Task Mapping in Rectangular Twisted Tori

Cristébal Camarero’, Enrique Vallejo', Carmen Martinez', Miquel Moreto*, Ramoén Beivide'

"University of Cantabria
Electronics and Computers Department
Avda. Los Castros s/n, Santander, Spain

{camareroc, valleje, martinezc, beivider } @unican.es

Keywords: network topologies, application mapping, rect-
angular twisted torus

Abstract

Twisted torus topologies have been proposed as an alterna-
tive to toroidal rectangular networks, improving distance pa-
rameters and providing network symmetry. However, twist-
ing is apparently less amenable to task mapping algorithms
of real life applications. In this paper we make an analyti-
cal study of different mapping and concentration techniques
on 2D twisted tori that try to compensate for the twisted pe-
ripheral links. We introduce a performance model based on
the network average distance and the detection of the set of
links which receive the highest load. The model also consid-
ers the amount of local and global communications in the net-
work. Our model shows that the twisted torus can improve la-
tency and maximum throughput over rectangular torus, espe-
cially when global communications dominate over local ones
and when some concentration is employed. Simulation results
corroborate our synthetic model. For real applications from
the NPB benchmark suite, the use of the twisted topologies
with an appropriate mapping provides overall average appli-
cation speedups of 2.9%, which increase to 4.9% when con-
centrated topologies (¢ = 2) are considered.

1. INTRODUCTION

The interconnection network of a High Performance Com-
puting (HPC) system is critical to obtain its maximum per-
formance. The topology of the network defines the intercon-
nection pattern for the nodes in the system. While commod-
ity networks such as Ethernet or Infiniband typically em-
ploy multi-tree topologies, many HPC systems employ other
topologies which fit better to some computational problems.
Hypercubes, meshes and tori have been common in the HPC
arena, since they are closer to the actual data transfers that
occur in many applications.

Twisted tori are variants of the torus topology in which a
twist is applied to the peripheral links in one or more dimen-
sions [5, 23, 25]. Different variants of 2D and 3D twisted tori
have been studied in the past [8, 9, 24]. Rectangular tori and
meshes are often built for practical reasons of packaging and
modularity. In this paper we focus on the Rectangular Twisted
Torus (RTT) which is a twisted version of the 2D Rectangu-

*Universitat Politecnica de Catalunya
Computer Architecture Department
Jordi Girona, 1-3, C6-204, 08034, Barcelona
mmoreto@ac.upc.edu

Network

Data Processes

Task "

partitioning mapping

Figure 1. Data partitioning and task mapping.

lar Torus (RT) topology. Its peripheral twist modifies the dis-
tance properties of the base topology, reducing the diameter,
average distance, and more importantly, balancing the use of
the network links in different dimensions. As a consequence,
it can achieve a 50% increase in network throughput under
uniform traffic.

Traffic from real applications behaves according to the na-
ture of parallel algorithms and depends on the allocation of
each logical task in the network and on their communication
requirements. The assignment of work to system nodes is a
two-step process. First, data partitioning divides the program
dataset into multiple groups of data to be operated in paral-
lel by each process. The second step is task mapping, which
assigns each of the processes to an individual computation
node. Both steps are illustrated in Figure 1.

Depending on the application, processes are arranged ac-
cording to a certain logical topology (or communication
graph), which reflects the communication pattern between
them. The logical topology depends on the data partition-
ing employed, which is largely dependant on the data struc-
tures and the algorithm used by the application. Modifying
the data partitioning mechanism to fit the underlying physical
topology is generally considered very difficult since it implies
modifying the algorithm. On the contrary, task mapping con-
siders the logical topology of the application and the phys-
ical topology of the system to provide an efficient solution
that preserves the communications locality as much as possi-
ble. Task mapping is a graph embedding problem, in which
a guest graph (the logical topology) must be accommodated
to a host graph (the physical topology) minimizing an objec-
tive cost function such as byte-hop [2], maximum dilation or
average dilation [26]. Task mapping is an NP-complete prob-

lem [7, 16], but multiple heuristic mechanisms have been de-
ployed to provide acceptable results [6].

Concentration is a technique typically employed in HPC
to reduce system cost and increase scalability. A concen-
trated system connects multiple computation nodes to a single
(higher-radix) switch. This has been routinely employed in fat
trees, but also in direct topologies. One example is the Gordon
Supercomputer [21] which employs a 3D concentrated torus
using commodity Infiniband technology. The use of concen-
tration adds a new dimension to the mapping problem, which
also needs to consider which logical tasks are concentrated
into the same network node.

This paper presents a comprehensive analysis of the RTT
topology under realistic conditions that considers the map-
pings of HPC applications and the use of concentration. In
this way, although twisting is apparently less amenable for
task mapping, we can show how the topological advantages
of RTTs translates in execution time reductions by choosing
the adequate mapping technique. Specifically, the main con-
tributions of this paper are the following:

1. We provide an exhaustive topological comparative re-
view of two-dimensional RTs and RTTs, introducing a
novel routing for RTTs.

2. We elaborate an analytical model which estimates the
expected performance of both topologies with different
mapping algorithms, according to the amount of local
and global communications in the system and observing
that RTTs should outperform RTs in many scenarios. We
present the counterintuitive result that using “twists” in
the concentration function of RTTs, despite not allocat-
ing neighbor tasks to the same network node, helps to
improve performance.

3. We validate the theoretical model, considering both stan-
dard and concentrated versions of each topology, by sim-
ulating synthetic traffic with local and global communi-
cations.

4. Finally, we consider the performance in a real scenario
by simulating several benchmarks from the NAS Parallel
Benchmark (NPB 3.2) suite [4].

