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HIGHLIGHTS

« Water distribution systems can profitably provide demand response energy.

« STOR and FFR are financially viable under a wide range of operating conditions.

« Viability depends on the pump utilisation and peak price of the electricity tariff.

« Total GHG emissions caused by the provision of reserve energy are <300 gCO,/kW h.
« These are lower than those from the major reserve energy provision technologies.
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met through demand response (DR) services. We explore the opportunities for a water distribution sys-
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tem (WDS) to provide balancing services with demand response through pump scheduling and evaluate
the associated benefits. Using a benchmark network and demand response mechanisms available in the
UK, these benefits are assessed in terms of reduced green house gas (GHG) emissions from the grid due to
the displacement of more polluting power sources and additional revenues for water utilities. The opti-
Water distribution systems mal pump scheduling prgblem is'formulated as almixed—integer optimisation problem and splved using a
Pump scheduling branch and bound algorithm. This new formulation finds the optimal level of power capacity to commit
GHG emission mitigation to the provision of demand response for a range of reserve energy provision and frequency response
Optimisation schemes offered in the UK. For the first time we show that DR from WDS can offer financial benefits
to WDS operators while providing response energy to the grid with less greenhouse gas emissions than
competing reserve energy technologies. Using a Monte Carlo simulation based on data from 2014, we
demonstrate that the cost of providing the storage energy is less than the financial compensation avail-
able for the equivalent energy supply. The GHG emissions from the demand response provision from a
WDS are also shown to be smaller than those of contemporary competing technologies such as open cycle
gas turbines. The demand response services considered vary in their response time and duration as well
as commitment requirements. The financial viability of a demand response service committed continu-
ously is shown to be strongly dependent on the utilisation of the pumps and the electricity tariffs used by
water utilities. Through the analysis of range of water demand scenarios and financial incentives using
real market data, we demonstrate how a WDS can participate in a demand response scheme and generate
financial gains and environmental benefits.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction grid changes to more decentralised renewable production. The
intermittent nature of these sources and the unavailability of con-

Electricity storage schemes and grid management methods are temporary technology for storing large quantities of electrical
becoming ever more important as the landscape of the electricity energy efficiently and cost effectively has led to a demand for
new energy storage systems and more intelligent electricity

demand management [1]. Edmunds et al. [2] highlight significant
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power grids when storage technologies are implemented, while
Lau et al. [3] show considerable GHG emission savings can be
achieved through a range of demand response programs. Demand
response schemes have also been shown to enable a larger integra-
tion of wind power generate [4,5].

In demand response, an electricity consumer reduces or shifts
its power consumption when requested to do so in exchange for
compensation. For an electricity consumer with an electricity
demand that is predictable into a future operational horizon,
demand response (DR) is provided by reducing its electricity con-
sumption compared to the predicted consumption [6]. Different
DR mechanisms may impose requirements on how long the power
reduction must last, how large it has to be, at what rate it must be
reduced and within what time frame it must be achieved. A
detailed summary of possible mechanisms and their properties is
provided by Ma et al. [7]. Despite the potential of active demand
management to increase renewables penetration [8], a large share
of demand response services are currently provided through
backup generators instead of demand shifts by consumers [9].
Moreover, the increased utilisation of renewable energies to power
a water distribution system (WDS) has been shown to reduce the
GHG emissions considerably [10].

This paper shows for the first time how a WDS can provide
reserve energy through demand response by optimising the pump
schedules.We quantify the environmental benefits of demand
response compared to alternative reserve energy systems as well
as the financial profits that can be generated for the water network
operator. In the literature, electricity usage management of a WDS
has been considered employing time of use tariffs and maximum
demand charges [11,12]. Demand response is a more dynamic
and flexible service than maximum demand charges and time of
use tariffs are part of the reality for a water utility in the UK, there-
fore Demand Response services must be provided additionally and
not alternatively to these methods. The key challenges we address
include the formulation of an optimal scheduling problem with
demand response and its solution through model relaxations and
state-of-the-art global optimisation tools. Furthermore, we validate
our findings through simulation of the optimal operation of the
WDS using real data from National Grid in a Monte Carlo simula-
tion. Using this data, we show the potential application as an addi-
tional revenue stream that is new to water distribution companies,
which could simultaneously provide the grid with more demand
side response potential at low GHG emissions and competitive cost.

Frequency response and reserve energy mechanisms available
in the UK are used as case studies to evaluate the financial and
environmental implications of a WDS participating in DR. The
financial and environmental benefits of participation are assessed
by comparing the operating cost and GHG emissions when partic-
ipating in DR to those of operations that minimise only the operat-
ing cost in a time of use tariff. To ensure this comparison is valid,
we solve both schedules to a sufficiently small certifiable optimal-
ity gap; an optimality gap that is smaller than the model uncer-
tainty is chosen [13]. When assessing the ability of a WDS to
curtail its electricity usage at request to participate in the demand
response market, we separate the hurdles to implementation into
system and operational hurdles. The system constraints considered
are the available financial rewards, the given electricity price struc-
ture and the water network’s pump utilisation rate. These dictate
whether a demand response program can be considered financially
viable. Examples of operational constrains are ramp rates, pump
switching constraints or minimum network pressure constraints.
This investigation focusses on the system hurdles using quasi
steady state modelling and simplified operating constraints; we
assume the operational hurdles can be met with available control
and monitoring technologies and design expertise.

