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Abstract

The star graph was introduced as an attractive alter-

native to the well-known hypercube and its properties 

have been well studied in the past. Most of these studies 
have focused on topological properties and algorithmic 

aspects of this network. Although several analytical 

models have been proposed in the literature for differ-
ent interconnection networks, none of them have dealt 

with star graphs. This paper proposes the first analyti-
cal model to predict message latency in wormhole-

switched star interconnection networks with fully adap-

tive routing. The analysis focuses on a fully adaptive 
routing algorithm which has shown to be the most ef-

fective for star graphs. The results obtained from simu-

lation experiments confirm that the proposed model 
exhibits a good accuracy under different operating con-

ditions. 

1. Introduction 

Mathematical models are cost-effective and versatile 

tools for evaluating system performance under different 

design alternatives. The significant advantage of ana-

lytical models over simulation is that they can be used 

to obtain performance results for large systems and 

behaviour under network configurations and working 

conditions which may not be feasible to study using 

simulation on conventional computers due to the exces-

sive computation demands.  

Several researchers have recently proposed analytical 

models of popular interconnection networks, e.g. k-ary 

n-cubes, tori, hypercubes, and meshes [1] [6] [17]. The 

most difficult part in developing any analytical model 

of adaptive routing is the computation of the probability 

of message blocking at a given router due to the number 

of combinations that have to be considered when enu-

merating the number of paths that a message may have 

used to reach its current position in the network. Almost 

all studies on star interconnection networks focus on 

topological properties and algorithmic issues. There has 

been hardly any study on performance evaluation and 

analytical modelling of such networks. In this paper, we 

discuss performance issues of star graphs by introduc-

ing the first mathematical model to predict the average 

message latency as a performance measure in worm-

hole star networks using the high-performance routing 

algorithm proposed in [13].

The rest of this paper is organised as follows. In Sec-

tion 2, the structure of star graph is described. In Sec-

tion 3, adaptive wormhole routing in the star graph is 

discussed. Section 4 proposes a mathematical perform-

ance model for adaptive routing in wormhole star 

graph. Validation of the proposed performance model is 

realized in Section 5 using results obtained from simu-

lation experiments. Finally, Section 6 concludes the 

paper. 

2. The star graph
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Let Vn be the set of all n! permutations of symbols 1, 

2, 3,…, n. For any permutation v Vn , if we denote the 

ith symbol of v by vi, v can be written as v1v2…vn.  A 

star graph defined on n symbols, Sn = (Vn,En), is an un-

directed graph with n! nodes, where each node v is con-

nected to n – 1 nodes which can be obtained by inter-

changing the first and ith symbols of v, i.e.

[v1v2…vivi+1…vn,viv2…v1vi+1…vn] En, for 2 i n. We 

call these n – 1 connections as dimensions. Thus each 

node is connected to n – 1 nodes through dimensions 2, 

3,…,n.

The star graph is an attractive alternative to the hy-

percube [3], and compares favourably with it in several 

aspects [9]. For example, the degree and diameter of Sn

is n – 1 and , i.e. sub-logarithmic in the 

number of nodes of S

3( -1) / 2n

n while a hypercube with (n!)

nodes has a degree and a diameter of (log n!) = 

(nlog n), i.e. logarithmic in the number of nodes. 

Much work has been done to study both the topological 

properties and parallel algorithms of the star graph in 

the past. 

Each node, in the star graph, is uniquely indexed by 

an n-tuple using the n numbers corresponding to a per-

mutation on the symbol set {1, 2, …, n}. We assume 

the adjacent nodes are connected by two unidirectional 

communication links (or a bi-directional channel). Each 

physical channel has some, say V, virtual channels that 

share the bandwidth of the physical channel in a multi-

plexed fashion. Also each input/output virtual channel 

has incoming/outgoing buffers. In this paper, a commu-

nication channel or communication link should be taken 

to mean a physical channel. Every physical channel, 

virtual channel, and message originating from a node 

can be given unique numbers based on the address of 

the node. 

3. Adaptive wormhole routing in star graphs

Several fully adaptive routing algorithms on star 

graph have been evaluated in [13] of which the one 

using negative hop-based deadlock free routing, aug-

mented with a new idea called bonus card,  has shown 

to have the best performance.  

In the negative-hop algorithm [5], the network is par-

titioned into several subsets, such that no subset con-

tains adjacent nodes (this is equivalent to the well-

known graph colouring problem). If C is the number of 

subsets, then the subsets are labelled as 0, 1, …, C-1,

and nodes in subset i are labelled (or coloured) as i. A 

hop is a negative hop if it is from a node with a higher 

label to a node with a lower label; otherwise, it is a 

positive hop. A message occupies a buffer of virtual 

channel i at an intermediate node if and only if the mes-

sage has taken exactly i negative hops to reach that in-

termediate node. If H is the diameter of the network and 

C is the number of colours, then the maximum number 

of negative hops that can be taken by a message 

is ( 1) /NH H C C [4] [5].

