
© 2020 Mohammad A. Noureddine

ACHIEVING NETWORK RESILIENCY USING SOUND THEORETICAL AND
PRACTICAL METHODS

BY

MOHAMMAD A. NOUREDDINE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor William H. Sanders, Chair
Professor Klara Nahrstedt
Professor Tamer Başar
Associate Professor Matthew Caesar
Assistant Professor Kassem Fawaz, University of Wisconsin-Madison

ABSTRACT

Computer networks have revolutionized the life of every citizen in our modern intercon-

nected society. The impact of networked systems spans every aspect of our lives, from

financial transactions to healthcare and critical services, making these systems an attractive

target for malicious entities that aim to make financial or political profit. Specifically, the

past decade has witnessed an astounding increase in the number and complexity of sophisti-

cated and targeted attacks, known as advanced persistent threats (APT). Those attacks led

to a paradigm shift in the security and reliability communities’ perspective on system design;

researchers and government agencies accepted the inevitability of incidents and malicious

attacks, and marshaled their efforts into the design of resilient systems.

Rather than focusing solely on preventing failures and attacks, resilient systems are able to

maintain an acceptable level of operation in the presence of such incidents, and then recover

gracefully into normal operation. Alongside prevention, resilient system design focuses on

incident detection as well as timely response. Unfortunately, the resiliency efforts of research

and industry experts have been hindered by an apparent schism between theory and practice,

which allows attackers to maintain the upper hand advantage. This lack of compatibility

between the theory and practice of system design is attributed to the following challenges.

First, theoreticians often make impractical and unjustifiable assumptions that allow for

mathematical tractability while sacrificing accuracy. Second, the security and reliability

communities often lack clear definitions of success criteria when comparing different system

models and designs. Third, system designers often make implicit or unstated assumptions

to favor practicality and ease of design. Finally, resilient systems are tested in private and

isolated environments where validation and reproducibility of the results are not publicly

accessible.

In this thesis, we set about showing that the proper synergy between theoretical anal-

ysis and practical design can enhance the resiliency of networked systems. We illustrate

the benefits of this synergy by presenting resiliency approaches that target the inter- and

intra-networking levels. At the inter-networking level, we present CPuzzle as a means to

protect the transport control protocol (TCP) connection establishment channel from state-

exhaustion distributed denial of service attacks (DDoS). CPuzzle leverages client puzzles

to limit the rate at which misbehaving users can establish TCP connections. We modeled

the problem of determining the puzzle difficulty as a Stackleberg game and solve for the

equilibrium strategy that balances the users’ utilizes against CPuzzle’s resilience capabili-

ii

ties. Furthermore, to handle volumetric DDoS attacks, we extend CPuzzle and implement

Midgard, a cooperative approach that involves end-users in the process of tolerating and

neutralizing DDoS attacks. Midgard is a middlebox that resides at the edge of an Internet

service provider’s network and uses client puzzles at the IP level to allocate bandwidth to

its users.

At the intra-networking level, we present sShield, a game-theoretic network response

engine that manipulates a network’s connectivity in response to an attacker who is moving

laterally to compromise a high-value asset. To implement such decision making algorithms,

we leverage the recent advances in software-defined networking (SDN) to collect logs and

security alerts about the network and implement response actions. However, the programma-

bility offered by SDN comes with an increased chance for design-time bugs that can have

drastic consequences on the reliability and security of a networked system. We therefore

introduce BiFrost, an open-source tool that aims to verify safety and security proper-

ties about data-plane programs. BiFrost translates data-plane programs into functionally

equivalent sequential circuits, and then uses well-established hardware reduction, abstrac-

tion, and verification techniques to establish correctness proofs about data-plane programs.

By focusing on those four key efforts, CPuzzle, Midgard, sShield, and BiFrost, we

believe that this work illustrates the benefits that the synergy between theory and practice

can bring into the world of resilient system design. This thesis is an attempt to pave the

way for further cooperation and coordination between theoreticians and practitioners, in the

hope of designing resilient networked systems.

iii

To those who have paved the way for us to prosper.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Professor

William H. Sanders, for his constant support throughout the past six years. Bill has given me

the chance to grow as an independent researcher and has provided me with the opportunity

to sharpen my teaching and research skills in a supportive environment.

I am also very grateful to the members of my Ph.D. Committee: Professors Klara Nahrst-

edt, Tamer Başar, Matthew Caesar, and Kassem Fawaz for their invaluable comments and

discussions. Specifically, I would like to express my indebtedness to Professor Tamer Başar

for comments and discussions about various aspects of game theory and control theory. In

addition, I would like to thank Professor Matthew Caesar for the lengthy discussions we’ve

shared about various network paradigms and designs, as well as general life advice.

I would like to acknowledge Professor Adam Bates for allowing me to collaborate with

several members of the secure and transparent systems (STS) laboratory, and for providing

me with guidance and comments about data provenance for the past two years. In addition,

I really enjoyed working with Adam as a teaching assistant (TA) for the Operating Systems

class. Being a TA with Adam is one of the main reasons why I chose to pursue a career in

teaching.

During my Ph.D., I was fortunate to have had the company of the performability engi-

neering (PERFORM) research group, Ahmed Fawaz, Uttam Thakore, Atul Bohara, Carmen

Cheh, Brett Feddersen, Michael Rausch, Ben Ujcich, Varun Krishna, Ken Keefe, and Ron

Wright. I would like to single out Ahmed Fawaz for being a close friend and for helping

make my move to Illinois all the more easy and enjoyable. Also, I would like to thank Uttam

Thakore for all the lengthy discussions we’ve shared about politics and the different aspects

of the culinary world. Furthermore, I would like to thank Wajih Ul-Hassan and Pubali

Datta from the STS lab for their collaboration and discussions when I decided to take a leap

into the world of data provenance. Finally, I would like to thank Jenny Applequist for her

editorial comments on all of my papers and this thesis. Jenny has been very patient and

has tolerated my sloppy writing throughout the past six years. This thesis would have read

very differently if it wasn’t for her.

I am forever grateful and indebted to my closest friends: Dana Joulani, Samah Karim,

Hussein Sibai, Ahmed Fawaz, and Amin Jaber. Having the love and support of a close-knit

group of friends is a privilege that I have enjoyed throughout my life. They always provided

me with the space to escape my work, to rant about my frustrations, and to eat my feelings

v

at various restaurants.

Most importantly, none of my work would have been possible without the generous and

wonderful support of my family: my mother Sonia, my father Ali, my brother Houssein,

and my sister-in-law Dalia. I was fortunate to have been born in a household that fostered

education and curiosity. My parents have made huge sacrifices to provide my brother and

me with the chances to pursue higher education. I am forever in their debt. Additionally,

my brother Houssein has been my closest companion throughout the past six years. Despite

the eight hours time difference, Houssein always found the time to hear me out and support

me when I most needed it. I will never forget the times our conversations kept my brother

up until 4 in the morning on a week night. Finally, in the past two years, I was blessed to

enjoy the presence of my nephew Sharif and my niece Yassma. Looking at their pictures

and videos provided me with the drive to keep going and make them proud. My family is

the ultimate manifestation of unconditional love and support. Everything I have achieved

and will achieve, I owe it to them.

This work is based upon work supported in part by the Department of Energy under

Award Number DE-OE0000780, in part by the Office of Naval Research (ONR) MURI

Grant N00014-16-1-2710, and in part by U.S. Army Research Laboratory (ARL) Cooperative

Agreement W911NF-17-2-0196. The views and opinions of the authors expressed herein do

not necessarily state or reflect those of the United States Government or any agency thereof.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Cyber Resiliency . 1
1.2 State of the Art . 2
1.3 Contributions . 4

CHAPTER 2 THE ROAD TO CYBER RESILIENCE 11
2.1 A Look Through Fault-Tolerant Design . 11
2.2 From Fault Tolerance to Resiliency . 13
2.3 Definitions . 15

CHAPTER 3 CPUZZLE: CLIENT PUZZLES FOR STATE-EXHAUSTION DDOS
ATTACKS RESILIENCY. 17
3.1 Introduction . 17
3.2 Background and Related Work . 18
3.3 The Game-Theoretic Model . 21
3.4 Application to the Juels Puzzle Scheme . 24
3.5 Implementation . 32
3.6 Evaluation . 34
3.7 Limitations and Discussion . 44
3.8 Conclusion . 45

CHAPTER 4 MIDGARD: CROSS-LAYER DEFENSE TO VOLUMETRIC DIS-
TRIBUTED DENIAL OF SERVICE ATTACKS 46
4.1 Introduction . 46
4.2 Problem Statement . 47
4.3 Midgard Overview . 49
4.4 Midgard Architecture . 50
4.5 Implementation . 58
4.6 Experiments . 61
4.7 Conclusion . 65

CHAPTER 5 BIFROST: CIRCUIT-LEVEL VERIFICATION OF DATA PLANE
PROGRAMS . 66
5.1 Introduction . 66
5.2 Background on Programmable Data Planes 68
5.3 A Case for Hardware Verification . 70
5.4 Overview of BiFrost . 74
5.5 BiFrost System Design . 75
5.6 Verification Methodology . 83
5.7 Implementation . 86

vii

5.8 Evaluation . 87
5.9 Generalization to Network Properties . 93
5.10 Related Work . 95
5.11 Conclusion . 96

CHAPTER 6 SSHIELD: A GAME-THEORETIC APPROACH TO RESPOND
TO ATTACKER LATERAL MOVEMENT . 97
6.1 Introduction . 97
6.2 Motivation . 98
6.3 Overview . 100
6.4 The Response Engine . 101
6.5 Implementation and Results . 106
6.6 Related Work . 113
6.7 Discussion and Future Work . 115
6.8 Conclusion . 115

CHAPTER 7 CONCLUSION . 117
7.1 Future Directions . 119

REFERENCES . 121

viii

CHAPTER 1: INTRODUCTION

Computer networks play an essential role in today’s societies. They have revolutionized

every citizen’s daily life. From financial transactions to healthcare, elections, social networks,

and critical services, networked devices have become an essential component of societal

and economic well-being [1]. Thus, it is critical to protect the continued development and

progress of our societies by ensuring the security, reliability, and availability of our networking

infrastructure, at both the software and hardware levels.

From a security perspective, our increased dependence on networked systems has created

ample space for malicious entities to enact attacks that have drastic consequences. In fact,

2018 witnessed the largest-ever recorded Distributed Denial of Service (DDoS) attack, tar-

geting Github; it reached a peak bandwidth of 1.35 Tbps [2]. Similarly, in 2016, three college

students contributed to a nationwide Internet outage by creating the Mirai botnet; access

to many major websites (such as Amazon, Netflix, and Visa) was disrupted due to an attack

on the Dyn domain name system (DNS) provider [3].

Furthermore, the massive amounts of data that networked companies collect about their

users are a very lucrative target. Hackers can compromise such companies’ internal net-

works to gather critical consumer data, such as Social Security numbers [4], credit card

numbers [5, 6], and healthcare records [7]. At a larger and more critical scale, attackers

illegally acquired social-networking information to influence the outcomes of the 2016 U.S.

presidential elections [8, 9]. Those incidents highlight the ever-increasing scale and implica-

tions of the security vulnerabilities of our networked systems; indeed, criminal cyber-activity

is estimated to have cost the global economy an astounding $600 billion to date [10].

Similarly, from a reliability perspective, the cost of benign downtime in today’s data

centers is estimated to be $7,900 per minute [11]. Although it enjoys a long and rich his-

tory [12], reliability analysis today is facing the challenges of the increased complexity and

programmability of today’s systems. More specifically, the introduction of software-defined

networking (SDN) and programmable data-planes has provided network designs with flexible

programmability at the expense of higher chances of benign failures [13]. Therefore, it is

of the utmost importance to incorporate reliability analysis that uses appropriate modeling

and verification techniques as part of the design and implementation of computer networks.

1.1 CYBER RESILIENCY

Faced with the challenges described above, security and reliability engineers and re-

searchers have accepted the inevitability of incidents and malicious attacks. The question

1

is no longer that of securing only the perimeters of our networked systems; it is more of

designing systems that are cyber resilient. Cyber resiliency is a networked system’s ability

to maintain an acceptable level of operation and proper service in the presence of failures

and targeted attacks, and to then recover gracefully into normal operation [14, 15, 16]. The

definitions of “acceptable operation” and “proper functionality” are system-specific and are

often determined by the services provided by the system and its users’ expectations. For

example, an e-shopping website can tolerate failed connection attempts or network delays

on the order of seconds. On the other hand, an online gaming service provider has a signifi-

cantly lower tolerance to network delays since, it must provide a near-real-time service to its

clients. Nevertheless, resiliency is concerned with the ability to provide service continuously,

even if at an acceptable level of degradation, in the presence of failures and attacks.

Achieving cyber resiliency rests on three important functions: (1) prevention, (2) detec-

tion, and (3) response [17]. Most of our early efforts in system security focused on prevention.

However, the increasing complexity of attacks, and the large uncertainties in the The In-

ternet moved the community towards pouring more efforts into detection and response [18].

Cyber-resilient design builds on the effective and successful tools developed in the realm of

fault tolerance. However, it must go beyond addressing benign and predictable failures to

account for dynamic attackers that launch targeted attacks. The presence of such attack-

ers significantly increases the uncertainty that designers have about their systems and their

inputs, and thus creates greater challenges. It is our hypothesis in this thesis that cyber re-

siliency can be enhanced by integrating theoretical and model-based analysis of systems with

practical and secure engineering.

1.2 STATE OF THE ART

To address the hard challenges faced by our networked systems, government agencies have

set national agendas to promote cyber-resilient networking design, especially for critical

services and infrastructure such as the interconnected power grid [14]. For example, in

2013, then-President Barack Obama issued an executive order setting the U.S. policy to

“enhance the security and resilience of the Nation’s critical infrastructure and to maintain

a cyber environment that encourages efficiency, innovation, and economic prosperity while

promoting safety, security, business confidentiality, privacy, and civil liberties” [19].

The academic and industrial communities responded with increased efforts that proposed

secure-by-design and resilient systems. Driven by the successes in the field of cryptogra-

phy [20], computer theoreticians attempted to model and analyze systems and prototypes

and measure their relative security and resiliency properties such, as availability, integrity,

2

confidentiality, reliability, and safety [21, 22, 23, 24, 25, 26, 27, 28]. On the other hand,

network and systems engineers ventured to propose and implement secure and resilient de-

signs that can reduce the increasing and often unpredictable waves of failures and cyber

attacks [29, 30, 31, 32, 33, 34, 35].

Unfortunately, however, the efforts of the researchers and industry experts have been

hindered by an apparent schism between theory and practice, which allows attackers to

maintain the upper hand advantage. For example, the security community is deeply fractured

between fierce proponents [36, 37] and fierce opponents [38] of security metrics. Similarly,

despite enormous governmental efforts, we are yet to see a widely accepted definition of what

a science of security is, let alone definitions of the requirements for sound scientific security

experiments [20, 39, 40].

We attribute the apparent lack of compatibility between theory and practice to the fol-

lowing challenges:

• Impractical and unjustifiable assumptions: Theoretical computer scientists often sac-

rifice practicality for mathematical tractability. Systems in general, and networked

systems in particular, often do not exhibit many of the properties needed by math-

ematically solvable frameworks. For example, in control theory, it is a standard as-

sumption to consider a system to be described by a set of linear differential equations.

However, actual systems seldom exhibit this linearity. Similarly, when attempting to

quantify the impact of security attacks [27], modelers often place probability values

on attack steps that are not reasonably justifiable (e.g., the probability of success of a

certain attack step, or the probability that an attacker will adopt such a step). That

makes the mathematical model easier to reason about, yet does not create an accurate

map of reality.

• Undefined success criteria: As mentioned earlier, resiliency and security do not have

well-defined success metrics. Questions such as “Is the system secure?” or “How secure

is the system?” often do not have quantifiable answers. Therefore, it is challenging to

model and design a system when the success metrics of the system are not well-defined.

• Unstated and unclear assumptions: In contrast to theoreticians, system designers often

sacrifice clarity for practicality and ease of design. Assumptions made at design time

often remain unstated which hinders the ability of future researchers to build accurate

and practical mathematical models of the systems.

• Irreproducible experiments: Finally, resilient and secure systems are often tested in pri-

vate environments so that validation and reproducibility of the results are not possible.

3

That leaves the community unable to understand and evaluate the appropriateness of

a given design or solution.

Therefore, the resiliency and security of our networked systems, and, in turn, the stability

of our societies, rests on our ability to integrate sound theoretical modeling and analysis

with practical design and engineering. Bridging the gap between theory and practice is a

goal we set out to achieve in this dissertation.

1.3 CONTRIBUTIONS

In this thesis, we set about showing that the proper integration of theoretical analysis and

practical design can enhance the resiliency of networked systems. For that purpose, we focus

on two essential properties of networked system designs: (1) theoretical soundness and (2)

practical realizability 1. We provide a formal definition of these two properties and discuss

them in detail in this thesis. We will, however, restrict ourselves in this chapter to informal

definitions.

We define a design to be theoretically sound if it can be modeled by a mathematical model

that accurately captures its behavior, and if all inferences made about said mathematical

model are valid with respect to a set of assumptions. Also, we define a design to be practically

realizable if it can be built in practice while having (1) input parameters that are quantifiable

through observations and data analysis, and (2) well-defined and quantifiable metrics of

success and proper service.

The goal of practical realizability forces modelers and designers to think carefully about the

assumptions they make in their analyses. The assumptions must be at an appropriate level

of abstraction such that they can achieve some level of mathematical tractability without

sacrificing faithfulness to the system’s actual nature. That balancing act must encompass

a careful consideration of the success metrics by which a design is deemed to be achieving

proper service.

Complementary to practicality, theoretical soundness compels system designers to clearly

state all of their designs’ implicit assumptions as well as the expected input and output

relationships. Such assumptions and relationships form the ground upon which analytical

reasoning about a model is built and guarantees about performance and reliability are proven.

Finally, the combination of soundness and practicality cannot be achieved without thorough

testing. That requires reproducible experiments that will allow multiple designers, modelers,

and analysts to validate a set of obtained metrics.

1Not to be confused with the notion of “realizability” in control theory.

4

Assumptions

Reasoning

Inferences

Success Metrics

Design

Implementation

So
un

d
Th

eo
ry

Practical D
esign

Simulation

Experiments

Theoretical
Modeling and

Analysis

Prototyping and
Implementation

Simulation

Experiments

Figure 1.1: Design approaches using traditional reasoning (left) and our integrative reasoning
(right).

Therefore, in this work, we set out to validate the following thesis statement:

Cyber resiliency of intra- and inter-networks can be enhanced through the inte-

gration of theoretically sound and practically realizable networking designs across

multiple network layers.

Figure 1.1 contrasts the traditional system design approach (left) with the approach we

adopt in this thesis (right). Traditionally, theoretical modeling and analysis and implemen-

tation were seen as separate, non-interleaving processes performed by often disjunct groups

of designers. At the end of the modeling phase, simulations were conducted to assess the

model’s properties, which would then be used to drive the prototyping and implementation

phase. On the other hand, once a prototype has been built, experiments are conducted to

evaluate the design, and that could lead to another modeling phase.

In this thesis, we show that theoretical modeling and practical design are interleaved pro-

cesses that cannot be conducted separately, especially when dealing with designs for security

and reliability. Both modelers and practitioners must work from a shared set of assumptions

and success metrics. Those assumptions and success metrics must be driven by the con-

straints on the implementation, rather than a focus on mathematical tractability. Inferences

on the success metrics, made during the theoretical modeling phase via simulation and ana-

lytical reasoning, will drive the realizable implementation of the design. Using experiments,

the designers revisit their assumptions and possibly add new success metrics, thus driving

a new and interleaved phase of modeling and analysis. This integration between theoretical

modeling and practical design should be the basis for secure and reliable networking design.

5

Table 1.1: Summary of thesis contributions. IER and IAR refer to inter-networking resiliency
and intra-networking resiliency, respectively. GT refers to game-theoretic techniques, while
CT refers to control-theoretic techniques.

Solution IER IAR
Theoretical

Tools
Deployment

Target
Property

CPuzzle X –
GT:

Stackelberg
game

kernel patch availability

Midgard X – CT
kernel patch,
middlebox

availability

sShield – X
GT:

zero-sum
game

SDN
integrity,

confidential-
ity

BiFrost X X
formal

methods
open-source

tool
safety,

reliability

1.3.1 Summary of Contributions

At the core of this dissertation is an attempt to understand how the integration of sound

theory and practical implementation can lead to secure and reliable networking designs.

Our investigation is driven by assumptions and success metrics that can act as the gateway

between theoretical modeling and practical design. To inform our exploration, we pose the

following research questions:

1. What does it mean for a model to be theoretically sound?

2. What does it mean for a design to be practically realizable?

3. Where do current networking designs fail in providing availability, confidentiality, and

reliability?

4. How can the integration of theoretical and practical reasoning be used to improve the

state of current networking design?

Table 1.1 summarizes our approach to validating our thesis statement and answering the

above research questions. We address the challenges of designing a resilient networking

infrastructure by combining the results of four system designs. At the inter-networking

level, CPuzzle [41] enables network resilience to state-exhaustion DDoS attacks at the

transport layer. Midgard extends CPuzzle to combat volumetric attacks at the network

6

Programmable
switch

SDN controller

Offline Phase Online Phase

Does the design meet the
specifications?

Indirect Connection

Direct Link

Figure 1.2: Global view of this thesis’ contributions.

layer. At the intra-networking level, sShield [42] dynamically protects a high-value asset

from potential attackers moving laterally in the network. Finally, BiFrost [43] is a design-

time tool that allows for scalable verification of data-plane programs specified using the P4

language.

Figure 1.2 illustrates the different parts of a network where our proposal approaches are to

be deployed. We consider, without loss of generality, an internetworking scenario consisting

of several clients connecting to a remote server and requesting a particular service. CPuzzle,

Midgard, and sShield are all online solutions that get triggered during attacks, while

BiFrost is an offline analysis tool. CPuzzle is a Linux kernel patch that resides at both

the client and server ends, i.e. at both ends of a communication. Midgard comprises of two

components: (1) a Linux kernel patch applied to the client machines and (2) a middlebox (the

Midgard box) residing at the ingress of the server’s upstream Internet Service Provider

(ISP). Internally, sShield is a game-theoretic dynamic topology modifier that leverages

the presence of SDN switches at a local network. Finally, network administrators can use

BiFrost to verify properties about their SDN deployments that use programmable switches.

CPuzzle

CPuzzle is a theoretical and practical framework for employing client puzzles as a means

for tolerating TCP state-exhaustion DDoS attacks. A TCP state-exhaustion attack attempts

to consume entries in a victim server’s TCP queues, namely the listen and accept queues.

When those queues overflow, the server stops accepting new connections, and benign clients

7

are thus denied service. Our work in CPuzzle is grounded in the observation that defending

against such attacks is no longer solely the responsibility of the network. Rather, it is up to

the edge devices (the clients and the victim server) to participate in achieving resilience.

To that end, we developed a theoretical framework that allows a victim server to ask its

benign users and the malicious bots to solve computational puzzles. Such puzzles serve as

virtual payment for slots in the TCP queues and achieve the goal of rate-limiting malicious

actors. We model the problem of selecting the puzzle difficulty as a Stackelberg game [44] in

which the server is the leader, and the users and bots are the followers. The model captures

the trade-off that the server must consider in balancing the user’s computational load against

its ability to rate-limit the attackers.

Based on the obtained solution, we designed and implemented a prototype of the CPuzzle

framework in the Linux kernel networking stack. Our design favors efficiency and stability

at both ends of the communication channel. To evaluate our approach, we deployed CPuz-

zle on a testbed network comprising 30 machines on the DETER [45] academic testbed.

Our evaluation shows that CPuzzle can effectively enhance our infrastructure’s ability to

tolerate TCP state-exhaustion attacks while balancing that ability against the computa-

tional cost for benign users. Our results also highlight how CPuzzle increases the cost to

attackers: rate-limiting the attackers forces them to purchase or compromise more botnet

machines. We are providing open-source access to the kernel patch as well as all scripts

needed to reproduce our experiments on the DETER testbed.

Midgard

We propose Midgard to complement CPuzzle in combating multi-vector DDoS at-

tacks that target the consumption of network bandwidth as well as computational resources.

Midgard is an in-network DDoS resilience mechanism that combines the benefits of cloud-

based defense solutions with those achieved by puzzle-based rate-limiting. To that end, we

suggest the addition of IP puzzles that are distributed by a middlebox (the Midgard box)

residing at the edge of a victim server’s ISP. When an attack is detected, the Midgard

box monitors and seamlessly distributes puzzles to all users and monitors the round-trip

time (RTT) taken by every request. This RTT value presents a reflection of each user’s

computational capabilities, allowing the Midgard box to achieve the desired rate-limiting

while adapting the puzzle difficulty to each user’s prowess as well as ts previous behavior.

In designing Midgard, we leveraged the sound theoretical tools of control theory to

design a network controller that allocates bandwidth resources to each user based on her

estimated computational prowess, her puzzle difficulty, and her behavior. The controller

8

aims to achieve fairness among benign users while thwarting the effects of the malicious

actors. We implemented Midgard by using eBPF and AF XDP sockets in the Linux kernel to

allow for a combination of fast packet processing in the kernel space and puzzle generation

and verification in user space. We also developed a patch for the IP networking stack of

the kernel to support IP puzzles. To evaluate our approach, we deployed Midgard on

the DETER testbed and launched bandwidth exhaustion attacks against a victim server. Our

experiments showed that Midgard can effectively rate-limit misbehaving users by forcing

them to solve harder and harder puzzles.

BiFrost

To address the challenges introduced by the flexibility of programmable data-planes, we

propose and have developed BiFrost, a tool for scalable and efficient circuit-level ver-

ification of programmable data-planes. BiFrost exploits the fundamental feature of a

data-plane program; namely that it describes a bounded hardware pipeline. We therefore

leverage previous work on software verification that uses circuit-level approaches [46] to

translate a P4 program into an equivalent sequential circuit expressed as an And-Inverter-

Graph (AIG). That translation introduces two main benefits: (1) the ability to make use of

mature, well-established, and scalable circuit verification techniques, and (2) the ability to

verify equivalence between multiple compilations of the same program. The latter advan-

tage is especially beneficial when one is faced with a heterogeneous networking environment

composed of switches from multiple vendors. We implemented BiFrost using C++ and

evaluated it on real-world data-plane programs written in the P4 language. Using BiFrost,

we detected header validity bugs in two open-source programs. In such cases, an attacker,

using a well-crafted packet, can force a programmable switch to read from invalid memory

locations, thus introducing nondeterministic behavior that can lead to reliability and secu-

rity incidents. In addition, we evaluated BiFrost on a large set of data-plane programs and

showed that we could prove properties about those programs in < 3 minutes. We plan to

release BiFrost as an open-source tool that can be used by data-plane developers to verify

their designs.

sShield

Intrusion detection systems (IDSes) provide network administrators with a plethora of

monitoring information, but that information must often be processed manually to enable

decisions on response actions and thwart attacks. The gap between detection time and

9

response time, which may be months long, may allow attackers to move freely in the network

and achieve their goals.

sShield is a game-theoretic network response engine that takes practical actions in re-

sponse to an attacker that is moving laterally in an enterprise network. The engine receives

monitoring information from IDSes in the form of a network services graph, which is a graph

data structure that represents vulnerable services running between hosts, augmented with

a labeling function that highlights services likely to have been compromised. We formulate

the decision-making problem as a defense-based zero-sum matrix game that the engine an-

alyzes to select appropriate response actions by solving for saddle-point strategies. Given

the response engine’s knowledge of the network and the location of sensitive components

(e.g., database servers), its goal is to keep the suspicious actors as far away from the sensi-

tive components as possible. The engine is not guaranteed to neutralize threats, if any, but

can provide network administrators with enough time to analyze suspicious movement and

take appropriate neutralization actions. The decision engine makes use of the monitoring

information to decide which nodes’ disconnections from the network would slow down the

attacker’s movements and allow administrators to take response actions.

The rest of this thesis is organized as follows. In Chapter 2, we present our definitions of

resiliency, theoretical soundness, and practical realizability. We then turn to inter-networking

resiliency and present CPuzzle in Chapter 3 and Midgard in Chapter 4. Subsequently, we

discuss our approaches to intra-networking resiliency by presenting BiFrost in Chapter 5

and sShield in Chapter 6. Finally, we conclude and present our notes for the future in

Chapter 7.

10

CHAPTER 2: THE ROAD TO CYBER RESILIENCE

The rapid increase in technological advancements over the past decade has brought a com-

parable increase in the arsenal of attack vectors that malicious actors can leverage to launch

devastating attacks. The ubiquity of connected devices, ranging from home appliances to

smartphones and desktops, offers adversaries a variety of lucrative targets that are relatively

low-cost and high-reward. Just as connectivity has become an inevitable part of our lives,

cyber threats assert themselves as an undeniable fact of the connected lifestyle. The myth of

the “fully secure system” has been decisively debunked, and systems engineering is moving

into the era of resilient computing.

In this chapter, we motivate and define cyber resilience by drawing an analogy from the

field of fault-tolerant computing. We highlight some of the recent technology failures in

adopting the resilience design methodology and the often drastic consequences that have

resulted from doing so. Finally, we discuss how our proposed approach, namely the integra-

tion of theoretical soundness and practical realizability, can be a cornerstone to the building

of resilient networks.

2.1 A LOOK THROUGH FAULT-TOLERANT DESIGN

The notion of system resiliency enjoys a rich history that has grown from the need to

develop dependable and reliable systems that can withstand hardware software failures [47,

48]. As early as the construction of the first networks, designers and engineers realized that

failures are bound to happen and that systems must be able to continue to provide a certain

level of service even if such failures occur. That realization led to the development of the

rich fields of dependability and fault tolerance, which introduced a variety of techniques,

both theoretical and practical, to allow networks and systems to withstand benign failures

and continue to operate acceptably.

Although not labeled initially as “resilient” systems, fault-tolerant designs gained vast

popularity and enjoyed high levels of success. Many mission-critical systems, such as airplane

navigation systems, airspace controllers, and telephone and data networks, enjoy a high

level of reliability enabled by years of fault tolerant design work. Furthermore, even in this

era of high interconnectedness, cloud computing offers unprecedented levels of reliability

and availability due to efficient and well-designed replication and reliability strategies. For

example, most current cloud computing providers, such as Google, Microsoft, and Amazon,

offer their customers service-level agreements that guarantee 99.999% availability [49, 50, 51].

11

That translates to just a few minutes of downtime every year while providing continuous

service across the world. Such designs leverage years of fault tolerant design research in

areas such as georeplication and data duplication (e.g. RAID) to provide continuous service

at guaranteed latencies and prevent unexpected data loss. Such techniques illustrate an

important design paradigm: the fact that faults and failures are not always preventable.

Therefore, designers must account for their presence and design for both prevention and

tolerance.

We attribute the success of fault tolerance techniques in enabling designs that can with-

stand benign faults and failures to the following characteristics:

Strong ties to physical phenomena. The study of hardware faults and failures in current

networking designs builds upon years of studies of the natural phenomena that underly the

operations of such designs (for example, the switching of transistors and the representation

of data through magnetic waves). Thus designers can gain a better understanding of the

operations of their designs by leveraging the literature of the physical sciences.

Predictability. The fact that the operation and failure of systems can often be traced to

underlying natural phenomena presents designers with an attractive property: predictability.

Fault-tolerant designs benefit from studies that estimate the lifetimes of their components.

Such studies allow designers to build statistical models of the operation and failure behavior

of the systems they are building, and thus predict when failures may occur and account for

their presence in the designs.

Synergy between theoretical studies and practical designs. The predictability of

system failures has allowed designers to develop theoretical models that can effectively act

as mediators between the practical designs and the theoretical studies and simulations that

are to be performed on the models. Most models are based on assumptions tied to well-

studied physical phenomena, which enables a rich understanding of the system’s behavior

and makes it possible to leverage theoretical models to design fault-tolerant systems. The

fact that assumptions are based on real and measurable parameters allows models to reflect

of the practical reality, and that allows designers to transition easily from a theoretical design

to a practical prototype with tangible fault-tolerance guarantees.

As an example of that synergy, the designed of the TCP congestion avoidance and control

algorithm [52] leveraged sound control-theoretic methodologies to design an estimator for a

packet’s round-trip time. The algorithm uses the estimated value to control the TCP socket’s

sending rate in response to the network’s inferred congestion state. By using real-time feed-

back from the network (i.e. measurements of a packet’s travel time), the algorithm can

effectively adapt to changes and congestion events in the network. The design of this algo-

12

rithm shows that sound theory, coupled with quantifiable input parameters and measurable

success metrics, can lead to the design, and later refinement, of a robust algorithm.

2.2 FROM FAULT TOLERANCE TO RESILIENCY

Traditional approaches to security and resiliency have focused on building systems that can

build and harden perimeter defenses to prevent malicious attacks. However, as the num-

ber of successful high-impact attacks has increased, security engineers have realized that

prevention alone is not enough; attacks change and evolve at a rapid rate that traditional

perimeter defenses cannot keep up with. For example, although initially considered the holy

grail for protecting personal computers, antivirus software eventually proved unable to effec-

tively keep pace with the rapid rate of malware change, leaving it helpless against targeted

and sophisticated malware [53, 54, 55]. That led the senior vice president of information

security at Symantec, the inventors of commercial antimalware software, to declare antivirus

approaches “dead” [56].

The success of dependable and fault tolerant design methodologies has led researchers, gov-

ernment officials, and industry leaders to reexamine their cybersecurity approaches. Thus,

the notion of resiliency has surfaced as a fundamental design principle in the fight against

malicious cyber entities. At its essence, resiliency is a system’s ability to detect failures

and attacks, maintain acceptable and proper operation in the presence of those failures and

attacks, and recover a normal state of operation in a timely and graceful fashion.

In conjunction with fault tolerance, researchers turned to the human immune system

for inspiration and analogies to drive reasoning about the resiliency of networked systems

against known and unknown threats. Fault tolerance and the human immune system present

beneficial starting points for reasoning about the resiliency posture of networked systems.

However, the presence of targeted and adaptive adversaries introduces several fundamental

differences that require us to reconsider such analogies to avoid making erroneous decisions.

System resiliency possesses several crucial characteristics that make it fundamentally dif-

ferent from fault tolerance or human immunology. Specifically, we consider the following

properties.

Human engineering and the presence of software components. Modern computing

systems are the result of the engineering and composition of numerous hardware and software

components. The interactions among those components are rarely governed by predictable

rules. The presence of software programs written in general-purpose, Turing-complete pro-

gramming languages makes the process of modeling the different behaviors of networked

13

systems impractical and often computationally intractable. For example, it is feasible to

predict when a magnetic hard disk drive will fail by studying the physical properties of the

mechanical phenomena that govern its operations. On the other hand, buffer overflows are

hard to predict since they result from design-time bugs that cause undefined behavior. Such

behavior can then be exploited by an attacker to trick the memory manager and the instruc-

tion decoder into executing malicious instructions or reading confidential data blocks; the

execution of such an exploit relies on the interactions among several software components

that lead the CPU to execute malicious instructions. Therefore, modeling and prediction

of buffer overflow exploits, let alone detecting them, does not enjoy the same stochastic

predictability properties enjoyed by the hardware fault tolerance approaches.

Targeted and resourceful adversaries. In contrast to benign failures, adversaries have

well-defined targets and may enjoy access to numerous resources to support their attacks.

From leaked password databases to repositories of working exploits to unpatched systems,

attackers can build a vast arsenal of attack methods that they can employ at relatively low

cost. The past decade witnessed the emergence of advanced persistent threats (APT) that

involve powerful, well-funded, and determined adversaries targeting critical infrastructure

and government agencies (e.g. the Stuxnet worm, the Ukrainian power grid attack, and the

Target and Equifax data breaches). It is much more challenging to predict the behavior of

such a strategic and sophisticated attacker than to predict a benign fault, and it may be

impossible.

Insider threats. In addition to external threats, resilient systems must consider the

possible threats emanating from malicious internal actors, such disgruntled employees. Such

actors are especially difficult to model and analyze when one is designing resilient systems.

Insiders enjoy low-cost access to critical resources that can form the basis for launching

severe and impactful attacks.

Rapidly adaptive adversaries. Although the human immune system has evolved robust

mechanisms for combatting intruding organisms, such as microbes and viruses, it cannot

fight them off entirely when they change their genetic makeup rapidly. Viral infections

such as the flu and the common cold can still escape the human immune system’s grasp.

Similarly, intelligent adversaries can rapidly change their attack tactics in response to added

security measures, sometimes even leveraging new security designs to uncover new flaws and

gain more attack vectors. Security measures that do not take into consideration adaptive

adversaries might increase the protected system’s attack surface, ironically providing the

adversaries with more weapons to add to their arsenal.

Those challenges make the process of designing resilient networked systems very difficult

14

and require increased cooperation between theoreticians and practitioners. The adaptive

and intelligent nature of the adversaries poses several challenges for theoretical modeling and

analysis; however, it does not render the process futile. By working closely with engineer-

ing teams, theoreticians can learn to make reasonable assumptions and perform worst-case

analyses that allow them to make design decisions that can translate into practical imple-

mentations. Similarly, engineers and practitioners must carefully state and document their

assumptions and provide feedback to the modeling teams to make design decisions that favor

the system’s resiliency.

In light of the challenges and requirements, the goal of this dissertation is to illustrate

how the synergy between sound theory and realizable design can lead to improved network

resiliency. We start by defining sound theory and realizable designs, and then present CPuz-

zle, Midgard, BiFrost, and sShield as evidence of the power of synergizing theory and

practice.

