
0

Enhancement of Metaheuristic Algorithm for Scheduling Workflows in

Multi-fog Environments

By

Omed Hassan Ahmed

A thesis submitted for the degree of

 Doctor of Philosophy

Sep 30, 2023

1

Acknowledgments

First and foremost, I thank Almighty God for giving me the strength and ability to overcome the

obstacles throughout the journey. I would like to express my gratitude to my supervisors, Professor

Joan Lu and Professor Qiang, for giving me their profound guidance and advice. I deeply appreciate

the support and priceless advice of my colleague and friend, Dr. Aram Mahmood, in the early stages

of my work. I also would like to thank the examiners for their time, effort, comments, and suggestions

to improve the research. Finally, I thank my beloved wife for her encouragement and support.

2

Abstract

Whether in computer science, engineering, or economics, optimization lies at the heart of any

challenge involving decision-making. Choosing between several options is part of the decision-

making process. Our desire to make the "better" decision drives our decision. An objective function

or performance index describes the assessment of the alternative's goodness. The theory and methods

of optimization are concerned with picking the best option. There are two types of optimization

methods: deterministic and stochastic. The first is a traditional approach, which works well for small

and linear problems. However, they struggle to address most of the real-world problems, which have

a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization

algorithms are specifically designed to tackle these types of challenges and are more common

nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization

methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm

Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to

an important and thought-provoking problem.

The problem is scientific workflow scheduling in multiple fog environments. Many computer

environments, such as fog computing, are plagued by security attacks that must be handled. DDoS

attacks are effectively harmful to fog computing environments as they occupy the fog's resources and

make them busy. Thus, the fog environments would generally have fewer resources available during

these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would

be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their

scheduling process, causing the amount of workflows that miss deadlines as well as increasing the

amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization

3

algorithm as a solution for dealing with the workflow scheduling issue in various fog computing

locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm

Optimization (PSO).

In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes

of discrete time types were used, whereby one calculates the average network bandwidth existing in

each fog while the other determines the number of virtual machines existing in every fog on average.

DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on

fog environments. Based on the simulation results, the proposed method can significantly lessen the

amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the

amount of workflows with missed deadlines.

Moreover, the significance of green fog computing is growing in fog computing environments, in

which the consumption of energy plays an essential role in determining maintenance expenses and

carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to

mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the

energy efficiency of each individual resource. In order to mitigate these challenges, the proposed

algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is

commonly employed to enhance the energy efficiency of processors. The experimental findings

demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and

Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a

minimization in energy consumption. Consequently, this approach emerges as a more environmentally

friendly and sustainable solution for fog computing environments.

4

1 Table of Contents

Chapter 1: Introduction ... 10

1.1 Background ... 10

1.2 Problem Statement .. 12

1.3 Research Aims and Objectives .. 14

1.4 Rationale ... 14

1.5 Novel Contributions .. 16

1.6 Research Organization .. 17

1.7 List of Publications ... 18

1.7.1 Workflows Scheduling in Multi-Fog Environments. .. 18

1.7.2 Solving Large Economic Load Dispatch Problem ... 19

Chapter 2: Literature Review .. 20

2.1 Enhancements SSA of and PSO Algorithms ... 21

2.1.1 Enhancements of SSA .. 21

2.1.2 Enhancement of PSO ... 25

2.2 Hybridization Methods .. 27

2.2.1 PSO Hybridization ... 28

2.2.2 SSA Hybridization ... 32

2.3 The No Free Lunch Theorem and Metaheuristics Exposed ... 36

2.4 Workflow Scheduling ... 37

2.5 Green Fog Computing ... 41

2.6 Summary ... 48

Chapter 3: Underlying Concept and Theories ... 49

3.1 Optimization ... 49

3.1.1 Heuristics Algorithms .. 50

3.1.2 Metaheuristic Algorithms ... 50

3.1.3 Classification of Optimization Problems .. 51

3.1.4 Particle Swarm Optimization and Salp Swam Algorithm .. 53

3.2 Fog Computing ... 58

3.2.1 How Does Fog Computing Work?.. 60

3.2.2 How and Why is Fog Computing Used? ... 60

3.2.3 The Advantages of Fog Computing ... 61

3.2.4 The Disadvantages of Fog Computing ... 61

3.3 The Impact of DDoS Attack on Fog Computing Environments: ... 62

5

3.3.1 How do DDoS Attacks Operate? ... 64

3.3.2 How to Identify a DDoS Attack ... 64

3.3.3 Types of DDoS Attacks ... 65

3.4 Markov Chain ... 66

3.4.1 Predictions with the use of Markov chain .. 66

3.5 Green Fog Computing ... 68

3.6 Utilizing Markov Chain Model to Predict DDoS Attack: .. 70

3.6.1 Predicting True Available Bandwidth with Regards to DDoS Attack .. 70

3.6.2 Predicting True Number of Available VMs with Regards to DDoS Attack 75

3.7 Abbreviations and Acronyms .. 78

3.8 Dynamic Voltage and Frequency Scaling (DVFS) .. 80

3.9 Ranking Workflow Tasks .. 85

3.10 Measure the Percentage of Exploration and Exploitation .. 88

3.11 Selected Algorithms for Comparison .. 89

3.11.1 Hybrid Optimization Algorithms ... 89

3.11.2 Emerging Cutting Edge Optimization Algorithms ... 92

3.12 Summary ... 94

Chapter 4: Methodology ... 97

4.1 System Architecture .. 97

4.2 System Processes .. 99

4.3 The Proposed Hybrid Optimization Algorithm ... 101

4.4 Fitness Function .. 104

4.5 Justification for Selecting SSA and PSO Algorithms .. 108

4.6 Experimental Design ... 110

4.7 Datasets ... 113

4.8 Summary ... 115

Chapter 5: Results and Discussions ... 117

5.1 Preliminary Phase: Selecting the SSA and PSO Algorithms for Hybridization 117

5.2 Phase Two: Comparative Analysis to Evaluate SSPSO with Hybrid Optimization Algorithms. 120

5.2.1 Comparing SSPSO with PGA and PSO-GWO for Task Offloading and Workflow Deadline Missed

in Fog Computing ... 123

5.2.2 Comparing SSPSO, PGA and PSO-GWO algorithms for energy consumption in Fog Computing....

……..137

5.3 Phase Three: Comparative Analysis to Evaluate SSPSO with Cutting Edge Optimization Algorithms of

Workflow Scheduling. .. 140

6

5.3.1 Comparing SSPSO with Hybrid EDF and MOWO Algorithms for Task Offloading and Workflow

Deadline Missed in Fog Computing.. 141

5.3.2 Comparing SSPSO, Hybrid EDF and MOWO Algorithms for energy consumption in Fog Computing

 …………….……………………………………………………………………………………… 155

5.4 Discussions ... 158

Chapter 6: Conclusion and Future Direction.. 160

6.1 Conclusion .. 160

6.2 Future Directions ... 161

References ... 164

Appendix .. 183

Appendix A: Introduction ... 184

Appendix B: Literature Review .. 186

Appendix C: Underlying Concept and Theories ... 189

Appendix D: The Proposed Algorithm ... 196

Appendix E: Results and Discussions ... 199

Appendix F: Conclusion ... 203

7

Table of Figures

Figure 3.1. Classification of Optimization Problems ... 51

Figure 3.2. PSO swarm behavior is depicted by a flock of birds [144]. ... 54

Figure 3.3. Single Salp [147] ... 55

Figure 3.4. Salps Chain [147] .. 56

Figure 3.5. Pseudo-code of the SSA algorithm .. 58

Figure 3.6. Fog Computing Architecture .. 59

Figure 3.7. Distributed Denial of Service attack ... 63

Figure 3.8. Markov chain of Weather Forecast .. 67

Figure 3.9. Bandwidth Markov model for a fog computing environment. .. 71

Figure 3.10. Calculation of determining available bandwidth .. 73

Figure 3.11. VM Markov model for a fog computing environment .. 76

Figure 3.12. Calculation of determining the number of available VMs ... 77

Figure 3.13. Solving Markov model VMs ... 78

Figure 3.14. Slack time ... 81

Figure 3.15. A workflow data gathering place .. 82

Figure 3.16. A gantt chart depicting various tasks within a workflow .. 83

Figure 4.1. Proposed Fog Computing Architecture .. 98

Figure 4.2. The process of the proposed workflow scheduling system .. 102

Figure 4.3. Flowchart of the SSPSO hybrid optimization algorithm ... 102

Figure 4.4. Dividing the population between SSA and PSO algorithms ... 104

Figure 4.5. Workflow scheduling using SSPSO algorithm in broker nodes.. 107

Figure 4.6. Execution of tasks in each fog. ... 108

Figure 4.7. The structures of the workflows for the utilized datasets ... 114

Figure 5.1. Oscillation of virtual machines due to DDoS attack on each fog. .. 123

Figure 5.2. (Ligo workflows) The average amount of the offloaded tasks on cloud 125

Figure 5.3. Calculating the deadline missed workflows .. 126

Figure 5.4. (Ligo workflows) The average amount of the deadline missed ... 127

Figure 5.5. (CyberShake workflows) The average amount of the offloaded tasks on cloud............................ 129

Figure 5.6. (CyberShake workflows) The average amount of the deadline missed ... 130

8

Figure 5.7. (Sipht workflows) The average amount of the offloaded tasks on cloud 132

Figure 5.8. (Sipht workflows) The average amount of the deadline missed .. 134

Figure 5.9. (Montage workflows) The average amount of the offloaded tasks on cloud 135

Figure 5.10. (Montage workflows) The average amount of the deadline missed ... 137

Figure 5.11. SSPSO, PGA and PSO-GWO overall energy consumption (Wh) .. 140

Figure 5.12. (Ligo workflows) The average amount of the offloaded tasks on cloud 143

Figure 5.13. (Ligo workflows) The average amount of the deadline missed ... 145

Figure 5.14. (CyberShake workflows) The average amount of the offloaded tasks on cloud 147

Figure 5.15. (CyberShake workflows) The average amount of the deadline missed 148

Figure 5.16. (Sipht workflows) The average amount of the offloaded tasks on cloud 150

Figure 5.17. (Sipht workflows) The average amount of the deadline missed .. 152

Figure 5.18. (Montage workflows) The average amount of the offloaded tasks on cloud 153

Figure 5.19. (Montage workflows) The average amount of the deadline missed ... 155

Figure 5.20. SSPSO, Hybrid-EDF and MOWO overall energy consumption (Wh) 157

Figure C1. Economic Load Dispatch ... 189

Figure C2. The nonlinear nature of ELD problem ... 190

Figure D1. Flowchart of the proposed algorithm for ELD ... 197

Figure E1. Convergence curve of the competitive algorithms for the datasets ... 201

9

List of Tables
Table 2.1. PSO Hybridization .. 30

Table 2.2. SSA Hybridization .. 35

Table 2.3. Comparison of fog scheduling systems ... 40

Table 3.1. The transition table ... 72

Table 3.2. Steady state transition table ... 73

Table 3.3. The transition table ... 76

Table 3.4. Steady state transition table ... 77

Table 3.5. Abbreviations and acronyms ... 79

Table 4.1. Experimental design for the proposed system ... 110

Table 5.1. Comparison of exploration and exploitation percentage ... 118

Table 5.2. Virtual machines oscillation on each fog due to DDoS attack... 121

Table 5.3. Average amount of the offloaded tasks on cloud computing in the Ligo workflows...................... 124

Table 5.4. Average amount of the deadline missed workflow in the Ligo workflows 126

Table 5.5. Average amount of the offloaded tasks on cloud computing in the CyberShake workflows 128

Table 5.6. Average amount of the deadline missed workflow in the CyberShake workflows 129

Table 5.7. Average amount of the offloaded tasks on cloud computing in the Sipht workflows 131

Table 5.8. Average amount of the deadline missed workflow in the Sipht workflows 133

Table 5.9. Average amount of the offloaded tasks on cloud computing in the Montage workflows 134

Table 5.10. Average amount of the deadline missed workflow in the Montage workflows 136

Table 5.11. SSPSO overall energy consumption (Wh) compared with PGA and PSO-GWO 138

Table 5.12. Average amount of the offloaded tasks on cloud computing in the LIGO workflows 142

Table 5.13. Average amount of the deadline missed workflow in the LIGO workflows 144

Table 5.14. Average amount of the offloaded tasks on cloud computing in the CyberShake workflows 146

Table 5.15. Average amount of the deadline missed workflow in the CyberShake workflows 147

Table 5.16. Average amount of the offloaded tasks on cloud computing in the Sipht workflows 149

Table 5.17. Average amount of the deadline missed workflow in the Sipht workflows 151

Table 5.18. Average amount of the offloaded tasks on cloud computing in the Montage workflows 152

Table 5.19. Average amount of the deadline missed workflow in the Montage workflows 154

Table 5.20. SSPSO overall energy consumption (Wh) compared with Hybrid EDF and MOWO 158

Table D1. List of parameters.. 198

Table E1. The comparison results of the proposed algorithms with its competitors for 140 unit 200

Table E2. The comparison results of the proposed algorithms with its competitors for 280 unit 200

Table E3. The comparison results of the proposed algorithms with its competitors for 580 unit 201

10

1 Chapter 1: Introduction

1.1 Background

The process of determining the optimum combination of inputs that maximizes (or minimizes) the

output of a function is known as mathematical optimization. The function being optimized is known

as the objective function in the field of optimization. Traditional optimization methods, also known as

“Convex optimizations”, only work with well-behaved functions, also known as convex functions [1].

A single optimum exists in well-behaved functions, whether it is a maximum or a minimum value. A

function can be thought of as a surface with a single valley (minimum) and/or hill (maximum). Non-

convex functions are so resembling surfaces with many valleys and hills [2]. Convex optimization

has the limitation of assuming that the objective function will always have one valley and/or hill.

Convex functions, in technical words, are guaranteed to have a global maximum or minimum. In

practice, however, many objective functions lack this property, rendering them non-convex functions,

because many objective functions utilized in real-world applications are extremely complicated, with

several hills and valleys. Finding the lowest valley or the highest hill in an objective function with

several hills and valleys is often tough [3].

Another critical difficulty with this process is the vastness of the search space for many real- world

situations, which makes it impossible to test all answers in a reasonable amount of time [4]. Recently,

metaheuristic optimization algorithms have proven to be an effective approach to address these

complex problems. Thus, metaheuristic optimization is the optimal method for optimizing such non-

convex functions. Metaheuristic algorithms have one thing in common: they blend rules and

randomness to find the optimum solution [5]. They seem to be the best option because they make no

assumptions about the number of hills and valleys in the function. Further, they have numerous

advantages, including robustness, simplicity, reliability in performance, ease of implementation, along

11

with others. In addition, they are divided into two types: evolutionary algorithms and swarm

intelligence. While swarm intelligence algorithms imitate various social groupings' social behavior

and collective decision-making, evolutionary algorithms are based on evolutionary theory. These

algorithms often rely on bio-community intelligence and group behavior to achieve a particular goal

[6].

For example, PSO is inspired by the motion of bird flocks and schooling fish. It employs a group

of agents that create a swarm moving in the search space in quest of the optimal answer. Each particle

in the swarm seeks its positional coordinates in the solution space, which are related to the best solution

achieved by that particle so far. Thus, the agents work as a group to achieve the specific goal [7].

Furthermore, scheduling scientific workflows in multi-fog environments is an emerging non-convex

optimization problem that has attracted many researchers recently. It plays an important role in the

field of IoT, which has been aided by the expansion of wireless communication technology and mobile

computing [8], [9]. However, IoT devices have limited resources. When an application requires more

resources than the device can provide for additional data processing, the duties must be offloaded to

resource-rich cloud computing data centers [10]. Offloading to faraway cloud data centers, on the

other hand, is not always practicable in delay-sensitive real-time applications or when response time

and latency are critical [11].

To address these issues, concepts like fog computing [12], [13], and edge computing [14] provide a

virtualized layer between IoT devices and cloud data centers [15], [16]. Furthermore, within the

domain of Green Fog Computing, the aspect of energy consumption assumes a crucial role due to its

direct impact on the expenses associated with maintenance and the emissions of CO2 within fog

environments [17], [18]. The implementation of efficient scheduling systems can lead to a reduction

in energy consumption by allocating activities to the most optimal resources, thereby promoting the

12

establishment of an environmentally sustainable ecosystem. Hence, it is imperative to employ an

efficient metaheuristic algorithm in order to develop a scheduling system that effectively addresses

concern related to energy consumption.

1.2 Problem Statement

Fog computing, like other computer environments, is vulnerable to different security threats, most

notably Distributed Denial of Service (DDoS) assaults [19], [20], which attempt to prevent fogs from

providing services to the IoT. DDoS assaults typically try to present themselves as legitimate network

traffic, flash mobs, or legitimate occurrences in the victim's environment. They may also obfuscate

their transmitted communications, for example, by encrypting them. DDoS attacks, in general, use

vulnerabilities in certain protocols and systems to launch their attacks [21].

Reflection-based DDoS attacks and amplification DDoS assaults are particular forms of flooding

attacks in this context, dumping high traffic on the victim's site and using its bandwidth. As a result,

legal requests will not be able to reach the victim's system, and the victim will be unreachable.

Moreover, various DDoS attacks are carried out against virtualization systems, including VM

migration attacks, cloud-internal DoS assaults, VM sprawling attacks, neighbor attacks, and VM

escape attacks. Such assaults restrict the amount of available VMs and impair fog's capacity to process

incoming requests from the IoT network.

When developing scheduling systems, the concept of "green fog computing" places a high emphasis

on good energy management [22]. Energy-saving scheduling approaches can contribute to protecting

the environment by minimizing carbon footprints while simultaneously lowering energy costs. One

strategy for reducing energy consumption in fog computing is Dynamic Voltage Frequency Scaling

(DVFS) [23]. A processor's power consumption can be minimized by reducing its frequency while

13

using DVFS.

Given the constraints of limited fog computing resources and the need for a green environment, the

efficient management of resources in fog computing systems during Distributed Denial of Service

(DDoS) attacks is of significant importance. Within the given context, the utilization of task and

workflow scheduling methods becomes imperative for the effective management of fog environments.

This involves the prudent distribution of tasks to the most optimal virtual machines (VMs) available.

This requires the proposing of a robust and powerful metaheuristic algorithm that can handle the high

heterogeneity, mobility, and resource constraints of the environment. Moreover, this could be a

challenging task due to the dynamic nature of the environment and the heterogeneity of the devices.

Metaheuristic optimization algorithms are a class of algorithms that use heuristics and stochastic

search techniques to find near-optimal solutions to complex optimization problems. These algorithms

are designed to handle high-dimensional and non-linear optimization problems and are able to find

solutions that are close to the global optimum. Algorithmically speaking, they have two primary search

behaviors, which are called exploration and exploitation.

Exploration is the hunt for uncharted areas of a feasible territory, whereas exploitation is the search

for the surroundings of a promising region [24]. An algorithm that has been over-explored will likely

diversify its agents rather than produce results that are close to optimal [25]. On the other side,

overexploitation of an algorithm raises the chance of hitting the local optimum and missing the global

optimum. Hence, the effectiveness of any algorithm is strongly dependent on the balance of these two

phases, and this requires different mechanisms, methods, and techniques.

14

1.3 Research Aims and Objectives

RO1. Develop a new technique to balance between exploration and exploitation phases and solve the

possible local optima issue in metaheuristic algorithms.

RO2. Reduce the offloaded tasks and the deadline missed workflows to the cloud computing

environment.

RO3. Efficient management of energy consumption as a crucial aspect of green fog computing.

1.4 Rationale

The following is a list of the rationale for conducting the research and a discussion of why the proposed

solution is appropriate and significant.

1. The notion of fog computing has shown potential in terms of facilitating efficient and prompt

processing of data. The use of fog computing is increasing, but along with this expansion comes an

increase in the number of security issues, including DDoS attacks. The performance and availability

of the services provided by fog are all put in considerable jeopardy by DDoS attacks, which prevent

fog computing from realizing its true potential.

The key objectives of the workflow scheduling algorithms employed in contemporary fog computing

are the use of resources, the reduction in latency, and the reduction in the amount of energy that is

consumed. Meanwhile, they typically fail to address how execution of the tasks is affected by DDoS

attacks, which makes fog computing systems susceptible to interruptions and lowers the level of

services. Therefore, it is essential to create efficient scheduling algorithms that successfully counter

the security threats caused by DDoS.

2. The proper allocation of tasks to the resources available, as described by workflow scheduling, is

essential for improving system performance. The determination of an ideal workflow scheme in fog

15

computing systems is a challenging task due to the complexity of tasks, dependencies, and resources

involved. Metaheuristic algorithms have garnered considerable interest in the field of optimization due

to their ability to offer reliable and effective approaches for addressing intricate optimization

problems. Moreover, according to the "No Free Lunch Theorem," all metaheuristic optimization

techniques perform equally well when averaged across all optimization issues. That is, if algorithm X

is better than algorithm Y for a specific optimization problem, then algorithm Y will definitely perform

better for a different optimization problem [26]. Therefore, in light of this fact, there is always room

for further enhancements in the field of metaheuristic algorithms, and the investigation of innovative

approaches for enhancing the efficacy of metaheuristic algorithms designed for workflow scheduling

in fog computing is the highest priority.

3. The integration of energy consumption into workflow scheduling is an important argument for the

workflow scheduling approach, particularly within the realm of green fog computing. The approach

optimizes task allocation, utilization of resources, and overall energy efficiency in fog computing

environments by including energy-awareness into the scheduling decisions. The impact of energy

consumption on maintenance expenses and CO2 emissions in fog computing environments is a critical

consideration. Effective scheduling methods can help reduce energy consumption by optimizing the

allocation of tasks to the most suitable resources available, minimizing unnecessary use of energy, and

utilizing methods like Dynamic Voltage and Frequency Scaling (DVFS) to enhance resource

utilization. Effective workflow scheduling approaches can play a critical role in achieving energy

efficiency.

16

1.5 Novel Contributions

This section presents the novel contributions of the research, which are outlined below:

1. Metaheuristic algorithms are a class of computational techniques that are widely used for solving

complex optimization problems. However, one of the major issues associated with these algorithms is

their tendency to get stuck in local optima, a phenomenon referred to as over exploitation, which can

lead to suboptimal solutions. Moreover, maintaining population diversity, also known as over

exploration is also a crucial challenge for metaheuristic algorithms. This is because if the population

is not diverse enough, the search process can become too focused, leading to premature convergence

and a failure to explore the solution space thoroughly [27]. Therefore, SSA is combined with PSO in

this study to reduce such problems. Having these two algorithms combined, the resulting hybrid

algorithm, named the SSPSO algorithm, has a high convergence speed and avoids local optima.

Balancing exploration and exploitation enables effective navigation of the solution space, combining

the exploration of new areas with the exploitation of promising solutions. This convergence approach

leads to efficient and robust attainment of high-quality solutions.

2. In fog computing environments, not considering DDoS attacks leads to poor resource estimation,

resulting in incorrect workflow scheduling. A discrete-time Markov chain is employed as a

mathematical framework to represent and analyze the impact of Distributed Denial of Service (DDoS)

attacks on the bandwidth of fog and cloud computing data centers. Subsequently, the model is

employed to effectively estimate the makespan of the workflow and calculate the average available

bandwidth of fog nodes. Furthermore, it is employed to calculate the average amount of virtual

machines (VMs) that are accessible in each fog environment when exposed to distributed denial-of-

service (DDoS) attacks. The model is utilized in the population initialization of the SSPSO, where the

maximum available VMs are taken into account as the appropriate amount of VMs.

17

By employing the recommended Markov models, the estimation of the makespan for the process will

be calculated, and the allocation of tasks to the fog nodes will be determined according to their

respective security levels. Due to the insufficient resources necessary for the execution of Internet of

Things (IoT) tasks, there will be a reduction in the number of tasks that can be offloaded from fog

environments to cloud data centers. A high-performance open-source fog computing toolkit called the

iFogSim simulator [28] is used to model and simulate the networks of IOT and fog computing.

Relevantly, the effectiveness of the Markov chain scheme and SSPSO algorithm is proven through the

experiments, especially concerning the amount of transferred to cloud servers and the amount of

workflows that missed deadlines.

3. Due to its effect on maintenance costs and CO2 emissions, green fog computing is a crucial factor

to take into account in a fog computing environment. It is becoming more crucial to proficiently

regulate energy consumption while concurrently considering sustainability as the use of fog computing

expands. Energy efficiency is crucial because virtual machines used in fog sometimes have restricted

power sources and are frequently placed in faraway places. By allocating tasks to the most appropriate

resources and eliminating unnecessary consumption of energy, effective scheduling approaches can

assist decrease energy consumption. [29]. The proposed algorithm with Dynamic Voltage and

Frequency Scaling (DVFS) will be used in the approach to minimize the environmental impact of fog

computing by reducing the amount of CO2 emissions associated with energy consumption, making it

a more suitable option while still guaranteeing that tasks are finished on schedule and with the expected

level of service.

1.6 Research Organization

The organization of this dissertation's structure is as follows:

18

Chapter 2 provides a comprehensive and detailed review of the state of art of the above-mentioned

topics. Chapter 3 presents the underlying concepts and theories which discusses algorithms, relevant

concepts, formulae. Chapter 4 provides an outline of the research methodology, including system

architecture and processes, experimental design and datasets. Chapter 5 provides the obtained results

and assesses the proposed scheme's performance. Finally, Chapter 6 summarizes and reflects on the

research before making fresh recommendations for future research.

1.7 List of Publications

1.7.1 Workflows Scheduling in Multi-Fog Environments.

• Title: Scheduling of Scientific Workflows in Multi-Fog Environments Using Markov Models and a

Hybrid Salp Swarm Algorithm.

• State: Published

• Publisher: Institute of Electrical and Electronics Engineers Inc. (IEEE)

• Journal Name: IEEE Access

• Volume: 8

• Electronic ISSN: 2169-3536

• Quartiles: Q1

• H-Index: 158

• Impact Factor: 3.367

• Author`s Contributions:

First Author: Omed Hassan Ahmed

Conceptualization, methodology, resources, data curation, implementation, discussed the results and

contributed to the final manuscript, prepared and wrote the manuscript and writing–review and editing.

Other Authors: Guidance and support

https://www.scimagojr.com/journalsearch.php?q=Institute%20of%20Electrical%20and%20Electronics%20Engineers%20Inc.&tip=pub

19

1.7.2 Solving Large Economic Load Dispatch Problem

• Title: Hybrid PSO-SSA Optimization Algorithm for Large Economic Load Dispatch.

• State: Under review

• Author`s Contributions:

First Author: Omed Hassan Ahmed

Conceptualization, methodology, resources, data curation, implementation, discussed the results and

contributed to the final manuscript, prepared and wrote the manuscript and writing–review and editing.

Other Authors: Guidance and support

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4130228

20

2 Chapter 2: Literature Review

The focus of the research is to improve the efficacy of metaheuristic methods in order to effectively

tackle the challenges associated with local optima and population diversity. The suggested approach

is then used to schedule scientific workflows in multi-fog environments. In light of this, this chapter

evaluates the relevant literature.

As mentioned previously, metaheuristic algorithms are designed to handle high-dimensional and non-

linear optimization problems and are able to find solutions that are close to the global optimum.

Fundamentally, these algorithms are made to strike a balance between exploitation and exploration

during the search process. Attaining balance in various non-linear and high-dimensional optimization

issues, such as scientific workflow scheduling in multi-fog environments, can pose enormous

difficulty. An algorithm that has been over-explored will likely diversify its agents rather than produce

results that are close to optimal. Inversely, overe-xploitation of an algorithm raises the chance of

hitting the local optimum and missing the global optimum. As a result, both problems will produce

inadequate optimization results. Continuous studies and developments are currently directed towards

improving the effectiveness of metaheuristic algorithms to tackle a wide range of optimization

challenges.

The widely recognized meta-heuristic optimization techniques Salp Swarm Algorithm (SSA) and

Particle Swarm Optimization (PSO) have demonstrated encouraging results in a variety of

optimization challenges. However, each algorithm has its own drawbacks that may restrict how well

it can optimize. For instance, SSA experiences a delayed convergence rate as a result of its inadequate

exploitation capacity [30–44]. The algorithm may find it difficult to swiftly converge to the optimal

solution as a result, particularly when dealing with high-dimensional search spaces. On the other hand,

PSO's weak exploration capability [45–61] is known to cause it to frequently become trapped in local

21

optima. Researchers have suggested numerous improvements and hybridizations to improve the

efficiency of both algorithms for solving diverse optimization issues in consideration of these

restrictions.

Below are some examples of improved and hybridized versions of SSA and PSO algorithms across

different problem domains from the literature:

2.1 Enhancements SSA of and PSO Algorithms

This section presents an analysis of several improved Salp Swarm Algorithm (SSA) and Particle

Swarm Optimization (PSO) algorithms that have been specifically developed to enhance their

effectiveness and efficacy in addressing diverse problem domains.

2.1.1 Enhancements of SSA

The authors in [62] examined the issue of low convergence rates associated with the Salp Swarm

Algorithm (SSA). In order to address these challenges and improve the effectiveness of exploitation

capabilities, the authors proposed three distinct modifications to the SSA population update procedure.

The initial modification, referred to as MSSA1, enhances the algorithm's capacity to investigate the

vicinity of local searches by incorporating information from the local best into the salps updating

process of followers. The second iteration, known as MSSA2, introduces two additional methods for

updating followers. One approach involves integrating differential evolution with a local best location

that is randomly selected. In contrast, the other method incorporates a local search within the vicinity

of the global best, driven by the lack of improvement in the corresponding local best. The third update,

referred to as MSSA3, aims to increase exploitation by penalizing the failure to improve the local best

solution and calculating a new position for the relevant follower using a local leap within the local

best neighborhood.

22

An enhanced version of the SSA algorithm is introduced in [63]. The objective of this enhancement is

to effectively tackle the exploitation issue, thereby improving its overall exploitation capabilities.

Orthogonal learning facilitates the algorithm's escape from local maxima by allowing the worst salps

to separate. Quadratic interpolation is employed to enhance the accuracy of the global optimal solution

by conducting local searches in the vicinity of the optimal point. The utilization of generalized

oppositional learning, facilitated by initiation and generation jumping, is employed as a means to

improve the overall quality of a population. Collectively, these strategies contribute to the algorithm's

enhanced performance during the process of convergence. In order to evaluate the effectiveness of

ESSA in addressing complex engineering challenges in high-dimensional and real-world applications,

three constrained engineering optimization problems from the CEC 2011 optimization problems

benchmark set and the CEC 2017 benchmark suite were employed.

An enhanced version of the Salp Swarm Algorithm (SSA), named ISSA, is introduced [64]. It is

designed specifically to tackle feature selection challenges. The ISSA employs a wrapper-mode

approach to effectively determine the optimal subset of features. In order to address these challenges

and enhance the applicability of the SSA algorithm for feature selection, two notable modifications

have been implemented in the original algorithm. In the initial phase of SSA, the implementation

incorporates Opposition Based Learning (OBL) as a strategy to enhance population diversity within

the search space. To augment the exploitability of SSA, the second modification involves the

development of a novel local search algorithm that is integrated with SSA. By integrating these

improvements, ISSA demonstrates enhanced performance in feature selection tasks by bolstering its

abilities in both exploration and exploitation.

Several limitations associated with the Salp Swarm Algorithm identified in [65], such as slow

convergence. The authors have introduced the adaptive Salp Swarm Algorithm as a novel iteration of

23

the algorithm in order to mitigate these limitations. The algorithm has undergone modifications,

wherein the levels of exploration and exploitation have been regulated through the division of

generations and the implementation of logarithmic adaptive parameters. The exploitation phase has

undergone enhancements to optimize local search, while the gradual reduction of population

adaptation has been implemented to minimize the total number of function evaluations. The proposed

modifications are expected to enhance the efficacy of the adaptive Salp Swarm Algorithm, thereby

mitigating the limitations inherent in the original approach and yielding superior performance in

addressing optimization challenges.

The AGSSA, an enhanced optimization technique, is developed in [66] based on the SSA algorithm.

The initial SSA exhibited certain limitations, such as a propensity to become trapped in local optima.

The AGSSA algorithm introduced several novel concepts to address these challenges. The proposed

algorithm incorporates two notable enhancements. The initial improvement involves augmenting the

population's ability to exploit local resources by incorporating an adaptive control parameter into the

follower's position updating process. The utilization of the Elite Gray Wolf Dominance technique is

employed during the final step of the population position update process, thereby expediting the

population's exploration for the most optimal solution. This represents the second iteration of

improvement.

In order to enhance the efficiency and robustness of optimization, in [67], the authors proposed a novel

optimization approach to address the limitations associated with the SSA technique, including the poor

convergence rate. The proposed algorithm integrates a modifiable weight factor, an extended local

search, and a chaotic opposition-based learning strategy. Based on empirical evidence, it has been

observed that the CWSSA method exhibits superior performance compared to other meta-heuristic

algorithms across a wide range of benchmark functions. The CWSSA algorithm is employed for the

24

purpose of optimizing pilot patterns, and it exhibits superior performance compared to alternative

methods in terms of Bit Error Rate (BER) and Mean Squared Error (MSE). The study demonstrated

that the proposed CWSSA method exhibits the capacity to enhance the resilience and effectiveness of

optimization across diverse applications.

In [68], the authors proposed a novel variation of SSA that incorporates a Levy flight strategy and is

named iSSA. This modification aims to improve the exploration capabilities of Salps by enabling them

to cover a wider range of areas. The randomization incorporated into the SSA algorithm enhances its

susceptibility to exploitation, thereby facilitating a faster convergence towards the global optima. The

efficiency of the iSSA algorithm is evaluated using six distinct high-dimensional microarray datasets.

The results indicate that the iSSA algorithm outperforms the original SSA technique in terms of

convergence ability. Based on the simulation findings, it can be concluded that the iSSA algorithm

demonstrates superiority over the SSA algorithm in terms of effectiveness, resulting in more

significant outcomes. In order to mitigate the slow convergence time issues associated with SSA, a

novel optimization technique named ESSA was introduced in [69]. The ESSA algorithm incorporates

the self-adaptation weight and scale-free network processes, along with the evolutionary strategies of

the basic Salp Swarm Algorithm, to enhance its effectiveness. The method's follower evolution process

has integrated these techniques in order to achieve a balance between exploration and exploitation

capabilities. The ESSA algorithm demonstrates superior optimization performance compared to the

original salp swarm strategy.

With the aim of mitigating the issue of sluggish convergence rate observed in SSA, the authors in [70]

introduced a novel optimization algorithm, referred to as OCSSA, The OCSSA algorithm is derived

from the chaotic Salp Swarm Algorithm and integrates the Opposition-Based Learning (OBL)

methodology. This integration enhances the algorithm's convergence speed and expands its search

25

space, resulting in improved performance. Furthermore, the algorithm utilized the Chaotic Local

Search (CLS) technique to improve its efficacy in attaining the global optimum solution. The

aforementioned alterations are aimed at alleviating the constraints of the initial SSA algorithm and

enhancing its optimization capabilities.

2.1.2 Enhancement of PSO

An improved version of the Particle Swarm Optimization (PSO) algorithm is suggested in [71] in order

to address the problem of quick convergence and hitting local optima, which integrates chaos-based

initialization and resilient update mechanisms. The algorithm under consideration employs the logistic

map as a means to generate particles that are uniformly distributed, thereby improving the quality of

the initial population. Furthermore, a sigmoid-like inertia weight is derived to facilitate the adaptive

adjustment of the Particle Swarm Optimization (PSO) algorithm. This allows the PSO to dynamically

modify its inertia weight, transitioning between linearly decreasing and nonlinearly decreasing

strategies. As a result, a more optimal equilibrium is achieved between the exploration and exploitation

phases of the algorithm.

In [72], the authors proposed a novel topological structure named CLPSO-LOT in order to tackle the

issue of convergence speed and local opima. This structure is derived from the Comprehensive

Learning Particle Swarm Optimizer (CLPSO). The local optima are identified within the iterative

procedure, resulting in the creation of a novel topological space. The subsequent exemplar for the

particle's learning process is subsequently selected at random from this space. The inclusion of local

optima in the search space by CLPSO-LOT enhances the particle's exploration capability and

accelerates poor convergence.

26

Utilizing tunable Gaussian white noise, a unique technique called the RPSO is introduced in [73]. It

dynamically affects the acceleration coefficients. The aforementioned perturbation approach aims for

a more complete exploration of the problem space. The prospect of avoiding the local optima trap and

maintaining population diversity is increased by RPSO's use.

The modified Particle Swarm Optimization (PSO) variant, referred to as MPSO, is proposed in [74].

The present version incorporates an adaptive method into its framework. The MPSO algorithm utilizes

a non-linear inertia weight derived from chaos theory in order to augment the exploration capabilities

of the Particle Swarm Optimization (PSO) method. In order to mitigate premature convergence, the

approach also incorporates stochastic and traditional learning techniques.

A new version of Particle Swarm Optimization (PSO) known as Modified Particle Swarm

Optimization With Effective Guides (MPSOEG) is introduced in [75] in order to enhance the ability

to find solutions using the method for optimization problems encompassing diverse features. The

MPSOEG algorithm's OGC module generates two distinct types of examples, which are determined

by the algorithm's search performance. The OGC module guides the swarm towards potential solution

locations in the search space. This is achieved by utilizing particles that possess valuable directional

information, resulting in the generation of a global example. Additionally, it is possible for each

particle to possess a unique local exemplar, enabling it to navigate away from the confines of the local

solution.

To identify multiple local optima on surfaces of objective functions, a novel multi-modal optimization

technique is proposed in [76]. The suggested method builds upon the existing Species-based Particle

Swarm Optimization (SPSO) strategy and incorporates several modifications aimed at improving its

performance. Several strategies have been employed in this study to enhance the optimization process.

