164 research outputs found

    DDoS-Capable IoT Malwares: comparative analysis and Mirai Investigation

    Get PDF
    The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far

    Defense mechanisms against Distributed Denial of Service attacks:Comparative Review

    Get PDF
    Distributed Denial of Service (DDoS) remains a big concern in Cybersecurity. DDoS attacks are implemented to prevent legitimate users from getting access to services. The attackers make use of multiple hosts that have been compromised (i.e., Botnets) to organize a large-scale attack on targets. Developing an effective defensive mechanism against existing and potential DDoS attacks remains a strong desire in the cybersecurity research community. However, development of effective mechanisms or solutions require adequate evaluation of existing defense mechanism and a critical analysis of how these methods have been implemented in preventing, detecting, and responding to DDoS attacks. This paper adopted a systematic review method to critically analyze the existing mechanisms. The review of existing literature helped classify the defense mechanism into four categories: source-based, core-router, victim-based, and distributed systems. A qualitative analysis was used to exhaustively evaluate these defense mechanisms and determine their respective effectiveness. The effectiveness of the defense mechanisms was evaluated on six key parameters: coverage, implementation, deployment, detection accuracy, response mechanism, and robustness. The comparative analysis reviewed the shortcomings and benefits of each mechanism. The evaluation determined that victim-based defense mechanisms have a high detection accuracy but is associated with massive collateral as the detection happens when it is too late to protect the system. On the other hand, whereas stopping an attack from the source-end is ideal, detection accuracy at this point is too low as it is hard to differentiate legitimate and malicious traffic. The effectiveness of the core-based defense systems is not ideal because the routers do not have enough CPU cycles and memory to profile the traffic. Distributed defense mechanisms are effective as components can be spread out across the three locations in a way that takes advantage of each location. The paper also established that the rate-limiting response mechanism is more effective than packet filtering method because it does not restrict legitimate traffic. The analysis revealed that there is no single defense mechanism that offers complete protection against DDoS attacks but concludes that the best defense mechanism is the use of distributed defense because it ensures that defense components are placed on all locations

    The Impact Of The Development Of ICT In Several Hungarian Economic Sectors

    Get PDF
    As the author could not find a reassuring mathematical and statistical method in the literature for studying the effect of information communication technology on enterprises, the author suggested a new research and analysis method that he also used to study the Hungarian economic sectors. The question of what factors have an effect on their net income is vital for enterprises. At first, the author studied some potential indicators related to economic sectors, then those indicators were compared to the net income of the surveyed enterprises. The resulting data showed that the growing penetration of electronic marketplaces contributed to the change of the net income of enterprises to the greatest extent. Furthermore, among all the potential indicators, it was the only indicator directly influencing the net income of enterprises. With the help of the compound indicator and the financial data of the studied economic sectors, the author made an attempt to find a connection between the development level of ICT and profitability. Profitability and productivity are influenced by a lot of other factors as well. As the effect of the other factors could not be measured, the results – shown in a coordinate system - are not full but informative. The highest increment of specific Gross Value Added was produced by the fields of ‘Manufacturing’, ‘Electricity, gas and water supply’, ‘Transport, storage and communication’ and ‘Financial intermediation’. With the exception of ‘Electricity, gas and water supply’, the other economic sectors belong to the group of underdeveloped branches (below 50 percent). On the other hand, ‘Construction’, ‘Health and social work’ and ‘Hotels and restaurants’ can be seen as laggards, so they got into the lower left part of the coordinate system. ‘Agriculture, hunting and forestry’ can also be classified as a laggard economic sector, but as the effect of the compound indicator on the increment of Gross Value Added was less significant, it can be found in the upper left part of the coordinate system. Drawing a trend line on the points, it can be made clear that it shows a positive gradient, that is, the higher the usage of ICT devices, the higher improvement can be detected in the specific Gross Value Added

    Security integrity of EKG signal monitoring under different network attack conditions

    Get PDF
    This thesis focuses on issues related with monitoring of EKG signals under different network attack traffic conditions. It is becoming common for modern hospitals to monitor real time EKG signals of patients on computers that are usually connected to networks. If the network suffers with attack conditions, it can affect connected computers and alter EKG signals monitoring, hence raising false alarms. Denial of Service attacks may silently affect the real time monitoring of EKG signals. Altering of EKG signals may result in loss of integrity and it can violate CIA triad of security. In this thesis, different attack conditions were simulated for various operating systems under different loads of attack traffic to observe how the EKG signals were affected