2.3 DEFINITIONS

To formally define theoretical soundness and practical realizability, we draw on notions

from the theory of formal systems [57] to reason about models and their implementations.

Definition 2.1 (System Model). A system model M is a tuple (V, S,R, L, T) such that

V is a set of variables,

S is a set of states,

L : S × V × T → R is a labeling function,

R : S × T × {ε, L} → S × T is a transition function, and,

T = τ0, τ1, . . . is a monotonically increasing sequence of time values.

V is the set of variables whose behavior the modeler is interested in capturing. To do

so, the modeler defines a set of states S where each state s ∈ S captures the values of the

variables in V at that state. L is a labeling function that represents the relationships among

the variables of the model at different states. For example, L can be a logical formula or a

probability distribution over V . T represents a sequence of time instants, which can be either

discrete or continuous, as defined in [58]. Finally, R is a transition function that defines the

possible transitions between the states of the model. We do not place any restrictions on

the types of the transitions, i.e., they can be deterministic, stochastic, or nondeterministric

(that last of which is represented by ε).

15

Definition 2.2 (Realization). In a networking context, a realization or implementation of a

model M is an interpretation, through software or hardware or both, of the model’s semantics

that assigns values to its set of variables V and defines semantics for S, L, and R.

Note that a realization D of a model M can define a set of variables V ′ ⊆ V that subsumes

M ’s variables. In that case, M is referred to as an abstraction of D, and R can be thought

of as the projection of D’s possible transitions onto V .

For example, RFC 793 [59] is a model of the Internet’s Transmission Control Protocol

(TCP), and different operating systems, such as Linux, Windows, and OpenBSD, provide

various implementations or realizations of that RFC. In addition to defining the seman-

tics of the RFC, those implementations include several other components, such as memory

managers, thread managers, and network device drivers.

Definition 2.3 (Soundness). Given a model M , a set of assumptions A : V × S →
{true, false} and a set of inference rules Γ, the system (M,A,Γ) is said to be sound if

and only if starting from A, any valid formula f : V × S → {true, false} proven by

following Γ over M is valid for any realization D of M .

In other words, soundness ensures that any property or metric that can be obtained by

reasoning about a model M over a set of assumptions A will be valid for any realization or

implementation of the model.

Definition 2.4 (Practical Realizability). Given a model M and a set of assumptions A, a

realization D of M is said to be practically realizable if D can be feasibly implemented and

D does not violate any of the assumptions a ∈ A.

Definitions 2.3 and 2.4 rule out any theoretical model that makes unreasonable assump-

tions about the real systems it must represent. At the same time, the combination of

soundness and practical realizability forces engineers to make clear and explicit assumptions

that modelers can take into consideration when conducting their analytic studies. As pre-

viously stated, our goal in this dissertation is to show that sound modeling and practically

realizable design can lead to the enhancement of the resiliency posture of our networked

systems when faced with both formidable adversaries and benign faults.

16

CHAPTER 3: CPUZZLE: CLIENT PUZZLES FOR STATE-EXHAUSTION
DDOS ATTACKS RESILIENCY.

3.1 INTRODUCTION

In recent years, the scale and complexity of Distributed Denial of Service (DDoS) at-

tacks have grown significantly. The introduction of DDoS-for-hire services has substantially

decreased the cost of launching complex, multi-vectored attacks aimed at saturating the

bandwidth as well as the state of a victim server [60, 61]. Common mitigations for large-

scale DDoS attacks are focused around cloud-based protection-as-a-service providers, such as

CloudFlare. When under attack, a victim’s traffic is redirected to massively over-provisioned

servers, where proprietary traffic-filtering techniques are applied and only traffic deemed be-

nign is forwarded to the victim. The relative success of such over-provisioning techniques in

absorbing volumetric attacks has pushed attackers to expand their arsenal of attacks to span

multiple layers of the OSI network stack [62]. In fact, 39.8% of the attacks launched through

the Mirai botnet were aimed at TCP state exhaustion, while 32.8% were volumetric [63];

the source code contained more than 10 vectors in its arsenal of attacks [64].

State exhaustion attacks are particularly challenging as they target stateful devices such

as firewalls, load balancers, and application servers. Attackers can disguise them as be-

nign traffic by leveraging a large number of machines that can use their authentic IP ad-

dresses [60], and can bypass cloud-based protection services [65, 66], capabilities, and filtering

techniques [29, 30, 31, 32, 67, 68] by sending slower and non-spoofed traffic. This situation is

further exacerbated by the imbalance between the cost of launching a multi-vectored DDoS

attack and the cost of mitigating one. Launching an attack incurs an average cost of $66 per

attack and can cause damage to the victim of around $500 per minute [69]. Furthermore,

such attacks cannot be mitigated by employing geo-distributed Content Delivery Networks

(CDN) as these CDNs still need to provide stateful services (such as TCP and HTTP) to

the original victim’s users; cloud protection services in fact recommend that defenses against

state exhaustion attacks should reside at the victim’s premises [65].

In this chapter, we revisit the application of client puzzles as a mechanism for resisting

state exhaustion DDoS attacks. Client puzzles are a promising technique that alleviates the

cost imbalance between the attacker and the defender with only software-level modifications

at the end hosts and no changes to the Internet infrastructure [70, 71]. In essence, client

puzzles attempt to hinder the malicious actors’ ability to flood the server by forcing all

clients, benign and malicious, to solve computational puzzles for each request they make.

While TCP client puzzles are a promising technique for resisting state exhaustion attacks,

17

they have not seen their way into adoption because of (1) the lack of guidelines on how to

set the difficulty, and (2) the lack of publicly available implementations and performance

studies [70, 72, 73]. A TCP client puzzle’s difficulty determines the computational burden

placed on the server and clients. Current standards [73, 74] suggest using a fixed difficulty

level for all clients in order to maintain a stateless protocol, they however do not provide any

sound ways for selecting the appropriate difficulty level. Difficulty selection becomes even

more challenging when the victim serves clients with a mixture of power-endowed devices.

Additionally, the few existing implementations of TCP client puzzles [34, 35, 72, 75] are

outdated and are not publicly available, further hindering the community’s ability to evaluate

their effectiveness and adopt them.

In this chapter, we make the following contributions to address the shortcomings of TCP

client puzzles research. First, we introduce a theory for determining an appropriate TCP

puzzle difficulty based on the game-theoretic Stackelberg interaction between the defender

and the clients [76, 77, 78] (Section 3.3 and Section 3.4). Using the theory we established, we

provide a practical method for selecting the TCP puzzles difficulty based on the defender’s

capabilities and the expected computational prowess of the clients.

Then, we describe how we designed, implemented and evaluated an extension to TCP to

support client puzzles using our practical difficulty-setting method. We incorporate puzzles

into the TCP handshake and otherwise do not interfere with the operation of the protocol.

We efficiently encode the challenges and their solutions into the options of the TCP header,

resulting in low packet-size overhead to the protocol packets and no significant changes the

TCP header. Then, we implement TCP puzzles as part of the Linux kernel TCP stack

(Section 3.5). Our patch is publicly available at https://github.com/nouredd2/puzzles-utils.

We evaluated the performance of our TCP puzzles against a range of attacks through

reproducible experiments performed using the DETER testbed (Section Section 3.6). Our

results show the effectiveness of TCP puzzles in boosting tolerance against state exhaustion

attacks. If a server using client puzzles with our game-theory-based difficulty setting method,

it can tolerate both SYN and connection floods that would bring down an unprotected

server or one that relies solely on SYN cookies [79]. Finally, we present a preliminary study

of puzzles-based queueing (3.6.5) as a technique to provide fair treatment to a mixture of

power-endowed devices.

3.2 BACKGROUND AND RELATED WORK

We first start by reviewing the TCP three-way handshake and TCP state exhaustion

attacks. We then present client puzzles and their current limitations. For the remainder of

18

this chapter, we use the terms puzzles and challenges interchangeably.

3.2.1 TCP primer and SYN flood attacks

In current TCP implementations, a client initiates a TCP connection by sending a SYN

packet to the server. Upon receiving the SYN packet, the server saves state for this new in-

coming connection request in a data structure, often referred to as the Transmission Control

Block (TCB), and then sends a SYN-ACK packet and waits for the client to acknowledge

receipt of this packet. A half-open connection is one for which the client’s ACK packet has

not yet been received; those new connection sockets are queued into a listen queue. The

number of elements in this queue is upper-bounded by an implementation parameter, called

the backlog, that bounds the server’s memory usage to avoid exhaustion of the system’s re-

sources. Once a connection has been established, the server moves it into the accept queue.

A socket is removed from the accept queue once the server’s application accepts it for pro-

cessing. On the other hand, a half-open connection socket is removed from the queue if it

expires before it receives an acknowledgment from the client [59]. Once the server’s listen

or accept queue overflows, it either (1) no longer accepts incoming connections, or (2) drops

old connection sockets from the appropriate queue.

TCP SYN flood attacks aim to overflow a victim server’s listen queue by overwhelming

it with half-open connection requests. The attack forces the server to drop new incoming

connections, thus denying service to new clients [80]. A variant of the TCP SYN flood attack

is a TCP connection flood in which an attacker attempts to overflow the server’s accept

queue for the same purpose of denying legitimate clients the opportunity to connect to the

server. In a connection flood, the attacker completes the three-way handshake instead of

leaving the connections half-open.

Among the server-based mitigations for SYN flood attacks, the SYN cache and TCP SYN

cookies are the most common [79, 80, 81]. The SYN cache reduces the amount of memory

needed to store state for a half-open connection by delaying the allocation of the full TCB

state until the connection has been established. Servers that implement SYN caches instead

maintain a hash table for half-open connections that contains partial state information and

provides fast lookup and insertion functions. SYN cookies, on the other hand, operate by

eliminating the source of the vulnerability in TCP implementations: the state reserved for

half-open connections in the TCB. When SYN cookies are enabled, the server encodes a

new TCP connection’s parameters as a cookie in the packet’s initial sequence number, and

refrains from allocating state for a new connection until the cookie is again received from

the client and validated.

19

The SYN cache aims to contain TCP SYN attacks by reducing the amount of state

maintained on the server for half-open connections. Although efficient against a single

attacker (or a small botnet), SYN caches do no provide protection against larger botnets for

which the attack rate can easily exceed the space allocated for the cache. Once the cache

is full, the server will default to the same behavior it performs when its backlog limit is

reached, defeating the purpose of the cache. Although SYN cookies eliminate the key target

of the SYN flood attack (the TCP backlog), they do not provide protection against large

botnets. Attackers in control of a large number of zombie machines with valid (non-spoofed)

IP addresses can, without added effort, overload the server’s listen queue with valid TCP

requests at a rate that surpasses the server’s ability to accept them. Because they only

tackle the problem only on the server end, SYN cookies are not a mechanism for stripping

the malicious actors of their ability to conduct exhaustion attacks; further, it is not clear

how SYN cookies can be generalized to serve as protection schemes for different types of

state exhaustion attacks [72].

3.2.2 Client puzzles

Cryptographic client puzzles have been proposed to counter an asymmetry in today’s

Internet: clients can request substantial server resources at relatively little cost. Client

puzzles alleviate this asymmetry by forcing clients to commit compute power as payment

for requested resources.

Client puzzles have previously been proposed as a mechanism to combat junk mail [82],

website metering [83], protecting the network IP and TCP channels [35, 71, 72, 84], pro-

tecting the TLS connection setup [34, 73], protecting key exchange [74], and protecting the

capabilities-granting channel [30]. In addition, client puzzles are at the heart of the min-

ing process of today’s cryptocurrencies [85, 86]. Upon receiving a SYN packet, the server

computes a puzzle challenge, sends it to the client, and does not commit any resources.

After receiving the challenge, the client will employ its computational resources to solve the

challenge and send the solution to the server. The server will then commit resources to the

client only if the solution is correct.

Despite its promise, several challenges face the adoption of client puzzles as a practical de-

fense measure against state exhaustion attacks. First, there is a shortage of implementations

that allow for the comparison and the evaluation of different types of challenge creation and

verification mechanisms. In this work, we implement clients puzzles in the Linux kernel and

provide access to our implementation as a kernel patch.

Second, an important advantage of client puzzles is the ability to influence the clients by

20

setting an appropriate puzzle difficulty. However, there are no concrete and theoretically

backed recommendations for selecting the appropriate difficulty, especially when faced with

a mixture of power-endowed devices. Previous approaches [34, 71, 73, 74] suggest using a

fixed, victim determined, puzzle difficulty for all clients in an effort to maintain a stateless

protocol and to avoid creating a new state-exhaustion attack vector. These approaches do

not however provide concrete methods to select the difficulty level in a manner that reflects

the victim server’s load and its clients’ computational prowess. In our work, we present

a game-theoretic formulation of the difficulty selection problem incorporating the server’s

provisioning as well as the computational profile of its clients.

Furthermore, a fixed puzzle difficulty might lead to fairness concerns as low-powered de-

vices have to solve the same puzzles as higher-powered ones. RFC 8019 [74] suggests pro-

viding per-IP puzzles, however, it does not specify how the difficulties should be computed

nor how to avoid increasing the attack surface. The work in [72] attempts to alleviate this

problem by requiring clients to place bids on the server’s resources by solving increasingly

difficult puzzles. In addition to violating the TCP protocol by adding more round trips, this

mechanism can be exploited to target clients since it moves the puzzle initiation process from

the server to the client. In our thesis, we present a prototype puzzle-based queuing approach

that rewards slow sending devices with higher access priority to the server’s resources. It

maintains negligible state and falls back to a fixed difficulty if that state is exhausted.

Laurie and Clayton [87] present an economic analysis to argue against the use of proof-

of-work mechanisms to combat email spam. We agree with the authors that computational

puzzles do not possess “magical” properties that make them practical in every situation. We

however argue that state exhaustion attacks do not have the same nature as spam emails.

First, unlike spam, state exhaustion attacks do not depend on the involvement of human

users to click on malicious links. Second, DDoS attacks have a lower cost barrier as they are

launched from compromised botnet machines and not from specialized attacker hardware.

We believe that our theoretical and experimental results showcase the merits of proof-of-

work mechanisms in tolerating SYN and connection floods. In fact, our work complements

the security analysis performed in [88, 89, 90] with the required protocol engineering and

design, allowing for an improved understanding of client puzzles.

3.3 THE GAME-THEORETIC MODEL

In this section, we introduce our game-theoretic model for computing the puzzle difficulties

that balance the clients’ computational load as well as the server’s provisioning. We first

present our threat model and assumptions and then discuss our game-theoretic model.

21

3.3.1 Assumptions and threat model

In our work , we make the following assumptions.

Assumption 1. Common state exhaustion attacks, specifically TCP connection floods

as well as higher-layer attacks, require the presence of a two-way communication channel

between the attacker bots and the victim server. That is evident from the nature of the state

exhaustion attacks as well as their ability to circumvent scrubbing and filtering techniques

by sending lower volumes of traffic [60]. The implication is that during a single-vector state

exhaustion attack, the victim server is able to receive packets from, and send packets to,

its legitimate users as well as the attackers’ machines. In the presence of a multi-vectored

attack, we assume the presence of volumetric attack mitigation techniques (such as cloud-

based protection-as-a-service); client puzzles will complement those techniques to provide

DDoS defenses against hybrid attacks.

Assumption 2. We assume that the attackers can control a large number of zombie ma-

chines that form botnets to coordinate large-scale attacks aimed at depleting a target server’s

resources. However, we assume that the attacker’s army of bots comprises commodity ma-

chines (e.g., workstations, mobile phones, and IoT devices) but not clusters of servers with

large computing resources. Such clusters are part of enterprise solutions and therefore em-

ploy better protective mechanisms than commodity machines, so are harder to compromise.

We further assume that the attackers can capture and replay packets, but are not able to

change their content; protection against integrity attacks is beyond the scope of our thesis.

The above assumptions are similar to the ones made in [71] and [72]. Moreover, client

puzzles do not require the end-server to differentiate between malicious and benign traffic.

In fact, the low-volume nature of state exhaustion attacks and the requirement for quick and

effective protective mechanisms can impede the accuracy of anomaly detection mechanisms.

3.3.2 Difficulty Selection as a Stackelberg game

We formalize the problem of selecting the puzzle difficulty similar to a network pricing

problem [76, 77, 78]. We model the problem as a Stackelberg game between the service

provider and the service users. The service provider is the leader who sets the difficulty of

the puzzles that the clients must solve to receive service. The users are the followers who

then choose their request rates to optimize their local utility.

Our model rests on the assumption that all clients are selfish agents seeking to optimize

their local utilities; we do not specifically posit a model for malicious bots. This assumption

is rooted in the following observations. First, before the attack starts, the server does not

22

have the means to distinguish between benign clients and malicious bots. Second, TCP

by default treats every connection request it receives as a benign request, and thus sends

an ACK packet back without checking whether the request came from a benign user or a

compromised bot. Third, positing a specific attacker model would require the estimation of

attacker preferences and utilities, which the server has no means of measuring. This could

create a schism between the model and its application in the real world. We therefore treat

every request as if it is benign, and capture the presence of a large botnet by obtaining the

asymptotic solution for our model.

Let xi be user i’s request rate, for i ∈ {1, 2, . . . , N}, where N is the total number of

users in the system. Consequently, x−i =
∑N

j 6=i xj is the total request rate of all the other

users. Our model captures the puzzle’s difficulty by using the expected number of hash

operations needed to find and verify its solution. Let pi be user i’s puzzle; `(pi) is then

the expected number of hash operations that user i has to perform to find a solution to pi.

Let S(x̄ =
∑

i xi) be the expected service time for a user’s request. User i’s utility can be

written as

ui (xi, x−i, pi) = wi log(1 + xi)− ` (pi)xi − S(x̄) (3.1)

wi is a user-specific parameter that models the user’s valuation of the provider’s service. In

other words, wi represents the amount of work user i is willing to pay per request. log (1 + xi)

represents the user’s expected benefit when making decisions under risk or uncertainty [76,

91]. The utility function can be interpreted as the difference between the user’s expected

benefit and the amount of work she has to expend to solve a puzzle per request added to the

expected service delay she incurs. Each user, being a rational and selfish agent, will choose

a request rate that optimizes her local utility. That will lead to the users adopting the Nash

Equilibrium (or simply, equilibrium) rates x∗i for i ∈ {1, 2, . . . , N} such that

ui
(
x∗i , x

∗
−i, pi

)
≥ ui

(
xi, x

∗
−i, pi

)
, ∀xi > 0,∀i (3.2)

The service provider’s problem is to find a puzzle difficulty such that (1) it can effectively

reduce the impact of state exhaustion attacks and (2) minimize the amount of work the

server does to generate and verify puzzles. Let P be the space of all possible cryptographic

puzzles and g(pi) and d(pi) be the expected numbers of hash operations that the provider

needs to perform to generate and verify a solution to puzzle pi, respectively. We model the

provider’s problem as finding the puzzles p∗ = {p∗i ∈ P , i ∈ {1, 2, . . . , N}} such that

p∗ = arg max
p∈PN

N∑
i=1

(`(pi)− (g(pi) + d(pi)))x
∗
i (3.3)

23

Equation (3.3) captures the provider’s goal of maximizing the amount of work that the

clients have to perform to obtain service under attack while minimizing the amount of work

it must perform to generate puzzles and verify solutions. This formulation, in fact, captures

the trade-off between the puzzle’s complexity and the expected work that the provider needs

to perform to generate and verify puzzles. The tuple

(x∗ :=< x∗1, x
∗
2, . . . , x

∗
N >,p∗ :=< p∗1, p

∗
2, . . . , p

∗
N >) (3.4)

represents the solution to the full Stackelberg game.

3.4 APPLICATION TO THE JUELS PUZZLE SCHEME

We now show how the framework we introduced in Section 3.3 can be applied to the

puzzles protocol presented in [71]. We first describe the puzzles protocol from [71] and

then show the solutions we obtain using our framework. For our modeling and analysis,

we assume that the server issues puzzles with the same difficulty for all of its clients, i.e.,

`(pi) = `(pj) ∀i, j ∈ {1, 2, . . . , N}. This assumption ensures a stateless protocol, follows the

IETF TLS puzzles draft [73], and is recommended in previous work [71].

A puzzle in this scheme is a bitstring of length l bits having m < l bits of difficulty. The

puzzle-issuing server starts by creating the hash y = h (s, T, packet-level data), where s is

a secret key; T is a timestamp; the packet-level data are a concatenation of the source and

destination IP addresses and ports; and h is a collision-resistant hash function. The server

challenges a client to provide k solutions to a puzzle P formed by the first l bits of y.

Upon receiving P , the client computes, by brute force, k solutions {s1, . . . , sk} such that

for 1 ≤ i ≤ k, |si| = l and the first m bits of h(P, i, si) match the first m bits of P , where h

is the same hash function that the server used. The client then sends the solutions back to

the server, which in turn, verifies their validity and subsequently accepts the request.

The solution

Since obtaining a single solution of length m bits is best done by brute force, it requires

a maximum of 2m and an average of 2m−1 hashing operations. Since each puzzle requires k

solutions, solving a puzzle then requires an average of k×2m−1 hashing operations. Therefore,

for each user i ∈ {1, 2, . . . , N}, `(pi) = k × 2m−1.

To capture the expected service time for the users, called S(x̄), we abstract the server’s

operation with an M/M/1 queue with a service rate µ. We argue that this abstraction is

24

enough for our purpose, since the attacks in which we are interested target the TCP stack and

are independent of the application that the server is running; they are affected only by the

application’s ability to remove established connections from the accept queue. The service

rate µ can be obtained by running stress tests on the application provider’s infrastructure and

can capture different service optimizations such as replications and caching. Subsequently,

we express the expected service time as S(x̄) = 1
µ−x̄ , when x̄ < µ. This condition assumes

that the server is well-provisioned to handle the users’ load under regular conditions. We

therefore rewrite Equation (3.1) as

ui (xi, x−i, pi) = wi log(1 + xi)− k × 2m−1xi −
1

µ− x̄ (3.5)

We now turn to the provider’s formulation. We represent the space of all possible puzzles

as the set of tuples (k,m) where k ∈ N is the number of solutions requested and m ∈ N
is the number of bits of difficulty in each. Therefore we write P = {(k,m) , k,m ∈ N}.
As previously discussed, every challenge can be generated using only one hash operation;

therefore, we write g(pi) = 1, ∀i.
When the server receives a solution, it generates a hash from the received packet’s header

and then verifies each of the k solutions until it finds a violating one or deems the puzzle

correctly solved. If the server chooses which of the k solutions to verify uniformly at random,

it then needs an average of k
2

hashing operations. Therefore, we can write d(pi) = 1 + k
2
, ∀i.

Since we assume that the service provider issues puzzles with the same difficulty for all

users, we henceforth write p = (k,m) = pi,∀i. We can then rewrite Equation (3.3) as

p∗ = arg max
p∈P

N∑
i=1

(
k × 2m−1 − 2− k

2

)
x∗i (p) (3.6)

Let wav be the average client valuation of the server’s service and α be the server’s asymptotic

service rate per user, under normal operation.

Theorem 3.1. The Nash equilibrium is achieved at p∗ = (k∗,m∗) such that:

`(p∗) = k∗ × 2m
∗−1 =

wav
(α + 1)

(3.7)

Proof. In order to analytically solve for the equilibrium solution of the game, we follow an

approach similar to that in [76]. We start by noting that the Nash Equilibrium solution of

the users’ game is not affected if we add the quantity

25

∑
j 6=i

(
wj log(1 + xj)− k × 2m−1xj

)
(3.8)

to each users’ utility function. Therefore we can now build a strategically equivalent game

where each user’s utility function is

H (x1, . . . , xN , p) =
N∑
i=1

wi log(1 + xi)− k × 2m−1x̄− 1

µ− x̄ (3.9)

Now looking at the Hessian matrix of H we get

Hii =
∂2H

∂x2
i

= − wi
(1 + xi)2

− 2

(µ− x̄)2
< 0, ∀i

Hij =
∂2H

∂xixj
= − 2

(µ− x̄)3
< 0, ∀i, j, i 6= j

(3.10)

Therefore H is negative-definite and thus H is strictly concave for 0 ≤ x̄ < µ. Additionally,

since H → −∞ as x̄→ µ, we can conclude the that optimization problem

max
xi≥0:∀i,x̄<µ

H (x1, x2, . . . , xN , p) (3.11)

admits a unique solution x∗ = {x∗1, . . . , x∗N} in the interval 0 ≤ x̄ < µ which corresponds to

the Nash Equilibrium strategies to the users’ game as defined in Equation (3.5). We obtain

the solution strategies by solving the first order condition of H where for i ∈ {1, . . . , N}

∂H

∂xi
(x∗1, . . . , x

∗
N , p) = 0 (3.12)

which translates to
wi

1 + x∗i
− k × 2m−1 − 1

µ− x̄∗ = 0, ∀i (3.13)

Let yi = 1 + xi, ȳ =
∑N

i=1 yi = N + x̄, and w̄ =
∑N

i=1wj, from which we obtain

wi
yi

=
wj
yj
, ∀i, j ∈ {1, . . . , N} (3.14)

or equivalently

yi =
wi
wj
yj, ∀i, j ∈ {1, . . . , N} (3.15)

26

We can then rewrite ȳ as

ȳ =
N∑
i=1

yi =
N∑
i=1

wi
wj
yj =

w̄

wj
yj (3.16)

and thus we can express (3.13) in terms of ȳ as

L̃(ȳ) =
w̄

ȳ
− k × 2m−1 − 1

(µ+N − ȳ)2
= 0 (3.17)

We can thus turn our attention to solving Equation (3.17) for N ≤ ȳ < µ + N . Since
∂L̃
∂ȳ

= − w̄
ȳ2
− 2

(µ+N−ȳ)2
< 0, L̃ is strictly decreasing. Additionally, L̃(ȳ)→ −∞ as ȳ → µ+N .

We therefore need L̃(N) to be non-negative so that L̃(ȳ) would admit a solution in the

interval N ≤ ȳ < µ+N , which translates to

L̃(N) =
w̄

N
− k × 2m−1 − 1

µ2
> 0 (3.18)

or equivalently

k × 2m−1 <
w̄

N
− 1

µ2
:= r̂ (3.19)

We can see r̂ as the maximum possible difficulty that the service provider can select while

guaranteeing that a solution for the clients’ game exists. We also notice that if the provider

had infinite resource, i.e., µ→∞, r̂ → w̄
N

which suggests that a client should not be charged

a price higher than the average user valuation of the provider’s services.

Furthermore, it is beneficial for the service provider to ensure that all clients participate

in the game, i.e., that xi > 0 for all i ∈ {1, 2, . . . , N}. This therefore translates to the

conditions on ȳ

ȳ >
w̄

wi
∀i (3.20)

Now let ȳ(k,m) be a solution to Equation (3.17) that satisfies condition (3.20) and where

(k,m) satisfy condition (3.19), and let x̄(k,m) be the corresponding value of x̄. We turn to

the provider’s problem of finding the optimal pricing p∗ = (k∗,m∗) that maximizes

I(p) :=

(
k × 2m−1 − 2− k

2

)
x̄(k,m) (3.21)

In order to obtain an analytical solution to the optimization problem in Equation (3.21)

we make use of the following approximation. We solve for the pricing p̃(k̃, m̃) that maximizes

Ĩ(p) :=
(
k × 2m−1

)
x̄(k,m) (3.22)

27

Lemma 3.1. |I(p∗) − Ĩ(p̃)| < c for some constant c > 0, where p∗ and p̃ are the solutions

that maximize I and Ĩ, respectively.

Proof. Let p∗ = (k∗,m∗) and p̃ = (k̃, m̃) be the prices that maximize I(p) and Ĩ(p), respec-

tively. We therefore have that

k̃ × 2m̃−1x̄(k̃, m̃) ≥ k × 2m−1x̄(k,m), ∀k,m (3.23)

Let p′ = (k′,m′) be a price with minimum 0 < k′ ≤ k̃ such that k′ × 2m
′−1 = k̃ × 2m̃−1 and

I(k′,m′) ≥ I(k̃, m̃). We can therefore write

I(p′) ≥ I(k,m)− (
k′

2
+ 2)x̄(k′,m′), ∀k,m (3.24)

and since I(p∗) ≥ I(p) ∀p we can therefore conclude that

|I(p∗)− I(p′)| ≤ (
k′

2
+ 2)x̄(k′,m′) <

(
(
k′

2
+ 2)µ

)
:= c (3.25)

and since x̄ only depends on k × 2m−1 and not on the individual values of k and m, p′ also

maximizes Equation (3.22) and thus solving for p′ brings us within a constant c of p∗, the

maximum of I. QED.

We can now proceed with finding a solution for Equation (3.22) following the approach

presented in [76]. By using the one-to-one correspondance between k×2m−1 and ȳ (and thus

x̄) presented in Equation (3.17), we can substitute ȳ in (3.22) and then compute p∗ using

the solution to the obtained equation. We then write the equivalent problem as finding ȳ∗

such that

ȳ∗ = arg max
N<ȳ<N+µ

(
w̄

ȳ
− 1

(µ+N − ȳ)2

)
(ȳ −N) (3.26)

We define G(ȳ) :=
(
w̄
ȳ
− 1

(µ+N−ȳ)2

)
(ȳ−N). It is easy to see that ∂2G

∂ȳ2
< 0 and thus G(ȳ) is

strictly concave. Additionally, G(N + µ)→ −∞, we can thus conclude that G(ȳ) admits a

unique maximum in the open interval (N,N+µ). We can then solve the first order condition

∂G(ȳ)

∂ȳ
:=

w̄N

ȳ2
− µ+ ȳ −N

(µ+N − ȳ)3
= 0 (3.27)

Obtaining a closed form solution for ȳ∗ is not possible for finite N . Therefore we solve

Equation (3.27) asymptotically (i.e., as N →∞) as proposed in [76]. For that, we make the

following assumptions. (1) We assume that the average user preference wav(N) = w̄
N

has a

28

well defined limit wav as N →∞. (2) We assume that as the number of users grows larger,

the service provider can always service a fraction of its users, even if that fraction is small.

In other words, we assume that lim
N→∞

µ
N

= α for some α > 0. For convenience, we rewrite

Equation (3.27) in terms of xav(N) = x̄
N

and wav(N) as N →∞ as

wav
(1 + xav(N))2

=
α + xav(N)

(α− xav(N))3N2
(3.28)

Equation (3.28) possesses a solution for xav(N) iff,

lim
N→∞

(α− xav(N))3N2 = γ (3.29)

for some γ > 0. We thus substitute back in Equation (3.17) and obtain the solution

k∗ × 2m
∗−1 ∼ wav

α + 1
+

2α− 1

γ
2
3N

2
3

(3.30)

where f ∼ g denotes the fact that lim
N→∞

f
g

= 1.

Since we are considering the asymptotic solution, we restrict our attention to the first

order term of the solution in Equation (3.30) and thus obtain our desired form

k∗ × 2m
∗−1 =

wav
α + 1

(3.31)

In fact, as shown in [76], Equation (3.31) corresponds to the solution of the same problem

when ignoring the service delay at the server. Since SYN and connection flood attacks target

the TCP protocol and not the application layer service, it is convenient for the purposes of

this chapter to only consider the first order term of Equation (3.30), thus completing the

proof. QED.

Analysis

The equilibrium difficulty we obtained in Theorem 3.1 illustrates an important design

tradeoff between the server’s provisioning and the difficulty of the puzzles that the clients

should solve when the server is under attack. A well-provisioned server, i.e., one for which

α > 1, will be able to absorb a larger fraction of the attack and subsequently ask its clients

to solve less complex challenges. In that case, the clients help the server tolerate the attack

and commit fewer resources than they are willing to — the average number of hashes they

would need to perform to solve a challenge is less than wav — so the client achieves high

29

0 200 400 600 800 1000
Time (ms)

0

1

2

3

4

Nu
m

be
r o

f h
as

he
s

1e5

(a)

cpu1
cpu2
cpu3

0 200 400 600 800 1000
Number of concurrent requests

0

5

10

15

20

25

Se
rv

ic
e

pa
ra

m
et

er

(b)

950

1000

1050

1100

1150

Se
rv

ic
e

ra
te

Figure 3.1: Profiles of (a) client (wav) and (b) server (α).

utility. On the contrary, a server that is not able to handle all of its clients’ regular load,

i.e., one for which α < 1, would require its clients to solve harder puzzles (p∗ ' wav) and

thus achieve lower utility levels. Therefore, to tolerate an attack, the server asks its clients

to commit more resources, risking the dropout of more clients as the intensity of the attack

increases. Those clients with wi < wav would consider it best for them to drop out, since it

would be too costly as a function of the resources committed to obtain a connection.

We further note that our model and solution are agnostic to the application that is run

by the server. That, in fact, is consistent with TCP being a transport-layer protocol that

is independent of the type of application running on top of it. All our model requires is an

estimate of the server’s capacity to handle large loads (i.e., the parameter α), which can be

obtained by running appropriate stress tests. Server replication and load balancing are then

captured in our model through an increase in the value of α (given the same load).

Finally, we note that our result is not affected by the presence of long-lived TCP connec-

tions (for example, if HTTP/1.1 [92] is being used). The puzzles protect the TCP connection

establishment channel and allow users to connect to the server in the presence of malicious

attacks. The lifetime of the established connection is not affected by the presence or absence

of puzzles; in the case of HTTP/1.1, the goal of the challenges is to allow clients to establish

the TCP connection upon which the HTTP session persists.

Obtaining model parameters

The model parameters, wav and α, relate to the performance capabilities of the server and

the clients. We first describe an experimental procedure for obtaining the model parameters.

Then we discuss how we applied the procedure to an experimental setup to demonstrate the

30

Nash strategy.

First, wav is the number of hashes we assume the client is willing to perform to complete

the TCP handshake. It represents the level of acceptable service degradation as each TCP

connection will take longer to finish. To find wav, we assume that 400 ms is adequate time to

establish a TCP three-way handshake for a legitimate client when the server is under attack.

Usability studies show that a 400 ms delay does not interrupt the user’s flow of thoughts [93].

Using that assumption, we find the number of hashes a machine can perform in 400 ms by

profiling the machines. wav is the average value obtained during the experiments.

Second, α is the service parameter of the server. It is directly related to the processing

power of the server. To obtain the parameter, we start by stress testing a server. The stress

test varies the rate of requests per second and records the time it takes to get service for each

rate. We compute α as the ratio of the service rate over the number of concurrent requests.

Finally, after obtaining wav and α, we calculate the equilibrium difficulty parameters

(k∗,m∗) by using Equation (3.7). The choice of those parameters exposes a trade-off between

the number of hashes the server needs to verify a solution and the probability that an

adversary can guess a solution. Choosing a very small k will increase the attacker’s ability

to guess a solution, and selecting a large k will increase the solution verification time. On

the other hand, if lower values of k are selected, the challenge difficulty m would increase

allowing the server to offset its lack of computational resources by asking its clients to solve

harder challenges.

Example

In the following, we present an example of computing the Nash equilibrium difficulty for a

server serving a variety of machines with varying processing powers. Starting with the client,

we obtain wav by profiling the number of SHA-256 operations per second. Figure 3.1(a) shows

the profile of three CPU types: (1) cpu1 is an Intel Xeon E3-1260L quad-core processor

running at 2.4 GHz, (2) cpu2 is an Intel Xeon X3210 quad-core processor running at 2.13

GHz, and (3) cpu3 is an Intel Xeon processor running at 3GHz.

The average number of hashes that can be performed over the three types of CPUs is

wav = 140630. Although the CPUs we profiled are not an exhaustive representative set of

the processing powers of a typical clientele, in all of our experiments, we leveled the playing

field by providing all the attackers with similar or better computational powers.

Then we estimate the server’s α parameter. We deployed an Apache2 web server on a

dual Intel Xeon hexa-core processor running at 2.2 GHz with 24 GB of RAM. We then used

the Apache benchmarking tool ab [94] to profile the performance of the server under regular

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Opcode 0xfc Length k m

` Preimage · · ·
· · · preimage Padding (NOP)

Figure 3.2: TCP Options block for a SYN challenge.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Opcode 0xfd Length MSS value

Wscale Solution · · ·
· · · solution Padding (NOP)

Figure 3.3: TCP Options block for a SYN solution with k = 1.

and high loads. Figure 3.1(b) shows the service rate µ and the service parameter α of our

server as the number of concurrent requests attempted by ab increases. Our server was able

to maintain a constant service rate under high load (µ ' 1100 requests/s), and thus the

parameter α converged to a value of 1.1 as the load increased. Thus for our example, with

wav = 140630 and α = 1.1, the TCP puzzle difficulty is set at (k∗ = 2,m∗ = 17).

3.5 IMPLEMENTATION

We implemented the TCP challenges in the TCP stack of the Linux 4.13.0 kernel. The

puzzles are turned off by default and are only enabled when the socket’s queue is full. We

designed our implementation in such a way that the challenges take precedence over the SYN

cookies once the queue is full; we do, however, support SYN cookies as a backup option. We

provided support for dynamic tuning of the parameters of the challenges (k, m) through the

kernel’s sysctl interface.

We generate the challenge’s pre-image by hashing a string containing (1) a server’s secret

key, generated once at the start of a socket’s lifetime, (2) the server’s current timestamp,

(3) the SYN packet’s source and destination IP addresses, and (4) the packet’s source and

destination port numbers. We used the Linux kernel’s SHA256 hashing function, since it

provides the necessary pre-image resistance guarantees [71].

