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vector of objective functions

i th objective function

i th normalized (standardized) objective function
inertia force on i th link in x-dim.
inertia force on i th link in y-dimn.

j th inequality constraint

inertia of i th link

inertia of i th counterweighted link
inertia of i th counterweight

number of objective functions

lower bound on F;

number of inequality constraints
scaling factor for the i th objective (f;)
mass of i th counterweighted link
mass of i th counterweight

constant

cg of i th counterweight

cg of i th counterweighted link
feasible solution space, supercriterion
inertia torque on i th link

upper bound on F;

weighting factor for the i th objective
set of feasible design variables
starting design vector

optimum design vector

optimum design vector for i th objective
transpose of [ ]

structural error at i th design position
fuzzy intersection

grade of membership of ()

decision maker (designer)

in ground effect

one engine inoperative

out of ground effect

sea level standard conditions
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1. INTRODUCTION

Recent advances in engineering optimization have resulted in the development of techniques
for handling problems involving large numbers of design variables and/or constraints (Schmit
1981, Vanderplaats 1982). Usually a scalar-valued objective function is optimized over a
feasible design space and the result is often used as a guiding device in striving for the best
possible system. However, there often exist several engineering design problems, which involve
several, often conflicting, objectives to be considered by the designer.

The earliest work reporting the consideration of multiple objectives in mathematical
programming appears to be that of Kuhn and Tucker (1950). The progress in the field of
multicriteria optimization was summarized by Hwang and Masud (1979), Evans (1984), and
Stadler (1984). The consideration of competing design objectives in mechanical systems using
heuristic methods was discussed by Bartel and Marks (1974). The importance of game theory as
a design tool has been emphasized by Rao and Hati (1980) and Vincent (1983). Since no unique
solution, which would be optimum for all the individual objective functions, exists for a
multiobjective optimization problem, the concept of Pareto-optimality has been used in most of
the available methods. Several techniques for generating Pareto-optimal solutions are presented
in this work.

In modeling most real world problems, a designer is often forced to state a problem in
precise mathematical terms rather than in terms of the real world which is often imprecise in
nature. The relationships and statements used for description may be imprecise not due to
randomness but because of inherent fuzziness in the systemn. Fuzziness is a type of imprecision
associated with fuzzy sets in which there is no sharp transition from membership to non-
membership. Further, with increasing system complexity, one’s ability to make precise and
significant statements concerning a given system diminishes (Zadeh 1973). Consequently, the
closer one examines a real-world problem, the fuzzier its description becomes. Fuzzy set
theories can effectively model such domains in which the description of activities and
observations are "fuzzy", in the sense that there are no sharply defined boundaries of the set of
activities or observations to which the descriptions apply. These theories enable one to structure
and describe activities which differ from each other vaguely, to formulate them in models, and to
use these models for problem solving and decision making.

Fuzzy set theory was initiated by Zadeh in 1965. Since then for some ten years, the
mathematics of the subject was developed but few applications resulted. During the last decade,
these theories have been applied to various areas such as artificial intelligence, control, image
processing, pattern recognition, robotics, psychology, etc. The first application of fuzzy theories
to decision making processes was presented by Bellman and Zadeh (1970). This paper
prescribed basic concepts and definitions associated with a decision making process in a fuzzy
environment. Since then, these conceptual techniques have been employed to formulate and
solve several mathematical programming problems.

Zimmermann has applied fuzzy optimization techniques to linear programming problems
with single (1976) and multiple objectives (1978). An application of these theories to Preemptive
and Archimedian versions of goal programming problems has been presented by Hannan (1981).
Wang and Wang (1985) have used the method of level cut solutions for the fuzzy optimum
design of structures. Rao has employed fuzzy optimization techniques for the design of
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mechanical (1987a) and structural systems (1987b). An application of these techniques to
multiobjective, multiple attribute decision making problems has been presented by Yager
(1979). The concept of efficient and weakly efficient solutions in the context of fuzzy
multiobjective problems has been discussed by Feng (1983) and Negotia (1981).

This work demonstrates the application and effectiveness of fuzzy theories in the formulation
and solution of two types of helicopter design problems involving multiple objectives. The first
problem deals with the determination of optimum flight parameters to accomplish a specified
mission in the presence of three competing objectives. The second problem addresses the
optimum design of the main rotor of a helicopter involving eight objective functions. A method
of solving the resulting fuzzy multiobjective problem using nonlinear programming techniques
is presented. Results obtained using fuzzy formulation are compared with those obtained using
crisp optimization techniques. The outlined procedure should be useful in engineering design
situations where uncertainity arises about the preciseness of permissible parameters, degree of
credibility, and correctness of statements and judgements.

The fuzzy approach is also applied to the problem of integrated design of high speed planar
mechanisms. The integrated formulation combines both the kinematic and dynamic synthesis
aspects of mechanism design. The multiobjective optimization techniques presented in this work
facilitate the design of a linkage to meet several kinematic and dynamic design criteria. The
method can be used for motion, path, and function generation problems. The nonlinear
programming formulation also permits the imposition of constraints to climinate solutions which
possess undesirable kinematic and motion characteristics. To model the vague and imprecise
information in the problem formulation, the tools of fuzzy set theory have been used. A method
of solving the resulting fuzzy multiobjective problem using mathematical programming
techniques is presented. In addition, several nonlinear shapes for membership functions are
considered to determine their impact on the overall design process. It has been observed that the
final design is strongly influenced by the nature of designer’s behavior with respect to fuzzy
objectives and constraints.

2. MULTIPLE OBJECTIVE DECISION MAKING - CRISP APPROACH

2.1 PROBLEM STATEMENT
A general multiple objective nonlinear programming (NLP) problem is of the following form

—_
Minimize f{(X)

subject to
XeS=[X]|Xe R",gj(X)SO] (D
where
X = [X],X25 s Xp )T 2
T(X) = [, (), £, .. i O 3)

For a single objective optimization problem, an optimum solution is defined as one that
minimizes the objective function f;j(X) subject to the constraints gi(X)<0, j=12,..m.
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Attempting to dg,ﬁnc a vector minimal point as one at which all components of the objective
function vector f are simultaneously minimized is not an adequate generalization since such
"utopia" points are seldom attainable. Thus a new optimality concept, different from that used in
scalar optimization, is necessary to find a solution to the vector optimization problem. The
concept of a Pareto-optimal solution (Soland 1979, Steuer 1986) has been found to be useful in
this context.

Definition I1: A feasible solution X* € S is Pareto-optimal if there is no X e S such that
f;,(X) < f.(X"), i=1,2,..k, and f; (X) <f;, (X") for at least one ig € [1,..k].

Alternately, a design vector X* is Pareto-optimal if there exists no feasible vector X which
would decrease some objective function without causing a simultaneous increase in at least one
other objective function. Unless a problem is convex, only a locally optimal solution can be
guaranteed using standard mathematical programming techniques. Thus, the concept of Pareto-
optimality needs to be defined for a nonconvex problem as

Definition 2: A solution X* € S is said to be locally Pareto-optimal if and only if there exists a &
> 0 such that X* is Pareto-optimal in S N N(X*,8) where N(X",8) denotes a neighborhood of
X" ie theset[X|Xe S,Xe R, |X-X"|2<8].

The set of Pareto-optimal solutions usually consists of an infinite number of points and
additional information is needed to order the Pareto-optimal set (Rosenthal 1985). This makes it
possible to bring in additional considerations which are not included in the optimization model,
thus making the multiobjective approach a fiexible technique for most design problems. Several
numerical techniques have been suggested for solving a vector optimization problem. Each
method, in general, generates a different Pareto-optimal solution which reflects the decision
maker’s (DM’s) preference structure.

2.2 SOLUTION TECHNIQUES

We now present some of the commonly used techniques (Rao 1984, Dhingra et al. 1990b) to
solve the vector minimization problem given by Eq. (1). In order to have a common basis for
comparison, and to avoid working with different objectives in different units, the objective
functions f;(X) are transformed into new objective functions (F;) constructed as follows

F,(X) =y fl(X) i=l,2,..,k. (4)

Here, the positive constant multipliers my,my,..,m are chosen so that

m; f;(Xg) =my £,(Xg) = -+ =my fx(Xo) =M 5)

at any feasible starting vector Xg. This scaling procedure ensures that all the objective functions
are equal at a particular value of Xo. Hereafter, it will be assumed that the k objective functions
correspond to the k scaled objective functions given by Eq. (4). Further, it will be assumed that
the nonlinear vector minimization problem given by Eq. (1) is nonconvex so that only locally
Pareto-optimal solutions are guaranteed. The nonconvexity assumption holds for most practical
design problems.



The next few subsections discuss some of the techniques which are used to generate Pareto-
optimal solutions for the mathematical programming problem given by Eq. (1). Each of these
techniques require additional information from the DM, and in general, generate a different
Pareto-optimal solution.