    Cyber security threats and challenges in collaborative mixed-reality

    Get PDF
    Collaborative Mixed-Reality (CMR) applications are gaining interest in a wide range of areas including games, social interaction, design and health-care. To date, the vast majority of published work has focused on display technology advancements, software, collaboration architectures and applications. However, the potential security concerns that affect collaborative platforms have received limited research attention. In this position paper, we investigate the challenges posed by cyber-security threats to CMR systems. We focus on how typical network architectures facilitating CMR and how their vulnerabilities can be exploited by attackers, and discuss the degree of potential social, monetary impacts, psychological and other harms that may result from such exploits. The main purpose of this paper is to provoke a discussion on CMR security concerns. We highlight insights from a cyber-security threat modelling perspective and also propose potential directions for research and development toward better mitigation strategies. We present a simple, systematic approach to understanding a CMR attack surface through an abstraction-based reasoning framework to identify potential attack vectors. Using this framework, security analysts, engineers, designers and users alike (stakeholders) can identify potential Indicators of Exposures (IoE) and Indicators of Compromise (IoC). Our framework allows stakeholders to reduce their CMR attack surface as well understand how Intrusion Detection System (IDS) approaches can be adopted for CMR systems. To demonstrate the validity to our framework, we illustrate several CMR attack surfaces through a set of use-cases. Finally, we also present a discussion on future directions this line of research should take

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Achieving network resiliency using sound theoretical and practical methods

    Get PDF
    Computer networks have revolutionized the life of every citizen in our modern intercon- nected society. The impact of networked systems spans every aspect of our lives, from financial transactions to healthcare and critical services, making these systems an attractive target for malicious entities that aim to make financial or political profit. Specifically, the past decade has witnessed an astounding increase in the number and complexity of sophisti- cated and targeted attacks, known as advanced persistent threats (APT). Those attacks led to a paradigm shift in the security and reliability communities’ perspective on system design; researchers and government agencies accepted the inevitability of incidents and malicious attacks, and marshaled their efforts into the design of resilient systems. Rather than focusing solely on preventing failures and attacks, resilient systems are able to maintain an acceptable level of operation in the presence of such incidents, and then recover gracefully into normal operation. Alongside prevention, resilient system design focuses on incident detection as well as timely response. Unfortunately, the resiliency efforts of research and industry experts have been hindered by an apparent schism between theory and practice, which allows attackers to maintain the upper hand advantage. This lack of compatibility between the theory and practice of system design is attributed to the following challenges. First, theoreticians often make impractical and unjustifiable assumptions that allow for mathematical tractability while sacrificing accuracy. Second, the security and reliability communities often lack clear definitions of success criteria when comparing different system models and designs. Third, system designers often make implicit or unstated assumptions to favor practicality and ease of design. Finally, resilient systems are tested in private and isolated environments where validation and reproducibility of the results are not publicly accessible. In this thesis, we set about showing that the proper synergy between theoretical anal- ysis and practical design can enhance the resiliency of networked systems. We illustrate the benefits of this synergy by presenting resiliency approaches that target the inter- and intra-networking levels. At the inter-networking level, we present CPuzzle as a means to protect the transport control protocol (TCP) connection establishment channel from state- exhaustion distributed denial of service attacks (DDoS). CPuzzle leverages client puzzles to limit the rate at which misbehaving users can establish TCP connections. We modeled the problem of determining the puzzle difficulty as a Stackleberg game and solve for the equilibrium strategy that balances the users’ utilizes against CPuzzle’s resilience capabilities. Furthermore, to handle volumetric DDoS attacks, we extend CPuzzle and implement Midgard, a cooperative approach that involves end-users in the process of tolerating and neutralizing DDoS attacks. Midgard is a middlebox that resides at the edge of an Internet service provider’s network and uses client puzzles at the IP level to allocate bandwidth to its users. At the intra-networking level, we present sShield, a game-theoretic network response engine that manipulates a network’s connectivity in response to an attacker who is moving laterally to compromise a high-value asset. To implement such decision making algorithms, we leverage the recent advances in software-defined networking (SDN) to collect logs and security alerts about the network and implement response actions. However, the programma- bility offered by SDN comes with an increased chance for design-time bugs that can have drastic consequences on the reliability and security of a networked system. We therefore introduce BiFrost, an open-source tool that aims to verify safety and security proper- ties about data-plane programs. BiFrost translates data-plane programs into functionally equivalent sequential circuits, and then uses well-established hardware reduction, abstrac- tion, and verification techniques to establish correctness proofs about data-plane programs. By focusing on those four key efforts, CPuzzle, Midgard, sShield, and BiFrost, we believe that this work illustrates the benefits that the synergy between theory and practice can bring into the world of resilient system design. This thesis is an attempt to pave the way for further cooperation and coordination between theoreticians and practitioners, in the hope of designing resilient networked systems

    Modeling of Advanced Threat Actors: Characterization, Categorization and Detection