To avoid breaking the TCP definition, we inject the challenges and solution into the

options field of the TCP SYN-ACK and ACK packets. Figure 3.2 shows the format of the

TCP option we implemented to transmit a challenge in the SYN-ACK packet. We chose an

unused opcode (0xfc) to represent a challenge option. The Length field indicates the length

of each option block in bytes, including the opcode and the field itself. We allocate one byte

32

each for the number of solutions k, the difficulty of the puzzle m (in bits), and the pre-image

and solution length l. Next, we insert the challenge’s pre-image. Finally, following the TCP

stack requirement, each option block must be 32 bits aligned, we, therefore, insert 0 to 3

NOP fields to ensure alignment.

Figure 3.3 shows the format of the TCP option used by a client to send a solution. Much

as in the challenge option, we made use of unallocated opcode (0xfd). Since the server

keeps no state about the client after receiving the first SYN packet, the client safely assumes

that the server has ignored its previously announced Maximum Segment Size (MSS) and

Window Scaling (Wscale) parameters. We then resend the MSS and Wscale values within

the solution, write down each of the k solutions, and perform alignment to 32 bits.

The benefits of adding the MSS and Wscale parameters to the solution option block are

twofold. First, it means that the challenge protocol will be self-contained; implementation

of the TCP stack usually ignores all options other than timestamps in any packet other than

the SYN and SYN-ACK packets. Therefore, support for the challenge protocol does not

require changes to legacy options parsing. The addition also provides us with the benefit of

reducing the space needed to resend the options in the ACK packet. For example, sending

the MSS values as a separate option would require 4 bytes, while we need only 2 in the

case of the self-contained solution option. Second, we encode the MSS value by using 16

bits (as defined in the specification of TCP), instead of the 3 bits provided by SYN cookies.

In addition, when SYN cookies are in place, the client and the server cannot agree on the

window parameters, which reduces the performance of the TCP connection.

Also, modern TCP implementations support the exchange of timestamps as options in

the TCP header. Our implementation makes use of the timestamps, whenever available, to

generate, solve, and verify challenges. However, if the timestamp option is not enabled (for

example, it was disabled by the client or the server), our implementation embeds the times-

tamp used in the generation of the challenge (an additional 4 bytes) in both the challenge

and the solution packets.

Furthermore, when the server’s accept queue overflows, its default behavior is to reject

new connections, even if the protection mechanism is in place. However, for our purposes,

since the goal of the puzzle protection mechanism is to throttle the rate of all clients (both

benign and malicious), we modified the listening TCP socket’s implementation to send a

challenge when the protection is in effect, even if the accept queue overflows. When the

server receives an ACK packet while under attack, it first checks whether the queue is full

and performs the verification procedure only if there is room to accept the connection. If

the queue is full, the server will ignore the ACK packet. In such a case, the user (whether

benign or malicious) assumes that the connection has been established and will begin sending

33

application-level packets thus causing the server to reply with a reset (RST) packet to signal

that the connection was not established. This implementation choice achieves the goal of

deceiving the malicious users into thinking that they have established a connection when

they have not; the malicious agents that do not send application-level packets will not receive

a RST packet to indicate that the server has dropped the connection.

Finally, to combat replay attacks, we make use of the timestamp in the solution to check

whether a challenge has expired. This stateless mechanism hinders an attacker’s ability to

replay solution packets, since tampering with the timestamp will cause the solution verifi-

cation to fail. The timeout interval can be tuned through the kernel’s sysctl interface.

3.6 EVALUATION

Using our modified Linux kernel, we evaluated the performance of the TCP puzzles in

safeguarding a server TCP connection establishment channel from state exhaustion attacks.

We performed the experiments using the DETER [95] cybersecurity testbed. In the

spirit of moving towards a “science of security” through reproducible experiments [20], we

provide all of our experiment scripts and datasets online at https://github.com/nouredd2/

puzzles-utils.

The goal of our experiments is to evaluate (1) the effectiveness of TCP puzzles in protecting

against state exhaustion attacks, (2) the impact of TCP puzzles on service quality, and (3) the

ability of the Nash equilibrium puzzle difficulty to balance the client solution and the server

verification load as well as its ability to effectively rate-limit attackers. Our victim server

runs an HTTP application that accepts “gettext/size” requests and returns messages that

contain size random bytes. The clients run an HTTP client that requests text from the

server at a prespecified rate.

In a real-world deployment, service would be provided by a farm of servers, but our scenario

uses only one server and a smaller set of clients. In larger systems, since a load balancer

forwards TCP connection requests to individual servers, an attack has to ensure that its

wave of requests reaches all of the servers to effectively deny service. Therefore, adding more

servers allows a service provider to tolerate bigger attacks by large botnets. Our results

show that a server using TCP puzzles as a means for state exhaustion DDoS protection can

tolerate a larger botnet than an unprotected server can. We hence argue that when all the

servers in a farm employ our protection, the system will be able to tolerate a larger botnet

that is proportional to the improved tolerance of a single server. Our experiment scenario

thus studies the protection offered to a single server; the results are to scale when more

load-balanced puzzles-equipped servers are deployed.

34

We consider two types of attackers. The first uses randomized source IP addresses to

target the server’s listen queue with a flood of half-open TCP connections (using hping3).

The second type uses real IP addresses to flood the server with established connections (using

nping) in an attempt to fill its accept queue and prevent new, legitimate connections from

being established. Unless otherwise stated, we use the following experiment parameters.

The set of clients contains 15 machines requesting 10, 000 bytes of data at exponentially

distributed time intervals, with rate rc = 20 requests per second. The botnet consists of 10

machines running an attack at a constant rate ra = 500 requests per second, amounting to

an overall attack rate of 5, 000 packets per second (pps). All of the malicious machines are

equipped with a computational power equal to, or greater than, that of the clients’ machines.

Except in Experiment 4, all of the machines in our setup were equipped with our modified

kernel.

Finally, except for Experiment 5, all the experiments used the same network topology with

well-provisioned link bandwidths so as to avoid link saturation. The backbone consisted of

three routers fully connected with 1 Gbps links. The server connected to the network with a

1 Gbps link, while all the other hosts connected to the network with 100 Mbps links. All of

our agents ran on physical machines with Ubuntu 16.04 LTS along with our patched Linux

4.13.0 kernel. We deployed the packet-monitoring software, tcpdump, on all of the machines,

and used the captures to measure the throughput at the server, the throughput at each host,

and the number of dropped TCP connections. We report here on the throughput since it

represents a direct assessment of the impact of puzzles on our application; nevertheless, we

acknowledge that different applications will require different metrics.

3.6.1 Experiment 1: SYN and connection flood protection

In the first scenario, we started a distributed SYN flood attack. Without protection, the

SYN flood filled the listen queue with half-open TCP connections, leading the server to

drop new incoming connections. We measured the throughput at a client and the server

for three settings: (1) no protection (control settings), (2) TCP SYN cookies, and (3) TCP

client puzzles. Figure 3.4 shows the throughput measured during the experiment. The attack

duration, shown by the shaded region, was initiated at t = 120 and concluded at t = 480.

The throughput’s behavior for both the server and client was consistent; we therefore restrict

our analysis to the server’s case. For the control setting, the server’s throughput dropped to

zero as soon as the attack started and returned to full capacity 30 seconds after the attack

ended. On the other hand, SYN cookies were effective at rendering the attack ineffective

and ensuring a constant throughput at the server throughout the attack. By storing partial

35

0 100 200 300 400 500 600
Time (seconds)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

bp
s)

Client

nodefense cookies challenges-m8 challenges-m17

0 100 200 300 400 500 600
Time (seconds)

0

50

100

150

200

250

Server

Figure 3.4: Throughput at a client and server during SYN flood.

0 100 200 300 400 500 600
Time (seconds)

0

5

10

15

Th
ro

ug
hp

ut
 (M

bp
s)

Client

nodefense cookies challenges-m17

0 100 200 300 400 500 600
Time (seconds)

0

50

100

150

200

Server

Figure 3.5: Client and server throughput during a connection flood.

state of the connection in the TCP sequence number instead of in the listen queue, SYN

cookies provide protection against this type of attack. Finally, when low difficulty puzzles

are enabled, (k,m) = (1, 8), the throughput is unaffected during the attack. Similarly to

SYN cookies, the puzzles enabled reconstruction of a connection’s state with no use of the

listen queue. However, when we used the Nash equilibrium difficulty, (k,m) = (2, 17), the

throughput was reduced to 50 Mbps during the attack. This reduction occurred because the

equilibrium strategy is more aggressive than the easier setting; in this scenario, easy puzzles

were enough to alleviate the attack as the botnet was not completing the connection.

For the second scenario, we used the attacker nodes to launch a distributed connection

flood attack. We measured the same metrics as in the first scenario for three cases: no pro-

tection, SYN cookies, and TCP puzzles at Nash difficulties. The TCP puzzles at a difficulty

36

0 200 400 600
Time (seconds)

0

5

10

15

20

%
 C

PU
 U

til
iza

tio
n

Client and Server

client server

0 200 400 600
Time (seconds)

0

20

40

60

Attacker

Figure 3.6: CPU utilization during a connection flood attack.

0 200 400 600
Time (seconds)

0

1000

2000

3000

4000

Qu
eu

e
siz

e

Challenges

0 200 400 600
Time (seconds)

0

1000

2000

3000

4000

Cookies

Listen Queue Accept Queue

Figure 3.7: Queue sizes during a connection flood attack.

of 8 bits were ineffective at protecting the server’s state. For readability, we elected not to

show these results in this plot since we will revisit various difficulty settings in Section 3.6.2.

Figure 3.5 shows the throughput of a client and the server during the experiment. We

used the sparkline in the client plot to mark when the server sent a SYN-ACK packet with a

challenge (bright tick) or without a challenge (dark tick). The results show that SYN cookies

are ineffective during a connection flood; the server’s throughput drops to 0, as it would if

no protection were in place. In both those cases, the server needs 30 seconds to detect the

end of the flood and fully recover. On the other hand, TCP puzzles at Nash difficulties

provide tolerance of the flood attack. The throughputs of the client and the server were

about 40% of their respective nominal rates. It is interesting to note that the throughput

periodically spiked during the attack phase. This occurs because not all the requests of

37

120 200200 300 400 480
Time (sec)

0

20

40

60

80

100

Es
ta

bl
ish

ed
 c

on
ne

ct
io

ns
 ra

te With challenges

120 200200 300 400 480
Time (sec)

200

400

600
With cookies

Figure 3.8: Effective attack rate during a connection flood attack.

the clients required a puzzle, as shown by the dark ticks in the sparkline during the attack

phase. The performance improvement was due to the opportunistic nature of the protection

controller; that is, when the listen queue was not full, connection requests were answered

without a challenge, allowing a host to take advantage of the resource instantly. We also

note that easy puzzles were unable to affect the attacker bots’ connectivity rates and thus

provided no better protection than SYN cookies did.

In addition, we measured the impact of the TCP challenges on the CPU utilization of

the client, server, and attacker machines. Figure 3.6 shows that the impact on the server

of generating and verifying the puzzles was negligible; the server’s CPU utilization stayed

below 5% and did not exceed its nominal (under regular load) value. In accordance with

the nature of computational puzzles, the CPU utilization at the clients’ machines increased

during the attack, but still remained well under 20%, with an average of 10%. The attacker

machines, on the other hand, witnessed a spike in CPU utilization during the period of

the attack, reaching a maximum of 60%. These results show that our equilibrium difficulty

setting achieved our desired goals of (1) putting minimal overhead on the server in generating

and verifying puzzles, (2) inducing tolerable nuisance for the clients, and (3) effectively rate-

limiting the attackers’ established request rate and increasing their computational burden.

In fact, the sudden increase in the CPU utilization at the botnet machines can alert the

owners of these machines to the presence of malware.

We further studied the impact of the TCP cookies and puzzles on the server’s listen

and accept queues during a connection flood attack. Figure 3.7 shows that when SYN

cookies were the only defensive mechanism in place, both queues were fully saturated, which

explains the zero throughput observed by the benign clients. On the other hand, with TCP

challenges in place, the accept queue was almost always empty, which was a direct result

38

m=12 m=15 m=16 m=17 m=18 m=20
k=1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Th

ro
ug

hp
ut

(M
bp

s)

m=12 m=15 m=16 m=17 m=18 m=20
k=2

m=12 m=15 m=16 m=17 m=18 m=20
k=3

m=12 m=15 m=16 m=17 m=18 m=20
k=4

Figure 3.9: Box plot of the client throughput for different puzzle difficulties.

of the puzzles’ ability to rate-limit every user, whether benign or malicious, to an average of

2 requests per second. In addition, the listen queue, although mostly saturated, showed

frequent openings that are consistent with the opportunistic nature of our implementation,

as indicated by the sparklines in Figure 3.4.

Finally, we showed that TCP puzzles (at Nash difficulty) throttled the attacker’s rate of

established connections. We measured the effective completed connection rate of all attackers

as seen by the server during the connection flood. The measurements, shown in Figure 3.8,

reveal that the attack rate was not affected by TCP cookies, achieving an average rate of

225 connections per second (cps), whereas puzzles severely limited the attackers’ rate down

to an average of 4 cps, a reduction by a factor of 37.

3.6.2 Experiment 2: Nash equilibrium strategy

In this experiment, we showed that the Nash equilibrium difficulty provides the optimal

balance between the clients’ throughput and the attack tolerance during an attack. We

selected the Nash equilibrium based on the capabilities of the clients and the server’s defense

requirements.

Figure 3.9 shows the average and standard deviation of the throughput of a client during

an attack. In general, for any k, if m < 12, the ease of solving the challenges did not affect the

attackers’ rate, so a denial of service occurred. The Nash equilibrium strategy resulted in the

most stable throughput, with an average of 3.90 Mbps and low variability. Even though some

of the other settings had a higher average throughput, their throughput was highly unstable,

reaching zero at many times. Further, we note that when the difficulty was set to (k = 2,m =

16), the throughput achieved a slightly better average with comparable variability. However,

the Nash difficulty setting provided the rate that balanced the acceptable cost a client was

willing to pay and the server’s ability to tolerate state exhaustion attacks by throttling the

attackers’ rates. In fact, at the Nash difficulty, the puzzles mechanism reduced the attackers’

39

200 400 600 800 1000
Sending rate per attacker (pps)

0

2

4

6

8

10

12

14
Av

er
ag

e
AC

K
ra

te
 (p

ps
)

(a) Impact on flooding rate

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Number of attack machines

0

5

10

15

20

25

30

Av
er

ag
e

AC
K

ra
te

 (p
ps

)

(b) Impact on botnet size

Figure 3.10: Impact of the puzzles on the attack as the size of the botnet and the flooding
rate are varied

average SYN sending rate from 2250 pps for (k = 2,m = 16) to 1668 pps, and the average

connection establishment rate from 30 cps to 22 cps.

3.6.3 Experiment 3: Botnet effectiveness

In the third experiment, we showed that TCP puzzles increased the server’s tolerance to

a botnet and required attackers to increase their botnet’s size to deny service. We varied

the botnet’s size and attack rate and measured the cumulative attack rate as seen by the

server, referred to as the connection completion rate. The connection completion rate is

the effective attack rate that actually impacts the server. In the first scenario, we set the

number of nodes in the botnet to 5 and varied the sending rate of each node between 100 and

1000 pps. Figure 3.10a shows the rate of completed connections as the rate of each attacker

machine was varied. The results show that the TCP puzzles were capable of rate-limiting

the effective attack rate. As the per-node attack rate increased, the effective attack rate was

limited to 11 cps in all cases.

In the second scenario, we varied the number of machines in the botnet while setting the

cumulative attack rate to 5, 000 pps; each machine’s rate was set at 5, 000/(size of botnet).

Figure 3.10b shows the measured effective attack rate as the number of machines was varied.

The results show that attackers had to increase the size of their botnets to increase their

effective attack rates. The effective attack rate, although it linearly increased with the

increase in the number of attack machines, only peaked at 25 cps. In contrast to the near-

40

150 200 250 300 350 400 450
Time (seconds)

0

20

40

60

80

100

%
 o

f c
on

ne
ct

io
ns

 e
st

ab
lis

he
d

(NA, NC) (SA, NC) (*A, SC)

Figure 3.11: Percentage of established connections when TCP puzzles adoption is not com-
plete

constant rate in the first scenario, the effective attack rate increased in this scenario since

more machines were enlisted in the botnet. However, this increase did not reflect the increase

in resources being committed to the botnet. At this rate of increase, a botnet has to commit

500 machines to reach an effective attack rate of 5000 cps.

In conclusion, the attacker cannot increase the effective attack rate by increasing the

individual rates; she has to increase the number of machines in the botnet. TCP puzzles at

the Nash equilibrium difficulty significantly increased the cost of a state exhaustion attack.

3.6.4 Experiment 4: Adoption of TCP puzzles

In this experiment, we showed that a client solving the TCP puzzles is almost always able

to connect to the server regardless of whether the attacker elects to solve or ignore the puzzles

or select a combination thereof. On the other hand, a client that does not solve puzzles

gets erratic service when the attacker is solving the puzzles and almost no service when the

attacker floods the server without solving any puzzles. In this experiment, we used machines

that were not patched to support TCP puzzles; we tested four scenarios in which (1) neither

the attacker and the clients solved puzzles (NA,NC); (2) the attacker solved puzzles while

the clients did not (SA,NC); (3) both the clients and the attacker solved puzzles; and (4)

the clients solved puzzles and the attacker did not. We group scenarios (3) and (4) together

and label them (*A, SC). Figure 3.11 shows the percentage of completed connections for

all the proposed scenarios. We observe that a client solving puzzles is not denied service

41

regardless of the attacker’s type; this happens because the attacker, being rate-limited when

solving puzzles and having its requests ignored when not solving, is not able to fill the

accept queue of the server. On the other hand, a non-solving client faced with a solving

attacker experiences a highly variable percentage of completed connections, reaching 0 at

some instances. The reason is the opportunistic nature of the puzzles controller (as observed

in Experiment 2); the rate-limiting impact on the attacker machines can empty slots in

the server’s queues, thus providing openings in which the non-solving client can establish

connections. However, when faced with an attacker that does not solve the challenges, the

non-solving clients are denied service, because the attacker’s vast resources beat the clients’

requests for the resources freed by the puzzles controller. We note that the service promises

provided by our implementation to noncompliant clients are similar, and sometimes better

than, those provided by network capabilities [67].

3.6.5 Experiment 5: Puzzle-based Queueing

In this experiment, we present a prototype solution that addresses the challenge that arises

from treating every user as potentially malicious, namely the possibility that more powerful

attackers will be able to control the majority of the server’s resources. To that end, we

modified the queueing behavior of the kernel’s TCP stack from a First In First Out (FIFO)

discipline to a priority-based behavior. Our design rests on the observation that a benign

user would have an average of n̂i = 2mi−1

βi
seconds between their requests, where βi is that

user’s hashing rate per second. So a user that can send more than one request in a single n̂i

interval is likely to be attempting to launch a connection flood attack.

We therefore allow each user i to solve puzzles at any difficulty mi > m∗, and then tag

that user’s request with a weight ηi = bmi

xi
c, where xi is the user’s request rate in a given time

interval ∆T . Computing the weights for each request requires the server to keep state about

incoming requests, which might also be a target of a state exhaustion attack. However, our

design safeguards against this vulnerability in the following manner. First, for each user i,

we need only dlog2(mmax)e bits to keep track of xi, where mmax is the maximum possible

puzzle difficulty bits (32 bits in our case). This is valid since when xi > mmax, the weight

is always 0, and thus we do not need to keep incrementing xi. We thus achieve a significant

reduction in state compared to that for a half-open TCP request. Second, we associate each

entry in our state with a timer that expires after ∆T microseconds and deletes that entry.

If we receive another request from the same user before the timer expires, we reset the timer

for another ∆T microseconds. Thus, our state will be used for only potentially malicious

users that are sending requests at a rate greater than 1
∆T

. The server can control the timer

42

m=10 m=11 m=12 m=13 m=14
Client difficulty

0

5

10

15

20

25
Re

qu
es

t t
im

e(
m

s)
priority
vanilla

(a) Performance evaluation

10 50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Timer length(ms)

0

2

4

6

8

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

pb
s)

(b) Throughput at a benign client

Figure 3.12: Evaluation of our prototype puzzle-based queueing

interval ∆T through the kernel’s sysctl interface. Finally, if the server’s state table is full,

it assigns the same weight to all requests and falls back to the same case as in Experiment

2.

We first evaluated the performance impact of performing priority queueing for every in-

coming request. We compared the average service time per request for 5 clients that were

simultaneously connecting to the server, each solving at a difficulty of 10, 11, 12, 13, and

14 bits, respectively. We differentiate between two cases: (1) the vanilla case in which we

used the FIFO queue, and (2) the priority queueing implementation. Figure 3.12a shows the

average service time for a single request in each case and indicates that, with 95% confidence,

our implementation incurs no performance penalty.

We then evaluated the effectiveness of our design when it faced a mixture of users solving at

different difficulties. We fixed the server’s minimum acceptable difficulty at (k = 2,m = 15)

and used 8 attacker machines and only 2 client machines (thus giving the majority of the

hashing power to the attackers). The client machines solved at the minimum allowable

difficulty, while the attackers used difficulties ranging from 15 to 19 bits. We varied the

state table timer (∆T) from 10 ms to 1000 ms and measured the throughput at the client.

Figure 3.12b shows the throughput at a benign client as the timer interval ∆T was in-

creased. We notice that in all cases, the client was able to connect to the server and reach

a throughput of at least 4.5 Mbps. That is a significant improvement over the scenario pre-

sented in Experiment 2, in which for (k = 2,m = 15) the clients were not able to connect to

43

the server (Figure 3.9). We also note that the length of ∆T had little impact on the observed

client throughput. However, when ∆T = 10 ms, the client saw its lowest throughput. The

reason was that the client was attempting to connect to the server at a rate of 20 packets per

second (i.e., a new connection every 50 ms). Therefore, for ∆T < 50 ms, the client’s timer

was always renewed, and thus the weight assigned to it quickly reached 0 and its requests

were treated as malicious.

3.7 LIMITATIONS AND DISCUSSION

In this section, we discuss the challenges facing the adoption of client puzzles and provide

an analysis of their limitations.

Software adoption: As showcased by our experiments, there is a great benefit for servers

to adopt client puzzles as a mechanism for tolerating state exhaustion attacks. By rate-

limiting users and protecting the server’s queues, client puzzles present service providers with

a chance to provide continuous service during state exhaustion attacks. Our implementation

has several features that make it easy to adopt. First, a server can easily support client

puzzles by simply patching its kernel. Second, our patch does not introduce any changes to

the normal operation of the server and sends challenges only when the queues overflow; the

TCP stack remains intact otherwise. Finally, our patch is compatible with earlier versions

of the Linux kernel provided they support cryptographic operations.

While servers are incentivized to adopt TCP puzzles by the increased tolerance of attacks,

clients, on the other hand, benefit from the promise of receiving service even during attacks.

As shown in Experiment 4, users that enable support for client puzzles are always able to

connect to the server. The users that choose not to adopt the challenges still receive full

service under regular load. However, during an attack, those users will be in contention with

the nonsolving attackers for the spots are freed up by the server’s opportunistic challenges

controller. That scenario is no worse than the case when no challenges are applied. Note that

our theoretical formulation validates this observation; a user that does not adopt challenges

is similar to one that values the server’s services at w = 0.

Replay attacks: Since the server does not retain state about an incoming connection before

receiving a valid challenge solution, an attacker might capture legitimate clients’ solutions

and replay them to overflow the server’s accept queue. We note, however, that for a replayed

solution to be validated, the attacker must retain the packet’s parameters (IP addresses, port

numbers, and timestamps). Therefore, a replayed solution can only be used to occupy one

slot in the server’s queue at a time. In addition, our implementation ensures that puzzles

expire after a set timeout interval. The timeout interval limits an attacker’s ability to carry

44

out a replay flood effectively, and thus our implementation is resistant to such attacks.

Fairness and power considerations: Finally, client puzzles research faces an impor-

tant challenge arising from the presence of a nonuniform mix of power-limited (e.g., mobile

phones, IoT devices) and power-endowed (e.g., GPU-enabled desktops) benign devices. Mo-

tivated by the work in [70], in Experiment 5, we built a prototype design that is intended

to combine puzzle difficulty and request rates to assign weights to clients’ requests. Our

preliminary results are promising, and we plan to explore this further in the future.

3.8 CONCLUSION

In this chapter, we presented a theoretical formulation and implementation of client puzzles

as a means for tolerating state exhaustion attacks. We addressed the challenge of selecting

puzzle difficulties by modeling the problem as a Stackelberg game in which the server is the

leader and the clients are the followers. We obtained the equilibrium solution that illustrates

a tradeoff between the clients’ valuation of the requested services and the server’s service

capacity. We then provided our implementation of the puzzles as a Linux kernel patch and

evaluated its performance on the DETER testbed. Our results show that client puzzles are

an effective mechanism that can be added to our arsenal of defenses against DDoS attacks.

45

CHAPTER 4: MIDGARD: CROSS-LAYER DEFENSE TO VOLUMETRIC
DISTRIBUTED DENIAL OF SERVICE ATTACKS

4.1 INTRODUCTION

In recent years, the scale and complexity of Distributed Denial of Service (DDoS) attacks

have grown significantly. The introduction of DDoS-for-hire services has greatly reduced the

cost of launching targeted attacks to a low of $10 per-hour [96]. This is further exacerbated by

the increased adoption of poorly-secured, hard-to-patch, Internet of Things (IoT) devices,

rendering it easy for malicious actors to amass botnets of millions of devices [62]. The

direct exposure of IoT devices to the Internet has also allowed attackers to diversify their

arsenal of attacks and launch multi-vectored attacks that include bandwidth-exhaustion,

state-exhaustion, and application layer attacks [60].

DDoS-for-hire and IoT devices have greatly contributed to lowering the barrier of entry

for DDoS actors, thus creating a large imbalance between the cost of launching an attack

and that of sustaining one [69]. This imbalance is further brought to light by attackers that

employ reflection attacks such as DNS or NTP reflections. In fact, using poorly configured

memcached servers, attackers were able to reach an unprecedented 51,200x amplification fac-

tor [97]. It is therefore of paramount importance that we address this imbalance and reclaim

the defenders’ advantages.

Common DDoS mitigation techniques nowadays rely on the services of cloud- and CDN-

providers, such as Cloudflare or Akamai, that massively over-provision data centers in an

attempt to absorb attack traffic and perform filtering and scrubbing techniques. Although

widely adopted by industrial settings, such approaches carry the risk of turning the DDoS

landscape into an unsustainable bandwidth war between attackers and cloud providers, fur-

thering the stress on the network infrastructure, especially as we enter the era of unprece-

dented Tbps attack traffic levels [98]. They further do not provide any solutions to the

cost imbalance problem; the burden of defending DDoS attacks is falling increasingly on the

shoulders of the victim and the network, while the barrier of entry for DDoS is getting lower.

Capability-based approaches [29, 99, 100] attempt to authorize network traffic that tra-

verse congested links by requiring senders to obtain specific authorization tokens from a

destination server. The server can then request specific rate limiting mechanisms or band-

width allocation schemes. It is the job of the network (i.e., the routers) to implement the

mechanisms and validate the capabilities. In addition, capability-based approaches require

routers to reserve a fraction of their bandwidth for capability request packets; that capa-

bility request channel can also be subject to denial of service (or denial of capabilities)

46

attacks [30]. Furthermore, both CDN- and capability-based approaches do not provide any

protection against attacks that target links other than the victim’s direct upstream link,

such as the Crossfire [101] and the Coremelt [102] attacks.

In this chapter, we present Midgard, an end-to-end solution that combines (1) routing

defenses, (2) network capabilities, (3) client puzzles, and (4) cloud elasticity and deployability

to provide resistance to large-scale, multi-vectored DDoS attacks. Midgard is comprised of

traffic management and policing boxes and routers that reside in a victim’s upstream ISP, and

uses client puzzles as network capabilities to influence routing and traffic policing decisions

on the path to the victim. We implement Midgard on a custom box running general

purpose Linux and the elasticity and provisioning of cloud networks to provide a deployable

solution. We implemented Midgard using the Linux kernel’s AF XDP sockets that allow us

to maintain near line-rate processing speeds. We evaluated our implementation using a set

of experiments on the DETER testbed. Our results show that the use of client puzzles to

drive traffic policing decisions improves the network’s ability to sustain volumetric DDoS

attacks, and restore the balance between the cost of launching and defending such attacks.

4.2 PROBLEM STATEMENT

Midgard is designed as an easy-to-deploy end-to-end solution to bandwidth- and state-

exhaustion DDoS attacks occurring at Layers 3 and 4 of the networking stack. Dealing

with application layer attacks is beyond Midgard’s scope as it requires application level

information and control over the actual victim’s resources. We designed Midgard to bring

about the advantages of (1) capabilities for rate limiting and traffic policing, (2) client puzzles

for balancing the cost of attacks and defenses, and (3) cloud deployments for initial attack

containment. In what follows, we identify a set of desirable properties that a DDoS solution

must provide for it to be effective.

Cost Balance and Fairness. Solutions such as traffic filtering, capabilities, and cloud-

powered overlays and CDN, put the burden of providing resistance of large scale attacks

solely on the victim’s shoulders (and the cloud provider, though the victim must bear the

monetary cost). However, motivated by the quick increase in the scale and diversity of

attacks, the barrier of entry for attackers is at an all-time low, especially with the advent

of DDoS-for-hire services. This cost imbalance has greatly tipped the scale in favor of the

attackers and has effectively provided them with an easy pass to an ever increasing scale of

DDoS attacks.

Midgard addresses this cost imbalance problem by leveraging client puzzles at the net-

47

work level, and essentially forcing attackers to provide “payment” for their share of the

traversed links’ bandwidth. This also carries the additional benefit of alerting users of com-

promised bot machines of the possibility of security breaches.

However, client puzzles suffer from two major disadvantages. First, the puzzles do not

provide fairness guarantees to low-powered devices as well as devices that have a generally

low traffic sending rate. Second, similar to the 51% attack in cryptocurrencies, attackers

with large botnets that can control a larger aggregate hashing power than the legitimate

clients will end up controlling the largest fraction of the bandwidth, and thus achieve their

goals of the denial of services; we refer to such a case as the majority-hashing attack. The

per-computation fairness model introduced in [30] and [103] (1) disfranchises low-powered

IoT and mobile devices, (2) does not reward legitimate clients that send lower volumes of

traffic, and (3) provides little resistance to the majority-hashing attack. Midgard addresses

these issues with client puzzles by combining traffic policing and capability-base rate limiting

with client puzzles at the victim’s upstream ISP level.

Deployability. Midgard’s design introduces the following deployability challenges. First,

since Midgard employs client puzzles, it will require software updates at the affected clients.

This is an essential part of our end-to-end solution paradigm. Second, adopting client puzzles

requires Midgard to provide a puzzle distribution mechanism. [30] and [103] suggest using

DNS servers and ICMP messages as puzzle distribution schemes, respectively. We discuss

the shortcoming of these approaches in Section 4.4.1 and discuss how Midgard leverages

the two ways nature of Internet communication (from the point of view of the client) to

distribute puzzles without the need for trusted third parties or ICMP messages.

Finally, Midgard’s capabilities-based policing and rate-limiting requires upgrades to the

network hardware, as it needs enforcement at the network level (routers and switches). We

leverage recent advances in SDN and programmable networking to provide an incremen-

tally deployable adoption scheme that minimizes the need for hardware upgrades. Addi-

tionally, unlike previous capabilities-based and client puzzles approaches [29, 32, 99, 103],

Midgard only requires updates to the networking equipment at the victim’s upstream ISP,

and does not require implementation across administrative domains. In fact, we believe that

Midgard can be provided as a subscription-based service for the clients of an ISP, thus

alleviating the one-time cost of its deployment.

Resistance to Cloud Bypass Attacks It is possible for attackers to circumvent current

cloud-based DDoS solutions by exposing the victim’s IP address and sending attack traf-

fic directly to it (rather than going through DNS) [104, 105, 106, 107]. We discuss how

Midgard provides resistance to such circumvention attempts in Section 4.4.2.

48

Upstream ISP VictimInternet

Attack Traffic

Benign Traffic

Client Puzzles Puzzles-based Traffic Policing Traffic Policy

Figure 4.1: Overview of Midgard. The Midgard server distributes client puzzles and
creates capabilities that the victim’s ISP uses to police ingress traffic.

4.3 MIDGARD OVERVIEW

We show a high-level overview of Midgard in Figure 4.1. The Midgard server (or box)

resides at the edge of the victim’s ISP. We envision that Midgard’s protection mechanism

can be provided as a subscription to interested clients, similar to Amazon’s AWS Shield [108].

Deployment of Midgard within a single ISP provides the benefits of network-level protec-

tion without the need for agreements that span multiple authoritative domains such as

those necessary for other mechanisms [29]. Furthermore, we leverage the recent advances

in SDNs and programmable networking hardware to provide cost effective deployment and

maintenance of Midgard within the ISP’s network.

When under a DDoS attack, all traffic destined to the victim is redirected to the overly pro-

visioned Midgard server, in a way similar to that performed by cloud-protection providers

and adopted in [104]. However, unlike cloud protection services, Midgard only uses the

over-provisioned cloud to absorb the initial impact of the attack. It does not perform any

traffic scrubbing and rather attempts to stop the attack at the source. To that end, the

Midgard server acts as a puzzles distribution service and handles the generation, distribu-

tion, and verification of the cryptographic challenges. When a sender’s (whether malicious

or benign) puzzle verification is successful, the server will then create a cryptographic capa-

bility based on the state of the downstream links to the victim, the sender’s puzzle difficulty,

and the sender’s past behavior.

Unlike the work in [104], beyond dropping packets with incorrect puzzle solutions, the

Midgard server does not perform any direct routing decisions. It will create the capability

nonce that the downstream ISP routers will then use to enforce the traffic policies. This

49

reduces the workload of the Midgard server while also reducing the stress on the routers’

processors and memory, and requiring no inter-router communication, as compared with

prior capability-based approaches [29].

Finally, unlike previous capability and cloud-based approaches, by using client puzzles,

Midgard gets the added benefit of protecting Midgard’s internal maintained state from

state-exhaustion attacks, thus proving resistance to multi-vectored DDoS and reducing the

attack surface introduced by the added mechanisms. In fact, in Midgard’s setup, client puz-

zles serve a dual purpose. First, as originally intended in [71], the puzzles protect Midgard’s

state from state-exhaustion attacks since every sender will need to solve a puzzle to occupy

an entry in the server’s memory. Second, Midgard translates the received puzzle solutions

into capabilities that downstream routers will use to perform traffic policing, thus eliminat-

ing the need for a capability requests channel and efficiently dealing with denial of capability

attacks.

4.4 MIDGARD ARCHITECTURE

Midgard aims to provide a synergy between the most efficient DDoS protection mecha-

nisms in the goal of providing strong resistance to large scale, multi-vectored, DDoS attacks.

The Midgard box is composed of 3 agents: (1) the puzzle generation and distribution agent,

(2) the puzzle to capabilities translation agent, and (3) the network state estimation agent.

On the other hand, routers in the victim’s upstream ISP network run a capabilities enforce-

ment and policing agent. In what follows, we discuss the design and architecture of each of

these agents.

4.4.1 Puzzle Generation and Distribution

Once an attack is detected, the Midgard server will start asking each sender to solve a

cryptographically hard puzzle in order to gain a “right of entry” into the victim’s upstream

ISP network. Previous puzzle based defenses often made it the responsibility of the sender

(i.e. the client) to initiate the puzzles protocol. Portcullis [30] requires users to send DNS

queries to specific domains to obtain a valid puzzle nonce. Users will then keep solving

harder and harder puzzles until they are able to obtain a valid capability. Mirage [109]

redirects senders to specific puzzle servers that will handle the dissemination of puzzles, and

Congestion Puzzles [103] requires users to continuously probe the network for congestion

and receive puzzles from routers in the form of special- purpose ICMP message.

50

Such approaches violate our deployability requirement for the following reasons. First,

they require the cooperation and approval from authoritative DNS server to store and deliver

puzzles. Second, they require the presence of dedicated servers or CDNs thus increasing the

cost and trust requirements of deployment. Third, ICMP message are ill-equipped to handle

puzzle distribution since (1) clients should not be expected to explicitly probe the network

for congestion information and (2) more importantly, senders behind NATs or firewalls will

not be able to receive such messages; typical firewall configurations often block ingress ICMP

messages or only allow ingress traffic that matches previously recorded outgoing traffic.

In this work, we adopt a different strategy. We believe that any puzzle-based protocol

should always be initiated by the destination when it detects the presence of an attack. It is

therefore the responsibility of the Midgard server to generate and distribute puzzles to the

senders. By doing that, Midgard requires no support from DNS authorities and remains

within the same trust boundary as the victim server and its upstream ISP. Additionally,

Midgard leverages the experimental capabilities of IP’s Experimental Congestion Notifica-

tion (ECN) [110, 111]1 and IP header options to signal congestion and distribute puzzles,

thus eliminating the dependency on ICMP messages and the requirements for clients to send

probe messages.

When congestion is detected at the downstream links to the victim, the Midgard server

start generating puzzles and capabilities. After receiving a packet from sender si destined

to the victim’s IP address IPv, the server will generate a puzzle nonce xi such that

xi = H (T, IPv, K) (4.1)

where T is the current server’s timestamp, K is a secret only known to the Midgard server,

and H is a publicly known preimage resistance cryptographic hash function, such as SHA3.

