
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2409865, IEEE Transactions on Parallel and Distributed Systems

1

Assessing the Suitability of King Topologies for
Interconnection Networks
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Abstract—In the late years many different interconnection networks have been used with two main tendencies. One is characterized by
the use of high-degree routers with long wires while the other uses routers of much smaller degree. The latter rely on two-dimensional
mesh and torus topologies with shorter local links. This paper focuses on doubling the degree of common 2D meshes and tori while still
preserving an attractive layout for VLSI design. By adding a set of diagonal links in one direction, diagonal networks are obtained. By
adding a second set of links, networks of degree eight are built, named king networks. This research presents a comprehensive study
of these networks which includes a topological analysis, the proposal of appropriate routing procedures and an empirical evaluation.
King networks exhibit a number of attractive characteristics which translate to reduced execution times of parallel applications. For
example, the execution times NPB suite are reduced up to a 30%. In addition, this work reveals other properties of king networks such
as perfect partitioning that deserves further attention for its convenient exploitation in forthcoming high-performance parallel systems.

F

1 INTRODUCTION AND RELATED WORK

A LTHOUGH a lot of research on interconnection net-
works has been conducted in the last decades,

constant technological changes demand new insights
about this key component in modern computers.

Many high-performance system networks are based
on torus topologies, [1], [2], [3]. Notwithstanding, some
recent and interesting papers advocate for networks with
high-radix routers in large-scale supercomputers [4], [5],
[6]. The advent of economical optical signaling enables
this kind of topologies that use long global wires. The de-
sign scenario is very different when addressing on-chip
networks. So far, multi-ring networks have been the most
common choice for on-chip networks, [7]. Nevertheless,
with current VLSI technology, the planar substrate in
which networks are implemented suggests the use of 2D
mesh-like topologies. This has been the case of Tilera [8]
and the Intel’s Teraflop research chip [9], with 64 and
80 cores respectively arranged in a 2D mesh. Evolving
from rings, 2D tori have been considered, [10]. On-chip
networks with higher degree than traditional 2D meshes
or tori have also been recently explored [11]. In addition,
multi-level trees are being considered for forthcoming
many-core chips using up to thousands of simple exe-
cution engines orchestrated by a much smaller number
of control engines, [12]. Such networks entail the use of
long wires in which repeaters and channel pipelining are
needed. Forthcoming technologies such as on-chip high-
speed signaling and optical communications could favor
the use of higher degree on-chip networks.

This paper, explores an intermediate solution: dou-
bling the radix of a common 2D mesh while still preserv-
ing an attractive layout for a planar design. By adding di-
agonal links in one direction, diagonal networks with radix
six, are obtained. Next, by adding a second set of links
perpendicular to the former, networks of degree eight are
created. In these, a packet located in any node can travel

in one hop to any of its eight neighbours just like the
king on a chessboard. For this reason, these topologies
are denoted king networks. Hence, these networks include
the typical four orthogonal links of meshes and tori
but also four new diagonal links. Such networks will
be explored in this paper in two versions, without and
with wrap-around links, referring to them as king meshes
and king tori. In this way, a more conservative evolution
towards higher radix networks is presented, that tries to
exploit their advantages while avoiding (or minimizing)
the use of long wires. The simplicity and topological
properties of these networks offer tantalizing features for
future high-performance computers: higher throughput,
smaller latency, easily partitioned in smaller networks,
good scalability and high fault-tolerance.

The proposal of topologies using diagonal links has
been considered in the past in the fields of micro-
processor design [13], FPGAs [14] and interconnection
networks [15]. Also mesh and toroidal topologies with
added diagonals have been proposed. With degree six
[16] proposes a torus network with hexagonal shape.
These contrast with the square shape of the diagonal
networks presented here. Also meshes with diagonals
in both directions were described in [17]. As a means
to avoid deadlocks the latter used two vertical links,
meaning that they are of degree ten, rather than eight
like the king meshes presented in this work. King lattices
have been previously studied in several papers in the
field of Information Theory [18]. In that context the
distance among nodes in a king network is denoted as
the Tchebychev distance.

The goal of this paper is to assess the suitability of king
topologies to constitute the communication substrate of
forthcoming parallel systems. With this idea in mind, it
presents the foundations of king networks and a first at-
tempt to unleash their potential. The main contributions
of our research are the following:

i) A discussion of the problem of increasing the de-
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gree of planar networks.
ii) An in-depth analysis of the topological characteris-

tics of king meshes and king tori comparing them
with diagonal networks and 2D meshes and tori.

iii) The evaluation of king tori, not considered previ-
ously in the technical literature.

iv) A folding scheme that ensures king tori scalability.
v) Adaptive and deadlock-free routing algorithms for

diagonal and king topologies.
vi) A performance evaluation of king networks based

on synthetic traffic and trace-driven simulation.
The remainder of this paper is organized as follows.

Section 2 is devoted to define the network topologies
considered in this paper. The most relevant distance
parameters, the bisection bandwidth and path diversity
are computed for each network and a folding method
is considered for the topologies with wrap-around links.
Next, Section 3 presents a general view of the router
architecture considered in this paper, followed by a
detailed description of the routing algorithms used for
each topology. In the case of king networks, several
algorithms are considered, each one improving on the
previous, to finally reach an acceptable solution. Section
4 contains the performance evaluation of the networks
with the different routing algorithms, both with synthetic
traffic and trace-driven simulations. Last, Section 5 con-
cludes by highlighting the most important findings.

2 KING NETWORKS

As usual, networks are modeled by graphs, where graph
vertices represent routers and edges represent the com-
munication links among them. In this paper only square
networks will be considered, as sometimes networks
with sides of different length exhibit an unbalanced link
usage in each dimension [19]. The adjective “square” will
be assumed for the rest of the paper. As a consequence,
for any of the networks considered the number of nodes
will be N = s2, for any integer s > 1, which represents
their side.

The common mesh of side s will be denoted as Ms.
This is a very well-known topology which has been
deeply studied. In a mesh, all the nodes which are not
in the periphery have four different neighbours, that
is, they have degree four. Similarly, most nodes in the
periphery have degree three and the ones at the corners
have two. Since mesh nodes have degrees four, three and
two, it is said that a mesh has maximum degree four.
Next, different approaches are considered to increase the
maximum degree of the mesh.

