483 research outputs found

    Prediction of n-octanol-water partition coefficient for polychlorinated biphenyls from theoretical molecular descriptors

    No full text
    A quantitative structure-property relationship (QSPR) study was performed to develop models that relate the structures of 133 polychlorinated biphenyls to their n-octanol-water partition coefficients (log Kow). Molecular descriptors were derived solely from 3D structures of the molecules. The genetic algorithm-partial least squares (GA-PLS) method was applied as a variable selection tool.  The partial least square (PLS) method was used to select the best descriptors and the selected descriptors were used as input neurons in neural network model. These descriptors are: Balabane index (J), XY Shadow (SXY), Kier shape index (order 3) (3Đș), Wiener index (W) and Maximum valency of C atom (VmaxC). The use of descriptors calculated only from molecular structure eliminates the need for experimental determination of properties for use in the correlation and allows for the estimation of log Kow for molecules not yet synthesized. The root mean square errors for ANN predicted partition coefficients of training, test and external validation sets were 0.063, 0.112 and 0.126, respectively, while these values are 0.230, 0.164 and 0.297 for the PLS model, respectively. Comparison between these values and other statistical parameters for these two models revealed the superiority of the ANN over the PLS model

    Predicting Skin Permeability by means of Computational Approaches : Reliability and Caveats in Pharmaceutical Studies

    Get PDF
    © 2019 American Chemical Society.The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.Peer reviewedFinal Accepted Versio

    Calculating the partition coefficients of organic solvents in octanol/water and octanol/air

    Get PDF
    Partition coefficients define how a solute is distributed between two immiscible phases at equilibrium. The experimental estimation of partition coefficients in a complex system can be an expensive, difficult, and time-consuming process. Here a computational strategy to predict the distributions of a set of solutes in two relevant phase equilibria is presented. The octanol/water and octanol/air partition coefficients are predicted for a group of polar solvents using density functional theory (DFT) calculations in combination with a solvation model based on density (SMD) and are in excellent agreement with experimental data. Thus, the use of quantum-chemical calculations to predict partition coefficients from free energies should be a valuable alternative for unknown solvents. The obtained results indicate that the SMD continuum model in conjunction with any of the three DFT functionals (B3LYP, M06-2X, and M11) agrees with the observed experimental values. The ighest correlation to experimental data for the octanol/water partition coefficients was reached by the M11 functional; for the octanol/air partition coefficient, the M06-2X functional yielded the best performance. To the best of our knowledge, this is the first computational approach for the rediction of octanol/air partition coefficients by DFT calculations, which has remarkable accuracy and precision

    QSPR Modeling of Bioconcentration Factors of Nonionic Organic Compounds

    Get PDF
    The terms bioaccumulation and bioconcentration refer to the uptake and build-up of chemicals that can occur in living organisms. Experimental measurement of bioconcentration is time-consuming and expensive, and is not feasible for a large number of chemicals of potential regulatory concern. A highly effective tool depending on a quantitative structure-property relationship (QSPR) can be utilized to describe the tendency of chemical concentration organisms represented by, the important ecotoxicological parameter, the logarithm of Bio Concentration Factor (log BCF) with molecular descriptors for a large set of non-ionic organic compounds. QSPR models were developed using multiple linear regression, partial least squares and neural networks analyses. Linear and non-linear QSPR models to predict log BCF of the compounds developed for the relevant descriptors. The results obtained offer good regression models having good prediction ability. The descriptors used in these models depend on the volume, connectivity, molar refractivity, surface tension and the presence of atoms accepting H-bonds

    Pyrimidinylsalicylic Based Herbicides: Modeling and Prediction

    Get PDF

    Estimating the Octanol/Water Partition Coefficient for Aliphatic Organic Compounds Using Semi-Empirical Electrotopological Index

    Get PDF
    A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (ISET). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the ISET in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P

    Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds

    Get PDF
    We predict the soil sorption coefficient for a heterogeneous set of 643 organic non-ionic compounds by means of Quantitative Structure-Property Relationships (QSPR). A conformation-independent representation of the chemical structure is established. The 17,538molecular descriptors derived with PaDEL and EPI Suite softwares are simultaneously analyzed through linear regressions obtained with the Replacement Method variable subset selection technique. The best predictive three-descriptors QSPR is developed on a reduced training set of 93 chemicals, having an acceptable predictive capability on 550 test set compounds. We also establish a model with a single optimal descriptor derived from CORAL freeware. The present approach compares fairly well with a previously reported one that uses Dragon descriptors.Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicada

    QSPR Studies on Aqueous Solubilities of Drug-Like Compounds

    Get PDF
    A rapidly growing area of modern pharmaceutical research is the prediction of aqueous solubility of drug-sized compounds from their molecular structures. There exist many different reasons for considering this physico-chemical property as a key parameter: the design of novel entities with adequate aqueous solubility brings many advantages to preclinical and clinical research and development, allowing improvement of the Absorption, Distribution, Metabolization, and Elimination/Toxicity profile and “screenability” of drug candidates in High Throughput Screening techniques. This work compiles recent QSPR linear models established by our research group devoted to the quantification of aqueous solubilities and their comparison to previous research on the topic

    QSPR study of partition coefficient (Ko/w) of some organic compounds using radial basic function-partial least square (RBF-PLS)

    Full text link
    In this work, we introduce a new method ability radial basic function-partial least square (RBF-PLS) with high accuracy and precision in QSPR studies. Three quantitative structure-propertty relationship (QSPR) methods have been compared for the prediction of n-octanol-water partition coefficients (Ko/w) of some organic compounds. The multiple linear regressions (MLR), partial least square (PLS) and radial basis function-partial least squares (RBF-PLS) models were employed to construct linear and nonlinear models to predict of Ko/w. The theoretical descriptors that calculated by Dragon and Gaussian 98 were explored by stepwise regressions, encoding different aspects of the topological, geometrical and electronic molecular structures. The root means square error of prediction (RMSEP) for training and prediction sets by MLR, PLS and RBF-PLS models were 0.4022, 0.4128, 0.3050, 0.3564, 0.0364 and 0.0533, respectively. Also, the relative standard error of prediction (RSEP) for training and prediction sets by MLR, PLS and RBF-PLS models were 13.24, 13.60, 10.04, 11.74, 1.197 and 1.757 respectively. The resultant data explained that RBF-PLS produced better results than PLS and MLR
    • 

    corecore