Similar to the approach in [30], we specifically do not include si’s IP address to avoid the

problems introduced by devices behind NATs and attackers with spoofed IP addresses. The

server will subsequently send a packet back to si with the ECN bits of its IP header set to

01 and the nonce xi and the timestamp T included in the packet’s IP options. The server

will also forward si’s packet to the downstream routers to be served as legacy traffic, i.e., it

will receive a best-effort treatment by the downstream routers.

In order to be able to deliver its puzzle packets and avoid such packets being dropped

by sender-side firewalls, the Midgard server will peak into the sender si’s transport layer

protocol and send the puzzle in a packet carrying a header for the same protocol and destined

1Restrictions on experimentation with ECN were relaxed in RFC [111] which provides us with a deployable
option for puzzle distribution.

51

to the same port numbers. Achieving this is trivial for the case of TCP: the server can simply

send a TCP RST packet containing the puzzle nonce, to which the sender will respond with a

new connection handshake request (TCP SYN) along with the puzzle solution. Alternatively,

to avoid the overhead of initiating a new connection, the server can send the puzzle nonce

to si through a TCP KeepAlive message. In the case of UDP, since the protocol contains

no state information, Midgard will simply send a payload-free UDP packet to the same

originating port but with the IP ECN bits set and the nonce in the IP options. This will

indicate to si that the destination is under attack and that it should start solving puzzles. In

the cases of UDP and TCP KeepAlive messages, since parsing and processing of IP headers

will happen prior to transport headers, the puzzles agent at the sender can safely ignore

these packets and flag to the application the need for solving puzzles for the next packets.

The Client’s Agent. Upon receiving a packet with the ECN bits set and with a puzzle

nonce, the sender si will generate a random client nonce r, select a puzzle difficulty d it is

ready to commit to, and generate the solution y such that

H (y||xi||d||r) = b0b1b2 . . . bd−1︸ ︷︷ ︸
0 bits

bdbd+1 . . . bm−1 (4.2)

where H is the same publicly known hash function that the server used to generate xi and

m is the bit length of H’s output. Assuming H is chosen well, the sender’s best option is to

find y by brute force, and is expected to perform an average of 2d−1 hash operations to find

the solution [71, 112]. si will finally attach r, d, T , and y to its next packet destined to IPv

and set the ECN bits of the IP packet to 02.

Upon receiving such a packet, the Midgard server will first regenerate xi (according to

Equation (4.1)) and check that the first d bits of the outcome of Equation (4.2) are 0. If the

puzzle solution is correct, the server will generate a capability nonce ci for si and create a

mapping in its table from si’s nonce r to its capability ci. It will include ci in the IP header

options of si’s packet and set the ECN bits of the IP packet to 11 informing the downstream

routers that congestion has occurred that they should use the capability to perform traffic

policing.

Dealing with puzzle reuse. As shown in Figure 4.2, an attacker that can sniff a sender’s

packets (either by compromising the sender itself, or by capturing packets on the fly) can

observe the sender’s nonce r and solution y and use them to send its own traffic, thus sending

packets on the original sender’s dime. Although acknowledged in previous research [30, 103],

little attempts have been done to alleviate this problem; in [103], the authors dismiss this

challenge by assuming that the attackers have limited access to the sender’s packets, while

52

1
1 12

3 3 4

User

Midgard
Server

Victim

<x,T>
<r,d,T,y> <w>

<r,d
,T,y

>

Attacker

Figure 4.2: Puzzle distribution mechanism. Upon receiving the first packet from the user,
the Midgard server forwards that packet in best-effort and sends a nonce and a timestamp
to the user. The user then solves the puzzle at a certain difficulty and adds the solution
to every packet it sends to the victim server. Upon receiving such packets, the Midgard
server validates the solution and forwards the packet to the victim server while tagging it
with the computed user’s capability. However, in such a case, an attacker that can sniff the
user’s packets can steal the user’s solution and send packets on its behalf.

in [30], the authors suggest caching puzzle solutions at routers (by using Bloom filters) to

detect puzzle reuse, which then increase the memory load on the routers and opens up a new

vector of attack. We note that public key cryptography is not an adequate solution in this

case since key exchange and signature time can quickly become bottlenecks in our protocol,

thus defeating the entire purpose of Midgard.

In this work, we adopt a different strategy. We treat puzzle solutions similarly to one-time

pads, i.e. each puzzle once attached to a packet will henceforth be discarded. To that end,

we leverage recent results [90] showing that puzzles defined as in Equation (4.2) have strong

difficulty guarantees: namely that solving n such puzzles costs about n times the cost of

solving a single one. Therefore, instead of solving a single puzzle of difficulty d, the sender

si will solve n = 2k sub-puzzles each having a difficulty d′ = d− k. Using the strong puzzle

notion, this will guarantee that si will perform the same amount of work, on average, as it

would have had it solved a single puzzle of difficulty d, since the expected number of hash

operations it must perform is

n× 2d
′−1 = 2k × 2d−k−1 = 2d−1 (4.3)

Formally, upon receiving a puzzle nonce xi, si will generate n sub-puzzles {y1, . . . yn} such

that

H (yj||j||xi||n||d′||r)) = b0b1 . . . bd′−1︸ ︷︷ ︸
0 bits

bd′dd′+1 . . . bm−1 (4.4)

53

1
1 12
3 4

User

Midgard
Server

Victim

<x,T>
3 <r,n,d,T,y1>

<r,n,d,T,y2>

<r,n,d,T,yn>

Figure 4.3: Countering puzzle reuse by malicious attackers. Unlike Figure 4.2, instead
of solving a single puzzle and tagging each packet, the user solves n sub-puzzles of lower
difficulty and tags each packet with a different solution. Each solution allows the user to
send only one packet before being discarded, therefore preventing attackers from reusing
puzzles even if they can sniff the user’s packets.

for j ∈ {1, 2, . . . , n}. The sender can then attach < r, n, d′, T, j, yj > to every packet it

sends to the victim server. The sub-puzzles in this case will then serve the dual purpose of

rate limiting the senders as well as allowing si to specify that it wishes to send n packets

using the same puzzle nonce, and thus using the same capability (note however that the

Midgard server can only guarantee that si will be able to send ≤ n packets). An attacker

that can capture y1, y2, . . . , yk for a certain k < n cannot reuse them to send any packets.

Also, since puzzles are strongly difficult, the attacker cannot infer anything about the next

solution yk+1. Finally, at the Midgard end, the server can keep track of the next sub-puzzle

to expect by keeping a counter of the packets, p, sent by si (as it will need to do that for

capability enforcement). It can discard any solution with j < p. We illustrate how the

Midgard protocol defeats puzzle reuse in Figure 4.3.

4.4.2 Traffic Policing

In order to provide a fair allocation of resources, the Midgard service leverages the fact

that a legitimate (and a conforming malicious) user will send n packets while solving a sub-

puzzle for each of them. Since the timestamp t0 at which the puzzle was generated is always

echoed in the sub-puzzle solutions (and cannot be manipulated on a correct solution), the

service can estimate how long did it take the user to produce a solution for a sub-puzzle of a

certain difficulty as well as the rate at which that user is sending her packets. We illustrate

the estimation process in Figure 4.4.

Let hi be user i’s hashing rate and Xj(d) be a random variable representing the time

54

Figure 4.4: Hashing and flooding rate estimation process.

needed by client i to produce a solution for sub-puzzle j at a difficulty d. For ease of

notation, we will drop the (d) indexing since the puzzle difficulty is always known to both

the user and the Midgard service. From the puzzle definition in [71] and the results in [90],

we know that the Xj’s are i.i.d ∼ Uniform(0, 2d

hi
] random variables with E[Xj] = 2d−1

hi
, ∀j.

Additionally, let αj ≥ 0 be a random variable representing the time interval that the user

holds off on sending packet j after having solved its corresponding sub-puzzle. In other

words, a user, after sending packet j, will wait Xj+1 +αj+1 before sending packet j + 1. We

note that the Midgard service does not know the distribution of the αj random variables as

they are dependent on the application and the behavior of the users. In addition, malicious

users would want to get αj ↘ 0, ∀j.
Finally, let R̂TT j be the round trip time taken between the time the Midgard service first

sent the puzzle nonce xi and the time it received the solution yj. We note that R̂TT 1 = RTTi

where RTTi is the round trip time between the Midgard service and the user, which can

be estimated using TCP packets [113, 114] or through dedicated services [115, 116]. This

model illustrates an important feature of client puzzles, namely that they impose physical

constraints on any bot machine to flood the network. Since the random variables Xj depend

on the computational prowess of the machine performing the puzzle computation, for a fixed

difficulty d, the attacker’s flooding rate is bound by the computational limitations of her

botnet machines.

Estimation. Let tj be the time when the Midgard service receives a packet containing

55

a solution yj, we can thus compute

∆Tj = tj − t0 =

j∑
k=1

Xk +RTTj +

j∑
k=1

αk, for 1 ≤ j ≤ n (4.5)

Then by taking pairwise subtractions of observed ∆Tj values, we can build the following

sequence 

δ1 := ∆T1 = X1 + α1 +RTTi,

δj := ∆Tj −∆Tj−1 = Xj + αj +
(
R̂TT j − R̂TT j−1

)
︸ ︷︷ ︸

ε

for j > 1

(4.6)

We note that R̂TT j − R̂TT j−1 = ε is the instantaneous packet delay variation from the user

to the Midgard service (often referred to as jitter).

Equation (4.6) translates to the Midgard services obtaining a series of observations

{δ1, δ2, . . . , δn} that it can use to estimate the user’s computational power as well as their

sending rates. Since at every observation, the system of variables to be estimated is al-

ways under-determined, Midgard cannot estimate both Xj and αj. Instead, we use the

observations to estimate the sum Xj + αj.

We implemented Midgard in a modular way that allows ISPs to implement different es-

timators given the knowledge they have about the network and their users. For the purposes

of this chapter, we describe one of those possible estimators.

Our Midgard estimator draws on the approaches to estimate a TCP packet’s round-trip-

time to infer network congestion [52]. Upon receiving its first observation δ1 from user i, the

Midgard server computes its first estimate λ̂1 by simply subtracting its previously known

from δ1. Subsequently, Midgard uses the low-pass filter to adjust its estimates using the

low-pass filter update rule as shown in Equation (4.7).{
λ̂1 = δ1 −RTTi
λ̂j = β × λ̂j−1 + (1− β)× (δj − δj−1) , for j > 1, 0 < β < 1

(4.7)

By using the low-pass filter with β > 0.5, the Midgard estimator is less sensitive to

fluctuations in the clients’ computation times (Xj+1 + αj+1 − (Xj + αj)) by placing more

emphasis on the prior estimates. This is particularly important since the Xj random vari-

ables are uniformly distributed over the range (0, 2d

hi
], for a difficulty d and hashing rate hi.

Considering the worst-case scenario where an attacker attempts to flood the victim server

(i.e. αj = 0, ∀j ≥ 0), Xj+1 − Xj has a triangular distribution over the interval [−2d

hi
, 2d

hi
].

56

This fact can introduce higher variability in the observed differences δj+1− δj and cause the

estimator to fluctuate. The low-pass filter counters this behavior by placing more emphasis

on the previously computed estimates and lesser emphasis on the differences in observations.

Computing and enforcing traffic policies. As discussed earlier, Midgard allows the

server seeking protection to choose their own puzzle-based traffic policing mechanisms. In

other words, given the estimated values for λ̂ij, the ISP customers can choose the mechanism

that assigns capabilities and allocates the appropriate share of bandwidth for each user. This

approach is similar to that presented in [104] aiming to enforce destination-based policies at

cloud-based protection providers.

In this chapter, we provide an illustrative policy that assigns each user a share of the

bandwidth that is inversely proportional to its sending rate. Specifically, the Midgard

server assigns a weight ωij for each user i’s packet j, and then instructs the downstream

routers to perform weighted-fair-queueing based on the assigned weights.

Let ωk be the weight that the Midgard server assigned to user k’s last packet. Upon

receiving packet j from user i, Midgard updates i’s weight to

ωij =
λ̂ij∑
k λ

k
(4.8)

To enforce the traffic policy, the Midgard service will stamp all downstream packets

pertaining to user i with its current computed weight ωij. If user i behaves in a regular

predictable way, then its weights {ωi1, . . . , ωin} will not change much and due to the design

of Midgard’s estimator, will minimally be affected by path instability.

The routers downstream of Midgard will parse the packet weight and perform weighted-

fair-queueing on all packets destined to the victim IP address. For those packets that do not

contain weights, but still have their ECN bits set, the downstream routers will treat those

packets as best-effort packets.

Finally, we note that throughout the period where the attack is taking place, we configure

the ISP’s edge routers to drop any packets destined to the victim’s IP address that arrive

on an ingress port. Ignoring packets those packets serves the dual purpose of preventing

cloud-bypass attacks as well as preventing an attacker from assigning false weights to its

traffic. Note that unlike in previous work [29, 30, 103, 104], since the Midgard service

and the downstream routers reside within the same trust boundary, we do not need explicit

authentication on and thus do not require a key management infrastructure. We believe that

the benefits of Midgard’s ISP-level deployment alleviates many of the challenges facing the

deployments of previous DDoS defense mechanisms.

57

Li
n

u
x

 K
e

rn
e

l

Network Hardware

N
IC

XDP sk_buff

M
id

ga
rd

 S
ta

te
 (B

PF
 M

ap
s)

AF
_X

D
P

Linux Network
Stack

Device Driver

U
se

rs
p

ac
e Midgard Application

Generate Puzzle Verify solution and
Generate capability

1

2

Figure 4.5: Workflow implementation of Midgard using AF XDP. Dashed arrows correspond
to data communication between the user application and the kernel maps. This workflow
shows only the lifetime of the packets that are destined to the victim. After passing through
the network hardware, packets bypass the Linux kernel’s networking stack and are directly
passed to userspace. Packets that follow the path labeled with (1) are packets that do not
contain nonces and thus require Midgard to generate a new puzzle. On the other hand,
packets following the (2) path contain nonces and thus will undergo the verification and
capability generation procedures.

4.5 IMPLEMENTATION

We implemented Midgard using the capabilities provided by the Linux eXpress Data

Path (XDP) and its associated userspace AF XDP sockets. XDP allows for safe, fast, and

programmable packet processing by integrating a limited in-kernel virtual machine (namely

the extended BSD packet filter, eBPF) with userspace applications without sacrificing security

and isolation [117]. By leveraging XDP, the Midgard proxy implementation bypasses the

kernel networking stack and allows for zero-copy packet processing by the Midgard appli-

cation. This optimization, in turn, reduces the possibility that Midgard’s would become a

bottleneck in the DDoS defense mechanism.

Figure 4.5 shows the path of a packet as it passes through the Midgard server. For

58

brevity, we only show the path taken by packets destined to the victim server. After the

network hardware captures the packet, it passes it to the Linux kernel for processing. The XDP

module sits within the networking device driver and bypasses the need for creating an sk buff

structure as is typically performed. Instead, the module passes the packet’s memory area

ownership to the userspace Midgard application through the use of the AF XDP interface.

Packets that do not contain a client nonce and a puzzle solution follow path 1 where the

application will generate a puzzle nonce, send it back to the client, and forward the packet in

a best-effort manner through the Linux network stack using raw sockets. On the other hand,

the application verifies packets that contain solutions (path 2) and generates capabilities

for the packet’s associated client nonce. The application then forwards the packet to the

destination using raw sockets through the Linux network stack. In Section 4.6, we show that

our implementation adds little overhead to the packet processing pipeline.

Maintaining State at the Server. For each client the solves puzzles, the Midgard

server must maintain some metadata in order to process the requests and generate the

capabilities. However, we note that the puzzles protocol itself is stateless, i.e. the server

does not need to maintain the created nonce to validate a solution; it can recreate the original

nonce from the solution itself and then validate it in two hashing operations.

As described in Section 4.4, to detect reused puzzles, the Midgard server maintains an 8

bit counter that is reset every 256 packets. Any packet received with a puzzle index that is

less than the current counter would be discarded. However, when implementing this set up in

practice, we noticed that packets might arrive out-of-order due to network delays. Therefore,

using a monotonically increasing counter risks dropping packets that contain valid solutions.

To address this challenge, we modified our approach as follows. Instead of an 8 bits counter,

the Midgard server maintains a circular 64-bit vector ` for each sender si. For any puzzle

solution yj, the bit `j is set if and only if yj has been received and validated. We show the

details of our modified implementation in Algorithm 4.1. To allow for packets to arrive out-

of-order, we split the 64-bit vector into four buckets, each of width 16 bits. Upon receiving

solution yj, the Midgard server drops the packet if bit j is set. Otherwise, we first set bit

j, then clear the bucket (j
16

+ 1)%4 and invalidate the bucket (j
16

+ 2)%4. By doing this, the

server guarantees that only the 16 packets from the bucket (j
16
−1)%4 to arrive out-of-order,

while earlier packets are dropped. On average, this approach guarantees that a packet can

be delayed by up to 8×RTT , which is enough to account for lost or delayed packets under

TCP. Unlike previous approaches [30], our implementation does not store any solutions and

only requires tracking a 64 bit value for each sender.

Overall, for each user, the Midgard server maintains 336 metadata bits composed of

59

Algorithm 4.1: Checking for solution reuse in Midgard.

1 count← bitvec < 64 > ()
2 Func CheckForReusedSolutions

Inputs : packet p, solution yj
Outputs: {ACCEPT, DROP}

3 mask ← 1 << j
4 if count ∧mask then
5 DropPacket(p)
6 return DROP

7 else
/* clear our the next bucket */

8 bucket←
(

j
16 + 1

)
%4

9 mask ← ∼ (0xFFFF << (bucket ∗ 16))
10 count← count ∧mask

/* disable the bucket after */

11 bucket←
(

j
16 + 2

)
%4

12 mask ← (0xFFFF << (bucket ∗ 16))
13 count← count | mask

/* set the matched entry */

14 mask ← 1 << j
15 count← count | mask
16 return ACCEPT

the following fields: 32 bits nonce, 32 bits timestamp to record the time the last puzzle

was generated, 64 bits to track the number of packets sent by this user, 64 bits to track

the number of bytes sent by this user, 64 bits for the puzzle reuse counter, 8 bits for the

puzzle difficulty, 8 bits for the number of sub-puzzles the user committed to, and finally a

64 bit pointer to a timer function. To account for users dropping out or merely ending their

sessions, the Midgard server maintains a timer for each user. That timer is reset every time

a new valid puzzle solution is received. One the timer expires, all metadata corresponding

to that user is deleted, and the memory can be reused for new users.

We believe that 336 bits are an acceptable state to maintain for each user for the following

reasons. First, since we implement Midgard on a dedicated server running Linux, we benefit

from access to large amounts of free memory (in the order of GB to TB). Second, even the

Midgard is managing 1 million simultaneous active users, the total memory needed is

106× 336 = 420MB, which can be easily supported by any standard Linux machine, let alone

a dedicated server.

Client-side Implementation. Midgard requires clients to parse the puzzle packets and

to generate solutions for each IP packets sent subsequently. Therefore, we wrote a kernel

patch to the Linux 4.18 kernel that allows any general-purpose machine to parse IP options

and recognize puzzle nonces sent from a server. If the kernel detects a puzzle nonce, it

60

sets a flag in the corresponding socket’s data structure and saves the nonce along with its

corresponding timestamp. Anytime an application wants to send an IP packet, the kernel

checks the puzzle flag in the socket and creates a new solution if the nonce has not yet

expired. If the nonce has expired, the kernel sends does append any options, signaling to

the Midgard server that it is requesting a new nonce. In our implementation, we allow

the users to change the number of puzzles to solve as well as the difficulty of every puzzle

through the use of the kernel’s sysctl interface.

Deployability. We designed Midgard to be easily deployable within an ISP network.

With the advent of SDN and Network Function Virtualization (NFV), ISPs can easily deploy

a Midgard server as a virtual function that can be spun anytime a DDoS attack is detected

against a protected victim. In addition, an NFV deployment of Midgard allows ISPs to

easily scale up against larger attacks by spawning additional virtual appliances, as described

in [33]. ISP customers that subscribe to the Midgard protection service need not make any

changes to their software or infrastructure. They should only provide custom traffic policing

policies that the ISP can deploy on the Midgard servers.

On the other hand, clients that wish to communicate with a server that uses the Midgard

protection service must be able to support client puzzles at the IP layer. To that end,

the server can distribute our simple Linux kernel patch to clients that wish to add this

functionality. Alternatively, to accommodate users behind firewalls, legacy devices, and low-

powered IoT devices, the ISP can designate puzzle supernodes to act as proxies on behalf

of such clients, similar to those deployed by Skype [118], PlanetLab [119], and in [120].

In such a case, instead of communicating directly with the victim server, clients would be

redirected to a puzzle supernode that will solve puzzles on their behalf and tag their packets

with the corresponding solutions. However, this mechanism comes at the cost of requiring

authentication to make sure that bot machines do not use supernodes as part of their DDoS

attack. We plan to explore the challenges of using puzzle proxies in our future work. Finally,

we note that by using the IP options, our implementation does not cause packet drops along

the paths between clients and the server since routers typically ignore such option fields.

4.6 EXPERIMENTS

We now turn to evaluate Midgard and measure its impact on the resiliency of our

networks against DDoS attacks. Therefore, in this section, we set out to answer the following

research questions.

RQ 4.1 What is the overhead of implementing Midgard on the operation of a network?

61

 0

 1

 10

 100

Vanilla

AF_XDP

Diff-2
Diff-4

Diff-8
Diff-10

Diff-12

Diff-14

Diff-16T
h
ro
u
g
h
o
u
t
(M
b
p
s
)
--

 L
o
g
s
c
a
le

TCP Upload Benchmark

(a) Throughput at a client running a TCP
upload stream.

 0

 1

 10

 100

Vanilla

AF_XDP

Diff-2
Diff-4

Diff-8
Diff-10

Diff-12

Diff-14

Diff-16T
h
ro
u
g
h
o
u
t
(M
b
p
s
)
--

 L
o
g
s
c
a
le

UDP Upload Benchmark

(b) Throughput at a client running a UDP
upload stream.

Figure 4.6: Performance evaluation of TCP and UDP upload streams. Vanilla refers to the
default Linux routing implementation, AF XDP refers to the Midgard server running without
any puzzles, and Diff-XX refers to the client solving puzzles of difficulty XX. Our results show
that Midgard does not incur a performance penalty when compared to the default Linux
kernel routing implementation. Midgard is more UDP- friendly as the puzzle expirations
cause TCP streams to shrink their congestion window to accommodate the resulting packet
retransmissions.

RQ 4.2 What is the overhead of running the Midgard kernel patch on the users of a

service that employs the Midgard protection?

RQ 4.3 How does Midgard distribute bandwidth when under attack?

To answer these questions, we implemented the Midgard service on an Ubuntu Linux

server running Ubuntu 18.04 with 16 processors and 16 GB of RAM. Since it is unethical

and impractical to launch massive DDoS attack in thewild, we ran all of our experiments

in an isolated environment on the DETER testbed. To capture the intended behavior of a

typical Midgard implementation, we set the bandwidth of the Midgard server’s ingress

to 1Gbps. At the same time, the bottleneck link at the victim has a much lower bandwidth

of 10Mbps. This setup makes it easy to overload the victim’s ingress without affecting the

links driving traffic into the Midgard server, as would be the caste with over-provisioned

cloud providers and ISPs.

4.6.1 Performance Benchmarks

To answer RQ 4.1 and RQ 4.2, we ran performance benchmarks using the iperf [121]

network performance measurement tool. Figures 4.6a and 4.6b show the performance results

of running TCP and UDP upload benchmarks, respectively. Under this benchmark, a client

attempts to send as much traffic as possible to the victim server using the appropriate

62

 0

 20

 40

 60

 80

 100

Vanilla

AF_XDP

Diff-2
Diff-4

Diff-8
Diff-10

Diff-12

Diff-14

Diff-16

T
h
ro
u
g
h
o
u
t
(M
b
p
s
)

TCP Download Benchmark

(a) Throughput at a client running a TCP
download stream.

 0

 20

 40

 60

 80

 100

Vanilla

AF_XDP

Diff-2
Diff-4

Diff-8
Diff-10

Diff-12

Diff-14

Diff-16

T
h
ro
u
g
h
o
u
t
(M
b
p
s
)

UDP Download Benchmark

(b) Throughput at a client running a UDP
download stream.

Figure 4.7: Performance evaluation of TCP and UDP download streams. Vanilla refers to
the default Linux routing implementation, AF XDP refers to the Midgard server running
without any puzzles, and Diff-XX refers to the client solving puzzles of difficulty XX. Unlike
the upload benchmarks, TCP streams are not affected by the presence of the puzzles when
the client is solving at a low difficulty (< 10 bits). When the puzzles become more difficult,
the client’s acknowledgment packets will be delayed, thus causing a drop in throughput.

protocol. Similarly, Figures 4.7a and 4.7b show the performance results of running TCP

and UDP download benchmarks, respectively. Under this benchmark, a client attempts to

download as much data as possible from the victim server using the appropriate protocol.

First, in all of our benchmarks, running the Midgard server without any puzzle requests

incurs no performance penalty. In such cases, the Midgard server bypasses the Linux

kernel networking stack, performs a table lookup for the victim server’s IP address, and then

forwards the packet as is on the corresponding interface. The fact that Midgard bypasses

the kernel’s networking stack and uses zero-copy to transfer the packet to user space allows

it to offset the performance overhead to the table lookups. Therefore, our implementation

highlights the benefits of using AF XDP sockets for running network applications at line-rate.

Second, we note that our current Midgard implementation is not friendly to TCP

streams. Specifically, our TCP upload benchmark results (Figure 4.6a) show a sever drop

in throughout at the client, even at small puzzle difficulties. Upon further investigation,

we discovered that Midgard’s puzzle expiration and redistribution mechanism introduces

a periodic small time window in which packets would be dropped. For that duration, the

Midgard server has marked the puzzle as expired, but the new nonce has not been up-

dated at the client yet. Therefore, packets generated from the client are still using the

previous nonce, and thus fail the server’s validation checks. Therefore, TCP will detect

those dropped packets and interpret them as a sign of network congestion, thus reducing its

congestion window and causing the observed drop in throughput. One possible remediation

for this behavior is for the Midgard server, at each nonce renewal, to save the previous

63

 0

 10

 20

 30

 40

 50

UDP-12

UDP-8

UDP-10a

UDP-10b

UDP-4

S
h
a
re

 o
f
B
a
n
d
w
id
th

 (
%
) Resource Allocation Scheme

Figure 4.8: Bandwidth allocation results for the Midgard puzzle-based weighted fair queue-
ing scheme. UDP-XX refers to a client attempting to send UDP traffic to the victim server,
at its maximum bandwidth possible, while solving puzzles of difficulty XX bits. The results
show that the Midgard server allocates more bandwidth to clients that solve harder puzzles
(thus sending traffic at a lower rate).

nonce for a short time period. During this period, the server will attempt to validate puzzle

solutions using both the current and the previous nonces, thus avoiding dropping TCP pack-

ets while the client updates its nonce. However, this will introduce an additional memory

overhead since the server must maintain two nonces (i.e. two timestamps) for each client.

We plan to explore this tradeoff in our future work.

Finally, unliked TCP, UDP streams dot not suffer from the same performance drop since

they do not perform any congestion control. As shown in Figure 4.6b, no drop in throughput

is observed at the client when the puzzle difficulty is low (< 8 bits). When the difficulty of

the puzzles increases, the client will need to wait larger and larger amounts of time before

sending each packet, effectively rate-limiting a flooding client, which is the intended behavior

of the client puzzles.

4.6.2 Bandwidth Allocation

To answer RQ 4.3, we turn to studying the bandwidth allocation scheme of Midgard’s

puzzle-based weighted fair-queueing scheme. Figure 4.8 shows the bandwidth allocation

scheme of Midgard’s mechanism when faced with 5 clients that are attempting to flood the

victim server with UDP traffic. Each client attempts to send as much traffic as possible while

solving puzzles at different difficulties. Our results show that clients solving harder puzzles

(UDP-12, UDP-10a, and UDP-10b) occupy the larger share of the bandwidth, while clients

solving easier puzzles (thus sending at higher rates) end up with the smaller share of the

64

bandwidth (< 10%). Our results show that, by combining client puzzles with simple weighted

fair queueing, the Midgard server can reward users that are investing more resources into

sending more difficulty puzzles with a higher share of the bandwidth. On the other, users

that are solving easier puzzles, or alternatively are using more powerful machines to flood

the victim server, end up with a lower share of the bandwidth thus limiting the impact

of their attack. This naive bandwidth allocation scheme showcases that the Midgard

server achieves a notion of puzzle-fairness by encouraging users to invest their computational

resources into solving harder puzzles and benefit from a higher share of the bandwidth.

4.7 CONCLUSION

In this chapter, we presented Midgard, a DDoS resiliency service that combines the ben-

efits of cloud elasticity and provisioning, client puzzles, and network capabilities to enhance

network resiliency. Midgard is a service that resides at the edge of a victim server’s ISP

and serves to absorb the attack traffic and rate-limit misbehaving users. When under attack,

Midgard asks each user to solve a computational puzzle with a user-chosen difficulty, and

then uses each packet’s travel time to estimate that user’s computation prowess. Based on

its estimates, the Midgard then assigns each packet a capability that indicates the share

of bandwidth that each user can use. We designed Midgard as a flexible and extensible

service that allows customers to implement their traffic estimation and bandwidth alloca-

tion policies at the edge of their upstream ISP. We implemented Midgard using the AF XDP

sockets in the Linux kernel that allow us to keep the overhead of our implementation to

a minimum. We deployed Midgard on an experiment network on the DETER testbed and

evaluate it under different attack scenarios. Our results show that Midgard can effectively

absorb volumetric attacks and rate-limit attackers while keeping its performance overhead

to a minimum. We envision that Midgard would be implemented as a service provided by

ISPs to their customers to defend against DDoS attacks.

65

CHAPTER 5: BIFROST: CIRCUIT-LEVEL VERIFICATION OF DATA
PLANE PROGRAMS

5.1 INTRODUCTION

Programmable data planes allow for a significant shift in the paradigms of modern net-

work designs. Data plane-specific programming languages, such as P4 [122], allow network

designers to design, develop, modify, and test packet-forwarding protocols and pipelines in a

hardware-agnostic manner. This has led to an increase in the flexibility and programmability

of network design.

Data plane descriptor languages are more limited in their functionality and semantics than

other general purpose languages, therefore one might assume that they are more resistant

to security risks. However, languages such as P4 also expose a whole new set of potential

bugs in their implementations. For example, data planes programs that are compiled and

programmed onto target devices require a mechanism for the CPU and the networking

hardware to communicate. This is often implemented using a specialized packet header that

the packet parser can recognize and forward accordingly. Such packets contain important

metadata information, such as the value for the ingress port, that are to be written onto the

switch’s metadata registers. In current implementations of the popular switch.p4 program,

such packet headers are not sanitized. Consequently, an attacker can craft a CPU header,

prepend it onto its packets, and overwrite each of their packets’ ingress post in order to

bypass Access Control Lists (ACLs) and perform privilege escalation [123].

On a larger scale, undiscovered bugs in networked systems can have drastic impacts on

performance and security [124, 125, 126]; experts estimate the cost of downtime in data cen-

ters to be $7,900 per minute [11]. Data plane programmability may worsen this problem by

introducing new classes of bugs largely prevented by traditional fixed-function switch hard-

ware, such as overwriting header fields1 and invalid headers due to read-before-write2 [127].

With our ever-increasing dependence on networked systems across all sectors of our economy

and lives, it becomes increasingly important to ensure that any increase in function does not

lead to any sacrifices in security and reliability.

Current approaches to testing programmable data planes perform exhaustive testing using

simulation and automatic packet generation software [128]. However, due to computational

and time limitations, complete coverage of all execution paths can never be achieved us-

ing testing alone. Additionally, such testing approaches can confuse bugs that occur in

1https://github.com/p4lang/switch/issues/97
2https://github.com/p4lang/switch/pull/102

66

the data-plane program with those that occur due to hardware-specific compilation. A

complementary strategy is to perform static verification leveraging satisfiability (SAT) and

Satisfiability Modulo Theory (SMT) solvers to verify annotated data-plane programs. Sev-

eral approaches [128, 129, 130, 131, 132] use symbolic execution to perform verification.

However, these techniques become language dependent; each data-plane programming de-

scription requires different software and verification techniques. More fundamentally, these

existing techniques target Turing complete languages. However, data plane programs de-

scribe bounded and restricted hardware pipelines that are simpler to verify.

In this work, we explore the fundamental property of data plane programs – namely, that

they describe restricted hardware pipelines – to achieve scalable verification. We present

BiFrost: a tool for the formal verification of data plane programs using hardware veri-

fication techniques. BiFrost translates data plane programs into functionally equivalent

sequential circuits and uses well-established sequential circuit abstraction and verification

techniques to achieve expressive and scalable static verification. Specifically, the bounded-

ness and the features of data plane programs make them ideal candidates for BiFrost’s

translation: they operate on bounded inputs, their loops are linearly bounded by the number

of packet headers, and they do not use dynamic memory allocation. BiFrost specifically

targets P4 programs, however, it can be easily extended and applied to different languages

since it performs verification at the hardware level.

Our goal in designing BiFrost is to achieve scalable and effective verification of data

plane programs to detect and fix design-time programming bugs. To achieve that goal, we

adopt the following approach:

Bit-level Semantics. By translating data plane programs into functionally equivalent

sequential circuits, BiFrost can reason about packets in terms of the individual bit fields.

Rather than looking at high-level descriptions of packet headers and their fields, BiFrost

can reason about bits that cross the boundaries of headers and their fields. Furthermore,

depending on the target property it is trying to verify, BiFrost can identify individual

bits that are deemed to be non-relevant for the verification tasks. For example, if a target

property depends only on the lower 8 bits of an IP address, BiFrost can identify that the

first 24 bits of the address are irrelevant and replace them with don’t care values.

Support for Various Specification Types. To provide developers with the flexibility of

defining various properties about their data plane programs, we design BiFrost to support

first order logic (FOL) properties expressed at multiple program locations. In addition to

built-in header validity checks, BiFrost supports guarantee and assert statements as well

as program pre- and post-conditions.

67

Domain-specific Transformation and Abstraction. We leverage knowledge about

the data plane programs’ functioning and boundedness to generate sequential circuits that

are optimized for scalable verification. For example, since parser loops are linearly bounded,

we unroll all such loops and avoid generating complex circuitry that is hard to verify. In

addition, we provide means to abstract the control plane tables, thus incurring possible false

positives, in favor of proving properties for all possible values in such tables.

Sequential Verification. By targeting sequential verification, BiFrost unlocks a plethora

of optimization and abstraction techniques that can aid the verifier in achieving scalable ver-

ification. Those techniques, both structural [133, 134, 135] and functional [136, 137, 138,

139, 140], often have no counter-parts in traditional software verification.

In this chapter, we make the following contributions. We design and build BiFrost, a

tool for the scalable verification of data plane programs using sequential circuit verification

techniques. First, we define the operational semantics of data plane programs in terms of

sequential circuits (Section 5.5.1). We introduce the BiFrost transformations that generate

a functionally equivalent sequential circuit to an input data plane program (Section 5.5.2).

We introduce optimizations and abstraction techniques (Section 5.6) to aid in scaling to

larger programs and more complex properties. We implement BiFrost (Section 5.7) and

conduct an exhaustive evaluation of its scalability using 11 benchmark programs. Our

experiments show that BiFrost can verify the header-validity of complex programs in

< 3 minutes. We also showcase two case studies (Section 5.8) where we used BiFrost to

(1) detect a header-validity bug in the ecn.p4 tutorial program and (2) verify functional

properties about the calc.p4 program.

5.2 BACKGROUND ON PROGRAMMABLE DATA PLANES

Software Defined Networking (SDN) decouples traffic decisions, made in the control plane,

from traffic forwarding, made in the data plane. A logically centralized controller makes traf-

fic forwarding decisions (e.g., computing routes, load balancing, enforcing security policies)

and populates the tables in the data plane via the southbound API. Traditionally, forwarding

devices have been regarded as fixed-function hardware pipelines that operate on a fixed set

of packet headers. However, recent efforts have focused on extending the programmability

into the data plane to support custom packet formats, new networking protocols, line-rate

applications [141, 142, 143], and security countermeasures [144, 145, 146, 147].

Data plane programming languages, such as P4 [122, 148] and NPL [149], grant develop-

ers the ability to program packet forwarding devices using abstract declarative constructs

68

Parser
Match
Action

Match
Action Deparser

Ingress pipeline Egress pipeline

Figure 5.1: An abstract pipeline of a simple programmable switch.

that are later compiled onto a device’s hardware. Figure 5.1 illustrates the abstract packet

forwarding pipeline of a simple programmable switch. Incoming packets are first handled by

a parser that operates on user-specified header formats. After extracting the headers and

setting appropriate metadata fields, the parser forwards the packet into one or more match-

action pipelines (the ingress and egress pipelines in Figure 5.1). During this stage, the

switch queries a set of read-only match-action tables, populated at runtime by the control

plane, that determine what actions are to be undertaken depending on the values contained

in the packet’s headers. Actions can manipulate packet header fields (such as performing

MAC address swapping) or packet metadata (such as setting the packet’s egress port or

marking it to be dropped).

Finally, the deparser is responsible for reassembling an output packet by serializing the

packet’s headers and its payload according to a user-specified order. The packet is finally

queued into the appropriate egress port’s queue awaiting to be sent on the wire. Unfortu-

nately, in an effort to favor efficient compilation, data plane programming languages lack

notions of type safety, thus introducing several classes of undefined behaviors and design-time

bugs [129, 150]. Such bugs can lead to runtime failures such as wrong forwarding decisions,

forwarding loops, or device crashes. More importantly, malicious attackers can exploit these

flaws to launch impactful attacks such as denial of service or privilege escalation [123].