The rest of this work is organized as follows. Section 2. de-
fines and compares RTs and RTTs and introduces their rout-
ing algorithms. Section 3. considers the problem of mapping
applications, presenting a performance model. Section 4. de-
tails the experimental environment while Section 5. evalu-
ates both topologies with different mapping and concentra-
tion functions using the NPB benchmarks. Finally, Section 6.
concludes the paper.

LD
GOPRLLLYD
QLIPS
[eXeZe=e=exexexe)

O
o
'e
o)

O
i%
e
o)

O
o
'e
o)

O
i%
e
o)

O
o
'e
o)

QFQFrQ

OO0

Figure 2. RT(4) and RTT(4)

2. RECTANGULAR AND TWISTED TORUS
TOPOLOGIES AND ROUTING

In this section, we compare both topologies in terms of
their distance properties. Networks are modeled by graphs,
where vertices represent network switches and edges repre-
sent the communication links among them. Since the graphs
considered here are built over rectangular meshes, we denote
for convenience the set of nodes of the basic rectangular m x n
mesh as:

Ronn ={(x,y) €22 |0<x<m—1,0<y<n—1}.

Hence, RTs can be constructed over this set by adding or-
thogonal parallel wraparound links to the mesh in both di-
mensions, as can be seen in Figure 2. RTTs, also in Figure 2,
can be built from the previous torus by replacing parallel ver-
tical links by twisted ones, as given in the following defini-
tion. Since we focus on 2 : 1 aspect ratio, we will denote by
RT(a) the torus over Ry, 4.

Definition 2..1. A Rectangular Twisted Torus RTT(a) is de-
fined over Roq 4. All the inner links in the rectangle form an
orthogonal 2D mesh and the wraparound links are defined
as:

o (x,0) is adjacent to (x+a,a—1)0<x<a-—1.
o (x,0) is adjacent to (x —a,a—1)a<x<2a-—1.
e (0,y) is adjacent to (2a—1,y) 0 <y <a—1.

Table 1 summarizes approximated distance-properties of
both topologies, where the diameter is denoted k, and the av-
erage distance k. We also include the average distance per
dimension, so that k = E—kg Note that RTTs have better
distance properties than RTs for the same number of nodes.
However, a topological difference with more impact on per-
formance is symmetry. RTTs and RTs are node-symmetric
topologies, i.e. any node can observe the same local environ-
ment. Nevertheless, RTs are not edge-symmetric graphs since
horizontal links are not equivalent to the vertical ones. For
example, note that in a RT(a) horizontal links form cycles of
length 2a and the vertical links form cycles of length a. On the
contrary, RTTs are completely symmetric, since the twist in
the vertical dimension makes all links locally equivalent [10].

Finally, we present Algorithms 1 and 2 to compute routing
records in RTs and RTTs. The routing record to reach destina-
tion node v, from source node v, can be defined as r = (ry, ry)
such that vg — vy = r with |r| = |r¢| + |ry| of minimum weight.

Table 1. Topology distance properties [9].

’Topology‘k‘k‘g‘j‘
Rw |5 | § 8¢
RTT(a) | a | %] %] %

The original routing algorithm for the RTT introduced in [9]
was significantly more complex than the routing in RT. By
contrast, Algorithm 2 presents a novel routing record compu-
tation for RTTs. The algorithm uses some ideas from a more
general algorithm in [15] particularizing it to RTT, which re-
duces the total number of computations presented in [9]. Note
that both algorithms have the same complexity and the most
costly operation is the remainder calculation (rem), which is
straightforward in the cases of a being a power of 2.

Algorithm 1: Routing in RT(a)

Input: x,y := vy — vy € Rouu — Roua
Output: r routing record

X :=rem(x+a,2a)—a;

Y i=rem(y+|a/2],a) - |a/2];
rim ()

Algorithm 2: Routing in RTT(a)
IIlplltZ X,y i=Vg—Vs € iRZa,a - KZa,u
Output: r routing record
p:=rem(x+y+a,2a);
q:=rem(y —x+a,2a);

¥i=(p—q)/2
Yy i=(p+q—2a)/2;
ri=(x,y);

3. TASK MAPPING IN
AND TWISTED TORUS

As presented in Section 1., we will study different mapping
and concentration functions to determine how they impact
performance. Many scientific applications rely on structured
grid communication patterns which employ both local (near-
neighbour) and global communication, [3, 13]. Across this
paper we restrict our study to 2D topologies for both the ap-
plication communication pattern (meshes or tori) and the net-
work topology (RT and RTT); the extension to 3D (or more)
is left for future work. The mapping of meshes into both RT
and RTT is simple, since the peripheral links do not have an
impact on the adjacency of the mesh. Therefore, we focus on
the mapping of 2D torus into RT and RTT. We will consider
communication graphs with the same number of nodes as the
physical topology, or a multiple value when using concentra-
tion.

The mapping function maps each process (or a set of con-
centrated processes) from the logical topology into one phys-
ical network node. We will consider two mapping functions,

RECTANGULAR

oJole)
0000

0000
0000
0000 o0000
0000 00O

Figure 3. Identity and diagonal-shift mapping functions on
RT(4).

depicted in Figure 3: the identity function id maps the pro-
cesses grid directly into the internal mesh to preserve internal
adjacency; by contrast, the diagonal-shift ¢ introduces an in-
ternal incremental twist to compensate the twisted peripheral
links in RTT. The mapping f¢ is inspired by the mappings
considered for double loop networks in [12]. These map-
ping functions are formally defined for logical and physical
topologies of the same size, a rectangle &, ,,, as follows:

id(xvy) = (xvy)
fxy) = (x+y modm,y)