2. Demand response
2.1. Service description

In the United Kingdom, National Grid operates the electricity
grid, maintaining it as tightly as possible around the desirable fre-
quency of 50 Hz. In case of a significant drop in frequency, as illus-
trated by Fig. 1, National Grid recognises two mechanisms relevant
for this work, frequency response and reserve energy. Within two
seconds of an incident that causes the frequency to drop, the fre-
quency response services are brought on-line to stabilise the grid.
Reserve energy providers are then brought on-line to enable the
fast responding frequency services to be switched off so they could
be used again at future events. The services considered here that
can provide frequency response (FR) through demand response
are the Firm Frequency Response (FFR) and Frequency Control by
Demand Management (FCDM). The reserve energy provision ser-
vice considered here is the Short Term Operational Reserve (STOR),
which is brought on-line within 20-30 min [14]. The faster react-
ing fast reserve service is not considered since the 50 MW mini-
mum power delivery is prohibitively large for a typical WDS.

The first demand response service considered for the WDS case
studies is STOR since the technical requirements suggest that it can
be implemented in a WDS more readily. A STOR provider offers a
steady demand reduction and must deliver the reduction within
4 h after being called and may be required to reduce the demand
for up to 2 h. However, the tender records show that the mean call
duration in 2013 was 82 min and that National Grid prefers ser-
vices that can respond within 10-20 min [9]. Since the minimum
offered power requirement for STOR participation in the UK is
3 MW, only large WDSs would be able to participate in a STOR
scheme directly. However, through an aggregator, a company that
aggregates several consumers and bids their capacities to National
Grid, a smaller WDSs could participate in these mechanisms by
sharing the profits generated with the aggregator. To offer STOR
National Grid recognises a range of pathways to suit the wide
range of suppliers. The pathways modelled here are based on offer-
ing STOR services during both availability windows or just in one,
this can be achieved through tendering either a committed or flex-
ible service. The STOR windows and tariff structure is described in
further detail in Section 2.2 and in Fig. 4.

The second method for demand response energy provision con-
sidered here is the provision of frequency response services
through FFR or FCDM. National Grid requires that an FFR provider
is able to deliver a minimum of 10 MW response power; smaller
users can offer FFR through an aggregator. For the secondary
response service, which is considered here, the response must
occur within seconds and be maintained for a few minutes. The
service may be tendered for any time period, with National Grid
preferring tenders that can offer and deliver the service most
times. Furthermore, there are requirements detailing the metering
and communication systems in place as well as pre-qualification
assessments that need to be performed [15,16]. FCDM is a bespoke
service arranged through bilateral agreements with National Grid.
In general an FCDM provider must provide the demand reduction
within 2 s of instruction and deliver for a minimum of 30 min.
The minimum demand reduction to be delivered is 3 MW, which
may be achieved by aggregating a number of smaller loads at same
location. FCDM calls occur only ten to thirty times per annum [17].

For our analysis, the frequency response services FFR and FCDM
are approximated by removing the minimum power delivery
constraint and requiring the WDS to be able to deliver demand
response throughout the day. The event duration for which water
must be supplied to customers with reduced pump power is
set to 30 min. For the analysis of the financial viability of DR the
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Fig. 1. Approximate time scales for the National Grid response services to demand
and supply mismatches. Adapted from National Grid [14].

difficulties associated with sudden pump switches are neglected as
we use quasi steady state models to represent the energy con-
sumption; we consider the pump switching speed a technical issue
to be resolved with the hydraulic (transient) modelling of the indi-
vidual systems and their local control. A range of measures that can
be employed to enable the pump switching speeds required for fre-
quency response are discussed in Section 6.

Both FFR and STOR services are tendered at the beginning of the
month or season respectively. Potential providers place bids with
their cost and availability restrictions. Using historical data the
range of energy provision and revenue generated from the reserve
energy provision can be calculated. The financial rewards for a suc-
cessful tender are summarised in Table 1. Firm Frequency
Response services can also specify a nomination fee in their tender.
However, an analysis of the tenders in 2015 shows many success-
ful tenders do not include such a fee [19]. For modelling simplicity,
we assume the WDS does not charge a nomination fee either. Fre-
quency response services provide a small amount of energy - in a
short (<30 min) high power (>10 MW) burst - at short notice,
while reserve energy services provide the reserve power over a
longer time period but do not react as quickly as the frequency
response services. This is reflected in the payment structure, where
the revenue contribution of the availability and nomination fee
payment is much more significant for frequency response services
than for reserve energy services [9]. FFR and STOR are tendered in
each of the six seasons National Grid considers and pricing varies
significantly between seasons. The services are more lucrative for
the providers in winter due to tighter margins in the grid [18].
The revenue achievable for STOR provision is based on 3436-
3457 h of allocated windows on workdays during which availabil-
ity payments can be received and 90 min mean duration of calls for
STOR activity. Non-work days are neglected in this analysis as they
are less frequent and generally have a larger grid margin and fewer
STOR events. For a more detailed summary of the effects and ben-
efits of demand response in general applications, see Albadi and El-
Saadany [6].

2.2. Environmental and financial assessment

The environmental benefits of demand response from WDS is
assessed by comparing the change in GHG emissions due to a
change in operating schedule to the operational GHG emissions
from competing energy storage mechanisms. The three largest
power plants for STOR provision are Open Cycle Gas Turbines
(OCGT), pumped hydro and diesel internal combustion engines
[20,21].