2.2.1 Global Criterion Formulation

This method belongs to a category of multiple objective optimization techniques which
require no articulation of preferences on part of the decision maker once the problem objectives
and constraints have been defined. This entails that the DM be willing to accept whatever
solution is obtained by minimizing some global criterion F(X), for example, the sum of the
squares of the relative deviations of the individual objective functions from the feasible ideal
solutions. In other words, an optimum solution X" is found by minimizing

p
k | F(X)>-F(X;
FX)=2X% ——"——1.—*2 (6)
i=1 F(Xj)
subject to
giX)<0 j=12,.m.

The value of p corresponds to the utility function of the DM and is usually taken as 2. The X is
the feasible ideal solution corresponding to the i th objective function, and is obtained by
minimizing F;(X) with respect to the constraint set X € S. For 1 < p <o, each solution obtained
by solving Eq. (6) is Pareto-optimal. Compromise solutions with p = o= correspond to min-max
criterion for which Pareto-optimality is not guaranteed.

2.2.2 Utility Function Formulation
In this approach, the vector minimization problem (Eq. (1)) is converted to
Maximize U (f) )

subject to
gX)<0 j=12,.,m

where U(—f)) is the utility function of multiple objective functions. The rationale for using U(?) is
that the DM has some utility associated with each of the k objective functions. A utility function
U can have many forms (Farquhar 1977, Klein et al. 1985). The most common form assumes
that the DM’s utility function is additively separable with respect to all the objective functions.
Thus, if U;(F;) is the utility function corresponding to the objective function F;, an overall utility
function U is defined as

5k
UF) = 3 Ui(F). @)

=1

An optimum solution vector X" is found by maximizing the total utility U(_I;) (Eq. (8)) subject to
the constraint set g;(X) <0. A special form of Eq. (8) which has been extensively used in
multiobjective problems is given by



k
-3 wiFi(X) )

i=1

where w; is a scalar weighting factor associated with the i th objective function and indicates its
relative importance. This additively separable form of the utility function (Eq. (9)) is also
commonly referred to as the weighting method, and serves as a sufficient condition for the
calculation of Pareto-optimal solutions.

The main advantage of the utility function formulanon is its simplicity. It is easier to assess
k unidimensional utility functions (U;’s) than to assess U(F) directly. Similarly, it is easier to get
w;’s from the decision maker. The disadvantage of this approach are there are few cases where
utility function is really additively separable, and w; depend not only on the achievement level
of F; but also the achievement level of F; relative to F;, fori#j. Further, if the problem is
nonconvex, this approach may miss all but a finite number of Pareto-optimal solutions.

2.2.3 Goal Programming Method

In goal programming, there are two basic models: the Archimedian model and the
Preemptive model. The Archimedian model deals with generation of candidate solutions whose
criterion vectors are closest, in a weighted L, metric sense to the utopian set in the criterion
space. The preemptive model, on the other hand, generates solutions whose criterion vectors are
most closely related in a lexicographic sense, to points in the utopian set. The Archimedian
version of goal programming is considered in this work.

In the simplest version of Archimedian goal programming, a designer sets goals and relanve
weights for each of the objective functions that he/she wishes to attain. An optimum solution x*
is then defined as the one that minimizes the weighted sum of the deviations from the set goals.
Thus, the goal programming formulation of a multiobjective problem leads to

k + P p
Minimize | X W; [dj +dj'] } p21 (10)
Fl

subject to
gX)<0 i=1,2,.,m

FO)-df +d] =b; j=1,2,..k (11)
df 20 j=1,2,..k (12)
4720 j=1,2,..k (13)

df dj =0 j=1,2,..k (14)

where b; are the goals set by the designer for the j th objective function, and dj and dj are the
under- and overachievement from the target goals for the j th objective function. The value of p
is based on a utility function chosen by the designer. If the goals b; are set equal to F; obtained
by minimizing individual objective functions Fj, it is not possible to obtain an overachievement
of the goals b;’s. Consequently, the dj need not be defined. Thus the goal programming
formulation given by Egs. (10-14) reduces to



Minimize

f;wj [d}]p}“p p21 (15)

=

subject to
gX)<0 i=1,2,.,m
df 20 j=1,2,..k
df =F;X)-F/(X) j=1,2,..k. (16)

The goal constraints in the above formulation are soft constraints in the sense that they do not
restrict the original feasible region S. In effect, they augment the feasible region by casting S
into higher dimensional space, thereby creating the augmented goal programming feasible
region. However, if the goal vector is not chosen properly, there is no guarantee that the goal
programming formulation will terminate at a Pareto-optimal solution.

2.2.4 Goal Attainment Method

Goal attainment formulation requires setting up goals by,bs,..,bx and weights wi,w2,.., Wy
for the objective functions Fy,Fy,..,Fy respectively. The weights w; relate the relative under- or
overattainment of the desired goals (b;). The following problem is solved to determine the
optimal solution X"

Minimize z an
subject to
gX)<0 j=12,.,m
F(X)-w;z<b; i=1,2,.,k (18)
w; 20 i=1,2,..k (19)

where z is a scalar variable unrestricted in sign. The weights w; are normalized so that

k
3w =1 (20)

In the case of the underattainment of the desired goals, a smaller weighting coefficient is
associated with the more important objective functions. For an overattainment of the desired
goals, a smaller weighting coefficient is associated with the less important objective functions.
The opnmum solution obtained using the goal attainment formulation is fairly sensitive to the
goal vector (b) and the weighting vector (W) given by the DM. Dcpendmg upon the prescribed
values of the goal vector, it is possible that the welghtlng vector w does not dictate the optimum
solution at all. Instggd the optimum solution X* is determined by the nearest nondominated
solution point from b. This may require that W be varied parametrically to generate the entire set
of Pareto-optimal solutions. Further, if the goal vector is not chosen properly, there is no
guarantee that the goal attainment formulation will terminate at a Pareto-optimal solution.



2.2.5 Bounded Objective Function Formulation

In this method, the minimum and maximum acceptable achievement levels for each
objective function F; are specified by the DM as L! and U® respectively. Then, an optimum
solution X* is found by solving the following problem

Minimize F.(X) 21
subject to
ngO =12,..,m
Li<F(X)sU' i=1,2,..,k; i#r (22)

This method, also referred to as €-constraint method, can be shown to lead to weak Pareto-
optimal solutions. However, if the optimal solution to the above problem is unique, then the
resulting solution is Pareto-optimal. Further, by systematically varying L' and U', the bounded
objective formulation can generate the entire set of Pareto-optimal solutions for even nonconvex
problems.

A difficulty with this method is to prescribe values for L! and U! prior to any preliminary
solution. Since the designer has to specify these values in an information void, this may result in
the mathematical programming problem given by Egs. (21-22) into a problem with inconsistent
constraints. Another question which needs to be addressed with this approach is which objective
should be used for F, (X).

2.2.6 Lexicographic Method

In the lexicographic method, the objectives are ranked in order of importance by the
designer. An optimum solution X" is obtained by minimizing the objective functions, starting
with the most important one and proceeding according to the order of importance of the
objectives. The rationale for this method is that individuals tend to make decisions in this
manner.

Let the subscripts of the objectives denote not only the objective function number, but also
the priority of the objective. The solution procedure is given as follows

1) Starting with X, minimize F;(X) subject to the constraint set g;(X) <0. Let the resulting
optimum solution be denoted as X} and Fj.

2) Starting from X;, minimize fz(X) subject to tlle constraint set g;(X) <0, and an additional
constraint of the form 0.95F] <F;(X)<1.05F;. Let the resulting solution be X5, and
F3 =F,(X3).

3) Proceeding as outlined in step (2), at the i th stage the resulting problem is given as: Starting
from X_;, minimize F;(X) subject to the constraint set g;(X) <0, and i-1 additional constraint of
the form 0.95 F; <F;(X) < 1.05F}, j=1,2,..,i-1.

For a problem involving k criteria, there are a total of k! ways in which the objective functions
can be ranked by the DM. Since the solution obtained using the lexicographic method is fairly
sensitive to the ranking of the objectives given by the DM, one should exercise caution in
applying this method when some objective functions are of nearly equal importance.
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2.2.7 Game Theory Approach

In the cooperative version of game theory (Rao and Hat 1980), a multiobjective
optimization problem is viewed as a game problem involving several players, one corresponding
to each of the objective functions. The system is assumed to be under the control of these
intelligent adversaries, each willing to compromise his/her own objective in order to improve the

overall solution. The basic approach is summarized as follows

i) Using Xy as a starting point, solve k single objective optimization problems given by
Minimize F;(X)

subject to

gX)<0 j=L2,.,m

Let the optimum solutions be Xi', i=1,2,..k.
ii) Construct a supercriterion or bargaining model S as

k *
$=IT | Fu-FiX3) |
=1
where
F,, = max [Fi(x;)] i, j=1,2,..k
and X, represents the Pareto-optimal solution obtained by solving the following problem

k
Minimize Fw (W,X) = Z wiFi (X)

i=1
subject to
giX)<s0 j=1,2,.,m

k
Zwi=1
=1

w; 20 i=1,2,..k

(23)

(24)

(25)

(26)

27

(28)

iii) Maximize the supercriterion and the find the optimal convex combination w of the objective
functions and the corresponding optimal solution to the problem, i.e. X = X4 . The game theory
approach as presented above not only yields a Pareto-optimal solution, but also results in an

optimum set of relative weights for the k objective functions.
3. MULTIPLE OBJECTIVE DECISION MAKING - FUZZY APPROACH

3.1 BASIC CONCEPTS



Traditional schemes for design optimization assume that all the design data are known
precisely, that the constraints delimit a well defined set of feasible decisions, and that the
objective function is well defined and is easy to formulate. An optimal decision is that
combination of decision variables X* which results in the "highest degree of satisfaction” for the
objective function f(X).