Traditionally, increasing the degree of meshes has lead
to 3D meshes. These are built by stacking several 2D
meshes and adding connections to allow each node to
communicate with the nearest nodes above and below.
While this option is reasonable for system networks,
limitations on the size of the Z dimension in stacked
technologies condition its use for on-chip networks.
Currently, 3D stacking technology is being used to pile

a few memory layers over the computing substrate.
Hence, the computing nodes still remain in a single layer
and it makes sense to have a planar interconnection
network. Therefore, this article is focused on networks
whose nodes can be naturally laid out on a plane, such
as meshes and tori. Thus, the way of increasing the
degree will be by adding diagonal links. Figure 1 shows
examples of the networks considered in this work.

Initially diagonal links will be added to a mesh in
one direction, which will named diagonal mesh. Note
that there are two possible diagonal meshes, one with
north-east links and another with north-west links. Both
are denoted as DMs, since both graphs are isomorphic.
Straightforwardly, DMs have maximum degree six.

Then, mesh based networks of maximum degree eight
can be obtained by adding diagonal links in both direc-
tions, north-east and north-west. These will be denoted
as king meshes or KMs. In other words, a KMs is
obtained by adding both sets of diagonal links to a Ms.
Next, these topologies are formally defined.

Definition 1: Let V = {(x, y) ∈ Z× Z | x, y = 0, . . . , s−
1} be the set of nodes of the three topologies. Now, the
definition of the network is completed with the rule to
determine the links between two nodes. Therefore, any
node (x, y) will be connected to the nodes:

• (x, y)± (1, 0),±(0, 1) in the Ms.
• (x, y) ± (1, 0),±(0, 1),±(1, 1) (respectively ±(−1, 1))

in the DMs.
• (x, y)± (1, 0),±(0, 1),±(1, 1)± (−1, 1) in the KMs.

All these connections are made when the resulting node
is in fact in the set of nodes (peripheral nodes lack of
some of the previously defined links).

Note that all these mesh based networks are neither
regular nor vertex-symmetric. The way to turn these into
regular and vertex-symmetric networks is to add wrap-
around links. These links allow every node to have the
same number of neighbours. The common 2D torus of
side s will be denoted as Ts. The torus is obviously the
four degree regular counterpart of the mesh. Then, DTs
will denote the diagonal torus of side s, that is, the degree
six graph obtained by adding wrap-around links to the
corresponding diagonal mesh. Such diagonal tori can
be seen as particular cases of Eisenstein-Jacobi graphs,
which were introduced in [20]. Finally, KTs will denote
the king torus network, that is, a king mesh with the
wrap-around links required to obtain a regular network
with degree eight. Another way to see this network is
as a torus with extra diagonal links that turn the degree
four torus into a degree eight one. In the next definition
a formal description of the topologies is given.

Definition 2: Let V = {(x, y) ∈ Z× Z | x, y = 0, . . . , s−
1} be the set of nodes of the three topologies. Now, the
definition of the topologies is completed with the rule to
determine the links between two nodes. Therefore, any
node (x, y) will be connected to the nodes:
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• (x, y)± (1, 0),±(0, 1) (mod (s, s)) in the Ts 1.
• (x, y) ± (1, 0),±(0, 1),±(1, 1) (mod (s, s)) (respec-

tively ±(−1, 1)) in the DTs.
• (x, y)±(1, 0),±(0, 1),±(1, 1)±(−1, 1) (mod (s, s)) in

the KMs.

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

Fig. 1. Examples of Mesh, Diagonal Mesh, King Mesh,
Torus, Diagonal Torus and King Torus Networks.

Minimizing packet latency is a target for any intercon-
nection network. Base latency depends on the number
of hops traversed, plus the spooling time in multi-
phit packets. Hence, in a first approach, transmission
delays in networks can be inferred from their topological
properties. The maximum packet delay is given by the
diameter. Which is the length of the minimum-distance
path connecting the most distant nodes. The average
delay is proportional to the average distance, which is
computed by averaging the length of all minimum paths
connecting every pair of nodes. Table 1 records these
parameters for the networks considered. For the mesh
and torus, these are well-known values [21]. The distance
properties of king torus were presented in [22]. Also,
the distance distribution of diagonal tori, from which
the diameter and average distance were derived, was
presented in [23].

An especially important metric of interconnection net-
works is the maximum data rate the network can deliver,
also known as maximum throughput. For uniform traf-
fic, where nodes send packets to random destinations
with uniform probability, the throughput is bounded
by the network bisection bandwidth. According to [21],
in networks with homogeneous channel bandwidth, as
the ones considered here, the bisection bandwidth is
proportional to the channel count across the smallest
cut that divides the network into two equal halves.
This value represents an upper bound for the maximum
throughput under uniform traffic. In Table 1, bisection
values for mesh and torus are shown [21].

The bisection bandwidth for diagonal meshes and
tori can be straightforwardly obtained by counting the
number of links that need to be cut to split the network
in two halves. For example, a vertical cut in a diagonal

1. The notation (mod (s, s)) means to take modulo in each compo-
nent, that is, (4, 16) (mod (8, 8)) = (4 (mod 8), 16 (mod 8)) = (4, 0).

mesh of side s, affects s horizontal links and s diagonals.
As these are bidirectional, the bisection bandwidth is 4s.
For diagonal tori, the bandwidth is duplicated because
a torus requires two cuts to disconnect it. The same
reasoning can be applied to king meshes and tori. It is
noteworthy that a king network doubles the number of
links of its degree four counterpart but has three times
the bisection bandwidth.