The GHG emissions attributed to the WDS operation are due to
the time dependent energy consumption and the associated GHG
emissions of the electricity grid. To define the GHG emissions
caused by demand response the operations when providing
demand response the operations when the service is available

Table 1

Summary of the range of monetary rewards for FFR and STOR service options
[9,16,18,19]. Rewards for FCDM are based on custom agreements with National Grid
[17].

Type FFR STOR

Windows available: 24h 1st & 2nd 1st
Availability” £/MW/h 80-150 7-9 1.8-2.5
Energy pay £/MW h - 75-200 75-200
Total £/MW (R) 45-100 k 30-45k 15-30k

%

For modelling simplicity we neglect nomination fees.

and when the response energy is provided are considered sepa-
rately. The GHG emissions from either operation are compared to
the normal operation when not providing demand response ser-
vices. The cost of providing demand response are evaluated using
the same method. However, as the GHG emissions are not explic-
itly minimised in the objective function the change in GHG emis-
sions can be both negative or positive while the cost are
minimised and thus a deviation from the normal optimal operating
schedule is expected to incur a cost for the operation when provid-
ing demand response.

The GHG emissions and cost due to the provision of response
energy in the case of a demand response event can readily be cal-
culated in terms of the energy provided during an event. To com-
pute the GHG emissions and cost due to the availability to
provide demand response, assumptions based about the usage of
the service must be made as the GHG emissions and cost are
incurred for the power provided and are independent of the actual
energy delivered in events and are found from the difference to
normal operations. These assumptions are summarised in Table 2.
The analysis shows that the frequency response services FFR and
FCDM deliver only a small amount of energy, due to the short nat-
ure of their responses, which is also reflected in the payment struc-
ture. The energy delivered from STOR in a given year varies by how
often the provider is called, which is itself a function of the price of
the energy offered as National Grid uses a strict merit order system
to call response energy [1].

3. Optimal pump scheduling

The optimisation of pump schedules for WDS operation is a
difficult computational problem as the description of pump states
and flow in pipes involve binary variables and some of the under-
lying fundamental system equations are non-linear. The integer
problem can be solved through heuristic optimisation methods
such as a genetic algorithm (GA) to optimise pump scheduling,
with a separate solver for the non-linear hydraulic simulation
problem [23-25]. Other heuristic procedures that have also been
applied include simulated annealing [26,27] and particle swarm
optimisation [28].

In the mathematical optimisation framework, the scheduling
problem can be posed as an mixed integer problem (MIP), solving
the hydraulic model and scheduling simultaneously. This can be
solved using iterative linear programming for local optima [29]
or using dynamic programming [30,31]. The scheduling problem
can also be solved using branch and bound methods [32,33] or
model predictive control [12]. A detailed review work on water
distribution operation optimisation is provided by DAmbrosio
et al. [34].

To compare different operational conditions and the resulting
pump schedules, certifiable global optimality is required. This
can be achieved through a branch and bound method [35]. A piece-
wise linear approach that approximates the problem such that it
can be solved to global optimality is presented by Morsi et al.
[36]. The optimal schedules are calculated using a piecewise linear
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Table 2
Range of call frequencies, durations and resulting energy delivery in terms of
committed power for the DR services considered [16,22].

Type FFR FCDM STOR
Call frequency ~/annum 10-30 10-30 20-100
Mean duration (min.) 30 30 82
Max. duration 30 -* 240
Energy provided (MW h/MW/a) 5-15 15 27-137

* FCDM is based on bespoke agreements between National Grid and the supplier.

approximation of the hydraulic constraints based on methods
outlined in Menke et al. [13]. By comparing the operating cost
and GHG emissions of a WDS participating in a demand response
scheme to one under normal operations, we compute the optimal
level of demand response capacity to provide, i.e. one that
minimises the operating cost.

3.1. Optimisation problem formulation

The optimisation problem for scheduling WDS pumps for DR
can be formulated as:

minimise :
subject to :

Pump operation cost — DR revenue.
Hydraulic constraints of pumps and pipes,
mass balance of the system,

additional constraints from DR provision.

(1)

In the following subsections, we describe the objective function
and the physical, performance and DR constraints in more detail. In
this section, we use nomenclature that refers to the network model
in Fig. 2 in order to explain WDS component modelling.

3.2. Pump operation cost

The decision variable in scheduling the operation of a fixed
speed pump is the pump’s state, ON or OFF, here described by
T;; € {0,1} for pump i, at time step j € [0,N]. The energy con-
sumption by the pumps in a WDS during a 24 h period and the
associated energy cost are calculated by a linear function:

ip=Np j=N

O =YD TGy (2)

ip=1 j=1

where C;,; is the cost of energy in having pump i, ON at time j.
Pump switching can have a negative effect on the maintenance cost
of a system due to the changing loads contributing to transient or
fatigue related failures. Penalising pump switching is often used
to reduce this negative impact and account for maintenance cost
[37,38]. A penalty function that approximates the switching cost
can be added to the objective function to lower the maintenance
cost. When penalising ON-to-OFF and OFF-to-ON states equally it
is given by:

(Tiyj — Tip1)’ 3)

where C; is the penalty for a single pump switch. The value of C; is
based on recommendations by Van Zyl et al. [24]. For further dis-
cussion of pump switching constraints and the cost associated with
the dynamic response of a hydraulic system, see Section 6.

