272 research outputs found

    Analytical performance modelling of adaptive wormhole routing in the star interconnection network

    Get PDF
    The star graph was introduced as an attractive alternative to the well-known hypercube and its properties have been well studied in the past. Most of these studies have focused on topological properties and algorithmic aspects of this network. Although several analytical models have been proposed in the literature for different interconnection networks, none of them have dealt with star graphs. This paper proposes the first analytical model to predict message latency in wormhole-switched star interconnection networks with fully adaptive routing. The analysis focuses on a fully adaptive routing algorithm which has shown to be the most effective for star graphs. The results obtained from simulation experiments confirm that the proposed model exhibits a good accuracy under different operating conditions

    Constructing virtual 5-dimensional tori out of lower-dimensional network cards

    Full text link
    [EN] In the Top500 and Graph500 lists of the last years, some of the most powerful systems implement a torus topology to interconnect themillions of computing nodes they include. Some of these torus networks are of five or six dimensions, which implies an additional difficulty as the node degree increases. In previous works, we proposed and evaluated the nD Twin (nDT) torus topology to virtually increase the dimensions a torus is able to implement. We showed that this new topology reduces the distances between nodes, increasing, therefore, global network performance. In this work, we present how to build a 5DT torus network using a specific commercial 6-port network card (EXTOLL card) to interconnect those nodes. We show, using the same number of cards, that the performance of the 5DT torus network we are able to implement using our proposal is higher than the performance of the 3D torus network for the same number of compute nodes.Spanish MINECO; European Commission, Grant/Award Number: TIN2015-66972-C5-1-R and TIN2015-66972-C5-2-R; JCCM, Grant/Award Number: PEII-2014-028-P; Spanish MICINN, Grant/Award Number: FJCI-2015-26080AndĂșjar-Muñoz, FJ.; Villar, JA.; Sanchez Garcia, JL.; Alfaro Cortes, FJ.; Duato MarĂ­n, JF.; Fröning, H. (2017). Constructing virtual 5-dimensional tori out of lower-dimensional network cards. Concurrency and Computation Practice and Experience. 1-17. https://doi.org/10.1002/cpe.4361S11

    Analytical modelling of hot-spot traffic in deterministically-routed k-ary n-cubes

    Get PDF
    Many research studies have proposed analytical models to evaluate the performance of k-ary n-cubes with deterministic wormhole routing. Such models however have so far been confined to uniform traffic distributions. There has been hardly any model proposed that deal with non-uniform traffic distributions that could arise due to, for instance, the presence of hot-spots in the network. This paper proposes the first analytical model to predict message latency in k-ary n-cubes with deterministic routing in the presence of hot-spots. The validity of the model is demonstrated by comparing analytical results with those obtained through extensive simulation experiments

    An analytical performance model for the Spidergon NoC

    Get PDF
    Networks on chip (NoC) emerged as a promising alternative to bus-based interconnect networks to handle the increasing communication requirements of the large systems on chip. Employing an appropriate topology for a NoC is of high importance mainly because it typically trade-offs between cross-cutting concerns such as performance and cost. The spidergon topology is a novel architecture which is proposed recently for NoC domain. The objective of the spidergon NoC has been addressing the need for a fixed and optimized topology to realize cost effective multi-processor SoC (MPSoC) development [7]. In this paper we analyze the traffic behavior in the spidergon scheme and present an analytical evaluation of the average message latency in the architecture. We prove the validity of the analysis by comparing the model against the results produced by a discreteevent simulator

    Assessing the Suitability of King Topologies for Interconnection Networks

    Get PDF
    In the late years many different interconnection networks have been used with two main tendencies. One is characterized by the use of high-degree routers with long wires while the other uses routers of much smaller degree. The latter rely on two-dimensional mesh and torus topologies with shorter local links. This paper focuses on doubling the degree of common 2D meshes and tori while still preserving an attractive layout for VLSI design. By adding a set of diagonal links in one direction, diagonal networks are obtained. By adding a second set of links, networks of degree eight are built, named king networks. This research presents a comprehensive study of these networks which includes a topological analysis, the proposal of appropriate routing procedures and an empirical evaluation. King networks exhibit a number of attractive characteristics which translate to reduced execution times of parallel applications. For example, the execution times NPB suite are reduced up to a 30 percent. In addition, this work reveals other properties of king networks such as perfect partitioning that deserves further attention for its convenient exploitation in forthcoming high-performance parallel systems

    Energy efficient HPC network topologies with on/off links

    Get PDF
    ProducciĂłn CientĂ­ficaEnergy efficiency is a must in today HPC systems. To achieve this goal, a holistic design based on the use of power-aware components should be performed. One of the key components of an HPC system is the high-speed interconnect. In this paper, we compare and evaluate several design options for the interconnection network of an HPC system, including torus, fat-trees and dragonflies. State of the art low power modes are also used in the interconnection networks. The paper does not only consider energy efficiency at the interconnection network level but also at the system as a whole. The analysis is performed by using a simple yet realistic power model of the system. The model has been adjusted using actual power consumption values measured on a real system. Using this model, realistic multi-job trace-based workloads have been used, obtaining the execution time and energy consumed. The results are presented to ease choosing a system, depending on which parameter, performance or energy consumption, receives the most importance.Ministerio de EconomĂ­a, Industria y Competitividad (projects PID2019-105903RB-100 and PID2021-123627OB)Junta de Comunidades de Castilla-La Mancha (project SBPLY/21/180501/ 000248

    Task mapping in rectangular twisted tori

    Get PDF
    Twisted torus topologies have been proposed as an alternative to toroidal rectangular networks, improving distance parameters and providing network symmetry. However, twisting is apparently less amenable to task mapping algorithms of real life applications. In this paper we make an analytical study of different mapping and concentration techniques on 2D twisted tori that try to compensate for the twisted peripheral links. We introduce a performance model based on the network average distance and the detection of the set of links which receive the highest load. The model also considers the amount of local and global communications in the network. Our model shows that the twisted torus can improve latency and maximum throughput over rectangular torus, especially when global communications dominate over local ones and when some concentration is employed. Simulation results corroborate our synthetic model. For real applications from the NPB benchmark suite, the use of the twisted topologies with an appropriate mapping provides overall average application speedups of 2.9%, which increase to 4.9% when concentrated topologies (c = 2) are considered.This work has been supported by the Spanish Ministry of Science under contracts TIN2010-21291-C02-02, TIN-2007- 60625, AP2010-4900 and CONSOLIDER Project CSD2007-00050, and by the European HiPEAC Network of Excellence. M. Moreto is supported by a MEC/Fulbright Fellowship.Postprint (author’s final draft
    • 

    corecore