

Lmin + 1)N × (Tmax − Tmin + 1)N × (Hmax − Hmin + 1)N × (Bmax − Bmin + 1)N).

Given the complexity of this problem, conventional methods such as analytical or

heuristic-based models will fail to provide real-time solutions that can accommodate

varying UE mobility and other network dynamics, as they tend to make simplistic

assumptions about the environment and often fail to capture the complexity of

network dynamics.

5.4 Proposed AIR-DRL Optimization Framework

Compared to conventional methods, the AIR-DRL approach enables network oper-

ators to optimize COPs online by learning from the real-time responses of actual

networks, reflecting the dynamic and complex nature of cellular networks. To im-

plement the AIR-DRL optimization framework, we leverage the state-of-the-art soft

actor-critic algorithm [77]. This choice is driven by its ability to efficiently explore

large action spaces, which is crucial given that COPs described in Eq. 5.19 can in-

volve tens of thousands of combinations. Furthermore, the soft actor-critic method

offers high sample efficiency and avoids brittleness to hyperparameters. In the fol-

lowing subsections, we outline the details of our proposed AIR-DRL optimization

framework.
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Markov Decision Process Formulation

We formulate the ABS COPs and system KPIs as a Markov decision process (MDP)

based on the environment state space, action space, and reward.

State Space: The KPIs described in Section 5.3.1 are predominantly impacted by

three critical network features: received signal strength, SINR, and UE scheduling

ratio. To define the system state, we combine these three features by considering the

number of UEs with received signal strength above a threshold of -90 dBm, number

of UEs with SINR above a threshold 2 dB, and UE scheduling ratio for each ABS

and stack them for a specified number of TTIs, denoted by Z. To accomplish this,

we employ the FLARE (Flow of Latents for Reinforcement Learning) approach,

which leverages the difference in feature values between the current and subsequent

timestamps as a state variable [82]. Thus, the system state se at epoch e can be

defined as:

se = {x1,y1, z1, ...,xN ,yN , zN}, (5.22)

where xi = {xτ−Zi , xτ−Z−1
i −xτ−Zi , ..., xτi −xτ−1

i }, yi = {yτ−Zi , yτ−Z−1
i −yτ−Zi , ..., yτi −

yτ−1
i }, and zi = {zτ−Zi , zτ−Z−1

i − zτ−Zi , ..., xτi − xτ−1
i } represents the stacked values

of the nth ABS, for the previous Z TTIs, for received signal strength, SINR, and

UE scheduling ratio features, respectively, and τ = (e + 1)Z. These feature values

are calculated for each ABS; therefore, the size of system state space S will be

independent of the number of UEs with a cardinality of 3× Z ×N .

Action Space: The optimization variables in Eq. 5.19 are; position, transmit power,

altitude and beamwidth of N ABSs, therefore, the action ae at each epoch e is

defined as:

ae = {L1, L2, ..., LN , T1, T2, ..., TN , H1, H2, ..., HN , B1, B2, ..., BN}. (5.23)

The size of the system action space A is defined by the number of ABS (N), range of

values for position, transmit power, altitude and beamwidth of each ABS, such that,
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|A| = (Lmax−Lmin+1)×(Tmax−Tmin+1)N×(Hmax−Hmin+1)N×(Bmax−Bmin+1)N .

Reward: The reward is formulated to capture the objective function value defined

in Eq. 5.19 for a specific action ae taken at the system state se. Due to the nor-

malization of the KPIs and constraints on the network operator-defined weights,

the objective function values fall in the range of [0, 1]. To convert the minimization

objective into a maximization objective, the objective function value is subtracted

from 1, resulting in the system reward. The reward will be scaled using ω parameter

to higher values since it has been demonstrated that the soft actor-critic algorithm

works better with larger reward magnitudes [77].

AIR-DRL Framework

The proposed AIR-DRL framework executes the action ae at the current state se,

which transitions the environment to the next state se+1 and generates a reward

signal re characterizing the utility of the action ae on the environment, based on

the state-action-reward tuple (se, ae, re, se+1) This tuple is sent to the replay buffer

at each epoch e, and is utilized when training the function approximators using

stochastic gradient.