3.3. Hydraulic balance

The pressure delivered by a pump (i.e. the piezometric head dif-
ference across it) can be described by a set of linear constraints that

Fig. 2. Van zyl network adapted from Van Zyl et al. [24].

define a convex set approximating the characteristic curve of a
pump. For a given time step, a fixed speed pump i, connecting
nodes J1 and J2 is constrained by:

mf;lq,»p + ci']Tip and

mi,zq,-}, + CZ,ZT’}) and
hjy —hyp < : (4)
if: T, =1
if: T, =0

b p
m; s4i, +Ci,5Ti,
Ahyy, q;, =0

where m;, ; ---mj, s and ¢, ; - - - C;, 5 are the linear coefficients for the
five hyperplanes describing the convex set. Ah,, is an upper bound
on the pressure head generated by the pump. These constraints are
enforced using a big-M method as detailed in Menke et al. [13] and
Gleixner et al. [32].

Similarly, the energy balance for flows in pipes is modelled
using a piecewise linear approximation of the head loss formulae
given by either the Hazen-William or the flow dependent Darcy-
Weisbach equations [39]. For a given time step, the head loss
across pipe P2 connecting nodes J3 and J4, for example, can be
approximated using a set of piece wise linear equations given by:

ApaMpy 1 +Chyqs i Gt < 2 < Qo

Ar2aMpy o + Chyas i Qimy < Gy < Qiims
hjs — hys = . (5)

ApaMby s + Chyss 1 Qiims < Gy < Glis

where the five linear sections are given by
Mp2.1qpy + Cp21 - - Mp25qpy + Cp25. Note that we have chosen to use
five pieces after simulations showed that it was a sufficiently high
order approximation for our purpose; see [13] for detailed analysis.
In the optimisation algorithm, these formulae are implemented
using linear big-M constraints.

3.4. Mass balance at network nodes

Since steady-state approximations of the hydraulic conditions
are used, compressibility effects are neglected and the mass flow
is equal to the volume flow. For a network node joining compo-
nents P1,P,,...,P,, the mass flow must balance at each time step
j. This is given by:

dp1j+Gpaj+ -+ Gppj =0 (6)

Demand at a node is considered in the mass balance and must
always be met in feasible solutions. To ensure feasibility with
respect to regulatory requirements to supply demand at sufficient
pressures, a minimum hydraulic head constraints are enforced at
demand nodes.

Tanks provide storage capacity in the networks providing water
supply when the supply from the pumps is less than the demand.
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For a tank J with flows g;, and q,,, the mass balance for time steps
j=1...N—1is given by:

Qing + douej = (N1 — hyy) x Ay, (7)

where the surface area of the tank is given by A;. Since demand pat-
terns are similar from day to day, we ensure that schedules are
repeatable (reasonably similar) by enforcing the constraint that
final levels in tanks do not differ much from their initial conditions:

(hy1 = hyn) x Ay < dv,
(hj1 = lyn) x Ay = dv,

(8)

where &y defines the volumetric difference. This relaxes the
approach where the final or initial tank levels would be input data,
which would limit the feasible search space and potentially lead to
a sub-optimal final solution. A similar initial and final constraint
relaxation is used in [29], while [40] includes a penalty for final
water levels below the initial level or for ones away from a specified
target at the end of the operating period.

3.5. Demand response cost function and constraints

The revenue from providing demand response is proportional to
the power committed to the scheme. This is represented by:

f3() = —P4 xR 9)

where Py, is the power committed to DR and R is the expected rev-
enue per MW committed as summarised in Table 1. However, to be
able to provide this power as demand response, the WDS must cer-
tify that it would always consume this offered power unless it
answers a DR call. The power consumed by the pumps is given by:

j=np

ZPfJTiJ > Py (]0)
j=1

When providing demand response, the WDS must be able to satisfy
the expected water demand from consumers for the maximum pos-
sible duration of the DR event. This is enforced in the optimisation
model by specifying a minimum fill level for tanks, which depends
on the maximum DR time offered. This increases the lower bound in
the tank dependent on the demand level by:

Vi
hmingkl,i = hminnom],i + % (1 1)
J

where hipin,,,s.i is the lower bound of the tank level range and Vg ; is
the volume deficit caused in tank J by operating the network with-
out pumps for the maximum DR call duration at time step i. Vy;; is
calculated using a hydraulic simulation before the optimisation and
ensures the WDS can provide its water demand requirements dur-
ing the demand response event.

The constraints for demand response provision are only
enforced for time steps within the times for which demand
response capability should be provided depending on the type of
service being FFR where it is continuous or for STOR when it is dur-
ing the first or both of the availability windows.