Network Ms DMs KMs Ts DTs KTs

Diameter 2s 2s s s s b s
2
c

Avg. Distance ≈ 2
3
s ≈ 17

30
s ≈ 7

15
s ≈ s

2
≈ 7

18
s ≈ s

3

Bisection Bw. 2s 4s 6s 4s 8s 12s

TABLE 1
Topological Parameters

An interesting property of square king networks is that
they are denser than their standard counterparts. A graph
is said to be dense when the number of reachable nodes
for a given diameter is maximum. Dense graphs have the
following advantage: in the same amount of time, they
can deliver a packet to more nodes than those which are
not dense. For example, a torus of side (and diameter) k,
with k even, can arrange just k2 nodes. Notwithstanding,
in an infinite torus, 4d nodes can be found at distance
d from any given node. By adding the reachable nodes
at distances 1 through k

2 the expression 2k2 + 2k + 1
is obtained, which gives the number of nodes in the
dense mesh-based graph of diameter k. Note that it is
more than twice the number nodes in a common 2D
torus, meaning that it is far from being dense. Dense tori
were deeply studied in [24]. The same conclusion can
be reached when considering the degree six, diagonal
networks. One of side s will have diameter s and s2

nodes. Which is less than the densest network of degree
six and diameter s, that would have 3s2 + 3s+ 1 nodes.

However, in the case of king topologies, all the square
networks with odd side s are dense. Note that, in these
topologies, at each distance d, 8d different nodes can be
found. Therefore, for diameter k = b s2c, a king torus has
the following number of nodes:

1 +

k∑
d=1

8d = 4k2 + 4k + 1 = (2k + 1)2 = s2

In a king mesh, this number of nodes can be arranged
with diameter s. Hence, in the case of square king topolo-
gies, with odd side, the maximum achievable number of
nodes for a given diameter is always attained.

It is important to note that such node density is
preserved across network partitions for king networks
of odd side. For example, consider a king mesh of odd
side s = 15. It will have s2 = 225 nodes, and its diameter
will be k = s = 15. Such network can be decomposed
into 25 (5×5) equal dense sub-networks with diameter 1,
each one composed of 9 nodes. Conversely, the network



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2409865, IEEE Transactions on Parallel and Distributed Systems

4

can also be partitioned into 9 (3 × 3) equal dense sub-
networks with diameter 3, each one composed of 25
nodes. The case of such odd networks is especially
interesting as the network, as well as any partition, has
a center node that can be considered the center of a
ball with radius the sub-graph diameter. Furthermore,
finding these center nodes is straightforward, they are
evenly distributed across the network and every node is
closest to only one of the center nodes. The graphical
representation of a partitioned king mesh where the
center nodes are highlighted can be seen in Figure 2.
This property is of great value for hierarchical designs
in which the center nodes represent a singular device
(memory controller, complex core, network bridge, etc).
Current examples of such designs are the Runnemede
project from Intel [12] in which the central nodes would
be complex cores and other CMP designs in which
central nodes would be memory controllers, [25].

Fig. 2. Depiction of KM15 partitioned into 25 KM3 or 9
KM5 with highlighted center nodes.

Another graph property with relevance in interconnec-
tion networks is the path diversity. This is defined as the
number of minimal paths between a given pair of nodes
a, b and conditions the capability of packets to avoid
congested areas without increasing the path length. For
mesh and tori it will be denoted as |Rab|:

|Rab| =
(
|∆x|+ |∆y|
|∆x|

)
.

Similarly, in diagonal mesh and tori |Rab| is:

|RDab| =
(

|∆x|
|∆x| − |∆y|

)
=

(
|∆x|
|∆y|

)
.

Finally, in king mesh and tori the path diversity is:

|RKab| =
(
|∆x|
|∆y|

)
2

This expression uses the trinomial coefficient.2

Considering technological restrictions, physical im-
plementation of regular (not hierarchic) interconnection
networks usually requires that the length of all the links
to be equal, or at least similar. In the context of on-
chip networks, mesh implementation is fairly straight-
forward. Diagonal and regular meshes can be laid out

2. Trinomial coeficient:
(n
k

)
2
=
∑n

j=0(−1)j
(n
j

)( 2n−2j
n−k−j

)
.

with a single metal layer. Due to the crossing diagonal
links, the king mesh would require two metal layers.

A standard torus could be implemented with two
metal layers. However, tori have wrap-around links
whose length depend on the size of the network. This
seriously restricts the scalability of tori. To equalize the
link length, a well known technique is graph folding [21].
The proposed approach to folding king tori is based on
that of the common torus, but because of the diagonal
links four metal layers are required. As a consequence of
this folding process, the length of the links is between 2
and
√

8. Figure 3 shows a 8×8 folded king torus. Clearly,
the same approach can be considered for tori with just
a diagonal, which leads to a folded networks in which
the maximal length of the links is also upper bounded
by
√

8.

Fig. 3. Folding of King Torus Network. For the sake of
clarity, the orthogonal links are shown in gray.

This Section summarised the possible advantages that
king networks present. The noticeable improvements
on basic network parameters of king networks over
their standard counterparts invite to a more detailed
study that will be carried out in the remainder of the
paper. In addition, specifically comparing king meshes
against standard tori shows that the cost of doubling
the number of links of the mesh gives great returns.
Bisection bandwidth is 50% larger, average distance is
almost 5% less and diameter remains the same. It should
be noted that implementing a king mesh on a planar
substrate is simpler, as it does not need to be folded
and fits in two metal layers just like a folded torus. A
potential drawback is that, in contrast to meshes, tori are
regular and vertex symmetric networks.

3 NETWORK ROUTING
The performance of a given topology is heavily condi-
tioned by the routing strategy used to guide the packets.
Not making the right choices will certainly reduce the
network’s performance, but can also render it unusable
due to the occurrence of deadlocks or other anomalies.
An analysis of routing schemes is capital and this Section
delves into such a study for the described topologies.

3.1 Router Model
Once the topology has been established, the most im-
portant component of the interconnection network is the
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Fig. 4. Basic router organization.

router. It will accept data packets from the computing
nodes, send them through the network and deliver them
to the destination nodes. It is in charge of making appro-
priate path selection and resource sharing to maximise
the performance while avoiding congestion or deadlock.
Thus, knowing its internal structure is important to
adequately design the routing strategy. From the outside,
the router shows a set of ports through which it will
be connected to the computing nodes and neighbouring
routers, as established by the topology. In the case of
a king torus, the router has eight full-duplex ports
connecting it to the eight nearest neighbours plus one
to the computing node. The internal structure of the
router is covered extensively in the literature [21]. Figure
4 describes the basic router data-path showing the usual
hardware modules: ports, queues and crossbar, as well
as a router control block responsible of arbitration and
routing logic, which is the main concern of this Section.

