2,286 research outputs found

    Applications of fuzzy theories to multi-objective system optimization

    Get PDF
    Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must form an integral part of the design problem. This work proposes an alternative treatment of the imprecision (demands) by using fuzzy concepts. In this study, we introduce a new approach to the design problem based on a multiobjective genetic algorithm, taking into account simultaneously maximization of the net present value NPV ~ and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage. Besides, a hybrid selection method Pareto rank-tournament was proposed and showed a better performance than the classical Goldberg’s wheel, systematically leading to a higher number of non-dominated solutions

    Mutual benefits of two multicriteria analysis methodologies: A case study for batch plant design

    Get PDF
    This paper presents a MultiObjective Genetic Algorithm (MOGA) optimization framework for batch plant design. For this purpose, two approaches are implemented and compared with respect to three criteria, i.e., investment cost, equipment number and a flexibility indicator based on work in process (the so-called WIP) computed by use of a discrete-event simulation model. The first approach involves a genetic algorithm in order to generate acceptable solutions, from which the best ones are chosen by using a Pareto Sort algorithm. The second approach combines the previous Genetic Algorithm with a multicriteria analysis methodology, i.e., the Electre method in order to find the best solutions. The performances of the two procedures are studied for a large-size problem and a comparison between the procedures is then made

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Simultaneous environmental and economic process synthesis of Isobutane Alkylation

    Get PDF
    This multidisciplinary study concerns the optimal design of processes with a view to both maximizing profit and minimizing environmental impacts. This can be achieved by a combination of traditional chemical process design methods, measurements of environmental impacts and advanced mathematical optimization techniques. More to the point, this paper presents a hybrid simulation-multiobjective optimization approach that at once optimizes the production cost and minimizes the associated environmental impacts of isobutane alkylation. This approach has also made it possible to obtain the flowsheet configurations and process variables that are needed to manufacture isooctane in a way that satisfies the above-stated double aim. The problem is formulated as a Generalized Disjunctive Programming problem and solved using state-of-the-art logic-based algorithms. It is shown, starting from existing alternatives for the process, that it is possible to systematically generate a superstructure that includes alternatives not previously considered. The optimal solution, in the form a Pareto curve, includes different structural alternatives from which the most suitable design can be selected. To evaluate the environmental impact, Life Cycle Assessment based on two different indicators is employed: Ecoindicator 99 and Global Warming Potential.Spanish Ministry of Science and Innovation (CTQ2012-37039-C02-02)

    Evolutionary Computation and QSAR Research

    Get PDF
    [Abstract] The successful high throughput screening of molecule libraries for a specific biological property is one of the main improvements in drug discovery. The virtual molecular filtering and screening relies greatly on quantitative structure-activity relationship (QSAR) analysis, a mathematical model that correlates the activity of a molecule with molecular descriptors. QSAR models have the potential to reduce the costly failure of drug candidates in advanced (clinical) stages by filtering combinatorial libraries, eliminating candidates with a predicted toxic effect and poor pharmacokinetic profiles, and reducing the number of experiments. To obtain a predictive and reliable QSAR model, scientists use methods from various fields such as molecular modeling, pattern recognition, machine learning or artificial intelligence. QSAR modeling relies on three main steps: molecular structure codification into molecular descriptors, selection of relevant variables in the context of the analyzed activity, and search of the optimal mathematical model that correlates the molecular descriptors with a specific activity. Since a variety of techniques from statistics and artificial intelligence can aid variable selection and model building steps, this review focuses on the evolutionary computation methods supporting these tasks. Thus, this review explains the basic of the genetic algorithms and genetic programming as evolutionary computation approaches, the selection methods for high-dimensional data in QSAR, the methods to build QSAR models, the current evolutionary feature selection methods and applications in QSAR and the future trend on the joint or multi-task feature selection methods.Instituto de Salud Carlos III, PIO52048Instituto de Salud Carlos III, RD07/0067/0005Ministerio de Industria, Comercio y Turismo; TSI-020110-2009-53)Galicia. ConsellerĂ­a de EconomĂ­a e Industria; 10SIN105004P

    Computer-Aided Multi-Objective Optimization in Small Molecule Discovery

    Full text link
    Molecular discovery is a multi-objective optimization problem that requires identifying a molecule or set of molecules that balance multiple, often competing, properties. Multi-objective molecular design is commonly addressed by combining properties of interest into a single objective function using scalarization, which imposes assumptions about relative importance and uncovers little about the trade-offs between objectives. In contrast to scalarization, Pareto optimization does not require knowledge of relative importance and reveals the trade-offs between objectives. However, it introduces additional considerations in algorithm design. In this review, we describe pool-based and de novo generative approaches to multi-objective molecular discovery with a focus on Pareto optimization algorithms. We show how pool-based molecular discovery is a relatively direct extension of multi-objective Bayesian optimization and how the plethora of different generative models extend from single-objective to multi-objective optimization in similar ways using non-dominated sorting in the reward function (reinforcement learning) or to select molecules for retraining (distribution learning) or propagation (genetic algorithms). Finally, we discuss some remaining challenges and opportunities in the field, emphasizing the opportunity to adopt Bayesian optimization techniques into multi-objective de novo design

    Multiobjective simulation-based methodologies for medical decision making.

    Get PDF
    A variety of methodologies have been employed for decision making related to the treatment of diseases/injury. Decision trees are a functional way in which to examine problems under uncertainty by providing a method to analyze decisions under risk (Detsky, 1996, 97). However, conventional decision trees do not completely represent the real world since they cannot investigate problems that are cyclic in nature (Jaafari, 2003). The stochastic tree that developed Hazen during 1992-to-1996 is one of the most relevant methods and techniques related to decision analyses that append more incorporation for medical intervention related to recurring diseases/injuries. The approach combines features of continuous-time Markov chains with those of decision trees and that enable time to be modeled as a range where health state transitions can occur at any instant (Hazen 1992-to-96). It can also accommodate patients\u27 preferences regarding risk and quality of life. In this research we enhance Hazen\u27s stochastic tree by developing an analytical model, and we extend its capabilities more by developing multi-objective simulation based methodologists for medical decision making. First, with our enhancement on the Hazen\u27s stochastic tree, the model is improved by utilizing the Weibull Accelerated Failure Time model. This new technique will fill the gap between the experimental circumstances and the corresponding circumstances or conditions of standard/current treatment. Second, as simulation can be a final alternative for problems that are mathematically intractable for other techniques (Banks 1996), our multi-objective simulation based model for medical decision making extends the capabilities of Hazen stochastic tree. It adds more flexibility with the use of survival distributions for health states sojourn, and combines two sound theories: multi attribute utility (MAU) theory, and Ranking-Selection procedures. Indeed, our simulation model (considering patient\u27s profile/preferences and health states survival/quality/cost, QALY) presents an investigation of the use of simulation on the stochastic tree, with associated techniques related to ranking and selection, and multi-objectives decision analysis
    • 

    corecore