In concentrated networks, a concentrating function deter-
mines which processes are placed on the same network node
prior to the mapping function. We consider two rectangles
Ry = Rom,gn and Ry = Ry, , for m,n, p,q € N. A concentrat-
ing function of concentration ¢ = pq sends ¢ processes from
R, to the same node in &,. We consider several concentration
and mapping functions that seek to preserve the communica-
tion locality from the logical graph. Specifically, the horizon-
tal union f!, the vertical union f and the twisted union f!
are defined as:

fi(x,y) = (EJ ,y), g=1
fey) = (x]2]). p
=13 om0

n

1

Figure 4 represents the three concentration functions with
¢ =2 applied to a 8 x 8 mesh. Note how the twisted con-
centration function f* does not concentrate neighbor nodes;
rather, it is designed to compensate for the twist in the pe-
ripheral links of RTTs, by preserving adjacency in the logi-
cal topology when the identity mapping is employed. Differ-
ent concentration functions can be combined for ¢ > 2. We
will denote by f o g the composition such that (fog)(x,y) =
f(8(x,y)).

The next subsections will study the relative performance
obtained with each topology (RT and RTT) using the different
mapping and concentration functions presented here. We will
first introduce a model of a generic application that considers
both the amount of local and global messages sent. Consid-
ering this model, next we determine expressions for the ex-
pected performance with a given topology and mapping in

SOLRLRLE EDE0E0E
B
QOOO0RLY SSSE
QORR0R0Y SSSE

Figure 4. Concentration functions f7_,, fchz2 and f]_, ona
8 x 8 mesh.

terms of base latency and maximum accepted throughput. Fi-
nally we calculate these performance values for logical torus
mapped into RT and into RTT with different combinations of
mapping and concentration functions.

3.1. Modelling a Generic Application

We will consider a simple model for the communications
of an application. Our model considers a variable rate of lo-
cal and collective (global) communications in the application
graph. We denote with o the proportion of local (/) messages,
and (1 — a) the proportion of messages corresponding to col-
lective communications (global, g), assuming the same mes-
sage size.

Local traffic communicates each process with one of its (up
to) four direct neighbours in the application graph, which will
be a 2D mesh or torus. Depending on the mapping and con-
centration functions, these neighbor nodes could be mapped
far away in the physical topology. Collectives communicate
a given process (or each of them) with a set (or all) of the
other processes in the system. While the behavior of local
communications is dependant on the mapping algorithm, we
will assume that global communications can be averaged
as uniform traffic, whose performance only depends on the
physical topology. Our model does not consider the less fre-
quent point-to-point messages sent to remote (not neighbour)
nodes.

3.2. Performance modelling

The performance of a network depends on which met-
ric is most restrictive during the execution of an applica-
tion. Specifically, we will consider both maximum accepted
throughput and average latency. In general, average (base) la-
tency, or average latency on zero load, depends on the aver-
age distance of the topology while maximum (base) latency
depends on its diameter. Actual latencies in the network will
depend on the base latency and the network contention which
is not considered in our simple model.

Under uniform traffic, the maximum throughput in an
asymmetric torus depends on the maximum average distance

per dimension [9], since longer dimensions will typically sat-
urate earlier. However, when certain mapping and concentra-
tion functions are considered, the links in a given dimension
may not receive all the same load. One such case are the pe-
ripheral links of the RTT when the id mapping is employed.
In such cases, it is the subset of links that receives the highest
load which determines the maximum throughput.

In this section we study the theoretical performance of RT
and RTT when the network performance is limited by either
throughput or communication latency, considering different
mapping and concentration functions and a variable rate of
local and global traffic.

3.2.1. Latency Estimation

We denote by 7 the average distance travelled by the pack-
ets in the network. Assuming a constant link latency in the
network, 7T is an indicator of the base latency in the network.
7 differs from the topological average distance k, since T de-
pends on the communication pattern and the mapping and
concentration functions. Note that T can be divided into two
terms, considering the contribution of local and global traffic:

t=tv+t=a-d+(1-a)-k

where T/ = a- d represents the contribution from local mes-
sages and depends on the average dilation of the mapping
function, d. Dilation, that is network distance of adjacent pro-
cesses in the logical topology, has been employed as an objec-
tive function in mapping algorithms. However, in our model it
does not directly determine the performance, since the global
communications are not affected by the mapping algorithm.
Interestingly, T8 only depends on the physical topology, with
its overall value being determined by the average distance, k,
in Table 1 from Section 2..

3.2.2. Throughput Estimation

Let th be the number of phits sent per cycle by each of the
N nodes in the network. Let E be the set of edges (links) in
the graph, and |E| its cardinal. If all the links in the network
were used in a balanced way, the maximum throughput of the
network (in phits/cycle) would be calculated by:

2IE|

N-th-1<2|E|=th< —
<2|E| <V

For example, when all nodes communicate with their four
direct neighbours in the network (t = 1), up to th = 4
phits/(node-cycle) can be accepted, since |E| = 2N in both
RT and RTT.

By contrast, when the load on different links of the network
differs, the set of links that receives the highest load will satu-
rate first and become the bottleneck that limits the maximum
throughput accepted by the network. Let E},E;,...Es be all

the possible different sets of links in the network and T; be
the average distance that packets traverse across links in E;.
Then, the maximum throughput in the network will be given
by:

£

},Eng
J

This calculation is valid as long as all nodes are limited
by the subsets selected, which happens in all cases consid-
ered in this paper. For example, it was shown in [9] that un-
der uniform traffic T,,,, = max(t;,T,) serves to calculate the
maximum throughput in RTs and RTTs, where T = 1, + 7,
represents the division of the average distance on the horizon-
tal and vertical dimensions. This is true because all the links
in a dimension (horizontal or vertical) are used in the same
proportion under uniform traffic. However, when a mapping
algorithm and local traffic are taken into account, the internal
and peripheral links within a given dimension can receive dif-
ferent loads. In such case, the maximum throughput is deter-
mined by the subset of links receiving the higher load. There-
fore, in order to estimate the maximum throughput, we need
to determine the subset of links that will first saturate. Specif-
ically, we will denote Ej; and E,; the sets of horizontal and
vertical internal links, and E},, and E,, the peripheral ones. In
the RT and RTT |Ej| = 2a* —a, |E,i| = 2a*> —2a, |Epy| = a
and |E,,| = 2a.

