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Abstract

The operation of pump systems in water distribution systems (WDS) is commonly the most expensive task for utilities with up

to 70% of the operating cost of a pump system attributed to electricity consumption. Optimisation of pump scheduling could save

10-20% by improving efficiency or shifting consumption to periods with low tariffs.

Due to the complexity of the optimal control problem, heuristic methods which cannot guarantee optimality are often applied.

To facilitate the use of mathematical optimisation this paper investigates formulations of WDS components. We show that linear

approximations outperform non-linear approximations, while maintaining comparable levels of accuracy.
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1. Introduction

Water distribution systems (WDS) can account for up to 5% of a cities total electricity consumption, the majority

of which is used to power the pump systems. The operation of these pump systems is a major cost factor for utilities

and up to 70% of the operating cost of a pump system can be attributed to the electricity consumption (Bunn,2011).

Many systems use reservoir levels to determine the operating schedules of pumps. Significant savings can be made

through the use of more advanced control methods such as pump scheduling. Optimal pump scheduling has been

shown to reduce the energy cost of a system by 10 - 20%, shifting consumption to time periods with lower electricity

cost or improving operational efficiency (Crawley and Dandy,1993,Boulos et al.,2001,Bunn and Reynolds,2009).

WDS pump schedules are optimised using either heuristic and evolutionary methods or mathematical optimisation.

In the former methods, heuristics are used to generate schedules and evolutionary methods guide the search for

optimality. While this can provide solutions for complex problems, it cannot guarantee that an optimal solution is

found. Mathematical optimisation solves the problem by using information of the objective function to guide the

search and does not rely on solving part of the problem outside of the optimisation solver. However, many complex
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problems, such as the optimisation of operating schedules for WDS are too complex to be solved in mathematical

optimisation without approximations.

Nomenclature

T Binary pump setting

h Head at a node

q Flow in link

λ Binary variable for modelling pipe head loss with big-M constraints

Pe Electricity Price

Pip Electrical power of pump ip

Ps Pump switch penalty

aip 1st Polynomial factor of the pump curve of pump ip

bip 2nd Polynomial factor of the pump curve of pump ip

Ak Area of reservoir at node k
M Large constant

Ncon Number of constrains defining a convex set

NpiecesNumber of pieces in a piecewise approximation)

Past efforts that use heuristics include an application of a genetic algorithm (GA) to optimise pump scheduling by

Mackle(1995). To improve the search performance Van Zyl et al.(2004) and Reis et al.(2006) used a GA together with

an improvement for local searches, whereas Savic et al.(1997) and Marques et al.(2015) explored multi-objective op-

timisation capabilities. Other heuristic procedures include simulated annealing applied by Goldman and Mays(1999),

which was combined with multi-objective optimisation capabilities by Pedamallu and Ozdamar(2008). To further

reduce the CPU time by avoiding the computationally expensive hydraulic evaluations, Martı́nez et al.(2007) and

Salomons et al.(2007) approximated the hydraulic model with an artificial neural network that represents the WDS

response of the municipal supply networks of Haifa and Valencia (Jamieson et al.,2007). Commercial systems such

as Tynemarch’s MISER or Dorceto’s Aquadapt use linear programming methods while others such as Innovyze’s

BalanceNet rely on a genetic algorithm to find a schedule for a mass balance model of the hydraulic network (Bunn

and Helms,1999,Tynemarch Systems Engineering,1999,Innovyze,2015).

In mathematical optimisation the problem can be posed as an mixed integer problem (MIP), which can be solved

using a branch and bound algorithm. Gleixner et al.(2012) used a detailed hydraulic description of the network to

solve the mixed integer non-linear problem (MINLP) via a branch and bound algorithm. Burgschweiger et al.(2008)

describe the MINLP method used for the optimisation of the Berlin water supply system. As with the heuristic ap-

proaches computational times are important and Ghaddar et al.(2015) showed that a naive approach to a larger problem

does not yield an answer, as the computational effort scales badly and can become infeasibly large. Applying a La-

grangian decomposition yielded significant performance improvements. Biscos et al.(2003) solved an MINLP with

simplified hydraulic descriptions to reduce computational effort. Other approaches to improve the scaling properties

of the problem employ either iterative linear programming or divide the problem in two and then solve a non-linear

problem (NLP), without integers, using dynamic programming (Price and Ostfeld,2013,Ulanicki et al.,2007).

We investigate the computational cost of different approximations of system components and the loss in accuracy

of the hydraulic solution caused by these approximations. Through a systematic investigation of non-linear, convex

and piecewise linear approximations of pumps and pipes, we analyse the relative importance, with respect to perfor-

mance and accuracy, of the individual approximations. We further investigate the computational cost of considering

maintenance constraints and varying time step sizes to change the overall size of the problem.