These strategies encompass the utilization of "turbulence regions" surrounding previously discovered

https://www.researchgate.net/publication/344679768_Modified_Particle_Swarm_Optimization_With_Effective_Guides
https://www.researchgate.net/publication/344679768_Modified_Particle_Swarm_Optimization_With_Effective_Guides

27

solutions in order to minimize unnecessary function evaluations. Additionally, the implementation of

proximity-based speciation, along with the speciation of isolated particles, has been incorporated.

A novel Particle Swarm Optimization (PSO) optimizer that incorporates a rising sigmoid inertia

weight is proposed in [77]. The proposed technique is evaluated by comparing it with sigmoid

decreasing and linearly increasing inertia weights using four commonly used non-linear benchmark

functions. This comparison is conducted to validate the accuracy of the proposed approach. Based on

empirical evidence, it has been observed that Particle Swarm Optimization (PSO) algorithms exhibit

improved performance when higher inertia weights are employed. Specifically, these PSOs

demonstrate enhanced convergence capabilities and exhibit more dynamic behavior, converging

rapidly towards the solution region.

An innovative technique is suggested in [78] in order to address the problem of local minima. The

objective function underwent two transformations using this method in order to eliminate local minima

while preserving global minima. When the Particle Swarm Optimization technique is combined with

the novel approach, it demonstrates the ability to effectively identify global minima and overcome

local minima. The results of the trials indicate that the enhanced algorithm exhibits consistent and

reliable performance. Additionally, the utilization of the "Stretching" strategy demonstrates a stable

convergence, thereby increasing the probability of success for the integrated approach.

2.2 Hybridization Methods

The PSO and SSA hybridization algorithms are examined in this section. The algorithms are combined

with the other existing algorithms to increase their potency in dealing with a particular optimization

challenge.

28

2.2.1 PSO Hybridization

On some unconstrained benchmark test functions, a new hybrid Particle Swarm Optimization (PSO)

and Whale Optimizer (WOA) technique is proposed in [79]. The study is a combination of PSO for

exploitation and WOA for exploration. When compared to the normal PSO and WOA algorithms,

analysis of competitive results achieved from PSO–WOA verifies its effectiveness.

The PSO algorithm is linked with position updating equations in the Levy flight approach and the Sine

Cosine Algorithm (SCA) to address its disadvantages, which include finding the local minimum rather

than the global minimum and a lack of global search capabilities. As a result, the authors introduced a

new hybrid approach (PSOSCALF) in [80]. The behavior of the sine and cosine functions serves as

the foundation for the mathematical idea used to update the solution in the SCA method. These

activities guarantee that exploitation and exploration are possible. Using the Levy distribution to

generate search steps, Levy flight is a random walk that then conducts more fruitful searches in the

search space with significant leaps. The PSOSCALF approach improves the exploration capabilities

of the original PSO algorithm and prevents being imprisoned in the local minimum by merging the

SCA and Levy flight. 23 benchmark functions of the unimodal and multimodal types, as well as 8

constrained real-world engineering situations, were used to test the PSOSCALF method's performance

and correctness. The PSOSCALF approach outperforms the PSO family and other algorithms in

calculating the global minimum of the test functions, according to the optimization results.

Furthermore, the suggested PSOSCALF algorithm has been successfully applied to real-world

restricted engineering situations, yielding superior results than alternative techniques.

In [81], the authors presented a new hybridization of Particle Swarm Optimization (PSO) and

Gravitational Search Algorithm (GSA) named Hybrid PSO-GSA to discover spectrum holes with

29

enhanced energy utilization. It is possible to create a balanced trade-off between the exploration and

exploitation abilities of the PSO-GSA algorithm using the proposed unique hybridization of PSO and

GSA. Furthermore, by incorporating mutation and crossover factors into the PSO-GSA, the suggested

algorithm is capable of efficiently detecting spectrum gaps with optimum transmission power.

In [82], the authors proposed a technique that tackles a form of the job shop scheduling issue where

jobs must be delivered by a finite number of vehicles to the machines handling their operations.

Machine scheduling and vehicle scheduling are interwoven because jobs must be carried to the

machines for processing and then completed by the machines before being transported. Therefore,

scheduling production operations and transport activities concurrently is necessary to solve the job

shop scheduling issue with transport resources (JSPT). They suggested a technique that combines

Simulated Annealing and Particle Swarm Optimization to identify high- quality solutions in a

reasonable amount of time (PSOSA). These findings indicate that the PSOSA is extremely reliable

and outperforms state-of-the-art solution techniques.

To solve the NP-hard problem in fog computing, a hybrid approach that combines the Genetic

Algorithm (GA) and the Particle Swarm Optimization (PSO) techniques proposed in [83]. The

suggested GA-PSO is used in the fog computing environment for efficient service allocation while

decreasing total makespan and energy consumption for IoT applications. They used a customized C++

simulator to develop the proposed GA-PSO, and the results showed that the proposed GA-PSO

outperforms both GA and PSO algorithms when used separately. In [84], the authors proposed a binary

version of the hybrid Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) for

solving feature selection challenges. The original PSOGWO is a new hybrid optimization algorithm

that takes advantage of both GWO and PSO's characteristics. A hybrid task scheduling is proposed in

30

[85], which uses Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms to

reduce total execution time. Particle Swarm Optimization (PSO) assisted the hybrid Genetic Algorithm

- Particle Swarm Optimization (GA- PSO) algorithm in achieving better results than a normal genetic

algorithm. In [86], the authors proposed an improved algorithm that combines Selecting Features (SA)

and, PSO. The suggested algorithm was capable of enhancing particle swarm diversity as well as

jumping out of the local optimum. To mimic the SA-PSO algorithm, various traditional

unimodal/multimodal functions were used. The results showed that SA-PSO was better at avoiding

prematurity and eliminating local optimum. When compared to regular PSO, the SA-PSO has some

advantages in terms of effectiveness and accuracy.

In [87], the authors developed a machine learning model through using Particle Swarm Optimization

(PSO) algorithm for Selecting Features, and then used a Support Vector Machine (SVM) classifier to

identify the type of tumor cells in the most recent brain MRI images. The authors used an extensive

database of MRI images of brain tumors.

Table 2.1. PSO Hybridization

Hybridized with

Name of Algorithms

Testing Field

Performance

Ref.

Whale Optimizer (WOA)

PSO–WOA

Eight

 benchmark

test functions

Better due to the

improvement of

convergence capability on

all unconstraint test

benchmark functions

[79]

Sine Cosine Algorithm (SCA)

and Levi Flight

PSOSCALF

Twenty three

test functions

Better on benchmark

functions of the unimodal

and multimodal type, this is

due to the prevention of

agents from getting stuck in

local minima

[80]

https://www.sciencedirect.com/topics/computer-science/benchmark-function
https://www.sciencedirect.com/topics/computer-science/benchmark-function

31

Gravitational Search Algorithm

(GSA)

PSO-GSA

Detecting

spectrum gaps

with optimum

transmission

power

Better, this is due to

improvement of poor

exploration ability on

detecting spectrum gaps

[81]

Simulated Annealing

PSOSA

Job shop

scheduling It can converge towards the

global optimum and

resulting in better

scheduling

[82]

Genetic Algorithm (GA)

GA-PSO
Reduce

makespan and

energy

consumption in

cloud

computing

Better as a result of

improved premature

convergence

[83]

Grey Wolf Binary Model

Optimization (GWO)

BGWOPSO

18 common

benchmark

datasets from

the UCI

library such as

(Breastcancer,B

rea

stEW,Congress

E

W,Exactly,Hear

tE W, etc…)

Better for small datasets.

Poor for medium and large

data sets.

Because of improved

exploration capability and

finding better solution in the

search space

[84]

Genetic Algorithm (GA)

GA-PSO

Task

scheduling in

cloud

computing to

minimize the

total execution

time

Better on task scheduling in

cloud, this is due to

improvement of exploration

capability

[85]

Simulated Annealing

SA-PSO

Sphere

function, Booth

function,

Mccormick

function,Easom

function,Rastri

gin function,

Rosenbrock

function

Better, except Easom

function.

It has improved slow

convergence speed and poor

accuracy

[86]

32

Support Vector Machine(SVM)

classifier

N/A

online database

of MRI images

with brain

tumors

Better on feature selection

due to better converge

towards the global

optimum

[87]

2.2.2 SSA Hybridization

The COVID outbreak is wreaking havoc on the global economy. Practically every country is fighting

to stop the disease from spreading through patient diagnosis and treatment, segregation of suspects

through contact tracking, restraining large social gatherings, maintaining total or partial lockdown,

and so on. Nursing worker scheduling and nurse designation may have a substantial impact on the

standard of medical facilities. It is supplied by removing imbalanced loads and unnecessary pressure,

both of which can contribute to poor nurse performance and human errors. During the treatment of all

ill patients, nurses are regularly requested to leave. Regular scheduling formulas, on the other hand,

are not assumed to take this possibility into account due to their lack of control over schedules in most

cases. To handle nurse scheduling and designation, a new model of the Hybrid Salp Swarm Algorithm

and Genetic Algorithm (HSSAGA) is proposed in [88]. The results of the recommended test function

algorithm show that it outperforms current state-of-the-art approaches.

In [89], the authors proposed a hybridized Salp Swarm Algorithm(SSA) with a Simulated

Annealing(SA) and applied to features selection(FS) which is used to reduce the dimensions and

remove the noise from datasets. The proposed approach's performance is evaluated on 16 datasets

from the UCI repository, including two large-scale datasets, and compared with native (SSA) and

alternative (FS) techniques such as ALO and PSO. The experimental findings amply demonstrated the

proposed approach's adequacy in searching the feature space for optimal features. To improve the

performance of the original Moth-flame Method, a Hybrid Moth-flame and Salp Swarm Algorithm is

33

developed in [90]. The chance of a moth studying the distance between the moth and the flame

decreases as it goes spirally around the flame. A salp chain was affixed to each moth in this

investigation to measure distance. The suggested approach was compared to the original Moth-flame

Optimization algorithm and the Particle Swarm Optimization algorithm on benchmark functions.

Results reveal that, when compared to previous methods, the proposed technique can provide a

minimum fitness value.

In [91], the authors combined SSA with spherical evolution (SE) to tackle optimization challenges.

SE helps to improve exploration during iteration in this hybrid method, while SSA is designed to speed

up convergence to optimal solutions. The findings indicate that the hybridization is effective and that

the spherical search style and the salp swarm search method are complementary. The research not only

adds to their understanding of the original algorithms, but also introduces a fresh approach for

combining them. The SSA-FGWO hybrid meta-heuristic method is introduced in [92], to address the

drawbacks of the original SSA, such as sluggish convergence speed when overcoming challenges in

global optimization and large scale and multimodal landscapes. The basic idea behind SSA-FGWO is

to enhance the Salp Swarm Algorithm, apply the Grey Wolf Algorithm (GWO) technique (SSA). The

process of hybridization involves two phases: To begin, the powerful exploitation of SSA is used to

update the leaders' position in the chain population. Second, the proposed optimizer's population

variance is increased by using GWO's strong exploration technique to update the followers' position.

For solving the NP hard Container Stacking Problem (CSP), a combination of Salp Swarm- Simulated

Annealing Algorithm (SSSA) is suggested in [93]. Shipping containers are temporarily kept in yards

in container terminals in the shape of bays made up of horizontal rows and vertical stacks. When a

target container must be retrieved, Possibly, it isn't at the top of the pile; in this case, the containers

above it are referred to as blocking containers. In order to obtain the target container, these blocking

34

containers must first be shifted. These relocations add to the burden and put the container terminal's

efficiency to the test. To test the proposed algorithm's performance; computational tests were carried

out on benchmark examples, demonstrating the SSSA's competitive performance in comparison to the

instances' optimal solutions.

In [94], the authors developed a better noise removal technique based on a series of cascaded filters.

The best filter combinations are found by cascading four of the twelve distinct kinds of filters to

increase the performance of the Salp Swarm Algorithm. The Differential Evolution-based Salp Swarm

Algorithm is an improvement of the standard Salp Swarm Algorithm that makes better use of

differential evolution tactics (DESSA). Gaussian, salt and pepper, or speckle noise can be eliminated

using the majority of techniques for image denoise. In contrast, the proposed denoising method shows

its effectiveness in the removal of all three noises, and the denoised images are better in terms of both

quantitative analysis and visual quality, thanks to the perfect arrangement of filters in the cascaded

arrangement. MWOA-SPD, a novel hybrid wrapper-based technique for detecting spam profiles in

online social networks, is proposed in [95].

The Whale Optimization Algorithm (WOA) is combined with the Salp Swarm Algorithm (SSA). To

broaden the search and overcome WOA's limitations, the WOA exploration technique is substituted

with the SSA position update mechanism. To assess the effectiveness of the suggested technique, a

dataset was taken from Twitter and used as a benchmark. The findings reveal that the proposed strategy

produces competitive outcomes when compared to existing methods.

35

Table 2.2. SSA Hybridization

Hybridized with

Name of

Algorithms

Testing Field

Performance

Ref.

Genetic Algorithm

HSSAGA

Nurse scheduling and

allocation

Better as a result of improved poor

convergence rate

[88]

Simulated

Annealing(SA)

 and applied to

 features

selection(FS)

SSA-SA

16 datasets from the

UCI repository,

including two high-

dimensional datasets

 of California

university

Better, this is due to improve the

exploitation ability that utilizes to accept

a worse quality solution

[89]

Moth-flame

MFSS

12 benchmark

functions

The convergence rate of the MFSS

algorithm demonstrates its effectiveness

in reaching a global optimum.

[90]

Spherical Evolution

(SE)

SSSE

30 benchmark

functions

Better in all aspects except for 2, 3, 12,

14, 23, and 28, as it enhances

exploration while simultaneously

accelerating convergence. Furthermore,

it addresses the issue of slow

convergence speed, resulting in more

efficient optimization.

[91]

Grey Wolf

Algorithm (GWO)

SSA-FGWO

23 exemplary

benchmark instances,

as well as feature

selection issues (18

 data sets)

Better as the algorithm overcomes the

issue of slow convergence speed.

[92]

Simulated

Annealing

SSSA

Container Stacking

Problem

Better, this is due the improvement of

exploration capability

[93]

36

2.3 The No Free Lunch Theorem and Metaheuristics Exposed

The "No Free Lunch Theorem" [26] states that all metaheuristic optimization techniques perform

equally well when averaged across all optimization issues. That is, if algorithm X is better than

algorithm Y for a specific optimization problem, then algorithm Y will definitely perform better for a

different optimization problem. Therefore, in light of this fact, there is always room for further

enhancements in the field of metaheuristic algorithms.

However, in [96], the authors claimed that the subject of combinatorial optimization has seen a flood

of "new" metaheuristic methods, the majority of which are based on metaphors of natural or man-

made processes. No idea seems too far-fetched to serve as inspiration for yet another metaheuristic,

whether it's the behavior of nearly any type of bug, the flow of water, or musicians playing together.

Furthermore, the authors argued that this line of research risks leading the field of metaheuristics away

from scientific rigor. They looked at the historical context that led to an increase in the use of

metaphors as inspiration and justification for the development of new approaches, as well as the

reasons for the metaheuristics field's sensitivity to this line of research and its flaws.

Differential

Evolution

DESSA

Image Denoising
Better due to significant

improvements in exploitation capability

[94]

Genetic Algorithm

SSA-GA

Task scheduling in

Edge computing for

CPU energy

consumption.

Better due to prevent the diversity of the

agents

[95]

37

2.4 Workflow Scheduling

Various systems of task scheduling in a fog computing environment have been proposed, including

[97-104]. Some of these systems are discussed in this section.

ROSA was developed in [105]. It encompasses an uncertainty-based online scheduling method with

the ability to schedule multiple workflows with restraints on deadlines. Such an approach of

scheduling has the ability to control the amount of tasks that wait on every VM. A total of five sets of

experiments were carried out in this study. This was to allow comparison between the proposed system

and five other algorithms. The obtained outcomes showed superiority of ROSA to the five compared

algorithms. ROSA was better in terms of costs and use of resource.

A scheduling algorithm was presented in [106] for the purpose of mitigating IoT workflows’ power

consumption on fog’s assorted resources. In this study, the authors modeled the problem with the use

of integer linear programming for the mitigation of power consumption. EMS which entails a

scheduling algorithm for combining various policies and finding near-optimum scheduling, was also

proposed as well. Furthermore, the authors concluded the ability of EMS in optimizing power

consumption and in decreasing the makespan.

A scheduling technique was proposed in [107]. It encompasses a cross analytical layer technique

applied for the period of dynamic task scheduling in fog environments, and the method balances the

delay of service and consumption of power. In this study, the performed analysis also included the use

of the Lyapunov optimization method in addition to the delay and power- aware task scheduling

methods. The outcomes demonstrated the effectiveness of the suggested technique, whereby it

improved delay-energy performance, particularly during task scheduling. Further, a complete

simulation of the proposed method was presented. Notably, security factors were not addressed in this

study.

38

A task-scheduling model was highlighted in [108]. In this study, containers were used as a guarantee

of the timely completion of tasks. Containers are also regarded as the amount of concomitant tasks for

the fog node. To reduce task delays, a reallocation mechanism was performed. The task-scheduling

algorithm proposed in this study was able to decrease task delays while also improving the amount of

concurrency of the tasks within fog nodes.

A system of scheduling presented in [109] comprised Dispersive Stable Task Scheduling (DATS),

which is a scheduling system that is both decentralized and scalable. Within diverse fogs, the use of

DATS reduces service delay. Accordingly, the processing of a QoE based task scheduling and PE-

based computing resources competition were used in this study, and the results of experiments

demonstrated the ability of DATS in balancing the usage of computing resources and communication

links. This was to decrease service delay. It should be noted, however, that the proposed system in this

study merely focused on minimizing delay, while disregarding issues of security.

The use of DOTS was demonstrated in [110]. Specifically, DOTS entails a task scheduling algorithm

that considers latency and has the ability to enhance delay in offloading. Above all, security issues

were disregarded in this study. A scheduling algorithm named Polo was proposed in [111]. The system

proposed in this study applies linear programming-based optimization in addition to binary PSO. The

results proved the ability of the proposed system to increase performance, while reducing problems of

quality loss and service latency. Still, the system did not take into account the security issues.

In [112], a heuristic method for the dynamic scheduling of various workflows in the IoT was presented.

39

In this regard, the communication cost from the contrivances of the IoT to fog was taken into account.

Further, comparison was made between the proposed system’s performance and that of a cloud

unaware system for various workloads. The obtained results showed that the proposed system offered

a smaller ratio of deadline misses at a greater monetary cost.

An efficient scheduling approach was proposed in [113]. In this proposed approach, the Max-Min ant

system was used in dealing with the problem of workflow scheduling in the settings of a

multiprocessor. Task priority is manipulated in this approach in order to attain the best task- order. In

this study, numerous random workflows were used by the authors in the evaluation of the performance

of the proposed system. A completely decentralized hybrid of edge, fog, and cloud was proposed in

[114]. The system was called Edge-Fog cloud. LPCF algorithm was used in the allotment of tasks on

the resources accessible within the environment, and the results demonstrated that the LPCF algorithm

was able to achieve near-optimal networking costs within a polynomial period, but not within the

complexity of exponential time. Networking costs and processing time were considered factors. On

the other hand, security-related factors were disregarded in this study.

A study by [115] demonstrated the application of a method called Deadline-aware Task Scheduling.

Here, fog nodes cooperate and utilize cloud resources in task execution. As a solution, the use of an

ACO-based algorithm was proposed by the authors. In meeting the deadlines of the tasks, the authors

also attempted to intensify fog computing turnover. Notably, the proposed system does not take into

40

account issues related to security. Only cost and deadline factors were addressed. The application of

the task scheduling algorithm has been demonstrated in [116].

Using this proposed algorithm, tasks are prioritized according to their degree of delay tolerance. The

use of this algorithm was to increase the throughput while decreasing the cost and time of the response.

Cloudanalyst was used in this study for the evaluation of the proposed system. Notably, Cloudanalyst

is a CloudSim-based tool for simulation. Accordingly, a comparison of fog systems of scheduling can

be viewed in Table 2.3.

Table 2.3. Comparison of fog scheduling systems

Workflow

or Task
Element of Scheduling Simulator Assessment Elements Ref.

Scheduling

of Tasks
Resource, Cost Resource Usage, Cost [105]

Scheduling

of Tasks
Energy Consumption of energy [106]

Scheduling

of Tasks

Energy Consumption, Service

Delay, Delay Jitter

Average Power

Consumption,

Accumulated Waiting

Time, Delays, Delay

Jitter, and Performance

Delay

[107]

Scheduling

of Tasks
Resources

Libvirt,QEMU,Docker,

Linpack

Average Reduction Period

and Total Amount of

Tasks Accepted

[108]

Scheduling

of Tasks
Delay

Latency and Ratio of

Latency Reduction
[109]

Scheduling

of Tasks
Delay

Consumption of energy,

Index of Fairness, Delay

and Nodes

[110]

Scheduling

of Tasks

Quality Loss, Service Latency

SUMO Latency [111]

41

2.5 Green Fog Computing

Several recent studies have been carried out to explore optimization algorithms for the purpose of

workflow scheduling and distributing resources in an energy efficient manner within the context of

green fog computing. This section presents a comprehensive overview of recent research on green fog

computing, highlighting significant findings related to the implementation of optimization algorithms

for the development of low-energy Internet of Things (IoT) systems.

The authors in [117] employed Reinforcement Learning Techniques to select a server activation policy

that effectively minimizes the likelihood of job loss. The significance of optimizing battery handling

in relation to the total capacity of the Renewable-Energy Generator system and the total amount of

available servers was underscored by a comprehensive performance analysis conducted on a fog

computing node. The authors provided a case investigation that showcased the efficacy of their

Scheduling

of

Workflow

Deadline C++

Financial cost, the

percentage of tasks that

are completed on the

cloud and the deadline

miss ratio

[112]

Scheduling

of

Workflow

Makespan MVB 6.0
Length of a Normalized

Schedule
[113]

Scheduling

of Tasks
Network Cost, Cost Python

Cost of the network,

processing costs and

profit

[114]

Scheduling

of Tasks
Profit

Cost of the network,

processing costs and

profit

[115]

Scheduling

of Tasks

and

Workflow

Request Arrival Rate Estimates,

Service Time and Delay
Cloudanalyst Response Time and Cost [116]

42

proposed system in enhancing the operational efficiency of an energy storage system within a green

fog computing node of the network

In [118], the authors aimed to optimize the network utility feature by incorporating environmental

sustainability and addressing power and interference constraints in the context of green fog computing.

The problem they aimed to address the large-scale mixed integer nonlinear programming. An

algorithmic framework was developed to address this challenge in a distributed and parallel fashion.

The algorithm's outer loop employed Benders' decomposition to partition the integer and continuous

variables into master and subproblems. The authors additionally discussed the algorithm's capabilities

and efficiency. The simulation results provided evidence that the algorithm proposed by the

researchers is characterized by high efficiency in terms of both time and energy consumption.

In [119], the authors investigated the appropriateness of fog computing as a potential solution to

address the increasing need for Internet of Things (IoT) devices. The primary factors considered for

evaluating fog performance were Quality of Service (QoS) and energy consumption. To accomplish

this objective, models were developed to quantify different metrics within the fog computing

paradigm. Subsequently, the problem was formulated as a constrained optimization task. The authors

effectively employed Evolutionary Algorithms (EA) to address this concern. The approach employed

by the researchers is notable due to its emphasis on energy efficiency.

In [120], the authors emphasized the diverse domains in which green technology can be supported

43

through the utilization of technologies such as mist, edge, fog, and cloud computing. Additionally, the

objective of this study is to propose strategies for enhancing the level of assistance provided.

The issue of resource distribution in fog computing was investigated in [121] with the aim of

maximizing the utility function from an energy efficiency perspective. The problem at hand can be

effectively represented using a mixed integer nonlinear programming problem, which is inherently

classified as NP-hard. The researchers employed a modified distributed inner convex approximation

as the initial step to approximate the problem for the purpose of resolving it. The Benders

decomposition procedure was subsequently employed to address integer variables. The Dinkelbach

algorithm was employed to convert the fractional programming in the subproblem into an equivalent

parametric subtractive form. Furthermore, the subproblem was divided in a distributed manner,

allowing users to update their respective portions without the need for information exchange. The

efficacy of the proposed algorithm was demonstrated through the simulation results.

The authors in [122] presented a novel fog computing system named Spatio-Fog. This system

incorporates geospatial information into fog devices, enabling them to utilize nearby resources for

addressing geospatial queries. The resolution of the geospatial query by the fog device is contingent

upon the specific geographic area under consideration. In some cases, the fog device is capable of

independently resolving the query.

However, in other instances, it may rely on cloud servers or other fog devices located in different

44

regions to accomplish this task. In order to demonstrate the feasibility of their approach, the

researchers conducted both an empirical inquiry and an experimental examination. The empirical

investigation revealed that the proposed Spatio-Fog architecture achieved significant improvements

in power consumption and delay when compared to existing geospatial query resolution systems.

Specifically, the Spatio-Fog architecture demonstrated a reduction of approximately 43-47% in power

consumption and 47-83% in delay. In [123], the authors introduced two Integer Linear Programming

(ILP) models in order to tackle the fog planning issue within the incorporated Cloud-Fog (iCloudFog)

framework, The primary objective of the initial ILP model is to minimize the capital expenditure

(CAPEX) and operational expenditure (OPEX) associated with the design and implementation of fog

computing infrastructure.

The second Integer Linear Programming (ILP) model aims to optimize the allocation of Internet of

Things (IoT) jobs on the expected fog nodes in order to maximize efficiency while minimizing power

usage. The proposed ILP models undergo quantitative evaluation, wherein various IoT job

requirements, including real-time and mobility, are taken into account. The empirical data

demonstrates that strategically designed fog computing systems have the potential to minimize

planning burdens while effectively meeting the diverse job demands of the Internet of Things (IoT).

In order to address two significant challenges that may impede the progress and execution of

communication services, the researchers in [124] focused their efforts on the creation of a wireless

45

sensor node suitable for utilization within fog computing frameworks.

The issues at hand encompassed network resilience provisioning and energy consumption. The writers

of the wireless sensor node design took into consideration the macroarchitecture features and

operational limitations that the network platform may encounter. The core of their strategy revolved

around the integration of commercially available network hardware platforms with advanced power

management and network resilience techniques.

A multi-level approach that employs a Mixed-Integer Linear Programming (MILP) model to optimize

the allocation of resources and the positioning of virtual machines (VMs) in fog-cloud scenarios with

the aim of minimizing carbon dioxide (CO2) emissions originating from data centers was introduced

in [125]. The method utilized in this study considers different traffic demand scenarios occurring at

different times of the day and year. Additionally, it incorporates carbon intensity data obtained from

the National Grid ESO to estimate the carbon dioxide (CO2) emissions associated with the British

Telecom (BT) network. The findings of the study indicated that the requirements of traffic and the

carbon intensity factor exerted a notable influence on the optimal location for hosting applications.

The results of the study also indicated a trade-off between increasing carbon dioxide (CO2) emissions

through the hosting of additional applications at fog nodes and reducing CO2 emissions by minimizing

network travel distances.

In [126], the authors introduced a novel model called the Tree-Based Fog Computing (TBFC) model.

46

The TBFC model endeavors to mitigate the aggregate electric energy consumption of nodes within

the Internet of Things (IoT) by distributing processes and data to servers and fog nodes in a hierarchical

structure resembling a tree. The authors conducted an examination of the TBFC model and

subsequently demonstrated that it consumed a lower amount of total electric energy compared to the

cloud computing model for its nodes.

An overview of the extensive Internet of Things (IoT) and the technologies that enable 6G discussed

in [127]. The authors conducted an analysis of diverse energy-related concerns that may emerge during

the implementation of fog computing in the context of 6G-enabled massive Internet of Things (IoT)

applications. The authors categorized a range of energy-efficient fog computing solutions for the

Internet of Things (IoT) and provided a comprehensive overview of recent advancements in these

domains. Finally, the participants engaged in a discussion regarding potential future prospects and

unresolved obstacles pertaining to the advancement of energy-efficient methodologies for fog

computing within the upcoming 6G extensive Internet of Things (IoT) network.

A novel paradigm referred to as the Tree-Based Fog Computing (TBFC) model was introduced in

[128], in order to mitigate the overall electric energy consumption of nodes within the Internet of

Things (IoT). The distribution of data and processes in a tree-like topology involves the allocation of

these resources to servers and fog nodes. The TBFC model was subjected to examination, and it was

demonstrated that it consumes a lower amount of total electric energy in comparison to the cloud

47

computing model for its nodes. In [129], the authors introduced two methodologies for energy

prediction: one utilizing the Recursive Least Square (RLS) filter and the other employing an Artificial

Neural Network (ANN). Both methodologies predict the energy consumption at different fog nodes

by considering factors such as workload quantity and size. Based on the simulation data, it can be

observed that the root mean square error (RMSE) for both techniques exhibits a value below 3%. In

contrast to the RLS-based technique, the ANN-based technique demonstrates a notable reduction of

up to 20% in root mean square error. An investigation on the potential applications of fog computing,

particularly in the context of health monitoring conducted in [130]. The authors focused their efforts

on developing a heart monitoring application that involves users submitting a 30-minute recording of

their Electrocardiogram (ECG) signal to fog processing units.

These units are responsible for processing, analyzing, and making decisions within the recommended

time frame set by the American Heart Association (AHA). The primary objective of this system is to

promptly respond and provide necessary interventions for heart patients upon detection of any

abnormalities in the ECG signal. In order to minimize energy consumption in processing and

networking equipment, a strategic placement of processing servers was implemented. The results of

the study indicate that the utilization of fog processing units for processing ECG data resulted in a

significantly higher energy conservation of up to 68% compared to processing the data at the central

cloud.

48

2.6 Summary

This chapter offers a comprehensive analysis of metaheuristic algorithms, particularly emphasizing

the Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). A category of optimization

algorithms known as metaheuristic algorithms exhibits the capability to effectively address complex

optimization problems across various academic disciplines. The latest research studies on PSO and

SSA algorithms are in-depthly addressed in this chapter, along with their advantages and weaknesses.

It looks at numerous ways to improve the PSO and SSA algorithms as well as hybridization techniques

that have been established by hybridizing the two of them with other methods to develop more robust

and efficient algorithms.

The necessity of effective scientific workflow scheduling in fog computing is also emphasized. This

entails resource distribution and workflow scheduling in order to maximize system efficiency. It draws

attention to the difficulties associated with workflow scheduling in fog computing and looks at several

scheduling techniques. Additionally, it explores the idea of "green computing" and its importance in

systems that employ fog computing. It illustrates the potential benefits of incorporating green

computing practices into fog computing systems, resulting in reduced energy consumption and a

diminished carbon impact. In its entirety, the chapter offers an in-depth investigation of optimization

methods. It shows how important it is to use metaheuristic algorithms like PSO and SSA, as well as

efficient workflow scheduling and green computing ideas, to make fog computing systems more

effective overall and better for the environment.

49

3 Chapter 3: Underlying Concept and Theories

This chapter presents a comprehensive overview of the necessary background information, formulae,

and algorithms employed in the present study. It examines various topics, including optimization,

workflow scheduling, fog computing, Markov chains, DDoS attacks, and green fog computing.

3.1 Optimization

A hybrid metaheuristic optimization technique is employed in the proposed system for workflow

scheduling purposes; as a result, this section presents a theoretical background on optimization

concepts and metaheuristic algorithms in a general sense, with a specific focus on Particle Swarm

Optimization (PSO) and Salp Swarm Algorithm (SSA).

In science, engineering, and business domains, many hard problems can be categorized as optimization

problems. The minimization of risk, cost, and time, and the maximization of profit, quality, and

efficiency, are among the examples of optimization. For example, there are numerous ways to build a

network to minimize cost and improve service quality, and there are numerous ways to schedule a

production to maximize efficiency, and so forth [131].

Optimization algorithms can be generally classified into two groups, namely: exact (deterministic) and

approximate (stochastic) optimization algorithms. Real-world optimization problems are mostly

complex and challenging to answer. They are impossible to accurately resolve using exact methods

within a reasonable length of time. The main alternative for solving this type of issue is to use

approximation techniques. Heuristics and metaheuristics are two types of approximate algorithms that

can be deconstructed further [132].

50

3.1.1 Heuristics Algorithms

Heuristics are problem-specific; they are created for and applied to a specific situation. The use of

Heterogeneous Earliest Finish Time (HEFT) is common in heuristic scheduling algorithms. There are

two stages of HEFT namely the planning phase (task prioritization stage) and also the processor

selection stage, whereby the former involves the assignment of priorities to the tasks following their

ascending ranks, while the latter involves the selection of appropriate processor in executing the task,

taking into account the completion time of minimal tasks [133], [134].

3.1.2 Metaheuristic Algorithms

Metaheuristic algorithms can be classified and described in a variety of ways [135]. Several

classifications are available depending on the features used to differentiate them, each of which is the

result of a unique point of view.

1. Nature vs. non-nature inspired: The roots of the algorithm are maybe the most logical method of

categorizing metaheuristics [136]. There are algorithms that are inspired by nature, such as Genetic

Algorithms, which are inspired by evolutionary theory about the origin of species, or, The Ant Colony

Optimization Algorithm, which draws its inspiration from how actual ants forage. Furthermore, there

are algorithms that are not inspired by nature, such as Tabu Search, which employs local search

methods.

2. Trajectory-based vs Population-based: In trajectory-based a single agent is used to find the optimal

solution. In contrast, population-based algorithms employ numerous methods to search for optimal

solutions. This also has two sub-branches known as swarm intelligence algorithms and evolutionary

algorithms [137].

51

Multiple agents are moving in the search space in swarm intelligence algorithms, which are

population-based. These are self-organized, decentralized agents that interact and cooperate to find

the optimal solution.

3. Memory-based vs. memory-less metaheuristics: Whether or not they use memory depends on how

the search history is used. One of the key components of a potent metaheuristic is the utilization of

memory.

3.1.3 Classification of Optimization Problems

Optimization Objectives, constraints, the environment, form functions, and variables can all be used

to categorize problems as shown in the Figure (3.1).

Figure 3.1. Classification of Optimization Problems.

Variables
Function

Form
Landscape Constraint Objective

Optimization
Problems

Mixed

Continuous

Discrete

Non-linear Multimodal Unconstrained
Multi-

Objective

Linear Unimodal Constrained
Single

Objective

52

In terms of Mathematics, optimization problems can be formulated in a generic form like follows:

min 𝑓𝑖(𝑥) , (𝑖 = 1,2, … , 𝐼)
𝑥∈𝑅𝑛

(3.1)

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝐶𝑗 (𝑥) = 0, (𝑗 = 1,2, … . , 𝐽)

𝐶𝑘 (𝑥) ≥ 0, (𝑘 = 1,2,… . , 𝐾)

Here if we suppose that the parameters of the search space are denoted in a vector like “𝑥”, then

(𝑥) will be the objective functions or sometimes called fitness function.

(𝑥) can be a minimizing or maximizing function depending on the design on hand. Finally,

(𝑥) and (𝑥) are the equality and inequality constrain of the design problem respectively.

1. Single objective vs. Multi-objective Optimization Problems

By classifying optimization problems based on the number of objectives, there are two kinds of

optimization problems: single and multi-objective. If the previous equation is taken, the problem has

a single objective, when I = 1. This means that there is only one goal in the search space, and all the

factors are used to reach that goal. However, when I > 1, it is a multi- objective problem that contains

multiple conflicting objectives or goals. Many of the real-world problems are multi-objective, for

example, maximizing profits while minimizing time or cost. When these objectives clash with each

other, algorithms require a trade-off between them, which leads to the generation of a set of

compromised solutions. This is commonly known as "Pareto-optimal solutions" [138].

2. Constrained vs. Unconstrained Optimization Problems

In optimization problems, constraints are the conditions that a solution must fulfill. Optimization

problems can also be classified according to the number of these constraints [139]. For example, in

the previous equation: if J = K = 0, this means there are no constraints, and this is known as

“unconstrained optimization problems." As for the equation, if J > 0 or K > 0, the problem is known

53

as an “equality-constrained optimization problem” or an “inequality-constrained optimization

problem,” respectively.

3. Continuous Optimization Problem vs. Discrete Optimization Problem

Depending on the nature of problems, some models may require a discrete set of values to be used for

representing the solution sets. These types of optimizations are called discrete optimizations. However,

some other models, known as continuous optimization, are only comprehended when actual real

numbers are employed to represent the solution sets [140]. It is important to note that continuous

optimization algorithms can also be used to solve discrete problems.

4. Linear Optimization Problems vs. Nonlinear Optimization Problems

Mathematically speaking, problems can be called linear if the change in the output is proportional to

the change in the input [141]. On the other hand, nonlinear problems are exactly the opposite, and thus

their outputs are challenging, which makes them harder to solve [142].

5. Unimodal vs. Multimodal Problem

Unimodal problems are those problems that have one global optimum in the search space, while the

multimodal problems have multiple global optima in the search space [143].

3.1.4 Particle Swarm Optimization and Salp Swam Algorithm

The proposed approach is a hybridized metaheuristic algorithm that is applied to the scheduling of

scientific workflows. The proposed methodology integrates the Salp Swarm Algorithm (SSA) with

Particle Swarm Optimization (PSO). As a result, this section offers an overview of the fundamental

concepts and mathematical frameworks of both SSA and PSO algorithms.

1. Particle Swarm Optimization (PSO): PSO imitates the movement of fish or birds in their repective

group, and according to the creators of this algorithm, movement in groups allows each member to

54

benefit from each other’s experiences. For instance, during a food search, the birds in their flock can

all share their encounters and assist all birds in finding the best food location [144].

Figure 3.2. PSO swarm behavior is depicted by a flock of birds [144].