Comparison to Active Networks. Active networking [151, 152, 153] is an early ap-

proach to incorporate programmability and flexibility into network architectures. It allows

network operators, developers, and even end-users, to encapsulate program fragments into

communication packets that forwarding devices can parse and execute locally. To that end,

routers and switches would run a network operating system that would enable them to exe-

cute the code fragments and implement applications such as content caching, firewalls, and

quality of service mechanisms.

However, unlike SDNs and programmable data planes, active networks did not see widespread

adoption and were later dropped by the networking community. First, active network do

not present a clear-cut separation between forwarding decisions (the control plane) and for-

69

warding behavior (the data plane); it is up to the developer to identify where each operation

is implemented thus creating several compatibility and reliability challenges. Second, and

more importantly, by allowing forwarding devices to include program fragments, active net-

works pause critical security challenges. Making sure that only authenticated users can

executed such programs on routers and switches would require authentication mechanisms.

Such mechanisms, which typically rely on asymmetric key cryptography, can become bot-

tlenecks on the forwarding critical path. In addition, if active networking is to be achieve

widespread adoption, it is unclear who would the authority responsible for maintaining keys

and certificates.

Finally, programmable data planes have benefited for recent and fast-paced developments

in Application-Specific Integrated Circuits (ASIC) that allow for programmability without

sacrificing performance. By requiring forwarding devices to run an operating system, active

networking introduces a performance penalty that most network developers are not willing

to pay. On the other hand, by leveraging the power of ASICs, forwarding devices can

be programmed while maintaining line-rate processing at every point in the network. For

example, the recent Barefoot Tofino ASIC [154] is fully programmable while maintaining a

processing rate of 6.5 Tbps.

5.3 A CASE FOR HARDWARE VERIFICATION

A key characteristic of hardware description programs is that they must account for the

physical limitations of their target device. That is, they must be tailored to model hardware.

A circuit’s capabilities are often vastly simpler than general-purpose software and therefore

have vastly smaller state spaces. Therefore, when we consider verification approaches that

search the state space of a program exhaustively, hardware is a much more scalable candidate.

We use this fact to relate this approach to data plane verification. Data plane programs

specify bounded forwarding pipelines, even simpler than standard hardware, that describe

the lifetime of a network packet. That is, a packet’s journey from a switch’s ingress point

to its commitment to a specific egress port, so long as it is not discarded in case of errors

or policy violations. Thus, it is appropriate and efficient to limit the scope of verification to

the specificities of a switch’s forwarding behavior throughout the lifetime of a packet.

In this section, we argue that data plane programs are an excellent contender for hard-

ware verification. We first provide an introduction to the techniques used in such verification

efforts, then showcase the benefits of using hardware verification in this context. For the re-

mainder of this text, we use the terms hardware verification and sequential circuit verification

interchangeably.

70

5.3.1 Introduction to Hardware Verification

Hardware verification enjoys a mature and rich history of development and deployment

in both industrial and academic settings [155, 156, 157, 158, 159]. Its motivation stems

from the costly fact that post-production, circuits and silicon chips cannot be patched upon

the detection of a design-time bug; they must be recalled and replaced. For example, the

infamous Intel FDIV bug is reported to have cost the company $475 million in replacement

and reputation costs [160]. It is therefore of paramount importance to catch design-time

bugs before production.

Hardware verification techniques aim to provide formal guarantees that a circuit satisfies

its design specifications and to discover potential bugs. Model Checking is popular approach

to general verification that is rooted in hardware. This technique exhaustively explores,

either explicitly or symbolically, a system’s state space to examine whether any reachable

states can lead to a violation of the user specifications [161]. If any such states are found,

a concrete counterexample can be returned to the developer for debugging. However, this

technique is plagued by the state-space explosion problem where the number of reachable

states in a program is exponential in several parameters (number of inputs, width of variable

types, etc.), thus hindering the scalability and practicality of the verification efforts.

To improve scalability, a common technique is to impose limits on the space of the pro-

gram. Several approximations and abstractions (such as counterexample-guided abstraction

refinement [162]) are often employed to prune unnecessary explorations. Another common

approach is explicit user annotations. Additionally, Bounded Model Checking (BMC) is an

orthogonal technique that can be employed to find bugs in traces up to a specified length

k of the program’s execution. BMC is particularly popular in the hardware sphere because

the precise state space of the hardware description is known at the time of synthesis. That

is, because there are physical limitations of hardware programs, language features such as

loops must be unrolled at the time of synthesis and the finite-state representation of the

program is fixed.

The accessibility of a hardware program’s state space is a key characteristic in other ver-

ification techniques. In addition to BMC and symbolic execution, circuit-specific reduction

and abstraction procedures, such as structural analysis [133, 134], retiming [136, 137, 138],

rewriting [135] and register sweeping [139, 140], are often employed to improve scalability.

5.3.2 Why Hardware Verification?

Building on the successes of hardware verification in improving the design-time correctness

of sequential circuits, we argue that formal hardware verification is better suited for data

71

=

. .

hdr ethernetsrcAddr dstAddr

. .

hdr.ethernet.srcAddr = hdr.ethernet.dstAddr

. Packet extraction operation

D
Clk

Q

D
Clk

Q

D
Clk

Q

D
Clk

Q

D
Clk

Q

D
Clk

Q

srcAddr dstAddr

clk

cl
k

@
 L

?

0

1

Figure 5.2: MAC address swap operation in BiFrost. Considered as a general purpose
operation (left-hand side), the statement involves several operations for packet extraction
and memory copy. Interpreted as a sequential circuit, the assignment operation can be done
in a single clock cycle by simply wiring the dstAddr register as an input to srcAddr register.

plane verification than general-purpose software verification techniques. Hardware verifica-

tion has made strides in exploring the large state space of its programs. It is more difficult

for software verification techniques to seek the same extensive approach because their state

space is exponentially more massive.

Specifically, as in [163], we identify two important properties that verification tools must

achieve, namely expressiveness and scalability. In this chapter, we show that sequential

circuit verification can be effectively used to achieve these properties in data plane programs.

Expressiveness. The expressiveness of a hardware verification formalism determines

what constructs (e.g. data-types, formats, number representations, etc.) can be used in the

verification process. This also determines the set of possible properties that the verification

tool can reason about. For example, reasoning about timing and delays is necessary for

sequential verification, while it is not a requirement for high-level programming such as C or

Python.

Scalability. Verification techniques, both software and hardware, are plagued by several

problems that hinder their scalability. First, determining the satisfiability of a Boolean

formula (referred to as the SAT problem) is NP-complete. Second, more expressive languages

are usually undecidable. Third, the number of states that a program or circuit can reach

grows exponentially with the size of its inputs, and can also be infinite [164]. To combat

those problems, verification tools often employ various abstractions and heuristics to verify

larger and larger designs.

First, data plane programming languages (e.g. P4) are highly domain-specific. They pro-

72

action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {

standard_metadata.egress_spec = port;

hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

hdr.ethernet.dstAddr = dstAddr;

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

Figure 5.3: Sample P4 code fragment for swapping MAC addresses.

vide a strict set of constructs that allow for the description of the packet processing pipeline

in a packet forwarding device. Those constructs have therefore strict semantics that are

tailored towards building a pipeline that is guaranteed to only execute a constant number

of operations for each byte of an input packet [122]. Often, language features such as loops

and pointers are omitted completely. Therefore, we argue that sequential circuit verification

is more expressive than its software counterparts in capturing and reasoning about the se-

mantics of data plane programs. For example, consider the code snippet shown in Figure 5.3

that performs MAC address swapping for an egress packet. Considered as a general pur-

pose software program, this step involves multiple instructions to parse the content of the

packet, extract the Ethernet header and the source and destination MAC addresses (e.g.,

hdr.ethernet.srcAddr and hdr.ethernet.dstAddr), and memory copy operations for swap-

ping the addresses. This can complicate the verification process as the programs become

larger and larger. On the other hand, leveraging the fact that a P4 program strictly describes

a packet forwarding pipeline, we can consider the input packet to be simply a register, and

then the process of parsing and swapping the MAC addresses as well as decrementing the

TTL value can be done in a single shot (i.e., in a single clock cycle). Figure 5.2 illustrates how

this process can be performed in a single clock cycle by considering the circuit properties of

the P4 processing pipeline.

Second, sequential circuit verification of data plane programs allows for bit-level reasoning

about the forwarding pipelines, allowing for several optimizations that have no counterpart in

the software verification realm. For example, consider that a network operator is interested

in proving a safety property about hosts that are in a specific subnet, say 192.168.100.0/24.

When performing verification, it is only the lower 8 bits of any packet’s IP address that will

have an impact on the safety property; the upper 24 bits will remain constant throughout. By

reasoning at the bit-level, a hardware verifier can quickly realize that only the lower 4 bits of

its inputs are important. It will then discard the upper 24 bits from the analysis, significantly

reducing its search space compared to treating the IP address as a single variable, as a

software verifier would. Therefore, bit-level analysis can greatly enhance the scalability of

the verification process.

73

Finally, network operators often have networking devices from different vendors that use

different compilations of the same data plane program. To ensure correct operation, they

must then have guarantees that all of the devices are running a functionally equivalent version

of the data plane program. By translating the original program into an equivalent circuit,

hardware verifiers can allow operators to reason about the functional equivalence between

different compilations (for different targets) of the same program. This allows developers to

isolate unexpected behavior to the actual devices that the programs run on, rather than the

logic of the program itself.

5.4 OVERVIEW OF BIFROST

Our key insight in this work is that sequential synthesis, reduction, and verification tech-

niques provide various avenues for scalable and expressive verification of data plane programs.

This insight rests on the observation that data plane programs, unlike general-purpose pro-

grams, describe bounded forwarding pipelines targeted for deployment on programmable

hardware switches. Therefore, to avoid expensive network outages and security risks, se-

quential circuit verification is suitable for verifying data plane programs and uncovering

design-time bugs.

BiFrost is composed of three main components, shown in Figure 5.4. Given a data plane

program P , BiFrost first employs several program transformation techniques (Section 5.5)

to build a functionally equivalent sequential circuit S. Functional equivalence guarantees

that each and every execution path in P corresponds to a sequence of executions in S that

generates the same output, and vice versa. Second, BiFrost accepts program specifications

in the form of (1) guarantee statements, (2) assertions, (3) preconditions, and (4) postcondi-

tions, and generates verification conditions that are added as primary outputs in the circuit

S (Section 5.6). In addition, BiFrost provides built-in support for header-validity checking

to detect reads and writes to invalid header fields.

Finally, BiFrost passes the circuit S, along with its primary outputs, to the sequential

synthesis and verification tool ABC [165] to perform verification tasks. ABC is equipped with

a wide variety of synthesis, reduction, and abstraction techniques that reduce the size of the

circuit and constrain the verification search space. Subsequently, BiFrost asks ABC to check

if there is any setting of S’s inputs (i.e., an input packet) that will lead to the invalidation

of any of S’s primary outputs. This corresponds to a violation of the data plane program’s

specification. If no such setting is discovered, BiFrost marks the program as verified. On

the other hand, BiFrost interprets ABC’s counterexample to generate a violating packet

along with an execution trace that will allow developers to debug their implementations.

74

Circuit Transformation

Program
Transformation

Engine
Data Plane

Program

Verification
Condition

Generation
Program

Specifications

Circuit Output Generation

Functionally
Equivalent Circuit Circuit Outputs

Circuit S<latexit sha1_base64="reIoBoKj8UaSPzBCAN4nrvSJ3mo=">AAAB8nicbVBNS8NAEJ34WeNX1aOXYBHEQ0nqQS9iwYvHivYD0lA22027dLMbdjdCCf0ZXjwoUo8e/C1exH/jpu1BWx8MPN6bYd5MmDCqtOt+W0vLK6tr64UNe3Nre2e3uLffUCKVmNSxYEK2QqQIo5zUNdWMtBJJUBwy0gwH17nffCBSUcHv9TAhQYx6nEYUI20kvx0j3ceIZXejTrHklt0JnEXizUjp6mP8ZV8mb7VO8bPdFTiNCdeYIaV8z010kCGpKWZkZLdTRRKEB6hHfEM5iokKsknkkXNslK4TCWmKa2ei/p7IUKzUMA5NZx5RzXu5+J/npzq6CDLKk1QTjqeLopQ5Wjj5/U6XSoI1GxqCsKQmq4P7SCKszZds8wRv/uRF0qiUvbNy5dYrVU9higIcwhGcgAfnUIUbqEEdMAh4hGd4sbT1ZL1a42nrkjWbOYA/sN5/AJaZlRY=</latexit>

S
<latexit sha1_base64="reIoBoKj8UaSPzBCAN4nrvSJ3mo=">AAAB8nicbVBNS8NAEJ34WeNX1aOXYBHEQ0nqQS9iwYvHivYD0lA22027dLMbdjdCCf0ZXjwoUo8e/C1exH/jpu1BWx8MPN6bYd5MmDCqtOt+W0vLK6tr64UNe3Nre2e3uLffUCKVmNSxYEK2QqQIo5zUNdWMtBJJUBwy0gwH17nffCBSUcHv9TAhQYx6nEYUI20kvx0j3ceIZXejTrHklt0JnEXizUjp6mP8ZV8mb7VO8bPdFTiNCdeYIaV8z010kCGpKWZkZLdTRRKEB6hHfEM5iokKsknkkXNslK4TCWmKa2ei/p7IUKzUMA5NZx5RzXu5+J/npzq6CDLKk1QTjqeLopQ5Wjj5/U6XSoI1GxqCsKQmq4P7SCKszZds8wRv/uRF0qiUvbNy5dYrVU9higIcwhGcgAfnUIUbqEEdMAh4hGd4sbT1ZL1a42nrkjWbOYA/sN5/AJaZlRY=</latexit>

ABC
VerificationSe

qu
en

tia
l C

irc
ui

t
Ve

rifi
ca

tio
n

Verified Counterexample

Packet

Program
Trace

Figure 5.4: High Level Overview of BiFrost. Given a data plane program, BiFrost first
translates it into a functionally equivalent sequential circuit. Then, it parses a set of program
specifications, expressed in First Order Logic, to generate verification conditions. Those
conditions are then translated into circuit components and connected as primary output to
the generated circuit. Finally, BiFrost uses the ABC verifier to check if the specifications
are satisfied, or to return a counter example, in the form of a network packet, for developers
to debug their programs.

5.5 BIFROST SYSTEM DESIGN

In this section, we present BiFrost’s main transformation of a P4 program into an

equivalent sequential circuit. Our design of this system builds upon the specification provided

in the official P416 specifications document [166] and are not specific to a certain target

switch.

We first present definitions that we use to show that our transformation preserves P4’s

operational semantics and produces a sequential circuit that is functionally equivalent to the

original program. We then elaborate to describe in detail how BiFrost implements and

processes specific elements of a P4 program.

75

5.5.1 Definitions

We start by defining a sequential circuit and its semantics in the context of BiFrost.

We then proceed to describe the transformations that, given a P4 program P , produces a

sequential circuit S that is functionally equivalent to P .

Definition 5.1 (Sequential Circuit). A sequential circuit S is a tuple (G,R, clk, I,O, E)

where G is a set of logic gates and arithmetic blocks, R is a set of clocked registers, clk

is a monotonically increasing clock, I is a set of inputs, and O ⊆ R is a set of outputs.

For brevity, we define V = {G ∪ R ∪ I ∪ O} to be the set of circuit components. Therefore,

E = V × V is a set of edges that define the connectivity between the components of S.

A register rn ∈ R is a set n of one-bit latches (or memory elements) such that the value

held by each latch of rn is updated every time the clock clk increments. For clarity, we

abuse notation and drop the asterisk for registers, and use |r| = n to represent the number

of latches in a given register r. The set of edges E captures the logic connectivity of the

different components of S. In other words, S is a directed graph that represents the input-

output relationships between the different components V of S.

Definition 5.2 (Fanins and fanouts). Given a component v ∈ V, we define the fanins of v

as the set of components ω ∈ V that have directed edges to v. More formally, fanins (v) =

{ω ∈ V | (ω, v) ∈ E}.
Conversely, the fanout of v is the set of components u ∈ V such that v has a directed edge

to u. Formally, fanouts (v) = {u ∈ V | (v, u) ∈ E}

Definition 5.3 (Well formed circuits). A sequential circuit S = (G,R, clk, I,O, E) is said

to be well-formed iff

∀(r ∈ R, i ∈ I, o ∈ O). (|fanins (r) | = 1) ∧ (|fanins (i) | = 0) ∧ (|fanouts (o) | = 0) (5.1)

Well-formed sequential circuits according to Definition (5.3) can be used to represent the

functionality of any finite (or infinite) state program. In this work, we restrict our attention

to well-formed sequential circuits.

Semantics of sequential circuits. We now present the semantics of sequential circuits

to define functional equivalence. We then show how BiFrost’s transformations create se-

quential circuits that are functionally equivalent to their P4 counterparts. The following

definitions apply to a sequential circuit S = (G,R, clk, I,O, E).

76

Definition 5.4 (Valuation). Let B bet the set of Boolean values {0, 1} and N be the set of

natural numbers. A valuation ` is a function V × N+ → BN where

`(v, c) =

{
b0 b1 . . . b|v| if v ∈ R ∪ I ∪ O,
G (`(u, c) | u ∈ fanins (v)) if v ∈ G

(5.2)

where c ∈ N is the value of the circuit’s clock, bi ∈ B for i ≥ 0 is the value of a single bit

and G is the combinatorial operation represented by the gate v ∈ G.

As an example, the valuation of a conjunction gate g with fanins r1 and r2, at clock cycle

c, is `(g, c) = `(r1, c) ∧ `(r2, c).

Definition 5.5 (State). At a specific clock cycle c ∈ N+, the state of S is the set σc ={
`(r1, c), `(r2, c), . . . , `(r|R|, c)

}
of all valuations over the circuit’s registers. For brevity, we

write σc(r) = `(r, c).

Definition 5.6 (Trace). A trace tr (S, k) over S and of length k ∈ N+ is a sequence of

states 〈σ0, σ1, . . . , σk−1〉, such that, ∀r ∈ R,

`(r, c) =

{
r0 ∈ B|r| if c = 0,

` (fanins (r) , c− 1) if c ≥ 1
(5.3)

where r0 represents the initial values of the latches of r.

Similarly, given a P4 program P that operates on an input packet p and a match-action

table T , with syntax and semantics as defined in [148, 166], a state of P represents the values

held by the header fields and internal structures (e.g., metadata) of P at a given instant k.

Thus a trace tr (P , k) is a sequence of states that capture the values of P ’s variable for

0 ≤ j < k.

Definition 5.7 (Functional equivalence). Given a P4 program P with a set of headers

and internal variable X , and a sequential circuit S = (G,R, clk, I,O, E) are functionally

equivalent, denoted as P ≈ S, iff

∃ f : X → R s.t. f is injective, and,

∀ (packet p, table T , k > 0, tr1 := tr (P , k)) .

∃k2 ≥ k, tr2 := tr (S, k2) s.t. ∀(0 ≤ i < j ≤ k, x ∈ X).

∃ m,n s.t. 0 ≤ m < n ≤ k2 ∧
σ1i(x) = σ2m(f(x)) ∧ σ1j(x) = σ2n(f(x))

(5.4)

77

In other words, functional equivalence indicates that the circuit S captures the functional

behavior of the P4 program P ; given the same set of inputs P and T , there exists a mapping

of P ’s variables X to registers R in S, such that the execution of P on X yields the same

states as the execution of S on R. Therefore, both P and S would produce the same output

packet, even if their execution paths are different.

5.5.2 Transformation

We now turn our attention to defining BiFrost’s transformation Φ, such that given an

input P4 program P , S = Φ(P) is a sequential circuit such that P ≈ S. In what follows,

we characterize a P4 program P , accepting an input packet p, by its match-action tables

T and its set of variables X = {H ∪M}, where H and M are the set of header fields and

standard metadata in P , respectively.

Variables and Packets. In the context of the sequential circuit S, all variables and their

types are captured by collections of fixed number of one-bit latches (i.e. registers). The

interpretation of these bits differ only in the context of the operations involving them (e.g.

one’s complement addition vs two’s complement addition).

We start BiFrost’s transformation by constructing the set R. We create a register

r := Φ(x) for each variable x ∈ X , such that |r| = |x| (i.e., r is composed of |r| one-bit

latches). For each header h ∈ H, we also create a one-bit register, denoted by Φ(h).valid,

capturing the validity of h’s extraction from the input packet p. To represent P ’s input

packet p, we create a register β such that |β| =
∑

h∈H |h|. For verification purposes, we

restrict our attention to the headers of p since the p’s data payload does not affect the

behavior of the switch.

Next, to capture P ’s control flow (i.e., the path of execution taken by p ∈ P), we create

a control register, ctrl, that captures the execution state of the circuit S. The number of

latches in ctrl is determined in a post-processing step after accounting for all of S’s unique

execution states. Formally, we writeR := Φ(X)∪{Φ(h).valid,∈ H}∪{ctrl} and I := {β}.
Finally, the set of gate G that we use is the standard set of logic gates in addition

to some function blocks such as adders, subtractors, and multipliers. Formally, G :=

{∧,∨,¬,, +,−, ∗, et.c}. We note, however, that in BiFrost’ final AIG circuit, GAIG = {∧,¬}
contains only the conjunction and negation operations, from which all other gates can be

constructed.

Statements and Functions. For each statement s of P , BiFrost assigns a unique

identifying label l (s) indicating when s should be executed. When the ctrl register’s value

78

matches the label of a statement s, that statement is executed and its impacts on the circuit’s

state is observed in the following clock cycle.

Algorithm 5.1 shows BiFrost’s transformations of P4 statements. The function Mux

creates a multiplexer gate m in the sequential circuit S with semantics ` (m(e, v0, v1)) =

`(e) ? `(v1) : `(v0). The function AdjustRegisterEdges(r,m, E) removes r’s current

fanin and replaces it with an edge from m to r. BiFrost leverages this operation to

continuously update the graph G’s structure to reflect multiple assignments for every register.

This effectively creates a cascade of multiplexers that determine a register’s value based on

the value of the ctrl register.

For an assignment statement s, BiFrost creates a multiplexer that transfers the value

of s’s right hand expression into the target register r when the ctrl register reaches l (s).

In addition, BiFrost updates the next value of the ctrl register to the label of the next

statement following s (denoted by s.next). On the other hand, if s is a conditional statement,

it only affects the control flow of the program P and does not affect the values of the

S’s registers. Therefore, BiFrost creates two multiplexers that assign ctrl’s next value

depending on the value of s’s condition.

Finally, for each function f ∈ P (we treat P4 actions as functions as well), BiFrost

creates a set of registers for f ’s arguments as well as a special register for its return address.

When encountering a function call s to f , BiFrost assigns s’s argument values to f ’s

arguments (lines 23 – 25), saves the label of s’s next statement (i.e.) to f ’s return address

register (line 27), and then transfers the control to f ’s first statement (line 26). We note

that this transformation allows us instantiate only one circuit block for each function, and

then reuse that same block with different argument values for each function call. This allows

us to avoid inlining the function body for each function, thus avoiding expensive replications

of circuit blocks. The fact that sequential circuits allow us to reuse memory elements is at

the core of BiFrost’s expressiveness and succinct representation of data plane programs.

Parsers. A parser in P4 programs represent a finite state machine that define the behavior

of a programmable switch upon receiving an input packet. Every state in a parser defines

a set of operations to perform on the packet’s headers (e.g.extract) and the transition into

the next based on some condition over those headers’ fields. Therefore, we can view the

parser as nested conditional statements where the next parser state to visit is determined

by the current state as well as the values of the variables involved in that state (which often

are packet header fields, but can also be local variables).

By interpreting parsers as nested conditional statements, BiFrost assigns each state α

in the parser a unique label and then uses the same conditional statement transformation

79

Algorithm 5.1: Statement handling in BiFrost

1 Func AdjustRegisterEdges
Inputs : r ∈ R, v ∈ V, E

2 ω ← fanins (r)
3 E ← E \ {(ω, r)}

/* fanins (r)← {v} */

4 E ← E ∪ {(v, r)}
5 Func HandleStatement

Inputs : Statement s, Circuit S
6 if s is assignment then
7 r ← Φ(s.target)
8 v ← Φ(s.expression)
9 m1 ← Mux(ctrl = l (s) , v, fanins (r))

10 AdjustRegisterEdges(r,m1, E)
11 m2 ← Mux(ctrl = l (s) , l (s.next) , fanins (ctrl))
12 AdjustRegisterEdges(ctrl,m2, E)
13 else if s is conditional then
14 e← Φ(s.condition)
15 m1 ← Mux(ctrl = l (s) ∧ e, l (s.true) , fanins (ctrl))
16 m2 ← Mux(ctrl = l (s) ∧ ¬e, l (s.false) ,m1)

17 AdjustRegisterEdges(ctrl,m2, E)
18 HandleStatement(s.true, S)
19 HandleStatement(s.false, S)
20 else if s is function call then
21 f ← s.function
22 r ← f.return register

23 foreach a ∈ Φ(f.args) do
24 ma ← Mux(ctrl = l (s) , s.args[a], fanins (a))
25 AdjustRegisterEdges(a,ma, E)
26 m1 ← Mux(ctrl = l (s) , l (f) , fanins (ctrl))
27 m2 ← Mux(ctrl = l (s) , l (s.next) , fanins (r))
28 AdjustRegisterEdges(ctrl, m1, E)
29 AdjustRegisterEdges(r, m2, E)
30 else if s is return call then
31 f ← s.function
32 r ← f.return register

33 m1 ← Mux(ctrl = l (s) , r, fanins (ctrl))
34 AdjustRegisterEdges(ctrl, m1, E)

in Algorithm 5.1 to generate the equivalent circuit block.

Packet Extraction and Lookahead. BiFrost translates packet extraction and looka-

head operations by simply connecting wires (i.e. edges in E) from a subset of the input

packet’s bits to the appropriate header fields. The subset of the packet’s bits that must be

accessed is determined by the order and size of each header parsed in each previously visited

states. Therefore, packet extraction operations will depend on runtime information of the

program’s execution.

80

Algorithm 5.2: BiFrost’s static analysis algorithm.

1 Func AnalyzeParserState
Inputs : Parser State α, Transition Key key, i
Outputs: Extraction Indices Map M

2 foreach Operation op ∈ α.operations do
3 if op is extract then
4 M [op]←M [op] ∪ {(key, i)}
5 i← i+ op.hdr size

6 else if op is lookahead then
7 M [op]←M [op] ∪ {(key, i)}
8 foreach (α, α′, k) ∈ α.transitions do
9 k′ ← key ∧ k

10 AnalyzeParserState(α′, k′, i)

/* Initial call for handling the parser */

11 α0 ← parser’s initial state
12 M ← AnalyzeParserState(α0, True, 0)

To address this challenge, BiFrost performs a static analysis of each state in the P4

program’s parser and determines the subset of input bits that must be read at each extraction

operation. Algorithm 5.2 presents BiFrost’s packet extraction analysis algorithm. For each

parser state α, BiFrost maps each extract or lookahead operation with a pair (key, index)

where index represents the index of the first bit to extract in the input packet when the

condition key is satisfied. Additionally, for each extraction operation in α, the index i is

updated based on the size of the header to extract (Note that lookahead operations do not

update the index, as defined by the P4 specification). Then, for each transition (α, α′, k),

BiFrost propagates the indices to the operations of α′ by creating they update key condition

key ∧ k. Finally, when generating the sequential circuit S, BiFrost creates a cascade of

multiplexer that determine the subset of the input packet’s bits that will mapped to each

header register based on the keys captured in Algorithm 5.2.

Finally, we note that BiFrost currently only supports fixed-width packet headers where

the length of each packet is predetermined at compile-time We acknowledge that this poses a

limitation on the developers’ ability to parse variable size options (such IPv4 options fields).

However, after surveying 11 publicly available P4 programs, we found none that use variable-

sized headers. Nevertheless, we plan to provide support for such parsing abilities in future

version of BiFrost.

Match-Action Tables. Data plane programs only describe the data forwarding behav-

ior of a networking device, the control plane provides that device with the contents of its

forwarding table to drive the functioning of match-action pipelines. For the matching part

of the table, BiFrost flattens all the matching conditions into an equivalent combinatorial

81

Algorithm 5.3: Least Prefix Match Transformation

1 Func AssignEntryLabels
Inputs : Table Entries T , Key k, S

2 T ′ ← Sort(T)

3 entries← []
4 foreach i, (e, a,) ∈ Enumerate(T ′) do
5 network addr ← k & e.mask

6

entries[i].label← (network addr = e.addr)∧i−1∧
j=0

¬ entry[j].label


/* D is the runtime data for each table entry. */

7 foreach i, (, a,D) ∈ Enumerate(T’) do
8 foreach v ∈ a.parameters do
9 λ← (ctrl = l (a)) ∧ (entries[i].label)

10 m← Mux(λ,D(v), fanins (v))
11 AdjustRegisterEdges(v, m, E)

12 loc←
(⋃|entries|

j=0 entries[j].label
)
∧ ctrl = l (T)

13 m← Mux(loc, l (a), fanins (ctrl))
14 AdjustRegisterEdges(ctrl, m, E)

circuit (i.e., one without any clocked registers) depending the type of the matching proce-

dure (exact, lpm, or ternary). Algorithm 5.3 shows an example of how this is performed for

least-prefix-match tables. BiFrost identifies the logic clause that would lead to the selec-

tion of each action defined by the table, and then transfers control to that specified action if

its clause is satisfied. For cases when multiple matches are possible, BiFrost sorted the list

of possible actions by order of priority and then for each lower priority match entry, adds a

clause specifying that all higher priority match entries must be false.

After selecting the appropriate action based on its match entry’s clause, BiFrost transfers

control to the start of each action, and assigns the action parameters to the set of values

defined in the match-action table. This is followed by normal execution of the all the

statements in the action using the values specified by the appropriate table entry.

Checksums. BiFrost provides circuit blocks to perform IPv4 checksum calculation and

verification operations as defined in RFC 1071 [167]. Since circuit area is not our primary

design goal, we save on clock cycle and circuit complexity by implementing those blocks

as combinatorial blocks, i.e. the entire calculation or verification task completes within one

clock cycle. We achieve this property by flattening the checksum algorithm into a series of

one’s complement full adders operating on pairs of 16 bits registers; this is the counterpart

of loop unrolling in compiler design techniques [168].

82

<Property > → Assert(<Expression >) |

Guard (<Expression >) |

<Expression >.

<Expression > → ∀ (<VariableList >) <Expression > |

∃ (<VariableList >) <Expression > |

(<Expression >) |

<Expression > <Op> <Expression > |

¬ <Expression > |

Variable |

ε.

<VariableList > → Variable | ε |

Variable, <VariableList >.

<Op > → {+,−, ∗,==,∧,∨, =⇒ , etc}.

Figure 5.5: BiFrost’s grammar for defining properties.

Functional Equivalence. BiFrost’ transformation Φ on a program P maps each P4

statement and parser state to a unique control location captured by the value of the circuit

S’s ctrl register. As shown in Algorithm 5.1, Φ preserves the semantics of each statement

s by operating on the circuit registers R that correspond to any affected header or variable

in P . Therefore, it is clear that, by construction, any trace tr1 := tr (P , k) of length k on

P corresponds to a trace tr2 := tr (S, k′) on S such that k′ ≥ k and ever state σ1 ∈ tr1

has an equivalent state σ2 ∈ tr2, thus proving the functional equivalence between P and its

corresponding circuit S = Φ (P).

5.6 VERIFICATION METHODOLOGY

5.6.1 Specifying Program Properties

BiFrost accepts data plane program specifications in the form of First Order Logic

(FOL) formulae provided by developers as annotations to the input program. Figure 5.5

shows BiFrost’ property specification grammar; properties are either assertions (Assert)

or guards (Guard) tied to a specific statement in the data plan program. Assertions are

properties that must hold when the specific control location is reached during execution,

while guards provide constraints on the inputs to the program or specific actions and func-

tions. In addition, BiFrost accepts properties in the form of pre and post conditions on

the program as defined in Hoare triples [169]. Contrary to assertion and guards that are

statement specific, pre and post conditions are global to the program. In other words, a pre

83

condition provides constraints on the input packet of the data plane program, while the post

condition specifies assertions that must hold at the end of the processing pipeline.

When applying the circuit transformation Φ, BiFrost translates each property into

its equivalent combinatorial circuit and creates the verification conditions guard =⇒
assertion and precondition =⇒ postcondition as circuit outputs. When verifica-

tion starts, the verifier will try to find input assignments (i.e., an input packet) that will

cause the verification conditions to be violated. If no such assignments can be found, the

properties are deemed to be satisfied.

Header Validity. In addition to developer-provided specifications, BiFrost provides

built-in support for header validity checks. During the transformation, for each statement

s that reads or write to a program header h, BiFrost adds the verification condition

ctrl = l (s) =⇒ IsValid(h) where IsValid corresponds to h’s validity bit being set to

1. Then, at the end of the transformation, BiFrost creates the conjunction of all such

validity conditions and add them as an output to the generated circuit S, to be checked for

violations during the verification phase.

5.6.2 Control Plane Abstraction

Data plane programs specify the forwarding behavior of a switch, while the control plane

controls the content of the switch’s match-action tables. In that regard, the transformation

we introduced in Section 5.5 operates on a single snapshot of the target switch’s tables.

Therefore, any properties proven by BiFrost are only proven with regard to that specific

snapshot of tables.

To make the verification process more general, BiFrost provides avenues for abstracting

the control plane tables, thus proving properties for the programmable switch regardless

of the content of its tables. To achieve that goal, BiFrost provides developers with the

option to abstract the match-action tables by replacing them with free input variables that

non-deterministically choose actions and runtime data. During the transformation, when

BiFrost encounters a table lookup, it uses a set of free inputs to non-deterministically

choose an action from that table’s allowed actions. It then assigns that actions’ parameters

to free inputs of the same bit width. In such a case, when BiFrost proves a property, that

property will hold on the data plane program regardless of the contents of its tables, i.e., for

any function of the control plane.

The abstraction of the control plane tables introduces two important challenges. First, by

adding more free inputs, the abstraction greatly increases the verifier’s search space, which

can often make the verification process computationally intractable. We address this issue in

84

BiFrost by (1) allowing developers to provide Guard conditions on the control plane tables

to constrain the search space, and (2) performing bounded model checking on the length of

the switch’s pipeline (as discussed in the following subsection).

Second, abstracting the match-action tables violates the functional equivalence property of

BiFrost’s transformation and produces a circuit S that over-approximates the input data

plane program P . This might lead the verifier to find false positive counterexamples; such

counterexamples, although they violate the program’s properties, are not possible program

traces and thus must not be considered. To address this challenge, BiFrost provides the

developer with a detailed trace of each generated counterexample (showing the content of

the input packet as well as every header and variable throughout the pipeline), thus allowing

them to sort through the true positives and the false positives. However, we plan to explore

techniques such as Counter Example Guided Abstraction Refinement (CEGAR) [162] to use

false positives for adding constraints to the abstracted match-action tables.

5.6.3 Bounded Model Checking

To provide higher-levels of scalability, and to address the challenges brought-upon by the

abstraction of the match-action tables, we leverage the boundedness of the programmable

switches to perform bounded model checking (BMC) with provable pipeline length guarantees.

Based on the observation that data plane programs are linear in the number of headers

in incoming packets, during BiFrost’s transformation, we estimate an upper bound on

the number of clock cycles needed to process a single packet, from the moment it enters

the pipeline until it is written onto the appropriate output port. If the program’s parser

is acyclical, the upper bound, B, is simply equal to the largest control flow label generated

during the transformation. On the other hand, if the parser contain a cycle of length l,

then we estimate the upper bound as B + k × n× l where n is the number of headers in the

program, and k > 1 is a constant multiplier.

Next, BiFrost proves that the estimated bound B holds over any possible program exe-

cution. It first abstracts the program’s match-action tables. Then, it adds a simple counter

C that is incremented every clock cycle, and creates the post condition Γ := C ≤ B. Finally,

it launches a verification process to prove that Γ is always satisfied, i.e., for all input packets

and for all match-action tables, the switch’s pipelines fully processes the packet in less than

B clock cycles. The verification of this boundedness property is more efficient than the ver-

ification of program-specific properties since it is restricted to the transitions made during

execution, and not the actual content of the registers. For programs with cyclical parsers,

BiFrost starts with k = 1 and then keeps increasing k as long as it finds counterexamples to

85

the Γ. Since the program is linear in n, we are guaranteed to find a k such that boundedness

condition holds.

Once the bound B is proven, BiFrost can then perform BMC on the original specification

with the clock cycle bound set to B. If no counter example is generated, the verifier asserts

that the no input assignment can violate the program’s properties in B clock cycles. Coupled

with the previous boundedness proof, this is enough to guarantee the program’s properties

hold for any execution possible execution path.

5.7 IMPLEMENTATION

We implemented BiFrost in C++ using 13 869 lines of code. Our implementation is

modular and extensible, allowing developers to provide support for different data plane

programming languages and transformations for designer-specific extern blocks. We plan

to release BiFrost as an open-source tool that developers can easily use to verify their

implementations.

The current version of BiFrost accepts the input P4 program in its JSON format, as

generated by the p4c reference compiler. We extend the JSON format to support the speci-

fication of FOL properties. To support modular and extensible transformations, BiFrost

first translates the input program into an intermediate, high-level, circuit representation,

and exposes its API to future developers. Finally, BiFrost uses the ABC API to generate

the AIG and perform the verification tasks. BiFrost comes pre-equipped with several re-

duction, abstraction and verification techniques, but also provides a built-in interactive shell

that allows developers to interact with the ABC verifier.