As shown in Fig. 5.3, the framework for ABS COPs optimization consists of state,

action, reward, and next state, which, in combination, form an experience tuple

that is used for training. The actor and critic networks play an important role in

the optimization process. The actor network πψ(se), with parameter ψ, estimates

the mean and standard deviation of the conditional Gaussian probability distribu-

tion for each continuous action ae in state se, using Eq. 6.17. The critic network

includes two soft Q-functions Qθ1(se, ae) and Qθ2(se, ae), with parameters θ1 and

θ2, which take state se and action ae as input to return the corresponding expec-

tation of value function, and two target state value functions Vϑ(se) and Vϑ−(se),

with parameters ϑ and ϑ−, to improve the stability of the optimization. Each soft
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Fig. 5.3: Proposed AIR-DRL optimization framework for aerial network COPs con-
trol.

Q-function and corresponding target state value function have the same structure

and parameterization, and are trained using Eq. 6.15 and Eq. 6.16, respectively.

The actor and critic network parameters are updated by randomly sampling mini-

batches of experiences from the replay buffer. In the soft actor-critic method, the

actor generates the mean and standard deviation of a Gaussian probability dis-

tribution for each action dimension, and an action is randomly chosen based on

this distribution. These generated actions are unbounded, so the network applies

the hyperbolic tangent function to bound the continuous action for each dimension

within the range, [−1, 1] [77].

It’s worth noting that the action space for ABS COPs is a large discrete multi-
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Algorithm 7: Psuedo-code for proposed AIR-DRL Optimization Framework.

initialize network parameters θ1, θ2, ψ;
ϑ = θ1, ϑ

− = θ2;
for each epoch do

initialize system state se;
if epoch < warm start epochs then

select system action ae ∈ A randomly
else

select system action ae ∼ πψ(.|se)
execute system action in the environemnt;
observe system reward re and obtain next state se+1 feedback from
environment;

store experience (se, ae, re, se+1) in replay buffer D;
for each gradient step do

sample experience mini-batches from replay buffer D;
update the soft Q-functions according to Eq. 6.15;
update the state value functions according to Eq. 6.16;
update the policy network according to Eq. 6.17;

dimensional space that can be mapped to a continuous action space by means of

quantization. The AIR-DRL alogirthm is presented in Algorithm 7. The soft actor-

critic network parameters are initialized such that each critic and its target (soft

Q-function and subsequent state value function) is initialized with the same values.

During the warm start period, the environment is randomly explored by selecting

actions randomly. The number of warm start epochs is a hyperparameter that

requires optimization depending on the type of problem at hand. After the warm

start period is completed, the system actions are selected using the policy πψ(.|se).

The system actions are executed in the environment, followed by observing the next

state and reward as feedback from the environment.

5.5 Experimental Evaluation

The experimental evaluation section analyzes several aspects of the proposed in-

tegrated aerial network and LEAP S-Zones-based terrestrial network coupled with

AIR-DRL optimization framework. First, we compare the integrated network’s
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performance against standalone LEAP S-Zones-based terrestrial network and tra-

ditional terrestrial heterogeneous network. Next, we evaluate the performance of

the proposed AIR-DRL optimization framework for each KPI against the pseudo

brute force results. The pseudo brute force method approximates the maximum

for each KPI and multi-objective function formulated in Eq. 5.19 by exhaustively

traversing through all possible combinations of ABS COPs with a predefined step

size. If the step size is not too large, the pseudo brute force method is expected

to approximate the actual maximum. Then, we analyze the performance of the

AIR-DRL optimization framework by combining KPIs as targeted optimization in

Eq. 5.20 and linear optimization as shown in Eq. 5.21, emphasizing the importance

of multi-objective problem formulation in AIR-DRL framework. Finally, we discuss

the utility of using AIR-DRL optimization framework as compared to brute force,

as it can optimize larger action spaces.

We use the network model depicted in Fig. 5.2 with UE/DBS densities of 300 per

simulation region of 1 square kilometer with four hotspots and four ABSs. Each UE

belongs to one of three verticals with varied throughput and latency requirements.

The bandwidth of each terrestrial channel and aerial channel is set to 50 MHz.

The LEAP S-Zone size for each vertical is set to 30 meters inspired from optimal

performance results shown in [8]. The chosen values for optimizing ABS transmit

power, altitude, and beamwidth are (15, 19, 23) dBm, (100, 250, 400) meters amd

(35, 50, 65) degrees, respectively. The target value for each KPI in Eq. 5.20 is set

to 1.