As before, T; can be divided in its local and global compo-
nents: T; =T, +1% = o-d; + (1 — a)k’, where d; represents
the average number of hops of local packets in E;. In our
model the global communications are approximated by uni-
form traffic, so k; is independent of the mapping, and can
be derived from the values given in Table 1 and the spe-
cific |E;|. For example, if E; = Ej;, then k; = k. - |Eyj|/|E| =
ko 2020 =T (1 4).

The next subsections will calculate the expected latency
and maximum throughput of applications mapped into RT
and RTT. We will first consider standard topologies and next
the case of concentration ¢ = 2.

2 . {
maxs, = N min

3.3. Mapping 2D Logical Tori into Standard
RT and RTT

In this section we apply the previous model to estimate the
latency and maximum throughput when the logical topology
is a 2D (2a x a) torus with the same number of tasks as nodes
in the network. When the physical topology is a RT, the id
mapping is the only one that makes sense, since f¢ would
otherwise break the locality. In the RTT, we will consider both
id and f9.

3.3.1. id Mapping of 2D Tori into RT
In this case the communication graph coincides with
RT(a), so with the mapping function id the locality is pre-

served and the dilation is d = 1. Global traffic follows a uni-
form distribution with k = %“, so base latency can be calcu-
lated from:

3a

t=t+tt=a-d+(1-a) k=0a+(l —a) 2

To determine the maximum throughput we consider the
sets of horizontal and vertical links, Ej; and E,. The aver-
age distance of local traffic is (0.5,0.5). As a consequence,
Tﬁl =1/ = 0.50.. Table 1 provides the average distances of
global traffic in each dimension, so:

T = (1—a)k = 5(1-0)
o = (1-a)k, = 3 (1-0)

Horizontal links E;, are the ones which first saturate with t;, =
%(x + 5 (1 —a), and the maximum throughput is:

2 By 2 2a? 4
max;, = — =—

N 7, 2a2 %a+%(1_a):o¢+a(l—a)

This expression shows that under local traffic (o0 = 1) up
to 4 phits/(node-cycle) can be accepted, since communication
occurs with the four direct neighbors on independent links.
Under uniform traffic, the maximum load will be %.

3.3.2. id Mapping of 2D Tori into RTT

In this case the locality of the application is broken. The
internal and horizontal peripheral links preserve locality. By
contrast, peripheral vertical communications which would
follow the path (0,1) in the logical graph are transformed
into routes (0,—(a — 1)) in the physical network (and re-
ciprocally for peripheral hops (0,—1)), with maximum di-
lation (a — 1). This happens in a fraction 1/a of the verti-
cal local messages in the network, so the average dilation is
d=2(a—1)+2-"1.1=3—L With the value of k from
Table 1 we obtain:

— 3 1 2a
=T+ =0-d+(1-a) (2 a)oc+(o) 3

We will calculate which dimension determines maximum
throughput. The local load on horizontal links is the same as
in the case of id mapping on RT, so using the value k, = § we
obtain:

2 |Ej| 4
maxy, < — =—
N Th o+ ?a (l — (X)

On vertical links, all the local traffic is sent on the inter-
nal links E,;. Similarly to the dilation calculation, the aver-
age distance of local traffic on E,; will be t/; = (1— 1)la+

Helg — (1- .

a

Global traffic uses every vertical link equally, which im-

plies that = = &, {24 (1 — @) = 4(1 - 1)(1 —). With these
values we can determine that vertical links impose a lower

limit on maximum throughput than horizontal links:

gy = 2Bl _ 2 . _
Nt NOA-Hoa+té(1-Ha-o)
- 4
204+ %(1-0)

3.3.3. /¢ Mapping of 2D Tori into RTT

Using the mapping f¢ with the RTT, horizontal locality is
preserved and vertical locality suffers dilation 2, with local
traffic on vertical links requiring routes (1, 1). Average di-
lation is 3/2. The distances for local traffic are:

I _ _ _
T, =0 T = — T ="

Using the values from Table 1 we get: T =1/ +18 = 370‘ +
(I1—a)- 23—” To calculate maximum throughput we observe
that distances on the horizontal dimension are longer: T, =
T, +1f = o+ %(1 — o). Then we obtain:

2 |Ey| 4
Maxy = = oo
T 200+ F(1-a)

Figure 5 shows the throughput and latency results when
mapping a 2D logical torus into RT and RTT. The identity
mapping id provides the best results in RTT. With this map-
ping, the RTT achieves better throughput and latency when
global communications dominate with up to 50% throughput
improvements. However, the id mapping in RTT has a max-
imum dilation of a — 1. The diagonal-shift mapping f¢ min-
imizes the maximum dilation on the RTT(4) and it obtains
the same throughput as id but worse average latency. Both
curves intersect in a%, which tends to 1 for larger networks.
As a consecuence, the RTT will obtain better throughput than
RT except for traffic with high locality (o).