When the algorithm starts generating the initial population, each agent has a position, which represents

a solution set. Fitness values for all the agents are calculated, and the agent with the best fitness value

is saved as the global best [145]. In addition, each agent monitors the position with the best fitness

values it has flown to so far, which is called the personal best. The PSO's advantages are that it is

simple to perform and does not require numerous parameter adjustments. So, PSO uses the following

equations (3.2, 3.3) to change the position of an agent:

𝑣 = 𝑣 + 𝑐1𝑟1(𝑋𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑗) + 𝑐2𝑟2(𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑗) (3.2)

𝑋𝑗 = 𝑋𝑗 + 𝑣 (3.3)

55

Where, 𝑣 is the velocity; 𝑐1 and 𝑐2 are acceleration factors that can be used to alter the weighting of

individual and collective experience; 𝑟1 and 𝑟2 are random numbers in the range of [0 1]; 𝑋𝑝𝑏𝑒𝑠𝑡 is the

cognitive component, which is best position where the agent has flown to so far; 𝑋𝑔𝑏𝑒𝑠𝑡 is the social

component, which is the best position where all the agents has found so far; finally, 𝑋𝑗 is the current

position of the agent.

Therefore, the fundamental idea of PSO is that each agent movies toward its personal best and global

best accompanied with a random weight at each iteration. In a sense, PSO combines the self-

experience and global experience together [146].

2. Salp Swarm Algorithm: Salps are sea animals belonging to the Salpidae family. Salps have a see-

through barrel-shaped body, and their tissues are very much akin to those of jellyfish. Salps’ movement

is also highly comparable to that of jellyfish; they pump water through their bodies, and the propulsion

of water allows them to move forward. Figure 3.3 below illustrates Salp’s shape.

Figure 3.3. Single Salp [147]

The swarming behavior of Salps in their living environment, namely the deep ocean, is very intriguing.

Salps would establish a swarm known as a salp chain (see Figure 3.4). According to some researchers,

the chain is formed to attain better propulsion via rapid synchronized changes and foraging [147].

56

Figure 3.4. Salps Chain [147]

Mathematical model for moving salp chains:

Firstly, the salp population was split into two groups: leaders and followers. The salp positioned at the

front of the chain is called the leader, and those behind are classified as followers. The leader becomes

the guide, in a direct and indirect manner, while the rest of the salps will be moving based on the

leader. In the movement, the followers follow one another.

As with other techniques that follow the mechanism of swarming, salps’ position is specified in an

𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 search space. Here, 𝑛 denotes the number of variables in the problem at hand.

Hence, for all salps, their position is kept in a two-dimensional matrix known as 𝑥. Also, in the search

space, a food source is presumed to exist, and it is termed as 𝐹. The food source becomes the target of

the swarm. The updated leader position is determined using the following equations:

57

𝑥𝑗
1 = {𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 ≥ 0 (3.4)

𝑥𝑗
1 = {𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 < 0 (3.5)

From the above equation: 𝑥𝑗
1 signifies the position of leader within the 𝑗𝑡ℎ dimension, 𝐹𝑗 denotes the

food source position within the jth dimension, 𝑢𝑏𝑗 denotes the upper limit(bound) of jth dimension,

𝑙𝑏𝑗 signifies the lower limit(bound) of jth dimension, while 𝑐1, 𝑐2, and 𝑐3 represent random numbers.

As demonstrated by equation (3.6), leader only updates its position concerning the food source.

Accordingly, in SSA, the coefficient 𝑐1 balances the exploration and exploitation, making it the most

essential parameter. SSA is expressed as below:

𝑐1 = 2𝑒−(
4𝑙
𝐿
)
2

 (3.6)

From the above equation: 𝑙 denotes the existing iteration, while 𝐿 denotes the highest number of

iterations.

The parameters 𝑐2 and 𝑐3 determine if the ensuing position in 𝑗th dimension should focus on reaching

positive infinity or negative infinity, and the size of step. Both these parameters are random numbers

which are produced homogeneously in the interval of [0,1]. Accordingly, the followers’ position is

based on the Newton's law of motion. The equation below is used:

 𝑥𝑗
𝑖 =

1

2
𝑎𝑡2 + 𝑣0𝑡

(3.7)

58

From the equation bellow: 𝑖 ≥ 2 and 𝑥𝑗
𝑖 signifies the position of ith follower salp in jth dimension.

 𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) (3.8)

The pseudo-code of SSA algorithm can be viewed in Figure 3.5.

Figure 3.5. Pseudo-code of the SSA algorithm

3.2 Fog Computing

This section presents an overall overview of fog computing and its operating principles as the

proposed system is used for scheduling workflows in fog computing environments.

Fog computing is a term introduced by Cisco; it is Ginny Nichols, the product line manager of Cisco,

who is believed to have coined the term fog computing [148], [149]. Fog computing refers to a

decentralized system of infrastructure where the data and computation are in a separate place between

the organization and cloud storage. The power of data is brought closer to the organization through

fog computing. In some cases, the cloud can be a long distance away from an organization, and this

can create problems.

In order to avoid these problems, the data storage and processing are brought closer to the physical

location of the organization, which makes it easier for the organization to access the data. Refer to

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑎𝑙𝑝𝑠

 𝑭𝒐𝒓(𝑟𝑜𝑢𝑛𝑑 = 1; 𝑟𝑜𝑢𝑛𝑑 < 𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ; 𝑟𝑜𝑢𝑛𝑑 + +)

𝒃𝒆𝒈𝒊𝒏

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑎𝑙𝑝 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑒𝑟

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑒𝑟 𝑠𝑎𝑙𝑝

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝒆𝒏𝒅

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑒𝑟

59

Figure 3.6. Fog computing and edge computing are terms that are interchangeably used by people, and

there are a lot of relationships between these two terms [150]. Both of these terms concentrate on

bringing the data closer to the organization so that the organization can better manage and access the

data. Fog computing is basically done to increase the efficiency of the organization and also improve

its accessibility to data. It also ensures security and additional protection for the organization's data.

So, fog computing can be described as a bridge between an organization and the cloud. Fog computing

acts as an intermediary between these two, making it efficient for the organization to process and use

its data [151].

Figure 3.6. Fog Computing Architecture

Cloud

Fog Fog Fog

Fo
g

Co
m

p
u

ti
n

g
En

d
 D

ev
ic

es

C
lo

u
d

 C
o

m
p

u
ti

n
g

60

3.2.1 How Does Fog Computing Work?

Fog computing is in no way a substitute for cloud services. Cloud servers are essential for long-

term analytics for the organization, and they are more resource-intensive [152]. Fog computing,

on the other hand, focuses on the organization's short-term analytics and is less resource-intensive.

If an organization depends on cloud services, it can consume its time, as the cloud servers may be

located far away from the physical location of the organization. On the other hand, fog computing

provides users with timely data and analytics. Organizations need to have something in between

or near them because it is common for hackers to hack the cloud and obtain information from the

organization. Hence, it is appropriate and convenient for organizations to have fog computing,

which is safer and protection-oriented. “Fog computing applications consist of smart buildings,

smart grids, vehicle networks, smart cities, and software- defined networks” [153].

3.2.2 How and Why is Fog Computing Used?

Fog computing is mainly used for obtaining real-time data and real-time traffic signals. For

example, if a smart building needs a signal to act accordingly or a smart vehicle needs to act in a

specific manner, then fog computing is the best way to go, as it is located near the application and

can receive the data in a timely manner. This is the same with all the IoT devices we use, which

have to respond to signals and traffic and do the computing to make it convenient for users to use

these devices in the most efficient manner [154]. In the case of self-driving cars, the concept of

fog computing comes into play. "With the use of sensors and signals, these vehicles capture the

moments of other cars and the environment around them, and the obtained data, generally in large

amounts, can be processed within a very short time, and this is a great example of how fog

computing is used" [155].

61

3.2.3 The Advantages of Fog Computing

There are numerous benefits to fog computing, as it makes the whole process of an organization

much simpler while increasing the convenience of the end-user [156–161]. Among the benefits of

fog computing are:

● Bandwidth conservation: As fog computing functions as a bridge between the cloud and the

application, the data sent to the cloud will decrease in volume, which decreases the associated cost

while also decreasing the consumption of bandwidth.

● Improved response time: In fog computing, the data processing is done near the organization

or where the data is used, which improves the response time and reduces any delays in the data

processing. The goal of fog computing is to process the data in real-time so the equipment can use

the data in real-time and respond accordingly.

● Network-agnostic: In the case of fog computing, the networks can be wired or they can be

made to be Wi-Fi or 5G. This feature of fog computing is so useful that it can be used in almost

any application that needs to process data in real-time.

3.2.4 The Disadvantages of Fog Computing

It needs to be acknowledged that fog computing also comes with its disadvantages. Some of the

disadvantages of fog computing are:

● Physical location: Fog computing is based on a specific location and can only be used for

computing at a particular place. This is just the opposite of cloud computing, which can be used

anywhere and anytime. This restriction on location is one of the main disadvantages of fog

computing. It is noted that in this rapidly altering world, where globalization is becoming a part of

it, people need services and technologies that they can use anywhere and anytime, but with fog

62

computing, it may be impossible [162].

Potential security issues: Fog computing can also be vulnerable to hackers and attacks. There

can be a middle party that attacks fog computing, such as MitM attacks, IP address spoofing, etc.

These potential security issues are another disadvantage of fog computing. As we know, security

and privacy are crucial when it comes to using technology, and for organizations, violations of

security and privacy will render fog computing useless [163].

● Startup costs: Fog computing makes use of both cloud and edge resources, and so there will

be hardware costs to bear. These startup costs can be too heavy for organizations, especially those

in the start-up phase [164].

● Ambiguous concept: Fog computing has been present for many years and has been used by

organizations. Still, there remains a certain ambiguity regarding the concept, as different experts

have defined it differently [165], [166]. Also, there is still a lack of clarity regarding what it really

is.

3.3 The Impact of DDoS Attack on Fog Computing Environments:

Fog resources may become busy due to the vulnerability of fog computing environments to

different DDoS attacks. When such attacks occur, fog environments typically have fewer resources

available, which can negatively affect the scheduling of operations submitted by the Internet of

Things (IoT). In order to decrease the number of workflows that miss deadlines and tasks that are

offloaded to the cloud, the proposed system takes this impact into account while scheduling tasks.

A broad review of DDoS attacks, including their mechanics and techniques of identification, is

therefore given in this section.

63

Distributed denial of service attack, or DDoS attack, is a type of internet attack where the normal

traffic to a selected server, network, or service is disrupted by flooding the target or the

infrastructure surrounding it with traffic. The attackers commonly use multiple computers or

systems to disrupt the traffic of the targeted network; refer to Figure 3.7. DDoS is one of the many

types of internet attacks that are prevalent out there. “The exploited machines may comprise

computers, mobile phones, or other IoT devices” [167]. In simple terms, we can say that a DDoS

attack is like causing traffic congestion on a highway, thus preventing any other vehicle from

coming to that place. This means that the vehicles cannot reach their destination. The same

scenario is to be applied to computer servers and networks [168].

Figure 3.7. Distributed Denial of Service attack

64

3.3.1 How do DDoS Attacks Operate?

DDoS attacks are planned with the help of connected internet computers or systems. These

computers are infected with malware and are connected to each other. The attacker controls these

computers remotely. The individual malware-affected computers are called ‘bots’ and the group

of bots is called ‘botnets.’ The attacker then sends a remote request to each bot to attack the targeted

server [169]. When the attacker targets a victim’s IP address, each bot in the botnet sends requests

to the user's IP address. This results in congestion and traffic jams, preventing normal traffic from

coming to the user’s IP address, causing a denial of service to the regular traffic as a result.

Separating the normal traffic from the malicious traffic is difficult since the bots are legitimate

internet devices [170].

3.3.2 How to Identify a DDoS Attack

The main identifying factor for a DDoS attack is the slowing down of a site or a service. However,

it is often difficult to distinguish between a normal traffic increase and an attack on traffic

congestion. So, it is important to use traffic analysis tools to find out the source of the traffic. If

the traffic is coming from a single IP address, then it is a DDoS attack [171]. Also, traffic from

users shares the same characteristics when it comes to devices, browsers, etc. A high amount of

traffic to a single web page, and spikes in traffic every 10 minutes or at unnatural times of the day,

are among the indicators of a DDoS attack. A hacking solutionist or an organization may be able

to provide a solution to DDoS attacks. DDoS attacks can take various forms, depending on the

nature of the attack. It is important that users use their system in a safe manner and abstain from

downloading or clicking malicious bots or links. Doing so can make it easy for attackers to capture

users’ IP addresses and then attack them using targeted traffic [172], [173].

65

3.3.3 Types of DDoS Attacks

There are different components in a network that can be affected by DDoS attack. A network

connection is made up of different layers and components. Like building a house all the way from

scratch, each component has unique functions and features [174].

• Application layer attack – This is also known as Level 7 DDoS attack, and it happens through

exhausting the target’s resources to create a denial of service. These attacks are targeted to the

layers in which the web pages are generated in request for the http [175]. When there are multiple

requests coming from different sources at the same time, congestion and traffic jam will happen,

and this is the purpose of the application layer attacks. These attacks are difficult to identify, as it

is similar to a normal traffic.

● Protocol attacks – The overconsumption of resources, such as load balancer and firewall

resources, results in these attacks, also known as state exhaustion attacks, which interrupt

resources. These attacks usually focus on layer 3 and layer 4 [176]. When the server resources are

over consumed, the traffic becomes disrupted and the site or the application hangs. These attacks

need to be resolved through proper use of software.

● Volumetric attacks – This type of attacks is aimed at causing congestion by using or

consuming all the amount of available bandwidth between the target and the wider internet [177].

In this case, a significant volume of data is transmitted to the target, causing congestion and

bandwidth reduction. This is another form of DDoS attack that is prevalent, and one needs to be

vigilant about it. Usually, amplifications are used to bring in massive traffic, and DNS

amplification [178] is one such attack. This type of attack is also common and needs to be guarded

against.

66

3.4 Markov Chain

Two discrete time Markov-chain techniques were utilized to mitigate the impacts of DDoS attacks

on fog computing locations. One scheme calculates the average network bandwidth in each fog,

while the other calculates the average number of virtual machines in each fog. The primary goal

is to address Distributed Denial of Service (DDoS) attacks on various levels. This method makes

it possible to predict how DDoS attacks will affect fog computing environments. Therefore, this

section offers a comprehensive overview of the Markov chain concept and its significance in the

field of prediction.

A Markov chain can be defined as a mathematical system that takes transition from one state to

the next with certain probabilities [179]. It is a sequence of random variables with the condition of

moving towards the next variable totally depending on the present variable and not on the past

variable, and this is its distinguishing feature. Markov chains can be used to study the behavior of

systems or to make predictions about the behavior of applications or conditions. Markov chain is

included in a lot of applications and is used to predict the outcome of certain events and incidents.

The model of the Markov chain is used by many scientists and researchers, as well as in the fields

of engineering and computing. It definitely sheds light on the areas that require more discovery

and prediction [180].

3.4.1 Predictions with the use of Markov chain

There are different predictions that can be made with the help of Markov chain, like predicting the

arrival of customer lineups at airports, studying cruise control systems in motor vehicles,

forecasting the currency exchange rates and predicting the animal population dynamics. Markov

chain can be used in predicting price trends, like the price trends of the market and stock

67

exchanges. As we know, prices fluctuate from time to time, and Markov chain helps to determine

what the future prices can be. Markov chain is also usable in forecasting wind power [181].

Figure 3.8. Markov chain of Weather Forecast

Markov chain is also used in the weather forecast sector; refer to Figure 3.8, to predict the weather,

specifically, to understand what the weather is like in the future. The use of Markov chain is

also observed in predicting solar irradiance [182] whereby solar irradiance is predicted using the

Markov model. Clearly, there are different areas where the prediction usefulness and applicability

of the Markov model are demonstrated. In the aforementioned areas, the variables are consistently

changing, with the focus on the present variables. Furthermore, the number of variables is infinite,

which means that there is no end to the results, and the number keeps on changing. This makes the

application and the prediction capability of Markov chain broader in scope [183].

68

In all the aforementioned usage situations, Markov chain uses probabilistic forecasting, which

means that there is a probability of things happening. The method shows the different probabilities

during the occurrences, and in this way, the user or the researcher is able to come out with the

conclusion of whether an event will be happening, or not. The more predictive the nature of an

application or incident, the more this method is used to solve the problems and give insights [184].

3.5 Green Fog Computing

Green fog computing is a fundamental element of the proposed system, with one of its key goals

being to improve energy consumption. In order to accomplish this goal, through frequency

adjustments, Dynamic Voltage and Frequency Scaling (DVFS) is employed by the system as a

proficient method for mitigating the power usage of virtual machines (VMs). Given the

aforementioned context, this section provides in-depth explanations of both Dynamic Voltage and

Frequency Scaling (DVFS) and green fog computing, furnishing extensive background knowledge

on these two approaches.

Green fog computing seeks to ensure effective and dependable delivery of services while reducing

the energy usage and carbon footprint of fog computing infrastructure [185]. It uses a variety of

techniques, including the use of intelligent power management systems, resource allocation

optimization, the use of energy-efficient hardware, and the exploitation of renewable energy

sources. The goal is to formulate a fog computing strategy that effectively addresses the interplay

between environmental factors, performance considerations, and reliability issues. Green fog

computing is being actively explored due to a multitude of compelling factors. Primarily, there is

a strong emphasis on energy consumption in fog computing systems, seeking to minimize energy

usage with the implementation of resource management strategies and the utilization of energy-

69

efficient techniques [186]. Consequently, this results in a decrease in the environmental footprint

and a reduction in expenses.

Furthermore, fog computing encourages environmental sustainability by mitigating the carbon

footprint and ecological consequences. This can be achieved through the utilization of renewable

energy sources and implementing eco-friendly habits [187]. In addition, the implementation of

energy-efficient strategies in green fog computing contributes to the reduction of operating costs

and electricity expenditures [188]. By maximizing resource utilization and implementing efficient

hardware, it also enhances flexibility and dependability [189], thereby ensuring consistent and

efficient system operation. Finally, Green fog computing also shows a commitment to

sustainability, improves reputation, and satisfies society's desire for eco-friendly technology [190],

all of which are consistent with CSR (Corporate Social Responsibility) standards.

In more general terms, the concept of "green fog computing" encompasses the integration of

energy consumption, sustainability of the environment, decreased expenses, scalability, reliability,

and corporate social responsibility in order to enhance the performance of fog computing systems

while mitigating their ecological footprint.

Although green fog computing offers numerous advantages, it is important to acknowledge and

address its associated drawbacks. Initially, there may be a demand for hardware upgrades or

expenditures on energy-efficient infrastructure, both of which could entail substantial initial

expenditures. Moreover, it is common to encounter a trade-off between energy consumption and

system functionality, as any reduction in voltage or frequency may have an effect on the power

needed for processing. Due to the dynamic nature of resource management and distribution in

green fog computing environments, it can be challenging and requires advanced algorithms and

70

monitoring systems [191]. The process of incorporating older or previous systems can pose

difficulties, requiring modifications to ensure compatibility and potentially causing disruptions to

existing systems. In addition, the sustainability and reliability of the renewable energy sources

upon which green fog computing depends may face fluctuations. The absence of comprehensive

standardization exacerbates difficulties associated with the integration and communication

processes across various systems and suppliers. To properly evaluate the influence of these

drawbacks on desired outcomes and the overall performance of the system, it is essential to take

into account these restrictions during the implementation of green fog computing [192].

3.6 Utilizing Markov Chain Model to Predict DDoS Attack:

The impact of a distributed denial of service (DDoS) attack is estimated using two discrete Markov

models. The first model is employed to estimate the actual bandwidth that is available, and the

second model is employed to estimate the actual number of VMs that are present in fog computing

environments.

3.6.1 Predicting True Available Bandwidth with Regards to DDoS Attack

Due to issues like DDoS attacks, the majority of scheduling techniques simply take into account

the maximum bandwidth utilization. Meanwhile, several network bandwidth-affecting elements

should be taken into account when calculating the true available bandwidth in order to be more

realistic and practical.

By considering numerous issues that affect network bandwidth while calculating the true available

bandwidth, the system's viability can be improved. It is important to remember that the lack of an

average computed bandwidth might result in a greater reliance on bandwidth, which may lead to

improper selection of suitable virtual resources for workflow execution and consequent breaches

71

of Service Level Agreements (SLAs). Therefore, the proposed system takes into account how

Distributed Denial of Service (DDoS) attacks affect network capacity. To do this, the true available

bandwidth of brokers, clouds, and fogs is calculated using a discrete Markov chain model.

The model is illustrated in Figure 3.9. This method prevents the problem of overestimating the

accessible bandwidth for brokers, clouds, and fogs. The use of this method thus increases the

accuracy of the estimation of the workflow makespan.

Figure 3.9. Bandwidth Markov model for a fog computing environment.

In essence, the discrete Markov chain model considers three states. During the initial state, the "no

bandwidth" DDoS attack state is identified and given an assumed bandwidth of 100 mbps. Here,

the maximum bandwidth is presented. As for other states, each state suffers from DDoS attacks at

certain levels. Hence, in the state of DDoS level 1, there is a small decrease of 20% in the effective

network bandwidth, and in DDoS level 2, the network bandwidth is further decreased by 40%.

State 0

No DDos Attack
Bandwidth=100

0.5 0.5 0.5 0.34 0.33

0.3
3

0.5

Level 1
Bandwidth =80

Level 2
Bandwidth =60

State 1 State 2

72

Table 3.1. The transition table

In the proposed system, the average accessible bandwidth between fogs and brokers is calculated

utilizing Equation 3.9, whereby: 𝐹𝑜𝑔_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 denotes the average bandwidth of 𝑖𝑡ℎ

fog, while 𝐵𝑟𝑜𝑘𝑒𝑟_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑗 denotes the average bandwidth of 𝑗𝑡ℎ broker. The essential

data regarding the transition table, specifically the probabilities associated with the states, can be

found in the security logs of fog computing servers [193]. The security logs of fog computing

servers encompass the documentation of security-related activities and events occurring within the

fog computing environment, as indicated in Table 3.1. The logs serve as a valuable data source for

the purpose of monitoring and assessing security-related incidents, identifying potential risks or

vulnerabilities, and investigating any suspicious occurrences or breaches within the fog computing

architecture.

As indicated in Table 3.2, the solution to this Markov chain model can be obtained through a

systematic approach that entails iteratively computing the successive powers of the P matrix until

it converges, resulting in uniform rows across the matrix. The attainment of the state of

equilibrium, also known as the steady state, of the Markov system can be accomplished through

the resolution of this Markov model.

Probability of transition for state (0) 0.5 0.5 0.0

Probability of transition for state (1) 0.33 0.34 0.33

Probability of transition for state (2) 0.0 0.5 0.5

73

Table 3.2. Steady state transition

These average bandwidths are calculated through the solution of their bandwidth Markov model,

specifically through the solution of the bandwidth Markov model for each fog. In this study, the

average accessible bandwidth for a fog environment is calculated using Equation 3.10 and

Equation 3.11 as well, whereby: 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑘 denotes the bandwidth of kth state and it entails a

fraction of 𝐹𝑜𝑔_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑖 , signifying the maximum bandwidth of ith fog. In this equation, Pk

represents the probability of ith state of Markov model utilized in this study.

As a concrete example Figure 3.10 is the calculation of determining available bandwidth which

uses equation 3.10

Figure 3.10. Calculation of determining available bandwidth

In the initial state, as previously indicated, where no attack occurs (represented by 0 denoting no

attack on Bandwidth), we can multiply the available bandwidth, which is 100, by the values in the

first row of the saturated matrix P which is 0.28 (taken from Table 3.2). Subsequently, we repeat

the same process for the remaining states, which allows us to calculate the true available

bandwidth, in which in our case, the 100 mbps became 80 mbps.

0.28643597618464006 0.4310342976307201 0.28252972618464006

0.28643597618464006 0.4310342976307201 0.28252972618464006

0.28643597618464006 0.4310342976307201 0.28252972618464006

Calculating available Bandwidth = 0 + 100*0.28

= 28

 = 28 + 80 *0.43 = 62.4

 = 62.4 + 60*0.28

 =79.2 (80)

74

Through the resolution of bandwidth Markov model for each broker, the average accessible

bandwidth becomes computable for a broker through Equation 3.12 and Equation 3.13. In such

equations, bandwidthk is representative of the bandwidth of kth state and this bandwidth is part of

𝐵𝑟𝑜𝑘𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑖, which represents the largest bandwidth of ith broker node. In utilizing this

system, the tasks will be offloaded to cloud computing data centers when the resources of a given

fog environment are inadequate for running the tasks.

Equations 3.14 - 3.16 are used in the computation of the average available bandwidth between

clouds and fogs.In the applied equations, Fog_ave_bandwidthi represents the average bandwidth

of ith fog and Cloud_ave_bandwidthj signifies the average bandwidth of jth cloud environment.

Furthermore, bandwidthk signifies the bandwidth of kth state, while Pk encompasses the probability

of the ith state within steady state distribution.

Fog_Broker_BWij= 𝑚𝑖𝑛 (𝐹𝑜𝑔_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖, 𝐵𝑟𝑜𝑘𝑒𝑟_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑗) (3.9)

𝐹𝑜𝑔_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 = ∑ 𝑠𝑛

𝑘=1 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘 ∗ 𝑃𝑘 where ∑ 𝑠𝑛
𝑘=1 𝑃𝑘 = 1

 (3.10)

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘 = 𝑘𝑖 ∗ 𝐹𝑜𝑔_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖

 (3.11)

𝐵𝑟𝑜𝑘𝑒𝑟_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑗 = ∑ 𝑠𝑛
𝑘=1 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘 ∗ 𝑃𝑘 where ∑ 𝑠𝑛

𝑘=1 𝑃𝑘 = 1

 (3.12)

75

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘 = 𝑘𝑖 ∗ 𝐵𝑟𝑜𝑘𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖

 (3.13)

Fog_Cloud_BWij= 𝑚𝑖𝑛 (𝐹𝑜𝑔_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖, 𝐶𝑙𝑜𝑢𝑑_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑗) (3.14)

𝐶𝑙𝑜𝑢𝑑_𝑎𝑣𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 = ∑ 𝑠𝑛

𝑘=1 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘 ∗ 𝑃𝑘 where ∑ 𝑠𝑛
𝑘=1 𝑃𝑘 = 1

(3.15)

3.6.2 Predicting True Number of Available VMs with Regards to DDoS Attack

In this research, the use of scheduling algorithm is for the minimization of the number of VMs

allotted for the execution of each workflow in fog environments. In view of that, the available

scheduling systems generally presume the availability of all VMs for scheduling in fog computing,

but such presumption appears to be erroneous. Furthermore, the availability of VMs can fluctuate

when it comes to issues including DDoS attacks and VM malfunctions.

In this system, the effects of the aforesaid issues are addressed with the application of discrete

Markov chain model. As can be observed in Figure 3.11, each state denotes the attacks that a given

fog and the related amount of available VMs are facing. The Markov model shows that the states

each denote the acuteness of the attacks.

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑘 = 𝑘𝑖 ∗ 𝐶𝑙𝑜𝑢𝑑_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 (3.16)

76

Figure 3.11. VM Markov model for a fog computing environment

The utilized Markov models are resolved using a transition table, whereby the table denotes the

transition likelihood from one state to another state. The summation of each row in the transition

Tables should be 1 in general. For example, ∑ Pij = 1
n
j=1 means that the sum of ith row in matrix P

is 1. In the formation of the transition Table (probability of the states), the required data are

attainable from the security logs of fog computing servers, refer to Table 3.3.

 Table 3.3. The transition table

As shown in Table 3.4, we can solve this Markov chain model by performing a straightforward

procedure that involves calculating the P matrix's successive powers up until it reaches a point of

convergence at which point all of its rows are the same. We can achieve the equilibrium state,

sometimes referred to as the steady-state, of the Markov system by solving this Markov model.

Probability of transition for state (0) 0.5 0.5 0.0

Probability of transition for state (1) 0.33 0.34 0.33

Probability of transition for state (2) 0.0 0.5 0.5

No DDos Attack
No of VMs=30

0.5 0.5
0.5 0.34 0.33

0.3
3

0.5

Level 1
No.VMs=24

Level 2
No.VMs=18

State 0 State 1 State 2

77

 Table 3.4. Steady state transition table

Then, utilizing the following Equation 3.17, ave_VMi or the average available VMs in ith fog is

computed:

 Sn

ave_VMi = ∑ Nvmj ∗ Pj

 j=1

(3.17)

Here: Nvmi denotes the amount of accessible VMs in ith state, while Pi shows the likelihood of ith

state, achieved from the steady-state distribution.

As a concrete example Figure 3.12 is the calculation of determining number of available VMs

which uses equation 3.17

Figure 3.12. Calculation of determining the number of available VMs

0.28643597618464006 0.4310342976307201 0.2825297261846

4006

0.28643597618464006 0.4310342976307201 0.2825297261846

4006

0.28643597618464006 0.4310342976307201 0.2825297261846

4006

Calculating number of available VMs = 0 + 30*0.28

= 8.4

 = 8.4 + 28 *0.43 = 18.72

 = 18.72 +18 *0.28

 =23.70 (24)

78

In the initial state, as previously indicated, where no attack occurs (represented by 0 denoting no

attack on VMs), we can multiply the number of VMs, which is 30, by the values in the first row

of the saturated matrix P which is 0.28 (taken from Table 3.4). Subsequently, we repeat the same

process for the remaining states, which allows us to calculate the available VMs, in which in our

case, the 30 VMs became 24 VMs. The same procedure is carried out for a total of 300 VMs.

Notably, scheduling of workflow can be made effective through the resolution of Markov model

in the solutions encoding, as can be observed in Figure 3.13. In this regard, the VMs Markov

model for each fog needs to be resolved first.

Consequently, the average amount of VMs that these Markov models have accomplished should

be applied as the upper limit of each solution dimension.

Figure 3.13. Solving Markov model VMs

3.7 Abbreviations and Acronyms

The described workflow paradigm is presented in this section. Table 3.5, which lists the

abbreviations used in the subsequent portions of this research, is presented to improve

straightforwardness and simplify understanding.

𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑁𝑓𝑜𝑔
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐴𝑣𝑒_𝑉𝑀𝑖 𝑏𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑀𝑎𝑘𝑜𝑣 𝑚𝑜𝑑𝑒𝑙

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑓𝑜𝑔
𝑬𝒏𝒅

𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

𝑭𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑁𝑓𝑜𝑔
𝐹𝑜𝑔 𝑘 = 1 𝑡𝑜 𝑁𝑡𝑎𝑠𝑘𝑠

79

Table 3.5. Abbreviations and acronyms

 Abbreviation Description

𝑉𝑀𝑖 𝑖𝑡ℎ 𝑉𝑀

𝑁𝑣𝑚 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠

𝑊𝑖 𝑖𝑡ℎ workflow

𝑇𝑖 𝑖𝑡ℎ 𝑡𝑎𝑠𝑘

𝐹𝑇(𝑇i, 𝑉𝑀𝑗) 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑜𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑉𝑀

𝑎𝑣𝑎𝑖𝑙(𝑉𝑀𝑗) 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑗𝑡ℎ 𝑉𝑀 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑆𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗) 𝑇ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑇𝑖 𝑜𝑛 𝑡ℎ𝑒 𝑉𝑀𝑗

𝐴𝑣𝑒

 (𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖))

𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑇𝑖

𝐶𝑜𝑚_𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑇𝑗) 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑇𝑖 𝑎𝑛𝑑 𝑇𝑗

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑇𝑖) 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑇𝑖) 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖

𝐹_𝐷𝑉𝐹𝑆𝑖 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐𝑎𝑙𝑖𝑛𝑔

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑖 𝑖𝑡ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑖 𝑖𝑡ℎ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑆𝑙𝑎𝑐𝑘𝑇𝑖𝑚𝑒 𝑆𝑙𝑎𝑐𝑘 𝑇𝑖𝑚𝑒

𝐸𝑏𝑢𝑠𝑦 𝑇ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑉𝑀𝑠

𝐸𝐼𝑑𝑙𝑒 𝑇ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑑𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

The proposed system presumes the existence of four numbers of fog computing environments

signified as, Fog = {fog1, fog2, fog3 and fog4} whereby each fog carries a group of virtual

machines or VMs (30 VMs for 100 tasks and 300 VMs for 1000 tasks), signified by VMi={VMi1,

VMi2, VMi3, …}. Here, VMi signifies the VMs of fogi.

The virtual machines (VMs) have the capability to operate at various levels, denoted as 𝐹_𝐷𝑉𝐹𝑆 =

{ 𝐹_𝐷𝑉𝐹𝑆1, 𝐹_𝐷𝑉𝐹𝑆2, 𝐹_𝐷𝑉𝐹𝑆3, . . . }. Each 𝐹_𝐷𝑉𝐹𝑆𝑖 represents a specific configuration for the

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 and 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 of the fog processor, given as 𝐷𝑉𝐹𝑆𝑖 = (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑖, 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑖).

Additionally, supposed that 𝐹_𝐷𝑉𝐹𝑆𝑖 < 𝐹_𝐷𝑉𝐹𝑆𝑗, where 𝑖 < 𝑗. To be more precise, this means

that 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑖 < 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑗 and 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑖 < 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑗.

80

Furthermore, the proposed system utilizes a single broker and cloud. Moreover, the workflows

each carries certain tasks that are expressed as follows: Wi={T1, T2, T3, …}. The workflows are

each labelled as a DAG whereby the nodes each signifies a task, while the edges state the data or

control dependencies between the tasks. Here, Eij expresses the edge between Ti and Tj, when Ti ≠

Tj; it shows that the child tasks can be performed following the full execution of all its parent tasks,

and the delivery of their output data. On the other hand, control dependencies merely transport the

required parameters of configuration in the execution of the child task, and transport lesser amount

of data. Nonetheless, in the data dependencies, the transferred data are applied as input data to the

child process.

3.8 𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐕𝐨𝐥𝐭𝐚𝐠𝐞 𝐚𝐧𝐝 𝐅𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 𝐒𝐜𝐚𝐥𝐢𝐧𝐠 (𝐃𝐕𝐅𝐒)

To obtain the energy efficiency, the proposed system employs the 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑎𝑛𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 (𝐷𝑉𝐹𝑆) approach. DVFS is typically used to lower the operational

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 of systems during workflow execution in order to reduce energy usage

[194]. This approach has the potential to be employed throughout a range of computing platforms,

encompassing data centers utilized for cloud computing as well as smartphones and tablets.

Nevertheless, lowering the 𝐶𝑃𝑈′𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 might also result in a slowdown in

processing speed, potentially leading to an inadvertent failure to meet 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠.

Because of this, the main goal of scheduling systems that employ 𝐷𝑉𝐹𝑆 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒s is to

determine the VMs' lowest necessary operational frequency while still guaranteeing that the

workflow timely completion is reached.

81

(a)

(b)

𝐹𝑖𝑔𝑢𝑟𝑒 3.14. 𝑆𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒

The effects of employing various frequencies in 𝐷𝑉𝐹𝑆 − 𝑏𝑎𝑠𝑒𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 are depicted in

Figure 3.14. A faster completion of the task is achieved when a ℎ𝑖𝑔ℎ𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is used. In

contrast, using a lower frequency extends the time a task is executed. The 𝑠𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒 available

for 𝐷𝑉𝐹𝑆 − 𝑏𝑎𝑠𝑒𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 is depicted in Figure 3.14.a and is determined through the

utilization of Equation 3.18. The 𝑠𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒 refers to the duration between the 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 of a

task (𝑇𝑎𝑠𝑘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑖) and the completion time of the task (𝑇𝑎𝑠𝑘𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒_𝑖 (𝐹𝑚𝑎𝑥)),

during which the processor is functioning at its highest achievable 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦.

SlackTime = 𝑇𝑎𝑠𝑘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒i - 𝑇𝑎𝑠𝑘𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒i (𝐹max) (3.18)

Task 1

Frequency

Time

Task Finish Time Task Deadline

Slack Time

Task 1

Task Deadline

Time

Frequency

82

The scheduling of various workflow elements on the fog computing system is depicted in Figure

3.15. These components are in charge of gathering data. The Figure illustrates that the execution

of 𝑇6 should be preceded by the completion of 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑎𝑛𝑑 𝑇5.

Figure 3.15. 𝐴 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑑𝑎𝑡𝑎 𝑔𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔 𝑝𝑙𝑎𝑐𝑒

In specific cases, the durations and characteristics of 𝑇1 𝑡𝑜 𝑇5 may exhibit variation. As

illustrated in Figure 3.16, 𝑇𝑎𝑠𝑘 1 exhibits a longer completion time in comparison to the

remaining tasks. As a result, the virtual machines (VMs) 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑇2 𝑡𝑜 𝑇5 will remain

inactive once they have completed their designated tasks. Through the implementation of the

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 (𝐷𝑉𝐹𝑆) technique, it becomes possible to effectively

lower the 𝐶𝑃𝑈 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑉𝑀1 𝑡𝑜 𝑉𝑀5. Consequently, this action leads to a reduction in their

execution speed and 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 . This modification is implemented while

ensuring adherence to the deadline established by 𝑇1. The user possesses the right to choose the

T1 T2 T3 T4 T5

T6

83

deadlines, or alternatively, they can be ascertained by the scheduling system. The primary goal

of scheduling based on 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 (𝐷𝑉𝐹𝑆) is to ascertain the

lowest attainable frequency for each task, thereby guaranteeing the fulfillment of their respective

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠. The proposed method aims to reduce 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 during the

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑛𝑑 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠.

Figure 3.16. 𝐴 𝑔𝑎𝑛𝑡𝑡 𝑐ℎ𝑎𝑟𝑡 𝑑𝑒𝑝𝑖𝑐𝑡𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤.

This method states that power consumption is made up of both 𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑛𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 components.

In particular, we focus on 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 usage in our scheduling strategy because it is more

𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑜𝑠𝑡𝑙𝑦, while ignoring 𝑠𝑡𝑎𝑡𝑖𝑐 energy consumption.

Energy = 𝐸𝑛𝑒𝑟𝑔𝑦static + 𝐸𝑛𝑒𝑟𝑔𝑦dynamic

(3.19)

The dynamic power consumption, indicated as 𝑃𝑜𝑤𝑒𝑟𝑑𝑦𝑛𝑎𝑚𝑖𝑐, is calculated using the formula

below.