The network model of 1 square kilometer is discretized into 16 squares of 0.0625

square kilometers, where ABS will be deployed at the center of the square. We define

four zones in these 16 discretized locations, with the condition that each zone will

only be served by one ABS. These zones are defined to avoid any chances of tangling

among the ABSs, which is an unwanted scenario. The choice of discretization is
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also motivated by reducing the number of possible options for the deployment of

ABS, which will reduce the complexity of finding the optimal position. Note that

the considered number of discretized deployment options, corresponding zones, and

the range of COPs values are representative use cases without loss of generality.

The actor and critic networks in the proposed AIR-DRL framework use a neural

network architecture with one hidden layer comprising 256 neurons and a rectified

linear unit activation function. A learning weight of 0.003, a discount factor of 0.99,

a target network update frequency of 20 epochs, a mini-batch size of 256, a replay

buffer size of 10000, and a warm start period of 300 epochs are set for the networks.

The frameworks are implemented in Python using PyTorch, and simulation results

are averaged over multiple random seed numbers.

5.5.1 Comparison with Standalone LEAP S-Zone Terrestrial Network

and Heterogeneous Network

When comparing different network architectures, it’s essential to use a similar un-

derlying architecture to ensure a fair comparison. This means that the density of

DBS will be equal to the density of UE for all three variations of networks consid-

ered, and UE requirements will be set according to the vertical it belongs to. One

notable difference between the three considered architectures is their association

with terrestrial and aerial base stations. In heterogeneous networks, UEs are asso-

ciated with DBSs providing the strongest signal. LEAP S-Zone terrestrial network,

on the other hand, have service exclusion zones that limit the number of sched-

uled UEs and its association with DBSs. The integrated aerial network and LEAP

S-Zones-based terrestrial network provides coverage to UEs via ABSs that are left

unscheduled from the LEAP S-Zones-based terrestrial network.

To ensure fairness in comparison, the integrated aerial network and LEAP S-Zones-

based terrestrial network will be allocated a 50 MHz bandwidth, and the standalone
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(a) Coverage. (b) Latency satisfaction.

(c) Average spectral efficiency. (d) Energy efficiency.

Fig. 5.4: Comparison of integrated aerial network and LEAP S-Zone terrestrial
network with the standalone LEAP S-Zone terrestrial network and heterogeneous
network.

LEAP S-Zones-based terrestrial network and traditional terrestrial heterogeneous

network will be allocated a 100 MHz bandwidth. In Fig. 5.4, we present a compari-

son of the performance of each architecture for four KPIs: coverage, latency satisfac-

tion, average spectral efficiency, and energy efficiency. The results show that LEAP

S-Zones-based terrestrial network significantly outperform heterogeneous networks

in all four KPIs. This is mainly due to the increase in the density of DBSs in

the network, which causes traditional heterogeneous network designs to become

interference-limited.

However, despite the significant improvements achieved by LEAP S-Zones-based

terrestrial network architecture, latency satisfaction remains an issue, as low-priority

verticals (vertical 2 and 3) are impacted in this architecture. To address this, the

integrated aerial network and LEAP S-Zones-based terrestrial network provides
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coverage to UEs that are not scheduled by the LEAP S-Zones-based-terrestrial net-

work. The performance of the ABS-assisted architecture improves considerably

as the number of ABSs in the network increases. It’s worth noting that the re-

sults presented are for the optimal deployment of ABSs, which are considered at

the center of hotspots. The transit power, altitude, and beamwidth, among the

possible options discussed earlier, are optimized for this comparison. These plots

demonstrate the utility of integrating an aerial network (with optimized COPs and

deployment) with terrestrial user-centric architecture, which has the ability to serve

UEs with optimized coverage, latency satisfaction, average spectral efficiency, and

energy efficiency, making it a suitable choice for 6G networks.