3.4. Mapping 2D Logical Tori into Concen-
trated RT and RTT

We will consider now the case of an application with more
processes than routers in the physical topology. We will re-
strict our calculations to an application whose local commu-
nication graph is a square torus 2a x 2a and concentration
¢ = 2 has to be employed. Cases with larger concentration
can be calculated similarly. Two concentration functions can
be employed to reduce the vertical dimension, f} and f5.
Then, any mapping can be applied, leaving 4 possibilities:
. flo . 1 flo /5, but we omit the latter because both the
concentration f5 and mapping f¢ are designed to cope with

- ©- RT@)id RTT(4) id —%— RTT(4) f¢

[[[[
= 4 0
£3 |
23 o
© = 3+ Lo
— SN
< O L
<
e | 8t 1
5 2
g2
£ =2
2 A
CG N

Base latency
(cycles)

| |
0 0.2 0.4 0.6 0.8 1
Locality (o)

Figure 5. Maximum throughput and latency for logical torus
mapped on RT(4) and RTT(4)

twisted peripheral links. In the RT, f; is the only sensible
combination, since it exploits the maximum locality. We will
study their performance next.

3.4.1. f3 Concentration of 2D Tori into RT

In this case locality is preserved similarly to the id mapping
in RT, with two vertical neighbour processes mapped into the
same network node. From every 8 local communications from
each node, 2 are internal to the node, 2 imply a vertical hop
and 4 imply a horizontal jump.

dodg O t=Ca== ==

h 8 2 v

Average dilation is d = 3/4, lower than 1 thanks to neigh-
bor nodes being concentrated together. With respect to global
traffic, the values in Table 1 remain approximately valid when
using concentration, so we can get the estimation of average

latency:

! g 30 3a
T=T+T =—+4+—

I—o

s T o)

Regarding throughput, it is straightforward that horizontal
links are saturated first since both local and global average
distances are larger in X than in Y. We obtain the same result
as in RT without concentration:

(X _—
=T, 4T = §+kx(1 —o) =

D[R

+-(l-a)

N

3.4.2. f) Concentration of 2D Tori into RTT

Again, this case is similar to the id mapping in RTT without
concentration, with locality preserved in the internal mesh but
not in the vertical peripheral links. Now, of each 8 local com-
munications of each node of the first and last rows (% from
total of rows) we have that 2 are internal to the network node,
4 are (£1,0), 1is (0,£1) and 1 (0,£(a—1)). Therefore, ver-
tical peripheral links are not used by local communications.
The nodes in the internal rows (1 — %) send 4 messages to
(£1,0) and 2 to (0,£1) from each 8 messages. Then, aver-
age local distances are:

With the global values we can get the average distance in
the network:

1 2a

_ 4l g __
T=T4+1tv=(1——|Joa+(l—0)—
+ (2a) +()3

Local distances are larger in X than in Y, and global dis-
tances are balanced in the RTT, so the throughput will be de-
termined by distances in horizontal links. With the value of

ky from Table 1 we get

2 |E, 4

maxgy = —— = ——————
th N 1 OL—Q—%“(]—O()

3.4.3. f9o fy Mapping of 2D Tori into RTT

In this case horizontal locality is preserved but vertical lo-
cality is modified: two vertical neighbours are mapped into
each node, so half of the vertical local messages are internal
to the node. The remaining vertical communications suffer di-
lation 2, similar to the case of the f¢ mapping in RTT without
concentration. From each 8 local messages of each network
node, 6 use horizontal links and 2 use vertical links, so aver-
age distances are:

r’—ga—éoc r’—%a—loc
PT84 8 4

Then, T = o and base latency will be determined by

r:a+%(l—a)

- ©- RT@) f;
RTT(4) f; —%— RTT(4) f?o fy —+— RTT@) f}
=
o~
= 0
oh o
=gt
o £
= 28
Q
ED
23S
g =
e
<~
=
| | | |
[[[[
38 02 04 06 08
>
g ~~
238
= o
2 Z
<
m
| |

| |
0 0.2 0.4 0.6 0.8 1
Locality (o)

Figure 6. Maximum throughput and Latency for logical
torus mapped on RT(4) and RTT(4) with concentration c=2.

Thus, the network throughput is limited by horizontal traf-
fic and it is done in:
2 |Ep| 2 4

maxn =G~ =3 . a 2a
N Th ZOH-g(l—(x) E(X—FT(]—(X)

3.4.4. f; Mapping of 2D Tori into RTT

In this case, the f} mapping preserves the neighborhood in
the original task graph, but no neighbours are collocated in
the same node. The dilation of the network is d = 1 in both
dimensions, so Tﬁl = ‘clv = %,‘c = o.. The average distance will

be determined by

2
T=a+(1—-a) i
3
Traffic is balanced, so we can consider any dimension as
the throughput limiter. Global traffic is T = 1§ = §(1 —a).
Then, the maximum network throughput will be:

2 |Ey| 2 4
max;, = — = =
"N 40— o+ 2(l-a)

Throughput and average latency results with ¢ = 2 are pre-
sented in Figure 6. In the RTT both the twisted f} or verti-
cal f) concentrations (with id mapping) obtain the best re-
sults. The latency is better in the latter case, since the vertical
concentration puts neighbor processes together, reducing the

amount of local communications in the network. However,
the f} concentration obtains maximum dilation 1, while in f
it is a — 1. Interestingly, both concentrations on the RTT ob-
tain better throughput than the RT for any locality value, and
the average base latency is similar in all cases (slightly better
for uniform traffic and slightly worse for local traffic).

4. EXPERIMENTAL ENVIRONMENT

The previous section presented an analytical study show-
ing that the RTT can be competitive against the RT. However,
it did not consider the impact of other factors such as max-
imum dilation, remote communications or the network load.
In section 5. different RT and RTT configurations using syn-
thetic traffic and real applications from the NPB suite [4] will
be evaluated. Hence, in the present section we introduce the
configuration of our experiments.