For a problem involving uncertainity and fuzziness in the design input data, this notion of
optimization needs to be modified. The objective function and the constraints constitute a class
of alternatives whose boundaries are not well defined. To deal with this imprecision
quantitatively, the tools of fuzzy set theory can be used. The fuzzy objective function and the
fuzzy constraints are characterized by their membership functions. Since the overall
optimization process requires a simultaneous satisfaction of the objective function and the
constraints, a decision or selection of a set of design variables is made by assuming that the
constraints are independent (i.. the membership function for constraint g; is independent of
membership function of constraint g;, for i#j) and the logical and (min) operator corresponds to
an intersection. This definition of a decision as the intersection of goals and constraints reflects
the interpretation of and in the hard (min) sense. The logical and does not allow any
compensation (tradeoff) at all, that is, an element of the intersection of two fuzzy sets cannot
compensate a low membership value of one of the intersected sets by a higher membership value
of the second one. However, the min operator is most frequently employed in fuzzy optimization
problems (Zimmermann 1985) and has been used in the present work.

Consider a crisp nonlinear mathematical programming problem of the form
Minimize f(X)
subject to
gj(X) <b;, j=12,..m (29)
where

X = (X1,X2, . Xp) " - (30)

The fuzzy analogue of the crisp nonlinear programming problem (29) can be stated as
Find X such that
f(X)e F 31
gi(X)e G;, j=1,2,..m (32)

where F, Gj denote the allowable tolerance interval for the fuzzy goal (f) and the fuzzy
constraint functions (gj). The bar over a symbol indicates that the expression or variable
contains fuzzy information. The fuzzy constraint g; € G; indicates that g; is a member of G;j
such that ug, (g;(X)) >0, where ug, is the membership function for the fuzzy set Gj. A fuzzy
feasible region is defined by considering all the fuzzy constraints as



—_ m _
R(X) = " G;(X). (33)
Fl

This gives the overall degree of satisfaction of design vector X with respect to all the fuzzy
constraints. A design vector X is considered feasible provided pg(X) > 0. The differences in the
membership degrees of two vectors X; and X, imply nothing but variations in the degree of
satisfaction of X; and X, with respect to the constraint set. A fuzzy decision is now defined as
the confluence of the fuzzy goal (F) and the fuzzy constraints (G,,G3,..,Gp) as:

DX)=FNnG; "G, N .. Gy (34)
and in terms of membership values as

w500 = [BECO]| [Q g, (80 |. 35)
F

Because of the symmetry of this aggregation procedure with respect to fuzzy goals and fuzzy
constraints, there is no longer any distinction between the goals and the constraints of a decision
process. A sufficient condition for a unique maximum is that D be a strongly convex set,
namely, D is convex with a unimodal membership function. An optimum solution X" is one at
which the membership function of D attains its maximum, i.e.

us(X") = max p5(X), Xe D (36)
where

W50 = min; [HE(X).15, €00 |. 37)

3.2 SOLUTION STRATEGY FOR MULTIPLE OBJECTIVES

Consider a multiple objective optimization problem with k fuzzy goals f,,f;,..,fy represented
by fuzzy sets F,, i=1l,..,k and m fuzzy constraints g;,g;,...&m represented by fuzzy sets Gj.
j=1,...,m. By generalizing the analogy from the single objective function case, the resulting fuzzy
decision is given as

D=F,nFn - nEnG NG, - NnGp. (38)

In terms of corresponding membership values for the fuzzy goals and the fuzzy constraints, the
resulting decision is

k ] m
H5X) = [MHEX) | N [muéj(gj(x)) 39)
i=1 ] 1
or
Mp(X) = min; ua(X),ua,.(X)]. (40)

10



An optimum solution X" is one at which the membership function of the resulting decision D is
maximum, i.e.

W(X") =max u5(X), Xe D (41)

where pup(X) is given by Eq. (40).

The shape of the membership functions such as a linear, concave, or convex function, for
various objectives and constraints, can affect the optimum solution significantly. A linear
approximation has been most commonly used because of simplicity and expediency. But other
shapes for membership functions such as a concave or a convex function offer potential benefits
in terms of realism. In the present work, several possible common shapes for the membership
function of the various fuzzy goals are chosen consistent with varying perceptions of the
decision maker. These shapes are discussed in detail in section 3.3 on "Nonlinear membership
functions".

3.2.1 Computational Procedure

An efficient solution of the fuzzy multiobjective problem given by Eq. (41) is determined by
(i) finding the solutions of the individual single objective optimization problems, (ii) determining
the best and worst values for each of the objective functions, (iii) using these values as the
boundaries of the fuzzy ranges for the fuzzy objective functions in the corresponding
optimization problem, and (iv) solving the resulting fuzzy optimization problem.

A linear membership function of a fuzzy objective function, for example, is constructed as:

0,
if £,(X) > fr
S0+ | ,
HE (X) = e g if fMR < fi(X) <M, i=1,2,..k (42)
‘ ' if £;(X) < fmin
1,

where f{“i“=minj fi(X;) and f{"*=max; fi(Xj‘), and XJ-' is the optimum design vector of the j th
objective function. A linear membership function models a decision maker’s constant
marginally increasing (or decreasing) membership value over the parameter range of interest and
is defined by fixing upper and lower levels of design parameter acceptability. When the fuzzy
constraints are stated as

giX)sb;+d;, j=1,2,..m (43)

where d; denotes the distance by which the boundary of the j th constraint is moved, the linear
membership function for the j th constraint is constructed as:
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.
0,
if b_] < gJ(X) < bJ +dj, ]=1,2,,m (44)

if gj(X) < bj.

8j(X) - b;

uaj(X):Jl-— 3

1,

.

Once the membership functions of the fuzzy objectives and the fuzzy constraints, i.e. HE, and HG,

are known, the fuzzy optimization problem (Eq. (41)) can be posed as an equivalent crisp
optimization problem as follows:

Find X and A which
Maximize A (45)
subject to
ASHE(), i=1,2,..k (46)
As MG, (X), j=1,2,.,m. @7

This problem can be solved using standard single objective nonlinear programming techniques.

3.3 NONLINEAR MEMBERSHIP FUNCTIONS

One of the major assumptions in solving fuzzy mathematical programming problems in the
literature involves the use of linear membership functions for all fuzzy sets involved in a
decision making process. A linear approximation is most commonly used because of its
simplicity and is defined by fixing two points, the upper and lower levels of acceptability
(Zimmermann 1976, Rao 1987a,b). If fuzzy set theory is to be considered a purely formal
theory, such an assumption is acceptable, even though some kind of formal justification of this
assumption would be desirable. If, however, fuzzy set theory is used to model real decision
making processes, and an assertion is made that the resulting models are true models of reality,
then some kind of empirical justification for this assumption is necessary. In view of this, several
other (nonlinear) shapes for membership functions, such as concave or convex shaped
membership functions are analyzed to determine their impact on the overall design process. The
marginal rate of increase (or decrease) of membership values as a function of design parameter
values is not constant for these nonlinear membership functions, as is the case with linear
membership functions. These nonlinear shapes offer potential benefits in terms of realism and
are chosen consistent with varying perceptions of the decision maker (designer).

Several different shapes for the (monotonically decreasing) membership functions
corresponding to the fuzzy objective functions are presented, and later examined to determine
their impact on overall design process. These shapes correspond to what we define as positive
(convex), negative (concave), or zero (linear) value of the coefficient of membership satiation,
m(X) which is defined as follows (Dhingra et al. 1990c)

m(X) =’ (X), (48)
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where u" (X) is the second derivative of the membership function. This definition is analogous
to the Arrow-Pratt measure of risk aversion and the Dyer-Sarin (1982) measure of value satiation
used in decision analysis for characterizing utility and measurable value functions respectively
(Keeney and Raiffa 1976, Keelin 1981). It may be noted that this definition of m(X) does not
include p (X) because a linear transformation of membership functions is not possible, which is
the case with utility or value functions. A positive value of m(X) cormresponds to increasing
marginal membership values at a given value of X (convex functions). Similarly a negative
value of m(X) corresponds to a decreasing marginal membership values (concave functions),
and m(X)=0 is equivalent to constant marginal membership values (linear functions). Second
order effects which determine whether m(X) is increasing, constant or decreasing over the
parameter range of interest, while retaining its sign, are also considered. The sine and
exponential (k > 0) functions model increasing and decreasing values of m(X) over the range of
definition (m(X) > 0). The logarithmic, quadratic, and exponential (k < 0) functions are used to
model increasing, constant and decreasing values of m(X) when the membership satiation
coefficient is negative. While the satiation coefficient retains its sign for these five functions, the
sign of m(X) changes over the range of definition for a hyperbolic function. The membership
function of a fuzzy goal can also be viewed as a kind of utility function representing the degree
of satisfaction or acceptance. Some of the nonlinear shapes which we have considered are shown
in Fig. 1 and are discussed below.