3.6. Problem summary

The variables of the optimisation problem are the binary
variable T for the ON-OFF status of the pumps and the continuous
variables h for the hydraulic head at a node and q for the volumet-
ric flow rate in a connection. Although not described here, a set of
binary indicator variables are used to enforce the piecewise linear
approximations for head loss across pipes [13]. The power
committed to demand response is given by Pg4,. The pump schedule

optimisation problem for a fixed electricity price tariff giving the
normal operation schedule is given by:

min : f;(-) +f5(-)

12
s.t.: (4),(5),(6),(7) "

For the demand response case where the provide level of
demand response power is left to be found by the solver the above
formulations are modified as:

min : f;(-) +f5() +f3() (13)

s.t.: (4), (5), (6), (7), (10), (11)
The mixed integer quadratic program formulated in MATLAB and
solved with CPLEX [41]. Since tighter bounds on variables can
improve the computational speed of the branch and bound algo-
rithm in CPLEX and we want to reduce the computational effort
required to solve the problem to an adequate optimality, the
bounds on the variables and the value of the big-M are chosen as
tight as possible while including all hydraulically feasible solutions
[13].

To demonstrate demand response from water distribution sys-
tems, the Van Zyl benchmark network shown in Fig. 2 is used as a
case study. It is analysed under a range of pump utilisation rates, a
range of overall rewards for the provision of DR and varying cost of
energy through a selection of real electricity price tariffs. To enable
these comparisons, the water demand is described in terms of the
pump capacity of the network. In general, water demand at a node
is modelled as the product of a time dependent term, the demand
pattern shown in Fig. 3, and a constant term, the base demand d,
[24]. The network model has only one source reservoir and all
water demand consumed in the network must flow through the
pump station containing pumps main; and main,. We express
the pump utilisation of the network as a function of the best effi-
ciency point (BEP) flow rate of one of these identical parallel
pumps. To achieve this, the water demand was modified from
the version available in Van Zyl et al. [24] by changing the base
water demand (d,) to the BEP flow rate of main; and modifying
the pattern such that it had a mean of one. In simulating different
levels of consumption compared to the capacity of each pump, the
demand rate is modified, to a value ds, and g— is defined as the pump
utilisation rate. A low pump utilisation factor can be interpreted as
a large pump supplying a network, while a higher factor indicates
several smaller pumps supplying the network.

Larger commercial electricity consumers often utilise electricity
tariffs with a range of prices across the day, with high peak prices
during peak power consumption times. The electricity tariff used
for this analysis is one used by a UK water utility and is shown
in Fig. 4. The peak price makes pump operations in this period par-
ticularly expensive. The changes in the electricity supply, due to
the introduction of renewables, are expected to lead to a change
in peak prices. However, the experiences and estimates from Aus-
tralia and Germany [43,44| show that the direction and scale of
change in peak prices can vary significantly. To analyse the effect
of peak price on the schedules and the financial viability of demand
response services, we scale the tariff in Fig. 4 by altering the min-
imum and maximum prices over a large range, while maintaining
the same mean price for the tariffs to allow a fair comparison
between different tariffs. Each electricity tariff used in our optimi-
sation is thus referred to using the ratio of the maximum and min-
imum prices, 1’;% The tariff used by the utility in Fig. 4 has a ratio
of 3.2. The time of the availability windows used for STOR services
by National Grid vary from year to year and across seasons of the
year; Fig. 4 shows the STOR windows that are considered for this
analysis highlighted in red, representing an aggregation of the
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window times offered by National Grid. In this analysis the avail-
ability window descriptions were simplified to the constraints that
STOR service providers must be available to provide STOR services
in both STOR windows or in just the first STOR window. A DR event
can start only inside an availability window but may continue to
outside of the window [16]; we model this explicitly. After partic-
ipating in an event, there is a recovery period in which the STOR
provider does not need to be available to provide another response.
The likelihood of an event occurring at a specific time in the STOR
window is considered uniform since the usage of historic statistics
provided by National Grid [22] shows that there is no clear trend.
The duration of STOR responses as well as their relative likelihood
from historic STOR data are summarised in Table 3.

FFR services are provided throughout the day. However, a water
utility can specify in its bid that it cannot provide the service at
certain periods; this, however, reduces the benefit of the offer to
National Grid. The requirement for FFR services in 2015 [16] shows
a pattern with highest demand in the summer months and lowest
in winter, while data of STOR services from 2014 shows no such
clear pattern [22].

4. DR events
4.1. Simulating a DR event

The operation during and in the 24 h after the begin of the event
is investigated to provide an indication of the cost and GHG emis-
sions that arise due to such an event. Compared to the original
problem, which yielded T°, h° the original pump settings and tank
levels, the event optimisation problem is further constrained, by
the power consumption requirements of the event and the result-
ing changes in tank levels and deviation from the originally opti-
mal path resulting from the optimal schedule.

Given the original operating schedule and the required power
consumption reduction during an event the operating schedule
during the event is computed a priori and together with the initial
tank levels further constrain the optimisation problem. The initial
and final tank levels are constrained by:

Table 3
Cumulative probabilities of STOR DR event durations [22].
Event (min.) <30 30-60 60-90 90-120 120-150 >150
Share (%) 12.3 26.6 24.0 16.7 9.1 11.2
o (] :
hj‘l = hj_y]7 hj,N > hij Vj € jTanks (14)

where Jras iS the set of tanks in the network.

The increased minimum tank levels as described by (11) cannot
be enforced during the event and in the following recovery period.
For a tank J during the event and the allowed recovery period the

V,j—l“ term is dropped and the minimum tank level is given by:

hminDR]‘i = hminnorml.i Vi S TEvenHrecoveiy (15)

where 7 yent:recovery 1S the time steps of the event and the recovery
period after the event in which the WDS will not be asked to pro-
vide demand response again.