To validate the correctness of our implementation, we generated input and output packets

by simulating each of our test P4 programs using the P4 behavioral model version 2 (bmv2).

We then use the input packet to simulate our generated AIG and verifies that it outputs the

correct packet at its egress.

5.7.1 Handling Parser Loops

If the input P4 program employs header stacks, parser loops may arise to extract all the

headers from the packet into the stack. Although such loops are always bounded by the

maximum number of headers in the stack, the exact number of iterations undertaken by the

parser is not known until the packet is received. The last extracted header in the stack can

be later accessed using the stack’s last operator.

86

To keep our transformations simple and efficient, instead of introducing complex circuitry

to track loop counters, we choose to unroll parser loops to allow for the extraction of all

of the possible headers in the stack. Subsequently, the stack’s last operator is simply a

constant value obtained from the corresponding unrolled parser state, and can be later one

manipulated using push and pop operations. Although unrolling increases the sizes of the

sequential circuit, it favors simplicity and thus aids in scaling verification efforts.

5.7.2 Register Arrays Reads and Writes

P4 supports register arrays that can be accessed using index values computed during

the program’s execution. To support such arrays in BiFrost, we implement a very simply

index-based memory manager that allows reads from and writes to arrays of registers. When

reading the value of a certain register a[i], BiFrost creates a hierarchy of multiplexers that

compare the value of i to the possible index values allowable for the register array a. Since all

values are mutually-exclusive, only one value is returned, which corresponds to the contents

of the register a[i]. Similarly, we translate each write to a register element into writes to

all the elements in the array, out of which only one will be activated based on the runtime

value of the index. If the index is out of bound, all accesses will fail and an out of bound

error is produced.

5.7.3 Counterexamples

When the verification procedures in ABC generate a counterexample, BiFrost lifts that

counterexample back into the original program and generates (1) a pcap file containing the

violating packet (or subset thereof) and (2) a trace that shows the state observed during

the processing of that packet. To that extent, we maintain a reverse lookup map between

the circuit’s control locations and their corresponding P4 program locations (such as table

lookups, parser states, and action primitives). Note that the counterexample might include

only a subset of the program’s variables since several variables, or their individuals bits, can

be removed during the reduction and abstraction phase.

5.8 EVALUATION

In this section, we set out to evaluate BiFrost and answer the following research ques-

tions:

87

RQ 5.1 How effective is BiFrost in proving data plane program properties and generating

counterexamples?

RQ 5.2 What are the benefits of using sequential circuit verification when verifying data

plane program properties?

RQ 5.3 How scalable is BiFrost when attempting to verify large P4 programs?

5.8.1 Case Study I: Header Validity Bug in ecn.p4

We first illustrate the benefits of employing data plane program verification. Using

BiFrost, we uncovered a read from an invalid header bug in one of the P4 tutorial ex-

amples ecn.p43. The goal of the exercise is to develop a programmable switch that performs

layer 3 forwarding while providing support for Explicit Congestion Notification (ECN) bits

to signify that the switch has encountered congestion in its queues, without the need for

dropping packets. When a packet arrives, the program parses its Ethernet header and then

parses an IP header if the Ethernet type is set to 0x0800. In its ingress pipeline, the switch

performs an IP address lookup in its match-action tables to determine the packet’s egress

port, decrement its TTL value, and assign its MAC source and destination addresses. This

pipeline is guarded against invalid header accesses by only performing the lookup if the

packet’s IPv4 header is valid.

At the egress pipeline, the switch reads the packet’s ECN bits and checks its queue depth

to determine if it should notify the receiver that it has encountered congestion. However, in

this case, the developers did not guard against non-IP headers; the switch attempts to read

the ECN bits of the packet even if its IPv4 header was not previously set to valid during

the parsing stage. The switch’s behavior at this stage is not defined by the P4 specifica-

tion [148], it is rather determined by the target architecture, thus introducing vulnerabilities

that malicious entities can exploit [123].

Using BiFrost, we were able to discover and locate this bug in the ecn.p4 program,

as shown in Figure 5.6. BiFrost generated a counterexample trace showing that when

execution reached control location 0x0E (which corresponds to the start of the MyEgress

pipeline), the header validity property was violated. Lifting this counterexample back into

the program’s source code shows that the conditional statement at the start of the pipeline

accesses the ecn field of the ipv4 while the header is invalid.

3We confirmed this issue with the tutorial developers. The example solution was provided for illustrative
purposes so no corrective action was taken.

88

control MyIngress(inout headers hdr,
 inout metadata meta,
 inout standard_metadata_t
 standard_metadata) {
 ...
 action ipv4_forward(macAddr_t dstAddr,
 egressSpec_t port) {
 standard_metadata.egress_spec = port;
 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
 hdr.ethernet.dstAddr = dstAddr;
 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
 }
 ...
 apply {
 if (hdr.ipv4.isValid()) {
 ipv4_lpm.apply();
 }
 }
}

control MyEgress(
 inout headers hdr,
 inout metadata meta,
 inout standard_metadata_t
 standard_metadata) {
 action mark_ecn() {
 hdr.ipv4.ecn = 3;
 }

 apply {
 if (hdr.ipv4.ecn == 1 ||
 hdr.ipv4.ecn == 2) {
 if (standard_metadata.enq_qdepth >=
 ECN_THRESHOLD) {
 mark_ecn();
 }
 }
 }
}

{
 “epoch”: 4,

 ...

 “__cstate__”: 0x0E (MyEgress.Start),
 “ethernet.$valid$”: 0x01,
 “ethernet.dstAddr”: 0x000000000000,
 “ethernet.srcAddr”: 0x000000000000,
 “ethernet.etherType”: 0x0000,

 ...

 “ipv4.$valid$”: 0x00,

 ...

}

No guard against
invalid reads

Guard
against
invalid
reads

Figure 5.6: Bug discovered in ecn.p4. The leftmost code snippet shows the ingress pipeline
where invalid header reads are guarded against using an if statement. The center code
snippet shows the egress pipeline where the ecn bits of the ipv4 header of the packet are read
even if that packet is invalid. The rightmost snippet shows an except of the counterexample
generated by BiFrost when attempting to validate the program’s header validity. It shows
that the validity property was invalidated when execution reached the start at of the egress
pipeline, where the Ethernet header was valid while the IPv4 header was not.

5.8.2 Case Study II: Verifying Functional Properties in calc.p4

To answer RQ 5.2, we use the simple calculator example, calc.p4, provided by the P4

language tutorials4, to illustrate the efficacy of sequential circuit reduction, abstraction,

and verification techniques in proving functional program properties. calc.p4 implements a

simple calculator that, after parsing a packet’s Ethernet header, parses a custom header that

contains two 32-bit operands, an 8-bit operation field, and a 32-bit result. Depending on the

type of the operation field, the switch will perform a certain arithmetic or logic operation

on the two operands and store the result in the corresponding header field. It will then send

the packet back to the user on the same port from which it was received.

To verify that the program was implemented correctly, we annotate it with pre and post

conditions to capture its correct behavior. For example, for the addition operation, we verify

the property

∀(packet headers h).

(h.eth.valid ∧ h.calc.valid ∧ h.calc.op = 0x2b)︸ ︷︷ ︸
pre condition

=⇒

(h.calc.res = h.calc.operand a + h.calc.operand b)︸ ︷︷ ︸
post condition

(5.5)

where h represents the set of packet headers extracted by the parser, h.eth and h.calc

are the packet’s Ethernet and custom calculator packet headers, respectively. The clause

h.calc.op = 0x2b makes sure the packet is intended to request an addition operation, while

4https://github.com/p4lang/tutorials/blob/master/exercises/calc/solution/calc.p4

89

Table 5.1: Verification results for calc.p4. PI and Lat. stand for primary inputs and
latches, respectively. BMC represents bounded model checking and PDR represents property
directed reachability.

P
AIG size
(Original)

AIG size
(Abstracted) Method

Time
(sec.)

PIs Lat. Gates PIs Lat. Gates
calc 240 1589 4650 144 346 1227 PDR Timeout
calc 240 1589 4650 144 346 1227 BMC 23.35

calc-8 168 941 3330 72 202 819 PDR 57.43

the post condition ensures that after processing the packet, the result indeed includes the

addition of the two operands.

We set out to fully verify property (5.5) for all of its input space (14 bytes for the Ethernet

header and 16 bytes for the calc header). As show in Table 5.1, BiFrost generates an AIG

with 240 free inputs (PIs) that represent the 30 bytes header space of the input packet. After

performing sequential circuit reduction techniques, the number of free inputs is reduced to

144, capturing only the Ethernet header’s type field (16 bits) and the calc header (16 bytes).

In other words, BiFrost was able to eliminate the source and destination MAC addresses

since they have no impact on property (5.5).

However, when first attempting to verify the property using property directed reachabil-

ity [170, 171], after 5 minutes, the ABC verifier produced an undecided result; it did not find a

counterexample within the allocated time limit, but was not able to prove the property. This

is a reflection of the still very large input space (2144 values after reduction) of the program,

and the relative complexity of property (5.5). Effectively, verifying property (5.5) amounts

to verifying a full Arithmetic Logic Unit (ALU) over two 32-bit operands. To validate our

intuition, we reduced the size of the operands from 32 bits to 8 bits and were able to fully

verify the property in 1 minute (row 3 of Table 5.1).

Nevertheless, we would still like to a conclusive verification result for calc.p4. To that end,

we leveraged our circuit bounding technique to perform BMC. During the transformation,

BiFrost estimated that processing a single packet through the switch’s pipeline takes no

more than 69 clock cycles. We then launched a separate verification procedures and formally

proved that execution always completes within that bound, which the ABC verifier quickly

verifies. Finally, instead of using PDR, we ran BMC with a bound of 69 clock cycles and

were able to verify property (5.5) in 24.5 seconds. What the BMC result asserts is that for

all input values, the property is always satisfied within the first 69 clock cycles of execution.

Coupled with BiFrost’s verified circuit bound, this guarantees that the program satisfies

its specification.

90

5.8.3 Scalability Benchmarks

Finally, to answer RQ 5.3, we evaluate BiFrost on 11 open source P4 programs. These

programs represent a range of data plane applications such as simple forwarding, multicas-

ting, quality of service mechanisms, and a data plane-only firewall. For each program, we

verified the header validity property for all possible control plane settings by abstracting

the contents of the tables and replacing them with free inputs. As in [129], we chose the

header validity property since it generalizes to any data plane program. However, we note

that unlike [129], BiFrost does not require any inputs from the control place. Our verifi-

cation results hold for any control place configuration. We conducted our experiments on a

server-class machine with 32 Intel(R) Xeon(R) CPU E5-2450 v2 @ 2.50GHz processors and

64GB of memory space.

Table 5.2 shows the results of our experiments. We report on the size of the generated

sequential circuit before and after abstraction in terms of the number of primary inputs,

latches, and logic gates. We also breakdown the performance profiles in terms of transfor-

mation, abstraction, and verification times. We first note that BiFrost can verify header

validity for most programs in less than a second. Some of those programs have a relatively

large input space (such as 38 bytes for the headers in basic tunnel). firewall.p4 is the

program with the largest running time (> 2 minutes). Although we believe this is accept-

able for verification, we attribute the runtime increase for firewall.p4 to the fact that it

implements a complex firewall and maintains two Bloom filters, each with 4096 elements,

that use crc16 and crc32 as hashing functions. This is exemplified by the large increase in

the size of the generated circuit compared to the other benchmarks. The presence of such

data structures can complicate the generate circuit and this increase the verification time.

Second, we note that over all the experiments, BiFrost achieves > 80% reduction in

the size of the generated sequential circuit. This further emphasize the power of sequential

reduction and abstraction techniques in eliminating the parts of the circuit that do not

contribute to the property being verified. Furthermore, for resubmit.p4 and multicast.p4,

the ABC verifier was able to flatten the circuit into a combinatorial circuit and prove that

the header validity property is a tautology, as showcased by the elimination of all circuit

components during the abstraction phase. This is due to the fact that these two programs

only include Ethernet headers, thus making it simple for ABC to completely flatten the circuit

into one combinatorial formula.

Finally, we used BiFrost to uncover another header validity bug in vpc.p45. VPC imple-

ments a virtual private cloud in programmable switches. After parsing an Ethernet header,

5https://github.com/joncastro/p4vpc

91

T
ab

le
5.

2:
P

er
fo

rm
an

ce
re

su
lt

s
fo

r
B
iF

r
o
st

on
se

ve
ra

l
op

en
so

u
rc

e
P

4
b

en
ch

m
ar

k
s.

L
O

C
st

an
d
s

fo
r

L
in

es
of

C
o
d
e.

O
u
t.

re
p
re

se
n
ts

th
e

ve
ri

fi
ca

ti
on

ou
tc

om
e

w
h
er

e
3

st
an

d
s

fo
r

ve
ri

fi
ed

an
d

7
st

an
d
s

fo
r

co
u
n
te

re
x
am

p
le

ge
n
er

at
ed

.
P

Is
an

d
L

at
.

st
an

d
fo

r
p
ri

m
ar

y
in

p
u
ts

(i
.e

.,
fr

ee
va

ri
ab

le
s)

an
d

la
tc

h
es

,
re

sp
ec

ti
ve

ly
.

T
ra

n
s.

,
A

b
s.

,
an

d
V

er
.

re
p
re

se
n
t

th
e

tr
an

sf
or

m
at

io
n
,

ab
st

ra
ct

io
n
,

an
d

ve
ri

fi
ca

ti
on

ti
m

es
,

re
sp

ec
ti

ve
ly

.

P
L

O
C

P
a
rs

e
r

S
ta

te
s

H
e
a
d
e
r

le
n
g
th

(b
y
te

s)
O

u
t.

A
IG

si
ze

T
im

e
(s

)
O

ri
g
in

a
l

A
ft

e
r

a
b
st

ra
ct

io
n

T
ra

n
s.

A
b
s.

V
e
r.

P
Is

L
a
t.

G
a
te

s
P

Is
L

a
t.

G
a
te

s
b
as

ic
12

1
3

34
3

33
1

89
0

30
75

18
46

15
6

0.
06

1
0.

07
6

0.
06

0
b
as

ic
tu

n
n
el

15
3

4
38

3
40

3
99

7
50

29
38

87
34

5
0.

06
3

0.
09

5
0.

07
9

co
p
y

to
cp

u
95

4
16

3
13

1
52

0
14

21
67

21
1

37
1

0.
05

9
0.

09
1

0.
06

6
ca

lc
13

9
4

30
3

24
3

15
88

45
61

43
12

0
60

3
0.

06
5

0.
11

8
0.

06
8

q
os

18
8

3
34

3
56

7
89

1
36

74
34

65
36

4
0.

06
1

0.
09

4
0.

18
5

ec
n

13
4

3
34

7
33

1
90

9
31

81
20

49
19

6
0.

06
0

0.
08

2
0.

01
2

m
u
lt

ic
as

t
89

2
14

3
12

3
39

4
64

8
0

0
0

0.
05

6
0.

06
0

0.
00

1
fi
re

w
al

l
21

0
4

54
3

49
4

96
43

63
37

2
12

6
84

95
44

33
5

0.
21

6
3.

29
3

13
4.

04
7

p
ax

os
-l

ea
d
er

20
5

5
90

3
78

7
22

33
15

37
0

24
7

45
4

13
55

0.
07

6
0.

32
4

0.
53

5
v
p

c
27

2
7

88
7

10
26

3
25

32
49

63
4

55
8

25
7

66
57

0.
14

1
1.

18
9

0.
07

7
re

su
b
m

it
89

3
14

3
12

9
45

2
79

0
0

0
0

0.
05

4
0.

06
4

0.
00

1

A
v
e
ra

g
e

R
e
d

u
ct

io
n

85
.6

29
82
.4

28
85
.4

98

92

10.0.1.1 10.0.2.2 10.0.3.3 10.0.4.4

s1 s2

1 2

3 1

2 3

Figure 5.7: A sample topology comprised of four hosts connected to two programmable
switches. s1 and s2 are programmable switches. Numbers on the links represent each switch’s
port number.

the switch reads an ARP header, arp rarp. Subsequently, if arp arp.protoType is 0x0800, the

switch parses another ARP header called arp rarp ipv4. However, in its ingress pipeline,

after checking arp rarp’s validity, the switch assumes that arp rarp ipv4 is present, without

checking that arp arp.protoType is indeed 0x0800. In such a case, an attacker can craft a

packet that will lead the switch to read from an invalid header, thus introducing an un-

defined behavior. We confirmed this bug by tracing BiFrost’s counterexample into the

original program.

Overall, we believe that our results showcase that BiFrost can scale to real world data

plane programs, and can leverage the power of sequential synthesis and verification to achieve

scalable and efficient verification for different properties.

5.9 GENERALIZATION TO NETWORK PROPERTIES

BiFrost currently only support properties that express correctness and safety specifica-

tions about a single programmable switch. In other words, those properties only relate to

the lifetime of a packet once it enters a switch through the ingress port until it leaves that

switch at the output port. However, network verification, and specifically when dealing with

security properties, requires an overall view of the network that allows developers to express

reachability and safety properties about a deployed network. In this section, we discuss how

BiFrost can be extended to support such verification tasks.

Consider the simple network topology shown in Figure 5.7. The network is composed

of four hosts connected to two programmable switches, forming four different subnetworks.

Assume in this case, that the network developer set up a firewall program that blocks

93

ssh traffic from hosts on the subnetwork 10.0.1.0/24 to the host 10.0.4.4. To verify

the correctness of her deployment, the developer would like to verify that the data plane

programs deployed on the switches correctly block ssh traffic to the target host. Formally,

the developer can express this property as ∀packet p,

(p.ip.srcAddr ∈ 10.0.1.0/24 ∧ p.ip.dstAddr = 10.0.4.4 ∧ p.tcp.dstPost = 22)

=⇒ isDropped (p)
(5.6)

To verify this property using BiFrost, we first translate data plane programs that the

developer implemented into their equivalent sequential circuits. However, unlike the single-

switch verification tasks, each circuit will have different inputs and outputs that correspond

to the number of different input and output ports available. Then, given the network topol-

ogy, we can connect the corresponding circuit inputs and outputs in accordance to the

connectivity profiles between the switches. Since we are interested in security properties,

we do not place restrictions on the packets originating from every host. In other words, we

allow packets on ingress ports to take on any values, even if they are not consistent with the

network topology. This allows us to capture the case where a compromised host masquerades

as a different host and send traffic on its behalf.

Finally, we project the property that the developer would like to verify onto the generated

sequential circuit by adding appropriate primary outputs at each switch. For example, the

firewall correctness property we previously discussed can be translated into two properties

at each switch as follows. At switch s1, ∀packet p,

(p.ip.isValid() ∧ p.ip.dstAddr = 10.0.4.4) =⇒ (p.metadata.eport = 3) (5.7)

and at s2,

∀packet p. (p.ip.isValid() ∧ (10.0.1.0 ≤ p.ip.srcAddr ≤ 10.0.1.255))

=⇒ ((p.tcp.isValid() ∧ p.tcp.dstPort = 2) =⇒ isDropped(p))
(5.8)

The first property at switch s1 ensures that the switch is forwarding packets destined to

10.0.4.4 on the correct output port. The second property ensures that switch s2 drops all

packets originating from 10.0.1.0/24, destined to 10.0.4.4, and containing a valid TCP

header with a destination port of 22. Note that in this case, we did not restrict that packets

on switch s2 to be received on the ingress port 1 since an attacker that has compromised

host 10.0.3.3 can send packets destined to 10.0.4.4 with a spoofed source IP address

of 10.0.1.1. Therefore, the switch s2 should drop all packets that satisfy the criterion, no

94

matter the ingress port the switch receives them on. We plan to extend BiFrost to support

such transformations and properties in a future release.

5.10 RELATED WORK

Network Verification. Recently, a number of tools have been proposed to verify software-

defined networks. Anteater [172] performs static analysis on the contents of the forwarding

tables of data plane devices to detect violations of certain operator-provided invariants.

It translates network invariants into SAT formulas and checks them using a SAT solver.

HSA [173] statically checks failure conditions for software-defined networks in a protocol-

independent way. It analyzes equivalence classes of related packets to perform reachability

analysis, loop detection and slice isolation. These works perform static verification by ana-

lyzing snapshots of the programmable data plane against specified network properties. While

these tools can be used to detect violations of static properties across devices, they cannot

be used to detect issues in the packet processing procedures within the switches.

P4 Packet Generation. Several approaches generate packets in various ways to trigger

bugs at runtime in P4 programs. p4rl [174] proposed a test packet generation tool that

uses reinforcement learning to decide on which fuzzing actions to take when generating test

cases. p4pktgen [128] uses symbolic execution to automatically generate test cases from

specifications of P4 programs. The generated packets contain test packets, table entries,

and expected paths. Suriya et al [175] provide complementary work to p4pktgen to localize

bugs for P4 program at runtime. However, the test generation based approaches can be

expensive when the search space grows. Static verification can be seen as a complementary

approach to exhaustive testing.

P4 Verification. There are also works that perform static verification of P4 programs

using symbolic execution. p4v [129] performs automatic verification of P4 data planes using

Dijkstra’s algorithm (GCL) [176] and the Z3 theorem prover [177] to check properties and

compute counter examples. Vera [130] translates P4 programs into an equivalent SEFL

representation and uses Symnet [178] to perform symbolic execution on the generated model.

It explores fixed snapshots of the control plane and uses symbolic table entries to check

specified policies. Neves et al [179] present a tool that takes as input a data plane program

manually annotated with assertions. It translates the program and its assertions into a

C program and checks its correctness with symbolic execution. Unlike BiFrost, these

approaches treat data plane programs similarly to general-purpose programs and heavily

rely on symbolic execution. BiFrost’s BMC approach to verify large programs has no

95

counterpart in any other general-purpose approach.

Model Checking. Traditional verification approaches use symbolic execution for model

checking such as SymNet [178] and NuSMV [180]. They translate program invariants into

boolean expressions and explore all possible code paths to perform model checking. The

closest work to BiFrost is that in [181] where the authors propose to translate a restricted

subset of general-purpose programs into sequential circuits. BiFrost builds upon the ap-

proach presented in [181] but uses several domain-specific transformations and optimizations

targeted for data plane programs. The boundedness of data plane programs makes them

better candidates for such a transformation than general purpose programs.

5.11 CONCLUSION

In this chapter, we presented BiFrost, a tool for the scalable verification of data plane

programs using sequential circuit synthesis and verification. BiFrost exploits the bound-

edness of data plane programs to generate efficient and functionally equivalent circuits.

BiFrost then uses the ABC verifier to reduce the size of those circuit and perform sequential

verification for different types of properties. Our results show that BiFrost can scale to

real-world programs by leveraging the power of sequential reduction and verification, and

that BiFrost is able to prove complex properties and detect bugs in open source programs.

In the future, we plan to explore the following research paths. First, BiFrost currently

supports the verification of the forwarding path of a single programmable switch. How-

ever, many network-wide properties depend on the interactions between different switches.

Therefore, we would like to extend BiFrost to support the verification of network-wide

properties that span the lifetime of a packet across several interconnected switches. Second,

one of the promises of programmable data planes is flexibility; a network operator can deploy

a program on switches from different vendors and expect them to behave in the same way.

However, each vendor provides its own proprietary compiler and there is not guarantee that

all switches will behave similarly. We plan to use our sequential circuit transformation to

provide operators with the means to verify the functional equivalence of the different imple-

mentations. Using sequential equivalence checking, BiFrost’s generated circuit can serve

as an oracle that can be used to attest for the functional equivalence between the different

compilations.

96

CHAPTER 6: SSHIELD: A GAME-THEORETIC APPROACH TO
RESPOND TO ATTACKER LATERAL MOVEMENT

6.1 INTRODUCTION

In the wake of the increasing number of targeted and complex network attacks, namely

Advanced Persistent Threats (APTs), organizations need to build more resilient systems.

Resiliency is a system’s ability to maintain an acceptable level of operation in light of abnor-

mal, and possibly malicious, activities. The key feature of resilient systems is their ability

to react quickly and effectively to different types of activities. There has been an ever-

increasing amount of work on detecting network intrusions; Intrusion Detection Systems

(IDSs) are widely deployed as the first layer of defense against malicious opponents [182].

However, once alarms have been raised, it may take a network administrator anywhere from

weeks to months to effectively analyze and respond to them. This delay creates a gap be-

tween the intrusion detection time and the intrusion response time, thus allowing attackers

a sometimes large time gap in which they can move freely around the network and inflict

higher levels of damage.

An important phase of the life cycle of an APT is lateral movement, in which attack-

ers attempt to move laterally through the network, escalating their privileges and gaining

deeper access to different zones or subnets [183]. As today’s networks are segregated by

levels of sensitivity, lateral movement is a crucial part of any successful targeted attack. An

attacker’s lateral movement is typically characterized by a set of causally related chains of

communications between hosts and components in the network. This creates a challenge for

detection mechanisms since attacker lateral movement is usually indistinguishable from ad-

ministrator tasks. It is up to the network administrator to decide whether a suspicious chain

of communication is malicious or benign. This gap between the detection of a suspicious

chain and the administrator’s decision and response allows attackers to move deeper into the

network and thus inflict more damage. It is therefore essential to design response modules

that can quickly respond to suspicious communication chains, giving network administrators

enough time to make appropriate decisions.

Intrusion Response Systems (IRSs) combine intrusion detection with network response.

They aim to reduce the dangerous time gap between detection time and response time.

Static rule-based IRSs choose response actions by matching detected attack steps with a

set of rules. Adaptive IRSs attempt to dynamically improve their performance using suc-

cess/failure evaluation of their previous response actions, as well as IDS confidence met-

rics [184, 185]. However, faced with the sophisticated nature of APTs, IRSs are still unable

97

to prevent network attacks effectively. Rule-based systems can be easily overcome by adap-

tive attackers. Adaptive systems are still not mature enough to catch up with the increased

complexity of APTs.

In this chapter, we present a game-theoretic network response engine that takes effec-

tive actions in response to an attacker that is moving laterally in an enterprise network.

The engine receives monitoring information from IDSs in the form of a network services

graph, which is a graph data structure representing vulnerable services running between

hosts, augmented with a labeling function that highlights services that are likely to have

been compromised. We formulate the decision-making problem as a defense-based zero-sum

matrix game that the engine analyzes to select appropriate response actions by solving for

saddle-point strategies. Given the response engine’s knowledge of the network and the loca-

tion of sensitive components (e.g., database servers), its goal is to keep the suspicious actors

as far away from the sensitive components as possible. The engine is not guaranteed to

neutralize threats, if any, but can provide network administrators with enough time to ana-

lyze suspicious movement and take appropriate neutralization actions. The decision engine

will make use of the monitoring information to decide which nodes’ disconnection from the

network would slow down the attacker’s movements.

An important feature of our approach is that, unlike most IRSs, it makes very few pre-

game assumptions about the attacker’s strategy; we only place a bound on the number

of actions that an attacker can make within a time period, thus allowing us to model the

problem as a zero-sum game. By not assuming an attacker model beforehand, our engine

can avoid cases in which the attacker deviates from the model and uses its knowledge to trick

the engine and cancel the effectiveness of its actions. We show that our engine is effectively

able to increase the number of attack steps needed by an attacker to compromise a sensitive

part of the network by at least 50%. Additionally, in most cases, the engine was able to

deny the attacker access to the sensitive nodes for the entire period of the simulation.

The rest of this chapter is organized as follows. We describe the motivation behind our

work in Section 6.2. We then present an overview of our approach and threat model in

Section 6.3. Section 6.4 formally presents the response engine and the algorithms we use. We

discuss implementation and results in Section 6.5. We review past literature in Section 6.6,

present challenges and future directions in Section 6.7, and conclude Section 6.8.

6.2 MOTIVATION

The life cycle of an APT consists of the following steps [183, 186, 187]. The first is

intelligence gathering and reconnaissance, which is followed by the establishment of an entry

98

point into the target system. Subsequently, the attacker establishes a connection to one

or more command and control (C&C) servers, and uses these connections to control the

remainder of the operation. Following C&C establishment is lateral movement, wherein the

attacker gathers user credential and authentication information and moves laterally in the

network in order to reach a designated target. The last step includes performance of specific

actions on the targets, such as data exfiltration or even physical damage [188].

Lateral movement allows attackers to achieve persistence in the target network and gain

higher privileges by using different tools and techniques [183]. In a number of recent security

breaches, the examination of network logs has shown that attackers were able to persist and

move laterally in the victim network, staying undetected for long periods of time. For exam-

ple, in the attack against the Saudi Arabian Oil Company, the attackers were able to spread

the malware to infect 30,000 personal machines on the company’s network through the use of

available file-sharing services [189]. In the Ukraine power grid breach, attackers used stolen

credentials to move laterally through the network and gain access to Supervisory Control and

Data Acquisition (SCADA) dispatch workstations and servers. The attackers had enough

privileges to cause more damage to the public power grid infrastructure [190]. Furthermore,

through the use of USB sticks and exploitation of zero-day vulnerabilities in the Windows

operating system, the Stuxnet malware was able to move between different workstations in

an Iranian nuclear facility until it reached the target centrifuge controllers [188].

Early detection of lateral movement is an essential step towards thwarting APTs. However,

without timely response, attackers can use the time gap between detection and administra-

tor response to exfiltrate large amounts of data or inflict severe damage to the victim’s

infrastructure. It took network administrators two weeks to effectively neutralize threats

and restore full operation to the Saudi Arabian Oil Company’s network [189]. Furthermore,

attackers attempt to hide their lateral movement through the use of legal network services

such as file sharing (mainly Windows SMB), remote desktop tools, secure shell (SSH) and

administrator utilities (such as the Windows Management Instrumentation) [183]. This

stealthy approach makes it harder for network administrators to decide whether the traffic

they are observing is malicious lateral movement or benign user or administrative traffic.

In this work, we present a game-theoretic approach for autonomous network response to

potentially malicious lateral movement. The response actions taken by our engine aim to

protect sensitive network infrastructure by keeping the attacker away from it for as long as

possible, thus giving network administrators enough time to assess the observed alerts and

take effective corrective actions to neutralize the threats.

99

Figure 6.1: Our defender model. The defense module uses IDS alerts and monitoring data
along with observed attacker steps to build a network model. Trying to protect a sensitive
node σ, it builds a zero-sum game and solves for the saddle-point strategies in order to select
an appropriate response action a. The Response Deployment module is then responsible for
the implementation of a in the network.

6.3 OVERVIEW

We assume, in our framework, the presence of network level IDSs (such as Snort [191] and

Bro [192]) that can provide the response engine with the necessary monitoring information.

The response engine maintains the state of the network in the form of a network services

graph, a graph data structure that represents the active services between nodes in the

network. It then uses IDS information to define a labeling function over the graph that

marks suspicious nodes and communications used for a possible compromise. Using the

labels, the engine observes chains of communications between likely compromised nodes.

Such chains are considered suspicious and require the engine to take immediate response

actions. The engine considers all suspicious chains as hostile; its goal is to prevent any

attackers from reaching specified sensitive nodes in the network, typically database servers

or physical controllers.

From the observed states, the response engine can identify compromised nodes and possible

target nodes for the attacker. It will take response actions that disconnect services from

target nodes so that it prevents the attacker from reaching the sensitive node. This step

can provide the network administrators with enough time to assess the IDS alerts and

take appropriate actions to neutralize any threats. Figures 6.1 and 6.2 illustrate high-

level diagrams of our response engine and a sample observed network state with 10 nodes,

respectively.

100

Figure 6.2: An illustration of our game model. The attacker has compromised 3 nodes in the
network, and has four potential targets to compromise next. The defender, seeing the three
compromised nodes, has to decide where the attacker is going to move next and disconnect
services from the node, thus slowing down the attack.

Our threat model allows for the presence of a sophisticated attacker that has already es-

tablished an entry point in an enterprise network, typically using spear phishing and social

engineering, and aims to move laterally deeper into the network. Starting from a compro-

mised node, the attacker identifies a set of possible target nodes for the next move. We

assume that the attacker compromises one node at a time in order to avoid detection. We

argue that this assumption is reasonable since attackers typically want to use legitimate ad-

ministrator tools to hide their lateral movement activities [193]. Therefore, unlike computer

worms that propagate widely and rapidly [194], lateral movement tends to be targeted, slow

and careful. We will explore more sophisticated types of attackers with multi-move abilities

in our future work.

Figure 6.2 illustrates an example network services graph with ten nodes, where an attacker

has established a point of entry and already compromised three nodes. We highlight the

target nodes that the attacker can choose to compromise next. We assume no prior knowledge

of the strategy by which the attacker will choose the next node to compromise. Building our

response engine on the assumption of like-minded attackers would lead to a false sense of

security, since attackers with different motives would be able to overcome the responses of

our engine, or possibly use them to their own advantage. Therefore, we formulate a defense-

based game that attempts to protect a sensitive node in the network, regardless of the goals

that the attacker is trying to achieve.

6.4 THE RESPONSE ENGINE

In this section, we formally introduce our response decision-making problem and its for-

mulation as a zero-sum game. We provide formal definitions for the network state, attack

101

and response actions, and attack and response strategies, and then present how we build

and solve the matrix game. We formulate the response engine’s decision-making process

as a complete information zero-sum game, in which the players are the engine and a po-

tentially malicious attacker. We assume that both players take actions simultaneously, i.e.,

no player observes the action of the other before making its own move. In what follows,

without loss of generality, we use the term attacker to refer to a suspicious chain of lateral

movement communications. The response engine treats all communication chains as mali-

cious and takes response actions accordingly. We use the terms defender and response engine

interchangeably.

6.4.1 Definitions

Definition 6.1 (Network services graph). A network services graph (NSG) is an undirected

graph G =< V,E > where V is the set of physical or logical nodes (workstations, printers,

virtual machines, etc.) in the network and E = V × V is a set of edges.

An edge e = (v1, v2) ∈ E represents the existence of an active network service, such as file

sharing, SSH, or remote desktop connectivity, between nodes v1 and v2 in the network.

For any v ∈ V , we define a neighborhood(v) as the set

neighborhood(v) = {u ∈ V | ∃(u, v) ∈ E} (6.1)

Definition 6.2 (Alert labeling function). Given an NSG G =< V,E >, we define an Alert

Labeling Function (ALF) as a labeling function ` over the nodes V and edges E of G such

that

For v ∈ V, `(v) =

{
True iff v is deemed compromised,

False otherwise.
(6.2)

For e = (u, v) ∈ E, `(e) =

{
True iff `(u) = True ∧ `(v) = True,

False otherwise.
(6.3)

A suspicious chain is then a sequence of nodes {v1, v2, . . . , vk} such that
v1, v2, . . . , vk ∈ V,
(vi, vi+1) ∈ E ∀i ∈ {1, . . . , k − 1}, and

`(vi) = True ∀i ∈ {1, . . . , k}
(6.4)

We assume that an ALF is obtained from monitoring information provided by IDSs such

102

as Snort [191] and Bro [192]. A suspicious chain can be either a malicious attacker moving

laterally in the network, or a benign legal administrative task. The goal of our response

engine is to slow the spread of the chain and keep it away from the sensitive infrastructure

of the network, thus giving network administrators enough time to assess whether the chain

is suspicious or not, and take appropriate corrective actions when needed.

Definition 6.3 (Network state). We define the state of the network as a tuple

s = (Gs =< Vs, Es >, `s) (6.5)

where Gs is an NSG and `s is its corresponding ALF. We use S to refer to the set of all

possible network states.

For a given network state s, we define the set of vulnerable nodes Vs as

Vs =

u |
u ∈ ⋃

v∈Vs∧`s(v)=True

neighborhood(v)

 ∧ `s(u) = False

 (6.6)

Definition 6.4 (Attack action). Given a network state s ∈ S, an attack action ae is a

function over the ALFs, in which a player uses the service provided by edge e = (v, v′) such

that `s(v) = True and v′ ∈ Vs, in order to compromise node v′. Formally we write

ae(`s) = `′ such that `′(v′) = True ∧ `′(e) = True (6.7)

For a network state s, the set of possible attack actions As is defined as

As = {ae | e = (u, v) ∈ Es ∧ `s(u) = True ∧ v ∈ Vs} (6.8)

Definition 6.5 (Response action). Given a network state s, a response action dv is a function

over the NSG edges, in which a player selects a node v ∈ Vs, and disconnects available services

on all edges e = (u, v) ∈ Es such that `s(u) = True. Formally, we write

dv(Es) = E ′ such that E ′ = Es\ {(u, v) ∈ Es | `s(u) = True} (6.9)

For a network state s, we define the set of all possible response actions Ds as

Ds = {dv | v ∈ Vs} (6.10)

Definition 6.6 (Response strategy). Given a network state s with a set of response actions

103

Ds, a strategy pr : Ds −→ [0, 1]|Ds| where
∑

dv∈Ds
pr(dv) = 1 is a probability distribution

over the space of available response actions.

A response strategy pr is a pure response strategy iff

∃ dv ∈ Ds such that pr(dv) = 1 ∧ (∀dv′ 6= dv, pr(dv′) = 0) (6.11)

A response strategy that is not pure is a mixed response strategy. Given a network state s,

after solving a zero sum game, the response engine samples its response action according to

the computed response strategy.

Definition 6.7 (Attack strategy). Given a network state s and a set of attack actions As,
an attack strategy pa : As −→ [0, 1]|A| where

∑
ae∈As

pa(ae) = 1 is a probability distribution

over the space of available attack actions As.