In the following five subsections dealing with different membership functions, z corresponds
to a particular value of the fuzzy objective function (Z) and z.,;, and zp,, are the fuzzy lower
and upper bounds of the fuzzy objective function.

3.3.1 Exponential

An exponential membership function is defined as

.

1 ifz<zp,

if 22z,
HZ =4 49)

e X% ek otherwise

1-e%
where
z — .
§= . min (50)
Zmax ~ Zmin

and k is a parameter prescribed by the decision maker. When k > 0, Uz is convex and
consequently models an increasing marginal rate of membership values. While m(X) is positive,
its value decreases over the entire range of interest. A negative value of m(X) can also be
modeled using the above function for the case when k < 0. Here again, the magnitude of m(X) is
decreasing over the range of definition.

3.3.2 Hyperbolic Function
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The hyperbolic function is convex over a part of the objective function values and is concave
over the remaining part. The rationale for such a shape (Friedman and Savage 1952) in our
problem context is as follows: When the decision maker is worse off with respect to a goal, the
decision maker tends to have a higher marginal rate of satisfaction with respect to that goal. A
convex shape captures that behavior in the membership function. On the other hand, when one is
better off with respect to a goal, one tends to have a smaller marginal rate of satisfaction. Such
behavior is modeled using the concave portion of the membership function. The complete
function is as follows:

Hz7(X)=0.5-0.5tanh [(z-Z)d] (629

§=__ 0 (52)

Zmax ~ Zmin

The above function has a membership value of 0.5 when z=243=0.5%(Zmin+2Zmax), and is
symmetric with respect to the point z,,;. The decision maker’s m(X) is positive and decreasing
from (Zmin, Zavgl, and is negative and increasing from [zayg, Zmax), With Zavg being the point of
inflection.

3.3.3 Quadratic Function

A quadratic function is used to model a negative, but constant value of m(X) on part of the
decision maker. The function is expressed as

azZ+bz+c=yz. (53)
Assuming that
1 ifz<zy,
=4 0 if Z 2z (54)
05 ifz= Zavg

the values of a, b, and ¢ can be determined by solving the equations:
2

azmin+bzmm+c=l.0 (55)
az2, +bzp, +c=00 (56)
azlg +bzyg +c=05. (57)

If z4y4 is taken to be 0.5%(zmin + Zmax), the quadratic form given by Eq. (53) degenerates to a
linear form as a@ becomes equal to zero.

3.3.4 Logarithmic Function

A logarithmic function is also used to model decreasing marginal rates of membership
values. The function is given as follows
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1 if z € Znin
puz=4 0 if 22 Zpax (58)
a+log (c—12) otherwise.

This concave function is characterized by a negative value of membership satiation coefficient
over the entire range of definition. However, the value of m(X) is increasing over the parameter
range of interest.

3.3.5 Sine Function

A sine function is used to model positive and increasing of m(X) on part of the decision
maker. This function is expressed as

1 if Z< zpmin
Wz = 0 if 22 Zmax (59)
1 —sin rs otherwise.

2

where 3 is given by Eq. (50).

3.4 FUZZY GAME THEORY APPRAOCH

A variety of techniques for multiobjective optimization have been considered in section 2.2.
As will be seen later, each of these techniques, in general, generates a different solution. This is
due to the fact that each formulation has a different underlying preference structure. Game
theoretic class of methods for multiobjective optimization yield a unique solution which is
Pareto-optimal, require minimal amount of subjective information from the DM, require no
interpersonal comparison of utilities, are independent of positive linear transformations of f;’s,
and ensure that at the final solution all the objectives are acceptable.

In game theory, a multiobjective engineering design problem is viewed as a game where
each player corresponds to an objective function. These players are competing with each other to
improve their overall situation subject to a limited supply of resources. Two theories have been
used to abstract the conflict of interest situation between the players; the non-cooperative model
based on the concept of Nash equilibrium, and the cooperative theory based on the concept of a
Pareto-optimal solution.

In the cooperative model, each player is considered a part of a team who is willing to
compromise his/her own payoff in order to improve the situation as a whole. A cooperative
game proceeds with the intent that the team wants to allocate the resources so that all the players
are as better off as possible. The team must then decide as to how the resources should be allo-
cated such that an improvement in the payoff of one player does not result in an unacceptable
loss for another player.
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It is possible to combine the positive aspects of game theoretic and fuzzy formulations to
yield superior and more robust methodologies for multiple objective decision making. Such a
methodology requires the introduction of new operators which are different from the ones used
in fuzzy formulation in section 3.2. A completely general formulation involves consideration of
design problems which have partly crisp and partly fuzzy objectives, as well as partly crisp and
partly fuzzy constraints. Such a formulation is a subject of potential future research.

4. APPLICATIONS

The effectiveness of multiple objective optimization techniques for engineering design
problems is now demonstrated via an application to three design problems. The first problem
deals with the determination of optimum flight parameters, for a helicopter, to accomplish a
specified mission in the presence of three competing design objectives. The second problem
addresses the optimum design of main rotor blades of a helicopter to accomplish a specified
mission in the presence of eight different objective functions. Design example three presents a
novel approach for the design of high speed mechanisms where both kinematic and dynamic
criteria are addressed simuitaneously.

4.1 FLIGHT TRAJECTORY OPTIMIZATION

4.1.1 Introduction

The problem of flight trajectory optimization has not received much attention in the
literature. Earlier attempts at this problem employed the principles of optimal control theory.
Recently, Shruster and Carpas (1983) have used optimal design techniques to achieve maximum
range for an unpowered gliding flight. The design variables for the seven segment trajectory
used in the analysis were the angle of attack for each leg of the mission. Jenkinson and Simos
(1985) have demonstrated the application of optimal design techniques to short haul, fixed wing
routes. The design variables used in their formulation are the indicated air speed, throttle setting,
and the propeller setting. A comprehensive review of the application of optimal design
techniques to various aspects of helicopter design problems can be found in Ashley (1982) and
Miura (1985).
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4.1.2 Problem Formulation

Flight profile optimization addresses the need for determining optimum flight parameters to
accomplish a specified mission for a given payload. The mission planning task is to select, prior
to the flight, the altitude-speed profile and the initial fuel load for the mission. The objectives,
for example, can be to minimize fuel cost, minimize flight time, minimize total cost, maximize
range, or maximize payload, etc. Earlier attempts at solving this type of problem have employed
the principles of optimal control theory (Schmitz 1971). However, if a mission can be discretized
into a finite number of segments, and if the flight conditions remain constant over each segment,
the flight trajectory optimization problem can be formulated as a standard mathematical
programming problem (Bennett 1985). This approach has been adopted in the present work.

For any specified mission, the flight profile optimization program (FPOP) generates an initial
mission description consisting of ten segments. This initial mission approximation assumes that
the fuel tanks are full at takeoff. The power required, and the fuel flow necessary for each
segment are computed based on atmospheric properties such as air density, temperature, and
wind speed. At the end of each mission segment, flight parameters such as helicopter altitude,
fuel consumed, flight time, gross weight, distance traveled, etc. are computed by FPOP. The
performance characteristics of the helicopter are derived from actual test data and are expressed
as follows: i) The power coefficient (C) is expressed as a continuous function of advance ratio
(p) for discrete values of thrust coefficient (C,) using a seventh order polynomial representation;
ii) The engine fuel flow is expressed as a function of shaft horsepower for discrete values of
density altitude using a seventh order polynomial representation; iii) A seventh order polynomial
is used to express hover power coefficient as a continuous function of thrust coefficient for hover
OGE, and hover IGE.

The flight parameters such as the initial fuel load, indicated air speed at the beginning of
each of the ten segments, and the rate of climb at the beginning of the first nine segments are
varied during the design procedure. The rate of climb or descent for the fifth segment of a two
way mission, and the rate of descent for the tenth segment are not true independent variables.
The values of these parameters are computed based on the altitude values at the beginning of the
fifth (or tenth) segment and the destination altitude. From the initial profile determined by FPOP,
the NLP algorithm iterates the flight parameters until an optimum profile satisfying the imposed
constraints is determined.