The structure of Sn is a bipartite graph, and its nodes 

can be partitioned into two subsets; therefore, it can be 

coloured using only two colours [5]. Because adjacent 

nodes are in distinct partitions, the maximum number of 

negative hops a message may take is at most half the 

diameter of Sn, which equals 3( 1) / 2 / 2
2

H n .

Hence, negative-hop schemes with 

virtual channels per physical channel can be designed 

for S

3( 1) / 2 / 2n

n.

The negative-hop (NHop) algorithm has an unbal-

anced use of virtual channels because messages start 

their journey starting from virtual channel 0. However, 

very few messages take the maximum number of hops 

and use all the virtual channel 0... , and 

thus virtual channels with high numbers will be used 

rarely. The NHop scheme can be improved by giving 

each header flit a number bonus card

3( 1) / 2 / 2n

[4]. For negative-

hop scheme it is equal to the number of virtual channel 

level minus the number of required negative hops to 

reach the destination node. At each node, the header flit 

has some flexibility in the selection of virtual channels. 

The range of virtual channels that can be selected for 

each physical channel is equal to the number of bonus 

cards available plus one. The resulting deadlock-free 

routing algorithm using negative-hop routing scheme 

and the bonus card is named Nbc which has been well-

evaluated and investigated against other routing algo-

rithms for the star graphs in [13].

In [13], the Nbc routing scheme has been used and a 

routing algorithm, named Enhanced-Nbc with high per-

formance and minimum virtual channel requirements 

was resulted. Investigations showed that Enhanced-Nbc 

has a better performance [13] compared to other algo-

rithms reported in the literature and the other algorithms 

proposed in [16].

4. The analytical model 

In this section, we derive an analytical performance 

model for wormhole fully adaptive routing in a star 

graph. Due to the superior performance of enhanced-

Nbc algorithm [13], our analysis focuses on this routing 

algorithm but the modelling approach used here can be 

equally applied for other routing schemes after few 

changes in the model.  

The measure of interest in our model is the average 

message latency as a representative for network per-

formance. 



The following assumptions are made when develop-

ing the proposed performance model. These assump-

tions have been widely used in similar modelling stud-

ies [1] [6] [7] [10] [11] [14] [17] [18] Messages are bro-

ken into some packet of fixed length of M flits which 

are the unit of switching. The flit transfer time between 

any two routers is assumed to one cycle over physical 

channels.

a) Message destinations are uniformly distributed 

across the network nodes.

b) Nodes generate traffic independently of each other, 

and follow a Poisson process, with a mean rate of 

g messages/cycle.

c) Messages are transferred to the local processor 

through the ejection channel once they arrive at 

their destination.

d) V virtual channels per physical channel are used. 

These virtual channels are used according to en-

hanced-Nbc routing algorithm.

The model computes the mean message latency as 

follows. First, the mean network latency, S , that is the 

time to cross the network is determined. Then, the mean 

waiting time seen by a message in the source node to be 

injected into the network, 
sW , is evaluated. Finally, to 

model the effect of virtual channels multiplexing, the 

mean message latency is scaled by a factor, V , repre-

senting the average degree of virtual channels multi-

plexing that takes place at a given physical channel [8].

Therefore, the mean message latency can be written as 

( )sLatency S W V . (1) 

The average number of hops that a message makes 

across the network, d , is given by [3]

1

2 1 !
( 4 )

! 1

n

i

n
d n

n i n
. (2) 

Fully adaptive routing allows a message to use any 

available channel that brings it closer to its destination 

resulting in an evenly distributed traffic rate on all net-

work channels. A router in the Sn has n-1 output chan-

nels and the PE generates, on average, g messages in a 

cycle. Since each message travels, on average, d hops

to cross the network, the rate of messages received by 

each channel, c, can be calculated as [2]:

1

g

c

d

n

. (3) 

Since the star graph is symmetric averaging the net-

work latencies seen by the messages generated by only 

one node for all other nodes gives the mean message 

latency in the network. Let S = 123…n (identity permu-

tation) be the source node with linear address 0 and i

denotes linear address of the destination node, where 

1 i n!–1. The network latency, Si, seen by the mes-

sage crossing from node 0 to node i consists of two 

parts: one is the delay due to the actual message trans-

mission time, and the other is due to the blocking time 

in the network. Therefore, Si can be written as 

,

1

ih

i i

k

S M h Bi k
, (4) 

where M is the message length, hi is the distance be-

tween the node 0 and node i, and BBi,k is the mean block-

ing time seen by a message form node 0 to node i on its 

k  hop. Averaging over all the possible destination 

nodes destined made by a typical message yields the 

mean network latency as 

th

! 1

1

! 1

n

ii
S

S
n

. (5) 

Under the uniform traffic pattern and due to the 

symmetry of the star graph topology, adaptive routing 

results in an evenly distributed traffic rate on all net-

work channels. Furthermore, a message sees the same 

mean waiting time and same mean service time across 

all channels regardless of their positions in the network. 