When a router receives a packet from the computing
element, it must decide how it should traverse the
network. Some networks use source routing, where the
source router alone decides on how the packet reaches its
destination. This might be done by consulting a routing
table and explicitly writing on the packet header the list
of nodes it must visit to successfully reach its destination.
However in 2D networks, routing is typically done by
means of a routing record. It is a vector specifying the
number of hops the packet must make in each dimen-
sion. And, instead of looking it up in a table, it can
be calculated with simple arithmetic operations. This
vector is written on the packet header and is modified
with each hop, so that it always indicates the remaining
hop counts. A routing record with all counts set to zero
means the packet has reached its destination.

It is known that letting packets traverse the network
freely will soon cause deadlock. The use of Dimen-
sion Ordered Routing (DOR) prevents this situation in
mesh-like networks by forcing packets to exhaust the
routing record in one dimension before advancing in
the next. However this comes at a cost. The packets
are forced to follow a single path and can run into
local congestion that could be avoided if they could
change direction anywhere, adapting to the traffic situ-
ation. Using virtual channels can improve this drawback.

These are implemented by properly dividing the buffer
space assigned to a communication link so that several
flows (depending on the number of virtual channels) of
packets can share the physical link. Employing different
routing policies on different virtual channels can provide
adaptivity and avoid deadlock, [26]. In its simplest form,
this mechanism works with just two virtual channels:
one without the DOR restriction allows packets to avoid
congestion and when any of them is in risk of causing
deadlock, it changes to the other channel that operates
with DOR and ensures packet delivery.

The above only applies to mesh networks, as the
dependency loops susceptible of becoming deadlocked
span the two dimensions of the mesh and are broken by
the DOR policy. But mesh networks have the problem
of being irregular and this usually causes an unbalanced
use of their links. As a consequence, the observed per-
formance is lower than predicted by a simple topological
analysis. With a similar amount of resources, tori have
better topological characteristics, and as they are regu-
lar, the appearance of central congestion is less likely.
However, in general, using just two virtual channels
is not sufficient to achieve deadlock freedom. This is
due to the fact that tori are composed of set of rings
in each dimension, which are clearly deadlock prone.
There are several ways of dealing with this shortcoming.
Dateline, a technique which uses two virtual channels
to break deadlocks on rings together with DOR has
been used in several implementations, [21]; adaptive
routing on a 2D torus using dateline requires three
virtual channels. Nevertheless, the experiments shown
in this article have been carried out using Adaptive
Bubble Routing (ABR) [27] [28], a development of the
work presented in [29] and [30], applied to Virtual Cut-
Through (VCT) [31]. With ABR, two virtual channels are
enough to provide adaptive deadlock-free routing. This
routing/flow-control mechanism is the one used by IBM
BlueGene supercomputers [32].

3.2 Routing in Diagonal networks

To devise a routing scheme for diagonal networks, it
is important to notice differences and similarities with
the well known 2D networks. Like the latter, diagonal
networks have their nodes arranged in a square and
each node can be addressed by its Cartesian coordinates.
On the other hand, 2D networks have vertical and
horizontal links corresponding to the two dimensional
plane in which they are contained. This contrasts with
diagonal networks, which are also contained in a plane,
but have the extra diagonal links. Then there are three
link directions but only two spatial dimensions. This
forces the routing record to have an extra component,
one for each direction. Otherwise the packets would not
use the diagonal links.

Now, a mechanism must be found to derive the rout-
ing record from the source and the destination addresses
of incoming packets. For 2D meshes the routing record
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(∆x,∆y) is found by subtracting the source address
(x0, y0) from the destination (x1, y1):

(∆x,∆y) = (x1 − x0, y1 − y0)

This routing record can be used as a basis for deter-
mining the three component routing record (δx, δy, δz) re-
quired for diagonal networks. Considering that a packet
is headed to a node in the first or third quadrants, that
is ∆x and ∆y have the same sign, then each pair of hops
in x and y directions can be swapped for a hop in the z
direction as follows:

(δx, δy, δz) =

{
(∆x −∆y, 0,∆y) |∆x| ≥ |∆y|
(0,∆y −∆x,∆x) |∆x| < |∆y|

In any other case, there is no benefit in using the
diagonal links. Therefore, when the destination is found
in the second and fourth quadrants,

(δx, δy, δz) = (∆x,∆y, 0)

An interesting fact of this routing approach is that
there is no packet that can have three non-zero com-
ponents in its routing record. This is a consequence of
the z direction being a linear combination of x and y.

Although this basic algorithm can be useful for diago-
nal tori, it can not be directly applied. The reason behind
this is better understood when considering a ring of
nodes. Any pair of nodes is connected by two segments
on a ring. In general one will be shorter than the other
and this will be the one chosen to send packets. However
there are cases in which both segments have the same
length, then packets must be equally distributed between
both segments. Otherwise the traffic on the ring becomes
unbalanced, reducing performance. If, on a ring, packets
might need to choose between two paths, on tori there
can be up to four, one for each quadrant. With this in
mind, a proper routing mechanism for diagonal tori is
shown in Algorithm 1. It computes the length of the four
candidate paths connecting source and destination. Then
finds which one of them is the shortest. And because
there can be several, it selects one at random. Once
the path is chosen, it is just a question of applying
the diagonal mesh algorithm. With this, experimentation
shows that the use of all directions is balanced. That is,
under uniform traffic the load on all links is the same. As
in the mesh algorithm, it is impossible for any routing
record to have more than two non-zero components.

3.3 Routing in King networks
Initially, routing on king networks might seem trivial.
But king networks have a peculiarity that has a pro-
found influence on the routing algorithm design. King
networks are not locally planar. That is, a king mesh
can not be laid out on a plane without edges crossing.
This fact will lead to a set of different solutions, each
with improvements over the previous one, as will be
presented next.