The design variables for this problem are i) the initial fuel load, ii) indicated air speed at the
beginning of each of the ten segments, and iii) the rate of climb (or descent) at the beginning of
the first nine segments for a one way mission; or rate of climb (or descent) for segments
1,2,3,4,6,7,8,9 for a two way mission. The following behavior constraints are considered in the
problem formulation

1. Horsepower required for each segment < Horsepower available
2. Indicated air speed < Vg for each segment
3. Altitude for each segment < Maximum altitude
4. Takeoff weight < Maximum takeoff gross weight; or
Takeoff weight < Maximum weight for hover OGE; or
Takeoff weight < Maximum weight for hover IGE
5. Fuel required < Fuel available
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6. Error in terminal altitude is within the prescribed limits.
The side constraints (on design variables) include the following

1. Rate of climb for each segment < Maximum rate of climb

2. Rate of descent for each segment £ Maximum rate of descent.
Three objective functions, namely, the minimization of fuel cost, flight time, and total cost are
considered with prescribed values for payload and range.

4.1.3 Numerical Results - Crisp Formulation

For this design example dealing with flight trajectory optimization, the mission requirements
are specified in Table 1. A total of three objective functions, namely, minimization of fuel cost,
flight time, and total cost are considered. The optimum mission parameters (design variables)
obtained using single and various multiple objective optimization techniques are presented in
Tables 2-4. The values of objective functions corresponding to these optimum mission
parameters are given in Table 5. It may be noted from Table 5 that the three objectives
considered are conflicting in nature. A minimum fuel cost design results in poor values for the
flight time and total mission cost. Attempting to achieve a design with low flight time and/or
total cost results in a high rate of fuel consumption which in turn leads to a high fuel cost.
Single objective optimization techniques are unable to overcome this difficulty and yield a
solution which is characterized by a superior performance on one objective function and a
(generally) poor performance with respect to the remaining objective functions. Multiobjective
optimization techniques presented in this work are able to achieve a compromise by permitting a
tradeoff between the conflicting pairs of objectives. The resulting solutions exhibit good
performance with respect to all the objective functions. The optimum flight paths obtained using
single and some multiple objective optimization techniques are presented in Figs. 2-4.

4.1.4 Numerical Results - Fuzzy Formulation

The results from single objective optimizations yield a & x k matrix [M] defined as follows
(Dhingra et al. 1988, 1990a):

f(X]) £(X]) . XY 17 2748
LD KD 6D 383.37 2.7485 1372.83

(M] = = |427.39 2.3675 1279.70 (60)
423.13 2.3592 1272.43

Lfl(XP £, . fi(Xy

Once the best and the worst values of each of the three objectives are identified, the membership
functions of the three objectives are constructed as follows

r

0,
£ (X) +427.39
44.02

if 383.37 < f(X) < 427.39 61)
if f,(X) < 383.37

if £,(X) > 427.39
He, (X) = ]
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r

0,

if f5(X) 2 2.7485
[—fz (X) + 2.7485 ]

if 2.3592 < f5(X) < 2.7485 (62)
if £5(X) <2.3592

X)=
ke (X) = 0.3803

1,
L
0, _
04 1372.83 if f3(X)>1372.83
- + .
e, (X) = 1 { 3 )1004 ] if 1272.43 < f3(X) < 1372.83 (63)
1 ' if f3(X) < 1272.43.

The membership functions of the design variables are constructed using the bounds given in
Table 6 as

0,
if x;>174.9
x;—159.0 | _
b (0 =11 | =55~ if 159.0 <x; <1749, j=2,.,11 (64)
| ' if x; < 159.0.
1,
if x;270
Xj -63 . .
()= 1| = if 63 <x; <70, j=2,.,11 (65)

Membership functions of the remaining design variables are constructed in a similar fashion.
Figures 5-7 depict the membership functions corresponding to the upper and lower bounds on
design variables x,—x;; and the objective function f;. By permitting a 10% leeway, membership
functions of the thirty four behavior constraints present in the problem formulation are also
constructed. It may be noted that (for this problem) design variable x;¢ is not truly an
independent design variable. Its value is determined by the altitude at the beginning of the fifth
segment, and the destination altitude.

Since a design vector with the highest degree of membership to the fuzzy decision set is
required, the fuzzy multiobjective optimization problem is formulated as

Find X and A which
Maximize A

subject to

A<p(X), i=1,2,3 (66)
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A<pg (X), j=1,2,..34 (67)
ASpa(X), §=1,.,15,17,.,20 (68)
Ao (X), j=1,.,15,17,.,20. (69)

The above problem has a total of 21 design variables and 75 constraints. The numerical results
obtained by solving this mathematical programming problem are presented in Table 7. The
optimum solution yields an overall satisfaction level (A) of 79.9%. The optimum flight
trajectories obtained using single and multiple objective optimization techniques are presented in
Figs. 2-4 and 8. It can be seen from Fig. 2 that when the objective is to minimize the fuel cost,
the optimum flight parameters entail that the helicopter be flown at altitudes ranging from 5000
to 8000 ft for a good part of the total flight path. However, when the objective is to minimize the
flight time or the total cost, the helicopter is flown at altitudes below 4500 ft both during the
outbound and return segments of the mission. Also, the rates of climb and descent for the return
segment of the mission are higher compared to the corresponding values during the outbound
flight. This is due to the fact that some fuel has been consumed during the forward leg and the
payload has been delivered.

When all the three objectives are considered simultaneously, it is observed that crisp
multiobjective optimization (goal attainment etc.) schemes yield flight parameters which require
the helicopter be operated under 5000 ft. When the flight trajectory optimization problem is
solved using the techniques of fuzzy optimization, the helicopter altitude during each segment of
the flight path exceed the corresponding values given by crisp (single and multiobjective)
optimization schemes by as much as 1800 to 4000 ft (Fig. 8).

The fuzzy formulation also yielded the best of values for the three objectives at the optimum
solution. In fact, the optimum value of f3 (total cost) for fuzzy multiobjective formulation with
relaxed constraints is lower than the value obtained when f3 is considered alone. All the
improvements are possible at the expense of relaxation of the maximum altitude constraint. The
maximum altitude attained by the helicopter using fuzzy formulation is 8160 ft compared to a
maximum value of 8000 ft for the crisp case. There is no need to change any of the other
helicopter parameters such as horsepower required, fuel tank capacity, etc.

4.2 MAIN ROTOR OPTIMIZATION

4.2.1 Introduction

The application of mathematical programming techniques to rotorcraft design problems was
first suggested by Stepniewski and Kalmbach (1970). Their paper addressed general concepts in
applying multivariable search methods to helicopter design problems. A year later, Bielawa
(1971) used linearized rotor dynamic equations to design rotor blades for minimum weight
subject to constraints on bending torsion flutter stability and natural frequencies. The problem
formulation used a total of five design variables to describe the blade structure. Little was done
for about ten years following these two early works, but in the last four to five years there has
been a renewed interest in the application of optimal design techniques to rotor blade design
problems. Bennet (1983) has studied the effect of blade twist distribution on the input power
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required for hover, while keeping airfoil, rotor radius, and tip speed unchanged. The results
obtained indicate that optimum twist reduces the hover power by 1.55% compared to linear
twist. Bennet (1985) has also investigated into the application of single objective optimization
techniques for designing of main rotor blades to meet specific mission goals and constraints.
The single rotor analysis program written by Schwartzberg (1977) coupled with two nonlinear
programming algorithms was used in the study. Friedmann and Shanthakumaran (1984) have
applied structural optimization techniques to rotor blade design problems in order to reduce
transmitted vibratory forces. The blade dynamic response and stability analysis was based on a
fully coupled, flap-lag torsional analysis. A 15-40% reduction in the amplitude of the vibratory
forces was obtained by the authors.

4.2.2 Problem Formulation

A design of the main rotor of a helicopter requires an integration of several analytical
disciplines such as aerodynamics, structures, noise, and mission analysis to achieve a viable and
an efficient design. An application of optimization techniques to rotor design problems can be
broadly divided under three categories: (i) global performance design of rotor, (ii) structural
design of blades, and (iii) aerodynamic and acoustic design.

The equations used for blade design in this work are limited to momentum theory
considerations to minimize the required input information, procedural detail, and computational
complexity without markedly compromising the utility of the solutions. The analysis scheme
incorporates mathematical models for hover, vertical flight, and forward flight conditions.
Mathematical models for engine performance, fuel consumption. and aircraft group weights are
also included in the analysis procedure. The design procedure utilizes the following computation
scheme: Initially the engine is sized to meet the most demanding power requirement among the
hover, vertical climb, and high speed segments of the mission, including the operation of a
multi-engined helicopter with one engine inoperative. The fuel weight and the aircraft
component group weights are computed next thus enabling the determination of available
payload capacity. A comparison of the available payload with the required payload leads to a
new gross weight estimation. The analysis loop is reentered with this new gross weight estimate
and the iteration is continued until a gross weight compatible with the payload requirements is
determined.