4.1. Workloads

First, we use independent traffic sources under random
traffic. In this case, a ratio 1 — o of packets are distributed
evenly along the whole network, while a ratio o of packets
is sent to neighbor nodes. The inter-injection interval at each
node is random following a Poisson distribution chosen as
to modulate the provided load in terms of phits/cycle/node.
Some parallel applications exhibit traffic patterns in which
nodes communicate with their nearest neighbors in a torus
topology. This can be either due to the inherent symmetry of
the application or because of mapping big data matrices on
the network nodes. For that reason, we include in this study
nearest-neighbor (NN) communication patterns.

The NPB suite is typically employed in large parallel sys-
tems and is representative of general HPC applications run-
ning in those systems. We use the Extrae MPI tracing tool
[14] to obtain traces from NPB applications using problem
sizes A, running on 32, 64 and 128 nodes of a supercomputer
based on IBM JS21 blades. We make use of the task map-
ping algorithms presented in the previous section to assign
processes to computation nodes. We measure the execution
time (in cycles) of each application, which is the parallel sec-
tion between calls to MPI_Init and MPI_Finalize. Execution
time will be normalized to the base case of a RT with identity

mapping.

4.2. Simulation Configuration

We simulate the benchmarks with different sizes and con-
centration levels employing the FSIN simulator [20] with the
parameters presented in Table 2. For this study, the router em-
ployed is similar to the one implemented in the IBM Blue-
Gene/L: virtual cut-through switching strategy, [17], and bub-
ble flow control deadlock avoidance, [1], with an static virtual
channel plus two fully adaptive virtual ones. BlueGene family

Table 2. Simulation parameters

Processor Frequency | 2 GHz || Virtual Channels 3

Phit size 4 bytes || Routing Mechanisms | adaptive
Packet size 64 phits || Arbitration mechanims | random
Link speed 1 Gbps || Deadlock avoidance bubble

of supercomputers implements a congestion control mecha-
nism that prioritizes in-transit traffic against new injections,
which is also implemented in our router. In our experiments,
packets have a fixed length of 64 phits of 4 bytes each. The
FSIN tool simulates traces of applications, preserving causal
dependencies between messages and modeling computation
time. We extended FSIN to support MPI collective commu-
nications: each collective primitive is implemented as a se-
ries of unicast messages (e.g., broadcast) or a series of pairs
of messages sent between different pairs of nodes (e.g. all-to-
all), which are common implementations in networks without
multicast support.

S. PERFORMANCE EVALUATION

This section is organized into two parts, each one devoted
to experiments driven by traffic of different nature.

5.1. Synthetic Traffic

In this subsection we corroborate the analytical model pre-
sented in Section 3. with simulation results using synthetic
traffic. We model a synthetic traffic in which each process
communicates with one of his neighbors with probability o.
With probability 1 — o the packet is sent to a random process,
not necessarily one of the four neighbors. The application is
mapped to the physical network with different concentrations
(1 or 2 processes per node) and different mapping functions.

When measuring the maximum throughput of the network,
we make use of 4 injectors, similar to the BlueGene/Q chips
[11], and packets with a length of 4 phits. Multiple injectors
are required to saturate the network with local traffic, since
close to 1 can provide throughput up to 4 phits/(node- cycle).
When measuring minimum latency, we inject a load of 0.01
packets per node per cycle, each of length 1 phit. In this way
we eliminate the delays due to network congestion and packet
consumption time, allowing us to measure the minimum av-
erage latency to transit the network.

The results of a 16 x 8 toroidal application over a 16 x 8
network are shown in Figure 7. Both throughput and latency
results are really close to the ones predicted by the analytical
model shown in Figure 5.

The same results for a network with concentration (¢ = 2)
are shown in Figure 8. In this case, a 16 x 16 toroidal appli-
cation is mapped onto a 16 x 8 network. For both throughput
and minimum latency, results are very similar to the ones pre-
dicted in Figure 6 with the analytical model.

- ©- RT@)id RTT(4) id —»— RTT(4) f¢
[[[[

Maximum throughput
(phit/cycle/node)

Base latency
(cycles)

| |
0 0.2 0.4 0.6 0.8 1

Locality (o)

Figure 7. Simulation results for latency and maximum
throughput for logical torus mapped on RT(4) and RTT(4).

5.2. Real Applications Traffic

5.2.1. Communications Characterization

The NPB applications and their communication patterns
have been largely studied in the scientific literature [18, 19,
22]. From these sources and an analysis of the applications,
we observe that CG and LU employ 2D meshes as their base
logical topology, while BT and SP employ square 2D torus.
By contrast, MG is a 3D torus, IS is a cycle, and the remaining
applications are unstructured (DT and FT). Besides, some ap-
plications require a square number of processes. In all cases
we evaluate the performance with all the mapping algorithms
studied, considering all the logical tasks as an array of con-
secutive nodes.

The usage of the network limits the maximum performance
differences between configurations. The traffic load of each
application can be easily measured by simulation. Figure 9
shows the load measured when running on different networks
with 64 tasks and concentration ¢ = 2. Results for 32 or 128
tasks are similar. We observe that CG, FT, IS and MG are
the applications with the highest network load. Therefore, the
theoretical throughput results obtained by our model should
be applicable to them.

Besides the network load, the performance can be limited
by latency when there are multiple dependency chains among
messages. Thus, a low average network load does not imply
that the network is irrelevant: it can be either inactive (this oc-
curs in the EP benchmark, omitted for this reason) or limited

- ©- RT@) f;
RTT(#) f} —%— RTT(@) f* o fy —— RTT(4) £
4 I I I I
= ;)
a —~ [,,l o
‘: o &
]
22 3 /6/
==
S5 I /l"*/*;'e I
EZ 2| e i
g E °-®
Gy di"—”' e—O’o— 1
<~ o_e_‘o- o
= 1o =
| | | |
[[[[
4, 02 04 06 08 |
> T~
g ~
23
E5 27
o
N N .
)
1 -
| | | |
0 0.2 0.4 0.6 0.8 1

Locality (o)

Figure 8. Simulation of base latency and maximum through-
put for logical torus mapped on RT(4) and RTT(4) with con-
centration c=2.