5.5.2 Optimizing Individual System-level KPIs

In this analysis, we evaluate the performance of the proposed AIR-DRL optimiza-

tion framework in terms of the convergence of individual KPIs (coverage, latency

satisfaction, average spectral efficiency, and energy efficiency) to near-optimal solu-

tions obtained from pseudo brute force. We run the proposed AIR-DRL framework

with a reward function to optimize and show the results in terms of normalized val-

ues of each KPI and the unscaled reward function (utility). For each of the results

shown in Fig. 5.5, we set the weight of 1 in Eq. 5.19 for the corresponding KPI and

0 for the rest of the KPIs.

The results in Fig. 5.5 demonstrate that the proposed AIR-DRL optimization frame-

work can converge each KPI to near-optimal solutions in around 3000 epochs. When

individual KPIs are maximized, the AIR-DRL optimization framework is indifferent

to the rest of the system KPIs. This highlights the importance of multi-objective

optimization problem formulation in AIR-DRL, as the convergence of AIR-DRL is

highly dependent on the formulation of the problem.
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(a) Coverage. (b) Latency satisfaction.

(c) Average spectral efficiency. (d) Energy efficiency.

Fig. 5.5: Proposed AIR-DRL optimization framework performance in optimizing
individual system-level KPIs.

(a) Linear optimization. (b) Targeted optimization.

Fig. 5.6: Proposed AIR-DRL optimization framework performance in optimizing
multiple system-level KPIs jointly.
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Fig. 5.7: Proposed AIR-DRL optimization framework performance in optimizing
large action spaces.

5.5.3 Optimizing Multiple System-level KPIs

In practical scenarios, network operators aim to optimize multiple KPIs simultane-

ously because maximizing only one KPI will not satisfy the requirements of either

the users or the network operators. In this analysis, we perform optimization us-

ing the proposed AIR-DRL optimization framework with reward to maximize by

assigning equal weights of 0.25 to all KPIs in Eq. 5.20 and Eq. 5.21.

From the results shown in Fig. 5.6, we observe that the proposed AIR-DRL opti-

mization framework has powerful capabilities in optimizing multiple KPIs simulta-

neously in a few thousand epochs. Additionally, as mentioned earlier, the formu-

lation of the targeted optimization problem gives better capabilities of assigning

near-equal priorities to all KPIs, and this unbiased optimization of all KPIs to their

near-optimal values can be observed in Fig. 5.6. In contrast, the linear optimization

problem is biased towards optimizing three KPIs at the expense of energy efficiency.

5.5.4 Optimizing Larger Action Spaces

In previous experimental evaluations, we demonstrated the effectiveness of the pro-

posed AIR-DRL framework in optimizing ABS COPs with a moderate number of
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options for each COP. However, the limited number of COP options was due to the

need to compare performance with benchmarks such as pseudo brute force, which

is computationally expensive even with a smaller number of COP options. Never-

theless, the advantage of using proposed AIR-DRL optimization framework is that

it can optimize much larger action spaces than pseudo brute force. To evaluate the

capability of the proposed AIR-DRL optimization framework, we increase the range

of ABS COPs to include choices of transmit power within (15, 17, 19, 21, 23) dBm,

altitude within (100, 150, 200, 250, 300, 350, 400) meters, and beamwidth within

(35, 40, 45, 50, 55, 60, 65) degrees.

To compare the performance with the approximate minimum and maximum of

KPIs, we initialize with the minimum/maximum of KPIs observed for a small set

of COP combinations (pseudo brute force) and update the values if the AIR-DRL

observes any higher value than the maximum or lower value than the minimum

during the exploration/exploitation phase. By using this method, the proposed

AIR-DRL framework can perform optimization on an increased range of COPs

beyond those that can be tested in pseudo brute force.

Fig. 5.7 shows the results of the proposed framework optimization with reward to

optimize and weights set to equal in Eq. 5.20 in terms of the normalized values of

each KPI and utility, where the normalized values are initiated with pseudo brute

force and then updated as AIR-DRL explores the environment further. From the

results shown in Fig. 5.7, it can be observed that the proposed AIR-DRL optimiza-

tion framework can optimize multiple KPIs, even when the optimization problem

space is increased.