In section 2.1 the objective function to minimise energy consumption is presented. It is adapted to also include

a proxy for maintenance cost. In sections 2.2 three different methods to approximate the physical characteristics of

pumps are described. These methods include an exact non-linear equation and an approximation by a convex set. In

section 2.3 linear and non-linear formulations for the head loss in pipes are described. The results and discussion are

found in sections 4 and 5, respectively.
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2. Problem formulation

Three methods can be used to determine when to operate the pumps in a WDS. In the simplest form, low and

high water levels in a tank will trigger the corresponding pump to switch on or off. The tank fill levels are set such

that the water demand can always be satisfied with sufficient pressure. However, to benefit from the variation in

energy cost throughout the day or to account for the daily water demand profile the desired level can be set in a time-

varying fashion. This is known as implicit control. In explicit control the pump state is evaluated in the optimisation

directly (Ormsbee and Lansey,1994). The optimisation problem solved here takes the form:

Minimise: Pumping cost
subject to: Energy balance,

Mass balance,
(1)

where the pumping cost models in the objective function are described below, and the energy equation for the pumps

and pipes are described in sections 2.2 and 2.3, respectively. The mass balance constraints will be described in 2.4.
The use of integer or binary variables in the description of the pump state and the piecewise linear head difference

approximations, leads to a formulation of the optimisation problem as a mixed integer problem (MIP). MIPs can be

solved through a branch and bound algorithm, an algorithm that searches through the entire space of feasible solutions

by using a search tree. By forming a continuous relaxation of the integer variables, some are fixed to their integer

values as the algorithm branches along the tree and solves the relaxed form of the problem to generate upper and lower

bounds for the value of the objective function of these branches. If the objective value’s lower bound of branch a is

larger than the upper bound of branch b, branch a can be discarded. This reduces computational effort by restricting

the number of solutions in the search space that need to be evaluated (Garfinkel and Nemhauser,1972). Thus, two

aspects of the problem affect computational complexity; the difficulty of solving the relaxed sub-problem is the first.

The second depends on the number of integer variables and is caused by the need to solve more or fewer of such

sub-problems as a result of branching in a larger or smaller integer variable space, respectively.
The computational effort in solving the bounding optimization sub-problems is governed by the convexity, non-

linearity and size of the constraints resulting from the WDS component approximations used. On the other hand, the

number of integer variables will depend on the number of time steps and, if a piecewise linear approximation is used,

on the number of pieces needed for a sufficiently good hydraulic approximation.

2.1. Objective Function

The decision variable in pump switching of fixed speed pumps is the pumps state, ON or OFF, here described by

Tip j ∈ {0, 1} for pump ip at time step j ∈ [0,N]. With the power rating of the pump assumed fixed (i.e. independent of

flow conditions for a fixed speed pump), the energy consumption by each pump during a 24h period and the associated

energy cost for energy the linear function:

f1(·) :=

ip=Np∑

ip=1

j=N∑

j=1

Tip, jPip, j (2)

where Pip, j is the cost of energy in having pump ip ON at time j.
Since pump switching can have a negative effect on the maintenance cost of a system due to the changing loads

contributing to fatigue, penalising pump switching is often used to reduce this negative impact and account for mainte-

nance cost (Savic et al.,1997,Lansey and Awumah,1994). A penalty function that approximates the switching cost can

be added to the objective function to lower maintenance cost. Penalizing ON-to-OFF and OFF-to-ON states equally,

we get the penalty function:

f2(·) :=

ip=Np∑

ip=1

Ps

j=N∑

j=1

|Tip, j − Tip, j−1|

=

ip=Np∑

ip=1

Ps

j=N∑

j=1

(
Tip, j − Tip, j−1

)2
(3)

where Ps is a switching penalty and the equality between the linear and quadratic terms holds because T ∈ {0, 1} .
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2.2. Pump approximations

When a pump is OFF, the flow through it is zero and the status indicator variable is zero (T = 0 ⇒ q = 0). When

a pump is ON, a relationship is enforced between the head difference across the pump and the flow, i.e. T = 1⇒ h =
f (q). This relationship is modelled by the characteristic curve supplied by the pump manufacturer or a simplification

can be used as it may not always be necessary to model the entire operating range of a pump.
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Fig. 1. Pump characteristics and representation of approximations

An example characteristic curve is shown in Figure 1 by the dashed arc. For a pump ip that connects nodes J1 and