Input: f = (x0, y0): source, t = (x1, y1): destination, s: side
Output: r = (rX , rY , rZ): routing record
begin

(x, y)← t− f
if x < 0 then

x← x+ s

if y < 0 then
y ← y + s

p0 ← max(x, y)
p1 ← max(s− x, s− y)
p2 ← s− x+ y
p3 ← s− y + x
// Find index of minimum paths
I ← {i ∈ 0..3/pi = min(p0, p1, p2, p3)}
// Randomly select minimum path
s← randomelement(I)
if s = 0 then

if x > y then
rZ ← y
rX ← p0 − y

else
rZ ← x
rY ← p0 − x

if s = 1 then
if x > y then

rZ ← x− s
rY ← s− x− p1

else
rZ ← y − s
rX ← s− y − p1

if s = 2 then
rX ← x− s
rY ← y

if s = 3 then
rX ← x
rY ← y − s

end
Algorithm 1: Minimal routing algorithm for a diagonal torus.

3.3.1 Knaive
The first approach is heavily based on the diagonal
mesh routing algorithm. Because of the regularity of king
tori, there is no need to have a substantially different
algorithm than for king meshes. Both of them start by
obtaining the routing record for the corresponding 2D
counterpart (∆x,∆y). From then on, both algorithms are
identical. As king networks have higher degree than
the diagonal networks, another extension of the routing
record is necessary. Because they have links oriented in
four different directions, the routing record will have
four components (δx, δy, δz, δt). The computation of the
different components is similar to the method proposed
for diagonal meshes. If the destination is in the first or
third quadrants, where ∆x and ∆y have equal sign, an
attempt will be made to use direction z as when possible:

(δx, δy, δz, δt) =

{
(∆x −∆y, 0,∆y, 0) |∆x| ≥ |∆y|
(0,∆y −∆x,∆x, 0) |∆x| < |∆y|

Whereas if the destination is located in the second
or fourth quadrants, ∆x and ∆y have different sign,
direction z is useless and it is t that has to be exploited:
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(δx, δy, δz, δt) =

{
(∆x + ∆y, 0, 0,∆y) |∆x| ≥ |∆y|
(0,∆x + ∆y, 0,−∆x) |∆x| < |∆y|

Due to its elegant simplicity and straightforward im-
plementation, this algorithm is denoted Knaive. Its main
advantage is that, as experimentally reported later on
the paper, it perfectly balances the use of all directions
in uniform traffic. Moreover, empirical results revealed
a correlation with the topological properties of Table 1.

Unfortunately, network traffic is not always uniform.
There are other traffic patterns, modeled as shuffle,
complement or tornado and others in [21], that cause
packets to congest small areas of the network while
leaving others unused. These adverse situations cause
a diminished performance, even when using adaptive
routing. In general, these are named adverse traffic pat-
terns, in contrast to benign traffic patterns, where packets
are naturally spread around the network.

As will be shown later, Knaive performs poorly in
adverse traffic patterns. The reason being that, although
king networks have four routing record components,
Knaive can not have more than two greater than zero.
The path diversity expressed by such a routing record
is always smaller than that of the king network. Then
Knaive allows packets to traverse the network only in a
subset of the minimal paths available on the underlying
topology. In order to visualise this fact, observe Figure
5(a). It shows the path followed by packets traveling
from a node (0,0) to another (3,0). Computing the routing
record is trivial (3,0,0,0) and as can be seen, it represents
a single path. The expression of the path diversity of the
king topologies shows that the number of minimal paths
between these two nodes is 7. So Knaive is ignoring most
of the minimal paths connecting these two nodes. The
same conclusion can be drawn from Figure 5(d), that
shows a node (0,0) and the paths leading to node (5,2).
Again the Knaive routing record (3,0,2,0) only gives a
subset of the minimal paths available in the topology.
In conclusion, Knaive would give good performance in
uniform traffic, due to the balanced use of directions,
yet it would show poor performance in adverse traffic,
because it does not use all the path diversity.

(a) Knaive (b) EKnaive (c) Hop-by-hop

(d) Knaive (e) EKnaive (f) Hop-by-hop

Fig. 5. Links used by the different paths connecting pairs
of nodes, shown in gray, with different routing algorithms.

3.3.2 EKnaive
After considering the shortcomings of Knaive, it is nec-
essary to devise a better routing algorithm. It should
make use of more, if not all, the path diversity and
show a better behavior in adverse traffic. This proposal
is a refinement of Knaive and therefore named Enhanced
Knaive, or EKnaive.

Observing Figures 5(a) and 5(d), it becomes apparent
that Knaive is restricting the paths to a rhomboid defined
by the source and destination nodes, with two sides in
an orthogonal direction and the other two in a diagonal
direction. Notwithstanding, several minimal paths lie
outside of this rhomboid. In fact, all minimal paths
are contained by a rectangle rotated 45 degrees with
opposite vertices on the source and destination nodes.
Thus EKnaive needs to make use of both diagonals in
order to increase the path diversity. Note that a pair of
orthogonal hops in the same direction can be converted
to two diagonal hops in different directions. Using this
rule, the orthogonal portion of a Knaive routing record
can be converted to diagonal hops. As a consequence,
the routing record will have at most three non-zero
components, one orthogonal and two diagonals. The
question remains as to how much of the orthogonal path
is transformed to diagonals. It was shown in [33] that the
best results were achieved when converting two thirds
of the orthogonal component.

Of course, EKnaive gives more path diversity, as can
be seen in Figures 5(b) and 5(e), but it also tends to
use the diagonal links more than the orthogonal. This
breaks the balance of Knaive and justifies the reduced
performance on uniform traffic shown later, as forc-
ing an increased use of diagonal links causes them to
become the network bottlenecks. In addition, the full
path diversity predicted in the topological analysis is
not reached. Observe that there are unused orthogonal
links in Figures 5(b) and 5(e). This means that a routing
algorithm with better path diversity is still to be found.

But coming up with a routing record that covers all
the path diversity of the king network is impossible.
As two directions are linear combinations of the other
two, the routing record can not express the variety of
paths connecting two nodes. Any routing record can be
transformed, using the above rule, into others with the
same destination and length. But all of them will have
at most three non-zero components and none will cover
the whole path diversity. Remember that two orthogonal
hops can be converted to diagonals, but the converse is
not true. Two diagonals in the same direction can not
be substituted by any number orthogonals resulting in a
path with equal distance. Hence, using routing records
with four non-zero components means that miss-routing
is allowed. Some efforts were made in this direction by
relaxing the minimum-distance constraint in [33].