5.6 Conclusion

In this chapter, we proposed integrating an aerial network and a LEAP S-Zones-

based terrestrial network to meet emerging vertical requirements. We analyzed
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how ABS COPs impact system KPIs such as coverage, latency satisfaction, aver-

age spectral efficiency, and energy efficiency. We also formulated a multi-objective

optimization problem that achieves the target set by the network operator for each

KPI. Finally, we proposed AIR-DRL optimization framework to optimize KPIs

jointly without biasing towards a few specific KPIs. Our results demonstrate that

the aerial network integrated with LEAP S-Zones-based terrestrial network can pro-

vide high gains in all four considered KPIs. Furthermore, with intelligent control

of ABS COPs through the proposed AIR-DRL optimization framework, the sys-

tem KPIs can converge to near-optimal solutions obtained from pseudo brute force,

showcasing the utility of the proposed approach.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusion

The rise of UDNs is fueled by ambitious objectives of achieving high spectral effi-

ciency, energy efficiency, and enhanced user experience while meeting strict latency

and reliability requirements for heterogeneous user applications. However, the in-

creased network densification to accommodate growing user demands comes at the

expense of higher inter-cell interference and energy consumption. While traditional

cellular architectures struggle to minimize these without compromising service qual-

ity or capacity, this dissertation investigates the optimal design and operation of

a user-centric network in mitigating interference, reducing power consumption, en-

suring diverse user/vertical service quality, facilitating proactive network operation,

risk-aware optimization, adopting an open radio access network, and enabling uni-

versal coverage.

We provided an analytical and numerical analysis of the impact of enabling CoMP

in a UC-RAN architecture. Additionally, we investigated the influence of new de-

grees of freedom, such as S-zone size and density of DBSs, on KPIs including mean

serviced UEs, area spectral efficiency, and energy efficiency of the network. The

numerical results based on the derived analytical model revealed an intriguing in-

terplay between S-zone size and DBS density. It was observed that there exists

an optimal size of S-zone and DBS density that maximizes area spectral efficiency

and energy efficiency for any number of cooperative DBSs in an S-zone. However,

the values of optimal S-zone size and DBSs density for maximizing area spectral

efficiency differed significantly from those that maximize network-wide energy effi-
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ciency. Therefore, an AI-assisted self-organizing framework is needed to dynamically

orchestrate these network design parameters and strike an ideal tradeoff between

these KPIs for a network operator.

To this end, a demand-driven elastic user-centric architecture was developed, uti-

lizing a data-driven model based on deep reinforcement learning to cater to diverse

user application needs. We proposed D-RAN, a deep reinforcement learning-based

user-centric RAN optimization framework capable of adapting to dynamic user ap-

plication demands and network conditions. Unlike previous cellular network ap-

proaches, D-RAN introduced the concept of elasticity within user-centric systems,

employing non-uniform virtual cells (S-zones) for different QoS categories such as

Augmented/Virtual Reality and E-health applications. To avoid exhaustive search

using brute-force or meta-heuristics, we developed a D-RAN framework that dynam-

ically adjusts S-zone sizes based on changing network dynamics like user mobility.

D-RAN offers a less complex approach than brute-force or meta-heuristic techniques

by accurately learning the mapping of environmental conditions to S-zone sizes

corresponding to different QoS categories. The proposed architecture optimizes a

multi-objective problem in real-time based on KPIs such as area spectral efficiency,

energy efficiency, UE service rate, and throughput satisfaction. Simulated results

indicate that the D-RAN framework is nearly as effective as brute-force and outper-

forms meta-heuristics like simulated annealing, while maintaining lower complexity

and adaptability to dynamic network changes.

Furthermore, we proposed a data-driven model empowered by digital twin technol-

ogy to optimize KPIs in complex cellular networks while ensuring system safety.

We introduced offline learning leveraging a digital twin instilling risk-awareness in

the DRL optimization framework. The convergence and accumulated risk of the

proposed DT-assisted DRL framework were compared against brute force results,

demonstrating impressive performance in reaching near-optimal solutions within a
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few hundred iterations. Moreover, the risk-aware optimization framework showcased

the viability of online learning techniques in live cellular networks with controlled

and reliable exploration. On the other hand, the multifaceted requirements of 5G

and beyond applications demand a system capable of supporting multiple com-

binations of prioritized access, reliability, throughput, and energy efficiency. We

presented and evaluated a UC-RAN based on O-RAN architecture that caters to

the QoS requirements of various verticals. We introduced and investigated two key

UC-RAN configuration and optimization parameters: the size of user-centric vir-

tual cells (S-zones) and the number of UEs scheduled per S-zone. These parameters

are leveraged through an application (rApp) to control latency satisfaction, relia-

bility satisfaction, area spectral efficiency, and energy efficiency. Overall, this work

demonstrates a highly flexible O-RAN-based user-centric architecture coupled with

a DT-empowered risk-aware DRL optimization framework that can address the fun-

damental tradeoff between latency, reliability, and throughput with accelerated and

reliable optimization in live emerging cellular networks.