However, the message sees a different probability of 

blocking at each channel as the number of alternative 

paths, that can be selected, changes from one channel to 

the next along the path from the source to destination 

node. The probability of blocking depends on the num-

ber of output links, and thus on the virtual channels that 

a message can use at its next hop. We define f(i,j,k) as 

the number of output channels for kth hop of jth path set 

(of all possible paths) for the destination node i,

Let  be the average probability blocking 

seen by a message form node 0 to node i on its k

,i kblockP

th hop,  

and w be the mean waiting time when blocking occurs. 

The mean blocking time, BB

w

i,k, is giving by 

,, i ki k blockB P . (6) 

The probability of blocking, , can therefore be 

calculated as 

,i kblockP

, ,

1

1 seti

i k i j k

i

N

block block

jset

P
N ,

P , (7) 

where  is  the probability of blocking  for k
, ,i j kblockP th

hop of jth path set for the destination node i and 
isetN

is the number of path sets for the destination node i.

A message is blocked at a given channel when all the 

adaptive virtual channels of class a and also 

2 1
2

dV  virtual channels of class b (that are used 

for Nbc routing algorithm) are busy, where d is the 

number of remaining hops to the destination node. 

When blocking occurs a message has to wait for all V1

fully adaptive virtual channels of class a and 

2 1
2

dV  virtual channels of class b [13]. For com-



puting  messages are divided into 3 groups 

based on the last hop and next hop. 

, ,i j kblockP

Group A: This group contains messages that used a 

virtual channel of class a in their last hop (with prob-

ability of blocking 
AblockP ).

Group B
–

: This group contains messages that used a 

virtual channel of class b in the last hop and the next 

hop is negative (with probability of blocking 

).
B

blockP

Group B
+
: This group contains messages that used a 

virtual channel of class b in the last hop and the next 

hop is positive (with probability of blocking 

).
B

blockP

Since the number of messages in group B
_

 is equal to 

the number of messages in group B
+
, then we can write 

the probability of blocking as 

, ,

( , , )
1 1

2 2i j k A B B

f i j k

block block block blockP P P P             (8) 

Note that f(i,j,k) is the number of output channels 

for kth hop in the jth path set for destination node i,

1 i n!.

Let us now compute , and
B

AblockP
B

blockP
blockP .

When a message used a virtual channel from class a in 

its last hop, it can use any of V1 virtual channels of class 

a and also 
2 1

2
dV  virtual channel of class b.

Therefore blocking occurs, when all 1
2

dV  vir-

tual channels of selectable physical channel are busy. 

Now, we can write 

0

1
2

1
2

1
2

A

d

dv VV

block vc v V
dv V

v

P P P , (9) 

where Pv, v V and  are the probability that v

virtual channels at a physical channel are busy, and the 

probability that the message use a virtual channel of 

class a in the last hop, respectively. 

0vcP

Also, a message from group B
_

 and B
+
 that used 

virtual channel l at the last hop, can use any of V1 vir-

tual channels of class a and also 
2 1

2
dV l  and 

2 2
2

dV

2

2

1

1

2

1

l

l

lB

l

V n

dV
V v V n

block vc v V
l v V n

v

P P P , (10) 

and

2

2

1

1

1

1
2 1

1 1

l

l

lB

l

V n

dV
V v V n

block vc v V
l v V n

v

P P P , (11) 

where 
l

 represents the probability that a message 

uses a virtual channel of class b with number l in its last 

hop. To determine the mean waiting time, w, to acquire 

a virtual channel a physical channel is treated as an 

M/G/1 queue with a mean waiting time of 

vcP

[15]
2(1 )

2(1 )

S
S C

w  (12) 

c S  (13) 

2

2

2

S

S
C

S

 (14) 

where c is the traffic rate on the channel given by 

equation 3, S  is its service time calculated by equation 

5, and 2

S
 is the variance of the service time distribu-

tion. Since the minimum service time at a channel is 

equal to the message length, M, following a suggestion 

given in [10], the variance of the service time distribu-

tion can be approximated as 2 (
S

S M 2) . Hence, the 

mean waiting time becomes 
2

2(1 (1 / ) )

2(1 )

c

c

S M S
w

S

 (15) 