3.3.3 Hop-by-hop routing
The algorithms presented above are all based on routing
records computed at injection time, similar (but not
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the same) to a source routing mechanism. That is, the
decision on which set of paths a packet can follow is
predetermined at the source node. This set of paths has
been expressed as a routing record, which is a vector
holding the number of hops remaining in each direction
to reach the destination. But it has also been shown
that, because of the linear dependence of the different
directions in the king networks, the routing record can
not express the full variety of paths connecting any two
nodes. Then a new approach is going to be adopted
in order to exploit the topological richness of these
networks.

This new approach abandons the concept of comput-
ing routing records at source and gives freedom to every
router on the network upon how to direct the packets
they receive. This is similar to the way packets are routed
across the Internet. When a packet arrives at a router, the
it reads the destination node from the packet header.
And it decides to which neighbour it is sent or if it
should be consumed. In every hop, the packet always
gets closer to its destination, thus keeping the routing
minimal.

In TCP/IP networks each router constructs a table
to help it decide on the way to send packets. The
composition of these tables is a resource consuming task,
but because the topology of king networks is regular, a
simple algorithm can be derived to calculate the prof-
itable directions for a packet at each node, knowing the
destination. This algorithm returns a vector with eight
integers (x+, x−, y+, y−, z+, z−, t+, t−) which are set to
one if the corresponding port nears the packet to its
destination. With this information the node can apply
the Adaptive Bubble Routing mechanism easily. If the
packet is going to be adaptively routed, a port is selected
at random from those that are set to one in the vector.
Whereas if the packet needs to use the escape channels
then the first port set to one is selected. This ensures that
DOR still governs the escape network.

Figure 6 shows the profitable port of each router of
a king mesh, or king torus, when they receive a packet
bound for node 0,0.

(a) King mesh (b) King torus

Fig. 6. Representation of the hop-by-hop vector at every
node when destination is node (0,0) on the lower left
corner.

In the routing algorithms based on routing records, the
number of non-zero components of the routing record
has been a concern, as it made a distinction between

the naturally balanced Knaive and the increased path
diversity of EKnaive. To make a similar analysis with the
hop-by-hop algorithm, the vector integers are grouped
in pairs, one pair for each direction. Then it can be seen
that, like EKnaive it has at most three non-zero pairs.
But as the vector is calculated in each node, it does not
exclude any path and the full path diversity is attained.
Observe that in Figures 5(c) and 5(f), all the links leading
to the destination are drawn.

Notwithstanding, the benefit of using two non-zero
components was that it could give the best results for
uniform traffic as it perfectly balances network resources.
But this is forsaken in the hop-by-hop algorithm, and
shows a diminished performance under such traffic.
However, if the way ports are selected could be priori-
tised, it could be possible to get the best of both worlds.
This new scheme requires that the integers in the vector
can take three values. Ports can be assigned zero if they
are not profitable, one if they are profitable and are in
a direction the Knaive would have chosen, lastly, they
can be assigned two otherwise. A visualisation of this
is shown in Figure 6 noting that the black lines would
represent ones and the gray twos. Observe that only the
diagonals can have the value two.

Now, the behaviour of the router is slightly different.
When a packet arrives, the router checks the adaptive
ports that have one in the vector. If all are full, it looks
into the adaptive ports marked with two. Should these
be also full, the escape port would be used, being the
first one in the vector marked with one. In a way,
this algorithm makes the decision about which adaptive
channel is used in two steps. Therefore it is denoted
2S hop-by-hop. With this strategy packets tend to be
routed with Knaive unless local congestion occurs, point
at which it falls back to full path diversity routing. Thus
this algorithm can give the best results, both in benign
and adverse traffic patterns.

3.3.4 Broadcast Routing
Many parallel applications, both in distributed and
shared memory computers, rely on efficiently sending
broadcast and multicast messages. In fact, the research
for improving the performance of collective communica-
tions has received much attention in the last years [34].
Hence, a broadcast algorithm is presented. It relies on
routers being able to forward packets through more than
one port in one cycle. As the packets are sent under
DOR discipline and ABR restrictions, the algorithm is
deadlock safe.

To perform a broadcast, the source node sends the
message to all its neighbours (Figure 7(a)). The message
is marked with a broadcast flag and a time-to-live (TTL)
integer. Then all nodes behave in the same fashion. If
a broadcast packet is received, the TTL is decremented
and consumed. If TTL is greater than 0, the packet is
also sent through a number of other ports. Namely, if
the broadcast packet was received from an orthogonal
port, it is forwarded through the next neighbour in
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the same direction plus two in the diagonal directions
(Figure 7(b)). If the packet is received on a diagonal
port, the packet is only forwarded to the next neighbours
in the same direction (Figure 7(c)). Thus the TTL value
defines the maximum area that the broadcast will reach.
Obviously it must be set to a number that covers the
whole network. In the case of king meshes, the TTL can
be calculated as max(x, s−x, y, s−y), where s is the side
of the mesh and x, y are the coordinates of the source
node. For king tori the TTL is the diameter.

A multicast could be constructed around the same
idea. The source node would make a broadcast mes-
sage including a list of the destination nodes. This list
should be organised in the same way as the branches
of the broadcast pattern. Then as the broadcast packet
spreads and different copies of it take different paths,
each copy would have the section of the destination
list corresponding to its path. Destination nodes that
receive the packet should consume it if they are on the
destination list. And they should forward it, like the
broadcast above, only if the list contains more addresses
after removing its own from it. Thus the multicast would
not send unnecessary packets to parts of the network
where there are no destination nodes. Note that this
scheme would not allow adaptive routing.

(a) Source node (b) Ortho. node (c) Diagonal node

Fig. 7. Behavior of nodes during broadcast.