0.4

Network load
(phit/cycle/node)

BT CG DT FT
NPB

IS LU MG SP

Figure 9. Network load for 64 tasks mapped onto a RT(4)
with c =2

by latency. This is the case, for example, of DT: although hav-
ing a low throughput (below 5%), the performance increase
obtained by the RTT is above this 5%. Specifically, DT is a
data traffic benchmark with large amounts of messages sent
between nodes according to a certain pattern (we employed
black hole), what introduces a large amount of dependencies
in the traffic traces.

In general BT, LU, and SP use mainly near-neighbor com-
munications (& close to 1), while DT, EP, FT and IS use more

DRt id lERTT@), id DB RTT@), £

0.95

0.9

Normalized execution time

0.85

CG DT FT IS
NPB

LU MG Mean

Figure 10. Execution time for 32 processors mapped onto a
RT(4) or RTT(4) with c =1

global communications (o closer to 0). The communication
in CG occurs between certain pairs of nodes, not necessarily
neighbors (remote messages). Finally, the consecutive node
labelling and task mapping on a 2D network does not pre-
serve adjacency of the 3D torus of MG.

5.2.2. Performance Evaluation

First, we consider the non-concentrated scenario. Figure 10
shows the performance obtained when running NAS bench-
marks of 32 processes on RT(4) and RTT(4). We are restricted
to those benchmarks that allow a number of processes which
is not a square number. We observe that the RTT always per-
forms equal or better than the RT counterpart except just a
slight loss in one case; CG and FT are the applications in
which the performance improvement is higher, saving up to
10% of the execution time. Not surprisingly, these applica-
tions contain a large amount of global communications. LU
and MG are the ones with the worse performance, without
any improvement or even a slight loss of less than 0.1%. On
average, the use of the RTT improves execution time in 2.2%,
and f“ behaves slightly better than id for the RTT.

Next, several concentration techniques are evaluated. Fig-
ure 11 shows the execution time of NAS benchmarks running
with 64 processes, mapped onto a RT(4) or RTT(4) with two
compute nodes per network router. On average the RTT out-
performs the RT. Interestingly, the f5 concentration function,
which does not concentrate neighbor tasks, provides one of
the best results thanks to the arrangement of tasks in rela-
tion to peripheral links, similar to f¢ o f5. Note that BT and
SP, which employ 2D logical torus, do not vary significantly
from the base case when using an RTT. On average, the ap-
plications running on the RTT save between 3.0% and 4.6%
of the overall execution time.

Finally, Figure 12 presents the results of non-square appli-
cations with 128 tasks (8 x 16) running on a 4 x 8 network!.

LU and MG, are omitted because of technical difficulties. Results should

larrw,
Burrr@), g DO RTT@), £20 13 DD RTT), £
|

1.05

0.95

0.9

Normalized execution time

0.85 - e p——
BT CG DT FT IS LU MG SP Mean

NPB

Figure 11. Execution time for 64 processes mapped onto a
RT(4) or RTT(4) with ¢ =2

DOrT@), o p
Barrra), o DORTT@), f20 130 2 DORTT@), fof2
T T T

0.95

0.9

0.85

Normalized execution time

0.8

CG DT FT IS
NPB

Mean

Figure 12. Execution time for 128 processes mapped onto a
RT(4) or RTT(4) with concentration ¢ =4

We employ f, o fzh and f} o f2h combinations for concentra-
tion 4. Again, the RTT outperforms RT. The execution time
savings of the RTT range from 8.7% (FT) to 19.1% (CG) us-
ing the best combination. On average, the best performance
is obtained with the id o f3 o f combination for the RTT, with
an speedup of 12.8%.

The results are coherent with our analytical model. DT,
FT and IS employ a large amount of collective communica-
tions, translating into a larger performance on RTT, especially
on concentrated networks. CG sends remote messages and is
also benefited by the distance reduction in the RTT. By con-
trast, BT, LU and SP employ local communications, and thus
the performance on RTT is similar to RT. Regarding concen-
trated networks, we observe that in RTT the use of either the
diagonal-shift mapping f¢ or the twisted concentration /5 im-
proves performance.

be similar to the ones presented in Figure 10.

6. CONCLUSIONS

This paper makes a first exploration to mapping functions
for rectangular torus topologies with peripheral twists. As we
have proved, in non concentrated topologies the performance
gain depends on the local traffic amount. On the other hand,
with concentration RT always improves performance if the
mapping technique is correctly chosen.. Particularly, we have
given a theoretical study that shows that simple mapping al-
gorithms obtain the maximum performance, with speedups
ranging from —10% to 50% depending on the locality of the
communications and the application topology. When concen-
trated tori are employed, proper concentration and mapping
functions prevent this performance loss by compensating the
effect of the twisted peripheral links.

Those numbers reflect the performance of applications
bounded by the network. However, real applications alternate
computation and different communication patterns on differ-
ent phases. When simulating real applications (from the NPB
benchmarks) the topological advantages of the RTT translate
to average performance gains of 2.2-13.2% depending on the
specific configuration.

Future work involves the extension of this study to a
higher number of dimensions, which can achieve even higher
speedups according to previous works [9], and the validation
of results with larger applications. We are also interested in
extending the twisted peripheral links model to partitioned
architectures, such as the multi-toroidal topolgy in the Blue-
Gene/L and /P [26].

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of
Science under contracts TIN2010-21291-C02-02, TIN-2007-
60625, AP2010-4900 and CONSOLIDER Project CSD2007-
00050, and by the European HIPEAC Network of Excellence.
M. Moret6 is supported by a MEC/Fulbright Fellowship.