The power required is viewed as comprised of three power absorbing components

SHP = HPpg + HP1R + HPxm 70)

where SHP is the required shaft horsepower, HPygr, HPg, and HPxy are the power required by
the main rotor, tail rotor, and the transmission system respectively. The power required by the
main and tail rotors are further subdivided into several components. For example, the power
required by the main rotor for level forward flight is expressed as the sum of parasite, profile,
induced power components, and an additional power required due to compressibility and stall
effects. The tail rotor power is taken to be the sum of tail rotor profile and induced power
requirements. Power requirements for other flight conditions are computed in a similar fashion.
The power lost in the transmission system is expressed as a constant percentage of the power
required by the main and tail rotors.
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The weight of the helicopter is computed based on a statistical analysis of the weights of 59
different helicopters. The weight breakdown includes the weight of the main rotor, body,
propulsion and transmission systems, instrumentation, landing gear, and tail rotor. The equations
used for the component weights are derived from a multiple regression analysis of existing
helicopters. Using the weight breakdown and cost per pound of various components, the cost of
the proposed helicopter is determined. The flyover noise level is expressed as a function of tip
speed, Mach number, and gross weight number. The handling qualities of the helicopter are
determined by the Lock number and the autorotation parameter. The fuel required for a mission
is computed in two different manners. The easiest way is to specify the required payload and
range for the mission. The second method of determining fuel consumption involves the
definition of the mission at ten individual segments. At each segment it is necessary to specify a
time at that segment, atmospheric properties, the velocity, and climb conditions. Upon
integrating the fuel flow rate over the duration of the segment, the fuel burned during any
mission segment is computed. The second method permits a much more detailed description of
the helicopter mission. The cruise speed, dash speed, endurance, as well as hover ceiling are also
computed as part of the analysis procedure.

The single-rotor helicopter design and performance estimation program (SSP1), developed
by Schwartzberg (1977) has been used in this work to design main rotor blades. The main rotor
radius, chord, twist, and tip speed are treated as design variables for this problem. The following
inequality constraints are considered in the problem formulation

1. Fuel required < Fuel available

2. Required payload < Available payload

3. Hover blade loading coefficient < specified value

4. Maximum advancing tip Mach number < specified value

5. Blade loading in forward flight < specified value

6. Hover horsepower < specified value

7. Hover horsepower for OEI < specified value

8. Horsepower for forward flight OEI < specified value

9. Horsepower for maximum speed < specified value

10. Horsepower for maximum sustained G level < specified value

11. Autorotation index 2 specified value

12. Maximum flyover noise level < specified value.
The objective functions considered include the following

1. Minimize gross weight

2. Minimize manufacturing cost

3. Minimize empty weight

4. Minimize mission fuel

5. Maximize endurance limit

6. Maximize dash speed

7. Maximize hover ceiling

8. Minimize noise level.

4.2.3 Numerical Results - Crisp Formulation
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This example addressing the design of main rotor blades, for a specified mission, involves
eight objective functions. The design data for this example is given in Table 8. The optimum
blade parameters obtained by solving eight single objective optimization problems are presented
in Table 9, whereas the results obtained using various multiple objective optimization techniques
are given in Table 10. The objective function values corresponding to these optimum blade
parameters are presented in Tables 11 and 12 respectively. It may be noted from Table 11 that
when the main rotor is designed for minimum gross weight, the resulting design also has the
minimum total cost and minimum empty weight. The optimum design, however, has a low hover
ceiling and a low endurance limit. Attempting to maximize the endurance limit and/or hover
ceiling results in a noisy design with high gross weight and a high cost of manufacturing. Due to
the conflicting nature of these objectives, single objective optimization techniques are unable to
obtain a satisfactory solution. Multiobjective optimization techniques presented here in are able
to achieve a compromise between the conflicting pairs of objectives. The optimum solution
exhibits good performance with respect to most of the objective functions.

4.2.4 Numerical Results - Fuzzy Formulation

Using the results from single objective optimizations, the matrix {M] is constructed as
follows
2493 340703 1076 446 3.39 162.2 6040.7 89.1]
2493 340697 1076 447 3.39 162.2 6039.7 §9.1
2493 340747 1076 447 3.39 162.2 6042.1 89.1
[M] = 2572 371346 1167 435 3.43 164.9 7169.1 89.2 71
2764 431364 1345 450 3.55 158.5 8815.4 91.3
2569 368691 1162 436 3.38 165.7 6114.7 88.4
2742 427478 1333 439 3.55 161.7 8933.1 90.7

2588 374821 1181 437 3.38 165.5 6047.4 88.4]

Once the best and the worst values for each of the eight objectives are identified, the
membership functions of the eight objectives are constructed as follows

-

0,
if f,(X)22764
—£,(X) +2764 | .
g, (X) = 3 - if 2493 < f,(X) < 2764 (72)
1 if £,(X) <2493
0,
if £,(X) 2431364
—£,(X) +431364 |
e, (X) = 4 506 if 340697 < f(X) < 431364 (73)
, if £,(X) < 340697

.
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0,
—fo(X)+91.3

5 if 88.4 < fz(X)<91.3 (74)

] if f3(X)=91.3
if fg(X) < 88.4.

He, (X) = W

1,

\

Using the bounds on design variables indicated in Table 13, the membership function of design
variable x, is constructed as follows:

03

if x, > 880

X1 — 800 i
()= 1= | | if 800<x; <880 (75)

| if x; <800
1’

if x; 2625.0

x| —562.5) |
) ’ if X, €562.5

Membership functions of the remaining design variables (x;—x4) are constructed in a similar
fashion. By permitting a 10% leeway, membership functions corresponding to the twelve
behavior constraints present in the formulation are also constructed. Once the membership
functions of all the fuzzy objectives and constraints are determined, the resulting fuzzy
optimization problem can be stated as

Find X and A which
Maximize A
subject to
Aspe(X), i=1,2,..,8 an
ASpg (X), =1,2,.,12 (78)
A<p(X), j=1,..4 (79)
A (X), =14 (80)

The above problem has a total of 5 design variables and 28 inequality constraints. The results
obtained by solving this mathematical programming problem are presented in Table 14. The
optimum solution corresponds to an overall satisfaction level of 36.1%. It is observed from the
results obtained by solving crisp single and multiobjective optimization problems that the design
variable x5 (linear twist of the main rotor blades) is always at its lower bound (-20°) at the
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optimum solution. This would seem to indicate that when the lower bound is relaxed in the fuzzy
formulation, the linear twist of the main rotor blades may go down even further. This is contrary
to what is obtained when the fuzzy optimization problem is solved. The linear twist for the fuzzy
optimum design is still close to —20°.

4.3 INTEGRATED DESIGN OF PLANAR MECHANISMS

4.3.1 Introduction

The design of high speed mechanisms requires a simultaneous consideration of both
kinematic and dynamic criteria. The kinematic considerations require that the difference
between the desired and generated motion be minimized over the entire range of motion,
whereas the dynamic considerations entail that the dynamic performance measures of the
resulting mechanism be optimized. In the conventional approach to mechanism design, the
kinematic criteria are met first. Then, at a later stage, with the link geometry already determined,
an improvement of the dynamic characteristics is addressed. This treatment of the dynamic
aspects of the problem at a later stage can sometimes seriously limit an improvement of the
dynamic performance measures. This paper presents a new multiobjective nonlinear
programming formulation which allows both kinematic and dynamic characteristics to
simultaneously influence the choice of design parameters.

The application of optimization techniques to the design of planar mechanisms is well
known. A number of surveys (Root and Ragsdell 1976) are available which furnish
comprehensive reviews of the application of optimization techniques to the design of planar
mechanisms. However, despite the importance of both kinematic synthesis and dynamic design
in the development of high speed mechanisms, most of the work so far has focussed either only
on the optimization of kinematic criteria (Han 1966, Pugh 1984) or on the optimization of
dynamic criteria alone (Berkof and Lowen 1971, Rao and Kaplan 1986). Relatively few
investigations have addressed the design of mechanisms for a simultaneous optimization of
kinematic and dynamic characteristics. Fox and Willmert (1967) first addressed the design of
four bar path generating mechanism with constraints on input driving torque and ground bearing
forces. Conte et al. (1975) have studied the design of a path generating four bar linkage for three
precision points while minimizing the maximum value of shaking force over a cycle. Four
kinematic parameters were used as design variables to improve the dynamic characteristics of
the resulting mechanism. Kakatsios and Tricamo (1984) have used optimization techniques to
design four bar path generating mechanisms with improved kinematic and dynamic
characteristics. The problem formulation allowed for a trade off between the kinematic and
dynamic criteria. The performance of several dynamic measures, which were imposed as
inequality constraints, was improved at the expense of kinematic criteria (structural error).
Rigelman and Kramer (1987) have used selective precision synthesis method to design a four bar
mechanism for minimum input power while satisfying several kinematic and dynamic
constraints.

All the works mentioned above which have considered both kinematic and dynamic aspects
of mechanism design, lack one or more of the following: i) Consideration of multiple objectives
in the nonlinear programming formulation, ii) Ensuring that the resulting mechanism is free of
branch, order, and Grashof defects, iii) Addition of counterweights to moving links to improve
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the dynamic performance measures of the resulting mechanism, iv) Incorporating techniques to
model vague and imprecise statements in mechanism design problems.