To verify how the tank levels and water provision of the WDS
are affected by a DR event, these are modelled in a quasi steady
state model. The optimal scheduling problem is formulated as:

min : f;(-) +f5()
s.t.: (4), (5), (6), (7), (10), (11), (14), (15)

Further optimisation methods for a DR event are discussed in
Section 6.

(16)

4.2. Monte Carlo simulation of demand response events

The cost and GHG emissions from response energy provision
depend on a range of factors. The electricity tariff used here is
the same for all work days of the year, which are the only days con-
sidered for DR. The cost of a DR event, therefore, is dependent only
on the duration and start time of the event and not the date. The
range of daily GHG emission variations can influence the overall
emissions [46]. To ensure this is captured in the estimate of the
GHG emissions from events, the date of the simulated events is
also varied and the corresponding historic GHG emission data used
to compute the associated emissions. The traces of the date specific
emission levels are shown in Fig. 5.

The cumulative probabilities of STOR event durations are sum-
marised in Table 3. For each 24-h day, the modelled event dura-
tions are discretised into 30 min intervals. The starting time of
the events are modelled with a uniform probability within the
STOR window and the probability of a STOR event occurring on a
particular day is modelled as described in National Grid [22]. The
simulation of FFR events was performed with similar considera-
tions, however the event duration was always only one time step
of 30 min. For a demand response event the operating schedule
is computed following the procedure given below:

1. For a normal day operation (i.e. operation optimised for DR pro-
vision), solve (13) to get schedule Ty, and record the initial fill
levels of the tanks hy.

2. Solve the DR event simulation problem, which has additional
constraints as described in (16).

3. The optimal schedule (Tg,e,) for the operation with the event is
computed.

4. Compute the operation cost and GHG emissions of the event
and compare to the original cost and GHG emissions.

The number of events to model was chosen large enough to
ensure convergence of the mean and standard deviation of the
results. For example, Fig. 6 shows the convergence of the standard
deviation and mean cost and GHG emissions computed indicating
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Fig. 5. GHG emissions for the UK grid for 2014 [45]. The emissions profile of each
day is described by a trace with the mean highlighted in red. The emission intensity
descriptions are discretised to 48 time steps as G.
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Fig. 6. Variation of the normalised mean and standard deviation of cost and GHG
emissions of the Monte Carlo simulation for STOR events, showing their conver-
gence well within 1000 simulated events.

Table 4
Summary of Monte Carlo simulation results, showing mean and 95th percentile of the
cost and carbon intensity of the simulated energy provision.

DR service type Cost (p/kW h) GHG (gCO5e/kW h)

X 2005 X 2005
FFR 7.4 20.2 137 295
STOR 4.2 111 88 202

that the analysis ha been performed on a sufficiently large sample
[47]. These results of the simulations are discussed in Section 5 and
summarised in Table 4.

5. Results and discussion

We investigate three aspects of demand response from WDS,
how optimal pump operations change to enable the provision of
demand response before and during a DR event, requirements
needed for the provision of DR through pump scheduling to be
financially viable and the environmental aspects of DR from WDS
and how it compares to other alternative response energy provi-
sion technologies.

The results and discussion are separated into sections focussing
on the financial viability of providing DR from WDS in Section 5.1,
the GHG emissions associated with the provision of DR in Sec-
tion 5.2, and the optimal scheduling for DR provision and DR
events in Section 5.3.

5.1. Financial viability

Fig. 7 shows the volume formed by the combinations of price
ratios, reward size and pump utilisation rate that are financially
viable to provide a FFR or FCDM service from the Van Zyl Network
when assuming a maximum event duration of 30 min. It shows
that a high pump utilisation rate, high reward and low price ratio
benefit the financial viability of the fast response schemes. It also

[ Viable region

Capacity limit
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2 e
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Fig. 7. Reward and pump utilisation required for a given price pattern ratio for
permanently committed demand response from FFR or FCDM.

demonstrates that the ratio of the maximum and minimum prices
of the electricity pattern as well as the pump utilisation rate have
the strongest effect on the financial viability of the DR service. The
reward level on the other hand has a lower impact on the financial
viability. Demand response through FFR provides the highest
amount of yearly revenue for committed power while requiring
the least amount of energy provision. The revenue primarily stems
from the nomination and availability payments for the power
capacity provided and to a lesser extend from the energy provision.
Assuming a WDS can fulfil the technical requirements with regards
to size and pump switching speeds, it could provide a good oppor-
tunity for a profitable committed demand response provision if the
pump utilisation rate and the electricity tariffs are moderately
high. Otherwise, a bespoke FCDM agreement where the peak hours
of the contract are spared out could provide a viable alternative.

The financial viability of STOR services is explored with an
annual reward of £25,000/MW, which represents the lower bound
estimate of the revenue from availability payments alone, based on
approximately 3500 h of availability per year and £7-9/MW avail-
ability payments as detailed in Table 1. The optimal power level to
commit to be available for STOR provision in both availability win-
dows is shown in Fig. 8. Fig. 9 shows the same for provision in the
first availability window only. The two figures show that for lower
pump utilisation rates no STOR service is viable as the optimum
power is 0 kW. For a small range of pump utilisation rates and elec-
tricity peak price ratios, STOR provision from the booster pump
with 89 kW is the optimal power for DR while for a large range
of pump utilisation rates > 1 a pump from the main pump station
with 178 kW can be committed to STOR provision. With a reward
of £25,000/MW, the additional revenue from DR provision, if
viable, can be up to 4.6% of the normal operating cost.