1

Time

Frequency

T1

T4

T3

T2

T5 T6

VM1

VM2

VM3

VM4

VM5

2 3 4 12 8

84

 𝑃𝑜𝑤𝑒𝑟dynamic = 𝐾. 𝑣2JS .𝑓 (3.20)

Whereas 𝐾 represents the device capacity constant, 𝑣2 represents the

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡ℎ 𝑙𝑒𝑣𝑒𝑙 𝑎𝑛𝑑 𝑗𝑡ℎ 𝑉𝑀, and 𝑓 indicates the 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 of the 𝑗𝑡ℎ 𝑉𝑀. The

energy consumption of the virtual machines (VMs) can be determined by utilizing the provided

equation in the following:

𝐸𝑏𝑢𝑠𝑦 =∑𝐾 ∗ 𝑣𝑗𝑠
2 ∗ 𝑓𝑗𝑠 ∗ 𝐸𝑇𝑖𝑗 =∑𝑃𝑜𝑤𝑒𝑟𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑖 ∗ 𝐸𝑇𝑖𝑗

𝑛

𝑗=1

𝑛

𝑗=1

(3.21)

𝑣𝑗𝑠 represents the usage of the 𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 on the 𝑗𝑡ℎ 𝑉𝑀 at the 𝑠𝑡ℎ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑙𝑒𝑣𝑒𝑙, whereas

𝐸𝑇𝑖𝑗 represents the execution time of the 𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 on the 𝑗𝑡ℎ 𝑉𝑀. Furthermore, 𝑓𝑗𝑠

signifies the processor 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 in the 𝑗𝑡ℎ 𝑉𝑀 at the 𝑠𝑡ℎ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 . Furthermore,

during 𝑉𝑀 𝑖𝑑𝑙𝑒 periods, the 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 is lowered to the lowest possible level to maximize

energy savings. During these idle moments, the following definitions apply to all available

𝐶𝑃𝑈𝑠′ energy consumption:

𝐸𝑖𝑑𝑙𝑒 =∑𝑘 ∗ 𝑣𝑗𝑚𝑖𝑛
2 ∗ 𝑓𝑗𝑚𝑖𝑛 ∗ 𝐼𝑇𝑗 =∑𝑃𝑜𝑤𝑒𝑟𝑖𝑑𝑙𝑒 ∗ 𝐼𝑇𝑗

𝑝

𝑗=1

𝑝

𝑗=1

(3.22)

Where 𝑣𝑗𝑚𝑖𝑛 and 𝑓𝑗𝑚𝑖𝑛 denote the 𝑗𝑡ℎ 𝑉𝑀′𝑠 minimum 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ,

respectively, and 𝐼𝑇𝑗 denotes the 𝑗𝑡ℎ 𝑉𝑀′𝑠 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒. The entire energy usage for 𝐷𝐴𝐺

scheduling in a fog computing system can be computed using the preceding equations:

 𝐸total = 𝐸Busy + 𝐸Idle (3.23)

85

3.9 Ranking Workflow Tasks

To prioritize tasks, the proposed system employs the Heterogeneous Earliest Finish Time (HEFT)

algorithm. The HEFT algorithm is employed to assign priority to the tasks by considering their

anticipated earliest completion times, as well as taking into account task interdependencies and

communication expenses. In the subsequent section, an examination will be conducted of the

equations employed by the HEFT algorithm for the purpose of task ranking or prioritization.

Equation 3.24 shown below denotes the manner in which the rank is to be calculated for each task

of workflow.

Rank(Ti)=Ave (Exection_Time(Ti)) + {max(Com_Time(Ti, Tj) + Rank(Ti))|Tj ∈

Successor(Ti)}

 (3.24)

Where 𝑇𝑖 is the 𝑖𝑡ℎ task in the workflow, and 𝐴𝑣𝑒(𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖)) denotes the ith task's

average performance cost. Furthermore, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑇𝑖) represents Ti's successor tasks, and

𝐶𝑜𝑚_𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑇𝑗) represents the cost of communication between 𝑇𝑖 𝑎𝑛𝑑 𝑇𝑗. Tasks are assigned

to 𝑉𝑀𝑠 after their priority has been determined. The ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 work, comprising the

execution of all its parent tasks, is scheduled on 𝑉𝑀, resulting in the shortest completion time. As

a result, the computation of the set of all direct predecessors of each workflow task is as follows:

In terms of entry task or tasks, it is important that their predecessor set is empty, as follows:

Predecessor (T entry) = {}.

Predecessor(Ti) = { Tj | (Tj,Ti) ∈ E} (3.25)

86

Accordingly, for each task, the set of all direct successors is computable as follows:

Successor(Ti)= { Tj | (Ti,Tj) ∈ E} (3.26)

For exit task or tasks, their successor set will be empty as follows: 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 (𝑇𝑒𝑥𝑖𝑡) = {}.

To calculate 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_(𝑇𝑖, 𝐹_𝐷𝑉𝐹𝑆𝑘), or the length of 𝑇𝑖′𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 at the

𝑘𝑡ℎ 𝐷𝑉𝐹𝑆 (Dynamic Voltage and Frequency Scaling) 𝑙𝑒𝑣𝑒𝑙, we can use Equation 3.27.

(𝑗, 𝐹_𝐷𝑉𝐹𝑆𝑘) reflects the performance of the 𝑗𝑡ℎ virtual machine using the

𝐷𝑉𝐹𝑆 𝑘𝑡ℎ 𝑙𝑒𝑣𝑒𝑙, and 𝑇𝑎𝑠𝑘_(𝑇𝑖) specifies the task duration in millions of instructions

processed per second. Furthermore, the following formula will be used to calculate the

average execution duration of the task 𝑇𝑖 on the 𝑗𝑡ℎ virtual machine:

Where 𝑁𝑑𝑣𝑓𝑠 is the total number of 𝐷𝑉𝐹𝑆 𝑙𝑒𝑣𝑒𝑙𝑠 available in the virtual machine.

Furthermore, the average time it takes to complete task 𝑇𝑖 across all virtual machines

can be calculated as follows:

Equation 3.30 is used in the computation of the earliest start time of each task. From the equation:

𝑎𝑣𝑎𝑖𝑙(𝑉𝑀𝑗) represents the time which jth VM is accessible for the execution of the requested task.

Furthermore, for each task, the finish time is computable using Equation 3.31. Here, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑤𝑖

signifies the deadline of wi workflow. Relevantly, the time of communication of data transfer

𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖, 𝐹 − 𝐷𝑉𝐹𝑆𝐾 =
𝑇𝑎𝑠𝑘_𝑙𝑒𝑛(𝑇𝑖)

𝑉𝑀(𝑗,𝐹−𝐷𝑉𝐹𝑆𝐾)
 (3.27)

𝐴𝑣𝑒(𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖)) =
1

𝑁𝑑𝑣𝑓𝑠
∑ 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖, 𝐹 − 𝐷𝑉𝐹𝑆𝐾)

𝑁𝑑𝑣𝑓𝑠

𝑗=1

(3.28)

𝐴𝑣𝑒(𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖)) =
1

𝑁𝑣𝑚
∑ 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗)

𝑁𝑣𝑚

𝑗=1

(3.29)

87

between Ti and Tj is computable following Equation 3.32. Here, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑉𝑀(𝑇𝑖), 𝑉𝑀(𝑇𝑗))

comprises the bandwidth between two VMs which that are to perform Ti and Tj tasks. Meanwhile,

Data(Ti, Tj) signifies the amount of data transferrable between these tasks. The storage of

maximum accessible bandwidth among various VMs of the first fog computing environment

usually needs a Table, in addition to the consideration of comparable data structure to enable

storage of VMs bandwidth in other fogs.

𝐸𝑆𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗)

= {

0 𝐼𝑓 𝑇1 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑡𝑟𝑦 𝑡𝑎𝑠𝑘

max {𝑎𝑣𝑎𝑖𝑙(𝑉𝑀𝑗),max{𝐹𝑇(𝑇𝑗) + 𝐶𝑜𝑚_𝑇𝑖𝑚𝑒(𝑇𝑗, 𝑇𝑖)} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑇𝑗 ∈ 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑇𝑖)

(3.30)

𝐹𝑇(𝑇𝑖, 𝑉𝑀𝑗) = {

 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑤𝑖) 𝑖𝑓 𝑇𝑖 𝑖𝑠 𝑎𝑛 𝑒𝑥𝑖𝑡 𝑡𝑎𝑠𝑘

𝐸𝑆𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗) + 𝐴𝑣𝑒(𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒(𝑇𝑖)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.31)

𝐶𝑜𝑚_𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑇𝑗) =

{

 0 𝐼𝐹 𝑉𝑀(𝑇𝑖) = 𝑉𝑀(𝑇𝑗)

𝐷𝑎𝑡𝑎(𝑇𝑖, 𝑇𝑗)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑉𝑀(𝑇𝑖), 𝑉𝑀(𝑇𝑗))
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.32)

88

3.10 Measure the Percentage of Exploration and Exploitation

Exploration and exploitation capabilities are built into metaheuristic algorithms. In this section,

we look at the mathematical equations that are utilized to quantify and evaluate the level of

exploration and exploitation displayed by the algorithms. We may derive a quantitative estimate

of the algorithm's exploration and exploitation properties by using these equations.

The dimension-wise diversity measurement is used to quantify the extent of exploitation and

exploration of the algorithms used. Furthermore, in equation 3.33, the median was utilized instead

of the mean since it more accurately depicts the population's center.

Divj =
1

n
∑meadian

n

i=1

(xj) − xi
j
;

Div =
1

D
∑Divj

D

j=1

(3.33)

Where median (xj) is the population-wide 𝑚𝑒𝑑𝑖𝑎𝑛 of dimension 𝑗. The dimension 𝑗 of the

individual 𝑖 is represented by xi
j
, where n indicates the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 and 𝐷 represents the

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛. The average distance between each search agent's 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑗 and that dimension's

𝑚𝑒𝑑𝑖𝑎𝑛 can be used to calculate the diversity in each 𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝐷𝑖𝑣_𝑗. The average diversity

across all dimensions is then determined in 𝐷𝑖𝑣. The exploration and exploitation percentage of

an algorithm can be calculated by averaging the equation 3.34:

 XPL% = (
Div

Divmax
) ∗ 100

 XPT% = (
|Div − Divmax|

Divmax
) ∗ 100

(3.34)

89

Where 𝐷𝑖𝑣_𝑚𝑎𝑥 is the maximum diversity value obtained throughout the optimization procedure.

The degrees of 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 are represented by 𝑋𝑃𝐿% and 𝑋𝑃𝑇%,

respectively.

3.11 Selected Algorithms for Comparison

This section discusses two of the most recent sophisticated hybrid algorithms, 𝑃𝐺𝐴 𝑎𝑛𝑑 𝑃𝑆𝑂 −

𝐺𝑊𝑂, as well as the well-known and innovative scheduling algorithms

𝑀𝑂𝑊𝑂 𝑎𝑛𝑑 𝐻𝑦𝑏𝑟𝑖𝑑 𝐸𝐷𝐹. These algorithms will be compared to the proposed algorithm in

Chapter 5. To allow for meaningful comparison, we provide a thorough explanation of how these

algorithms work.

3.11.1 Hybrid Optimization Algorithms

1. PGA (Particle Genetic Algorithm):

𝑃𝐺𝐴 is a new sophisticated hybrid heuristic method for task scheduling that is built on the notions

of a 𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐺𝐴) 𝑎𝑛𝑑 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑤𝑎𝑟𝑚 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑃𝑆𝑂). The PGA [195]

technique blends the concepts of self-cognition and social cognition from Particle Swarm

Optimization into the Genetic Algorithm.

The 𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐺𝐴) is a well-known stochastic algorithm that was one of the first to

offer population-based techniques. It has contributed significantly to the advancement of many

optimization strategies. 𝐴 𝐺𝐴′𝑠 major components are selection, crossover, and mutation. Because

of its pioneering nature and influence on later algorithms, 𝐺𝐴 is often referred to as the "mother of

algorithms." An encoding/decoding approach is necessary to establish the mapping between

chromosomes and scheduling solutions in order to use 𝐺𝐴.

90

The PGA employs the following encoding/decoding schemes. Individuals and chromosomes are

treated as distinct entities in 𝑃𝑆𝑂, but not in 𝐺𝐴. Individuals have a single chromosome that can

be modified through population evolutions, whereas chromosomes play a role comparable to

locations in 𝑃𝑆𝑂. The 𝑃𝐺𝐴 populates a population with multiple individuals based on the

encoding/decoding processes. Every individual's chromosome gene value is set at random between

1 and the core number. Furthermore, each individual's fitness is assessed. The 𝑃𝐺𝐴 tracks each

individual's personal best chromosome and determines the chromosome with the best fitness as

the global best chromosome.

The 𝑃𝐺𝐴 iteratively develops the population using crossover, mutation, and selection operators

during the evolution process. The 𝑃𝐺𝐴 applies the crossover operator to each individual three

times in each evolution, with a probability known as the crossover probability. This operation

entails crossing an individual's chromosome with the chromosomes of another individual, resulting

in the individual's personal best chromosome and global best chromosome, respectively. Each

crossover process produces two children, culminating in the formation of six new 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠

for each original chromosome. Each new 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒′𝑠 fitness is assessed, and if it improves,

the personal best 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 and the global best 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 are updated.

Furthermore, the 𝑃𝐺𝐴 applies the mutation operator to each individual's genome with a probability

known as the mutation probability. This operator has the ability to create a new chromosome. The

new 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒′𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is assessed, and if it outperforms the individual's prior best fitness,

the personal and global best chromosomes are updated appropriately.

The 𝑃𝐺𝐴 uses the selection operator at the end of each evolution to select a chromosome for each

individual to advance to the next round. The present chromosome, the six new chromosomes

created by the crossover operator, and the new chromosome produced by the mutation operator

91

are all included in the selection pool. After the evolution phase is complete, the 𝑃𝐺𝐴 decodes the

task scheduling solution using the global best chromosome. The algorithm's 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

is the maximum number of evolution generations.

2. PSO-GWO (Particle Swarm Optimization and Grey Wolf Optimization):

𝑃𝑆𝑂 − 𝐺𝑊𝑂 is a hybrid meta-heuristic algorithm [196] that combines 𝑃𝑆𝑂 and Grey Wolf

Optimization (𝐺𝑊𝑂) features. 𝐺𝑊𝑂 is a meta-heuristic algorithm that 𝑚𝑖𝑚𝑖𝑐𝑠 the natural

leadership structure and hunting mechanisms of 𝑔𝑟𝑒𝑦 𝑤𝑜𝑙𝑣𝑒𝑠. It effectively solves optimization

problems by utilizing the traits identified in grey wolf packs. 𝐺𝑟𝑒𝑦 𝑤𝑜𝑙𝑣𝑒𝑠 are incredible apex

predators that live at the top of the 𝑓𝑜𝑜𝑑 𝑐ℎ𝑎𝑖𝑛. They prefer to live in groups known as packs,

which usually consist of 5 𝑡𝑜 12 individuals. These packs are not just random groups of wolves;

they operate within a highly organized social system. As seen in the accompanying figure, each

member of the pack follows a tight social dominance structure. This hierarchy guarantees group

order and collaboration, with an alpha pair typically adopting the highest rank and leading the

pack. 𝐺𝑟𝑒𝑦 𝑤𝑜𝑙𝑣𝑒𝑠 have established themselves as major players in their ecosystems due to their

exceptional social dynamics and predatory capability.

The suggested approach addresses challenges related to local optima by incorporating 𝑃𝑆𝑂 −

𝐺𝑊𝑂 hybridization. Furthermore, the algorithm focuses on task scheduling in a variety of

computing contexts, including cloud, fog, and mobile computing. The algorithm's performance is

evaluated by minimizing the 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑇𝐸𝑇) and 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (𝑇𝐸𝐶)

associated with scheduling operations. The suggested approach starts with a population of

randomly produced particles, each of which represents a possible solution to the workflow

problems. The 𝑃𝑆𝑂 algorithm is run for half of the total number of iterations (𝑛/2), where n is the

total number of iterations. The best result from these 𝑃𝑆𝑂 repetitions is then used as the

92

𝐺𝑊𝑂 algorithm's leader whale.

The 𝐺𝑊𝑂 technique is used to conduct the remaining iterations (𝑛/2 + 1 𝑡𝑜 𝑛) utilizing this

initialized leader whale. The 𝐺𝑊𝑂 algorithm results serve as the final outcome of the suggested

algorithm. The number of iterations conducted in the algorithm determines the correctness of the

findings. Each repetition enhances the results and brings them closer to the ideal answer.

3.11.2 Emerging Cutting Edge Optimization Algorithms

1. MOWO (Multi-Objective Workflow Optimization):

MOWO is an advanced and cutting-edge algorithm specifically developed for the purpose of

efficiently managing workflow scheduling in the context of fog computing [197]. This particular

development is notable as an innovative method within the field, providing cutting-edge

functionalities for the optimization of workflow scheduling. MOWO investigates the possible

benefits of Fog computing in the context of workflow management. It presents a novel model that

integrates Cloud and Fog resources, with a specific focus on virtual machines, in order to improve

scheduling efficiency.

It is based on the 𝑁𝑆𝐺𝐴 − 𝐼𝐼 algorithm, exhibits extraordinary success in handling workflow

scheduling challenges because to its novel methodology. Because of its uniqueness and great

performance, it is a top choice for optimizing workflow scheduling in fog computing

environments. MOWO ranks tasks in the workflow using the HEFT algorithm. The evaluation of

each task is conducted by considering its computation and communication costs, which are

determined by factors such as its execution time and data transfer specifications. A task is allocated

a rank that indicates its priority for scheduling. The algorithm subsequently employs 𝑁𝑜𝑛 −

𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑆𝑜𝑟𝑡𝑖𝑛𝑔 Genetic Algorithm 𝐼𝐼 (𝑁𝑆𝐺𝐴 − 𝐼𝐼) to perform task scheduling.

93

In order to maintain solutions of superior quality, 𝑁𝑆𝐺𝐴 − 𝐼𝐼 integrates elitism and diversity

preservation methods. The task scheduling problem is formulated by incorporating objectives such

as reducing time, optimizing resource utilization, and minimizing communication expenses. The

𝑁𝑆𝐺𝐴 − 𝐼𝐼 algorithm employs a process of iterative 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, and 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

operations to explore the search space and identify a collection of solutions that are 𝑃𝑎𝑟𝑒𝑡𝑜 −

𝑜𝑝𝑡𝑖𝑚𝑎𝑙. This set can be utilized by decision-makers to identify task scheduling alternatives that

align with their preferences and requirements.

2. Hybrid-Earliest Deadline First (Hybrid-EDF):

The Hybrid-EDF algorithm is a sophisticated and advanced approach [198] specifically designed

for the efficient scheduling of various real-time IoT workflows within 𝑎 𝑡ℎ𝑟𝑒𝑒 −

𝑡𝑖𝑒𝑟𝑒𝑑 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒. The proposed approach signifies a significant deviation from traditional

techniques as it effectively allocates computational tasks by taking into account their

communication needs within the cloud and fog layers. In contrast to traditional approaches that

predominantly handle Internet of Things (IoT) tasks within the fog layer, the Hybrid-EDF

scheduling technique endeavors to allocate computationally intensive tasks with minimal

communication requirements to the cloud, while communication-intensive tasks requiring low

computation needs are assigned to the fog layer. It leverages any existing gaps in the scheduling

of 𝑓𝑜𝑔 𝑎𝑛𝑑 𝑐𝑙𝑜𝑢𝑑 𝑉𝑀𝑠. Furthermore, the algorithm takes into consideration the communication

expenses linked to the transmission of data from Internet of Things (IoT) devices and 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 in

the IoT layer to the fog layer during the scheduling procedure.

The escalating magnitude, diversity, and speed at which Internet of Things (IoT) data is being

generated require enhanced computational capabilities for immediate processing, surpassing the

usual resources available in a fog computing environment. On the other hand, the cloud provides

94

nearly boundless computational resources; however, it does result in increased communication

latency and monetary expenses. Therefore, it is imperative to allocate the workload of Internet of

Things (IoT) data to resources in both the fog and cloud layers, taking into account the technical

and communication attributes of each task. Efficient and adaptable scheduling algorithms that are

capable of considering fog and cloud locations, such as Hybrid-EDF, play a crucial role in

managing the allocation of tasks, particularly in time-sensitive scenarios such as traffic

management systems.

The prioritization of tasks is determined by their respective task deadlines, with tasks possessing

earlier deadlines being assigned greater priority. The prioritization strategy employed adheres to

the principle of Earliest Deadline First (EDF) policy. In scenarios where there are multiple tasks

that are prepared and possess equal priority, the task with the greatest average computational cost

is selected as the foremost priority.

3.12 Summary

This chapter discusses a wide range of optimization approaches and algorithms in a general

context. The initial phase involves the necessary prior knowledge of optimization, emphasizing its

importance in solving a wide range of problems.

The HEFT algorithm is characterized as a heuristic approach, specifically recognized as a problem-

specific approach, and is used to schedule a group of interconnected tasks across many virtual

machines (VMs). The HEFT algorithm considers communication length a crucial aspect of the

scheduling process. Following that, the chapter looks into metaheuristic algorithms, notably

Particle Swarm Optimization (PSO) and Salp Swarm Optimization (SSA). These algorithms

provide efficient and flexible search strategies for solving difficult optimization problems. The

95

chapter then discusses the use of Markov chains in fog computing environments for predicting the

severity of Distributed Denial of Service (DDoS) attacks on fog's VMs and bandwidth. To evaluate

the probable effects of DDoS attacks on fog resources, Markov chains provide a probabilistic

modeling methodology. The Markov model provides insights into potential vulnerabilities and aids

in the development of effective responses by evaluating previous attack patterns and system

behavior.

The importance of green fog computing in improving energy efficiency is also presented in the

chapter. The utilization of Dynamic Voltage and Frequency Scaling (DVFS) is a fundamental

approach used to attain this objective. DVFS is a technique for lowering processor power

consumption by altering their frequency. This section explains green fog computing and DVFS in

detail, including deep explanations and insights into both concepts. In general, the system intends

to effectively leverage DVFS and green fog computing to improve energy efficiency.

Moreover, the chapter offers a comprehensive explanation of the prioritization of workflow Ttasks

through the utilization of the HEFT method. This discussion highlights the significance of the

HEFT method in the domain of task scheduling. Its capability to reduce makespan, which enhances

overall operational efficiency, is underscored.

Finally, this section provides a full explanation of the operation and underlying mathematical

models of two of the most recent advanced hybrid algorithms, PGA and PSO-GWO, as well as

two emerging cutting-edge algorithms, MOWO and Hybrid. These algorithms serve as comparison

points with the proposed method, and a thorough description of their operation and mathematical

foundations is presented.

In summary, this chapter explores various optimization approaches and algorithms, emphasizing

their importance in solving various problems. It discusses the HEFT algorithm, a heuristic

96

approach for scheduling interconnected tasks across virtual machines, and metaheuristic

algorithms like Particle Swarm Optimization (PSO) and Salp Swarm Optimization (SSA). It also

discusses the use of Markov chains in fog computing environments to predict DDoS attacks'

severity and develop effective responses. The chapter also highlights the importance of green fog

computing for improving energy efficiency, utilizing Dynamic Voltage and Frequency Scaling

(DVFS) to lower processor power consumption. The chapter also discusses the prioritization of

workflow tasks using the HEFT method, highlighting its ability to reduce makespan and enhance

overall operational efficiency. The chapter also provides a detailed explanation of the operation

and mathematical models of advanced hybrid algorithms, such as PGA and PSO-GWO, and

emerging algorithms like MOWO and Hybrid.

97

4 Chapter 4: Methodology

This chapter defines the study approach, including step-by-step processes, system architecture, and

mathematical specifications as well. It is intended to fulfill the objectives mentioned in Chapter 1.

Therefore, research objective one and other objectives are accomplished in sections 4.3 and 4.4,

respectively.

4.1 System Architecture

This section introduces the proposed workflow scheduling algorithm, specifically designed for

multi-fog environments. Figure 4.1 illustrates the architecture of the suggested system. On the left-

hand side, there exist IoT networks comprising a variety of home appliances and user devices.

Each of these IoT networks is assisted by a broker node that holds the resource details of fog

computing environments.

The broker acts as a central hub or intermediary that facilitates communication and data exchange

between IoT devices and the fog computing environments. The system operates under the

assumption that there are four fogs, each having a data repository and a unique set of virtual

resources. Depending on the number of tasks allocated, each fog computing environment contains

a different number of virtual machines (VMs). For instance, 30 VMs are used in the case of a

scenario with 100 tasks. However, the number of VMs rises to 300 if there are 1000 tasks. As a

result, VM allocation in fog computing environments exhibits heterogeneity based on the demands

of the specific workload. Each fog is responsible for executing the tasks delivered to it, and when

it does not have the required resources to run the tasks, it submits them to cloud computing.

98

Moreover, a single cloud computing environment is used to receive offloaded tasks. Usually, cloud

environments operate large-scale data centers that offer high computational power and storage

capacity. Cloud computing excels at handling massive workloads, complex data processing tasks,

and applications that require substantial resources. Through this configuration, it is connected to

all four fogs computing environments; a dedicated connection is created between the fog nodes

and the cloud, allowing for easy resource sharing and communication. When the fogs are unable

to process a specific task, they usually offload it to the cloud to be processed.

Figure 4.1. Proposed Fog Computing Architecture

99

4.2 System Processes

The broker is the first node to receive the IoT tasks; it has multiple responsibilities; for example,

it uses two discrete Markov chain models to predict the true available bandwidth and the true

number of available virtual machines. Then it uses the HEFT algorithm to rank the workflow tasks

and uses DVFS, as fulfillment of research objective three (RO3) mentioned in Chapter 1, to

consider the energy consumption of the tasks, as shown in figure 4.2. The DVFS technique is

employed to decrease the energy consumption of processors during task execution by reducing

their operational frequency and voltage. Higher frequency reduces task execution time, resulting

in faster completion, while lower frequency extends task execution duration. So, the idea is to

lower the frequency of those virtual machines that are in the waiting state, and thus the energy will

be consumed less.

Finally, it utilizes the proposed hybrid algorithm (SSPSO) to schedule and distribute the workflow

tasks among the fog environments. Therefore, the tasks will be then handed to the fogs, and each

fog will process the tasks accordingly. As mentioned earlier, if a specific task is not possible to be

addressed by the assigned fog, it will be forwarded to the cloud environment, where the cloud

server is responsible for processing it; otherwise, it will be considered a missed deadline workflow.

100

Figure 4.2. The process of the proposed workflow scheduling system

Internet of Things

Workflow

Tasks

HEFT

For task
Prioritization

DVFS

For Energy

Consumption

MARKOV CHAIN

Predict available Virtual Machines

Hybrid Algorithm (SSPSO)

B
ro

ke
r

Fog 3 Fog 1 Fog 2 Fog 4

Fo
gs

To process the

offloaded tasks

C
lo

u
d

Deadline missed

workflow

MARKOV CHAIN

Predict available bandwidth

To process the tasks

To consider the DDoS attack on

Bandwidth

To consider the DDoS attack on VMs

To schedule the workflow

tasks

101

4.3 The Proposed Hybrid Optimization Algorithm

This section is intended to address research objective (RO1) mentioned in Chapter 1.

SSA algorithm and PSO algorithm each utilize different methods in problem space searching. Each

also has different capacities. Both algorithms are thus combined in order to gain the advantages of

both, resulting in a hybrid optimization algorithm with better performance and effectiveness. The

operation of the algorithm is such that a random solution is first generated, followed by the division

of the population between SSA and PSO algorithms. The size of each population can vary

according to the improvements that each algorithm has attained. Accordingly, the flowchart of

hybrid optimization thesisalgorithm proposed in the present study can be viewed in figure 4.3.

102

Figure 4.3. Flowchart of the SSPSO hybrid optimization algorithm

Send the best solution to SSA from PSO

Send the best solution to PSO from SSA

Send the best solution to SSA from PSO

Send the random solution to PSO from SSA

Send the best solution to SSA from PSO

Send a solution selected by roulette wheel to

PSO from SSA

Conditionally select

exchange method

Start

Initialize Population

Max_ iteration is

reached
Output the best solution End

Combine the two subpopulations

If round % 7=0

Divide the population into two

subpopulations

Yes

No

Divide the population into two

subpopulations

Divide the population into two

subpopulations

103

The proposed hybrid algorithm requires that the population be combined and divided in each seven

rounds, in order that the population division overhead can be decreased. Each algorithm then

operates on its own subpopulation.

In this regard, utilizing its own solutions, each algorithm performs the problem space search.

Following the execution of each algorithm in a given round, PSO algorithm transmits its finest

solution to SSA algorithm. If the solution provided by PSO is superior to that by SSA, then it is

made the leader solution, or the solution will be disregarded. Also, utilizing the Rolette wheel,

SSA becomes able to deliver the finest solution, a randomly selected solution, or a solution singled

out to PSO algorithm. Such exchange leads to the achievement of the best results. In addition, a

procedure of population division has been proposed in order to enable the provision of various

populations for SSA and PSO (see Figure 4.4). For this purpose, two dividing methods known as

the method of low overhead are used.

The first method involves the random division of the population solutions, and the second one

involves the division of the solutions with the roulette wheel method. In the application of this

procedure, an equivalent amount of solutions is first assigned for both SSA and PSO algorithms.

This is followed by the gathering and usage of certain statistics on the outcomes of the algorithm

in the division of the population following the accomplishments of each algorithm. In this regard,

the algorithm with better results achieves more solutions.

104

Figure 4.4. Dividing the population between SSA and PSO algorithms

4.4 Fitness Function

This section is intended to fulfill the research objectives two (RO2) and three (RO3) mentioned in

Chapter 1. Equation 4.1 shows the applied fitness function in the proposed fog scheduling system.

Here, α, β define the significance of each objective, with the value of 1 as their required sum.

Accordingly, Equation 4.2 can be used in the computation of the makespan of wi workflow,

whereby: 𝑁𝑙𝑒𝑣𝑒𝑙𝑖 denotes the amount of levels of ith workflow acquiesced to the broker, while

inputdelayj defines the submission delay of input data of jth level of the workflow, to the fog

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛()
𝑰𝒏𝒑𝒖𝒕: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐷𝑖𝑣𝑖𝑠𝑖𝑡𝑖𝑜𝑛_𝑡𝑦𝑝𝑒
𝑶𝒖𝒕𝒑𝒖𝒕: 𝑇𝑤𝑜 𝑠𝑢𝑏 − 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 𝑩𝒆𝒈𝒊𝒏
 𝑰𝒇 𝑟𝑜𝑢𝑛𝑑 = 0 𝒐𝒓 𝑟𝑜𝑢𝑛𝑑 𝑚𝑜𝑑 49 = 0 𝑻𝒉𝒆𝒏
 𝑆𝑆𝐴_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒/2
 𝑃𝑆𝑂_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒/2

𝑬𝒍𝒔𝒆
𝑰𝒇 𝑆𝑆𝐴_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 > 𝑃𝑆𝑂_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑻𝒉𝒆𝒏
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑆𝑆𝐴_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒
𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑃𝑆𝑂_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒

𝑬𝒍𝒔𝒆
𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑆𝑆𝐴_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑃𝑆𝑂_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒

 𝑬𝒏𝒅

 𝑬𝒏𝒅
 𝑰𝒇 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 = 1 𝑻𝒉𝒆𝒏 // 𝐷𝑖𝑣𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦

𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑂_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒
 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 𝐴𝑑𝑑 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑃𝑆𝑂’𝑠 𝑠𝑢𝑏 − 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑬𝒏𝒅
 𝐴𝑑𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑆𝑆𝐴’𝑠 𝑠𝑢𝑏 − 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 𝑬𝒍𝒔𝒆 // 𝐷𝑖𝑣𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙
 𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑂_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒

 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙,
 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 𝐴𝑑𝑑 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑃𝑆𝑂’𝑠 𝑠𝑢𝑏 − 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑬𝒏𝒅
𝐴𝑑𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑆𝑆𝐴’𝑠 𝑠𝑢𝑏 − 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑬𝒏𝒅
𝑬𝒏𝒅

105

selected, from the broker. Further, processingdelayj represents the processing delay of jth level’s

tasks, whereas outputdelayj signifies the submission delay of the output of jth level’s tasks to the

broker.

 Equation 4.3 – 4.7 can be used as well in the computation of inputdelayj. In this regard, Ntasklevelj

entails the amount of tasks in jth level of wi workflow, whereas inputdelayjk denotes the input

delay of the kth task of jth level. Further, Ntasklocalj signifies the tasks amount completed locally

on the fog, while Ntaskcloudj denotes the amount of tasks offloaded to an isolated cloud data

center, in jth level of the workflow. Correspondingly, Nvmlevelj signifies the number of the

required VMs in jth level, whereas Nleveli signifies the amount of levels in the ith workflow.

Additionally, outputdelayjk represents the output of the kth task in ith level of the wi workflow.

The pseudo-code of the proposed SSPSO algorithm is shown in Figure 4.5.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

{

 1 𝑖𝑓 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑤𝑖) > 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒

𝛼 ∗
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑤𝑖)

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑤𝑖)
+ 𝛽 ∗

𝑁𝑛𝑒𝑒𝑑𝑒𝑑𝑣𝑚(𝑤𝑖)

𝑁𝑣𝑚
 𝑖𝑓 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑤𝑖) < 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒

𝛼 + 𝛽 = 1

(4.1)

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑤𝑖) = ∑ (𝑖𝑛𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦𝑗 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗)

𝑁𝑙𝑒𝑣𝑒𝑙𝑖

𝑗=1

(4.2)

106

𝑛𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗 = {

 0 𝑖𝑓 𝑗 = 0

 ∑ 𝑖𝑛𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗𝑘

𝑁𝑡𝑎𝑠𝑘𝑙𝑒𝑣𝑒𝑙𝑗

𝑘=1

 𝑖𝑓 𝑗 ≠ 0
}

(4.3)

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦𝑗

= ∑ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦𝑗𝑘

𝑁𝑡𝑎𝑠𝑘𝑙𝑜𝑐𝑎𝑙𝑗

𝑘=1

+ ∑ (𝑐𝑖𝑛𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗 + 𝑐𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑑𝑒𝑙𝑎𝑦𝑗 + 𝑐𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗)

𝑁𝑡𝑎𝑠𝑘𝑐𝑙𝑜𝑢𝑑𝑖

𝑗=1

𝑁𝑡𝑎𝑠𝑘𝑙𝑒𝑣𝑒𝑙𝑗 = 𝑁𝑡𝑎𝑠𝑘𝑙𝑜𝑐𝑎𝑙𝑗 + 𝑁𝑡𝑎𝑠𝑘𝑐𝑙𝑜𝑢𝑑𝑗

(4.4)

(4.5)

𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗 =

{

 0 𝑖𝑓 𝑗 = 0

 ∑ 𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑒𝑙𝑎𝑦𝑗𝑘

𝑁𝑡𝑎𝑠𝑘𝑙𝑒𝑣𝑒𝑙𝑗

𝑘=1

 𝑖𝑓 𝑗 ≠ 0
}

(4.6)

𝑁𝑛𝑒𝑒𝑑𝑒𝑑𝑣𝑚(𝑤𝑖) = ∑ 𝑁𝑣𝑚𝑙𝑒𝑣𝑒𝑙𝑗

𝑁𝑙𝑒𝑣𝑒𝑙𝑖

𝑗=1

(4.7)

107

Figure 4.5. Workflow scheduling using SSPSO algorithm in broker nodes.

 𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑭𝒐𝒈_𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈()

 𝑰𝒏𝒑𝒖𝒕: 𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤
 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒
 𝐹𝑜𝑔𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑉𝑀𝑠
 𝐷𝑉𝐹𝑆 𝑙𝑒𝑣𝑒𝑙𝑠
 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑔 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑅𝑒𝑎𝑑 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝐷𝐴𝑋 𝑓𝑖𝑙𝑒

 𝑆𝑜𝑙𝑣𝑒 𝑡ℎ𝑒 𝑉𝑀𝑠 𝑀𝑎𝑟𝑘𝑜𝑣 𝑐ℎ𝑎𝑖𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 𝑡𝑜 𝑔𝑒𝑡 𝑎𝑣𝑒_𝑉𝑀 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑜𝑔

 𝑀𝑎𝑥_𝑉𝑀 = 𝑓𝑙𝑜𝑜𝑟(𝑎𝑣𝑒_𝑉𝑀)

 𝑅𝑢𝑛 𝐻𝐸𝐹𝑇

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑡𝑎𝑠𝑘𝑠’ 𝑟𝑎𝑛𝑘 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝐻𝐸𝐹𝑇 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑

 𝑆𝑜𝑟𝑡 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒𝑖𝑟 𝑟𝑎𝑛𝑘

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑠𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒

 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑙𝑒𝑣𝑒𝑙𝑠

 𝑈𝑠𝑒𝑡ℎ𝑒 𝑟𝑎𝑛𝑘𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒

 𝑭𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑁𝑓𝑜𝑔

 𝑭𝒐𝒓 𝑘 = 1 𝑡𝑜 𝑁𝑡𝑎𝑠𝑘𝑠

 𝑃𝑜𝑝(𝑖, 𝑗, 𝑘) = 𝑟𝑎𝑛𝑑(1 𝑡𝑜 𝑀𝑎𝑥_𝑉𝑀)

 𝑬𝒏𝒅
 𝑬𝒏𝒅

 𝑬𝒏𝒅
 𝑆𝑒𝑡 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝑈𝑠𝑒 𝑡ℎ𝑒 𝑆𝑆𝑃𝑆𝑂 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 𝑭𝒐𝒓 𝒆𝒂𝒄𝒉 𝑇𝑖 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑊𝑖

𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝐹𝑜𝑔𝑖 𝑎𝑛𝑑 𝑉𝑀𝑗 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑠𝑒𝑡 𝑜𝑓 𝑇𝑖

𝑾𝒉𝒊𝒍𝒆(𝑉𝑀𝑗 𝑖𝑛 𝑡ℎ𝑒 𝐹𝑜𝑔𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑑𝑙𝑒 𝑎𝑛𝑑 𝒐𝒓 𝑎𝑙𝑙 𝑇𝑖’𝑠 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑)

 𝑊𝑎𝑖𝑡
 𝑬𝒏𝒅

 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑡ℎ𝑒 𝐷𝑉𝐹𝑆 𝑙𝑒𝑣𝑒𝑙𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑉𝑀𝑠

𝑆𝑒𝑛𝑑 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑇𝑖 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑇𝑖 𝑜𝑛 𝑡ℎ𝑒 𝑉𝑀𝑖

 𝑆𝑒𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑖 𝑡𝑜 𝑖𝑡𝑠 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠

 𝑊𝑎𝑖𝑡 𝑢𝑛𝑡𝑖𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑓𝑜𝑔𝑠

 𝐶ℎ𝑒𝑐𝑘 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒𝑖𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦

 𝑬𝒏𝒅

108

Figure 4.6 exhibits the execution of tasks in different fogs. As shown in this figure, when a fog

receives the input tasks and their required data, it checks the availability of the required number of

VMs, specified by the broker. Then, when the required resources for the tasks become available,

fog should run the tasks; otherwise, when it cannot allocate the required number of VMs, it offloads

the tasks and their data to a cloud computing data center. Then, the tasks assigned to fog are

executed, and their results should be forwarded to the broker node, which should further process

them and send them to other fogs to run other tasks.