J2 with flow qip , the characteristic curve can be represented by a polynomial, for example by a quadratic function:

hJ1 − hJ2 = aip q2
ip
+ bip qip + cip if: Tip = 1,

qip = 0 if: Tip = 0,
(4)

where aip , bip & cip are the polynomial coefficients of the pump and h j the head at node j. This results in quadratic

quadratic equality constraints, which would make 1 a mixed-integer non-linear program (MINLP).
We can also consider a set of linear constraints describing a convex set to approximate the characteristic curve

can be used. The constraints enforced if Tip = 1, shown in Figure 1 as dotted lines, are described by:

hJ1 − hJ2 ≤ mip,1qip + cip,1,

hJ1 − hJ2 ≤ mip,2qip + cip,2 . . .

hJ1 − hJ2 ≤ mip,Ncon qip + cip,Ncon

(5)

where mip,1 . . .mip,Ncon and cip . . . cip,Ncon are the linear coefficients and Ncon is the number of such constraints. If

Tip = 0, qip = 0, as for the quadratic approximations.

2.3. Pipe approximations

Pipes connect nodes in the network and the head loss in a pipe is a function of the flow. Head loss can be described

with the Hazen-Williams or Darcy-Weisbach friction factors in hydraulic simulations, but is simplified for pump

scheduling. Figure 2 shows the approximations for a flow through a pipe. Since both the Hazen-Williams and Darcy-

Weisbach equation both contain a power of ≈ 2, a quadratic approximation provides a close fit. A quadratic constraint

for a pipe Pj, connecting nodes J3& J4 is given below and implemented using big-M constraints as (see Gleixner

et al.(2012) for details):.

hJ3 − hJ4 =

⎧⎪⎪⎨⎪⎪⎩
aPj q2

P j
+ bPj qP j + cP j , if qPj ≥ 0

−aP j q2
Pj
+ bPj qPj − cPj , if qPj ≤ 0,

(6)
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Fig. 2. Head loss approximations used

where, h j is the head at node j and aP2, bP2 & cP2 are the fitted coefficients for the pipe, cP2 represents the elevation

difference. This again results in quadratic equality constraints and is thus renders (1) an MINLP.

Of course we can consider replacing quadratic constraints by piecewise linear approximations that can provide

an approximation of the head loss in a pipe using linear big-M constraints:

hJ3 − hJ4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mP2,1qP2 + cP2,1, if qlim 1 ≤ qP2 ≤ qlim 2

mP2,2qP2 + cP2,2, if qlim 2 ≤ qP2 ≤ qlim 3 . . .

mP2,Npiece qP2 + cP2,Npiece , if qlimNpiece−1 ≤ qP2 ≤ qlim Npiece

(7)

where λP2, (1,2...Npiece), λ ∈ {0, 1} is a switch for each corresponding linear section given by mP2, (1,2...Npiece)qP2 +

cP2, (1,2...Npiece).

A formulation with Npieces pieces introduces Npieces of integer variables per pipe at each time step. Thus approx-

imations with closer fits to the head loss curve can scale badly for larger network models. Furthermore, while it

is continuous around flow reversal it introduces discontinuities where the linear sections meet, which may lead to

numerical issues.

2.4. Mass balance at network nodes

Since water can be considered incompressible, the mass flow is equal to the volume flow. Thus for a network node

J3 joining components P1, P2, · · · Pn, the mass must balance at each time step j as:

qP1, j + qP2, j + · · · + qPn, j = 0. (8)

Demand at a node is considered in the mass balance and must always be met in feasible solutions. To further ensure

feasibility of the solutions, a minimum hydraulic head can be enforced at each node.

Tanks provide storage in the network. For a tank at J4 with flows qin&qout the mass balance for time steps j =
1 . . .N − 1 is given by:

qin, j + qout, j =
(
hJ4, j+1 − hJ4, j

)
× AJ4, (9)

where the surface area of the tank is given by AJ . Since demand patterns are similar from day to day, we ensure that

schedules are repeatable (reasonably similar) by enforcing the constraint that final levels in tanks do not differ much

from their initial conditions: (
hJ4,1 − hJ4,N

) × AJ4 ≤ δV , (10)
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Table 1. Formulation combinations used to investigate the influence of the component approximations. For each optimisation problem defined the

constraints apply to all relevant components: (4 or 5) would apply to all pumps in the network, (7 or 6) would apply to all pipe in the network and

(8) to all nodes and (9) to all tanks.

No.: Formulation Details

MINLP problems solved with SCIP:

AN1 min.: f1(·) + f2(·) MINLP with the fewest number of integer variables, (1 per pipe and 1 per pump)

s.t.: (4),(6), (8),(9) but most non-linear constraints.