Lastly, we established an integrated aerial network, adopting a user-centric approach

to enhance the capabilities of the user-centric network and provide ubiquitous ser-

vices to users across various verticals. We proposed integrating an aerial network

with a LEAP S-Zones-based terrestrial network to meet emerging vertical require-

ments. We analyzed the impact of aerial base stations (ABS) on system KPIs,

including coverage, latency satisfaction, average spectral efficiency, and energy ef-

ficiency. Additionally, we formulated a multi-objective optimization problem that

aims to achieve the target set by the network operator for each KPI. Finally, we

introduced the AIR-DRL optimization framework to jointly optimize the KPIs with-

out biasing towards specific ones. Our results demonstrate that the integration of

the aerial network with the LEAP S-Zones-based terrestrial network can provide

significant improvements in all four considered KPIs. Furthermore, with intelligent

control of ABS through the proposed AIR-DRL optimization framework, the sys-
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tem KPIs can converge to near-optimal solutions obtained from pseudo brute force,

showcasing the utility of the proposed approach.

To summarize, this dissertation investigated the optimal design and operation of a

user-centric network through the analysis of UC-RAN integrated with CoMP tech-

nology, the development of a demand-driven elastic user-centric architecture em-

powered by deep reinforcement learning, the development of digital twin-empowered

risk-aware optimization framework, and an integrated aerial network. The proposed

solutions highlight the effectiveness, adaptability, and performance improvements

brought by these novel approaches, paving the way for the advancement of future

wireless communication systems.

6.2 Future Work

The work undertaken in this dissertation can be further enhanced on multiple fronts.

6.2.1 Error-aware Optimization Framework

One significant aspect pertains to the assumption made in the proposed data-driven

optimization approaches, which assumes error-free state information obtained from

the environment. However, it is crucial to acknowledge that inherent inaccuracies

may exist in determining UE and DBS locations, consequently introducing errors

into the states observed by the optimization framework. To overcome this limi-

tation, future research efforts should focus on the development of an error-aware

optimization framework capable of accommodating and mitigating these potential

discrepancies. Such advancement will ensure the robustness and accuracy of the op-

timization process, thereby facilitating the practical implementation of the proposed

solutions.
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6.2.2 Implementation in Cellular Testbed

Another valuable addition to this dissertation would be the implementation of a

cellular testbed that incorporates the proposed user-centric network coupled with

a data-driven optimization framework. This implementation will not only identify

and bridge any gaps in the theoretical research but also provide tangible evidence of

the achievable gains offered by the proposed architecture. Furthermore, a cellular

testbed implementation will establish the reliability and viability of the proposed

solutions, enabling rapid adoption and adaptation by collaborating with industry

partners and a wider industry audience.
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Appendix

Appendix A: Proof of Theorem 1: The activation probability is computed based

on the criterion that no more than M DBSs are activated in an S-zone iff: (i) there

is a scheduled UE within a distance Rszone to at least 1 DBS, and (ii) no other DBS

in an S-zone can provide superior channel gains to a scheduled user. Since both the

constraints are independent events, we can compute pACT as:

pACT = Pr
(

Π
′

UE ∩ b(d, Rszone) ̸= ϕ
∣∣∣d ∈ Π

′

DBS

)
.