Similarly, modelling the local queue in the source 

node as an M/G/1 queue, with the mean arrival rate 

Vg /  and service time S  with an approximated vari-

ance 2(S M )  yields the mean waiting time seen by a 

message at the source node as [15]

2 2(1 (1 / ) )

2(1 )

g

s
g

S M S
VW

S
V

 (16) 

The probability, Pv, that v virtual channels are busy at 

a physical channel can be determined using a Mark-

ovian model. State v (0 v V) corresponds to v virtual 

channels being busy. The transition rate out of state v

to state v+1 is the traffic rate c (given by equation 7) 

while the rate out of state v to state v-1 is 1

S
 (S  is 

given by equation 5). The transition rates out of state v

are reduced by c to account for the arrival of messages 

while a channel is in this state.  

l  virtual channels of class b, respec-

tively. Thus, 



The Markovian model results in the following steady 

state probability (derivation explained in [15]), in 

which the service time of a channel has been approxi-

mated as the network latency of that channel: 

(1 )( ) ,   0

( ) ,                .

v

c c

v v

c

S S v V
P

S v V

 (18) 

When multiple virtual channels are used per physical 

channel, they share the physical bandwidth in a time-

multiplexed manner. The average degree of multiplex-

ing of virtual channels, that takes place at a given 

physical channel, can then be estimated by [8]:

2

1

1

V

vv

V

vv

v p
V

vp

. (19) 

The above equations reveal that there are several in-

ter-dependencies between the different variables of the 

model. For instance, Equations 4, 5 and 6 reveal that S

is a function of w while equation 12 shows that w is a 

function of S . Given that closed-form solutions to such 

inter-dependencies are very difficult to determine, the 

different variables of the model are computed using an 

iterative technique. 

5. Validation of the model 

The proposed analytical model has been validated 

through a discrete-event simulator that mimics the be-

haviour of the described routing algorithms in the net-

work at the flit level. The simulator uses the same as-

sumptions as the analysis, and some of these assump-

tions are detailed here with a view to making the net-

work operation clearer. The network cycle time is de-

fined as the transmission time of a single flit from one 

router to the next. Messages are generated at each node 

according to a Poisson process with a mean inter-arrival 

rate of g messages/cycle. Message length is fixed at M
flits. Destination nodes are determined using a uniform 

random number generator. The mean message latency 

is defined as the mean amount of time from the genera-

tion of a message until the last data flit reaches the local 

processor at the destination node. The other measures 

include the mean network latency, the time taken to 

cross the network, the mean queuing time at the source 

node, and the time spent at the local queue before enter-

ing the first network channel. Numerous validation ex-

periments have been performed for several combina-

tions of network sizes, message lengths, and number of 

virtual channels to validate the model.  

Figure 1 depict latency results predicted by the model 

explained in the previous section, plotted against those 

provided by the simulator for the S5 interconnection 

networks with 120 nodes, with V = 6, 9 and 12 virtual 

channels per physical channel, and 2 different message 
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Figure 1:  The average message latency pre-
dicted by the model against simulation results 
for a 5-Star with (a) V=6 (b) V= 9 and (c) V=12 
virtual channels and messages length M=32 
and 64 flits. 



lengths M=32 and 64 flits. The horizontal axis in the 

figure shows the traffic generation rate at each node 

while the vertical axis shows the mean message latency. 

The figures reveal that in all cases the analytical model 

predicts the mean message latency with a good degree 

of accuracy in the steady-state regions. Moreover, the 

model predictions are still good even when the network 

operates in the heavy traffic region, and when it starts 

to approach the saturation region. However, some dis-

crepancies around the saturation point are apparent. 

These can be accounted for by the approximations 

made to ease the derivation of different variables, e.g. 

the approximation made to estimate the variance of the 

service time distribution at a channel. Such an ap-

proximation greatly simplifies the model as it allows us 

to avoid computing the exact distribution of the mes-

sage service time at a given channel, which is not a 

straightforward task due to inter-dependencies between 

service times at successive channels as wormhole rout-

ing relies on a blocking mechanism for flow control. 

6. Conclusion and future work 

Star interconnection networks have gained much atten-

tion during the last decade. However, most of studies in 

this line have focused on topological properties and 

algorithmic aspects of these networks. In this paper, we 

introduced the first mathematical performance model of 

adaptive wormhole-routed star graphs and validated it 

through simulation experiments. We saw that the pro-

posed model manages to achieve a good degree of ac-

curacy while maintaining simplicity, making it a practi-

cal evaluation tool that can be used by the researchers 

in the field to gain insight into the performance behav-

iour of fully adaptive routing in wormhole-routed star 

graphs. 

Our next objective is to compare the performance 

merits of the star graphs and their equivalent hyper-

cubes under different technological constraints to con-

duct a fair comparison. 
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