Further, these prior formulations utilizing optimization techniques for mechanism design
used only one kinematic or dynamic attribute as an objective function and treated the remaining
attributes as inequality constraints. Due to the conflicting and competing nature of these criteria,
one can seldom select a single attribute which can be used as an objective function of the
mathematical programming formulation. Further, by imposing constraints that the remaining
kinematic and dynamic criteria be kept below certain acceptable levels, one can end up with an
impossible or inferior solution depending upon the choice of acceptable levels. Multiobjective
optimization techniques tend to overcome these difficulties in an efficient manner.

This work presents a new multiobjective formulation for the design of planar high speed
mechanisms which overcomes all the previous shortcomings. The formulation is general enough
to facilitate the design of a mechanism for motion, path, and function generation tasks. The
kinematic characteristics are influenced by link dimensions and orientations, whereas the
dynamic performance is improved by varying link dimensions and orientations, and by the
addition of counterweights to all moving links. In addition, it is ensured that the designed
mechanism is free of any motion defects, namely Grashof’s defect, branch defect, and order
defect. Further, to account for the presence of vague and imprecise statements in the problem
statement, the tools of fuzzy set theory have been used.

4.3.2 Kinematic Criteria

The primary application of optimization techniques to the design of high speed mechanisms
considered in the present work, consists of choosing mechanism and counterweight variables for
a planar four bar linkage shown in Fig. 9. Two kinematic criteria are considered in the present
work. The first criterion may be given as the location and orientation of a rigid body (motion
generation), the coordinates of a tracer point along a prescribed path (path generation),
coordinated rotations of input and output links (function generation), or some combination of
position and orientation specifications. The second criterion deals with the minimization of the
deviation of the transmission angle from its ideal value (90°) over the entire range of motion.
The dynamic criteria consist of the minimization of input driving torque, ground bearing forces,
and the shaking forces and shaking moments transmitted to the ground link over a cycle. The
complete optimization problem for a four bar path generating linkage is developed next.

A four bar mechanism is to be synthesized to generate a given path with coordinated rotation
of the input link. Using Fig. 9, the coordinates of the path described by the coupler point P are
given as:

Xgi = X()A +1I cos(825+62i+a) + T4 COS(G}H'(X) — I sin(63i+a) (81)

Ygi = YQA +TI sin(925+92i+a) + I sin(93-,+a) +Tg COS(G3i+(1) (82)

where (Xg,,» Yo, ) are the coordinates of the ground pivot O, o is the angular orientation of the
ground link, r; (i=1,2,..,6) are the link lengths, 8, is the starting position of the input link, and
0,; and 83; are the angular orientations of links 2 and 3 at the i th design position. Let the
corresponding desired values of the path coordinates be given as (Xg;, Yai). The first objective
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(f,) considered is the minimization of structural error over the entire range of motion:

2 2
[Xdi ~- Xgi } + [Ydi =~ Yy J (83)

- .2
f1=28i =
i=1

n

i=1

where N denotes the number of design points into which the path is divided. The minimization
of f; can be achieved by varying the link lengths ry —rg and the ground pivot parameters
XOA, YOA’ and o.

The second kinematic criterion (f;) is to minimize the deviation of the transmission angle (Y)
from its ideal value (90°) over the entire range of motion:

2 2
f,=08= [Ymax—go] + [Ymin—go] (84)

where the minimum and maximum values of yover a complete cycle are given as:

2, .2 2
3+r3—-(r—12)

COS Ymin = T (85)
2 2 2
I3 +I'4—(I‘1 +I‘2)
COS Ymax = T . (86)

The following behavior constraints are imposed on the design problem:

The mechanism should satisfy the loop closure equation at each design position. This is achieved
by using an equality constraint of the form
21314 c08(02—04) — 2 1314 cOs B4 + 2 11 cOS O, + 3=r}+13+1] @87

at each design position. In addition, the structural error at each design point is constrained to be
less than a specified small quantity A, i.e.

g <A i=1,2,.,N. (88)

A further design restriction, which assures that the input link be a crank, can be stated as:

r +rn<r;+ry (89)
2 2
[r3—r4J <[r1-r2] ) (90)
In addition, the value of transmission angle (y) over the entire cycle is constrained as:
T 5w
— <Y< —. 91
6 1= e

Further, to ensure that the resulting mechanism is free of any branch and order defects, a set of
four inequality constraints are imposed at each design position. These constraints are developed
later.
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In the present work, a value of N=10 is used and the coordinates of the prescribed path are
assumed as follows (Han 1966):

X4 =0.4—sin2 n (t; — 0.34) (92)
Y4 =2.0-09sin2 w (t; - 0.5) (93)
where
i-1
;= — 94
§ N 94)

The coordinated input link orientations are determined using
0 =27t (95)

4.3.3 Dynamic Analysis

Two techniques, namely, kinetostatic and time response approaches, can be used to study the
dynamics of mechanisms. In the kinetostatic approach, the motion of the system is completely
known, and the purpose of analysis is to determine bearing reactions, shaking forces etc.
resulting from that motion, as well as the driving torque required to produce that motion. A
solution to this problem can be written as a set of nonlinear algebraic equations. The time
response analysis, on the other hand, involves the determination of motion of the mechanism
given the actuating force or torque history. A solution to this problem results in a set of nonlinear
differential equations which have to be solved numerically. In the present work, the kinetostatic
method of dynamic analysis is employed.

The dynamic analysis procedure described is valid for a general four bar linkage shown in
Fig. 9. The rigid links are assumed to have a general shape and the revolute joints are considered
to be frictionless. Each of the links has a length r;, i=1,2,3,4, and each of the moving links has a
mass m; and a moment of inertia I;, i=2,3,4 with respect to the center of mass which is defined
by ry; and ¢; as shown in Fig. 9. The equations of equilibrium for each of the three moving links
shown in Fig. 10, results in the following system of equations:

Foax =Fa3x — Frax (96)
Fpay = Fa3y — Fray 97)
T, + Top — Fag 12 8in 63 + F33y 13 cos B,

— Fyox T2 8in(0; + ¢2) + Fay 152 cO8(82 + ¢2) =0 (98)
Fo3x = Faax — Fax (99)

Fosy = Faay — Fasy (100)

To3 + Fagx 13 8in 03 — F34y 13 COs B3

~ Foax rg3 sin(83 + ¢3) + Foay 13 cos(63 + 03) =0 (101)
Foax = — F34x = Frax (102)
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l:04y =—F34y "F14y (103)
Tos — Fax T4 sin 94 + F34y r4 COS 0,
— Foux Tgd4 sin(B4 + ¢4) + F04y Tg4 cos(B4 + 94) = 0. ‘ (104)
Since all inertia forces (Foix, Foiy) and couples (Tq;) are known, one can solve this system of

nine equations for the x and y components of the four bearing reactions (Fyz, Fa3, Fa4, Fi4) and
the input driving torque (T).

The shaking force (SF) is the resultant force on the ground link:

SF=Fy +F4. (105)

Alternately, by using Egs. (96-104) one gets:
SF, = Foax + Foax + Foax (106)
SFy = Foay + Fosy + Foay. (107)

The shaking moment about an arbitrary point P on the ground link is given as:
SM =-T; — F4;x € siny; + F41y €} cOs

— Fj1x €2 sinyy + Fayy €2 €OS Ya. (108)
When P is the midpoint of link O5Og (Fig. 10),

==

t\>|.’_" .

1 =0, =180

and the expression for the shaking moment reduces to

T
SM=—21— [F12y_F14y ] ~T.. (109)

The dynamic analysis is performed at every five degree rotation of the input link. This results in
a total of 72 evaluations during each cycle of crank rotation. The ultimate objective is to design a
mechanism which requires the minimum driving torque, and transmits minimum forces and
moments to the ground. Thus two objective functions are selected as f; = max Fy, and
f, = max Fy4, where max Fy, and max Fy4 are the maximum values of ground bearing forces
realized during one input crank revolution. The next dynamic criterion, fs is taken as the max Ty,
or the maximum value of input driving torque required over a cycle. Finally the last two
objective functions fg and f;, are chosen as the maximum values of shaking force and shaking
moment respectively. Thus the optimization problem has a total of seven objective functions.

4.3.4 Counterweighted Linkage

29



The dynamic performance of the mechanism is also improved by the addition of
counterweights to all moving links. The counterweights are restricted as follows:

i) Each link i may have only one counterweight i.

ii) Each counterweight is circular and is tangent to the link pivot point.

iii) Each counterweight has a radius r;, thickness tg;, and is located at an angle 6.; with respect
to link i as shown in Fig. 11.

iv) All counterweights have the same density p.