AN2 min.: f1(·) + f2(·) MINLP with a piecewise linear pipe approximation and thus less non-linear

s.t.: (4),(7), (8),(9) constraints than AN1, but more integer variables (Npiece = 7).

AN3 min.: f1(·) + f2(·) MINLP with the same non-linear constraints as AN2, but a less close piecewise

s.t.: (4),(7),(8),(9) linear approximation and thus fewer integer variables (Npiece = 3).

MIQP /MILP problems solved with CPLEX:

AN4 min.: f1(·) + f2(·) MIQP with the closest piecewise linear and convex set approximation and only

s.t.: (5),(7),(8),(9) linear constraints (Npiece = 7,Ncon = 7).

AN5 min.: f1(·) + f2(·) MIQP like AN3, but with a less close piecewise linear approximation and thus

s.t.: (5),(7),(8),(9) fewer integer variables but a similar number of constraints (Npiece = 3,Ncon = 7).

AN6 min.: f1(·) + f2(·) MIQP like AN3, but a less close convex set approximation and thus less con-

s.t.: (5),(7),(8),(9) straints but the same number of integer variables variables (Npiece = 7,Ncon = 3).

AN7 min.: f1(·) + f2(·) MIQP like AN3, but significantly less integer variables and constraints

s.t.: (5),(7),(8),(9) through the most relaxed approximations (Npiece = 3,Ncon = 3).

AN8 min.: f1(·) MILP like AN7, but a linear objective function, used to identify the

s.t.: (5),(7),(8),(9) performance effect of the switching penalty (Npiece = 3,Ncon = 3).

where δV defines the volumetric difference. This allows us to not specify the final or initial tank levels as input data,

which would limit the feasible search space and would potentially lead to a sub-optimal final solution. A similar

method is used by Price and Ostfeld(2013) while Crawley and Dandy(1993) include a penalty for a water level below

the original level or a specified target at the end of the operating period.

3. Methodology

3.1. Problems considered

The optimisation problem consists of an objective function, which is minimised to reduce operational cost, a set of

constraints that approximate the behaviour of the network components. The MIP formulations AN1–AN7 in Table 1

were tested for computational effort, computed operational cost and accuracy of the resulting hydraulic solution. The

accuracy in terms of the hydraulic solution and the calculated operational cost have to balance with the requirement

to solve the system sufficiently quickly for operational purposes, where decision time is limited to a fraction of the

time step. The computational cost of the maintenance penalty in the objective function is analysed using formulations

AN7 and AN8.
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Fig. 3. Richmond skeleton network

3.2. Investigation procedure

The Richmond network1 shown in Figure 3 is a network often considered when benchmarking operation optimisa-

tion. The network is a skeletonised version of a real supply network and consists of 44 pipes (7 pumps) and 41 nodes

(6 storage tanks and 10 demand nodes). The computational effort and accuracy of the hydraulic solution computed

are evaluated by the following procedure:

1. The problem as defined by the approximation number and number of time steps is generated and solved by the

corresponding MIP solver.

2. The solver finds a solution for the MIP problem with a 5% optimality gap or terminates after ten minutes pro-

ducing an operating schedule x and a corresponding hydraulic solution u,

3. The minimal operating cost found by the solver, the time taken and the remaining optimality gap are recorded,

4. x is passed to a nullspace Newton algorithm which solves the hydraulic equations to compute u’, the hydraulic

solution for the pump settings x (Abraham and Stoianov,2015),

5. The difference between u’ and u is computed and recorded.

6. The procedure is repeated 3 times to obtain averaged measures for the computational effort.

As the problem is either posed as MILP, MIQP or MINLP as outlined in Table 1, the MINLP are solved with

SCIP. For the MIQP and MILP problems CPLEX was used due to significantly better performance for this class

of problems. The problems are parsed using the Matlab toolbox OPTI or the CPLEX MATLAB API (Currie and

Wilson,2012,Achterberg,2009,IBM,2009). The simulations are performed on an Intel Xeon E5-2665 with 2.4Ghz

and 32GB RAM and Matlab 2014b.