The cost of scheduling for STOR relative to normal operations
not only depends on the pump utilisation ratio and maximum
price of the electricity tariff, but also on which availability win-
dows STOR is offered in. If only the first STOR window is used, a
wider range of conditions and a larger capacity of pump power
can be committed to the provision of demand response. On the
other hand, also providing STOR services in the second STOR win-
dow as well reduces the range of financially viable options as the
peak electricity price becomes more relevant.

The cost of providing response energy in a STOR event are esti-
mated by modelling a wide range of events in a Monte Carlo sim-
ulation, as shown in Fig. 10. Table 4 shows that the cost of energy
when rescheduling due to an event reduces the income generated
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Fig. 9. Financially viable provision in only the first STOR window for a reward of
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Fig. 10. Distribution of the cost GHG emissions of energy provision from a Monte
Carlo simulation of STOR DR events for d;/d, = 1.

through demand response event on average by 4.2 p/kW h and 95%
of the events cost less than 11.1 p/kW h. This represents 25-50% of
the income generated from participating in the event. Thus, the
cost associated with an event are shown to be well below the
payments received for reserve energy provision.

For National Grid, STOR from a WDS would be very attractive
since a water utility would not require a minimum guaranteed
STOR provision to provide demand response; this is because, unlike
for the competing technologies, STOR is only an additional revenue
stream and not the sole purpose for a water utility [14].

5.2. Environmental analysis

The GHG emissions for the UK grid in 2014 are shown in Fig. 5
and the carbon intensities of the competing technologies are sum-
marised in Table 5. For the competing technologies providing STOR
services, to be displaced by demand response from WDS, we con-
sider the three most important technologies: Open Cycle Gas Tur-
bines (OCGT), Pumped Hydro Storage (PHS) and Internal
Combustion Diesel (ICD) engines, which together account for 82%
of the STOR market [20]. When comparing the emissions of tech-
nologies, only the operational emissions are considered. For an
OCGT plant these are provided by Seebregts et al. [48]. The PHS
plant is assumed to fill its reservoirs in the early hours of the morn-
ing or at night, when average emissions are approximately
400 gCO, /KW h, this is based on data from [45]. The GHG emissions
due to the consumption of electricity from pumped hydro storage
is computed assuming an efficiency in the range of 70-85% and
neglecting life cycle related emissions, because the infrastructure
is considered to be already in place [49]. The GHG emissions from
operating an internal combustion diesel (ICD) engine and genera-
tor unit are computed by considering full load operation emissions
only and neglecting emissions other than CO, [50]. The carbon
intensity range used here is more generous towards the competing
technologies than the figures given by National Grid [21], but as
performance of power plants varies this range will give a better
insight into the potential for GHG emission abatement through
their displacement by DR from WDS. The emission ranges found
are similar to the range of values identified by Turconi et al. [51].

The carbon intensity of providing the availability for demand
response services by a WDS varies significantly. They can increase
or decrease the overall emissions as they are not considered in the
optimisation of the schedule and vary through out the day. How-
ever, the histogram in Fig. 11 shows, the additional GHG emissions
from scheduling for DR are contained to a range of —50-50 gCO,/
kW h.

The GHG emissions caused by the provision of response energy
from the DR event are summarised in Fig. 12. The mean GHG emis-
sions as modelled in a Monte Carlo simulation are 88.3 CO,/kW h
and 95% of emissions are below 202.1 CO,/kW h. Table 4 shows
that the 95th percentile of the Carbon Intensity of the events are
much less than the emissions from competing frequency and
reserve energy providers summarised in Table 5. The total GHG
emissions associated with the provision of response energy thus
range from —50-250 gCO,/kW h with a mean of 90% and 95% of
the energy provided with less than 240 gCO,/kW h. This perfor-
mance is significantly better than the next best conventional alter-
natives, an efficient OCGT or pumped hydro storage.

The network configurations yielding higher GHG emissions in
Fig. 5 are characterised by larger changes to operation schedule
to facilitate a higher capacity of DR provision. However, there is
no clear trend with regards to pump utilisation rate or electricity
peak prices. Green house gas emissions from FFR are not consid-
ered here due to the small amount of energy displacement of the
mechanism make the comparison to the values quoted in Table 5
misleading. However, it has been shown that frequency response
services from PHS can reduce the GHG emissions compared to
OCGT plants [3].

Generally the GHG emissions per unit of response energy pro-
vided by a WDS linearly depends on the total yearly response
energy provided, in order to reduce the carbon intensity a lower
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Table 5
Summary of carbon intensities of competing STOR provision technologies. Given in
(gC0O4e/kW h).

Technology Best Worst
Open Cycle Gas Turbine (OCGT) 480 575
Pumped Hydro Storage (PHS) 470 571
Internal Combustion Diesel (ICD) 520 700
50 : : : : :
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Fig. 11. Frequency and range of GHG emission levels for DR from STOR for the
range of pump utilisation and price ratio investigated in Figs. 8 and 9. The carbon
intensity is calculated assuming the maximum (i.e. 137 kW h/kW/a) from the range
of energy provisions in Table 2.
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Fig. 12. Distribution of GHG emissions of energy provision from a Monte Carlo
simulation of STOR DR events for d;/d, = 1.

price in the offer tender is suitable while higher prices may
improve the profits at the expense of emission reductions.