Pr
(
max {hd1r−αd1 , ..., hdM r

−α
dM
}, 1 ≤ m ≤ ∞

∣∣∣d ∈ Π
′

DBS,M < X
)
. (6.1)

Solving in parts for each constraint separately, such that, pACT = p
′
ACT . p

′′
ACT , where

p
′

ACT = Pr
(

Π
′

UE ∩ b(d, Rszone) ̸= ϕ
∣∣∣d ∈ Π

′

DBS

)
= 1− exp(−λ′

UEπR
2
szone), (6.2)

and
p
′′

ACT = Pr
(
max {hd1r−αd1 , ..., hdM r

−α
dM
}, 1 ≤ m ≤ ∞

∣∣∣d ∈ Π
′

DBS,M < X
)
, (6.3)

where m is the actual number of DBSs in an S-zone which are distributed through

the Poisson point process. The joint probability given above can be divided into

two parts, that is, the probability that the actual number of DBSs in an S-zone is

less than/equal to M or greater than M . Also, we assume that M is chosen such

that M < λDBSπR
2
szone where M can only be an integer number. Therefore,

p
′′

ACT = Pr
(
max {hd1r−αd1 , ..., hdM r

−α
dM
}, 1 ≤ m ≤M

∣∣∣d ∈ Π
′

DBS,M < X
)

+

Pr
(
max {hd1r−αd1 , ..., hdM r

−α
dM
},M + 1 ≤ m ≤ ∞

∣∣∣d ∈ Π
′

DBS,M < X
)
. (6.4)

Employing the conditional probability formula, we obtain:
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p
′′

ACT = Pr(1 ≤ m ≤M)

Pr
(
max {hd1r−αd1 , ..., hdM r

−α
dM
}
∣∣∣d ∈ Π

′

DBS,M < X, 1 ≤ m ≤M
)

+

Pr(M + 1 ≤ m ≤ ∞)

Pr
(
max {hd1r−αd1 , ..., hdM r

−α
dM
}
∣∣∣d ∈ Π

′

DBS,M < X,M + 1 ≤ m ≤ ∞
)
. (6.5)

If there are less than or equal to M DBSs in an S-zone then the probability of

selection will be exactly 1 and if there are more than M DBS in an S-zone then

only M out of m DBSs with the strongest channel gains will be selected. Therefore,

the above expression can be rewritten as:

p
′′

ACT =
M∑
m=1

exp(−X)
(X)m

m!

(
1
)

+
∞∑

m=M+1

exp(−X)
(X)m

m!

(M
m

)
. (6.6)

After numerical simplification of the above expressions, we get:

p
′′

ACT =
Γ(M + 1, X)

γ(M + 1)
+exp(−X)

[
M(X)M+1

2F2(1,M + 1;M + 2,M + 2;X)

(M + 1)γ(M + 2)
− 1

]
.

(6.7)

Therefore, the modified density of activated DBSs can be approximated as:

p
′′

ACT =
(

1− exp(−λ′

UEπR
2
szone)

)
.

(
Γ(M + 1, X)

γ(M + 1)

+ exp(−X)


M(X)M+1

2F2(1,M + 1;M + 2,M + 2;X)

(M + 1)γ(M + 2)
− 1

). (6.8)

Appendix B: Proof of Theorem 2: The typical user is served successfully by a DBS

only if the received SIR is greater than the desired threshold. Using the concepts of

thinned marked Poisson processes [33] we derive the relationship between the void

probability of modified active DBSs (Π
′
DBS) and Pr(S < γthI).
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Pr

(
S < γthI

)
= Pr(Π

′

DBS = ∅) = exp(−Λ(B)), (6.9)

where the average measure Λ(B) can be evaluated by:

Λ(B) =

∫ ∞

0

∫
B

λ(r, h)dhdr, (6.10)

where B is the area of ball region and λ(r, h) is the intensity of the modified process

which is given as [33]:

λ(r, h) = 2πλDBSr1(hr−α ≥ γthI)fH(h). (6.11)

Therefore,

Λ(B) =

∫ ∞

0

∫
B

2πλDBSr1(hr−α ≥ γthI)fH(h)dhdr
(a)
= 2πλDBS∫ Rszone

0

rPr(h ≥ γthIr
α)dr

(b)
=
πλDBSδγ(δ, γthIR

α
szone)

γδthI
δ

, (6.12)

where (a) is due to the cumulative distribution function of an exponentially dis-

tributed random function, and (b) is obtained by defining the integration variable

t = γthIr
α and integrating over t.