Branch and bound provides a lower bound on the relaxed underlying problem and a solution taken before conver-

gence can be tested for sub-optimality. In an operational setting near optimal will often be sufficient. After initial

analysis a 5% optimality gap between the feasible solution and the best bound was considered sufficient as further

evaluations did not improve the objective function but tightens the best bound with further iterations.
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Table 2. Mean of the relative hydraulic error

Approximation 1 2 3 4 5 6 7 8

Error 1.74 % 3.22 % 3.99 % 2.78 % 4.00 % 3.65 % 3.3 % 3.3 %

Approximation Number
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Fig. 4. Results for approximations as detailed in table 1

4. Results

Figure 4 shows the time taken by the MIP solvers to achieve the 5% optimality gap and the operating cost of the

computed schedule. It clearly shows that the non-linear approximations did not find a solution in the time limit. The

approximations AN4 and AN6 did not yield schedules for the larger problems either, while approximations AN5,

AN7 and AN8 all reach the specified optimality gap of 5% within the time limit.

The differences in computed schedules are small. There is no difference between the schedules computed by

approximations AN5 and AN7, while approximations AN4 and AN6 do provide schedules of lower cost, when they

converge to solution. The 24 time step case of approximation 6 only converged to an optimality gap of 8.09% at the

time limit, thus the schedule computed within the time limit was used.

The relative mean errors are compiled in Table 2, showing the mean of the relative error
‖u − u’‖
‖u‖ . Due to the

failure of approximations AN1–AN3 to converge in the given time limit, the mean errors of the analysis on the Van

Zyl network are considered in the analysis.2

5. Discussion

The performance of the approximations in terms of computational time and hydraulic accuracy differs significantly

between MINLPs and MIQP/LPs and different component approximations and time step sizes. The number of time

steps and thus the overall size of the problem has a very clear effect on the computational effort. The time steps are

doubled three times from 6 to 48, and the increase in computational effort is exponential as shown in Figure 4. The

operating cost drop slightly as the size of the time steps decrease. This is to be expected as smaller time steps provide

a closer control over the pumping, but the gains are clearly not as significant as the increase in computational time.

Figure 4 show that the MIP with a linear objective function requires more computational effort to solve, in particular

for the smaller size problems with larger time steps. The switching penalty provides a gradient or regularisation to

improve the search; over all coarseness in time steps, however, the two have similar performance in computational

1 The network was taken from: http://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/Richmond skeleton.inp
2 Van Zyl network taken from: Lopez-Ibanez(2009)
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time. The computed schedules and thus objective function values are marginally worse for the LP because it does not

consider the cost of switching that need to be added after the optimisation. The hydraulic error is not affected by the

approximation of the pump cost and thus remains unchanged.

The error in demand estimate for 15 minute time steps is ∼ 5−10% (Bakker et al.,2013). This is the same order as

the error introduced due to the component approximations, with the error for the NLPs clearly smaller than that of the

less detailed linear component approximations. While these results are in line with expectations, they do show that a

piecewise approximation with only a few pieces will often have sufficient detail to provide a schedule with a hydraulic

error similar in magnitude to the error in the demand forecast. This is achieved while simultaneously significantly

reducing the computational effort.

The linear approximations only have small differences in computed operating cost between them and the produced

schedules are similar. The component approximations over estimating head loss in pipes and underestimating the head

difference a pump can generate. Thus the closer approximations provide schedules of lower operating cost. For the

Richmond Network evaluated the closeness of the pipe approximation has a stronger effect on the schedule produced

than the closeness of the pump approximation. For 1 hour time steps approximation AN6 provides a schedule with

operating cost similar to that for approximation AN5 and AN7 at half hour time steps, despite not reaching a sub-

optimality of 5% at the time limit. For the same pipe approximation, the closeness of the pump approximation does

not provide a schedule with lower operating cost but does not lead to an increase on computational effort either. On

the contrary for the smallest time step it was even decreased slightly.

5.1. Further work

The preliminary results reported here indicate trends that need to be confirmed for a range of networks to investigate

their dependence on network properties. In particular, the proposed non-linear approximations were not suitable

to find a solution for the Richmond network in the short time frame required. Further development to reduce the

computational effort could make these methods more competitive.

Finally, a detailed analysis of the computed and actual operating cost due to the schedules is needed to further

compare the different approximation methods. As a result of this more or less detailed approximations for the pump

cost can be formulated to either improve the accuracy of the computed operating cost or reduce the computational

effort further.

6. Conclusions

We show that piecewise linear component approximations require significantly lower computational effort to solve

the MIP compared to the non-linear constraints considered here. Although this may result in a small increase in error

of the hydraulic solution computed by the MIP solver, the mean error in flow rates is only ∼ 4%, which is well within

the modelling uncertainties of a WDS. By using smaller time steps, the computed operation cost improved slightly (by

5− 10%), while the computational time increased exponentially as the number of inter variables increased. Similarly,

more detailed approximations of pipes, which also introduce more integer variables, lead to a small decrease in

computed operating cost while their computational effort increases significantly.
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