    Full text link
    Tesis por compendio[ES] La información y los sistemas que la tratan son un activo a proteger para personas, organizaciones e incluso países enteros. Nuestra dependencia en las tecnologías de la información es cada día mayor, por lo que su seguridad es clave para nuestro bienestar. Los beneficios que estas tecnologías nos proporcionan son incuestionables, pero su uso también introduce riesgos que ligados a nuestra creciente dependencia de las mismas es necesario mitigar. Los actores hostiles avanzados se categorizan principalmente en grupos criminales que buscan un beneficio económico y en países cuyo objetivo es obtener superioridad en ámbitos estratégicos como el comercial o el militar. Estos actores explotan las tecnologías, y en particular el ciberespacio, para lograr sus objetivos. La presente tesis doctoral realiza aportaciones significativas a la caracterización de los actores hostiles avanzados y a la detección de sus actividades. El análisis de sus características es básico no sólo para conocer a estos actores y sus operaciones, sino para facilitar el despliegue de contramedidas que incrementen nuestra seguridad. La detección de dichas operaciones es el primer paso necesario para neutralizarlas, y por tanto para minimizar su impacto. En el ámbito de la caracterización, este trabajo profundiza en el análisis de las tácticas y técnicas de los actores. Dicho análisis siempre es necesario para una correcta detección de las actividades hostiles en el ciberespacio, pero en el caso de los actores avanzados, desde grupos criminales hasta estados, es obligatorio: sus actividades son sigilosas, ya que el éxito de las mismas se basa, en la mayor parte de casos, en no ser detectados por la víctima. En el ámbito de la detección, este trabajo identifica y justifica los requisitos clave para poder establecer una capacidad adecuada frente a los actores hostiles avanzados. Adicionalmente, proporciona las tácticas que deben ser implementadas en los Centros de Operaciones de Seguridad para optimizar sus capacidades de detección y respuesta. Debemos destacar que estas tácticas, estructuradas en forma de kill-chain, permiten no sólo dicha optimización, sino también una aproximación homogénea y estructurada común para todos los centros defensivos. En mi opinión, una de las bases de mi trabajo debe ser la aplicabilidad de los resultados. Por este motivo, el análisis de tácticas y técnicas de los actores de la amenaza está alineado con el principal marco de trabajo público para dicho análisis, MITRE ATT&CK. Los resultados y propuestas de esta investigación pueden ser directamente incluidos en dicho marco, mejorando así la caracterización de los actores hostiles y de sus actividades en el ciberespacio. Adicionalmente, las propuestas para mejorar la detección de dichas actividades son de aplicación directa tanto en los Centros de Operaciones de Seguridad actuales como en las tecnologías de detección más comunes en la industria. De esta forma, este trabajo mejora de forma significativa las capacidades de análisis y detección actuales, y por tanto mejora a su vez la neutralización de operaciones hostiles. Estas capacidades incrementan la seguridad global de todo tipo de organizaciones y, en definitiva, de nuestra sociedad.[CA] La informació i els sistemas que la tracten són un actiu a protegir per a persones, organitzacions i fins i tot països sencers. La nostra dependència en les tecnologies de la informació es cada dia major, i per aixó la nostra seguretat és clau per al nostre benestar. Els beneficis que aquestes tecnologies ens proporcionen són inqüestionables, però el seu ús també introdueix riscos que, lligats a la nostra creixent dependència de les mateixes és necessari mitigar. Els actors hostils avançats es categoritzen principalment en grups criminals que busquen un benefici econòmic i en països el objectiu dels quals és obtindre superioritat en àmbits estratègics, com ara el comercial o el militar. Aquests actors exploten les tecnologies, i en particular el ciberespai, per a aconseguir els seus objectius. La present tesi doctoral realitza aportacions significatives a la caracterització dels actors hostils avançats i a la detecció de les seves activitats. L'anàlisi de les seves característiques és bàsic no solament per a conéixer a aquests actors i les seves operacions, sinó per a facilitar el desplegament de contramesures que incrementen la nostra seguretat. La detección de aquestes operacions és el primer pas necessari per a netralitzar-les, i per tant, per a minimitzar el seu impacte. En l'àmbit de la caracterització, aquest treball aprofundeix en l'anàlisi de lestàctiques i tècniques dels actors. Aquesta anàlisi sempre és necessària per a una correcta detecció de les activitats hostils en el ciberespai, però en el cas dels actors avançats, des de grups criminals fins a estats, és obligatòria: les seves activitats són sigiloses, ja que l'éxit de les mateixes es basa, en la major part de casos, en no ser detectats per la víctima. En l'àmbit de la detecció, aquest treball identifica i justifica els requisits clau per a poder establir una capacitat adequada front als actors hostils avançats. Adicionalment, proporciona les tàctiques que han de ser implementades en els Centres d'Operacions de Seguretat per a optimitzar les seves capacitats de detecció i resposta. Hem de destacar que aquestes tàctiques, estructurades en forma de kill-chain, permiteixen no només aquesta optimització, sinò tambié una aproximació homogènia i estructurada comú per a tots els centres defensius. En la meva opinio, una de les bases del meu treball ha de ser l'aplicabilitat dels resultats. Per això, l'anàlisi de táctiques i tècniques dels actors de l'amenaça està alineada amb el principal marc públic de treball per a aquesta anàlisi, MITRE ATT&CK. Els resultats i propostes d'aquesta investigació poden ser directament inclosos en aquest marc, millorant així la caracterització dels actors hostils i les seves activitats en el ciberespai. Addicionalment, les propostes per a millorar la detecció d'aquestes activitats són d'aplicació directa tant als Centres d'Operacions de Seguretat actuals com en les tecnologies de detecció més comuns de la industria. D'aquesta forma, aquest treball millora de forma significativa les capacitats d'anàlisi i detecció actuals, i per tant millora alhora la neutralització d'operacions hostils. Aquestes capacitats incrementen la seguretat global de tot tipus d'organitzacions i, en definitiva, de la nostra societat.[EN] Information and its related technologies are a critical asset to protect for people, organizations and even whole countries. Our dependency on information technologies increases every day, so their security is a key issue for our wellness. The benefits that information technologies provide are questionless, but their usage also presents risks that, linked to our growing dependency on technologies, we must mitigate. Advanced threat actors are mainly categorized in criminal gangs, with an economic goal, and countries, whose goal is to gain superiority in strategic affairs such as commercial or military ones. These actors exploit technologies, particularly cyberspace, to achieve their goals. This PhD Thesis significantly contributes to advanced threat actors' categorization and to the detection of their hostile activities. The analysis of their features is a must not only to know better these actors and their operations, but also to ease the deployment of countermeasures that increase our security. The detection of these operations is a mandatory first step to neutralize them, so to minimize their impact. Regarding characterization, this work delves into the analysis of advanced threat actors' tactics and techniques. This analysis is always required for an accurate detection of hostile activities in cyberspace, but in the particular case of advances threat actors, from criminal gangs to nation-states, it is mandatory: their activities are stealthy, as their success in most cases relies on not being detected by the target. Regarding detection, this work identifies and justifies the key requirements to establish an accurate response capability to face advanced threat actors. In addition, this work defines the tactics to be deployed in Security Operations Centers to optimize their detection and response capabilities. It is important to highlight that these tactics, with a kill-chain arrangement, allow not only this optimization, but particularly a homogeneous and structured approach, common to all defensive centers. In my opinion, one of the main bases of my work must be the applicability of its results. For this reason, the analysis of threat actors' tactics and techniques is aligned with the main public framework for this analysis, MITRE ATT&CK. The results and proposals from this research can be directly included in this framework, improving the threat actors' characterization, as well as their cyberspace activities' one. In addition, the proposals to improve these activities' detection are directly applicable both in current Security Operations Centers and in common industry technologies. In this way, I consider that this work significantly improves current analysis and detection capabilities, and at the same time it improves hostile operations' neutralization. These capabilities increase global security for all kind of organizations and, definitely, for our whole society.Villalón Huerta, A. (2023). Modeling of Advanced Threat Actors: Characterization, Categorization and Detection [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193855Compendi