5.3. Scheduling for demand response

Scheduling for DR divides into two problems: finding an opti-
mal schedule to operate when providing the readiness to reduce
energy usage at request and the scheduling during and after a DR
event. The scheduling for the readiness requires the guaranteed
operation and consumption of the energy tendered as demand
response capacity. To schedule during and after a DR event, more
operational constraints need to be considered; these include the
initial tank fill levels, the minimum tank levels and the desired
final tank levels.

To enable a meaningful comparison between schedules gener-
ated for a range of operating conditions the use of an optimisation
method that can guarantee global optimality is necessary. How-
ever, the difficulty in solving the MIPs can lead to convergence
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Fig. 13. Simulated change in tank levels after a 90 min DR event from 13:30AM
onwards, showing the change in operating schedule and the resulting differences in
tank levels. The tank levels are computed using a hydraulic simulation using a null-
space algorithm [39].

issues with the solver not reaching the required level of optimality
in the given maximum solve time. In the rare cases when the addi-
tional revenue from demand response is smaller than the optimal-
ity gap of the solution, this can lead to small variations of the
results [13].

Fig. 13 exemplifies the development of the levels of the storage
tanks and the change in the 24 h operating schedules after a
90 min DR call at 13:30PM on the 21st January 2014. The Fig-
ure highlights the resulting behaviour that occurs due to a DR call
and the following deviation from the optimal pump schedule for
normal operations without an event. The overall pump activity is
increased with pumps operating in parallel more often. As a result,
the overall energy consumption is increased.

Considering the minimisation of operating cost is only ever the
second priority of a water utility, second to the guaranteed provi-
sion of water to the customers. This guarantee of supply needs to
be also ensured in events and is verified through hydraulic simula-
tions with the schedules. To ensure this feasibility, the approxima-
tion of the pump capacity underestimates the flow rate while the
approximation of the head loss overestimates the head loss, ensur-
ing the schedule provides sufficient energy to the system and the
tank levels stay within the required bounds. For example, the
capacity limit shown in red in Fig. 7! is derived from hydraulic sim-
ulations; it shows that, in the marginal cases, the approximations
lead to an underestimation of the pump capacity in the case of the
upper end of the capacity limit.

! For interpretation of colour in Figs. 4-9 and 13, the reader is referred to the web
version of this article.
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6. Conclusion and future work

Through the use of a global optimisation technique we compared
the operating schedules of a WDS system minimising the operating
cost alone and minimising the operating cost while participating in
different demand response schemes in the UK. Through this analysis
we show that for a wide range of electricity tariffs and water
demands there exist demand response mechanisms which allow
the WDS to provide demand response and reduce its cost and pro-
vide response energy at low GHG emissions. These new results
should encourage water utilities to investigate the potential to
schedule for demand response provision from their WDS. To be
viable demand response from a WDS there would be no need for a
no minimum response duration. Unlike competing STOR and
demand response providers, demand response from a WDS does
not have shut down (start up) costs that need to be recouped by a
minimum STOR operation, which makes potential demand response
provision from WDS particularly valuable to National Grid [9].

STOR when tendering only for the first window can be provided
at little extra cost to the WDS compared to regular optimal opera-
tion, as the highest price tariff times can be excluded from the pro-
vision period. Due to the specific requirements this poses, it may
be necessary to provide STOR service through an aggregator or
combine the STOR provision with another energy asset. When ten-
dering to both windows the maximum price of the electricity tariff,
if charged during the operation window, limits the financial viabil-
ity of STOR provision.

The provision of response energy in an DR event is shown to
have limited additional cost and GHG emissions. The operation
scheduling during and after the event was performed using the
same optimal scheduling techniques used to obtain the global opti-
mal operating schedule. Through optimisation with a receding
time horizon considering the uncertainty of future events occur-
ring to allow repeated provision of demand response could further
reduce the cost of providing DR through a better schedule.

The environmental impact is dependent on a range of factors,
but demand response from WDS can often be provided at very
low carbon intensity per unit of response energy provided. The fas-
ter responding services — FFR and FCDM - provide small amounts
of energy potentially leading to worse carbon intensity of the
energy provided, however the custom nature of FCDM may enable
the inclusion of such services with small changes in scheduling and
thus small changes in GHG emissions. Shorter response events
have lower carbon intensities as the originally optimal schedule
is only perturbed a little.

Electrical power distribution losses and life cycle emissions were
ignored in this analysis since they are similar for the different tech-
nologies considered, for which we assume the infrastructure to be
already in place. With the additional grid regulation services that
come with the introduction of more renewables to the grid, the
usage of already built WDS to regulate demand could provide signif-
icant reductions in GHG emissions compared to newly built
infrastructure.

The WDS was modelled using quasi steady state modelling. For
the provision of FFR the power reduction ramping speed constraints
need to be analysed. This will require a more detailed analysis of the
transient response of the network [52]. Further work could consider
the difference in business case of upgraded surge protection devices
to enable faster pump ramp rates without causing pressure induced
failures in the pipes. Upgraded pump controls or battery systems to
enable a gradual shut down may also be considered [53].
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