Figure 4.6. Execution of tasks in each fog.

4.5 Justification for Selecting SSA and PSO Algorithms

The hybridization of metaheuristic algorithms has gained significant traction in recent years due

to its ability to capitalize on the respective advantages of various algorithms while mitigating their

limitations. Consequently, a multitude of hybrid methods have been suggested for diverse

optimization challenges, such as task scheduling in a multi-fog environment. The hybridization of

an extensive range of metaheuristic algorithms, including Tabu Search, Grey Wolf Optimizer,

Evolutionary Algorithm, Particle Swarm Optimization, Genetic Algorithms, Salp Swarm

Algorithm, Simulated Annealing, Evolutionary Algorithm, ant Colony Optimization, Moth-flame

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎

 𝐶ℎ𝑒𝑐𝑘 𝑡ℎ𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑓𝑜𝑟 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤
 𝑰𝒇 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑎𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 𝑻𝒉𝒆𝒏 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑖𝑛𝑝𝑢𝑡 𝑡𝑎𝑠𝑘𝑠 𝑇𝑖

 𝑾𝒉𝒊𝒍𝒆(𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑉𝑀𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑔 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑑𝑙𝑒)
 𝑊𝑎𝑖𝑡

 𝑬𝒏𝒅
 𝑅𝑢𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠
 𝑬𝒏𝒅

 𝑬𝒍𝒔𝒆
 𝑆𝑒𝑛𝑑 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝑡𝑎𝑠𝑘𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑 𝑐𝑙𝑜𝑢𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑐𝑒𝑛𝑡𝑒𝑟𝑠

 𝑬𝒏𝒅
 𝑆𝑒𝑛𝑑 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑟𝑜𝑘𝑒𝑟 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 𝑖𝑠𝑠𝑢𝑒𝑑 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤

109

Optimization, Clonal Selection Algorithm, and Intelligent Water Drops, as well as others, have

been examined and experimented with in this research. Subsequently, it was shown that combining

PSO and SSA yielded exceptional outcomes.

The justification for selecting Particle Swarm Optimization (PSO) and Salp Swarm Algorithm

(SSA) is supported by multiple criteria, which will be elaborated upon in the subsequent

discussion:

1. Both algorithms utilize distinct techniques for searching; however, they can be mutually

beneficial when combined in a hybrid form. PSO draws inspiration from the collective behavior

observed in flocks of birds and aims to effectively utilize the most optimal solutions discovered

by individual particles within a swarm. In contrast, the concept of SSA draws inspiration from the

collective movement patterns observed in the salps chain, with a particular focus on promoting

exploration through stochastic movements. By integrating both algorithms, the hybrid algorithm

can benefit from the advantages of both algorithms' searching techniques.

2. PSO is recognized for its rapid convergence rate [199], while SSA is acknowledged for its

resilience in avoiding local optima [200]. The combination of these two algorithms results in a

hybrid approach that exhibits both accelerated convergence and enhanced resilience, thereby

enhancing the efficiency and effectiveness of the hybrid method in finding optimal solutions.

3. The optimization process often exhibits distinct solution trajectories for PSO and SSA,

indicating diversity in their approaches. The movement of PSO particles is influenced by their

personal best and global best positions [201], whereas SSA individuals exhibit random movement

and depend on their fitness evaluations [202]. The presence of diverse trajectories can significantly

augment the search process, enabling the hybrid algorithm to concurrently explore various regions

within the search space.

110

As a result, it can be concluded that the Particle Swarm Optimization (PSO) algorithm exhibits a

higher convergence rate, indicating its strong exploitation capability. On the other hand, the Salp

Swarm Algorithm (SSA) demonstrates a notable ability to identify promising regions, highlighting

its effective exploration capability. Therefore, the hybrid algorithm offers a more effective search

of the solution space, which results in quicker convergence and escape from local optima, resulting

in a significant balance of exploration and exploitation. This balance is particularly crucial in

optimization issues, where the search space is frequently challenging and dynamic.

4.6 Experimental Design

This section presents the experimental design for the proposed system, which includes a

comprehensive table containing all the sets of experiments conducted. Refer to Table 4.1, which

includes information on the systematic investigation process that leads to hypothesis testing, initial

parameters, conditions for iterations and terminations, as well as relevant performance metrics.

Table 4.1. Experimental design for the proposed system

𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥 𝐂𝐨𝐦𝐩𝐨𝐧𝐞𝐧𝐭 𝐃𝐞𝐬𝐜𝐫𝐢𝐩𝐭𝐢𝐨𝐧

𝑰𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆

• 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 (50)

• 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (30)

• 𝑇ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝛼 = 0.3 𝑤ℎ𝑖𝑐ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑡ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛.

• 𝑇ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝛽 = 07 𝑤ℎ𝑖𝑐ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠

 𝑡ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠.

111

𝑫𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑚𝑖𝑠𝑠𝑒𝑑, 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑 𝑡𝑎𝑠𝑘𝑠

𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆

• 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 50 𝑓𝑜𝑟 100 𝑡𝑎𝑠𝑘𝑠 𝑎𝑛𝑑 150 𝑓𝑜𝑟 1000 𝑡𝑎𝑠𝑘𝑠

• 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (100 𝑀𝑏𝑝𝑠)

• 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑣𝑎𝑟𝑖𝑒𝑠 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑡𝑎𝑠𝑘𝑠

 (30 𝑉𝑀𝑠 𝑓𝑜𝑟 100 𝑡𝑎𝑠𝑘𝑠, 300 𝑉𝑀𝑠 𝑓𝑜𝑟 1000 𝑡𝑎𝑠𝑘𝑠)

𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝒔

CyberShake (100 and 1000 tasks), 𝐿𝑖𝑔𝑜 (100 𝑎𝑛𝑑 1000 𝑡𝑎𝑠𝑘𝑠),

𝑀𝑜𝑛𝑡𝑎𝑔𝑒 (100 𝑎𝑛𝑑 1000 𝑡𝑎𝑠𝑘𝑠), 𝑎𝑛𝑑 𝑆𝑖𝑝ℎ𝑡 (97 𝑎𝑛𝑑 968 𝑡𝑎𝑠𝑘𝑠)

𝑰𝒐𝑻 𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝑈𝑠𝑒𝑠 ℎ𝑜𝑚𝑒 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠 𝑎𝑛𝑑 𝑢𝑠𝑒𝑟 𝑑𝑒𝑣𝑖𝑐𝑒𝑠

𝑩𝒓𝒐𝒌𝒆𝒓 𝑵𝒐𝒅𝒆

𝑅𝑎𝑛𝑘 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠 𝑢𝑠𝑖𝑛𝑔 𝐻𝐸𝐹𝑇 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚,

𝑢𝑡𝑖𝑙𝑖𝑧𝑒 𝐷𝑉𝐹𝑆 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,

𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠 𝑢𝑠𝑖𝑛𝑔 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝑆𝑆𝑃𝑆𝑂).

𝑪𝒐𝒎𝒑𝒖𝒕𝒊𝒏𝒈 𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒔

4 𝑓𝑜𝑔 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠

𝑎𝑛𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑙𝑜𝑢𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑒

𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑 𝑡𝑎𝑠𝑘𝑠

𝑯𝒚𝒑𝒐𝒕𝒉𝒆𝒔𝒊𝒔

1. 𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒𝑠

𝑏𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑆𝐴𝐿𝑃 𝑆𝑤𝑎𝑟𝑚 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝑆𝑆𝐴)

𝑎𝑛𝑑 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑤𝑎𝑟𝑚 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑃𝑆𝑂).

2. 𝑇ℎ𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 ℎ𝑦𝑏𝑟𝑖𝑑𝑖𝑧𝑒𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

(𝑆𝑆𝑃𝑆𝑂) 𝑎𝑛𝑑 𝑡𝑤𝑜 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑀𝑎𝑟𝑘𝑜𝑣 𝑚𝑜𝑑𝑒𝑙𝑠 𝑐𝑎𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦

𝑎𝑛𝑑 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑚𝑢𝑙𝑡𝑖 − 𝑓𝑜𝑔

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠 𝑏𝑦 𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

112

𝐷𝐷𝑜𝑆 𝑎𝑡𝑡𝑎𝑐𝑘𝑠. 𝑇ℎ𝑖𝑠 𝑤𝑖𝑙𝑙 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑛 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑤ℎ𝑖𝑐ℎ 𝑤𝑖𝑙𝑙 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑

𝑡𝑎𝑠𝑘𝑠 𝑎𝑛𝑑 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑚𝑖𝑠𝑠𝑒𝑑 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠.

3. 𝑇ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 (𝐷𝑉𝐹𝑆) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑆𝑆𝑃𝑆𝑂 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑤𝑖𝑙𝑙 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛.

𝑷𝒓𝒐𝒑𝒐𝒔𝒆𝒅 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

𝐻𝑦𝑏𝑟𝑖𝑑 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑆𝑎𝑙𝑝 𝑆𝑤𝑎𝑟𝑚 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝑆𝑆𝐴)

𝑎𝑛𝑑 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑤𝑎𝑟𝑚 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑃𝑆𝑂) − 𝑛𝑎𝑚𝑒𝑑 𝑆𝑆𝑃𝑆𝑂

𝑷𝒓𝒐𝒑𝒐𝒔𝒆𝒅 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

• 𝑆𝑆𝑃𝑆𝑂 𝑠𝑡𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,

• 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠.

• 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑛𝑜𝑡 𝑓𝑖𝑥𝑒𝑑 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑒𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠.

• 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠 𝑒𝑣𝑒𝑟𝑦 𝑠𝑒𝑣𝑒𝑛

𝑟𝑜𝑢𝑛𝑑𝑠 𝑡𝑜 𝑟𝑒𝑑𝑢𝑐𝑒 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠.

• 𝐸𝑎𝑐ℎ 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑤𝑜𝑟𝑘𝑠 𝑜𝑛 𝑖𝑡𝑠 𝑠𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑠

𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑝𝑎𝑐𝑒 𝑢𝑠𝑖𝑛𝑔 𝑖𝑡𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.

• 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑆𝐴 𝑎𝑛𝑑 𝑃𝑆𝑂,𝑤𝑖𝑡ℎ 𝑡ℎ𝑒

𝑏𝑒𝑡𝑡𝑒𝑟 𝑜𝑛𝑒 𝑏𝑒𝑐𝑜𝑚𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑴𝒂𝒓𝒌𝒐𝒗 𝒎𝒐𝒅𝒆𝒍𝒔

𝑇𝑤𝑜 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 − 𝑡𝑖𝑚𝑒 𝑀𝑎𝑟𝑘𝑜𝑣 𝑐ℎ𝑎𝑖𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑒

𝐷𝐷𝑜𝑆 𝑎𝑡𝑡𝑎𝑐𝑘𝑠. 𝑂𝑛𝑒 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑜𝑔, 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑑𝑒𝑙 𝑓𝑖𝑛𝑑𝑠 𝑡ℎ𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑉𝑀𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑜𝑔

113

4.7 Datasets

Four distinct real-world workflow datasets, including Montage, Cybershake, Sipht and LIGO,

were used to evaluate the proposed algorithm. The datasets have various structures and

characteristics, which enable the simulation of numerous Internet of Things (IoT) applications. In

the graphic representation of the workflows, circles show the individual computing tasks, arrows

illustrate the data dependencies between tasks, and different color schemes represent the various

categories of 𝑗𝑜𝑏𝑠.

The Cybershake workflow has an intense 𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡 (𝐼/𝑂) characteristic and necessitates

high-performance computing, while the Montage concentrates on demanding 𝐼/𝑂 operations and

doesn't require a lot of 𝐶𝑃𝑈 power [203]. On the other hand, the LIGO workflow consists of a

number of data aggregation operations that require a lot of 𝐶𝑃𝑈 power because they process a lot

of data. Regarding Sipht, it is well known for its workflow, which makes extensive use of the

𝐶𝑃𝑈 while having minimal 𝐼/𝑂 demands [204].

Figure 4.7 depicts a streamlined illustration of each workflow's structure. Workflows are expressed

in 𝑋𝑀𝐿 (𝐷𝐴𝑋) using the 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑦𝑐𝑙𝑖𝑐 𝐺𝑟𝑎𝑝ℎ (𝐷𝐴𝐺) format, which includes

𝑫𝑽𝑭𝑺 𝑳𝒆𝒗𝒆𝒍𝒔 6 𝐿𝑒𝑣𝑒𝑙𝑠

𝑳𝒆𝒗𝒆𝒍 𝑽𝒐𝒍𝒕𝒂𝒈𝒆 𝑺𝒑𝒆𝒆𝒅 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆

1 1.5 100%

2 1.4 90%

3 1.3 80%

4 1.2 70%

5 1.1 60%

6 1.0 50%

114

𝑡𝑎𝑠𝑘𝑠, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑒𝑑𝑔𝑒𝑠, 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠, and other essential information. As a result, the

experimental workflows can be built as 𝑋𝑀𝐿 files in the form of 𝐷𝐴𝐺𝑠.

(a) Ligo (b) CyberShake

(c) Sipht (d) Montage

Figure 4.7. The structures of the workflows for the utilized datasets

115

4.8 Summary

This chapter provides an overview of the research strategy employed in the research,

encompassing a thorough examination of methodologies, the development of a system design, and

mathematical requirements.

In the beginning, the chapter provides a discussion of the system architecture that has been

developed primarily for multi-fog environments. Within this architectural framework, there appear

to be Internet of Things (IoT) networks that encompass a diverse range of household appliances

and user devices. Every Internet of Things (IoT) network is facilitated by a broker node, which

serves as a central entity responsible for storing and managing resource information pertaining to

fog computing environments. The broker serves the role of a central hub, enabling the seamless

transmission of information and facilitating effective communication between Internet of Things

(IoT) devices and fogs. The system involves the existence of four fog computing environments,

each characterized by its own individual data repository and a selection of virtual resources. The

number of VMs within each fog is dependent on the assigned tasks. In instances where a fog

computing environment is not sufficiently equipped (lack of resources) to carry out tasks, it

transfers these tasks to the cloud.

The subsequent section describes the processes of the system, defining the various roles and duties

of the broker, fog nodes, and cloud infrastructure. It offers an in-depth investigation of the

functionalities and interactions of these components across the system.

Then the chapter presents an overview of a hybrid optimization method, namely SSPSO. The

proposed algorithm integrates the characteristics of the SSA (Salp Swarm Algorithm) and PSO

(Particle Swarm Optimization) algorithms. By using the different searching techniques and skills

of SSA and PSO, the hybrid algorithm tries to make workflow scheduling more effective and

116

efficient in a multi-fog setting.

The fitness function for the proposed method is also discussed in this chapter, providing a

comprehensive explanation of the equations involved. The rationale for choosing the SSA and

PSO algorithms is supported by emphasizing their individual strengths and advantages.

Additionally, it provides an overview of the experimental design employed for evaluating the

proposed system. The evaluation of the system involved the utilization of four genuine workflow

datasets, namely LIGO, Montage, Sipht, and Cybershake. The datasets exhibit a wide range of

structures and features, facilitating the emulation of various applications in Internet of Things (IoT)

environments.

Overall, this chapter presents a comprehensive examination of the methodology employed, the

system architecture utilized, the various processes involved, and the hybrid optimization algorithm

proposed for the purpose of scheduling workflows in multi-fog environments. Further, it addresses

the concept of the fitness function, provides a rationale for choosing the SSA and PSO algorithms,

and outlines the experimental methodology and evaluation of the proposed system using genuine

workflow datasets.

117

5 Chapter 5: Results and Discussions

This chapter introduces the results of the algorithm proposed, in which the hybridization of SSA

and PSO algorithms is utilized. It is structured into three distinct phases. The preliminary phase

entails the selection of the SSA and PSO algorithms for the purpose of hybridization. The second

phase entails conducting a comparative analysis to assess the performance of the proposed

algorithm in relation to other hybrid optimization algorithms. Finally, the third phase encompasses

a comparative analysis aimed at evaluating the performance of the proposed algorithm in

comparison to other emerging cutting optimization methods.

5.1 Preliminary Phase: Selecting the SSA and PSO Algorithms for Hybridization

This section is intended to fulfill the research objective one (RO1) mentioned in Chapter 1. The

preliminary phase involved the selection of the SSA and PSO algorithms with the intention of

combining them to create the SSPSO algorithm. This decision was driven by the objective of

attaining an optimal balance between exploration and exploitation. The achievement can be

attributed to the hybrid algorithm's ability to effectively maintain a balance between exploration

and exploitation.

The SSA is widely recognized for its robust exploration abilities, which enable it to effectively

investigate an extensive variety of solution spaces. In contrast, PSO demonstrates a notable

proficiency in exploitation as it effectively utilizes promising regions to achieve enhanced

solutions. Through the hybridization of these mutually strengthening attributes, the hybrid

algorithm is capable of executing a more efficient search of the solution space. Consequently, it

attains convergence towards the optimum solutions and possesses enhanced capability to avoid

local optima and find promising regions. This balance between exploration and exploitation plays

a crucial role in the domain of optimization problems, especially when confronted with complex

118

and dynamic search spaces. The capacity to investigate various regions while capitalizing on

valuable solutions is essential for achieving optimal results. The percentage of algorithm

exploration and exploitation can be measured and assessed, as indicated in Chapter 3, Section 3.10.

Table 5.1 presents the comparative analysis of the balance between exploration and exploitation

obtained from the proposed method as compared to the SSA and PSO. It involved conducting

experiments on four datasets, namely CyberShake, LIGO, Montage, and Sipht, using 100 and 1000

tasks.

Table 5.1. Comparison of exploration and exploitation percentage

(a) Ligo dataset

 Ligo 100 Ligo 1000

Algorithms
Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

PSO 68.8 31.2 70.4 29.6

SSA 15.5 84.5 15.0 85.0

SSPSO 53.0 47.0 58.8 41.2

(b) CyberShake dataset

 CyberShake 100 CyberShake 1000

Algorithms
Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

PSO 69.2 30.8 70.0 29.9

SSA 15.2 84.8 14.8 85.2

SSPSO 58.6 41.4 59.5 40.5

119

(c) Montage dataset

 Montage 100 Montage 1000

Algorithms
Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

PSO 68.6 31.4 68.9 31.1

SSA 14.9 85.1 14.9 85.1

SSPSO 58.3 41.7 58.8 41.2

(d) Sipht dataset

 Sipht 97 Sipht 968

Algorithms
Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

Exploration

Percentage

PSO 68.3 31.7 70.2 29.8

SSA 15.9 84.1 15.9 84.1

SSPSO 56.6 43.4 57.6 42.4

The results displayed in Table 5.1 simply illustrate the remarkable efficacy of the proposed

algorithm in attaining an optimal balance between exploration and exploitation. The proposed

algorithm demonstrates superior performance in effectively managing both aspects in comparison

to the SSA and PSO algorithms. The endeavor effectively converges towards the optimum

solutions and possesses enhanced capability to avoid local optima and find promising regions. The

proposed algorithm's exceptional balance provides a substantial contribution to its exceptional

performance, particularly in the context of challenging optimization problems.

120

5.2 Phase Two: Comparative Analysis to Evaluate SSPSO with Hybrid Optimization

Algorithms.

This section is intended to fulfill the research objectives two (RO2) and three (RO3) mentioned in

Chapter 1. The results of comprehensive simulations of the proposed workflow scheduling method

conducted in this research are introduced and evaluated in this chapter. The proposed scientific

workflow scheduling system was simulated using the iFogSim simulator to accomplish this. The

proposed system's performance was then evaluated against two hybrid algorithms, PGA and PSO-

GWO. Section 3.11 in Chapter 3 provides a full overview of how these algorithms work. The

principles of PGA are designed based on the concepts of a Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO). The PGA approach blends the concepts of self-cognition and social

cognition from Particle Swarm Optimization into the Genetic Algorithm.

In contrast, the PSO-GWO algorithm integrates the characteristics of both the Particle Swarm

Optimization (PSO) and Grey Wolf Optimization (GWO) algorithms. The GWO algorithm is a

meta-heuristic approach that emulates the hierarchical leadership structure and hunting behavior

observed in grey wolves within their natural environment. The utilization of the characteristics

observed in grey wolf packs is employed to efficiently address optimization challenges.

The research primarily concentrated on metrics that are specifically relevant to fog computing

environments. These metrics included the average amount of tasks that were offloaded to cloud

computing, the average number of workflows resulting in missed deadlines, and the overall energy

consumption. The results of these evaluations are comprehensively analyzed and deliberated upon,

yielding valuable insights into the efficacy of the proposed method.

121

An extensive investigation was carried out to evaluate the effect of DDoS attacks on fog nodes,

with a particular focus on the availability of virtual machines (VMs) within a 15-second simulated

period. Table 5.2 and Figure 5.1 show the dynamic and temporal repercussions of DDoS attacks,

which result in oscillations in the number of available VMs. During the first 5 seconds of a certain

fog scenario, 25 of 30 virtual machines (VMs) were available. However, the number of available

VMs reduced to 18 VMs in the following time frame of 5 to 10 seconds. In the final 5 seconds, the

number of available VMs reached 20 VMs.

The fluctuation in VM unavailability has a negative impact on workflow execution, forcing the

offloading of certain tasks to cloud computing environments while possibly causing others to miss

their deadlines. During DDoS attacks, this issue of VM availability has an important impact on the

overall performance and dependability of the system. This argument underscores the importance

of implementing strong mitigation strategies in order to sustain efficient workflow execution and

guarantee the resilience of systems when confronted with Distributed Denial of Service (DDoS)

attacks.

Table 5.2. Virtual machines oscillation on each fog due to DDoS

attack

(a)

Time in seconds

1000 tasks 100 tasks

No. of available VMs No. of available VMs

0-5 250 25

5-10 180 18

10-15 200 20

122

(b)

Time in seconds

1000 tasks 100 tasks

No. of available VMs No. of available VMs

0-5 200 20

5-10 250 26

10-15 250 26

(c)

Time in seconds

1000 tasks 100 tasks

No. of available VMs No. of available VMs

0-5 250 25

5-10 200 20

10-15 250 25

(d)

Time in seconds

1000 tasks 100 tasks

No. of available VMs No. of available VMs

0-5 200 20

5-10 230 25

10-15 250 28

123

(a) (b)

(c) (d)

Figure 5.1. Oscillation of virtual machines due to DDoS attack on each fog.

5.2.1 Comparing SSPSO with PGA and PSO-GWO for Task Offloading and Workflow

Deadline Missed in Fog Computing

This section is intended to fulfill research objective 2 (RO2) mentioned in Chapter 1. Two sets of

experiments are reported in this section. The experiments involved two different scenarios, as

follows: the first one was specified in the workflows of LIGO and CyberShake. The set-ups

involved the use of two sets of workflows comprising 100 and 1000 tasks, and four fog computing

124

environments. The first scenario included 300 VMs in the execution of workflows with 1000 tasks,

while the second scenario included 30 virtual machines in the execution of workflows comprising

100 tasks. As can be seen in Table 5.3 and Figure 5.2, the average of the offloaded tasks on the

cloud is within four selected fogs. Here, the outcomes of the system proposed were compared with

those obtained by PGA and PSO-GWO algorithms. Overall, 100 and 1000 tasks were executed in

LIGO workflows.

Table 5.3. Average amount of the offloaded tasks on cloud computing

in the Ligo workflows

Ligo (100 Tasks) Ligo (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 18 7 5 2 0 0 0 0

PGA 24 19 9 37 19 7 22 2

PSO-GWO 22 30 7 46 30 20 30 29

The results show that the proposed system offloads smaller amount of tasks on the cloud. In

comparison to PGA and PSO-GWO algorithms, the system proposed in this study shows greater

effectiveness, and this has been linked to the application of the Markov models in addressing the

effects of DDoS attacks on virtual machines of fog location. As presented in this study, the average

amount of VMs was computed for every single fog. As such, the proposed system receives smaller

impacts from DDoS attacks.

125

(a)

(b)

Figure 5.2. (Ligo workflows) The average amount of the offloaded tasks on cloud

0

5

10

15

20

25

30

35

40

45

50

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Ligo (100 Tasks)

0

5

10

15

20

25

30

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

e
d

 t
as

ks

Ligo (1000 Tasks)

126

The computation of the proportion of the average amount of deadline missed workflows by the

proposed system can be viewed in Figure 5.3.

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑑 = 0;

 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 = 70;
𝑭𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠

𝑪𝒂𝒍𝒍 𝐹𝑜𝑔_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔(𝑤𝑖)

 𝑰𝒇 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑊𝑖) > 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑊𝑖) 𝑻𝒉𝒆𝒏

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑑 + +;

 𝑬𝒏𝒅

 𝑬𝒏𝒅
𝑃𝑟𝑖𝑛𝑡 100 ∗ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑚𝑖𝑠𝑠𝑒𝑑/ 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠;

Figure 5.3. Calculating the deadline missed workflows

Table 5.4 and Figure 5.4 show the average of the deadline missed workflow (100 and 1000 tasks)

in the LIGO on the cloud in four considered fogs, in which the results of the proposed scheme is

compared against those of PGA and PSO-GWO algorithms.

Table 5.4. Average amount of the deadline missed workflow in the

Ligo workflows

Ligo (100 Tasks) Ligo (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 36 50 53 46 42 41 38 46

PGA 85 87 55 61 47 49 53 49

PSO-GWO 74 60 62 57 66 66 73 55

As can be observed, the proposed system calculates the average amount of available VMs, and it

has better tolerance towards the negative impact of DDoS attacks, resulting in lesser amount of

workflows that missed their deadlines. Nonetheless, considering the dependency of other

workflow scheduling systems on the maximum amount of accessible virtual machines, they are

127

not able to take in the impact of DDoS attacks on fog’s virtual machines. Also, several of their

workflows missed their deadline. Additionally, both LIGO and CyberShake workflows were

analyzed utilizing the settings specifically for evaluating the scheduling of LIGO workflows,

taking into account the effect imparted by DDoS attacks on fogs.

(a)

(b)

Figure 5.4. (Ligo workflows) The average amount of the deadline missed

0

10

20

30

40

50

60

70

80

90

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Ligo (100 Tasks)

0

10

20

30

40

50

60

70

80

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d

w
o

rk
fl

o
w

Ligo (1000 Tasks)

128

The average amount of offloaded CyberShake tasks (100 and 1000) in cloud servers can be

displayed in Table 5.5 and Figure 5.5.

Table 5.5. Average amount of the offloaded tasks on cloud computing

in the CyberShake workflows

CyberShake (100 Tasks) CyberShake (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 6 5 4 3 2 0 0 0

PGA 20 31 6 22 22 7 31 20

PSO-GWO 39 33 13 29 20 33 44 37

As shown, the proposed system is superior to PGA and PSO-GWO algorithms, while also showing

the ability in reducing the amount of tasks to be offloaded to cloud.

(a)

0

5

10

15

20

25

30

35

40

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Cybershake (100 Tasks)

129

(b)

Figure 5.5. (CyberShake workflows) The average amount of the offloaded tasks on cloud

Table 5.6 and Figure 5.6 displays the average amount of the deadline missed workflows in the

CyberShake (100 and 1000 tasks), whereby the use of the proposed workflows scheduling

approach has reduced the number of workflows missing their deadline.

Table 5.6. Average amount of the deadline missed workflow in the

CyberShake workflows

CyberShake (100 Tasks) CyberShake (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 10 6 4 0 0 0 0 0

PGA 47 51 50 47 34 31 17 23

PSO-GWO 42 66 58 44 40 33 14 20

As can be observed, the proposed system has better tolerance towards the negative impact of DDoS

attacks, resulting in lesser amount of workflows that missed their deadlines.

0

5

10

15

20

25

30

35

40

45

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Cybershake (1000 Tasks)

130

(a)

(b)

Figure 5.6. (CyberShake workflows) The average amount of the deadline missed

0

10

20

30

40

50

60

70

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w
Cybershake (100 Tasks)

0

5

10

15

20

25

30

35

40

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Cybershake (1000 Tasks)

131

The comparison of outcomes of the scheduling of CyberShake with that of LIGO shows that

CyberShake face lower amount of DDoS attacks as these workflows require lesser amount of VMs

in each level.

The second group of experiments involved the evaluation of the scientific workflows of Sipht and

Montage. As can be viewed in Table 5.7 and Figure 5.7, the average of the offloaded tasks on

cloud is within four selected fogs. Here, the outcomes of the system proposed were compared with

those obtained PGA and PSO-GWO algorithms. Overall, 97 and 968 tasks were executed in Sipht

workflows.

Table 5.7. Average amount of the offloaded tasks on cloud computing

in the Sipht workflows

Sipht (97 Tasks) Sipht (968 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 4 6 5 3 0 0 0 0

PGA 19 22 13 20 1 6 7 4

PSO-GWO 18 22 11 7 3 11 8 7

The results show that the proposed system offloads smaller amount of tasks on the cloud. In

comparison to PGA and PSO-GWO algorithms, the system proposed in this study shows greater

effectiveness, and this has been linked to the application of the Markov models in addressing the

effects of DDoS attacks on virtual machines of fog locations. As presented, the average amount of

VMs was computed for every single fog. As such, the proposed system receives smaller impacts

from DDoS attacks.

132

(a)

(b)

Figure 5.7. (Sipht workflows) The average amount of the offloaded tasks on cloud

0

5

10

15

20

25

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Sipht (97 Tasks)

0

2

4

6

8

10

12

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Sipht (968 Tasks)

133

Further, the average amount of the deadline missed workflows in the experiments performed using

Sipht workflows on the four fog locations under study can be viewed in Table 5.8 and Figure 5.8.

Table 5.8. Average amount of the deadline missed workflow in the

Sipht workflows

Sipht (97 Tasks) Sipht (968 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 23 9 6 8 16 9 16 9

PGA 18 19 22 25 23 39 47 40

PSO-GWO 17 20 20 12 39 24 30 33

As can be observed, the proposed system has better tolerance towards the negative impact of DDoS

attacks, resulting in lesser amount of workflows that missed their deadlines.

(a)

0

5

10

15

20

25

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Sipht (97 Tasks)

134

(b)

Figure 5.8. (Sipht workflows) The average amount of the deadline missed

The average amount of offloaded in Montage tasks (100 and 1000) in cloud servers can be

displayed in Table 5.9 and Figure 5.9. As shown, the proposed system is superior to PGA and

PSO-GWO algorithms, while also showing the ability in reducing the amount of tasks to be

offloaded to cloud.

Table 5.9. Average amount of the offloaded tasks on cloud computing

in the Montage workflows

Montage (100 Tasks) Montage (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 3 12 3 5 0 0 0 0

PGA 21 31 12 22 1 4 1 2

PSO-GWO 33 37 33 20 1 4 4 4

As shown, the proposed system is superior to PGA and PSO-GWO algorithms, while also showing

the ability in reducing the amount of tasks to be offloaded to cloud.

0

5

10

15

20

25

30

35

40

45

50

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Sipht (968 Tasks)

135

(a)

(b)

Figure 5.9. (Montage workflows) The average amount of the offloaded tasks on cloud

0

5

10

15

20

25

30

35

40

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Montage (100 Tasks)

0

1

1

2

2

3

3

4

4

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Montage (1000 Tasks)

136

Table 5.10 and Figure 5.10 display the average amount of the deadline missed workflows in the

Montage (100 and 1000) tasks, whereby the use of the proposed workflows scheduling approach

has reduced the number of workflows missing their deadlines

Table 5.10. Average amount of the deadline missed workflow in the

Montage workflows

Montage (100 Tasks) Montage (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 0 0 0 0 0 0 0 0

PGA 60 55 81 76 1 3 4 1

PSO-GWO 70 79 70 79 6 4 4 2

As can be observed, the proposed system has better tolerance towards the negative impact of DDoS

attacks, resulting in lesser amount of workflows that missed their deadlines.

(a)

0

10

20

30

40

50

60

70

80

90

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Montage (100 Tasks)

137

(b)

Figure 5.10. (Montage workflows) The average amount of the deadline missed

5.2.2 Comparing SSPSO, PGA and PSO-GWO algorithms for energy consumption in Fog

Computing

This section is intended to fulfill research objective 3 (RO3) mentioned in Chapter 1 and focuses

on the concept of green fog computing. It presents a thorough analysis evaluating the energy

consumption of the proposed method SSPSO with PGA and PSO-GWO. As stated in Chapter 3,

Section 3.8, Dynamic Voltage and Frequency Scaling (DVFS) has the potential to reduce the

energy consumption of Virtual Machines (VMs) during the execution of tasks. The proposed

system integrates the use of Dynamic Voltage and Frequency Scaling (DVFS) as a valuable

technique for mitigating power consumption in virtual machines (VMs) through the adjustment of

their operational frequency and voltage.

0

1

2

3

4

5

6

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

PGA

PSO-GWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w
P

er
ce

n
ta

ge
 o

f
th

e
d

ea
d

lin
e

m
is

se
d

 w
o

rk
fl

o
w

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Montage (1000 Tasks)

138

Four datasets were used in the evaluation process: Montage, CyberShake, Sipht, and Ligo. Table

5.11 and Figure 5.11 show the overall energy consumption in watt-hours (Wh) of the SSPSO

algorithm, as well as a comparison to the PGA and PSO-GWO algorithms. These illustrations

provide vital insight into the energy efficiency of such algorithms in the context of fog computing.

Watt-hours (Wh) is the metric used to measure the total power utilized by the virtual machines

(VMs) in all four fog computing environments over the course of an hour. It captures the energy

usage as a cumulative value and takes into account the total power consumption of the VMs.

Table 5.11. SSPSO overall energy consumption (Wh) compared with

PGA and PSO-GWO

Datasets

Algorithms

SSPSO energy

consumption in (Wh)

PGA energy

consumption in (Wh)

PSO-GWO energy

consumption in (Wh)

Inspiral 100 23664.511 60152.238 53954.528

Inspiral

1000
136986.283 473272.678 391744.397

CyberShake

100
1254.325 7133.313 6147.904

CyberShake

1000
32225.496 88321.526 82239.450

Montage

100
69964.788 438573.521 803564.211

Montage

1000
830087.794 5432134.451 5624410.346

Sipht 97 10514.335 29213.245 35002.450

Sipht 968 63191.049 205548.532 218240.221

139

In comparison to SSPSO, PGA, and PSO-GWO algorithms, the results clearly demonstrate that

SSPSO is superior in terms of its ability to significantly minimize the amount of energy that virtual

machines consume when operating in fog environments.

(a) (b)

(c) (d)

0

10000

20000

30000

40000

50000

60000

70000

SSPSO PGA PSO-GWO

Ligo (100 Tasks)

SSPSO

PGA

PSO-GWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (
W

h
)

0

100000

200000

300000

400000

500000

SSPSO PGA PSO-GWO

Ligo (1000 Tasks)

SSPSO

PGA

PSO-GWO

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
W

h
)

0

1000

2000

3000

4000

5000

6000

7000

8000

SSPSO PGA PSO-GWO

Cybershake (100 Tasks)

SSPSO

PGA

PSO-GWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (
W

h
)

`

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

SSPSO PGA PSO-GWO

Cybershake (1000 Tasks)

SSPSO

PGA

PSO-GWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (W
h

)

140

(e) (f)

(g) (h)

Figure 5.11. SSPSO, PGA and PSO-GWO overall energy consumption (Wh)

5.3 Phase Three: Comparative Analysis to Evaluate SSPSO with Cutting Edge Optimization

Algorithms of Workflow Scheduling.

This section is intended to fulfil the research objectives two (RO2) and three (RO3) mentioned in

Chapter one. It highlights the results of in-depth simulations performed to evaluate the proposed

workflow scheduling method using two cutting-edge workflow scheduling systems: Hybrid-EDF

and MOWO. Chapter 3, Section 3.11, contains a comprehensive explanation of how these

algorithms function.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

SSPSO PGA PSO-GWO

Montage (100 Tasks)

SSPSO

PGA

PSO-GWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (
W

h
)

0

1000000

2000000

3000000

4000000

5000000

6000000

SSPSO PGA PSO-GWO

Montage (1000 Tasks)

SSPSO

PGA

PSO-GWO

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
W

h
)

0

5000

10000

15000

20000

25000

30000

35000

40000

SSPSO PGA PSO-GWO

Sipht (97 Tasks)

SSPSO

PGA

PSO-GWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (W
h

)

0

50000

100000

150000

200000

250000

SSPSO PGA PSO-GWO

Sipht (968 Tasks)

SSPSO

PGA

PSO-GWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (
W

h
)

141

Hybrid-EDF is a powerful and cutting-edge algorithm developed specifically for scheduling

various real-time Internet of Things (IoT) tasks inside a three-tiered architecture. By carefully

distributing computational tasks according to their communication needs in both the cloud and fog

levels, it marks a substantial difference from conventional methods. The MOWO algorithm, on

the other hand, was created expressly for fog computing workflow scheduling and is a highly

effective and advanced method. With cutting-edge features to enhance workflow scheduling.

The research concentrated on metrics specific to fog computing environments, such as the average

number of tasks offloaded to cloud computing servers, the average number of workflows with

missed deadlines, and overall energy consumption. The results of these comparisons are

extensively investigated and addressed, providing important insights into the performance of the

proposed approach.

