9,319 research outputs found

    A feedback simulation procedure for real-time control of urban drainage systems

    Get PDF
    This paper presents a feedback simulation procedure for the real-time control (RTC) of urban drainage systems (UDS) with the aim of providing accurate state evolutions to the RTC optimizer as well as illustrating the optimization performance in a virtual reality. Model predictive control (MPC) has been implemented to generate optimal solutions for the multiple objectives of UDS using a simplified conceptual model. A high-fidelity simulator InfoWorks ICM is used to carry on the simulation based on a high level detailed model of a UDS. Communication between optimizer and simulator is realized in a feedback manner, from which both the state dynamics and the optimal solutions have been implemented through realistic demonstrations. In order to validate the proposed procedure, a real pilot based on Badalona UDS has been applied as the case study.Peer ReviewedPostprint (author's final draft

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Approximation of System Components for Pump Scheduling Optimisation

    Get PDF
    © 2015 The Authors. Published by Elsevier Ltd.The operation of pump systems in water distribution systems (WDS) is commonly the most expensive task for utilities with up to 70% of the operating cost of a pump system attributed to electricity consumption. Optimisation of pump scheduling could save 10-20% by improving efficiency or shifting consumption to periods with low tariffs. Due to the complexity of the optimal control problem, heuristic methods which cannot guarantee optimality are often applied. To facilitate the use of mathematical optimisation this paper investigates formulations of WDS components. We show that linear approximations outperform non-linear approximations, while maintaining comparable levels of accuracy

    Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems

    Get PDF
    This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the Non-Dominated Sorting Genetic Algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, resulting in fuzzy solutions for the Pareto front. This paper shows the suitability of the approach for quasi real-world problems. In our case-study, the obtained solutions for scenarios including leakage represent the best trade-off among the optimal solutions, under some considered criteria, namely, operational cost, operational lack of service, pressure uniformity and network resilience. Potential future developments could include the use of clustering alternatives to evaluate the goodness of each solution under the considered evaluation criteria

    Demonstrating demand response from water distribution system through pump scheduling

    Get PDF
    Significant changes in the power generation mix are posing new challenges for the balancing systems of the grid. Many of these challenges are in the secondary electricity grid regulation services and could be met through demand response (DR) services. We explore the opportunities for a water distribution system (WDS) to provide balancing services with demand response through pump scheduling and evaluate the associated benefits. Using a benchmark network and demand response mechanisms available in the UK, these benefits are assessed in terms of reduced green house gas (GHG) emissions from the grid due to the displacement of more polluting power sources and additional revenues for water utilities. The optimal pump scheduling problem is formulated as a mixed-integer optimisation problem and solved using a branch and bound algorithm. This new formulation finds the optimal level of power capacity to commit to the provision of demand response for a range of reserve energy provision and frequency response schemes offered in the UK. For the first time we show that DR from WDS can offer financial benefits to WDS operators while providing response energy to the grid with less greenhouse gas emissions than competing reserve energy technologies. Using a Monte Carlo simulation based on data from 2014, we demonstrate that the cost of providing the storage energy is less than the financial compensation available for the equivalent energy supply. The GHG emissions from the demand response provision from a WDS are also shown to be smaller than those of contemporary competing technologies such as open cycle gas turbines. The demand response services considered vary in their response time and duration as well as commitment requirements. The financial viability of a demand response service committed continuously is shown to be strongly dependent on the utilisation of the pumps and the electricity tariffs used by water utilities. Through the analysis of range of water demand scenarios and financial incentives using real market data, we demonstrate how a WDS can participate in a demand response scheme and generate financial gains and environmental benefits

    Rehabilitation of a water distribution system using sequential multiobjective optimization models

    Get PDF
    Identification of the optimal rehabilitation plan for a large water distribution system (WDS) with a substantial number of decision variables is a challenging task, especially when no supercomputer facilities are available. This paper presents an initiative methodology for the rehabilitation of WDS based on three sequential stages of multiobjective optimization models for gradually identifying the best-known Pareto front (PF). A two-objective optimization model is used in the first two stages where the objectives are to minimize rehabilitated infrastructure costs and operational costs. The optimization model in the first stage applies to a skeletonized WDS. The PFs obtained in Stage 1 are further improved in Stage 2 using the same two-objective optimization problem but for the full network. The third stage employs a three-objective optimization model by minimizing the cost of additional pressure reducing valves (PRVs) as the third objective. The suggested methodology was demonstrated through use of a real and large WDS from the literature. Results show the efficiency of the suggested methodology to achieve the optimal solutions for a large WDS in a reasonable computational time. Results also suggest the minimum total costs that will be obtained once maximum leakage reduction is achieved due to maximum possible pipeline rehabilitation without increasing the existing tanks

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified

    Dynamic safety assessment of a nonlinear pumped-storage generating system in a transient process

    Get PDF
    This paper focuses on a pumped-storage generating system with a reversible Francis turbine and presents an innovative framework for safety assessment in an attempt to overcome their limitations. Thus the aim is to analyze the dynamic safety process and risk probability of the above nonlinear generating system. This study is carried out based on an existing pumped-storage power station. In this paper we show the dynamic safety evaluation process and risk probability of the nonlinear generating system using Fisher discriminant method. A comparison analysis for the safety assessment is performed between two different closing laws, namely the separate mode only to include a guide vane and the linkage mode that includes a guide vane and a ball valve. We find that the most unfavorable condition of the generating system occurs in the final stage of the load rejection transient process. It is also demonstrated that there is no risk to the generating system with the linkage mode but the risk probability of the separate mode is 6 percent. The results obtained are in good agreement with the actual operation of hydropower stations. The developed framework may not only be adopted for the applications of the pumped-storage generating system with a reversible Francis turbine but serves as the basis for the safety assessment of various engineering applications.National Natural Science Foundation of ChinaFundamental Research Funds for the Central UniversitiesScientific research funds of Northwest A&F UniversityScience Fund for Excellent Young Scholars from Northwest A&F University and Shaanxi Nova progra
    corecore