Definition 6.8 (Network next state). Given a network state s, a response action dv ∈ Ds
for v ∈ Vs, and an attack action ae ∈ As for e = (u,w) ∈ Es, using Equations (6.7) and

(6.9), we define the network next state (nns) as a function S × Ds ×As −→ S where

nns(s, dv, ae) = s′ where

{
(Gs′ =< Vs, dv(Es) >, `s) iff v = w,

(Gs′ =< Vs, dv(Es) >, ae(`s)) otherwise
(6.12)

6.4.2 Formulation as a zero-sum game

The goal of our response engine is to keep an attacker, if any, as far away from a network’s

sensitive node (database server, SCADA controller, etc.) as possible. In the following, we

assume that the engine is configured to keep the attacker at least threshold nodes away

from a database server σ containing sensitive company data. The choices of threshold and

σ are determined by the network administrators prior to the launch of the response engine.

Figure 6.3 shows the steps taken by our response engine at each time epoch t0 < t1 < t2 <

. . . < t. In every step, the defender constructs a zero-sum defense-based matrix game and

solves it for the saddle-point response strategy from which it samples an action to deploy.

Assume that in a network state s, the response engine chooses to deploy action dv ∈ Ds
for v ∈ Vs, and the attacker chooses to deploy action ae ∈ As for e = (u,w) ∈ Es. In

other words, the defender disconnects services from node v in the network while the attacker

compromises node w starting from the already compromised node u. If v = w, then the

attacker’s efforts were in vain and the response engine was able to guess correctly where

the attacker would move next. However, when v 6= w, the attacker would have successfully

104

1: for each time epoch t0 < t1 < t2 < . . . do
2: (1) Obtain network state s = (Gs, `s).
3: (2) Compute the sets of possible attack and response actions As and Ds
4: (3) Compute the payoff matrix Ms = BUILD GAME(As,Ds, threshold, σ)
5: (4) Compute the equilibrium response strategy p̂r
6: (6) Sample response action dv ∈ Ds from p̂r
7: end for

Figure 6.3: The steps taken by our response engine at each time epoch. The engine first
obtains the state of the network from the available monitors, and uses it to compute the
sets of possible attack and response actions As and Ds. It then builds the zero-sum game
matrix Ms using Algorithm 6.1, and solves for the equilibrium response strategy p̂s. It finally
samples a response action dv from p̂s that it deploys in the network.

compromised the node w. Note that this is not necessarily a loss, since by disconnecting

services from certain nodes on the path, the response engine might be redirecting the attacker

away from the target server σ. Furthermore, by carefully selecting nodes to disconnect, the

engine can redirect the attacker into parts of the network where the attacker can no longer

reach the target server σ, and thus cannot win the game. The attacker wins the game when

it is able to reach a node within one hop of target server σ. The game ends when (1) the

attacker reaches σ; (2) either player runs out of moves to play; or (3) the attacker can no

longer reach σ.

Let sp(u, σ) be the length of the shortest path (in number of edges) in Gs from node

u to the target server σ. We define the payoffs for the defender in terms of how far the

compromised nodes are from the target server σ. A positive payoff indicates that the attacker

is more than threshold edges away from σ. A negative payoff indicates that the attacker

is getting closer to σ, an undesirable situation for our engine. Therefore, we define the

payoff for the defender when the attacker compromises node w as sp(w, σ)− threshold. If

sp(w, σ) > threshold then the attacker is at least sp(w, σ) − threshold edges away from

the defender’s predefined dangerous zone. Otherwise, attacker is threshold−sp(w, σ) edges

into the defender’s dangerous zone. Moreover, when the defender disconnects a node w that

the attacker wanted to compromise, two cases might arise. First, if sp(w, σ) = ∞, i.e., w

cannot reach σ, then it is desirable for the defender to lead the attacker into w, and thus

the engine assigns dw a payoff of 0 so that it wouldn’t consider disconnecting w. Otherwise,

when sp(w, σ) < ∞, by disconnecting the services of w, the defender would have canceled

the effect of the attacker’s action, and thus considers it a win with payoff sp(w, σ) <∞.

Algorithm 6.1 illustrates how our response engine builds the zero-sum matrix game. For

each network state s, the algorithm takes as input the set of response actions Ds, the set

105

of attack actions As, the defender’s threshold, and the target server to protect σ. The

algorithm then proceeds by iterating over all possible combinations of attack and response

actions and computes the defender’s payoffs according to Equation (6.13). It then returns

the computed game payoff matrix Ms with dimensions |Ds| × |As|.
Formally, for player actions dv ∈ Ds and ae ∈ As where v ∈ Vs and e = (u,w) ∈ Es, we

define the response engine’s utility as

ud(dv, ae) =


0 iff v = w ∧ sp(w, σ) =∞
sp(w, σ) iff v = w ∧ sp(w, σ) <∞
sp(w, σ)− threshold iff v 6= w

(6.13)

Since the game is zero-sum, the utility of the attacker is ua(ae, dv) = −ud(dv, ae).
For a response strategy pr over Ds and an attack strategy pa overAs, the response engine’s

expected utility is defined as

Ud(pr,pa) =
∑
dv∈Ds

∑
ae∈As

pr(dv)ud(dv, ae)pa(ae) (6.14)

Similarly, the attacker’s expected payoff is Ua(pa,pr) = −Ud(pr,pa).
In step 4 of Figure 6.3, the response engine computes the saddle-point response strategy

p̂r from which it samples the response action to deploy. p̂r is the best response strategy that

the engine could adopt for the worst-case attacker. Formally, for saddle-point strategies p̂r

and p̂a,

Ud(p̂r, p̂a) ≥ Ud(pr, p̂a) for all pr, and

Ua(p̂a, p̂r) ≤ Ua(pa, p̂r) for all pa
(6.15)

Finally, the engine chooses an action dv ∈ Ds according to the distribution p̂r and deploys

it in the network. In this chapter, we assume that response actions are deployed instanta-

neously and successfully at all times; response action deployment challenges are beyond the

scope of this work.

6.5 IMPLEMENTATION AND RESULTS

We implemented a custom Python simulator in order to evaluate the performance of our

proposed response engine. We use Python iGraph [195] to represent NSGs, and imple-

ment ALFs as features on the graphs’ vertices. Since the payoffs for the response engine’s

actions are highly dependent on the structure of the NSG, we use three different graph topol-

106

Algorithm 6.1: Algorithm Ms = BUILD GAME (Ds,As, threshold, σ)

1: Inputs: Ds,As, threshold, σ
2: Outputs: Zero-sum game payoff matrix Ms

3: for each response action dv ∈ Ds do
4: for each attack action ae ∈ As do
5: let e← (u,w)
6: if v = w then
7: if sp(w, σ) =∞ then
8: Ms(v, w)← 0
9: else

10: Ms(v, w)← sp(w, σ)
11: end if
12: else
13: Ms(v, w)← sp(w, σ) − threshold

14: end if
15: end for
16: end for

ogy generation algorithms to generate the initial graphs. The Waxman [196] and Albert-

Barabási [197] algorithms are widely used to model interconnected networks, especially for

the evaluation of different routing approaches. In addition, we generate random geometric

graphs, as they are widely used for modeling social networks as well as studying the spread of

epidemics and computer worms [198, 199]. Because of the lack of publicly available data sets

capturing lateral movement, we assume that the Waxman and Albert-Barabási models pro-

vide us with an appropriate representation of the structural characteristics of interconnected

networks.

We use the geometric graph models in order to evaluate the performance of our engine in

highly connected networks. We pick the initial attacker point of entry in the graph ω and

the location of the database server σ such that sp(ω, σ) = d, where d is the diameter of the

computed graph. This is a reasonable assumption, since in APTs, attackers usually gain

initial access to the target network by targeting employees with limited technical knowledge

(such as customer service representatives) through social engineering campaigns, and then

escalate their privileges while moving laterally in the network.

We implement our response engine as a direct translation of Figure 6.3 and Algorithm 6.1,

and we use the Gambit [200] Python game theory API in order to solve for the saddle-point

strategies at each step of the simulation. We use the NumPy [201] Python API to sample

response and attack actions from the computed saddle-point distributions. As stated earlier,

we assume that attack and response actions are instantaneous and always successful, and

107

thus implement the actions and their effects on the network as described in the network

next-state function in Equation (6.12).

We evaluate the performance of our response engine by computing the average percentage

increase in the number of attack steps (i.e., compromises) needed by an adversary to reach

the target server σ. We compute the average increase with respect to the shortest path that

the attacker could have adopted in the absence of the response engine. Formally, let k be

the number of attack steps needed to reach σ and d be the diameter of the NSG; then, the

percentage increase in attack steps is k−d
d
× 100. If the attacker is unable to reach the target

server, we set the number of attack steps k to the maximum allowed number of rounds of

play in the simulation, which is 40 in our simulations.

In addition, we report on the average attacker distance from the server σ as well as the

minimum distance that the attacker was able to reach. As discussed earlier, we measure

the distance in terms of the number of attack steps needed to compromise the server. A

minimum distance of 1 means that the attacker was able to successfully reach σ. We also

report and compare the average achieved payoff for the defender while playing the game.

We ran our simulations on a Macbook Pro laptop running OSX El Capitan, with 2.2 GHz

Intel Core i7 processors and 16 GB of RAM. We start by describing our results for various

defender threshold values for an NSG with 100 nodes, and then fix the threshold value

and vary the number of nodes in the NSG. Finally, we report on performance metrics in

terms of the time needed to perform the computation for various NSG sizes.

6.5.1 Evaluation of threshold values

We start by evaluating the performance of our response engine for various values of the

threshold above which we would like to keep the attacker away from the sensitive node σ.

We used each graph generation algorithm to generate 10 random NSGs, simulated the game

for threshold ∈ {1, 2, 3, 4, 5, 6}, and then computed the average values of the metrics over

the ten runs.

Table 6.1 shows the structural characteristics in terms of the number of vertices, average

number of edges, diameter, and maximum degree of the graphs generated by each algo-

rithm. All of the graphs we generated are connected, with the geometric graphs showing the

largest levels of edge connectivity, giving attackers more space to move in the network. The

Waxman and Barabási generators have lower levels of edge connectivity, making them more

representative of network services topologies than the geometric graphs are.

Figure 6.4a shows the average percentage increase in attacker steps needed to reach the

target (or reach the simulation limit) for the various values of threshold. The results show

108

Table 6.1: Characteristics of generated NSGs (averages)

NSG Generator |V | |E| Diameter Max Degree
Barabási 100 294 4 50.2
Waxman 100 336.6 4.9 13.7
Geometric 100 1059.8 5.2 34.5

that in all cases, our engine was able to increase the number of steps needed by the attacker

by at least 50%. Considering only the Waxman and Barabási graphs, the engine was able to

increase the number of steps needed by the attacker by at least 600%. This is a promising

result that shows the effectiveness of our engine, especially in enterprise networks. Further,

the results show that smaller values for threshold achieve a greater average increase in

attacker steps. This is further confirmed by the average defender payoff curves shown in

Figure 6.4b, in which smaller values of threshold achieve greater payoffs. In fact, this

result is a direct implication of our definition of the payoff matrix values in Equation (6.13).

The smaller the values of threshold, the more the engine has room to take actions that

have a high payoff, and the more effective its strategies are in keeping the attacker away

from the server.

Figures 6.4c and 6.4d show the average distance between the attacker and the server, and

the minimum distance reached by the attacker, respectively. For the Waxman and Barabási

graphs, the results show that our engine keeps the attacker, on average, at a distance close

to the graph’s diameter, thus keeping the attacker from penetrating deeper into the network.

For both types of graphs, Figure 6.4d confirms that the attacker was unable to reach the

target server (average minimum distance ≥ 1).

In the case of the geometric graphs, Figure 6.4d shows that the attacker was almost

always able to reach the target server. We attribute this attacker success to the high edge

connectivity in the geometric graphs. Although our engine is able to delay attackers, because

of the high connectivity of the graph, they may find alternative ways to reach the server.

Nevertheless, our response engine was always able to cause at least a 50% increase in the

number of attack steps needed to reach the server.

In summary, the results show that our response engine is able to effectively delay, and on

average prevent, an attacker that is moving laterally in the network from reaching the target

database server. It was effectively able to increase the number of attack steps needed by

the adversary by at least 600% for the graphs that are representative of real-world network

topologies. In addition, even when the graphs were highly connected, our engine was still

able to increase the attacker’s required amount of attack steps by at least 50%.

109

1 2 3 4 5 6
Response threshold

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 %

 i
n
cr

e
a
se

 i
n
 a

tt
a
ck

 s
te

p
s

Geometric

Waxman

Barabasi

(a) Average % increase in attack steps

1 2 3 4 5 6
Response threshold

3

2

1

0

1

2

3

4

E
x
p
e
ct

e
d
 d

e
fe

n
d
e
r

p
a
y
o
ff

Geometric

Waxman

Barabasi

(b) Average defender payoff

1 2 3 4 5 6
Response threshold

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 a

tt
a
ck

e
r

d
is

ta
n
ce

 f
ro

m
 t

a
rg

e
t

Geometric

Waxman

Barabasi

(c) Average attacker distance from σ

1 2 3 4 5 6
Response threshold

1.0

1.5

2.0

2.5

3.0

3.5
M

in
im

u
m

 a
tt

a
ck

e
r

d
is

ta
n
ce

 t
o
 t

a
rg

e
t

Geometric

Waxman

Barabasi

(d) Attacker’s minimum distance from σ

Figure 6.4: Performance evaluation of our response engine with varying threshold values.
Figure 6.4a shows that our engine was able to increase the number of compromises needed
by the attacker by at least 55%. Figure 6.4b illustrates that the zero-sum game’s payoff for
the defender decreases almost linearly as the threshold increases. Figure 6.4c shows that
the average attacker’s distance from σ is very close to the NSG’s diameter, while Figure 6.4d
shows that, with the exception of the geometric NSG, our engine was able to keep that
attacker from reaching the target data server σ. It was able, however, in the geometric NSG
case, to increase the number of compromises needed to reach σ by at least 55%.

6.5.2 Scalability

Next, we measured the scalability of our response engine as the network grew in size. We

varied the number of nodes in the network from 100 to 300 in steps of 50 and measured the

110

100 150 200 250 300
Number of nodes

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 %

 i
n
cr

e
a
se

 i
n
 a

tt
a
ck

 s
te

p
s

Geometric

Waxman

Barabasi

(a) Average % increase in attack steps

100 150 200 250 300
Number of nodes

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
v
e
ra

g
e
 a

tt
a
ck

e
r

d
is

ta
n
ce

 f
ro

m
 t

a
rg

e
t

Geometric

Waxman

Barabasi

(b) Average attacker distance from σ

100 150 200 250 300
Number of nodes

3.0

3.5

4.0

4.5

5.0

5.5

A
v
e
ra

g
e
 g

ra
p
h
 d

ia
m

e
te

r

Geometric

Waxman

Barabasi

(c) Average graph diameter

Figure 6.5: Performance evaluation of our response engine with increasing number of nodes
in the network. Figure 6.5a shows that our engine maintains high levels of performance even
when the network grows larger. The engine is also capable of keeping the attacker at an
average distance close to the graph’s diameter in the cases of the Waxman and Barabási
NSGs, as shown in Figures 6.5b and 6.5c.

average percentage increase in attack steps as well as the attacker’s average distance from

the target σ. Figure 6.5 shows our results for averages measured over five random NSGs

generated by each of the NSG generation algorithms. We set the defender’s threshold values

to those that achieved a maximum average increase in attack steps as shown in Figure 6.4a,

which are 5 for geometric NSGs, 2 for Barabási NSGs, and 3 for Waxman NSGs.

111

100 150 200 250 300
Number of nodes

0

5

10

15

20

25

30

35
A

v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

Geometric

Waxman

Barabasi

(a) Average time (s) to solve matrix game

100 150 200 250 300
Number of nodes

20

40

60

80

100

A
v
e
ra

g
e
 p

a
y
o
ff

 m
a
tr

ix
 s

iz
e

Geometric

Waxman

Barabasi

(b) Average size of the matrix game

Figure 6.6: Computational performance evaluation of the engine for larger networks. Our
response engine scales well with the increase in the size of the network.

As shown in Figure 6.5a, our response engine can scale well as the size of the network

increases, providing average percentage increases in attack steps between 550% and 700%

for Waxman NSGs, 750% and 1150% for Barabási NSGs, and 50% and 220% for geometric

NSGs. These results show that as the number of nodes, and thus the number of connection

edges, increases in the network, our engine is able to maintain high-performance levels and

delay possible attackers, even when they have more room to evade the engine’s responses and

move laterally in the network. This is further confirmed by the results shown in Figures 6.5b

and 6.5c. For the Waxman and Barabási NSGs, the response engine is always capable of

keeping the attacker at an average distance from the target server equal to the diameter of

the graph. For the geometric NSGs, the attacker is always capable of getting close to and

reaching the target server, regardless of the diameter of the graph. Our engine, however, is

always capable of increasing the number of attack steps required by at least 50%, even for

larger networks.

6.5.3 Computational performance

Finally, we evaluated the computational performance of our game engine as the scale of

the network increased from 100 to 300 nodes. We used the same values for threshold as

in the previous subsection, and measured the average time to solve for the saddle-point

strategies as well as the average size of the matrix game generated during the simulation.

Since all of the payoff matrices we generated are square, we report on the number of rows

112

in the matrix games. The rows correspond to the number of available attack or response

actions for the players (i.e., for a state s, we report on |As| = |Ds|). Our engine makes use

of the ExternalLogitSolver solver from the Gambit software framework [200] to solve for

the saddle-point strategies at each step of the simulation. In computing our metrics, we

averaged the computation time and matrix size over 10 random graphs from each algorithm,

and we limited the number of steps in the simulation (i.e., the number of game turns) to 10.

Figure 6.6b shows that for all NSG-generation algorithms, the size of the payoff matrices

for the generated zero-sum game increases almost linearly with the increase in the size of

the nodes in the network. In other words, the average number of available actions for each

player increases linearly with the size of the network. Consequently, Figure 6.6a shows that

the computational time needed to obtain the saddle-point strategies scales very efficiently

with the increase in the size of the network; the engine was able to solve 50 × 50 matrix

games in 15 seconds, on the average. The short time is a promising result compared to the

time needed by an administrator to analyze the observed alerts and deploy strategic response

actions.

In summary, our results clearly show the merits of our game engine in slowing down the

advance of an attacker that is moving laterally within an enterprise network, and its ability

to protect a sensitive database server effectively from compromise. For all of the NSG-

generation algorithms, our engine was able to increase the number of attack steps needed

by an attacker to reach the sensitive server by at least 50%, with the value increasing to

600% for the Waxman and Barabási NSG-generation algorithms. The results also show that

our engine is able to maintain proper performance as networks grow in size. Further, the

computational resources required for obtaining the saddle-point strategies increased linearly

with the number of the nodes in the network.

6.6 RELATED WORK

Several researchers have tackled the problem of selecting cyber actions as a response to

intrusions. The space can be divided into three parts; automated response through rule-

based methods, cost-sensitive methods, and security games.

In rule-based intrusion response, each kind of intrusion alert is tagged with a suitable

response. The static nature of rule-based intrusion response makes it predictable and limits

its ability to adapt to different attacker strategies. Researchers have extended rule-based

intrusion response systems to become cost-sensitive; cost models range from manual assess-

ment of costs to use of dependency graphs on the system components to compute a response

action’s cost. In all of those cases, the process of selecting a response minimizes the cost of

113

response actions over a set of predefined actions that are considered suitable for tackling a

perceived threat. Stakhanova surveyed this class of systems in [194]. While cost-sensitive

intrusion response systems minimize the cost of responding, they are still predictable by

attackers, and a large effort is required in order to construct the cost models.

Bloem et. al. [202] tackled the problem of intrusion response as a resource allocation

problem. Their goal was to manage the administrator’s time, a critical and limited resource,

by alternating between the administrator and an imperfect automated intrusion response

system. The problem is modeled as a nonzero-sum game between automated responses and

administrator responses, in which an attacker gain (utility) function is required. Obtaining

such functions, however, is hard in practice, as attacker incentives are not known. The

problem of finding attacker-centric metrics was tackled by ADAPT [203]. The ADAPT

developers attempted to find a taxonomy of attack metrics that require knowledge of the

cost of an attack and the benefit from the attack. ADAPT has created a framework for

computing the metrics needed to set up games; however, assigning values to the parameters

is still more of an art than a science.

Use of security games improved the state of IRSs, as they enabled modeling of the inter-

action between the attacker and defender, are less predictable, and can learn from previous

attacker behavior [21, 22]. In [204], the authors model the security game as a two-player

game between an attacker and a defender; the attacker has two actions (to attack or not

attack), and the defender has two actions (to monitor or not monitor). The authors consider

the interaction as a repeated game and find an equilibrium strategy. Nguyen et. al. [205]

used fictitious play to address the issue of hidden payoff matrices. While this game setup is

important on a high level and can be useful as a design guideline for IDSs, it does not help

in low-level online response selection during a cyber attack.

To address the issue of high level abstraction in network security games, Zonouz [206]

designed the Response and Recovery Engine (RRE), an online response engine modeled

as a Stackelberg game between an attacker and a defender. Similar to work by Zhu and

Başar [207], the authors model the system with an attack response tree (ART); the tree is

then used to construct a competitive Markov decision process to find an optimal response.

The state of the decision process is a vector of the probabilities of compromise of all the

components in the system. The authors compute the minimax equilibrium to find an optimal

response. The strategy is evaluated for both finite and infinite horizons. Scalability issues are

tackled using finite lookahead. The game, however, has several limitations: (1) the model

is sensitive to the assigned costs; (2) the model required a priori information on attacks

and monitoring (conditional probabilities) which is not available; and (3) the system uses a

hard-to-design ART to construct the game.

114

6.7 DISCUSSION AND FUTURE WORK

The goals of our response engine are to provide networked systems with the ability to

maintain acceptable levels of operation in the presence of potentially malicious actors in the

network, and to give administrators enough time to analyze security alerts and neutralize

any threats, if present. Our results show that the engine is able to delay, and often prevent,

an attacker from reaching a sensitive database server in an enterprise network. However, the

response actions that our engine deploys can have negative impacts on the system’s provided

services and overall performance. For example, disconnecting certain nodes as part of our

engine’s response to an attacker can compromise other nodes’ ability to reach the database

service. This can have severe impacts on the system’s resiliency, especially if it is part of a

service provider’s infrastructure. In the future, we plan to augment our engine with response

action cost metrics that reflect their impact on the network’s performance and resiliency.

We plan to add support for a resiliency budget that the engine should always meet when

making response action decisions. In addition, we will investigate deployment challenges

for the response actions. We envision that with the adoption of Software Defined Networks

(SDNs), the deployment of such actions will become easier. Our engine can be implemented

as part of the SDN controller and use the southbound API to deploy its response actions.

In the context of APTs, attackers are often well-skilled, stealthy, and highly adaptive

actors that can adapt to the changes in the network, including the response actions deployed

by our engine. We will investigate more sophisticated models of attackers, specifically ones

that can compromise more than one node in each attack step, and can adapt in response

to our engine’s deployed actions. In addition, knowledge of the attacker’s strategies and

goals would provide our response engine with the ability to make more informed strategic

decisions about which response actions to deploy. Therefore, we plan to investigate online

learning techniques that our engine can employ in order to predict, with high accuracy, an

attacker’s strategies and goals. However, the main challenge that we face in our framework’s

design and implementation is the lack of publicly available datasets that contain traces of

attackers’ lateral movements in large-scale enterprise networks. In addition to simulations,

we will investigate alternative methods with which we can evaluate our response engine and

the learning techniques that we devise.

6.8 CONCLUSION

Detection of and timely response to network intrusions go hand-in-hand when secure and

resilient systems are being built. Without timely response, IDSs are of little value in the

115

face of APTs; the time delay between the sounding of IDS alarms and the manual response

by network administrators allows attackers to move freely in the network.We have presented

an efficient and scalable game-theoretic response engine that responds to an attacker’s lat-

eral movement in an enterprise network, and effectively protects a sensitive network node

from compromise. Our response engine observes the network state as a network services

graph that captures the different services running between the nodes in the network, aug-

mented with a labeling function that captures the IDS alerts concerning suspicious lateral

movements. It then selects an appropriate response action by solving for the saddle-point

strategies of a defense-based zero-sum game, in which payoffs correspond to the differences

between the shortest path from the attacker to a sensitive target node, and an acceptable

engine safety distance threshold. We have implemented our response engine in a custom

simulator and evaluated it for three different network graph generation algorithms. The re-

sults have shown that our engine is able to effectively delay, and often stop, an attacker from

reaching a sensitive node in the network. The engine scales well with the size of the network,

maintaining proper operation and efficiently managing computational resources. Our results

show that the response engine constitutes a significant first step towards building secure and

resilient systems that can detect, respond to, and eventually recover from malicious actors.

116

CHAPTER 7: CONCLUSION

The pervasiveness of targeted and sophisticated cyber attacks has pushed system designers

to face the unfortunate reality that attacks are now the norm. With the increased dependence

of our critical infrastructure on networking platforms, failure to address such attacks can

have devastating consequences. The perfectly hardened and secure system is now a myth;

system design has moved from an era focused on robustness and hardening, to one focused on

cyber resilience. Much like fault-tolerant design, cyber-resilient systems admit the presence

of malicious attacks and attempt to provide continuous service, even if in a degraded state,

throughout the lifetime of an attack. Such systems then move into a period of graceful

restoration of full service after threats have been detected and neutralized. Such continuity

and restoration of service are a necessary safeguard against the drastic economic and societal

consequences of cyber attacks.

In this dissertation, we set out to show that the cyber resilience posture of our networked

infrastructure can be enhanced through systematic integration of sound theoretical analysis

and practically realizable design. We first presented the motivation for cyber resilience and

its various definitions in Chapter 2. We also illustrated how, in foundational work on TCP

congestion control, the integration of control theory and practical design led to the emergence

of a reliable communication protocol that can handle changes in the state of the network,

and that still occupies that largest portion of today’s Internet traffic.

To validate our thesis, we focused on two aspects of resilience: (1) inter-networking re-

silience, and (2) intra-networking resilience. At the inter-networking level, we focused on

DDoS attacks, which continue to plague the Internet to this day. We presented CPuzzle

(Chapter 3) and Midgard (Chapter 4) to combat DDoS attacks at the transport and net-

work layers, respectively. At the core of CPuzzle and Midgard’s designs is the observation

that achieving resilience to DDoS attacks must involve end users, since the cost of launch-

ing such attacks is vastly smaller than the cost of defending against them in the network.

CPuzzle is an enhancement to TCP that provides resilience to state-exhaustion attacks

by forcing users and attackers to solve computational puzzles. We set the difficulty of the

puzzles by using a sound game-theoretic model that uses easy-to-obtain parameters. Our

analysis shows that the model illustrates an important trade-off between a TCP server’s

provisioning and the difficulty of the challenges it can ask its users to solve. Our results

from deploying CPuzzle on the DETER testbed show that it increases resilience to state-

exhaustion attacks by increasing the cost of launching an attack and effectively rate-limiting

attacks that attempt to overwhelm the TCP server’s state.

117

We designed Midgard (Chapter 4) to extend CPuzzle’s results into the network layer

and provide resilience to volumetric DDoS attacks. Current approaches to DDoS protection

rely heavily on the availability of vast bandwidth resources that can absorb incoming attacks

and filter out malicious traffic. That has effectively transformed the DDoS battlefield into

a continuous bandwidth war between attackers and cloud providers. Unfortunately, recent

DDoS attacks have shown that attackers are gaining the ability to compromise larger and

larger botnets, especially with the advent of IoT devices with poor security measures, and

are able to launch unprecedented attacks. Midgard attempts to enhance our networks’

resilience to volumetric attacks by combining the benefits of cloud protection services with

the benefits of employing client puzzles. We designed Midgard to be resilient to puzzle

reuse by leveraging the puzzles’ cryptographic properties. We then designed a controller

that estimates each user’s computational prowess and allocates bandwidth resources in a

fairness-preserving manner. We deployed Midgard on a sample topology on DETER. Our

results show that Midgard can effectively hinder the effects of volumetric DDoS attacks

by rate-limiting misbehaving users and allocating more bandwidth to benign clients.

At the intra-networking level, we introduced sShield (Chapter 6), a game-theoretic engine

that actively manipulates network topologies to protect high-value assets (such as data

stores) from potential attackers who are moving laterally in a network. We modeled the

problem as a zero-sum game between an attacker who aims to compromise a high-value

asset and a defender who wants to prevent said attacker from reaching the asset. Using

the game-theoretic decisions, sShield can manipulate the network connectivity to build a

protective entourage around the asset to prevent the attacker from reaching it.

sShield’s practicality is enabled by the advent of SDN that decouple a network’s control

plane (i.e., the logic used to make traffic decisions) from the data plane (the forwarding

pipelines at each individual switch). Unfortunately, programmability and flexibility in the

data plane can lead to design-time bugs, which poses serious security and reliability chal-

lenges and thus hinders the network’s resilience. Therefore, we designed and implemented

BiFrost (Chapter 5), a tool for the static verification of programmable data-plane programs

that uses sequential circuit analysis and verification techniques. Our design of BiFrost is

based on the observation that data plane programming languages describe a limited hard-

ware pipeline with no dynamic memory allocation. Therefore, instead of treating data plane

programs as general-purpose programs, BiFrost translates them into equivalent sequential

circuits. BiFrost then leverages a rich set of sequential analysis, abstraction, synthesis, and

verification techniques to scalably verify that the data plane programs do not read or write

invalid header fields and that they satisfy user-defined properties. We evaluated BiFrost

on a set of real-world data plane programs. We found two header-validity bugs in publicly

118

available programs and showed that BiFrost can efficiently verify large and complex data

plane programs.

7.1 FUTURE DIRECTIONS

Our societies are becoming more and more dependent on interconnected devices for pro-

viding essential and critical services. It is therefore of paramount importance to adopt a

“resiliency mindset” to safeguard our infrastructure against failures and an avalanche of

targeted and sophisticated attacks. To that end, we believe that our designs must be built

on a strong theoretical foundation that can be manifested in practical implementations. We

believe that the goals we set out to achieve in this thesis are aligned with the recent move

in the security community, pioneered by several government agencies [20, 40, 208, 209, 210],

to establish a “science of security” that guides the performance of security research and

experimentation.

We believe that our work in CPuzzle and Midgard shows that end-user involvement

in the process of protecting our networks against DDoS attacks can be beneficial. In fact,

such approaches have already been implemented to protect login forms from brute-force

attacks, for example, through the use of CAPTCHAs. Unfortunately, such approaches re-

quire direct involvement of the user and can often be cumbersome, especially if requested

frequently [211, 212]. In CPuzzle and Midgard, the user’s involvement in the protection

service is seamless and does not require direct intervention. Rather, our theoretical modeling

takes into consideration the users’ preferences in terms of the amount of computational effort

they are willing to contribute to tolerate an attack. Therefore, we envision that the integra-

tion of theory and practicality showcased in our DDoS resilience designs can be extended

to other applications and protocols, which will be especially important now that attackers

are capable of easily acquiring botnets consisting of hundreds of thousands to millions of

unsuspecting machines.

Furthermore, our design of sShield provides a motivating example of how network pro-

grammability can be leveraged to deploy dynamic network responses that can adapt the

state of the network in the face of failures and attacks. Specifically, the decoupling of the

control plane from the data plane allows network controllers to access a vast array of com-

putational resources. For example, controllers can run on commodity machines or powerful

servers. Such computational resources can be used to perform decision algorithms (such as

the game-theoretic approach we presented) that are based on sound theoretical models with

real-time inputs from the data plane. For example, our game-theoretic model in sShield

can be extended to perform deception actions. Such actions would lead an attacker who

119

is moving laterally in a network to an isolated subnetwork (i.e., an active honeypot) where

administrators can safely analyze the threat and take response actions.

Finally, the deployment of programmable networks must be accompanied by extensive

testing and verification of network programs, especially as we are moving into the era of

full programmability of both the control-plane and the data-plane. In that context, our

design of BiFrost illustrates how repurposing traditional verification techniques for data-

plane programs can achieve high levels of scalability and detect design bugs. However, some

faults can occur because to the interactions among multiple forwarding devices. Therefore,

we plan to extend BiFrost to support the verification of network-wide properties across

multiple programmable switches. In addition, as shown in [213], attackers can use data plane

devices to exploit security vulnerabilities in the control plane and carry out unauthorized

traffic decisions. Therefore, network verification would not be complete if it did not support

verification of the interactions between the data-plane and the control-plane devices, ensuring

that one cannot be used to inject faults and exploit vulnerabilities in the other. We believe

that the problem resembles that of verifying the properties that account for the interaction

between software APIs and hardware devices [214, 215], and we plan to extend BiFrost to

provide support for such verification efforts.

120

REFERENCES

[1] A. Kavanaugh, “The impact of computer networking on community: A social network
analysis approach,” in Telecommunications Policy Research Conference, 1999, pp. 27–
29.

[2] S. Kottler, “February 28th DDoS incident report,” March 2018. [Online]. Available:
https://github.blog/2018-03-01-ddos-incident-report/

[3] M. Locklear, “Mirai botnet creators plead guilty to charges over 2016 attack,”
December 2017. [Online]. Available: https://www.engadget.com/2017/12/13/
mirai-botnet-creators-guilty-plea/

[4] T. S. Bernard, T. Hsu, N. Perlroth, and R. Lieber, “Equifax says cyberattack
may have affected 143 million in the U.S.” September 2017. [Online]. Available:
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html

[5] B. Krebs, “3 million customer credit, debit cards stolen in Michaels, Aaron Brothers
breaches,” April 2014. [Online]. Available: https://krebsonsecurity.com/2015/09/
inside-target-corp-days-after-2013-breach/

[6] B. Krebs, “Inside Target Corp., days after 2013 breach,”
September 2015. [Online]. Available: https://krebsonsecurity.com/2014/04/
3-million-customer-credit-debit-cards-stolen-in-michaels-aaron-brothers-breaches/

[7] J. Davis, “32M patient records breached in first half of 2019, 88% caused
by hacking,” August 2019. [Online]. Available: https://healthitsecurity.com/news/
32m-patient-records-breached-in-first-half-of-2019-88-caused-by-hacking

[8] K. Granville, “Facebook and Cambridge Analytica: What you need to know as
fallout widens,” March 2018. [Online]. Available: https://www.nytimes.com/2018/
03/19/technology/facebook-cambridge-analytica-explained.html

[9] J. Mayer, “How russia helped swing the election for Trump,” Septem-
ber 2018. [Online]. Available: https://www.newyorker.com/magazine/2018/10/01/
how-russia-helped-to-swing-the-election-for-trump

[10] J. Lewis, Economic Impact of Cybercrime, No Slowing Down. McAfee, 2018.

[11] Y. Sverdlik, “One minute of data center downtime costs US$7,900 on average,”
December 2013. [Online]. Available: https://www.datacenterdynamics.com/news/
one-minute-of-data-center-downtime-costs-us7900-on-average/

[12] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based evaluation: from de-
pendability to security,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 48–65, Jan 2004.

121

[13] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and dependable
software-defined networks,” in Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, ser. HotSDN ’13. New York, NY,
USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2491185.2491199
pp. 55–60.

[14] “Critical infrastructure security and resilience,” Presiden-
tial Policy Directive, PPD-21, February 2012. [Online].
Available: https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/
presidential-policy-directive-critical-infrastructure-security-and-resil

[15] Y. I. Khan, E. Al-shaer, and U. Rauf, “Cyber resilience-by-construction: Modeling,
measuring & verifying,” in Proceedings of the 2015 Workshop on Automated
Decision Making for Active Cyber Defense, ser. SafeConfig ’15. New York, NY,
USA: ACM, 2015. [Online]. Available: http://doi.acm.org/10.1145/2809826.2809836
pp. 9–14.

[16] W. Harrop and A. Matteson, “Cyber resilience: A review of critical national infrastruc-
ture and cyber-security protection measures applied in the uk and usa,” in Proceedings
of Current and Emerging Trends in Cyber Operations: Policy, Strategy and Practice,
F. Lemieux, Ed. London: Palgrave Macmillan UK, 2015, pp. 149–166.

[17] B. Schneier, “The process of security,” April 2000. [Online]. Available: https:
//www.schneier.com/essays/archives/2000/04/the\ process\ of\ secur.html

[18] B. Schneier, “Security orchestration for an uncertain world,”
March 2017. [Online]. Available: https://securityintelligence.com/
security-orchestration-for-an-uncertain-world/

[19] B. Obama, “Improving critical infrastructure cybersecurity,” Executive Order, Febru-
ary 2013. [Online]. Available: https://obamawhitehouse.archives.gov/the-press-office/
2013/02/12/executive-order-improving-critical-infrastructure-cybersecurity

[20] C. Herley and P. C. van Oorschot, “SoK: Science, security and the elusive goal of se-
curity as a scientific pursuit,” in Proceedings of the 2017 IEEE Symposium on Security
and Privacy (SP), May 2017, pp. 99–120.

[21] M. H. Manshaei, Q. Zhu, T. Alpcan, T. Başar, and J. Hubaux, “Game theory meets
network security and privacy,” ACM Comput. Surv., vol. 45, no. 3, pp. 25:1–25:39,
July 2013. [Online]. Available: http://doi.acm.org/10.1145/2480741.2480742

[22] T. Alpcan and T. Başar, Network Security: A Decision and Game-Theoretic Approach.
New York, NY, USA: Cambridge University Press, 2010.