5.3.1 Comparing SSPSO with Hybrid EDF and MOWO Algorithms for Task Offloading and

Workflow Deadline Missed in Fog Computing

This section is intended to fulfill research objective 2 (RO2) mentioned in Chapter 1. Two sets of

experiments are reported in this section. The experiments involved two different scenarios, as

follows: the first one was specified in the workflows of LIGO and CyberShake. The set-ups

involved the use of two sets of workflows comprising 100 and 1000 tasks, and four fog computing

environments. The first scenario included 300 VMs in the execution of workflows with 1000 tasks,

while the second scenario included 30 virtual machines in the execution of workflows comprising

100 tasks.

As can be viewed in Table 5.12 Figure 5.12, the average of the offloaded tasks on cloud is within

four selected fogs. Here, the outcomes of the system proposed were compared with those obtained

142

by Hybrid-EDF and MOWO workflow scheduling systems. Overall, 100 and 1000 tasks were

executed in LIGO workflows.

The average amount of offloaded tasks (100 and 1000) in the LIGO cloud environment was

evaluated across four selected fog nodes. This evaluation compared the results of the proposed

scheme with those of the Hybrid-EDF and MOWO workflow scheduling schemes.

Table 5.12. Average amount of the offloaded tasks on cloud

computing in the LIGO workflows

Ligo (100 Tasks) Ligo (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 18 7 5 2 0 0 0 0

Hybrid-EDF 6 7 9 43 1 4 3 8

MOWO 66 58 68 22 36 62 42 36

The results show that the proposed system offloads smaller amount of tasks on the cloud. In

comparison to Hybrid-EDF and MOWO workflow scheduling systems, the system proposed in

this study shows greater effectiveness, and this has been linked to the application of the Markov

models in addressing the effects of DDoS attacks on virtual machines of fog locations. As

presented in this study, the average amount of VMs was computed for every single fog. As such,

the proposed system receives smaller impacts from DDoS attacks.

143

(a)

(b)

Figure 5.12. (Ligo workflows) The average amount of the offloaded tasks on cloud

Table 5.13 and Figure 5.13 display the average amount of the deadline missed workflows in the

Ligo (100 and 1000) tasks, whereby the use of the proposed workflows scheduling approach has

reduced the number of workflows missing their deadlines

0

10

20

30

40

50

60

70

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Ligo (100 Tasks)

0

10

20

30

40

50

60

70

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Ligo (1000 Tasks)

144

Table 5.13. Average amount of the deadline missed workflow in the

LIGO workflows

Algorithms

Ligo (100 Tasks) Ligo (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 36 50 53 46 42 41 38 46

Hybrid-EDF 63 58 84 83 47 51 47 47

MOWO 59 65 57 72 71 71 70 71

As can be observed, the proposed system calculates the average amount of available VMs, and it

has better tolerance towards the negative impact of DDoS attacks, resulting in lesser amount of

workflows that missed their deadlines. Nonetheless, considering the dependency of other

workflow scheduling systems on the maximum amount of accessible virtual machines, they are

not able to take in the impact of DDoS attacks on fog’s virtual machines. Also, several of their

workflows missed their deadline. Additionally, both LIGO and CyberShake workflows were

analyzed utilizing the settings specifically for evaluating the scheduling of LIGO workflows,

taking into account the effect imparted by DDoS attacks on fogs.

145

(a)

(b)

Figure 5.13. (Ligo workflows) The average amount of the deadline missed

Table 5.14 and Figure 5.14 show the average amount of the offloaded tasks (100 and 1000) in the

CyberShake on the cloud in four considered fogs, in which the results of the proposed scheme is

compared against those of Hybrid-EDF and MOWO workflow scheduling schemes.

0

10

20

30

40

50

60

70

80

90

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w
Ligo (100 Tasks)

0

10

20

30

40

50

60

70

80

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Ligo (1000 Tasks)

146

Table 5.14. Average amount of the offloaded tasks on cloud

computing in the CyberShake workflows

Algorithms

CyberShake (100 Tasks) CyberShake (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 6 5 4 3 2 0 0 0

Hybrid-EDF 8 35 6 8 0 3 0 3

MOWO 53 69 55 53 53 81 83 37

As shown, the proposed system is superior to Hybrid EDF and MOWO systems, while also

showing the ability in reducing the amount of tasks to be offloaded to cloud.

(a)

0

10

20

30

40

50

60

70

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Cybershake (100 Tasks)

147

(b)

Figure 5.14. (CyberShake workflows) The average amount of the offloaded tasks on cloud

Table 5.15 and Figure 5.15 show the average amount of the deadline missed workflow (100 and

1000 tasks) in the CyberShake on the cloud in four considered fogs, in which the results of the

proposed scheme is compared against those of Hybrid-EDF and MOWO workflow scheduling

schemes.

Table 5.15. Average amount of the deadline missed workflow in the

CyberShake workflows

Algorithms
CyberShake (100 Tasks) CyberShake (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 10 6 4 0 0 0 0 0

Hybrid-EDF 53 46 50 45 22 24 20 23

MOWO 46 50 56 68 49 51 56 47

0

10

20

30

40

50

60

70

80

90

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Cybershake (1000 Tasks)

148

The results show that of the proposed workflows scheduling approach has reduced the number of

workflows missing their deadline.

(a)

(b)

Figure 5.15. (CyberShake workflows) The average amount of the deadline missed

0

10

20

30

40

50

60

70

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w

Cybershake (100 Tasks)

0

10

20

30

40

50

60

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Cybershake (1000 Tasks)

149

The comparison of outcomes of the scheduling of CyberShake with that of LIGO shows that

CyberShake face lower amount of DDoS attacks as these workflows require lesser amount of VMs

in each level.

The second group of experiments involved the evaluation of the scientific workflows of Sipht and

Montage. As can be viewed in Table 5.16 and Figure 5.16, the average of the offloaded tasks on

cloud is within four selected fogs. Here, the outcomes of the system proposed were compared with

those obtained by Hybrid-EDF and MOWO workflow scheduling systems. Overall, 97 and 968

tasks were executed in Sipht workflows.

Table 5.16. Average amount of the offloaded tasks on cloud

computing in the Sipht workflows

Algorithms
Sipht (97 Tasks) Sipht (968 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 4 6 5 3 0 0 0 0

Hybrid-EDF 15 24 16 29 0 5 7 1

MOWO 18 18 8 5 14 14 13 9

The results show that the proposed system offloads smaller amount of tasks on the cloud. In

comparison to Hybrid-EDF and MOWO workflow scheduling systems, the system proposed in

this study shows greater effectiveness, and this has been linked to the application of the Markov

models in addressing the effects of DDoS attacks on virtual machines of fog locations. As

presented, the average amount of VMs was computed for every single fog. As such, the proposed

system receives smaller impacts from DDoS attacks.

150

(a)

(b)

Figure 5.16. (Sipht workflows) The average amount of the offloaded tasks on cloud

0

5

10

15

20

25

30

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Sipht (97 Tasks)

0

2

4

6

8

10

12

14

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Sipht (968 Tasks)

151

Table 5.17 and Figure 5.17 show the average amount of the deadline missed workflow (97 and

968 tasks) in the Sipht on the cloud in four considered fogs, in which the results of the proposed

scheme is compared against those of Hybrid-EDF and MOWO workflow scheduling schemes.

Table 5.17. Average amount of the deadline missed workflow in the

Sipht workflows

Algorithms
Sipht (97 Tasks) Sipht (968 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 23 9 6 8 16 9 16 9

Hybrid-EDF 17 17 27 26 38 43 46 38

MOWO 19 18 20 6 41 31 31 26

The results show that of the proposed workflows scheduling approach has reduced the number of

workflows missing their deadline.

(a)

0

5

10

15

20

25

30

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w

Sipht (97 Tasks)

152

(b)

Figure 5.17. (Sipht workflows) The average amount of the deadline missed

Table 5.18 and Figure 5.18 show the average amount of the offloaded tasks (100 and 1000) in the

Montage on the cloud in four considered fogs, in which the results of the proposed scheme is

compared against Hybrid-EDF and MOWO workflow scheduling schemes.

Table 5.18. Average amount of the offloaded tasks on cloud

computing in the Montage workflows

Algorithms
Montage (100 Tasks) Montage (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 3 12 3 5 0 0 0 0

Hybrid-EDF 7 33 8 16 1 0 1 0

MOWO 47 40 33 61 7 4 4 4

As shown, the proposed system is superior to Hybrid-EDF and MOWO, while also showing the

ability in reducing the amount of tasks to be offloaded to cloud.

0

5

10

15

20

25

30

35

40

45

50

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w Sipht (968 Tasks)

153

(a)

(b)

Figure 5.18. (Montage workflows) The average amount of the offloaded tasks on cloud

0

10

20

30

40

50

60

70

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

e
d

 t
as

ks
Montage (100 Tasks)

0

1

2

3

4

5

6

7

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

o
ff

lo
ad

ed
 t

as
ks

Montage (1000 Tasks)

154

Table 5.19 and Figure 5.19 show the average amount of the deadline missed workflow (100 and

1000 tasks) in the Montage on the cloud in four considered fogs, in which the results of the

proposed scheme is compared against Hybrid-EDF and MOWO workflow scheduling schemes.

Table 5.19. Average amount of the deadline missed workflow in the

Montage workflows

Algorithms
Montage (100 Tasks) Montage (1000 Tasks)

Fog 1 Fog 2 Fog 3 Fog 4 Fog 1 Fog 2 Fog 3 Fog 4

SSPSO 0 0 0 0 0 0 0 0

Hybrid-EDF 68 63 71 77 1 0 0 0

MOWO 76 82 73 76 8 4 5 0

The results show that of the proposed workflows scheduling approach has reduced the number of

workflows missing their deadline.

(a)

0

10

20

30

40

50

60

70

80

90

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w

Montage (100 Tasks)

155

(a)

Figure 5.19. (Montage workflows) The average amount of the deadline missed

5.3.2 Comparing SSPSO, Hybrid EDF and MOWO Algorithms for energy consumption in Fog

Computing

This section is intended to fulfill research objective 3 (RO3) mentioned in Chapter 1 and focuses

on the concept of green fog computing. It presents a thorough analysis evaluating the energy

consumption of the proposed method SSPSO with Hybrid EDF and MOWO. As stated in Chapter

3, Section 3.8, Dynamic Voltage and Frequency Scaling (DVFS) has the potential to reduce the

energy consumption of Virtual Machines (VMs) during the execution of tasks. The proposed

system integrates the use of Dynamic Voltage and Frequency Scaling (DVFS) as a valuable

technique for mitigating power consumption in virtual machines (VMs) through the adjustment of

their operational frequency and voltage.

0

1

2

3

4

5

6

7

8

Fog 1 Fog 2 Fog 3 Fog 4

SSPSO

Hybrid-EDF

MOWO

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w
P

er
ce

n
ta

ge
 o

f
th

e
d

ea
d

lin
e

m
is

se
d

 w
o

rk
fl

o
w

P
er

ce
n

ta
ge

 o
f

th
e

d
ea

d
lin

e
m

is
se

d
 w

o
rk

fl
o

w
Montage (1000 Tasks)

156

Four datasets were used in the evaluation process: Montage, CyberShake, Sipht, and Ligo. Table

5.20 and Figure 5.20 show the overall energy consumption in watt-hours (Wh) of the SSPSO

algorithm, as well as a comparison to the Hybrid EDF and MOWO algorithms. These illustrations

provide vital insight into the energy efficiency of such algorithms in the context of fog computing.

Watt-hours (Wh) is the metric used to measure the total power utilized by the virtual machines

(VMs) in all four fog computing environments over the course of an hour. It captures the energy

usage as a cumulative value and takes into account the total power consumption of the VMs.

(a) (b)

(c) (d)

0

10000

20000

30000

40000

50000

60000

70000

SSPSO Hybrid-EDF MOWO

Ligo (100 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
W

h
)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

SSPSO Hybrid-EDF MOWO

Ligo (1000 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
W

h
)

0

1000

2000

3000

4000

5000

6000

7000

8000

SSPSO Hybrid-EDF MOWO

Cybershake (100 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (W
h

)
`

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

SSPSO Hybrid-EDF MOWO

Cybershake (1000 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
e

rg
y

co
n

su
m

p
ti

o
n

(W

h
)

157

Figure 5.20. SSPSO, Hybrid-EDF and MOWO overall energy consumption (Wh)

(e) (f)

(g) (h)

0

100000

200000

300000

400000

500000

600000

700000

800000

SSPSO Hybrid-EDF MOWO

Montage (100 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (
W

h
)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

SSPSO Hybrid-EDF MOWO

Montage (1000 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
e

rg
y

co
n

su
m

p
ti

o
n

 (
W

h
)

0

5000

10000

15000

20000

25000

30000

SSPSO Hybrid-EDF MOWO

Sipht (97 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
W

h
)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

SSPSO Hybrid-EDF MOWO

Sipht (968 Tasks)

SSPSO

Hybrid-EDF

MOWO

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
W

h
)

158

Table 5.20. SSPSO overall energy consumption (Wh) compared with Hybrid EDF

and MOWO

Datasets

Algorithms

SSPSO energy

consumption in (Wh)

Hybrid EDF energy

consumption in (Wh)

PSO-GWO energy

consumption in (Wh)

Inspiral 100 23664.511 63358.359 62179.765

Inspiral 1000 136986.283 413272.678 351744.397

CyberShake 100 1254.325 7340.453 7443.514

CyberShake 1000 32225.496 92341.537 84579.850

Montage 100 69964.788 188253.589 792300.621

Montage 1000 830087.794 6375114.091 7820910.146

Sipht 97 10514.335 25216.188 27802.701

Sipht 968 63191.049 172938.549 168820.373

In comparison to SSPSO, Hybrid EDF, and MOWO algorithms, the results clearly demonstrate

that SSPSO is superior in terms of its ability to significantly minimize the amount of energy that

virtual machines consume when operating in fog environments.

5.4 Discussions

The results achieved from the experiments that were carried out confirmed that the presented

approach was successful in reducing the number of missed deadlines for processes and tasks that

were migrated to cloud servers. The implementation of the SSPSO, as well as two discrete Markov

models for determining the average true available bandwidth of fogs and the average true amount

of virtual machines, were essential elements in the accomplishment of these results. When

compared to the innovative and superior hybrid optimization algorithms, such as PGA and PSO-

GWO, as well as cutting-edge optimization algorithms like Hybrid-EDF and MOWO algorithms,

159

SSPSO demonstrated better results. Enhanced task scheduling and distribution were achievable

due to the implementation of the SSPSO algorithm. The utilization of two discrete Markov models

led to an improvement in the accuracy of resource estimation, which consequently led to a better

task distribution, a reduction in the number of tasks offloaded onto the cloud, and fewer missed

deadlines.

Additionally, the system also showed advantages in terms of energy consumption. The

employment of the DVFS algorithm, which was integrated along with the SSPSO algorithm, made

it possible to dynamically adjust the operating frequency and voltage of the CPU based on the

workload demand. In comparison to the hybrid and emerging cutting-edge optimization

algorithms, this enabled the system to function at lower power levels during low workloads and at

greater power levels during heavy workloads.

The research results, along with the visual representations and tabular data showcasing datasets

such as Ligo, Cybershake, Montage, and Sipht, offer convincing proof of the potential advantages

and effectiveness provided by the proposed system. The results from the experiments involving

both 100 and 1000 tasks provide clear evidence of the system's efficacy in effectively managing

missed deadlines, reducing offloaded tasks, and optimizing energy consumption. The

aforementioned results highlight the importance of the SSPSO.

160

6 Chapter 6: Conclusion and Future Direction

6.1 Conclusion

A stochastic resilient swarm-based metaheuristic optimization algorithm was proposed in this

research. It is a hybrid algorithm that combined the Particle Swarm Optimization and Salp Swarm

Optimization techniques. This method was then used to solve a challenging and critical problem,

which is the scheduling of scientific workflows in multi-fog environments. Fog computing was

created to support the intensifying demand for IoT by making available more amount of resources

and increasing the power of processing as well. In order to minimize delays in communication

and the load of processing on the infrastructure of cloud computing, resources for fog computing

should be placed close to the IoT networks. In this regard, effective scheduling of offloaded tasks

of IoT is necessary in order to assure correct management of virtual resources of fog which

support IoT.

PSO and SSA algorithms were combined to form a new hybrid optimization algorithm. Each

algorithm runs on nearly fifty percent of the population, and when superior outcomes are found

by one algorithm, the proposed algorithm allocates more population to it. This was to increase the

quality of the results. For each seven rounds, the two sub-populations would be recombined and

re-classed. This is to allow each algorithm to have equal chances of searching the problem space

and operating on various solutions. Also, in each round, the algorithms exchange one of these

results (solutions) stochastically, namely, the most optimal solution, a solution attained through

the roulette wheel, or a random solution. The algorithm is then applied to the scheduling of IoT-

submitted workflows on a number of computing locations in fog that sustain the Internet of Things

(IoT) network, and also to minimizing the makespan of workflows and the amount of VMs used

in fogs.

161

Appositely, DDoS attacks affect the performance of fog computing environments, and as a

solution, the proposed system included two separate Markov chain models in the computation of

the average amount of VMs accessible for each fog environment. The Markov models allowed

the allocation of sufficient amount of resources for running the workflow, with no problem of

overestimation of the amount of VMs on computing environments of fog. Accordingly, iFogSim

simulator was used to run the experiments, and the results show the ability of the proposed

approach of workflow scheduling in effectively mitigating the workflow in terms of its makespan.

At the same time, the proposed approach was able to minimize the amount of tasks offloaded to

cloud servers as well as the amount of deadlines missed workflows.

Furthermore, the implementation of effective scheduling strategies has significantly contributed

to the optimization of energy consumption through the allocation of tasks to the most suitable

resources, taking into account the energy efficiency of each individual resource. In order to

address this issue, the SSPSO algorithm under consideration has integrated the Dynamic Voltage

and Frequency Scaling (DVFS) technique, which is widely utilized in the field of green

computing, to effectively optimize processor energy usage. The conducted experimental findings

provided evidence that the proposed system, combined with the DVFS technique, produced

significant results in a minimization in energy consumption. As a result, the system offers a more

environmentally friendly and sustainable solution for fog computing environments.

6.2 Future Directions

This research indicates that the presented hybrid metaheuristic algorithm has considerable

possibilities for further investigation and advancement in the domain of metaheuristics,

particularly in the realm of fog computing and workflow scheduling. The following are

suggestions for future endeavors:

162

1. A potential area for future research in metaheuristic algorithms is Multi-objective optimization

refers to the process of simultaneously optimizing multiple conflicting objectives in a given

system or problem. In order to address the simultaneous handling of multiple conflicting

objectives, an extension to the hybrid algorithm can be proposed. Incorporate supplementary

objectives, such as load balancing, resource utilization, reliability, or cost optimization, into the

existing framework. Utilize multi-objective metaheuristic methods, such as Pareto-based

algorithms or dominance-based approaches, in order to derive an optimal Pareto front that

effectively captures diverse trade-offs among various objectives.

2. Utilizing the proposed algorithm across various challenge domains and practical scenarios,

Examine the potential utilization of the proposed hybrid algorithm in diverse optimization

problems beyond the realm of scheduling within multi-fog environments. Evaluate the

performance and adaptability of the system in various domains, including production planning,

resource allocation, and vehicle routing. The method can be modified and refined to meet the

unique needs and limitations of various challenge domains.

3. A further potential avenue for future research is to place more focus on optimizing energy

consumption within the proposed algorithm. Additional exploration of various strategies,

including dynamic power management, workload consolidation, and energy-aware task

allocation, can be conducted in order to achieve a more significant reduction in energy

consumption within the multifog environment.

4. Exploring the integration of machine learning methods with metaheuristic algorithms.

Investigate the potential of reinforcement learning, deep learning, and other types of machine

learning techniques for enhancing decision-making processes and the learning capabilities within

the algorithm. The process of this integration can potentially result in the development of

163

optimization strategies that are more intelligent and flexible in nature.

5. To enhance the hybrid algorithm's performance in tackling various combinatorial challenges,

it is essential to further refine its exploration and exploitation strategies. The examination of

advanced strategies to improve the algorithm's ability to effectively navigate the search space and

simultaneously take advantage of promising solutions This optimization technique will enhance

the algorithm's capability to address a wider variety of complicated optimization challenges.

6. It is recommended to engage in further research associated with task and workflow scheduling,

with a specific focus on the multi-fog environment. Further exploration should be conducted into

additional factors such as fault tolerance, quality of service, and real-time constraints. The

objective is to design and implement improved algorithms that effectively tackle the

aforementioned challenges, thereby making significant contributions to the progression of fog

computing and scheduling approaches.

7. Investigation in the development of mechanisms within the hybrid algorithms that enable the

dynamic adjustment of their parameters, operators, or search techniques in response to

adjustments in the environment or the problem's features. The examination of mechanisms for

self-adaptive control parameters, adaptive swarm size modification, and adaptive operator

selection may also be taken into consideration. The implementation of these strategies is expected

to enhance the algorithm's ability to adapt and perform effectively in dynamic and unpredictable

environments, thereby increasing its robustness, flexibility, and overall performance.

Scientists can expand the subject of metaheuristics, enhance fog computing optimization

methods, and contribute to the development of effective algorithms for a variety of real-world

applications by exploring such future research directions.

164

References

[1] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

Accessed:May12,2023.[Online]Available:https://books.google.iq/books?hl=en&lr=&id=mYm0b

Ld3fcoC&oi=fnd&pg=PR11&dq=convex+optimization&ots=tfaUBJHFH-

&sig=4BBZPDG779QpmiGuDUbEoGpmqpI&redir_esc=y#v=onepage&q=convex%20optimiza

tion&f=false

[2] Y. Chi, Y. Lu, and Y. Chen, “Nonconvex Optimization Meets Low-Rank Matrix Factorization:

An Overview,” IEEE Transactions on Signal Processing, vol. 67, no. 20, pp. 5239–5269, Oct.

2019, doi: https://doi.org/10.1109/tsp.2019.2937282.

[3] “A Guide to Metaheuristic Optimization for Machine Learning Models in Python | Built In,”

builtin.com. https://builtin.com/data-science/metaheuristic-optimization-python (accessed Jun.

15, 2022).

[4] A. M. Ahmed, T. A. Rashid, and S. Ab. M. Saeed, “Cat Swarm Optimization Algorithm: A

Survey and Performance Evaluation,” Computational Intelligence and Neuroscience, vol. 2020,

pp. 1–20, Jan. 2020, doi: 10.1155/2020/4854895.

[5] A. M. Ahmed, T. A. Rashid, and S. Ab. M. Saeed, “Dynamic Cat Swarm Optimization

algorithm for backboard wiring problem,” Neural Computing and Applications, vol. 33, no. 20,

pp. 13981–13997, May 2021, doi: 10.1007/s00521-021-06041-3

[6] Ayyarao, T.S., RamaKrishna, N.S.S., Elavarasan, R.M., Polumahanthi, N., Rambabu, M.,

Saini, G., Khan, B. and Alatas, B., 2022. War strategy optimization algorithm: a new effective

[7] D. Wang, D. Tan, and L. Liu, “Particle Swarm Optimization algorithm: an overview,” Soft

Computing, vol. 22, no. 2, pp. 387–408, Jan. 2017, doi: https://doi.org/10.1007/s00500-016-2474-

6.

[8] M. Sikimic, M. Amovic, V. Vujovic, B. Suknovic, and D. Manjak, “An Overview of Wireless

Technologies for IoT Network,” 2020 19th International Symposium INFOTEH-JAHORINA

(INFOTEH), Mar. 2020, doi: https://doi.org/10.1109/infoteh48170.2020.9066337.

[9] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile

computing,” IEEE Xplore, Apr. 01, 2016. https://ieeexplore.ieee.org/abstract/document/7524340.

[10] A. Sunyaev, “Cloud Computing,” Internet Computing, pp. 195–236, 2020, doi:

https://doi.org/10.1007/978-3-030-34957-8_7.

[11] P. Kumar and R. Kumar, “Issues and Challenges of Load Balancing Techniques in Cloud

Computing,” ACM Computing Surveys, vol. 51, no. 6, pp. 1–35, Feb. 2019, doi:

https://doi.org/10.1145/3281010.

https://books.google.iq/books?hl=en&lr=&id=mYm0bLd3fcoC&oi=fnd&pg=PR11&dq=convex+optimization&ots=tfaUBJHFH-&sig=4BBZPDG779QpmiGuDUbEoGpmqpI&redir_esc=y#v=onepage&q=convex%20optimization&f=false
https://books.google.iq/books?hl=en&lr=&id=mYm0bLd3fcoC&oi=fnd&pg=PR11&dq=convex+optimization&ots=tfaUBJHFH-&sig=4BBZPDG779QpmiGuDUbEoGpmqpI&redir_esc=y#v=onepage&q=convex%20optimization&f=false
https://books.google.iq/books?hl=en&lr=&id=mYm0bLd3fcoC&oi=fnd&pg=PR11&dq=convex+optimization&ots=tfaUBJHFH-&sig=4BBZPDG779QpmiGuDUbEoGpmqpI&redir_esc=y#v=onepage&q=convex%20optimization&f=false
https://books.google.iq/books?hl=en&lr=&id=mYm0bLd3fcoC&oi=fnd&pg=PR11&dq=convex+optimization&ots=tfaUBJHFH-&sig=4BBZPDG779QpmiGuDUbEoGpmqpI&redir_esc=y#v=onepage&q=convex%20optimization&f=false
https://doi.org/10.1109/tsp.2019.2937282
https://doi.org/10.1109/infoteh48170.2020.9066337
https://ieeexplore.ieee.org/abstract/document/7524340
https://doi.org/10.1007/978-3-030-34957-8_7
https://doi.org/10.1145/3281010

165

[12] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing,” Proceedings of the 2015 Workshop

on Mobile Big Data, Jun. 2015, doi: https://doi.org/10.1145/2757384.2757397.

[13] S. Chen, T. Zhang, and W. Shi, “Fog Computing,” IEEE Internet Computing, vol. 21, no. 2,

pp. 4–6, Mar. 2017, doi: https://doi.org/10.1109/mic.2017.39.

[14] S. Hamdan, M. Ayyash, and S. Almajali, “Edge-Computing Architectures for Internet of

Things Applications: A Survey,” Sensors, vol. 20, no. 22, p. 6441, Nov. 2020, doi:

https://doi.org/10.3390/s20226441.

[15] G. Ortiz, M. Zouai, O. Kazar, A. Garcia-de-Prado, and J. Boubeta-Puig, “Atmosphere:

Context and situational-aware collaborative IoT architecture for edge-fog-cloud

computing,” Computer Standards & Interfaces, vol. 79, p. 103550, Jan. 2022, doi:

https://doi.org/10.1016/j.csi.2021.103550.

[16] N. Mohan and J. Kangasharju, “Edge-Fog cloud: A distributed cloud for Internet of Things

computations,” 2016 Cloudification of the Internet of Things (CIoT), Nov. 2016, doi:

https://doi.org/10.1109/ciot.2016.7872914.

[17] S. Sarkar and S. Misra, “Theoretical modelling of fog computing: a green computing paradigm

to support IoT applications,” IET Networks, vol. 5, no. 2, pp. 23–29, Mar. 2016, doi:

https://doi.org/10.1049/iet-net.2015.0034.

[18] A. Gougeon, B. Camus, and A.-C. Orgerie, “Optimizing Green Energy Consumption of Fog

Computing Architectures,” IEEE Xplore, Sep. 01, 2020.

https://ieeexplore.ieee.org/abstract/document/9235038 (accessed May 12, 2023).

[19] B. Gupta and O. P. Badve, "Taxonomy of DoS and DDoS attacks and desirable defense

mechanism in a cloud computing environment," Neural Computing and Applications, vol. 28,

pp. 3655-3682, 2017.

[20] A. Shameli-Sendi, M. Pourzandi, M. Fekih-Ahmed, and M. Cheriet, "Taxonomy of distributed

denial of service mitigation approaches for cloud computing," Journal of Network and Computer

Applications, vol. 58, pp. 165-179, 2015.

[21] M. Masdari and M. Jalali, "A survey and taxonomy of DoS attacks in cloud computing,"

Security and Communication Networks, vol. 9, pp. 3724-3751, 2016.

[22] R. Qureshi, S. H. Mehboob, and M. Aamir, “Sustainable Green Fog Computing for Smart

Agriculture,” Wireless Personal Communications, vol. 121, no. 2, pp. 1379–1390, Aug. 2021, doi:

https://doi.org/10.1007/s11277-021-09059-x.

[23] D. Suleiman, M. Ibrahim, and I. Hamarash, “DYNAMIC VOLTAGE FREQUENCY

SCALING (DVFS) FOR MICROPROCESSORS POWER AND ENERGY REDUCTION.”

Accessed: May 12, 2023. [Online]. Available:

https://www.emo.org.tr/ekler/035226640b6b89f_ek.pdf.

https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/mic.2017.39
https://doi.org/10.3390/s20226441
https://doi.org/10.1016/j.csi.2021.103550
https://doi.org/10.1109/ciot.2016.7872914
https://doi.org/10.1049/iet-net.2015.0034
https://doi.org/10.1007/s11277-021-09059-x
https://www.emo.org.tr/ekler/035226640b6b89f_ek.pdf

166

[24] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi, Metaheuristic Applications in

Structures and Infrastructures. Newnes, 2013. Accessed: May 12, 2023. [Online]. Available:

https://books.google.iq/books?hl=en&lr=&id=fKKcI4uVTvcC&oi=fnd&pg=PA1&dq=explorati

on+in+metaheuristics+algorithms&ots=2KHfPmVNcf&sig=-

Jsw6FfpQR3boK4fkvxCYHEdDws&redir_esc=y#v=onepage&q=exploration%20in%20metahe

uristics%20algorithms&f=false

[25] Tilahun, S.L., 2019. Balancing the degree of exploration and exploitation of swarm

intelligence using parallel computing. International Journal on Artificial Intelligence Tools,

28(03), p.1950014

[26] T. Joyce and J. M. Herrmann, “A Review of No Free Lunch Theorems, and Their Implications

 for Metaheuristic Optimisation,” Nature-Inspired Algorithms and Applied Optimization, pp. 27–

51, Oct. 2017, doi: 10.1007/978-3-319-67669-2_2.

[27] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proceedings of ICNN'95-

International Conference on Neural Networks, 1995, pp. 1942-1948.

[28] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, Edge and Fog

computing environments," Software: Practice and Experience, vol. 47, pp. 1275-1296, 2017.

[29] Y. Liu, J. E. Fieldsend, and G. Min, “A Framework of Fog Computing: Architecture,

Challenges, and Optimization,” IEEE Access, vol. 5, pp. 25445–25454, 2017, doi:

https://doi.org/10.1109/access.2017.2766923.

[30] T. Kundu, Deepmala, and P. K. Jain, “A hybrid Salp Swarm Algorithm based on TLBO for

reliability redundancy allocation problems,” Applied Intelligence, Feb. 2022, doi:

https://doi.org/10.1007/s10489-021-02862-w.

[31] N. Singh, E. H. Houssein, S. B. Singh, and G. Dhiman, “HSSAHHO: a novel hybrid Salp

Swarm-Harris Hawks optimization algorithm for complex engineering problems,” Journal of

Ambient Intelligence and Humanized Computing, Feb. 2022, doi: https://doi.org/10.1007/s12652-

022-03724-0.

[32] S. Li, Y. Yu, D. Sugiyama, Q. Li, and S. Gao, “A Hybrid Salp Swarm Algorithm With

Gravitational Search Mechanism,” IEEE Xplore, Nov. 01, 2018.

https://ieeexplore.ieee.org/abstract/document/8691256 (accessed May 02, 2023).

[33] M. A. Elaziz, L. Li, K. P. N. Jayasena, and S. Xiong, “Multiobjective big data optimization

based on a hybrid Salp Swarm Algorithm and differential evolution,” Applied Mathematical

Modelling, vol. 80, pp. 929–943, Apr. 2020, doi: https://doi.org/10.1016/j.apm.2019.10.069.

[34] N. Panda and Santosh Kumar Majhi, “Improved Salp Swarm Algorithm with Space

Transformation Search for Training Neural Network,” Arabian journal for science and

engineering, vol. 45, no. 4, pp. 2743–2761, Apr. 2020, doi: https://doi.org/10.1007/s13369-019-

04132-x.

https://books.google.iq/books?hl=en&lr=&id=fKKcI4uVTvcC&oi=fnd&pg=PA1&dq=exploration+in+metaheuristics+algorithms&ots=2KHfPmVNcf&sig=-Jsw6FfpQR3boK4fkvxCYHEdDws&redir_esc=y#v=onepage&q=exploration%20in%20metaheuristics%20algorithms&f=false
https://books.google.iq/books?hl=en&lr=&id=fKKcI4uVTvcC&oi=fnd&pg=PA1&dq=exploration+in+metaheuristics+algorithms&ots=2KHfPmVNcf&sig=-Jsw6FfpQR3boK4fkvxCYHEdDws&redir_esc=y#v=onepage&q=exploration%20in%20metaheuristics%20algorithms&f=false
https://books.google.iq/books?hl=en&lr=&id=fKKcI4uVTvcC&oi=fnd&pg=PA1&dq=exploration+in+metaheuristics+algorithms&ots=2KHfPmVNcf&sig=-Jsw6FfpQR3boK4fkvxCYHEdDws&redir_esc=y#v=onepage&q=exploration%20in%20metaheuristics%20algorithms&f=false
https://books.google.iq/books?hl=en&lr=&id=fKKcI4uVTvcC&oi=fnd&pg=PA1&dq=exploration+in+metaheuristics+algorithms&ots=2KHfPmVNcf&sig=-Jsw6FfpQR3boK4fkvxCYHEdDws&redir_esc=y#v=onepage&q=exploration%20in%20metaheuristics%20algorithms&f=false
https://doi.org/10.1007/s10489-021-02862-w
https://doi.org/10.1007/s12652-022-03724-0
https://doi.org/10.1007/s12652-022-03724-0
https://doi.org/10.1016/j.apm.2019.10.069
https://doi.org/10.1007/s13369-019-04132-x
https://doi.org/10.1007/s13369-019-04132-x

167

[35] J. Yao et al., “IHSSAO: An Improved Hybrid Salp Swarm Algorithm and Aquila Optimizer

for UAV Path Planning in Complex Terrain,” Applied Sciences, vol. 12, no. 11, p. 5634, Jan. 2022,

doi: https://doi.org/10.3390/app12115634.

[36] M. Qaraad, S. Amjad, N. K. Hussein, and M. A. Elhosseini, “Large scale salp-based grey wolf

optimization for feature selection and global optimization,” Neural Computing and Applications,

vol. 34, no. 11, pp. 8989–9014, Feb. 2022, doi: https://doi.org/10.1007/s00521-022-06921-2.

[37] Ammar Kamal Abasi et al., “A Hybrid Salp Swarm Algorithm with $$\beta $$-Hill Climbing

Algorithm for Text Documents Clustering,” Algorithms for intelligent systems, pp. 129–161, Jan.

2021, doi: https://doi.org/10.1007/978-981-33-4191-3_6.

[38] A. Ewees, M. A. A. Al-qaness, and M. Abd Elaziz, “Enhanced Salp Swarm Algorithm based

on firefly algorithm for unrelated parallel machine scheduling with setup times,” Applied

Mathematical Modelling, vol. 94, pp. 285–305, Jun. 2021, doi:

https://doi.org/10.1016/j.apm.2021.01.017.

[39] Y. Liu et al., “Chaos-assisted multi-population Salp Swarm Algorithms: Framework and case

studies,” Expert Systems with Applications, vol. 168, p. 114369, Apr. 2021, doi:

https://doi.org/10.1016/j.eswa.2020.114369.

[40] B. Nautiyal, R. Prakash, V. Vimal, G. Liang, and H. Chen, “Improved Salp Swarm Algorithm

with mutation schemes for solving global optimization and engineering problems,” Engineering

with Computers, Feb. 2021, doi: https://doi.org/10.1007/s00366-020-01252-z.

[41] N. Panda and Santosh Kumar Majhi, “Oppositional Salp Swarm Algorithm with mutation

operator for global optimization and application in training higher order neural

networks,” Multimedia Tools and Applications, vol. 80, no. 28–29, pp. 35415–35439, Jan. 2021,

doi: https://doi.org/10.1007/s11042-020-10304-x.

[42] S. Kassaymeh, M. Al-Laham, M. A. Al-Betar, M. Alweshah, S. Abdullah, and S. N.

Makhadmeh, “Backpropagation Neural Network optimization and software defect estimation

modelling using a hybrid Salp Swarm optimizer-based Simulated Annealing

Algorithm,” Knowledge-Based Systems, vol. 244, p. 108511, May 2022, doi:

https://doi.org/10.1016/j.knosys.2022.108511.

[43] H. Y. Zhang et al., “Differential evolution-assisted Salp Swarm Algorithm with chaotic

structure for real-world problems,” Engineering With Computers, Jan. 2022, doi:

https://doi.org/10.1007/s00366-021-01545-x.

[44] G. I. Sayed, G. Khoriba, and M. H. Haggag, “A novel chaotic Salp Swarm Algorithm for

global optimization and feature selection,” Applied Intelligence, vol. 48, no. 10, pp. 3462–3481,

Mar. 2018, doi: https://doi.org/10.1007/s10489-018-1158-6

[45] R. Wang, K. Hao, L. Chen, T. Wang, and C. Jiang, “A novel hybrid Particle Swarm

Optimization using adaptive strategy,” Information Sciences, vol. 579, pp. 231–250, Nov. 2021,

doi: https://doi.org/10.1016/j.ins.2021.07.093.

https://doi.org/10.3390/app12115634
https://doi.org/10.1007/s00521-022-06921-2
https://doi.org/10.1007/978-981-33-4191-3_6
https://doi.org/10.1016/j.apm.2021.01.017
https://doi.org/10.1016/j.eswa.2020.114369
https://doi.org/10.1007/s00366-020-01252-z
https://doi.org/10.1007/s11042-020-10304-x
https://doi.org/10.1016/j.knosys.2022.108511
https://doi.org/10.1007/s00366-021-01545-x
https://doi.org/10.1007/s10489-018-1158-6
https://doi.org/10.1016/j.ins.2021.07.093

168

[46] Muhammd Ilyas Menhas, M. Fei, L. Wang, and X. Fu, “A Novel Hybrid Binary PSO

Algorithm,” Lecture Notes in Computer Science, pp. 93–100, Jun. 2011, doi:

https://doi.org/10.1007/978-3-642-21515-5_12.