4 EVALUATION

The previous Sections outline the topological properties
of 2D networks with diagonals and propose routing
algorithms to take advantage of them. For king networks
in particular, there are several algorithms with different
strengths and weaknesses. The following Section de-
scribes a set of experiments that corroborate the hypothe-
ses of Section 2. Furthermore, it gives an experimental
validation of the arguments used in Section 3 to develop
the different routing algorithms. Lastly, it shows the
performance of the different topologies and algorithms
running real applications.

4.1 Experimental Setup
All the experiments carried out in this research have
been done with the FSIN functional network simulator
[35]. The router model was shown in Section 3.1. To
be fair when comparing networks of different degree,
a constant buffer space was assigned to each router
and divided among all individual buffers. An initial
evaluation has been performed with synthetic workloads
using typical traffic patterns on 8 × 8 and 16 × 16 net-
works. These were applied on the networks by injecting

packets of 16 phits at a constant rate, or load, measured
in number of phits per cycle per node. To ensure the
stability of the results, measurements were taken only
when the network reached a steady state and averaged
by simulating with five different random seeds. The
increased degree of some topologies theoretically allows
the throughput to rise above one phit per cycle per
node. In order to take advantage of this, the simulations
have been run with enough injectors per router to fully
saturate the bisection bandwidth of the network. Some
relevant simulation parameters is shown in Table 2.

Simulated cycles 50000
Network size 16× 16, 8× 8

Bidirectional links yes
Virtual channels 2
Buffer space 32 phits per router
Injection queue 8 phits per queue
Flow control Virtual cut-through + Bubble
Injection mode shortest
Parallel injection yes
Request mode random
Arbiter random
Packet length 8 phits

TABLE 2
Simulation settings.

FSIN is also capable of simulating networks using real
application traces. These are injected preserving causal
dependencies between messages and modeling compu-
tation time. Then, a second evaluation of the different
topologies has been performed using traces of selected
applications from the NAS Parallel Benchmark(NPB) suite
[36]. This is typically employed in large parallel systems
and is representative of general HPC applications run-
ning in those systems. To obtain the traces, the Extrae
MPI tracing tool [37] was used while executing the suite
with problem size A on 64 IBM JS21 blades. Due to
the large length of the trace files, these were processed
and trimmed to remove initialization and finalization,
and leaving only the region of interest. This is the por-
tion of the program’s execution that contains all the
communication events that are interesting to evaluate
interconnection networks.

4.2 Experiments with synthetic traffic

The first experiment tries to validate the simulation in-
frastructure. This is done by comparing the experimental
results with the theoretical expressions presented in Sec-
tion 1. To this aim, Table 3 presents various performance
metrics corresponding to toroidal topologies of 16 × 16
under uniform traffic. First, the theoretical average dis-
tance and the experimental minimum latency. The latter
has been obtained by computing the average packet
transmission times when the packets have one phit at
minimum load. Under these conditions the latency and
the average distance should be the same and, in fact,
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the Table shows this similarity. On the other hand, the
Table also presents the maximum throughput, both com-
puted from the theoretical expressions and measured
experimentally. To reach the throughput bound of each
topology with multi-phit packets, the effect of the Head-
of-Line(HoL) blocking must be minimised. Therefore a
sufficient amount of virtual channels and injectors was
used. It can be seen that the experimental results are
close to the theoretical limits, however they are not
reached due to the effect of the router architecture.

Network T16 DT16 KT16

Average distance 8 6.22 5.33
Minimum latency 8.13 6.34 5.48

Max. Throughput (Th) 0.5 1.0 1.5
Max. Throughput (Ex) 0.45 0.96 1.49

TABLE 3
Minimum latency and maximum throughput of toroidal

networks under uniform traffic.

Section 3 called attention on the way the different rout-
ing algorithms use the channels in different directions
under uniform traffic. It pointed out that a balanced use
could show better performance. The next experiment
shows the throughput of different algorithms running
on king tori in Figure 8(a) and the average use of the
different directions in Figure 8(b); a 16×16 torus is shown
but results are similar with other sizes and topologies.
It is noticeable that the two algorithms that have an
equal use of all channels give better results than the
others. Therefore, for the remainder of this article, king
networks will be used only with Knaive and 2S Hop-by-
hop algorithms.

Comparing the performance of different topologies is
best done by observing the saturation throughput, and
the evolution of the average latency as input load is
increased from minimum to medium traffic load. Figures
9 and 10 show the average saturation throughput of the
different topologies, network sizes and routing methods.

As it has been shown in Section 3, the Knaive algo-
rithm perfectly balances the use of all directions but
does not use the full path diversity available on the
network. Notwithstanding, it obtains the best results
because the combination of traffic in different directions
makes an even use of all the network’s links. On the
other hand, the 2S hop-by-hop algorithm can use the
full path diversity, but in a way that is not detrimental
to the direction balance, if the traffic pattern is uniform.
Therefore its performance is equivalent to that of Knaive.

In general, it can be seen that increasing the number of
diagonals gives better results than the traditional 2D net-
works. The best overall performance is given by the 2S
Hop-by-hop routing algorithm that is able to exploit the
full path diversity of the king networks as can be seen
in highly adverse traffic patterns like tornado or shuffle.
It is noteworthy that the performance of networks with
only one diagonal depends strongly on the mapping

of the application. As when the main direction of the
traffic matches the added diagonal, a better performance
is observed. A good example of this behaviour is the
transpose traffic on mesh networks or the tornado traffic.
In these situations there is one diagonal networks that
reaches the same performance as a king network, while
the other hardly improves on the 2D network result.

On the other hand, an analysis of the average delay of
packets can reveal interesting facts about the networks
presented. Figure 11 shows these results for 8×8 meshes
and tori. Those for 16× 16 lead to the same conclusions
and therefore have been omitted.

Observing the results for uniform traffic, the base
latencies for small loads are slightly above the aver-
age distance of the topology plus the spooling latency,
due to the packet length. This validates the expressions
presented in Section 2 for the average distance. Then,
adding diagonals significantly reduces the distance be-
tween nodes, and consequently the packet delay.