[23] K. C. Nguyen, T. Alpcan, and T. Başar, “Fictitious play with time-invariant frequency
update for network security,” in Proceedings of the IEEE International Conference on
Control Applications, Sept. 2010, pp. 65–70.

122

[24] T. Alpcan and T. Başar, “A game theoretic approach to decision and analysis in
network intrusion detection,” in Proceedings of the 42nd IEEE Conference on Decision
and Control, vol. 3, Dec 2003, pp. 2595–2600.

[25] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE: A game-
theoretic intrusion response and recovery engine,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 2, pp. 395–406, Feb. 2014.

[26] Q. Zhu and T. Başar, “Dynamic policy-based IDS configuration,” in Proceedings of
the 48th IEEE Conference on Decision and Control, Dec. 2009, pp. 8600–8605.

[27] E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke, “Model-based
security metrics using adversary view security evaluation (advise),” in 2011 Eighth
International Conference on Quantitative Evaluation of SysTems, Sep. 2011, pp. 191–
200.

[28] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H. Sanders,
and P. Webster, “The mobius modeling tool,” in Proceedings 9th International Work-
shop on Petri Nets and Performance Models, Sep. 2001, pp. 241–250.

[29] X. Yang, D. Wetherall, and T. Anderson, “TVA: A DoS-limiting network architecture,”
in IEEE/ACM Trans. Netw., vol. 16, no. 6, Dec. 2008, pp. 1267–1280.

[30] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu, “Portcullis: Pro-
tecting connection setup from denial-of-capability attacks,” in Proceedings of the 2007
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’07. New York, NY, USA: ACM, 2007, pp. 289–300.

[31] X. Liu, X. Yang, and Y. Xia, “Netfence: Preventing internet denial of service from
inside out,” in Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM
’10. New York, NY, USA: ACM, 2010, pp. 255–266.

[32] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: Network-layer DoS defense
against multimillion-node botnets,” in Proceedings of the ACM SIGCOMM 2008 Con-
ference on Data Communication, ser. SIGCOMM ’08. New York, NY, USA: ACM,
2008, pp. 195–206.

[33] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and elastic DDoS
defense,” in 24th USENIX Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, 2015. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/fayaz pp. 817–832.

[34] D. Dean and A. Stubblefield, “Using client puzzles to protect TLS,” in Proceedings
of the 10th Conference on USENIX Security Symposium - Volume 10, ser. SSYM’01.
USENIX Association, 2001.

[35] W. Feng, E. Kaiser, and A. Luu, “Design and implementation of network puzzles,” in
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies., vol. 4, March 2005, pp. 2372–2382.

123

[36] W. H. Sanders, “Quantitative security metrics: Unattainable holy grail or a vital
breakthrough within our reach?” IEEE Security Privacy, vol. 12, no. 2, pp. 67–69,
Mar 2014.

[37] M. M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo, “Security metrics guide
for information technology systems,” National Institute of Standards and Technology
(NIST), Tech. Rep., 2003.

[38] V. Verendel, “Quantified security is a weak hypothesis: A critical survey of results
and assumptions,” in Proceedings of the 2009 Workshop on New Security Paradigms
Workshop, ser. NSPW ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1719030.1719036 pp. 37–50.

[39] S. Stolfo, S. M. Bellovin, and D. Evans, “Measuring security,” IEEE Security Privacy,
vol. 9, no. 3, pp. 60–65, May 2011.

[40] J. M. Spring, T. Moore, and D. Pym, “Practicing a science of security: A
philosophy of science perspective,” in Proceedings of the 2017 New Security Paradigms
Workshop, ser. NSPW 2017. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3171533.3171540 pp. 1–18.

[41] M. A. Noureddine, A. M. Fawaz, A. Hsu, C. Guldner, S. Vijay, T. Başar, and W. H.
Sanders, “Revisiting client puzzles for state exhaustion attacks resilience,” in 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), June 2019, pp. 617–629.

[42] M. A. Noureddine, A. Fawaz, W. H. Sanders, and T. Başar, “A game-theoretic ap-
proach to respond to attacker lateral movement,” in Proceedings of the 7th Conference
on Decision and Game Theory for Security (GameSec), November 2-4 2016.

[43] M. A. Noureddine, A. Hsu, M. Caesar, F. A. Zaraket, and W. H. Sanders, “P4aig:
Circuit-level verification of p4 programs,” in 2019 49th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks – Supplemental Volume
(DSN-S), June 2019, pp. 21–22.

[44] M. Simaan and J. B. Cruz, “On the stackelberg strategy in nonzero-sum games,”
Journal of Optimization Theory and Applications, vol. 11, no. 5, pp. 533–555, May
1973. [Online]. Available: https://doi.org/10.1007/BF00935665

[45] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. T. Wroclawski, and S. Schwab,
“The DETER project: Advancing the science of cyber security experimentation and
test,” in 2010 IEEE International Conference on Technologies for Homeland Security
(HST), Nov 2010, pp. 1–7.

[46] M. A. Noureddine and F. A. Zaraket, “Model checking software with first order logic
specifications using AIG solvers,” IEEE Transactions on Software Engineering, vol. 42,
no. 8, pp. 741–763, Aug 2016.

124

[47] D. Fisher, R. Linger, H. Lipson, T. Longstaff, N. Mead, and R. Ellison, “Survivable
network systems: An emerging discipline,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-97-TR-013, 1997. [Online].
Available: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12905

[48] R. J. Ellison, R. C. Linger, T. Longstaff, and N. R. Mead, “Survivable network system
analysis: a case study,” IEEE Software, vol. 16, no. 4, pp. 70–77, 1999.

[49] “Compute Engine Service Level Agreement (SLA),” Available at https://cloud.google.
com/compute/sla.

[50] “Amazon Compute Service Level Agreement,” Available at https://aws.amazon.com/
compute/sla/.

[51] “Microst Azure SLA for Cloud Services,” Available at https://azure.microsoft.com/
en-us/support/legal/sla/cloud-services/v1 5/.

[52] V. Jacobson, “Congestion avoidance and control,” in Symposium Proceedings on
Communications Architectures and Protocols, ser. SIGCOMM ’88. New York,
NY, USA: Association for Computing Machinery, 1988. [Online]. Available:
https://doi.org/10.1145/52324.52356 p. 314–329.

[53] B. Krebs, “Antivirus is dead: Long live antivirus!” May 2014. [Online]. Available:
https://krebsonsecurity.com/2014/05/antivirus-is-dead-long-live-antivirus/

[54] R. Weisman, “Is antivirus dead?” May 2020. [Online]. Available: https:
//blog.storagecraft.com/antivirus-dead/

[55] O. Sukwong, H. Kim, and J. Hoe, “Commercial antivirus software effectiveness: An
empirical study,” Computer, vol. 44, no. 3, pp. 63–70, 2011.

[56] D. Yadron, “Symantec develops new attack on cyberhack-
ing,” May 2014. [Online]. Available: https://www.wsj.com/articles/
symantec-develops-new-attack-on-cyberhacking-1399249948?tesla=y

[57] R. M. Smullyan et al., Theory of formal systems. Princeton University Press, 1961.

[58] R. Alur and D. Dill, “The theory of timed automata,” in Real-Time: Theory in Prac-
tice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 45–73.

[59] J. Postel, “Transmission control protocol,” Internet Requests for Comments, RFC
793, September 1981. [Online]. Available: https://tools.ietf.org/html/rfc793

[60] P. Alcoy, S. Bjarnson, P. Bowen, C. Chui, K. Kasavchenko, and G. Sockrider, “Insight
Into The Global Threat Landsace: NetScout Arbor’s 13th Annual Worldwide Infras-
tructure Security Report,” 2017. [Online]. Available: https://pages.arbornetworks.
com/rs/082-KNA-087/images/13th Worldwide Infrastructure Security Report.pdf

125

[61] S. Hilton, “Dyn analysis summary of Friday October 21 attack,”
October 2016, Oracle Dyn. [Online]. Available: http://dyn.com/blog/
dyn-analysis-summary-of-friday-october-21-attack/

[62] “Global DDoS threat landscape: Q4 2017,” Imperva Incapsula. [Online]. Available:
https://www.incapsula.com/ddos-report/ddos-report-q4-2017.html

[63] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,
Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and
Y. Zhou, “Understanding the Mirai botnet,” in Proceedings of the 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,
2017. [Online]. Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/antonakakis pp. 1093–1110.

[64] B. Krebs, “Source Code for IoT Botnet ‘Mirai’ Released,” 2016. [Online]. Available:
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/

[65] T. Bienkowski, “No sooner did the ink dry: 1.7 tbps DDoS attack makes
history,” March 2018. [Online]. Available: https://www.netscout.com/blog/
security-17tbps-ddos-attack-makes-history

[66] T. Vissers, T. Van Goethem, W. Joosen, and N. Nikiforakis, “Maneuvering around
clouds: Bypassing cloud-based security providers,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’15. New
York, NY, USA: ACM, 2015, pp. 1530–1541.

[67] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network architecture,” in
Proceedings of the 2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, ser. SIGCOMM ’05. New York, NY, USA:
ACM, 2005, pp. 241–252.

[68] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker, “Con-
trolling high bandwidth aggregates in the network,” SIGCOMM Comput. Commun.
Rev., vol. 32, no. 3, pp. 62–73, July 2002.

[69] K. Whalen, “The economics of DDoS attacks,” 2017, Arbor Networks. [Online].
Available: https://www.arbornetworks.com/blog/insight/economics-ddos-attacks/

[70] W.-C. Feng, “The case for TCP/IP puzzles,” in Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, ser. FDNA ’03. New York,
NY, USA: ACM, 2003, pp. 322–327.

[71] A. Juels and J. Brainard, “Client puzzles: A cryptographic countermeasure against
connection depletion attacks,” in Proceedings of the 1999 Networks and Distributed
System Security symposium (NDSS), March 1999.

126

[72] X. Wang and M. K. Reiter, “Defending against denial-of-service attacks with puzzle
auctions,” in Proceedings of the 2003 Symposium on Security and Privacy, May 2003,
pp. 78–92.

[73] E. Nygren, S. Erb, A. Biryukov, D. Khovratovich, and A. Juels, “TLS client puzzles
extension,” Working Draft, IETF Secretariat, Internet-Draft, December 2016.

[74] Y. Nir and V. Smyslov, “Protecting Internet Key Exchange Protocol Version 2
(IKEv2) Implementations from Distributed Denial-of-Service Attacks,” RFC 8019,
November 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc8019.txt

[75] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion attacks using congestion
puzzles,” in Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, ser. CCS ’04. New York, NY, USA: ACM, 2004, pp. 257–267.

[76] T. Başar and R. Srikant, “Revenue-maximizing pricing and capacity expansion in a
many-users regime,” in Proceedings of the 21st Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 1, 2002, pp. 294–301.

[77] H. Shen and T. Başar, “Incentive-based pricing for network games with complete and
incomplete information,” in Advances in Dynamic Game Theory: Numerical Methods,
Algorithms, and Applications to Ecology and Economics, S. Jørgensen, M. Quincam-
poix, and T. L. Vincent, Eds. Boston, MA: Birkhäuser Boston, 2007, pp. 431–458.

[78] H. Shen and T. Basar, “Optimal nonlinear pricing for a monopolistic network service
provider with complete and incomplete information,” in IEEE Journal on Selected
Areas in Communications, vol. 25, no. 6, August 2007, pp. 1216–1223.

[79] D. Bernstein, “SYN cookies,” 1997. [Online]. Available: https://cr.yp.to/syncookies.
html

[80] W. Eddy, “TCP SYN flooding attacks and common mitigations,” Internet
Requests for Comments, RFC 4987, August 2007. [Online]. Available: https:
//tools.ietf.org/pdf/rfc4987.pdf

[81] J. Lemon, “Resisting SYN flood DoS attacks with a SYN cache,” in Proceedings of the
2002 BSD Conference (BSDC’02). Berkeley, CA, USA: USENIX Association, 2002,
pp. 10–10.

[82] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in
Proceedings of the 12th Annual International Cryptology Conference on Advances in
Cryptology, ser. CRYPTO ’92. London, UK, UK: Springer-Verlag, 1993. [Online].
Available: http://dl.acm.org/citation.cfm?id=646757.705669 pp. 139–147.

[83] M. K. Franklin and D. Malkhi, “Auditable metering with lightweight security,” in
Proceedings of the International Conference on Financial Cryptography. Springer,
1997, pp. 151–160.

127

[84] T. J. McNevin, J.-M. Park, and R. Marchany, “pTCP: A client puzzle protocol for
defending against resource exhaustion denial of service attacks.” Department of Elec-
trical and Computer Engineering, Virginia Tech, Tech. Rep. TR-ECE-04-10, October
2004.

[85] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[86] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, “SoK:
Research perspectives and challenges for bitcoin and cryptocurrencies,” in Proceedings
of the 2015 IEEE Symposium on Security and Privacy, May 2015, pp. 104–121.

[87] B. Laurie and R. Clayton, “Proof-of-work proves not to work; version 0.2,” in WEIS,
2004.

[88] L. Chen, P. Morrissey, N. P. Smart, and B. Warinschi, “Security notions and generic
constructions for client puzzles,” in Proceedings of the 15th International Conference
on the Theory and Application of Cryptology and Information Security: Advances in
Cryptology, ser. ASIACRYPT ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
505–523.

[89] B. Groza and B. Warinschi, “Cryptographic puzzles and DoS resilience, revisited,”
Des. Codes Cryptography, vol. 73, no. 1, pp. 177–207, Oct. 2014.

[90] D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. G. Nieto, “Stronger difficulty
notions for client puzzles and denial-of-service-resistant protocols,” in Proceedings of
the 11th International Conference on Topics in Cryptology: CT-RSA 2011, ser. CT-
RSA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 284–301.

[91] C. Sheng, “A general utility function for decision-making,” in Mathematical Modelling,
vol. 5, no. 4, 1984, pp. 265 – 274.

[92] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Message
syntax and routing,” Internet Requests for Comments, RFC 7230, June 2014.
[Online]. Available: https://tools.ietf.org/html/rfc7230

[93] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1993.

[94] “ab - Apache HTTP server benchmarking tool,” Apache. [Online]. Available:
https://httpd.apache.org/docs/2.4/programs/ab.html

[95] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and
S. Schwab, “Design, deployment, and use of the DETER testbed,” in Proceedings of the
DETER Community Workshop on Cyber Security Experimentation and Test (DETER
2007). Berkeley, CA, USA: USENIX Association, 2007, pp. 1–1.

[96] I. Arghire, “You can DDoS an organization for just $10 per hour: Cy-
bercrime Report,” https://www.securityweek.com/you-can-ddos-organization-just-10-
hour-cybercrime-report, March 2018, accessed: 08-01-2018.

128

[97] Cloudflare, “Memcached DDoS Attack,” https://www.cloudflare.com/learning/ddos/memcached-
ddos-attack/, 2018, accessed: 08-08-2018.

[98] J. Arteaga, D. Lewis, W. Mejia, E. Shuster, D. McEwan, and A. Zeigenhirt, “State of
the Internet (SOTI) / Security: Web Attack,” Akamai, 2018.

[99] X. Liu, X. Yang, and Y. Xia, “Netfence: preventing internet denial of service from
inside out,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. –, Aug. 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2043164.1851214

[100] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing internet denial-of-service
with capabilities,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 1, pp. 39–44,
Jan. 2004. [Online]. Available: http://doi.acm.org/10.1145/972374.972382

[101] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire attack,” in 2013 IEEE
Symposium on Security and Privacy, May 2013, pp. 127–141.

[102] A. Studer and A. Perrig, “The Coremelt attack,” in Computer Security – ESORICS
2009, M. Backes and P. Ning, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 37–52.

[103] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion attacks using
congestion puzzles,” in Proceedings of the 11th ACM Conference on Computer and
Communications Security, ser. CCS ’04. New York, NY, USA: ACM, 2004. [Online].
Available: http://doi.acm.org/10.1145/1030083.1030118 pp. 257–267.

[104] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “Middlepolice: Toward enforcing destination-
defined policies in the middle of the internet,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978306
pp. 1268–1279.

[105] T. Miu, A. Hui, W. Lee, D. Luo, A. Chung, and J. Wong, “Universal ddos mitigation
bypass,” Black Hat USA, 2013.

[106] T. T. Miu, W. Lee, A. K. Chung, D. X. Luo, A. K. Hui, and J. W. Wong, “Kill’em
all–ddos protection total annihilation!” Defcon 21, 2013.

[107] T. Vissers, T. Van Goethem, W. Joosen, and N. Nikiforakis, “Maneuvering
around clouds: Bypassing cloud-based security providers,” in Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813633 pp. 1530–1541.

[108] Amazon, “Amazon AWS Shield: Managed DDoS Protection,”
https://aws.amazon.com/shield/, accessed: 08-08-2018.

[109] P. Mittal, D. Kim, Y.-C. Hu, and M. Caesar, “Mirage: Towards deployable ddos
defense for web applications,” arXiv preprint arXiv:1110.1060, 2011.

129

[110] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of Explicit Congestion
Notification (ECN) to IP,” Internet Requests for Comments, Internet Engineering
Task Force, RFC 3168, September 2001. [Online]. Available: https://tools.ietf.org/
html/rfc3168

[111] D. Black, “Relaxing restrictions on Explicit Congestion Notification (ECN)
experimentation,” Internet Requests for Comments, Internet Engineering Task Force,
RFC 8311, January 2018. [Online]. Available: https://tools.ietf.org/html/rfc8311

[112] A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.

[113] V. Jacobson, “Congestion avoidance and control,” in Symposium Proceedings on
Communications Architectures and Protocols, ser. SIGCOMM ’88. New York, NY,
USA: ACM, 1988. [Online]. Available: http://doi.acm.org/10.1145/52324.52356 pp.
314–329.

[114] P. Karn and C. Partridge, “Improving round-trip time estimates in reliable
transport protocols,” in Proceedings of the ACM Workshop on Frontiers in Computer
Communications Technology, ser. SIGCOMM ’87. New York, NY, USA: ACM, 1988.
[Online]. Available: http://doi.acm.org/10.1145/55482.55484 pp. 2–7.

[115] M. Szymaniak, D. Presotto, G. Pierre, and M. van Steen, “Practical large-scale latency
estimation,” Computer Networks, vol. 52, no. 7, pp. 1343 – 1364, 2008. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1389128608000212

[116] P. Sharma, Z. Xu, S. Banerjee, and S.-J. Lee, “Estimating network proximity and
latency,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 3, pp. 39–50, July 2006.
[Online]. Available: http://doi.acm.org/10.1145/1140086.1140092

[117] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert,
D. Ahern, and D. Miller, “The express data path: Fast programmable
packet processing in the operating system kernel,” in Proceedings of the 14th
International Conference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3281411.3281443 pp. 54–66.

[118] D. Zhang, C. Zheng, H. Zhang, and H. Yu, “Identification and analysis of skype
peer-to-peer traffic,” in 2010 Fifth International Conference on Internet and Web Ap-
plications and Services, 2010, pp. 200–206.

[119] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using planetlab for network research:
Myths, realities, and best practices,” SIGOPS Oper. Syst. Rev., vol. 40, no. 1, p.
17–24, Jan. 2006. [Online]. Available: https://doi.org/10.1145/1113361.1113368

[120] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten, “New client puzzle outsourc-
ing techniques for DoS resistance,” in Proceedings of the 11th ACM Conference on
Computer and Communications Security, ser. CCS ’04. New York, NY, USA: ACM,
2004, pp. 246–256.

130

[121] i. T. ultimate speed test tool for TCP, UDP and SCTP. [Online]. Available:
https://iperf.fr

[122] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-
independent packet processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, jul 2014.

[123] M. V. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy p4
programs?” in Proceedings of the Symposium on SDN Research, ser. SOSR ’20. New
York, NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3373360.3380836 p. 62–68.

[124] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in software-defined
networks: New attacks and countermeasures.” in NDSS, vol. 15, 2015, pp. 8–11.

[125] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and dependable
software-defined networks,” in Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, ser. HotSDN ’13. New York,
NY, USA: Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2491185.2491199 p. 55–60.

[126] L. MacVittie, “Amazon outage casts a shadow on sdn,” July 2012. [Online]. Available:
https://devcentral.f5.com/s/articles/amazon-outage-casts-a-shadow-on-sdn

[127] M. Neves, B. Huffaker, K. Levchenko, and M. Barcellos, “Dynamic property enforce-
ment in programmable data planes,” in 2019 IFIP Networking Conference (IFIP Net-
working), 2019, pp. 1–9.

[128] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas, “P4pktgen: Automated
test case generation for p4 programs,” in Proceedings of the Symposium on SDN Re-
search, ser. SOSR ’18. New York, NY, USA: ACM, 2018, pp. 5:1–5:7.

[129] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang, C. Caşcaval,
N. McKeown, and N. Foster, “P4v: Practical verification for programmable data
planes,” in Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018, pp.
490–503.

[130] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu, “Debugging
P4 programs with Vera,” in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’18. New York, NY, USA:
ACM, 2018, pp. 518–532.

[131] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos,
“Uncovering bugs in P4 programs with assertion-based verification,” in Proceedings of
the Symposium on SDN Research, ser. SOSR ’18. New York, NY, USA: ACM, 2018,
pp. 4:1–4:7.

131

[132] N. McKeown, D. Talayco, G. Varghese, N. Lopes, N. Bjørner, and
A. Rybalchenko, “Automatically verifying reachability and well-formedness in
p4 networks,” Stanford University, Tech. Rep. MSR-TR-2016-65, September
2016. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
automatically-verifying-reachability-well-formedness-p4-networks/

[133] J. Baumgartner, A. Kuehlmann, and J. Abraham, “Property checking via structural
analysis,” in Computer Aided Verification, E. Brinksma and K. G. Larsen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 151–165.

[134] C. A. J. van Eijk, “Sequential equivalence checking based on structural similarities,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 7, pp. 814–819, July 2000.

[135] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting a fresh look at
combinational logic synthesis,” in Proceedings of the 43rd Annual Design Automation
Conference, ser. DAC ’06. New York, NY, USA: Association for Computing
Machinery, 2006. [Online]. Available: https://doi.org/10.1145/1146909.1147048 p.
532–535.

[136] A. P. Hurst, A. Mishchenko, and R. K. Brayton, “Scalable min-register retiming under
timing and initializability constraints,” in 2008 45th ACM/IEEE Design Automation
Conference, June 2008, pp. 534–539.

[137] A. Kuehlmann and J. Baumgartner, “Transformation-based verification using gener-
alized retiming,” in Computer Aided Verification, G. Berry, H. Comon, and A. Finkel,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 104–117.

[138] G. Cabodi, S. Quer, and F. Somenzi, “Optimizing sequential verification by retiming
transformations,” in Proceedings of the 37th Annual Design Automation Conference,
ser. DAC ’00. New York, NY, USA: Association for Computing Machinery, 2000.
[Online]. Available: https://doi.org/10.1145/337292.337591 p. 601–606.

[139] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and scalably-verifiable
sequential synthesis,” in 2008 IEEE/ACM International Conference on Computer-
Aided Design, Nov 2008, pp. 234–241.

[140] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for formal verifica-
tion,” in Proceedings of the 2005 IEEE/ACM International Conference on Computer-
Aided Design, ser. ICCAD ’05. USA: IEEE Computer Society, 2005, p. 1076–1082.

[141] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Netpaxos:
Consensus at network speed,” in Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, ser. SOSR ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2774993.2774999

132

[142] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica, “Netchain:
Scale-free sub-rtt coordination,” in 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). Renton, WA: USENIX Association, Apr. 2018.
[Online]. Available: https://www.usenix.org/conference/nsdi18/presentation/jin pp.
35–49.

[143] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in Proceedings
of the 26th Symposium on Operating Systems Principles, ser. SOSP ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3132747.3132764 p. 121–136.

[144] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li, M. Xu, and J. Wu,
“Poseidon: Mitigating volumetric ddos attacks with programmable switches,” in IEEE
NDSS, 2020.

[145] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with sdn data plane,”
in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, 2017, pp.
1–9.

[146] G. Grigoryan and Y. Liu, “Lamp: Prompt layer 7 attack mitigation with programmable
data planes,” in 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA), 2018, pp. 1–4.

[147] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading real-time ddos
attack detection to programmable data planes,” in 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), 2019, pp. 19–27.

[148] The P4 language consortium, “P416 language specification,” https://p4.org/p4-spec/
docs/P4-16-v1.0.0-spec.html, May 2017. [Online]. Available: https://p4.org/p4-spec/
docs/P4-16-v1.0.0-spec.html

[149] “NPL – network programming language specification v1.3,” https://nplang.org/npl/
specifications/, June 2019. [Online]. Available: https://nplang.org/npl/specifications/

[150] M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini, “How to Avoid
Making a Billion-Dollar Mistake: Type-Safe Data Plane Programming with SafeP4,”
in 33rd European Conference on Object-Oriented Programming (ECOOP 2019), ser.
Leibniz International Proceedings in Informatics (LIPIcs), A. F. Donaldson, Ed.,
vol. 134. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2019/10804 pp.
12:1–12:28.

[151] K. L. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz, “Directions in active
networks,” IEEE Communications Magazine, vol. 36, no. 10, pp. 72–78, 1998.

[152] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network architecture,” in
Proceedings DARPA Active Networks Conference and Exposition, 2002, pp. 2–15.

133

[153] K. Psounis, “Active networks: Applications, security, safety, and architectures,” IEEE
Communications Surveys, vol. 2, no. 1, pp. 2–16, 1999.

[154] “Barefoot: The world’s fastest & most programmable net-
works.” [Online]. Available: https://barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/

[155] Browne, Clarke, Dill, and Mishra, “Automatic verification of sequential circuits using
temporal logic,” IEEE Transactions on Computers, vol. C-35, no. 12, pp. 1035–1044,
Dec 1986.

[156] Bochmann, “Hardware specification with temporal logic: An example,” IEEE Trans-
actions on Computers, vol. C-31, no. 3, pp. 223–231, March 1982.

[157] Y. Malachi and S. S. Owicki, “Temporal specifications of self-timed systems,”
in VLSI Systems and Computations, H. T. Kung, B. Sproull, and G. Steele,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981. [Online]. Available:
\url{https://doi.org/10.1007/978-3-642-68402-9\ 23} pp. 203–212.

[158] Y. Abarbanel-Vinov, N. Aizenbud-Reshef, I. Beer, C. Eisner, D. Geist, T. Heyman,
I. Reuveni, E. Rippel, I. Shitsevalov, Y. Wolfsthal, and T. Yatzkar-Haham,
“On the effective deployment of functional formal verification,” Formal Methods
in System Design, vol. 19, no. 1, pp. 35–44, 2001. [Online]. Available:
https://doi.org/10.1023/A:1011219209077

[159] T. Schlipf, T. Buechner, R. Fritz, M. Helms, and J. Koehl, “Formal verification made
easy,” IBM Journal of Research and Development, vol. 41, no. 4.5, pp. 567–576, July
1997.

[160] J. Markoff, “Flaw undermines accuracy of Pentium chips,” The New York Times,
Nov 1994. [Online]. Available: https://www.nytimes.com/1994/11/24/business/
company-news-flaw-undermines-accuracy-of-pentium-chips.html

[161] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model checking,
2nd ed. MIT press, 2018.

[162] S. Graf and H. Säıdi, “Construction of abstract state graphs with pvs,” in Proceedings
of the 9th International Conference on Computer Aided Verification, ser. CAV ’97.
Berlin, Heidelberg: Springer-Verlag, 1997, p. 72–83.

[163] T. Kropf, Introduction to Formal Hardware Verification. Springer Science & Business
Media, 2013.

[164] S. Demri, F. Laroussinie, and P. Schnoebelen, “A parametric analysis of the state
explosion problem in model checking,” in STACS 2002, H. Alt and A. Ferreira, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 620–631.

134

[165] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification
tool,” in Computer Aided Verification. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 24–40.

[166] M. Budiu and C. Dodd, “The p416 programming language,” SIGOPS Oper.
Syst. Rev., vol. 51, no. 1, p. 5–14, Sep 2017. [Online]. Available: https:
//doi.org/10.1145/3139645.3139648

[167] R. Braden, D. Borman, C. Partridge, and W. W. Plummer, “Computing
the internet checksum,” Internet Requests for Comments, RFC Editor, RFC
1071, September 1988, http://www.rfc-editor.org/rfc/rfc1071.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1071.txt

[168] J. J. Dongarra and A. R. Hinds, “Unrolling loops in fortran,” Software:
Practice and Experience, vol. 9, no. 3, pp. 219–226, 1979. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380090307

[169] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun.
ACM, vol. 12, no. 10, p. 576–580, Oct. 1969. [Online]. Available: https:
//doi.org/10.1145/363235.363259

[170] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of property directed
reachability,” in 2011 Formal Methods in Computer-Aided Design (FMCAD), 2011, pp.
125–134.

[171] K. Hoder and N. Bjørner, “Generalized property directed reachability,” in Theory and
Applications of Satisfiability Testing – SAT 2012, A. Cimatti and R. Sebastiani, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 157–171.

[172] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 4, p. 290–301, Aug 2011. [Online]. Available: https:
//doi.org/10.1145/2043164.2018470

[173] N. M. P. Kazemian, G. Varghese, “Header space analysis: static checking for
networks,” in Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. Berkeley, CA, USA: USENIX Association, 2012. [Online].
Available: https://doi.org/10.1145/3373360.3380843

[174] A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid, “Runtime verification of p4
switches with reinforcement learning,” in Proceedings of the 2019 Workshop on Network
Meets AI & ML, ser. NetAI’19. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3341216.3342206 p.
1–7.

[175] P. T. Suriya Kodeswaran, Mina Tahmasbi Arashloo and J. Rexford, “Tracking p4
program execution in the data plane,” in Proceedings of the Symposium on SDN
Research, ser. SOSR ’20. New York, NY, USA: ACM, 2020. [Online]. Available:
https://doi.org/10.1145/3373360.3380843 pp. 117–122.

135

[176] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal derivation of
programs,” Commun. ACM, vol. 18, no. 8, p. 453–457, Aug 1975. [Online]. Available:
https://doi.org/10.1145/360933.360975

[177] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340.

[178] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet: Scalable symbolic
execution for modern networks,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16. New York, NY, USA: Association for Computing
Machinery, 2016. [Online]. Available: https://doi.org/10.1145/2934872.2934881 p.
314–327.

[179] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos, “Verification of P4 programs
in feasible time using assertions,” in Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: ACM, 2018, pp. 73–85.

[180] F. G. Alessandro Cimatti, Edmund Clarke and M. Roveri, “Nusmv: a new sym-
bolic model checker,” International Journal on Software Tools for Technology Transfer,
vol. 2, no. 4, pp. 410–425, March 2000.

[181] M. A. Noureddine and F. A. Zaraket, “Model checking software with first order logic
specifications using AIG solvers,” IEEE Transactions on Software Engineering, vol. 42,
no. 8, pp. 741–763, Aug 2016.

[182] R. Di Pietro and L. V. Mancini, Intrusion Detection Systems. Springer, 2008.

[183] “Lateral movement: How do threat actors move deeper into your network,” Trend
Micro, Tech. Rep., 2003.

[184] N. Stakhanova, S. Basu, and J. Wong, “A taxonomy of intrusion response systems,”
International Journal of Information and Computer Security, vol. 1, no. 1-2, pp.
169–184, 2007. [Online]. Available: http://www.inderscienceonline.com/doi/abs/10.
1504/IJICS.2007.012248

[185] A. Shameli-Sendi, N. Ezzati-Jivan, M. Jabbarifar, and M. Dagenais, “Intrusion re-
sponse systems: Survey and taxonomy,” Int. J. Comput. Sci. Netw. Secur, vol. 12,
no. 1, pp. 1–14, 2012.

[186] R. Brewer, “Advanced persistent threats: Minimizing the damage,” Network Security,
vol. 2014, no. 4, pp. 5–9, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1353485814700406

[187] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion kill chains,”
Leading Issues in Information Warfare & Security Research, vol. 1, p. 80, 2011.

136

[188] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security & Privacy,
vol. 9, no. 3, pp. 49–51, May 2011.

[189] C. Bronk and E. Tikk-Rangas, “Hack or attack? Shamoon and the evolution of cyber
conflict,” Feb. 2013, available at ssrn: http://ssrn.com/abstract=2270860. [Online].
Available: http://ssrn.com/abstract=2270860

[190] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack
on the Ukrainian power grid,” White Paper, sANS Industrial Control Sys-
tems. 2016. [Online]. Available: http://www.nerc.com/pa/CI/ESISAC/Documents/
E-ISAC SANS Ukraine DUC 18Mar2016.pdf

[191] M. Roesch, “Snort: Lightweight intrusion detection for networks.” in Proceedings of
USENIX LISA, vol. 99, no. 1, 1999, pp. 229–238.

[192] “The Bro network security monitor,” https://www.bro.org/. 2014.

[193] Trend Micro, “Understanding targeted attacks: Six components of targeted attacks,”
November 2015, [Online, Accessed: 06-05-2016]. http://www.trendmicro.com/vinfo/
us/security/news/cyber-attacks/targeted-attacks-six-components. [Online]. Avail-
able: \url{http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/
targeted-attacks-six-components}

[194] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of computer
worms,” in Proceedings of the 2003 ACM Workshop on Rapid Malcode. New York, NY,
USA: ACM, 2003. [Online]. Available: http://doi.acm.org/10.1145/948187.948190 pp.
11–18.

[195] G. Csardi and T. Nepusz, “The iGraph software package for complex network re-
search,” InterJournal, Complex Systems, vol. 1695, no. 5, pp. 1–9, 2006.

[196] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on Selected Areas
in Communications, vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[197] R. Albert and A. Barabási, “Statistical mechanics of complex networks,”
Rev. Mod. Phys., vol. 74, pp. 47–97, Jan 2002. [Online]. Available: http:
//link.aps.org/doi/10.1103/RevModPhys.74.47

[198] M. Nekovee, “Worm epidemics in wireless ad hoc networks,” New Journal of Physics,
vol. 9, no. 6, p. 189, 2007. [Online]. Available: http://stacks.iop.org/1367-2630/9/i=
6/a=189

[199] M. Penrose, Random geometric graphs. Oxford University Press Oxford, 2003, vol. 5.

[200] R. D. McKelvey, A. M. McLennan, and T. L. Turocy, “Gambit: Software
tools for game theory,” Version 15.1.0, Tech. Rep., 2016. [Online]. Available:
http://econweb.tamu.edu/gambit/

137

[201] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open source scientific tools
for Python,” 2001–, [Online; accessed 2016-06-16]. http://www.scipy.org/. [Online].
Available: http://www.scipy.org/

[202] M. Bloem, T. Alpcan, and T. Başar, “Intrusion response as a resource allocation
problem,” in Proceedings of the 45th IEEE Conference on Decision and Control, Dec.
2006, pp. 6283–6288.

[203] C. B. Simmons, S. G. Shiva, H. S. Bedi, and V. Shandilya, “ADAPT: A game inspired
attack-defense and performance metric taxonomy,” in Proceedings of the 28th IFIP
TC 11 International Conference, ser. SEC 2013. Springer Berlin Heidelberg, 2013.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-39218-4 26 pp. 344–365.

[204] T. Alpcan and T. Başar, “A game theoretic approach to decision and analysis in
network intrusion detection,” in Proceedings of the 42nd IEEE Conference on Decision
and Control, vol. 3, Dec 2003, pp. 2595–2600.

[205] K. C. Nguyen, T. Alpcan, and T. Başar, “Fictitious play with time-invariant frequency
update for network security,” in Proceedings of the IEEE International Conference on
Control Applications, Sept. 2010, pp. 65–70.

[206] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE: A game-
theoretic intrusion response and recovery engine,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 2, pp. 395–406, Feb. 2014.

[207] Q. Zhu and T. Başar, “Dynamic policy-based IDS configuration,” in Proceedings of
the 48th IEEE Conference on Decision and Control, Dec. 2009, pp. 8600–8605.

[208] D. McMorrow, “Science of cyber-security,” The MITRE Corporation, Tech. Rep. JSR-
10-102, November 2010.

[209] M. Bishop, “What is computer security?” IEEE Security Privacy, vol. 1, no. 1, pp.
67–69, 2003.

[210] S. Peisert and M. Bishop, “How to design computer security experiments,” in Proceed-
ings of the Fifth World Conference on Information Security Education, L. Futcher and
R. Dodge, Eds. New York, NY: Springer US, 2007, pp. 141–148.

[211] J. Yan and A. S. El Ahmad, “Usability of captchas or usability issues in captcha
design,” in Proceedings of the 4th Symposium on Usable Privacy and Security, ser.
SOUPS ’08. New York, NY, USA: Association for Computing Machinery, 2008.
[Online]. Available: https://doi.org/10.1145/1408664.1408671 p. 44–52.

[212] K. A. Kluever and R. Zanibbi, “Balancing usability and security in a video captcha,”
in Proceedings of the 5th Symposium on Usable Privacy and Security, ser. SOUPS
’09. New York, NY, USA: Association for Computing Machinery, 2009. [Online].
Available: https://doi.org/10.1145/1572532.1572551

138

[213] B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry,
A. Bates, W. H. Sanders, C. Nita-Rotaru, and H. Okhravi, “Cross-app poisoning
in software-defined networking,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3243734.3243759 p. 648–663.

[214] B. Bailey, “Hardware and software co-verification employing deferred synchronization,”
mar 2002, uS Patent 6,356,862.

[215] L. Semeria and A. Ghosh, “Methodology for hardware/software co-verification
in c/c++,” in Proceedings 2000. Design Automation Conference. (IEEE Cat.
No.00CH37106), 2000, pp. 405–408.

139