[47] L. Shi, J. Gong, and C. Zhai, “Application of a hybrid PSO-GA optimization algorithm in

determining pyrolysis kinetics of biomass,” Fuel, vol. 323, p. 124344, Sep. 2022, doi:

https://doi.org/10.1016/j.fuel.2022.124344.

[48] S. Xiao, Y. Wang, H. Yu, and S. Nie, “An Entropy-Based Adaptive Hybrid Particle Swarm

Optimization for Disassembly Line Balancing Problems,” Entropy, vol. 19, no. 11, p. 596, Nov.

2017, doi: https://doi.org/10.3390/e19110596.

[49] H. Yu, Y. Gao, L. Wang, and J. Meng, “A Hybrid Particle Swarm Optimization Algorithm

Enhanced with Nonlinear Inertial Weight and Gaussian Mutation for Job Shop Scheduling

Problems,” Mathematics, vol. 8, no. 8, p. 1355, Aug. 2020, doi:

https://doi.org/10.3390/math8081355.

[50] A. F. Ali and M. A. Tawhid, “A hybrid Particle Swarm Optimization and genetic algorithm

with population partitioning for large scale optimization problems,” Ain Shams Engineering

Journal, vol. 8, no. 2, pp. 191–206, Jun. 2017, doi: https://doi.org/10.1016/j.asej.2016.07.008.

[51] Y. Gao, H. Zhang, Y. Duan, and H. Zhang, “A novel hybrid PSO based on levy flight and

wavelet mutation for global optimization,” PLOS ONE, vol. 18, no. 1, pp. e0279572–e0279572,

Jan. 2023, doi: https://doi.org/10.1371/journal.pone.0279572.

[52] Y. Zhang, L. Zhang, S. C. Neoh, K. Mistry, and M. A. Hossain, “Intelligent affect regression

for bodily expressions using hybrid Particle Swarm Optimization and adaptive ensembles,” Expert

Systems with Applications, vol. 42, no. 22, pp. 8678–8697, Dec. 2015, doi:

https://doi.org/10.1016/j.eswa.2015.07.022.

[53] F. Han and Q. Liu, “A diversity-guided hybrid Particle Swarm Optimization based on gradient

search,” Neurocomputing, vol. 137, pp. 234–240, Aug. 2014, doi:

https://doi.org/10.1016/j.neucom.2013.03.074.

[54] X. Tao et al., “Self-Adaptive two roles hybrid learning strategies-based Particle Swarm

Optimization,” Information Sciences, vol. 578, pp. 457–481, Nov. 2021, doi:

https://doi.org/10.1016/j.ins.2021.07.008.

[55] T. Cheng, M. Chen, P. J. Fleming, Z. Yang, and S. Gan, “A novel hybrid teaching learning

based multi-objective Particle Swarm Optimization,” Neurocomputing, vol. 222, pp. 11–25, Jan.

2017, doi: https://doi.org/10.1016/j.neucom.2016.10.001.

[56] Q. Niu, T. Zhou, and L. Wang, “A hybrid Particle Swarm Optimization for parallel machine

total tardiness scheduling,” The International Journal of Advanced Manufacturing Technology,

vol. 49, no. 5–8, pp. 723–739, Jul. 2010, doi: https://doi.org/10.1007/s00170-009-2426-8.

https://doi.org/10.1007/978-3-642-21515-5_12
https://doi.org/10.1016/j.fuel.2022.124344
https://doi.org/10.3390/e19110596
https://doi.org/10.3390/math8081355
https://doi.org/10.1016/j.asej.2016.07.008
https://doi.org/10.1371/journal.pone.0279572
https://doi.org/10.1016/j.eswa.2015.07.022
https://doi.org/10.1016/j.neucom.2013.03.074
https://doi.org/10.1016/j.ins.2021.07.008
https://doi.org/10.1016/j.neucom.2016.10.001
https://doi.org/10.1007/s00170-009-2426-8

169

[57] J. Osei-kwakye, F. Han, Alfred Adutwum Amponsah, Q.-H. Ling, and Timothy Apasiba

Abeo, “A diversity enhanced hybrid Particle Swarm Optimization and crow search algorithm for

feature selection,” Applied Intelligence, Apr. 2023, doi: https://doi.org/10.1007/s10489-023-

04519-2.

[58] F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, and X.-L. Shen, “A hybrid Particle Swarm

Optimization algorithm using adaptive learning strategy,” Information Sciences, vol. 436–437, pp.

162–177, Apr. 2018, doi: https://doi.org/10.1016/j.ins.2018.01.027.

[59] H. Wang, H. Sun, C. Li, S. Rahnamayan, and J. Pan, “Diversity enhanced Particle Swarm

Optimization with neighborhood search,” Information Sciences, vol. 223, pp. 119–135, Feb. 2013,

doi: https://doi.org/10.1016/j.ins.2012.10.012.

[60] S.-C. Chu, P. Tsai, and J.-S. Pan, “Cat Swarm Optimization,” Lecture Notes in Computer

Science, pp. 854–858, 2006, doi: https://doi.org/10.1007/978-3-540-36668-3_94.

[61] A. M. Ahmed, T. A. Rashid, and S. Ab. M. Saeed, “Dynamic Cat Swarm Optimization

algorithm for backboard wiring problem,” Neural Computing and Applications, vol. 33, no. 20,

pp. 13981–13997, May 2021, doi: https://doi.org/10.1007/s00521-021-06041-3.

[62] F. Ouaar and R. Boudjemaa, “Modified Salp Swarm Algorithm for global

optimisation,” Neural Computing and Applications, Jan. 2021, doi:

https://doi.org/10.1007/s00521-020-05621-z.

[63] H. Zhang et al., “A multi-strategy enhanced Salp Swarm Algorithm for global

optimization,” Engineering with Computers, vol. 38, no. 2, pp. 1177–1203, Jul. 2020, doi:

https://doi.org/10.1007/s00366-020-01099-4.

[64] M. Tubishat, N. Idris, L. Shuib, M. A. M. Abushariah, and S. Mirjalili, “Improved Salp Swarm

Algorithm based on opposition based learning and novel local search algorithm for feature

selection,” Expert Systems with Applications, vol. 145, p. 113122, May 2020, doi:

https://doi.org/10.1016/j.eswa.2019.113122.

[65] R. Salgotra, U. Singh, S. Singh, G. Singh, and N. Mittal, “Self-adaptive Salp Swarm

Algorithm for engineering optimization problems,” Applied Mathematical Modelling, vol. 89, pp.

188–207, Jan. 2021, doi: https://doi.org/10.1016/j.apm.2020.08.014.

[66] S. Zhao, P. Wang, X. Zhao, H. Turabieh, M. Mafarja, and H. Chen, “Elite dominance scheme

ingrained adaptive Salp Swarm Algorithm: a comprehensive study,” Engineering with Computers,

vol. 38, no. S5, pp. 4501–4528, Aug. 2021, doi: https://doi.org/10.1007/s00366-021-01464-x.

[67] N. Li, K. Yao, Z. Deng, X. Zhao, and J. Qin, “Pilot allocation optimization using enhanced

Salp Swarm Algorithm for sparse channel estimation,” China Communications, vol. 18, no. 11,

pp. 141–154, Nov. 2021, doi: https://doi.org/10.23919/jcc.2021.11.010.

https://doi.org/10.1007/s10489-023-04519-2
https://doi.org/10.1007/s10489-023-04519-2
https://doi.org/10.1016/j.ins.2018.01.027
https://doi.org/10.1016/j.ins.2012.10.012
https://doi.org/10.1007/978-3-540-36668-3_94
https://doi.org/10.1007/s00521-020-05621-z
https://doi.org/10.1007/s00366-020-01099-4
https://doi.org/10.1016/j.eswa.2019.113122
https://doi.org/10.1016/j.apm.2020.08.014
https://doi.org/10.1007/s00366-021-01464-x
https://doi.org/10.23919/jcc.2021.11.010

170

[68] K. Balakrishnan, R. Dhanalakshmi, and U. M. Khaire, “Improved Salp Swarm Algorithm

based on the levy flight for feature selection,” The Journal of Supercomputing, vol. 77, no. 11, pp.

12399–12419, Apr. 2021, doi: https://doi.org/10.1007/s11227-021-03773-w.

[69] C. Wang et al., “An efficient Salp Swarm Algorithm based on scale-free informed followers

with self-adaption weight,” Applied Intelligence, vol. 53, no. 2, pp. 1759–1791, May 2022, doi:

https://doi.org/10.1007/s10489-022-03438-y.

[70] X.-Q. Zhao, F. Yang, Y. Han, and Y.-P. Cui, “An Opposition-Based Chaotic Salp Swarm

Algorithm for Global Optimization,” IEEE Access, vol. 8, pp. 36485–36501, Feb. 2020, doi:

https://doi.org/10.1109/access.2020.2976101.

[71] D. Tian and Z. Shi, “MPSO: Modified Particle Swarm Optimization and its

applications,” Swarm and Evolutionary Computation, vol. 41, pp. 49–68, Aug. 2018, doi:

https://doi.org/10.1016/j.swevo.2018.01.011.

[72] K. Zhang, Q. Huang, and Y. Zhang, “Enhancing comprehensive learning Particle Swarm

Optimization with local optima topology,” Information Sciences, vol. 471, pp. 1–18, Jan. 2019,

doi: https://doi.org/10.1016/j.ins.2018.08.049.

[73] W. Liu, Z. Wang, N. Zeng, Y. Yuan, F. E. Alsaadi, and X. Liu, “A novel randomised particle

swarm optimizer,” International Journal of Machine Learning and Cybernetics, Aug. 2020, doi:

https://doi.org/10.1007/s13042-020-01186-4.

[74] S. U. Khan, S. Yang, L. Wang, and L. Liu, “A Modified Particle Swarm Optimization

Algorithm for Global Optimizations of Inverse Problems,” IEEE Transactions on Magnetics, vol.

52, no. 3, pp. 1–4, Mar. 2016, doi: https://doi.org/10.1109/tmag.2015.2487678.

[75] A. A. Karim, N. A. Mat Isa, and W. H. Lim, “Modified Particle Swarm Optimization With

Effective Guides,” IEEE Access, vol. 8, pp. 188699–188725, 2020, doi:

https://doi.org/10.1109/ACCESS.2020.3030950.

[76] H. Cho, D. Kim, F. Olivera, and S. D. Guikema, “Enhanced speciation in Particle Swarm

Optimization for multi-modal problems,” European Journal of Operational Research, vol. 213, no.

1, pp. 15–23, Aug. 2011, doi: https://doi.org/10.1016/j.ejor.2011.02.026.

[77] R. Malik and T. Rahman, “New Particle Swarm Optimizer with Sigmoid Increasing Inertia

Weight,” citeseerx, vol. 2, no. 1, ttps://citeseerx.ist.psu.edu.

[78] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis, “Improving the

Particle Swarm Optimizer by Function ‘Stretching,’” Nonconvex Optimization and Its

Applications, pp. 445–457, 2001, doi: https://doi.org/10.1007/978-1-4613-0279-7_28.

[79] I. N. Trivedi, P. Jangir, A. Kumar, N. Jangir, and R. Totlani, “A Novel Hybrid PSO– WOA

Algorithm for Global Numerical Functions Optimization,” Advances in Computer and

Computational Sciences, pp. 53–60, Sep. 2017, doi: 10.1007/978-981-10-3773-3_6.

https://doi.org/10.1007/s11227-021-03773-w
https://doi.org/10.1109/access.2020.2976101
https://doi.org/10.1016/j.swevo.2018.01.011
https://doi.org/10.1016/j.ins.2018.08.049
https://doi.org/10.1007/s13042-020-01186-4
https://doi.org/10.1109/tmag.2015.2487678
https://doi.org/10.1109/ACCESS.2020.3030950
https://doi.org/10.1016/j.ejor.2011.02.026
https://citeseerx.ist.psu.edu/
https://doi.org/10.1007/978-1-4613-0279-7_28

171

[80] S. N. Chegini, A. Bagheri, and F. Najafi, “PSOSCALF: A new hybrid PSO based on Sine

Cosine Algorithm and Levy flight for solving optimization problems,” Applied Soft Computing,

vol. 73, pp. 697–726, Dec. 2018, doi: 10.1016/j.asoc.2018.09.019.

[81] G. Eappen and S. T., “Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive

radio network,” Physical Communication, vol. 40, p. 101091, Jun. 2020, doi:

10.1016/j.phycom.2020.101091.

[82] D. B. M. M. Fontes, S. M. Homayouni, and J. F. Gonçalves, “A hybrid Particle Swarm

Optimization and Simulated Annealing algorithm for the job shop scheduling problem with

transport resources,” European Journal of Operational Research, Sep. 2022, doi:

10.1016/j.ejor.2022.09.006.

[83] V. Yadav, B. V. Natesha, and R. M. R. Guddeti, “GA-PSO: Service Allocation in Fog

Computing Environment Using Hybrid Bio-Inspired Algorithm,” IEEE Xplore, Oct. 01, 2019.

https://ieeexplore.ieee.org/abstract/document/8929234/ (accessed Jun. 20, 2022).

[84] Q. Al-Tashi, S. J. Abdul Kadir, H. M. Rais, S. Mirjalili, and H. Alhussian, “Binary

Optimization Using Hybrid Grey Wolf Optimization for Feature Selection,” IEEE Access, vol.

7,pp. 39496–39508, 2019, doi: 10.1109/access.2019.2906757.

[85] A. M. S. Kumar, K. Parthiban, and S. Siva Shankar, “An efficient task scheduling in a cloud

computing environment using hybrid Genetic Algorithm - Particle Swarm Optimization (GA-

PSO) algorithm,” IEEE Xplore, Feb. 01, 2019.

https://ieeexplore.ieee.org/abstract/document/8908041 (accessed Jun. 20, 2022).

[86] X. Pan, L. Xue, Y. Lu, and N. Sun, “Hybrid Particle Swarm Optimization with Simulated

Annealing,” Multimedia Tools and Applications, Sep. 2018, doi: 10.1007/s11042-018-6602-4.

[87] A. Kumar, A. Ashok, and M. A. Ansari, “Brain Tumor Classification Using Hybrid Model

Of PSO And SVM Classifier,” 2018 International Conference on Advances in

Computing,Communication Control and Networking (ICACCCN), Oct. 2018, doi:

10.1109/icacccn.2018.8748787.

[88] M. Q. H. Abadi, S. Rahmati, A. Sharifi, and M. Ahmadi, “HSSAGA: Designation and

scheduling of nurses for taking care of COVID-19 patients using novel method of Hybrid Salp

Swarm Algorithm and Genetic Algorithm,” Applied Soft Computing, vol. 108, p. 107449, Sep.

2021, doi: 10.1016/j.asoc.2021.107449.

[89] M. Khamees, A. Albakry, and K. Shaker, “Multi-objective Feature Selection: Hybrid of Salp

 Swarm and Simulated Annealing Approach,” Communications in Computer and Information

Science, pp. 129–142, 2018, doi: 10.1007/978-3-030-01653-1_8.

[90] O. Udomkasemsub, K. Akkarajitsakul, and T. Achalakul, “Hybrid Moth-Flame and Salp

Swarm Optimization Algorithm,” International Journal of Modeling and Optimization, pp. 223–

229, Aug. 2019, doi: 10.7763/ijmo. 2019.v9.713.

172

[91] Z. Li, H. Yang, Z. Zhang, Y. Todo, and S. Gao, “Spherical Evolution Enhanced with Salp

Swarm Algorithm,” IEEE Xplore, Dec. 01,2020.

https://ieeexplore.ieee.org/abstract/document/9325748/ (accessed Jun. 20, 2022).

[92] M. Qaraad, S. Amjad, N. K. Hussein, and M. A. Elhosseini, “Large scale salp-based grey wolf

optimization for feature selection and global optimization,” Neural Computing and Applications,

vol. 34, no. 11, pp. 8989–9014, Feb. 2022, doi: 10.1007/s00521-022-06921-2.

[93] M. ElWakil, M. Gheith, and A. Eltawil, “A New Hybrid Salp Swarm-Simulated Annealing

Algorithm for the Container Stacking Problem,” Proceedings of the 9th International Conference

 on Operations Research and Enterprise Systems, 2020, doi: 10.5220/0008974700890099.

[94] S. Dhabal, R. Chakrabarti, N. S. Mishra, and P. Venkateswaran, “An improved image

denoising technique using differential evolution-based Salp Swarm Algorithm,” Soft Computing,

vol. 25, no. 3, pp. 1941–1961, Aug. 2020, doi: 10.1007/s00500-020-05267-y.

[95] L. Yi, X. Feng, X. Gao, L. Fan, H. Song, and P. Jiang, “A Task Scheduling Method for Edge

Computing in Intelligent Building System,” IEEE Xplore, Jul. 01, 2021.

https://ieeexplore.ieee.org/document/9588237 (accessed Nov. 16, 2022).

[96] K. Sörensen, “Metaheuristics-the metaphor exposed,” International Transactions in

Operational Research, vol. 22, no. 1, pp. 3–18, Feb. 2013, doi: 10.1111/itor.12001.

[97] D. P. Abreu, K. Velasquez, M. R. Miranda Assis, L. F. Bittencourt, M. Curado, E. Monteiro,

and E. Madeira, ‘‘A rank scheduling mechanism for fog environments,’’ in Proc. IEEE 6th Int.

Conf. Future Internet Things Cloud (FiCloud), Aug. 2018, pp. 363–369.

[98] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, ‘‘On QoS-aware scheduling of data

stream applications over fog computing infrastruc- tures,’’ in Proc. IEEE Symp.

Comput.Commun. (ISCC), Jul. 2015,pp. 271–276.

[99] Y.-C. Chen, Y.-C. Chang, C.-H. Chen, Y.-S. Lin, J.-L. Chen, and Y.-Y. Chang, ‘‘Cloud- fog

computing for information-centric Internet-of- Things applications,’’ in Proc. Int. Conf. Appl.

Syst. Innov. (ICASI), May 2017, pp. 637–640.

[100] S. Kabirzadeh, D. Rahbari, and M. Nickray, ‘‘A hyper heuristic algorithm for scheduling of

fog networks,’’ in Proc. 21st Conf. Open Innov. Assoc. (FRUCT), 2017, pp. 148–155.

[101] J. Wang and D. Li, ‘‘Task scheduling based on a hybrid heuristic algorithm for smart

production line with fog computing,’’ Sensors, vol. 19, no. 5,p. 1023, Feb. 2019.

[102] J. Ge, B. Liu, T. Wang, Q. Yang, A. Liu, and A. Li, ‘‘Q-learning based flexible task

scheduling in a global view for the Internet of Things,’’ Trans. Emerg. Telecommun. Technol., p.

e4111, Sep. 2020.

[103] D. I. G. Amalarethinam and F. K. M. Selvi, “A Minimum Makespan Grid Workflow

Scheduling algorithm,” IEEE Xplore, Jan. 01, 2012.

https://ieeexplore.ieee.org/abstract/document/6158777 (accessed Jul. 02, 2023).

173

[104] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow Scheduling Algorithms for Grid

Computing,” Studies in Computational Intelligence, pp. 173–214, doi:

https://doi.org/10.1007/978-3-540-69277-5_7.

[105] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, ‘‘Uncertainty-aware online scheduling for real-

time workflows in cloud service environment,’’ IEEE Trans. Services Comput., early access, Aug.

21, 2019, doi: 10.1109/TSC.2018.2866421.

[106] H.-Y. Wu and C.-R. Lee, ‘‘Energy efficient scheduling for heterogeneous fog computing

architectures,’’ in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2018,

pp. 555–560.

[107] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang, ‘‘DEBTS: Delay energy

balanced task scheduling in homogeneous fog networks,’’ IEEE Internet Things J., vol. 5, no. 3,

pp. 2094–2106, Jun. 2018.

[108] L. Yin, J. Luo, and H. Luo, ‘‘Tasks scheduling and resource allocation in fog computing

based on containers for smart manufacturing,’’ IEEE Trans. Ind. Informat., vol. 14, no. 10, pp.

4712–4721, Oct. 2018.

[109] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, ‘‘DATS: Dispersive stable task scheduling

in heterogeneous fog networks,’’ IEEE Internet Things J., vol. 6, no. 2, pp. 3423– 3436, Apr. 2019.

[110] G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, and Y. Yang, ‘‘DOTS: Delay- optimal task

scheduling among voluntary nodes in fog networks,’’ IEEE Internet Things J., vol. 6, no. 2, pp.

3533–3544, Apr. 2019.

[111] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Ylä- Jääski, ‘‘Folo: Latency

and quality optimized task allocation in vehicular fog computing,’’ IEEE Internet Things J., vol.

6, no. 3, pp. 4150–4161, Jun. 2019.

[112] G. L. Stavrinides and H. D. Karatza, ‘‘A hybrid approach to scheduling real-time IoT

workflows in fog and cloud environments,’’ Multimedia Tools Appl., vol. 78, no. 17, pp. 24639–

24655, Sep. 2019.

[113] H. R. Boveiri, R. Khayami, M. Elhoseny, and M. Gunasekaran, ‘‘An efficient swarm

intelligence approach for task scheduling in cloud-based Internet of Things applications,’’ J.

Ambient Intell. Humanized Comput., vol. 10, no. 9, pp. 3469–3479, Sep. 2019.

[114] N. Mohan and J. Kangasharju, ‘‘Edge-fog cloud: A distributed cloud for Internet of Things

computations,’’ in Proc. Cloudification Internet Things (CIoT), Nov. 2016, pp. 1–6.

[115] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam, ‘‘Deadline-aware task scheduling in

a tiered IoT infrastructure,’’ in Proc. GLOBECOM IEEE Global Commun. Conf., Dec. 2017, pp.

1–7.

[116] T. Choudhari, M. Moh, and T.-S. Moh, ‘‘Prioritized task scheduling in fog computing,’’ in

Proc. ACMSE Conf., 2018, pp. 1–8.

http://dx.doi.org/10.1109/TSC.2018.2866421

174

[117] S. Conti, G. Faraci, R. Nicolosi, S. A. Rizzo, and G. Schembra, “Battery Management in a

Green Fog-Computing Node: a Reinforcement-Learning Approach,” IEEE Access, vol. 5, pp.

21126–21138, 2017, doi: https://doi.org/10.1109/access.2017.2755588.

[118] Y. Yu, X. Bu, K. Yang, Z. Wu, and Z. Han, “Green Large-Scale Fog Computing Resource

Allocation Using Joint Benders Decomposition, Dinkelbach Algorithm, ADMM, and Branch-and-

Bound,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4106–4117, Jun. 2019, doi:

https://doi.org/10.1109/jiot.2018.2875587.

[119] A. Mebrek, L. Merghem-Boulahia, and M. Esseghir, “Efficient green solution for a balanced

energy consumption and delay in the IoT-Fog-Cloud computing,” IEEE Xplore, Oct. 01, 2017.

https://ieeexplore.ieee.org/document/8171359 (accessed Jun. 25, 2021).

[120] Atta-ur-Rahman, S. Dash, M. Ahmad, and T. Iqbal, “Mobile Cloud Computing: A Green

Perspective,” Lecture notes in networks and systems, pp. 523–533, Jan. 2021, doi:

https://doi.org/10.1007/978-981-33-6081-5_46.

[121] Y. Yu, X. Bu, K. Yang, and Z. Han, “Green Fog Computing Resource Allocation Using

Joint Benders Decomposition, Dinkelbach Algorithm, and Modified Distributed Inner Convex

Approximation,” IEEE Xplore, May 01, 2018.

https://ieeexplore.ieee.org/abstract/document/8422199 (accessed May 01, 2023).

[122] J. Das, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Spatio-Fog: A green and timeliness-

oriented fog computing model for geospatial query resolution,” Simulation Modelling Practice and

Theory, vol. 100, p. 102043, Apr. 2020, doi: https://doi.org/10.1016/j.simpat.2019.102043.

[123] Z. He, Y. Zhang, B. Tak, and L. Peng, “Green Fog Planning for Optimal Internet-of-Thing

Task Scheduling,” IEEE Access, vol. 8, pp. 1224–1234, 2020, doi:

https://doi.org/10.1109/ACCESS.2019.2961952.

[124] M.Castillo-Cara, E. Huaranga-Junco, M. Quispe-Montesinos, L. Orozco-Barbosa, and E. A.

Antúnez, “FROG: A Robust and Green Wireless Sensor Node for Fog Computing

Platforms,” Journal of Sensors, vol. 2018, p. e3406858, Apr. 2018, doi:

https://doi.org/10.1155/2018/3406858.

[125] M. Aldossary and H. A. Alharbi, “Towards a Green Approach for Minimizing Carbon

Emissions in Fog-Cloud Architecture,” IEEE Access, vol. 9, pp. 131720–131732, 2021, doi:

https://doi.org/10.1109/access.2021.3114514.

[126] R. Oma, S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa, “An energy-efficient

model for fog computing in the Internet of Things (IoT),” Internet of Things, vol. 1–2, pp. 14–26,

Sep. 2018, doi: https://doi.org/10.1016/j.iot.2018.08.003.

[127] U. M. Malik, M. A. Javed, S. Zeadally, and S. ul Islam, “Energy efficient fog computing for

6G enabled massive IoT: Recent trends and future opportunities,” IEEE Internet of Things Journal,

pp. 1–1, 2021, doi: https://doi.org/10.1109/jiot.2021.3068056.

https://doi.org/10.1109/access.2017.2755588
https://doi.org/10.1109/jiot.2018.2875587
https://doi.org/10.1007/978-981-33-6081-5_46
https://doi.org/10.1016/j.simpat.2019.102043
https://doi.org/10.1109/ACCESS.2019.2961952
https://doi.org/10.1155/2018/3406858
https://doi.org/10.1109/access.2021.3114514
https://doi.org/10.1016/j.iot.2018.08.003
https://doi.org/10.1109/jiot.2021.3068056

175

[128] Ryuji Oma, S. Nakamura, Dilawaer Duolikun, Tomoya Enokido, and M. Takizawa,

“Evaluation of an Energy-Efficient Tree-Based Model of Fog Computing,” Lecture notes on data

engineering and communications technologies, pp. 99–109, Sep. 2018, doi:

https://doi.org/10.1007/978-3-319-98530-5_9.

[129] U. Farooq, M. W. Shabir, M. A. Javed, and M. Imran, “Intelligent energy prediction

techniques for fog computing networks,” Applied Soft Computing, vol. 111, p. 107682, Nov.

2021, doi: https://doi.org/10.1016/j.asoc.2021.107682.

[130] S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi, A. Q. Lawey, and J. M. H. Elmirghani,

“Energy Efficiency of Fog Computing Health Monitoring Applications,” IEEE Xplore, Jul. 01,

2018. https://ieeexplore.ieee.org/abstract/document/8473698 (accessed May 01, 2023).

[131] E.-G. Talbi, Metaheuristics: From Design to Implementation. John Wiley & Sons, 2009.

[132] S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and Meta-Heuristic Algorithms

and Their Relevance to the Real World: A Survey,” INTERNATIONAL JOURNAL OF

COMPUTER ENGINEERING IN RESEARCH TRENDS, vol. 2, no. 5, 2015, Available:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=039da802e218c89a3c49e235

af8e555b2fdfa063

[133] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, “Minimizing cost and makespan for

workflow scheduling in cloud using fuzzy dominance sort based HEFT,” Future Generation

Computer Systems, vol. 93, pp. 278–289, Apr. 2019, doi: 10.1016/j.future.2018.10.046

[134] R. K. Naha, S. Garg, A. Chan, and S. K. Battula, “Deadline-based dynamic resource

allocation and provisioning algorithms in Fog-Cloud environment,” Future Generation Computer

Systems, vol. 104, pp. 131–141, Mar. 2020, doi: https://doi.org/10.1016/j.future.2019.10.018.

[135] S. Luke, “Essentials of Metaheuristics A Set of Undergraduate Lecture Notes by Second

Edition.” [Online]. Available: https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf.

[136] S. Kaul and Y. Kumar, “Nature-Inspired Metaheuristic Algorithms for Constraint Handling:

Challenges, Issues, and Research Perspective,” pp. 55–80, Jan. 2021, doi:

https://doi.org/10.1007/978-981-33-6710-4_3.

[137] I. Rahimi, T. Picard, A. Morabito, K. Pampalis, A. Abignano, and A. H. Gandomi,

“Comparison of Trajectory and Population-Based Algorithms for Optimizing Constrained Open-

Pit Mining Problem,” IEEE Xplore, Nov. 01, 2022.

https://ieeexplore.ieee.org/abstract/document/10068481/ (accessed May 20, 2023).

[138] S. Luke, “Essentials of Metaheuristics A Set of Undergraduate Lecture Notes by Second

Edition.” [Online]. Available: https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf.

https://doi.org/10.1007/978-3-319-98530-5_9
https://doi.org/10.1016/j.asoc.2021.107682
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=039da802e218c89a3c49e235af8e555b2fdfa063
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=039da802e218c89a3c49e235af8e555b2fdfa063
https://doi.org/10.1016/j.future.2019.10.018
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf
https://doi.org/10.1007/978-981-33-6710-4_3
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf

176

[139] R. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and

unconstrained optimization problems,” International Journal of Industrial Engineering

Computations, vol. 7, no. 1, pp. 19–34, 2016, Accessed: May 20, 2023. [Online]. Available:

http://growingscience.com/beta/ijiec/2072-jaya-a-simple-and-new-optimization-algorithm-for-

solving-constrained-and-unconstrained-optimization-problems.html

[140] P. M. Pardalos, O. A. Prokopyev, and Stanislav Busygin, “Continuous Approaches for

Solving Discrete Optimization Problems,” pp. 39–60, Jan. 2006, doi: https://doi.org/10.1007/0-

387-32942-0_2.

[141] M. Padberg, Linear Optimization and Extensions. Springer Science & Business Media, 2013

Introduction to the Theory of Nonlinear Optimization. Cham: Springer International Publishing,

Imprint Springer, 2020.

[142] Introduction to the Theory of Nonlinear Optimization. Cham: Springer
International Publishing, Imprint Springer, 2020.

[143] S. Luke, “Essentials of Metaheuristics A Set of Undergraduate Lecture Notes by Second

Edition.” [Online]. Available: https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf.

[144] A. Tam, “A Gentle Introduction to Particle Swarm Optimization,” Machine Learning

Mastery, Sep. 15, 2021. https://machinelearningmastery.com/a-gentle-introduction-to-particle-

swarm-optimization/.

[145] F. Marini and B. Walczak, “Particle Swarm Optimization (PSO). A tutorial,” Chemometrics

and Intelligent Laboratory Systems, vol. 149, pp. 153–165, Dec. 2015, doi:

https://doi.org/10.1016/j.chemolab.2015.08.020.

[146] Q. Bai, “Analysis of Particle Swarm Optimization Algorithm,” Computer and Information

Science, vol. 3, no. 1, Jan. 2010, doi: https://doi.org/10.5539/cis.v3n1p180.

[147] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp

Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Advances in

Engineering Software, vol. 114, pp. 163–191, Dec. 2017, doi: 10.1016/j.advengsoft.2017.07.002.

[148] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of Fog computing and its

security issues,” Concurrency and Computation: Practice and Experience, vol. 28, no. 10, pp.

2991–3005, Apr. 2015, doi: https://doi.org/10.1002/cpe.3485.

[149] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy, Survey and Future

Directions,” Internet of Things, pp. 103–130, Oct. 2017, doi: https://doi.org/10.1007/978-981-10-

5861-5_5.

[150] A. Yousefpour et al., “All one needs to know about fog computing and related edge

computing paradigms: A complete survey,” Journal of Systems Architecture, Feb. 2019, doi:

https://doi.org/10.1016/j.sysarc.2019.02.009.

http://growingscience.com/beta/ijiec/2072-jaya-a-simple-and-new-optimization-algorithm-for-solving-constrained-and-unconstrained-optimization-problems.html
http://growingscience.com/beta/ijiec/2072-jaya-a-simple-and-new-optimization-algorithm-for-solving-constrained-and-unconstrained-optimization-problems.html
https://doi.org/10.1007/0-387-32942-0_2
https://doi.org/10.1007/0-387-32942-0_2
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf
https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
https://doi.org/10.5539/cis.v3n1p180
https://doi.org/10.1002/cpe.3485
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1016/j.sysarc.2019.02.009

177

[151] What is Fog Computing? - Definition from WhatIs.com, “What is Fog Computing? -

DefinitionfromWhatIs.com,”IoTAgenda,2019.https://internetofthingsagenda.techtarget.com/defi

nition/fog-computing-fogging (accessed Nov. 13, 2019).

[152] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud Computing: An Overview,” Lecture Notes in

Computer Science, vol. 5931, pp. 626–631, 2009, doi: https://doi.org/10.1007/978-3-642-10665-

1_63.

[153] Mayuresh, “Top Fog Computing Applications: A Simple Guide For 2021.”

https://www.jigsawacademy.com/blogs/cloud-computing/fog-computing-applications (accessed

Feb. 23, 2022).

[154] J. Liu et al., “Secure intelligent traffic light control using fog computing,” Future Generation

Computer Systems, vol. 78, pp. 817–824, Jan. 2018, doi:

https://doi.org/10.1016/j.future.2017.02.017.

[155] B. Butler, “What is fog computing? Connecting the cloud to things,” Network World, Jan.

17, 2018. https://www.networkworld.com/article/3243111/what-is-fog-computing- connecting-

the-cloud-to-things.html (accessed Apr. 22, 2020).

[156] “Fog Computing - an overview | ScienceDirect Topics,”

www.sciencedirect.com.https://www.sciencedirect.com/topics/engineering/fog-computing

(accessed Feb. 23, 2022).

[157] T.-A. N. Abdali, R. Hassan, A. H. M. Aman, and Q. N. Nguyen, “Fog Computing

Advancement: Concept, Architecture, Applications, Advantages, and Open Issues,” IEEE Access,

vol. 9, pp. 75961–75980, 2021, doi: https://doi.org/10.1109/access.2021.3081770.

[158] D. Perrin, E. Perrin, B. Muirhead, M. Senior, and Betz, “INTERNATIONAL JOURNAL

OF INSTRUCTIONAL TECHNOLOGY DISTANCE LEARNING Volume 13 Number 9

Editorial Board Editor-in-Chief,” 2016. Available:

http://itdl.org/Journal/Sep_16/Sep16.pdf#page=53

[159] C. Zhu, W. Zhang, Y.-H. Chiang, N. Ye, L. Du, and J. An, “Software-Defined Maritime Fog

Computing: Architecture, Advantages, and Feasibility,” IEEE Network, vol. 36, no. 2, pp. 26–33,

Mar. 2022, doi: https://doi.org/10.1109/mnet.003.2100433.

[160] R. Z. Naeem, S. Bashir, M. F. Amjad, H. Abbas, and H. Afzal, “Fog computing in internet

of things: Practical applications and future directions,” Peer-to-Peer Networking and Applications,

vol. 12, no. 5, pp. 1236–1262, Mar. 2019, doi: https://doi.org/10.1007/s12083-019-00728-0.

[161] C. Zhang, “Design and application of fog computing and Internet of Things service platform

for smart city,” Future Generation Computer Systems, vol. 112, pp. 630–640, Nov. 2020, doi:

https://doi.org/10.1016/j.future.2020.06.016.

[162] “Fog Computing,” GeeksforGeeks, Apr. 29, 2020. https://www.geeksforgeeks.org/fog-

computing/ (accessed Jan. 25, 2021).

https://doi.org/10.1007/978-3-642-10665-1_63
https://doi.org/10.1007/978-3-642-10665-1_63
http://www.jigsawacademy.com/blogs/cloud-computing/fog-computing-applications
https://doi.org/10.1016/j.future.2017.02.017
http://www.networkworld.com/article/3243111/what-is-fog-computing-
http://www.sciencedirect.com/
http://www.sciencedirect.com/topics/engineering/fog-computing
http://itdl.org/Journal/Sep_16/Sep16.pdf#page=53
https://doi.org/10.1109/mnet.003.2100433
https://doi.org/10.1007/s12083-019-00728-0
https://doi.org/10.1016/j.future.2020.06.016
http://www.geeksforgeeks.org/fog-
http://www.geeksforgeeks.org/fog-

178

[163] S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: a review of current applications

and security solutions,” Journal of Cloud Computing, vol. 6, no. 1, Aug. 2017, doi:

https://doi.org/10.1186/s13677-017-0090-3.

[164] S. Askar, “Fog Computing Based IoT System: A Review,” Social Science Research

Network, Aug. 19, 2021. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3962996 (accessed

May 20, 2023).

[165] M. Rani, K. Guleria, and S. N. Panda, “Enhancing Performance of Cloud: Fog Computing

Architecture, Challenges and Open Issues,” IEEE Xplore, Sep. 01, 2021.

https://ieeexplore.ieee.org/abstract/document/9596498 (accessed May 20, 2023).

[166] P. Whig, S. Kouser, A. Velu, and R. R. Nadikattu, “Fog-IoT-Assisted-Based Smart

Agriculture Application,” www.igi-global.com, 2022. https://www.igi-global.com/chapter/fog-

iot-assisted-based-smart-agriculture-application/308114 (accessed May 20, 2023).

[167] “What does DDoS Mean? | Distributed Denial of Service Explained | Imperva,” Learning

Center. https://www.imperva.com/learn/ddos/denial-of-service/ (accessed Sep. 05, 2020).