    Denial of Service in Web-Domains: Building Defenses Against Next-Generation Attack Behavior

    Get PDF
    The existing state-of-the-art in the field of application layer Distributed Denial of Service (DDoS) protection is generally designed, and thus effective, only for static web domains. To the best of our knowledge, our work is the first that studies the problem of application layer DDoS defense in web domains of dynamic content and organization, and for next-generation bot behaviour. In the first part of this thesis, we focus on the following research tasks: 1) we identify the main weaknesses of the existing application-layer anti-DDoS solutions as proposed in research literature and in the industry, 2) we obtain a comprehensive picture of the current-day as well as the next-generation application-layer attack behaviour and 3) we propose novel techniques, based on a multidisciplinary approach that combines offline machine learning algorithms and statistical analysis, for detection of suspicious web visitors in static web domains. Then, in the second part of the thesis, we propose and evaluate a novel anti-DDoS system that detects a broad range of application-layer DDoS attacks, both in static and dynamic web domains, through the use of advanced techniques of data mining. The key advantage of our system relative to other systems that resort to the use of challenge-response tests (such as CAPTCHAs) in combating malicious bots is that our system minimizes the number of these tests that are presented to valid human visitors while succeeding in preventing most malicious attackers from accessing the web site. The results of the experimental evaluation of the proposed system demonstrate effective detection of current and future variants of application layer DDoS attacks
    corecore