Looking at other traffic patterns, there are two extreme
behaviours represented by the transpose and tornado
patterns. The first obtained similar throughput in all
topologies, this is a consequence of all having the same
number of links crossing the diagonal of the network,
therefore presenting the same bottleneck. But at low
loads, as the different topologies have different average
distances this fact is reflected in the base latency. The
diagonal networks resemble the results of the 2D or king
networks depending on the added diagonal, thus the
aforementioned importance of the application mapping
in these topologies.

The case of the tornado traffic is the opposite, the
packets move mainly along orthogonal directions and
the added diagonals do not reduce the distance among
nodes. However they do add path diversity, so at high
loads the traffic should spread throughout more paths
and improve the maximum throughput. However this
effect is only noticeable in the 2S Hop-by-hop algorithm,
as it was shown in Section 3 that Knaive was not able
to exploit the full path diversity.

4.3 Experiments with trace-driven simulations
The use of synthetic traffic allows early evaluation of net-
work performance by continually stressing the network
with well-known traffic patterns. However, real parallel
applications typically combine communication phases,
in which the network is used, with computation phases,
where no network traffic is observed [38]. Therefore an
analysis in a more realistic scenario is important to round
up an evaluation of the topologies presented in this
paper. The number of nodes used for this evaluation
suggests tens or hundreds of processing units. Some
experimental prototypes with large number of cores do
not support cache coherence [39], [40]. Therefore, a set of
experiments with traces from the NPB suite, that uses the
message passing paradigm, have been carried out. The
results presented in this paper only cover those bench-
marks which have a significant network traffic, as these
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Fig. 8. Benefits of balanced use of different directions on 16×16 king tori.
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Fig. 10. Maximum throughput comparison for side 16×16 networks.

allow the study of the advantages and disadvantages of
the different network topologies.

To present these results in an objective manner, and
to emphasize the effect of the network, the simulation
time for each topology is compared to the benchmark’s
ideal best time. Each trace was simulated with an ideal
network that has infinite throughput and zero latency.
This simulation time expresses the lower bound that can
be aspired to when only the interconnection network is
optimized. The graph in Figure 12 shows the slow-down
exhibited by each topology and routing, computed as the
ratio of the ideal time to the simulation time.

A first glance at the results shows that the best perfor-
mance is given by the king topologies with the 2S hop-
by-hop routing algorithm. This can be understood when

considering the traffic generated by real applications. In-
stead of injecting packets at a constant rate with a given
pattern, they show communication bursts with irregular
use of network resources. As was seen with synthetic
traffic the 2S hop-by-hop algorithm, which uses all the
minimum distance paths between any pair of nodes,
spreads the traffic among more network resources. Then,
this kind of routing improves the traffic balance on
the network. A direct consequence is that there is less
congestion and thus running the trace needs less time.

Looking at the results in more detail, a series of
behavioral patterns are observed. First, when running
real applications, adding one diagonal to the mesh or
torus gives some improvement. But which diagonal is
added does not affect the performance. For instance
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(b) Tornado traffic
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(c) Transpose traffic
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(d) Uniform traffic
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(e) Tornado traffic
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(f) Transpose traffic

Fig. 11. Latency behavour in 8×8 meshes and tori.
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Fig. 12. Performance of 8×8 networks. Execution time is normalized to that of the ideal network.

benchmarks ft, is and mg both in meshes and tori. In all
these cases adding a second diagonal, especially when
using hop-by-hop routing, gives much better results.

Second, in some cases the election of the added diago-
nal is important, as was mentioned above. For instance,
the performance of diagonal networks with benchmarks
cg on meshes and dt is heavily dependent on which
diagonal is chosen. One diagonal can give performance
close to that of the king topologies with Knaive while
the other is barely better than the 2D network. Therefore,
when using diagonal networks the application mapping
is particularly important. Focusing on king topologies,
the performance difference between the Knaive and the
2S hop-by-hop routing points out the importance of the
routing algorithm, as the use of a more sophisticated one
compensates for the increased cost of these topologies.

Finally, the cg benchmark on tori shows that the ad-
dition of a diagonal can be detrimental to performance.
This is due to the fact that cg has high communication
between neighboring nodes on one diagonal. Then, as
minimum routing is used, the number of paths connect-
ing the nodes is reduced from two to one.

5 CONCLUSIONS

This paper presents an analysis of two topologies that,
while having more ports per router than the traditional
meshes or tori, still preserve most of their advantages,
like their regularity or planar layout. First, a study
of topologies that add diagonal links in one direction
have been considered. But more importantly it proposes
the novel king networks, that add diagonal links in
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two directions. A topological analysis reveals that by
duplicating the number of links, these networks not only
double the bisection bandwidth but have three times
more than their traditional 2D counterparts. The fact
that the added links are diagonal, halves its diameter
and reduces its average distance in 33%. Moreover, king
topologies can be easily partitioned, that allows regular
distribution of singular nodes, like specialized process-
ing units or memory controllers. A folding scheme for
the king torus has been also presented, which facilitates
its implementation both as system or on-chip networks.

To benefit from all of the above, an appropriate rout-
ing algorithm must be used. Due to the regularity of
the King topologies, finding a routing algorithm seems
straightforward. In fact the first proposal of this paper
is a simple, yet effective, arithmetic routing algorithm,
named Knaive. However, as it does not exploit all the
path diversity, it performs poorly under adverse traffic
patterns. The paper proposes several solutions to solve
this problem. The best is the 2S Hop-by-Hop where
each node that receives a packet dynamically evaluates
its profitable ports and decides which one is the best
according to its destination and local traffic conditions.

The paper presents an extensive experimental evalua-
tion of the different topologies and routing algorithms.
Experimentation with synthetic load shows that, the
performance of the topologies under uniform traffic
practically reaches the theoretical limits. This happens
when the effect of HoL blocking is reduced by increasing
the number of virtual channels. The evaluation also
reports a set of experiments with trace-driven simu-
lations of various applications from the well known
NPB suite. These experiments ultimately confirm that
the king topologies perform significantly better than
their standard counterparts. In the experiments the king
mesh is always superior to the standard torus. Both
networks employ two metal layers but king meshes
could be preferable because they do not require folding
and perfect partitioning is simple. Forthcoming work
will include network evaluations under cache coherent
traffic and energy consumption estimations.
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