[168] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense

mechanisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, p. 39, Apr.

2004, doi: https://doi.org/10.1145/997150.997156.

[169] J. Nazario, “DDoS attack evolution,” Network Security, vol. 2008, no. 7, pp. 7–10, Jul. 2008,

doi: https://doi.org/10.1016/s1353-4858(08)70086-2.

[170] “What is a DDoS Attack? DDoS Meaning,

Definition&Types,”Fortinet.https://www.fortinet.com/resources/cyberglossary/ddos-attack

(accessed Jan. 04, 2022).

[171] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statistical approaches to

DDoS attack detection and response,” IEEE Xplore, Apr. 01, 2003.

https://ieeexplore.ieee.org/abstract/document/1194894

[172] “What is a DDoS Attack? - DDoS Meaning,” www.kaspersky.co.in, Jan. 13, 2021.

https://www.kaspersky.co.in/resource-center/threats/ddos-attacks (accessed Nov. 28, 2021).

[173] N. Vlajic and D. Zhou, “IoT as a Land of Opportunity for DDoS Hackers,” Computer, vol.

51, no. 7, pp. 26–34, Jul. 2018, doi: https://doi.org/10.1109/mc.2018.3011046.

[174]]“DigitalAttackMap,”Digitalattackmap.com,2000.https://www.digitalattackmap.com/under

st anding-ddos/ (accessed Dec. 18, 2018).

[175] A. Praseed and P. S. Thilagam, “DDoS Attacks at the Application Layer: Challenges and

Research Perspectives for Safeguarding Web Applications,” IEEE Communications Surveys &

Tutorials, vol. 21, no. 1, pp. 661–685, 2019, doi: https://doi.org/10.1109/comst.2018.2870658.

https://doi.org/10.1186/s13677-017-0090-3
http://www.imperva.com/learn/ddos/denial-of-service/
https://doi.org/10.1145/997150.997156
https://doi.org/10.1016/s1353-4858(08)70086-2
http://www.fortinet.com/resources/cyberglossary/ddos-attack
https://ieeexplore.ieee.org/abstract/document/1194894
http://www.kaspersky.co.in/
http://www.kaspersky.co.in/resource-center/threats/ddos-attacks
https://doi.org/10.1109/mc.2018.3011046
http://www.digitalattackmap.com/underst
http://www.digitalattackmap.com/underst
https://doi.org/10.1109/comst.2018.2870658

179

[176] D. Boro and D. K. Bhattacharyya, “DyProSD: a dynamic protocol specific defense for high-

rate DDoS flooding attacks,” Microsystem Technologies, vol. 23, no. 3, pp. 593–611, May 2016,

doi: https://doi.org/10.1007/s00542-016-2978-0.

[177] S. Ramanathan, J. Mirkovic, M. Yu, and Y. Zhang, “SENSS Against Volumetric DDoS

Attacks,” Proceedings of the 34th Annual Computer Security Applications Conference, Dec. 2018,

doi: https://doi.org/10.1145/3274694.3274717.

[178] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, “Detecting DNS

Amplification Attacks,” Critical Information Infrastructures Security, pp. 185–196, 2008, doi:

https://doi.org/10.1007/978-3-540-89173-4_16.

[179] S. Jain, “Markov chain model and its application,” Computers and Biomedical Research,

vol. 19, no. 4, pp. 374–378, Aug. 1986, doi: https://doi.org/10.1016/0010-4809(86)90049-2

[180] S. Date, “A Beginner’s Guide to Discrete Time Markov Chains,” Medium, Oct. 29, 2021

https://towardsdatascience.com/a-beginners-guide-to-discrete-time-markov-chains-d5be17cf0e12

(accessed Feb. 23, 2022).

[181] “IntroductiontoDiscreteMarkovChains,”stephens999.github.io.

https://stephens999.github.io/fiveMinuteStats/markov_chain_discrete_intro.html (accessed Feb.

23, 2022).

[182] “Lecture 3: Discrete-Time Markov Chain -Part I.” Accessed: Apr. 18, 2021. [Online].

Available: http://faculty.washington.edu/yenchic/18A_stat516/Lec3_DTMC_p1.pdf.

[183] G. Yu, J. Hu, C. Zhang, L. Zhuang, and J. Song, “Short-term traffic flow forecasting based

on Markov chain model,” IEEE Xplore, Jun. 01, 2003.

https://ieeexplore.ieee.org/abstract/document/1212910 (accessed May 20, 2023).

[184] “Discrete-TimeChains,” www.randomservices.org.

https://www.randomservices.org/random/markov/Discrete.html (accessed Feb. 23, 2022).

[185] M. Moh, T.-S. Moh, and M. Surmenok, “Dynamic Resource Management of Green Fog

Computing for IoT Support,” IEEE Xplore, Oct. 01, 2022.

https://ieeexplore.ieee.org/abstract/document/10010417 (accessed May 20, 2023).

[186] S. Saha and A. Mitra, “Towards Exploration of Green Computing in Energy Efficient

Optimized Algorithm for Uses in Fog Computing,” pp. 628–636, Jan. 2019, doi:

https://doi.org/10.1007/978-981-13-8461-5_72.

[187] A. Gupta and S. K. Gupta, “A survey on green unmanned aerial vehicles‐based fog

computing: Challenges and future perspective,” Transactions on Emerging Telecommunications

Technologies, Jul. 2022, doi: https://doi.org/10.1002/ett.4603.

[188] M. R. Anawar, S. Wang, M. Azam Zia, A. K. Jadoon, U. Akram, and S. Raza, “Fog

Computing: An Overview of Big IoT Data Analytics,” Wireless Communications and Mobile

Computing, vol. 2018, pp. 1–22, 2018, doi: https://doi.org/10.1155/2018/7157192.

https://doi.org/10.1007/s00542-016-2978-0
https://doi.org/10.1145/3274694.3274717
https://doi.org/10.1007/978-3-540-89173-4_16
https://doi.org/10.1016/0010-4809(86)90049-2
http://faculty.washington.edu/yenchic/18A_stat516/Lec3_DTMC_p1.pdf
http://www.randomservices.org/
http://www.randomservices.org/random/markov/Discrete.html
https://doi.org/10.1007/978-981-13-8461-5_72
https://doi.org/10.1002/ett.4603
https://doi.org/10.1155/2018/7157192

180

[189] F. Y. Okay and S. Ozdemir, “A fog computing based smart grid model,” IEEE Xplore, May

01, 2016. https://ieeexplore.ieee.org/abstract/document/7746062 (accessed Jan. 06, 2021).

[190] Faris. A. Almalki et al., “Green IoT for Eco-Friendly and Sustainable Smart Cities: Future

Directions and Opportunities,” Mobile Networks and Applications, Aug. 2021, doi:

https://doi.org/10.1007/s11036-021-01790-w.

[191] Y.-S. Zhao and H.-C. Chao, “A Green and Secure IoT Framework for Intelligent Buildings

based on Fog

[192] Computing,” Journal of Internet Technology, vol. 19, no. 3, pp. 837–843, May 2018,

Accessed: May 20, 2023. [Online]. Available: https://jit.ndhu.edu.tw/article/view/1701

[193] Ahmed, M., Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, S. (2017). Security in

fog computing: Features, challenges, and solutions. IEEE Communications Magazine, 55(4), 91-

97.

[194] M. Safari and R. Khorsand, “Energy-aware scheduling algorithm for time-constrained

workflow tasks in DVFS-enabled cloud environment,” Simulation Modelling Practice and Theory,

vol. 87, pp. 311–326, Sep. 2018, doi: https://doi.org/10.1016/j.simpat.2018.07.006.

[195] K. Shao, Y. Song, and B. Wang, “PGA: A New Hybrid PSO and GA Method for Task

Scheduling with Deadline Constraints in Distributed Computing,” Mathematics, vol. 11, no. 6, p.

1548, Jan. 2023, doi: https://doi.org/10.3390/math11061548.

[196] N. Arora and R. K. Banyal, “Workflow scheduling using Particle Swarm Optimization and

gray wolf optimization algorithm in cloud computing,” Concurrency and Computation: Practice

and Experience, vol. 33, no. 16, Mar. 2021, doi: https://doi.org/10.1002/cpe.6281.

[197] V. De Maio and D. Kimovski, "Multi-objective scheduling of extreme data scientific

workflows in Fog," Future Generation Computer Systems, vol. 106, pp. 171-184, 2021.

[198] G. L. Stavrinides and H. D. Karatza, "A hybrid approach to scheduling real-time IoT

workflows in fog and cloud environments," Multimedia Tools and Applications, vol. 78,

pp.24639- 24655, 2019

[199] J. C. Bansal, “Particle Swarm Optimization,” Studies in Computational Intelligence, pp. 11–

23, Jun. 2018, doi: https://doi.org/10.1007/978-3-319-91341-4_2.

[200] Ah. E. Hegazy, M. A. Makhlouf, and Gh. S. El-Tawel, “Improved Salp Swarm Algorithm

for feature selection,” Journal of King Saud University - Computer and Information Sciences, Nov.

2018, doi: https://doi.org/10.1016/j.jksuci.2018.06.003.

[201] A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic

Review,” Archives of Computational Methods in Engineering, vol. 29, no. 5, pp. 2531–2561, Apr.

2022, doi: https://doi.org/10.1007/s11831-021-09694-4.

[202] M. Zivkovic, C. Stoean, A. Chhabra, N. Budimirovic, A. Petrovic, and N. Bacanin, “Novel

https://doi.org/10.1007/s11036-021-01790-w
https://jit.ndhu.edu.tw/article/view/1701
https://doi.org/10.3390/math11061548
https://doi.org/10.1002/cpe.6281
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1016/j.jksuci.2018.06.003
https://doi.org/10.1007/s11831-021-09694-4

181

Improved Salp Swarm Algorithm: An Application for Feature Selection,” Sensors, vol. 22, no. 5,

p. 1711, Feb. 2022, doi: https://doi.org/10.3390/s22051711.

[203] X. Ma, H. Gao, H. Xu, and M. Bian, “An IoT-based task scheduling optimization scheme

considering the deadline and cost-aware scientific workflow for cloud computing,” EURASIP

Journal on Wireless Communications and Networking, vol. 2019, no. 1, Nov. 2019, doi:

https://doi.org/10.1186/s13638-019-1557-3.

[204] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, “Characterizing

and profiling scientific workflows,” Future Generation Computer Systems, vol. 29, no. 3, pp. 682–

692, Mar. 2013, doi: https://doi.org/10.1016/j.future.2012.08.015.

[205] Gomez-Exposito, A., Conejo, A.J. and Cañizares, C. eds., 2018. Electric energy systems:

analysis and operation. CRC press.

[206] Shaw, B., Ghoshal, S., Mukherjee, V. and Ghoshal, S.P., 2011. Solution of economic load

dispatch problems by a novel seeker optimization algorithm. International Journal on Electrical

Engineering and Informatics, 3(1), p.26.Walters, D.C. and Sheble, G.B., 1993. Genetic

[207] S. Deb, D. S. Abdelminaam, M. Said, and E. H. Houssein, “Recent Methodology-Based

Gradient-Based Optimizer for Economic Load Dispatch Problem,” IEEE Access, vol. 9, pp.

44322–44338, 2021, doi: https://doi.org/10.1109/access.2021.3066329.

[208] A. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Implementation of flower pollination

algorithm for solving economic load dispatch and combined economic emission dispatch problems

in power systems,” Energy, vol. 101, pp. 506–518, Apr. 2016, doi:

https://doi.org/10.1016/j.energy.2016.02.041.

[209] N. Noman and H. Iba, “Differential evolution for economic load dispatch

problems,” Electric Power Systems Research, vol. 78, no. 8, pp. 1322–1331, Aug. 2008, doi:

https://doi.org/10.1016/j.epsr.2007.11.007

[210] H. M. Dubey, B. K. Panigrahi, and M. Pandit, “Bio-inspired optimisation for economic load

dispatch: a review,” International Journal of Bio-Inspired Computation, vol. 6, no. 1, p. 7, 2014,

doi: 10.1504/ijbic.2014.059967.

[211] M. Kumar and J. S. Dhillon, “Hybrid artificial algae algorithm for economic load dispatch,”

Applied Soft Computing, vol. 71, pp. 89–109, Oct. 2018, doi: 10.1016/j.asoc.2018.06.035.

[212] S. R. Spea, “Solving practical economic load dispatch problem using crow search

algorithm,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no.

4,p. 3431, Aug. 2020, doi: 10.11591/ijece.v10i4.pp3431-3440.

[213] K. B. Sahay, A. Sonkar, and A. Kumar, “Economic Load Dispatch Using Genetic Algorithm

 Optimization Technique,” IEEE Xplore, Oct. 01, 2018.

https://ieeexplore.ieee.org/abstract/document/8635729 (accessed Jun. 26, 2022).

[214] M. Ahmad, W. Ali, H. Farooq, M. Jamil, M. Ali, and A. U. Rehman, “Solving the Problem

https://doi.org/10.3390/s22051711
https://doi.org/10.1186/s13638-019-1557-3
https://doi.org/10.1109/access.2021.3066329
https://doi.org/10.1016/j.energy.2016.02.041
https://doi.org/10.1016/j.epsr.2007.11.007

182

of Economic Load Dispatch for a Small Scale Power System Using a Novel HybridPSO-GSA

 Algorithm,” IEEE Xplore, Oct. 01, 2018.

https://ieeexplore.ieee.org/abstract/document/8706897 (accessed Jun. 26, 2022).

[215] M. Pürlü and B. E. Türkay, “Dynamic Economic Dispatch with Valve Point Effect by Using

 GA and PSO Algorithm,” IEEE Xplore, Oct. 01, 2018.

https://ieeexplore.ieee.org/abstract/document/8751770 (accessed Jun. 26, 2022).

[216] H. MERAH, A. GACEM, D. BENATTOUS, Y. LABBI, and O. P. MALIK,

“SolvingEconomic Dispatch Problem Using a New Hybrid PSO-ALO Algorithm,” IEEE Xplore,

May 01, 2020. https://ieeexplore.ieee.org/abstract/document/9151630 (accessed Jun. 26, 2022).

[217] B. Rajashree and P. Upadhyay, “PSO approach for ELD problem: A review,” IEEE Xplore,

Dec. 01, 2016. https://ieeexplore.ieee.org/abstract/document/8009123 (accessed Nov. 19,2022).

[218] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary programming techniques

for economic load dispatch,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 1, pp.

83–94, Feb. 2003, doi: https://doi.org/10.1109/tevc.2002.806788.

[219] S. Deb, E. H. Houssein, M. Said, and D. S. Abdelminaam, “Performance of Turbulent Flow

of Water Optimization on Economic Load Dispatch Problem,” IEEE Access, vol. 9, pp. 77882–

77893, 2021, doi: https://doi.org/10.1109/access.2021.3083531.

[220] V. Rao and C. District, “ECONOMIC LOAD DISPATCH Chittoor District, A P, India.”

Accessed:Jun.16,2022.[Online].Available:https://jntua.ac.in/gate-online

classes/registration/downloads/material/a159041324364.pdf

[221] M. Khishe and M. R. Mosavi, “Chimp optimization algorithm,” Expert Systems with

Applications, vol. 149, p. 113338, Jul. 2020, doi: https://doi.org/10.1016/j.eswa.2020.113338.

[222] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic optimization technique for solving

single-objective, discrete, and multi-objective problems,” Neural Computing and Applications, ol.

27, no. 4, pp. 1053–1073, May 2015, doi: https://doi.org/10.1007/s00521-015-1920-1.

[223] Gaurav and J. Shrivastava, “Analysis of Economic Load Dispatch & Unit Commitment

Using Dynamic Programming,” International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering (An ISO, vol. 3297, 2007, doi:

10.15662/ijareeie.2015.0406103.

[224] J. Cuzick, “A wilcoxon-type test for trend,” Statistics in Science, vol. 4, no. 1, pp. 87–90,

Jan. 1985, doi: https://doi.org/10.1002/sim.4780040112.

https://doi.org/10.1109/tevc.2002.806788
https://jntua.ac.in/gate-online%20classes/registration/downloads/material/a159041324364.pdf
https://jntua.ac.in/gate-online%20classes/registration/downloads/material/a159041324364.pdf
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1002/sim.4780040112

183

Appendix

This appendix explores a modified, tuned, and simplified version of the proposed algorithm

employed to address the problem of Economic Load Dispatch. The reason for selecting a modified

version of the algorithm for ELD is based on its proven superior efficacy when compared to the

previous scheme. The new version has been modified to better accommodate the requirements and

characteristics of the ELD problem, leading to improved optimization results. The appendix

presents in-depth explanations of the methodology, experimental outcomes, and a conclusive

evaluation of the algorithm's performance in addressing the ELD problem.

184

Appendix A: Introduction

Power systems might include different generating units such as thermal, hydro, nuclear, wind,

steam, etc. Engineers are constantly confronted with the problem of Economic Load Dispatch

(ELD), which determines the optimal output of the number of generating units to obtain the

required system load at the lowest possible cost. As a result, effective solutions to the ELD problem

would result in enormous economic benefits for both the power generation industry and end users

[205].

Over the years, different classical and mathematical optimization techniques have been used to

tackle ELD. However, due to the non-linear features of the generators and the non-smooth, non-

differential, and non-convex features of the cost function, these methods are not successful in

doing so in an efficient and accurate manner. On the other hand, metaheuristic algorithms with a

variety of constraints and/or multiple objectives are very popular to solve ELD [206-209].

However, when dealing with large-scale economic load dispatch problems, metaheuristic

algorithms suffer from the local optima issue. The issue is having the flaw of "premature

convergence", which is the probability of becoming trapped in local optima and hence unable to

locate the global optimum. To address this problem, a simplified version of SSPSO is proposed.

The proposed algorithm shows superior results compared to several well-known and widely used

algorithms in the literature.

The justification for adopting a modified version of the original technique for the ELD problem is

that it has been noted to offer better outcomes than the initial version. The updated version of the

algorithm does not require the particles to exchange their best solutions in every round. This update

is specifically geared to the features of the ELD problem, in which the updated technique is

superior in identifying optimum load dispatch solutions.

185

Nevertheless, it is important to acknowledge that the updated version exhibits poor performance

when employed for scheduling tasks in a multi-fog environment. The reason for this is the variation

in requirements and structure between the multi-fog environment and the ELD problem.

Consequently, the initial version of the solution exchange mechanism between PSO and SSA was

specifically developed to tackle the workflow scheduling challenge. To attain optimum

performance, metaheuristic algorithms' nature usually involves adapting and fine-tuning the

algorithm for various challenging domains.

186

Appendix B: Literature Review

An in-depth review of essential research and studies on Economic Load Dispatch (ELD) is

presented in this section.

Over the past ten years, bio-inspired optimization BIO techniques have demonstrated promising

performance on such limited ELD challenges, replacing many conventional optimization

approaches that have been developed to handle ELD problems. In [2010], the authors made an

effort to offer a thorough analysis of how BIO algorithms have been used to resolve some of the

most challenging real-world ELD issues.

In order to address the economic load dispatch problem, a simplex search method (SSM) that

combines a hybrid artificial algae algorithm (HAAA) and the artificial algae algorithm (AAA)

presented in [211]. With the use economic load dispatch issues from CEC'05 test functions, the

performance of HAAA is assessed. The simulation findings support the claim that the suggested

method outperforms or yields results on par with those of the well-known and widely used

techniques. In [212], the authors proposed a novel method to solve the economic load dispatch

challenge using an optimization technique called the crow search algorithm. The result of the

simulations and the statistical analysis demonstrate how effective the suggested crow search

algorithm is. The simulation results are also contrasted with those of other published algorithms.

The findings of the comparison show that the suggested algorithm is effective at handling the non-

convex practical economic load dispatch problem and provides reasonable quality solutions.

In [213], the authors proposed a hybridized genetic algorithms and simulated algorithms. Then

they tested on an IEEE 30 bus system and a 20-unit generator system. In [214], the authors covered

187

the convex Economic Load Dispatch (ELD) problem for a 3-Generator, 5-Bus system that is

subject to equality and inequality constraints. Particle Swarm Optimization (PSO), Gravitational

Search Algorithm (GSA), and a hybrid of Particle Swarm Optimization and Gravitational Search

Algorithm (hybrid PSO-GSA) are discretely modelled in MATLAB to find the answer to this issue.

The fundamental idea behind combining PSO and GSA is to create an algorithm that

simultaneously makes use of the local search functionality of GSA and the global search

functionality of PSO, making the algorithm speedy and robust in nature.

In order to address the economic load dispatch (ELD) problem, a novel hybridized Genetic

Algorithm (GA) and Particle Swarm Optimization (PSO) techniques introduced in [215]. The basic

goal of ELD is to produce power at the lowest possible cost while still meeting the diverse load

demands that arise during each hour. The algorithms applied on two test systems while accounting

for transmission losses. The first of the chosen systems is a three-unit test system, and the second

is a ten-unit system that takes the influence of the valve point into account. In comparison to other

methods utilized in the literature, simulation results applied to the test systems demonstrate that

the two algorithms obtained optimal and dependable results.

In [216], the authors solved the economic dispatch issue (ED) problem by applying a new hybrid

Particle Swarm Optimization and ant lion algorithm (Hybrid PSO-ALO) while taking into account

the constraints on generator real power production and power loss in transmission. In hybrid ALO-

PSO, individuals of a new generation are produced by various PSO and ALO techniques, enabling

the emergence of a superior and new population. By using it on several test networks of 6 and 10

generators, the efficacy of this hybrid technique is investigated and proven. The outcomes show

that, in comparison to other heuristic algorithms in the current literature, the suggested hybrid

PSO-ALO performs better and provides a superior solution.

188

The cost of producing electricity is impacted by the rise in real power demand on the power

system's distribution side. The major goal is to employ an intelligent technique to schedule the

overall demand across all of the units in a thermal plant with the lowest possible fuel cost. There

are numerous established and sophisticated methods for the efficient dispatch of thermal units.

Because of their ease of use, intelligent approaches are increasingly important in many applications

nowadays. In [217], the authors applied Particle Swarm Optimization (PSO) to 3 and 6 unit test

cases, and the results are compared to those of other methods. When compared to other intelligent

approaches that are already in use, PSO is one of the simple to use intelligent strategies.

189

Appendix C: Underlying Concept and Theories

This section provides the relevant background knowledge on Economic Load Dispatch (ELD) and

explores the formulas and algorithms, such as Chimp and Dragonfly algorithms, that have been

compared with the proposed method. "Economic Load Dispatch" describes a situation in which

the generator's real and reactive powers vary within predetermined bounds and the load demand is

satisfied with reduced fuel use [218]. The magnitude of the electric power system is expanding

swiftly to fulfill the demand for energy. Due to the interconnectivity of the power system, several

power plants are linked together in parallel to meet the system load. It becomes necessary to run

the plant units more efficiently [219].

Figure C1. Economic Load Dispatch

The economic scheduling of generators strives to ensure that the best mix of generators connected

to the system is available at all times to meet the load demand. The economic load dispatch

distributes the load among the parallel generating units; refer to figure C1, in such a way that the

G1

G2

G3

Gn

PD

Power Demand

P
o

w
er

 G
en

er
at

o
rs

190

overall cost of supplying is reduced. It also meets the system's minute-by-minute requirements

[220]. The nonlinear character of the issue justifies this; refer to figure C2. It is necessary to use

methods that do not impose restrictions on the fuel-cost curves' form.

Figure C2. The nonlinear nature of ELD problem

Problem formulation for Economic Load Dispatch

This section concentrates on providing the mathematical formulation for the ELD problem in the

context of the proposed system implemented to the ELD problem. The purpose of this formulation

is to reduce the total fuel cost associated with thermal generators by identifying the optimal power

generation allocation that results in the lowest possible total cost. ELD can be expressed

mathematically, as illustrated in equation (C1).

N

F(Pg) = ∑(aiP2
gi + biPgi + ci)

 i=1

(C1)

(𝑃𝑔) is the total cost required by the units; N is the number of generator units used in the system;

𝑃𝑔𝑖 is the power output for the 𝑖𝑡ℎ generator; 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are cost coefficients for 𝑖𝑡ℎ generator.

This formula is subject to equality and inequality constraints such as Power Balance Constraints

and Generator Limit Constraint:

Fu
el

 C
o

st

Power Output

191

A. Power Balance Constraints (Equality Constraints): ignoring the transmission losses, the total

generation should be equal to the total power demand, as shown in equation (C2):

𝑁

∑ 𝑃𝑔𝑖 − 𝑃𝐷 = 0

𝑖=1

 (C2)

Where, 𝑃𝐷is the total load demand of the system.

B. Generator Limit Constraint (Inequality Constraints): generating power from each unit should be

within its minimum and maximum power limits, as shown in equation (C3):

𝑃𝑔𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖,𝑚𝑎𝑥 (C3)

Selected Algorithms for Comparison With ELD

This section of the appendix provides an overview of two recent and well-known algorithms,

known as the Chimp and Dragonfly. The proposed algorithm will be evaluated against the known

algorithms in Appendix E. To allow for meaningful evaluation, a thorough understanding of their

mathematical models and how these algorithms work is presented below.

1. Chimp Optimization Algorithm (ChOA)

The Chimp is an optimization algorithm that is motivated by the behavior and social structure of

chimpanzees, a species that shares a close evolutionary relationship with human beings [221]. The

algorithm employs the observed features found in chimpanzee colonies as a basis for constructing

a population-based methodology aimed at addressing intricate optimization problems.

Scientific studies have demonstrated that chimpanzees possess a brain-to-body ratio (BBR)

192

comparable to that observed in humans and dolphins, a characteristic often linked to mammalian

intelligence. The observed similarity between human beings and chimpanzees can be attributed to

their substantial genetic overlap, which can be traced back to a shared ancestor species that existed

decades ago.

Chimpanzees exhibit a social structure known as fission-fusion societies, characterized by

dynamic changes in the population size and composition of their colonies as individuals navigate

their surroundings. Considering the aforementioned dynamic composition of the group, the Chimp

presents the notion of autonomous groups. Each individual group within the algorithm

autonomously investigates the search space, utilizing its unique strategy. Although there may be

variations in abilities and intelligence among individuals within each group, they actively

contribute to the collective as members of the colony, employing their distinct abilities in specific

circumstances.

They hunt not just for food, but also for social benefits such as coalitionary support, grooming, or

sexual incentive. Chimpanzees hunt for a variety of reasons, including those listed above.

Chimpanzees are distinguished from other social predators by the presence of a social incentive

that has a direct influence on their hunting behavior. All of the chimps may engage in disorderly

behavior during the last phase of the hunting process because they have abandoned their individual

responsibilities in order to compete for the meat.

During both the exploration and the exploitation stages, the process of the prey being driven and

hunted is represented by the mathematical model denoted by the equation (C4).

 𝑑 = |𝑐 ∗ 𝑥_𝑝𝑟𝑒𝑦(𝑡) − 𝑚 ∗ 𝑥_𝑐ℎ𝑖𝑚𝑝(𝑡)| (C4)

From above equation, 𝑑 stands for the displacement vector, 𝑥_𝑝𝑟𝑒𝑦(𝑡) for the prey's position at

193

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡, and 𝑥_𝑐ℎ𝑖𝑚𝑝(𝑡) for a chimpanzee's position at iteration t. The effect of the prey's

position on the displacement vector is calculated using the coefficient 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑐 𝑎𝑛𝑑 𝑚. A

positive magnitude is guaranteed by the absolute value operation.

 𝑥_𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = 𝑥_𝑝𝑟𝑒𝑦(𝑡) − 𝑎 ∗ 𝑑 (C5)

Equation (C5) uses the location of the prey and the derived displacement vector to update the

chimpanzee's position for the following 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑡 + 1). The chimpanzee's 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 or

movement speed is controlled by the 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎.

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑎, 𝑚, 𝑎𝑛𝑑 𝑐 are calculated as follows:

 𝑎 = 2 ∗ 𝑓 ∗ 𝑟1 − 𝑓 (C6)

Using a random 𝑣𝑒𝑐𝑡𝑜𝑟 𝑟1 and a 𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓, the coefficient vector 𝑎 is calculated. In both

the exploration and exploitation phases, the 𝑠𝑐𝑎𝑙𝑎𝑟 factor 𝑓 undergoes a non-linear reduction from

2.5 𝑡𝑜 0 during the course of the iteration process.

 𝑐 = 2 ∗ 𝑟2 (C7)

vector 𝑐 is determined by multiplying a random 𝑣𝑒𝑐𝑡𝑜𝑟 𝑟2 𝑏𝑦 𝑎 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 2.

 𝑚 = 𝐶ℎ𝑎𝑜𝑡𝑖𝑐_𝑣𝑎𝑙𝑢𝑒 (C8)

The impact of sexual drive on the hunting process is represented by 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚.

It is a chaotic vector that was determined by using different 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 maps.

These equations incorporate variables like sexual drive and chaotic behavior and take into account

the randomness of the coefficient vectors and the dynamic character of the hunting activity. Based

on the issue at hand and the intended behavior of the Chimp Optimization Algorithm, the precise

194

implementation of the scalar factor f, the 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑟1 𝑎𝑛𝑑 𝑟2, and the calculation of the

chaotic vector 𝑚 can be chosen.

2. Dragonfly Algorithm

The Dragonfly Algorithm (DA) is derived from the collective behaviors exhibited by both static

and dynamic swarms. The aforementioned behaviors exhibit strong similarities to the exploration

and exploitation phases observed in the context of optimization through meta-heuristics.

Dragonflies demonstrate a static swarm behavior characterized by the formation of sub-swarms

and the subsequent exploration of various regions, aligning with what is commonly referred to as

the exploration phase [222]. On the contrary, during the exploitation phase, dragonflies exhibit a

behavior of flying in larger swarms that follow a predetermined direction.

The DA algorithm involves three basic rules suggested by Reynold for insect swarming, namely

separation, alignment, and cohesion, along with two supplementary concepts: desire for sources

of food and disengagement from enemies. This algorithm aims to imitate the swarming behavior

observed in dragonflies. The above five principles enable the algorithm to accurately reproduce

the behavior exhibited by dragonflies within dynamic and static swarms.

The phase vector and the location vector are the two primary vectors incorporated by the algorithm,

which is an extension of the Particle Swarm Optimization (PSO) algorithm. The phase vector

denotes the magnitude and direction of displacement, whereas the location vector records the

current spatial coordinates of the dragonflies. The fundamental equations that control such vectors

can be expressed as follows:

∆𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝐼 + 𝑒𝐸𝐼) + 𝑤∆𝑋𝑡 (C9)

195

In this context, the variable 𝑠 represents the weight assigned to separation. The variable "𝑆𝑖"

denotes the separation of the 𝑖 − 𝑡ℎ individual, while "𝑎" represents the alignment weight. The

variable "𝐴𝑖" signifies the alignment of the 𝑖 − 𝑡ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, and "𝑐" indicates the cohesion

weight. The variable "𝐶𝑖" represents the cohesion of the i-th individual. Additionally, "𝑓"

represents the food factor, "𝐹𝑖" denotes the food source of the 𝑖 − 𝑡ℎ individual, "𝑒" represents the

enemy factor, and "𝐸𝑖" represents the position of the enemy for the 𝑖 − 𝑡ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙. The

variable "𝑤" represents the inertia weight, and "𝑡" represents the iteration counter.

196

Appendix D: The Proposed Algorithm

This section presents a concise, step-by-step explanation of the proposed algorithm and its ability

to find the global solution.

As shown in figure (1), the algorithm takes the following steps to find the global solution:

1. Generate the initial population randomly

2. Calculate the fitness function for the agents and save the best agent as the gbest.

3. If the iteration number was equal to the multiples of number 7 then, equally divide the

population into PSO and SSA subpopulations. Otherwise, increase or decrease the

subpopulations according to the performance of PSO and SSA algorithms.

4. Run PSO and SSA algorithms for the PSO and SSA subpopulations

5. While the maximum iteration is not reached, repeat steps 2 to 6. Otherwise terminate the

program.

197

Figure D1. Flowchart of the proposed algorithm for ELD

Calculate the fitness

function for all the

agents

If Iter

%7=0

Yes

Divide the population into

two equally subpopulations

If PSO_Gbest
<

SSA_Gbest

Start

Generate the initial

population

No No

Increase SSA

subpopulation

 Yes

Increase PSO

subpopulation

Run PSO algorithm Run SSA algorithm

Maximum

Iteration

reached?

Yes
Stop

No

198

A complete list of the parameters used in the proposed system is provided in Table D1. These

variables are essential in determining how the algorithm behaves and performs. Key information

is included in the table, including population size, agent size, power demand, and the number of

units (generators) participating. To guarantee the algorithm operates optimally and solves the given

problem effectively, each parameter has been carefully chosen and modified.

Table D1. List of parameters

Parameters Description

Number of iterations 300

Population size 30 agents

Datasets 140, 280 and 580 units (generators)

Power Demand 10500 for 140 units, 2000 for 280 units and 4000 for 560 units

199

Appendix E: Results and Discussions

The efficacy of the proposed algorithm is assessed through a comparative analysis with both the

Chimp and the Dragonfly algorithms. The Chimp has recently garnered attention due to its

exceptional performance in a range of optimization problems. Chimp, being one of the most recent

algorithms developed, integrates novel approaches and methods in order to attain efficient

solutions.

In contrast, the Dragonfly Algorithm (DA) is a widely recognized and robust optimization

algorithm that is relatively new in its development. It demonstrates distinct static and dynamic

stages, which can be likened to the exploration and exploitation stages observed in metaheuristic

optimization. During the static stage, dragonflies engage in the formation of sub-swarms and

undertake exploration of diverse regions. Conversely, during the dynamic stage, they navigate

through the air in larger swarms, adhering to a predetermined direction. Appendix C contains more

information on both algorithms. Because the proposed algorithm hybridizes the SSA and PSO, it

is also compared to their original counterparts.

For this work, three dataset instances are taken from the Economic Load Dispatch Test Systems

Repository [223]. The instances are 140-unit, 280-unit, and 560-unit generating models. The

proposed algorithm was compared with PSO, SSA, and two other powerful algorithms in the

literature, which were the Chimp Optimization Algorithm and the Dragonfly Algorithm. The

comparison results of the algorithms for all the datasets are presented in tables (E1, E2 and E3) in

terms of mean. The algorithms were ran 30 times for each dataset instance. The number of search

agents and iterations were always 30 and 500, respectively. The average number shows the cost of

the generators. To assign a currency value, such as USD or GBP, multiply the average cost by a

conversion factor. The power demand represents the desired amount of electricity to be produced

200

by the generators. The unit of power demand can vary and might be expressed

in amperes or megawatts.

Table E1. The comparison results of the proposed algorithms with its competitors

for 140 unit

Datasets

Algorithms

140- unit generating models

Power Demand: 10500

Average

SSPSO 1.382e+08

PSO 8.202e+09

SSA 1.320e+09

DA 5.357e+09

Chimp 1.590e+08

Table E2. The comparison results of the proposed algorithms with its competitors

for 280 unit

Datasets

Algorithms

280- unit generating models

Power Demand: 20000

Average

SSPSO 2.122e+08

PSO 3.053e+10

SSA 8.656e+09

DA 6.734e+09

Chimp 2.290e+08

201

Table E3. The comparison results of the proposed algorithms with its competitors

for 560 unit

As it can be seen from the tables, the proposed algorithm outperforms the PSO, SSA, DA and Chimp

algorithms and yields better results. Figure (E1) presents the convergence curve for the 140 unit dataset,

to reveal its performance throughout the iterations.

Figure E1. Convergence curve of the competitive algorithms for the datasets

Datasets

 Algorithms

560- unit generating models

Power Demand: 40000

Average

SSPSO 3.188e+08

PSO 8.369e+10

SSA 3.020e+10

DA 2.223e+10

Chimp 3.372e+08

202

The Wilcoxon sum rank test

This test was used to calculate P-values and confirm the result. The null hypothesis conditions

mean the results are due to chance and are not important. Therefore, the null hypothesis presumes

that whatever one is attempting to support or prove did not occur [224]. The substitute hypothesis

is the one we would consider and accept if the null hypothesis is concluded to be false. A p-value

less than 0.05 (normally ≤ 0.05) is statistically important. It shows compelling evidence contrary

to the null hypothesis, as there is less than a 5% likelihood the null is true and the results are

random. Therefore, the null hypothesis is rejected and the substitute hypothesis is accepted.

The p-values for comparing the SSPSO algorithm to the SSA, PSO, DA, and CHIMP algorithms

were obtained using a Wilcoxon signed-rank test, as indicated by the results presented in Tables

E1, E2, and E3. The objective of this experiment was to validate the significance of the results

obtained. The specific p-values obtained from the Wilcoxon signed-rank test are presented in Table

E4. The obtained p-values provide evidence that the differences observed between the SSPSO

algorithm and the other algorithms are statistically significant and are not due to chance.

Table E4. Wilcoxon Sum Rank Tests between SSPSO and the selected algorithms

Datasets

SSPSO

vs. PSO (P-values)

SSPSO

vs. SSA (P-values)

SSPSO

vs. DA (P-values)

SSPSO

vs. Chimp (P-values)

140 Unit 5.84e-20 5.84e-20 5.84e-20 5.81e-19

280 Unit 5.84e-20 3.34e-56 3.73e-18 7.80e-21

560 Unit 2.93e-20 3.34e-56 2.64e-18 2.00e-21

203

Appendix F: Conclusion

Power systems might include different generating units such as thermal, hydro, nuclear, wind,

steam, etc. Engineers are constantly confronted with the problem of Economic Load Dispatch

(ELD), which determines the optimal output of number of generating units to obtain the required

system load at the lowest possible cost. As a result, effective solutions to the ELD problem would

result in enormous economic benefits for both the power generation industry and end users.

Therefore; a new hybrid metaheuristic algorithm was proposed to address this issue. Large ELD

problems can be challenging because algorithms tend to converge to local optima prematurely.

The proposed algorithm was compared with several well-known and powerful metaheuristic

algorithms. The results showed that the proposed algorithm returned better results.