REFERENCES

[1] N. R. Adiga et al. Blue gene/l torus interconnection network.
IBM J. Res. Dev., 49(2):265-276, Mar. 2005.

[2] T. Agarwal, A. Sharma, and L. V. Kalé. Topology-aware task
mapping for reducing communication contention on large par-
allel machines. In IPDPS, 2006.

[3] K. Asanovi¢ et al. The landscape of parallel computing re-
search: A view from Berkeley. Technical report, UCB/EECS-
2006-183, 2006.

[4] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo,
and M. Yarrow. The NAS parallel benchmarks 2.0. Technical
report, NAS-95-020, NASA Ames Research Center, 1995.

[5] G. Barnes, R. Brown, M. Kato, D. Kuck, D. Slotnick, and
R. Stokes. The Illiac IV computer. [EEE Trans. Comput.,
C-17(8):746-757, aug. 1968.

[6] A. Bhatele. Topology aware task mapping. In D. Padua, ed-

(71
(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]
(23]
(24]

(25]

[26]

itor, Encyclopedia of Parallel Computing, pages 2057-2062.
Springer US, 2011.

S. H. Bokhari. On the mapping problem. [EEE Trans. Com-
put., 30(3):207-214, Mar. 1981.

J. M. Cdmara, M. Moretd, E. Vallejo, R. Beivide, J. Miguel-
Alonso, C. Martinez, and J. Navaridas. Mixed-radix twisted
torus interconnection networks. In /PDPS, pages 1-10, 2007.
J. M. Cdmara, M. Moreto, E. Vallejo, R. Beivide, J. Miguel-
Alonso, C. Martinez, and J. Navaridas. Twisted torus topolo-
gies for enhanced interconnection networks. /[EEE Trans. Par-
allel Distrib. Syst., 21:1765-1778, 2010.

C. Camarero, C. Martinez, and R. Beivide. L-networks: A
topological model for regular two-dimensional interconnection
networks. IEEE Trans. Comput., 99(PrePrints), 2012.

D. Chen et al. The IBM Blue Gene/Q interconnection fabric.
Micro, IEEE, 32(1):32 —43, jan.-feb. 2012.

Y. Chen and H. Shen. Embedding meshes and tori on double-
loop networks of the same size. [EEE Trans. Comput.,
60(8):1157-1168, Aug. 2011.

P. Colella. Defining software requirements for scientific com-
puting. slide of 2004 presentation included in David Patter-
son’s 2005 talk, 2004.

Extrae MPI profiling tool. http://www.bsc.es/ssl/
apps/performanceTools/.

M. Flahive and B. Bose. The topology of gaussian and
eisenstein-jacobi interconnection networks. IEEE Trans. Par-
allel Distrib. Syst., 21(8):1132 -1142, 2010.

H. Kasahara and S. Narita. Practical multiprocessor schedul-
ing algorithms for efficient parallel processing. IEEE Trans.
Comput., 33(11):1023-1029, Nov. 1984.

P. Kermani and L. Kleinrock. Virtual cut-through: a new com-
puter communication switching technique. Computer Net-
works, 3:267-286, 1979.

J. Kim and D. Lilja. Characterization of communication pat-
terns in message-passing parallel scientific application pro-
grams. Network-Based Parallel Computing Communication,
Architecture, and Applications, pages 202-216, 1998.

I. Lee. Characterizing communication patterns of NAS-MPI
benchmark programs. In Southeastcon, pages 158-163, 2009.
J. Navaridas, J. Miguel-Alonso, J. A. Pascual, and F. J.
Ridruejo. Simulating and evaluating interconnection networks
with INSEE. Simulation Modelling Practice and Theory,
19(1):494-515, 2011.

M. L. Norman and A. Snavely. Accelerating data-intensive
science with Gordon and Dash. In TeraGrid, 2010.

R. Riesen. Communication patterns. In /PDPS, 2006.

C. H. Sequin. Doubly twisted torus networks for VLSI proces-
sor arrays. In ISCA, pages 471-480, 1981.

E. Vallejo, M. Moretd, C. Martinez, and R. Beivide. Peripheral
twists for torus topologies with arbitrary aspect ratio. In Actas
XXI1I Jornadas de Paralelismo, pages 421-426, 2011.

Y. Yang, A. Funahashi, A. Jouraku, H. Nishi, H. Amano, and
T. Sueyoshi. Recursive diagonal torus: An interconnection net-
work for massively parallel computers. IEEE Trans. Parallel
Distrib. Syst., 12:701-715, 2001.

H. Yu, I.-H. Chung, and J. E. Moreira. Topology mapping for
Blue Gene/L supercomputer. In SC, 2006.

http://www.bsc.es/ssl/apps/performanceTools/
http://www.bsc.es/ssl/apps/performanceTools/

	Introduction
	Rectangular and Twisted Torus Topologies and Routing
	Task Mapping in Rectangular and Twisted Torus
	Modelling a Generic Application
	Performance modelling
	Latency Estimation
	Throughput Estimation

	Mapping 2D Logical Tori into Standard RT and RTT
	id Mapping of 2D Tori into RT
	id Mapping of 2D Tori into RTT
	fd Mapping of 2D Tori into RTT

	Mapping 2D Logical Tori into Concentrated RT and RTT
	f2v Concentration of 2D Tori into RT
	f2v Concentration of 2D Tori into RTT
	fdf2v Mapping of 2D Tori into RTT
	f2t Mapping of 2D Tori into RTT

	Experimental Environment
	Workloads
	Simulation Configuration

	Performance Evaluation
	Synthetic Traffic
	Real Applications Traffic
	Communications Characterization
	Performance Evaluation

	Conclusions