Substituting the value of Eq. (29) and Eq. (32) in Eq. (11), we obtain:

Pcov(γth, Rszone) = 1− EI

[
exp
(
− πλDBSδγ(δ, γthIR

α
szone)

γδthI
δ

)]
. (6.13)

Applying Jensen’s inequality will give the lower bound for coverage probability as

follows:

Pcov(γth, Rszone) ≥ 1− exp
(
− λDBSπδγ(δ, γthEI[I]Rα

szone)

γδthEI[I]δ

)
. (6.14)
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Employing the value of EI[I] from Eq. (7) in the above expression concludes the

proof.

Appendix C: Soft Actor-Critic Soft actor-critic maximizes entropy for stability and

exploration with an actor-critic architecture consisting of separate policy and value

function networks. Soft actor-critic considers a Markov decision process defined by

the tuple (S,A, p, r), where the state space S and action space A are continuous,

p : S×A×S represent the unknown transition probability at epoch e of next state

se+1 ∈ S given the current state se ∈ S and ae ∈ A, and r : S × A→ [rmin, rmax] is

the bounded reward for each state-action transition. General reinforcement learning

algorithms aim to maximize the expected sum of rewards
∑

eE(se,ae)∼ϱπ [r(se, ae)],

where ϱπ denotes the state-action marginals of the trajectory distribution induced

by action policy π(ae|se). Whereas soft actor-critic augments this objective with

entropy H(π(.|se)) of the action policy
∑

eE(se,ae)∼ϱπ [r(se, ae) + αH(π(.|se))] to

maximize both expected reward and policy entropy, that is, to optimize while acting

as randomly as possible. The temperature parameter α controls the stochasticity

of the optimal policy by determining the relative importance of the entropy term

against the reward. With entropy term in the objective function, the policy is

incentivized to explore more widely and capture multiple modes of near-optimal

behavior.

At each epoch, soft actor-critic evaluates the policy using soft Q-function, which

can be defined as Q(se, ae) = r(se, ae) + ηE(se,ae)∼ϱπ [V (se+1)], where V (se) =

Eae∼π[Q(se, ae)] + αEae∼π[− log π(ae|se)] is the state value function, η is the dis-

count factor to ensure that the sum of expected rewards and entropies remains

finite, and the term Eae∼π[− log π(ae|se)] signifies the expected entropy of action

policy. With continuous domains, soft Q-function, state value function, and policy

are estimated using neural networks. The stochastic gradient descent method is

used to update parameter θ for soft Q-function Qθ(se, ae), ϑ for state value function
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Vϑ(se), and ψ for policy πψ(ae|se). The soft Q-function is trained to minimize the

soft Bellman residual error JQ(θ) between the prediction of soft Q-function and

reward plus the discounted expected state-value function of next epoch:

JQ(θ) = E(se,ae)∼D

[
1

2

(
Qθ(se, ae)− Q̂(se, ae)

)2]
, (6.15)

where Q̂(se, ae) = r(se, ae) + ηEse+1∼ϱπ [Vϑ−(se+1)] and D is the replay buffer which

contains the distribution of previously sampled states and actions. The soft Q-

function update makes use of target value network, Vϑ−(se), which has been shown

to stabilize training [77]. To speed up the training process, the soft actor-critic

model uses two soft Q-functions, which are trained independently with parameters

θ1 and θ2. The minimum of these two parameterized soft Q-functions is then used

for state value function training.

The state value function is trained to minimize the squared residual error JV (ϑ)

between the state value function and the expected prediction of entropy regularized

soft Q-function:

JV (ϑ) = Ese∼D

[
1

2

(
Vϑ(se) − Eae∼πψ

[
Qθ(se, ae) − α log πψ(ae|se)

])2]
. (6.16)

Finally, the policy function is trained to minimize the expected Kullback-Leibler

divergence Jπ(ψ) using a reparameterization trick [77]:

Jπ(ψ) = Ese∼D,ϵe∼N

[
log πψ

(
fpsi
(
ϵe; se

)∣∣∣∣se) − Qθ

(
se, fψ

(
ϵe; se

))]
, (6.17)

where ae is evaluated at fψ
(
ϵe; se

)
to make the action sampling a differentiable

process and ϵe is a noise vector sampled from a Gaussian distribution at epoch.

The policy network outputs the Gaussian mean and standard deviation for each

action dimension included in the action space. In summary, the soft actor-critic

method collects experience from the environment and updates the neural networks

using the stochastic gradient method from batches sampled from a replay buffer.
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