The counterweight radii, thicknesses, and locations are treated as design variables. The
combined mass and inertia properties of the counterweighted link are obtained as follows:

ﬁizmi+mci (110)
(@ Ri)? = (m; )" + (mg; 16)* + 2 myrgimeire; cos(@; — Bci) (111)
and
— m;r,;sing; + mg;r;sin0;
ei _ tan'l 1'g O + mgirg; i . (112)
m; T, COSO; + M;T;CosO;
The counterweight properties are given as follows:
Mg =T P rd L (113)
2
MeiTe;
I = ——. (114)
2
Therefore,
=1 + 1 + mgef + midf (115)
or,
T 2 2 _—=p?
L=L+1; +myrg + m;ilgi — m;R;. (116)

The quantities m; and I, are to be used in place of m; and I; in Egs. (96-104).

4.3.5 Development of Branching Constraint

A mechanism is said to suffer from a branch defect when it meets all the design
requirements, but has coupler points on both branches of the coupler curve. This requires the
mechanism to be disassembled and reassembled at one or more intermediate positions in order to
complete the desired motion. A constraint of the form given by Eq. (130) can be used at each
design position to avoid this defect. This constraint is developed as follows:

At the reference position (subscript o), one has (Fig. 12):

1) (1)

N
OAAsz —m (117)

The area of triangle A B Og 1s given as

30



1 )
A=3r3 T4 Sin jl, (118)
which can also be written as
A= % det (119)
where
det = [ (k) - k&) k) - m@P) - k@ - m@) kE - kb)) ] (120)
Using Eqgs. (118-120) one gets
. det
= ) 21
sin bl _— (121)

At the j th position which corresponds to a rotation of link AB by an angle 8; with respect to the
starting position, one gets:

D o e - 1
OnA=(Ky -Tp) e 47 - (122)
— 2 i 6. 2
OsB =T +(Kg -Ty) e -m . (123)

The area of triangle A B Og is given as:

1 .
A= 0 I3 T4 Sin (124)
which yields:
A;B. -C D,
sin p; = ik Bt M Mt (125)
I3 Iy
where
A; = (k) — k) cos 8 — (ki) kb)) sin 8 (126)
B = y; + (k2 — xo) sin 8; + (k§) - yo) cos 8; - m{? (127)
C; = (k{2 — kb)) sin 6; - (k§) — kb)) cos 6, (128)
Dj=x; + (k&) — Xp) cos 6; + (kf)zy) ~yp) sin ; — m?. (129)
A constraint of the form
sin H, sin p; >0 (130)

at each of the N design positions would ensure that the mechanism does not branch.

31



4.3.6 Development of Order Defect Constraint

A linkage is said to suffer from an order defect if the designed mechanism is unable to pass
through all the design positions in the correct order. For path generation problems, when the
input link orientations (¢;) are also treated as design variables, the following three constraints
can be added at each design position 1o ensure that the mechanism is free of any order defect:

0<¢;<2n  i=1,2,.,N (131)
ON— 0 S2m (132)
O —0; 20 i=1,2,..,N-1. (133)

4.3.7 Numerical Results - With Linear/Nonlinear Membership Functions

The optimization problem presented has seven objective functions, eighteen design variables
and thirty four behavior constraints. In addition, the eighteen design variables are also subject to
side constraints limiting their minimum and maximum values. The single objective optimization
problems are solved first, and the optimum values of the objective functions are given in Table
15.

Using the results of the single objective optimizations, the procedure outlined under the sub-
section "Computational Procedure” is followed, and the membership functions for the seven
fuzzy goals and the thirty four fuzzy constraints are constructed. This results in a problem with a
total of nineteen design variables and forty one constraints (Dhingra and Rao 1989). The results
obtained by solving this fuzzy optimization problem are sumniarized in Table 16. Table 17
presents a comparison between the results obtained when only structural error (f1) is minimized
with those obtained when all seven objectives are considered simultaneously with linear
membership functions employed for all the fuzzy goals. It may be noted from Table 17 that
when all the seven objectives are considered simultaneously, the dynamic characteristics of the
resulting mechanism improve by factors ranging from 3.65 to 13.34 when compared with the
mechanism for which only the structural error is optimized. These improvements in dynamic
performance measures have been achieved at the expense of structural error (f;) which has
worsened by a factor of 8.22. Keeping in mind that all the remaining kinematic and dynamic
performance measures (f; —fg) have improved substantially, a structural error of 0.2161
associated with the optimum design is still fairly low from the viewpoint of a mechanism
designer.

When nonlinear shapes are employed for the membership functions corresponding to the
fuzzy objective functions, the kinematic and dynamic performance measures of the resulting
mechanism exhibit similar trends for various values of the membership satiation coefficient.
The results obtained using quadratic, exponential (k < 0), and logarithmic membership functions
are similar, as these three functions model a negative value of m(X). However, the results
obtained using these three functions are fairly different from those obtained with membership
functions which model constant or increasing marginal membership satiation values. Hence, it
is important to accurately assess the nature of the membership functions (e.g., concave, convex,
or linear), i.e. the sign of the membership satiation coefficient influences the optimum results
significantly.
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An insight into the nature of this design problem in conjunction with the optimization results
given in Table 15 led to the conclusion that if fy (i.e. 8) is dropped from the goal set, the
remaining objectives can be improved significantly. This is borne out by the results obtained
(Table 18) when only six objectives are considered in the multiobjective problem. It can be
observed from Table 17 that, when all the six objectives (f}, and f3 — f;) are considered
simultaneously, the dynamic characteristics of the resulting mechanism show an even greater
improvement when compared with the linkage for which only the structural error is optimized.
The improvement factors for the dynamic performance measures vary from 38.6 to 91.8.
Further, the structural error has increased by a much smaller amount (1.19) compared to the case
when all seven objectives are considered (8.22). These substantial improvements in both
kinematic and dynamic performance measures have been achieved at the expense of the
transmission angle objective (f2) which has worsened by a small (1%) amount with respect to
the starting point. Thus, for this planar mechanism design problem, substantially improved
kinematic and dynamic characteristics can be obtained when only six objectives are considered.

The results obtained using the multiobjective formulation presented also represent a
significant improvement over those obtained by Kakatsios and Tricamo (1984). It can be seen
from Table 17 that the improvement factors vary anywhere from 2.59 (for structural error) to
59.85 (for input driving torque) when comparing the Kakatsios and Tricamo results to the
multiobjective formulation results using six criteria. This corroborates an observation made
earlier that prior formulations which have used only one kinematic or dynamic attribute as an
objective function, and treated the remaining attributes as inequality constraints, can lead to
inferior solutions. This results from the fact that the conflicting and competing nature of several
kinematic and dynamic criteria seldom permits one to select a single attribute which can be used
as an objective function in the mathematical programming formulation. It has been demonstrated
that proposed multiobjective optimization techniques overcome these difficulties in an efficient
manner. Further, the influence of nonlinear shapes modeling various marginally increasing and
decreasing membership values has also been examined under the purview of this work. The
combined effect of both the membership functions and the fuzzy aggregation operators on the
overall design process is a subject of potential future research.

5. CONCLUSIONS

The concept of Pareto-optimal solutions in the context of crisp and fuzzy helicopter design
problems is introduced. Several techniques for generating Pareto-optimal solutions are
discussed. The effectiveness of multiple objective optimization techniques in the formulation
and solution of design problems are demonstrated via an application to helicopter design
problems. These techniques are expected to provide a systematic methodology to formulate and
solve multiobjective problems in a form directly applicable to engineering design. A comparison
is also made between the relative efficiency of various multiobjective techniques. It is found that
there is The set of Pareto-optimal solutions generated using the seven different crisp multiple
objective optimization techniques presented earlier are, in general, different from each other.
This is due to the fact that each methodology has a different underlying preference structure
supplied by the decision maker.
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Methods such as the global criterion formulation require no articulation of preference
structure on part of the DM and can lead to a solution for which a particular objective function
value at the optimum solution may be completely unacceptable to the DM. Methods which
require an a priori articulation of preference information on part of the DM include the utility
function, bounded objective, goal programming, goal attainment, and lexicographic
formulations. The major advantage of utility function methods is that if the utility function is
correctly assessed and used, it will ensure a most satisfactory solution to the DM. However, the
assessment of utility function for even a simple problem is very difficult. The bounded objective,
goal programming, goal attainment methods are computationally efficient, but they yield
solutions which are fairly sensitive to the goal vector prescribed by the DM. The game theory
approach not only provides an optimum design vector, but also yields an optimal set of weights
for various objective functions. This in turn leads to a most satisfactory solution with respect to
all the competing objectives. However, the computational effort required is the maximum for
this approach. Thus, there is no multiple objective optimization technique which can be
considered superior to all other techniques. Consequently, one should exercise caution when
using a particular technique to solve a class of multiple objective engineering design problems.

The fuzzy optimization techniques presented in this work are expected to be extremely
useful during the initial stages of conceptual design of engineering systems where the design
goals and constraints have not been clearly identified or stated. These techniques can effectively
model the vague and imprecise information present in the objective function and constraints to
formulate fuzzy goals and constraints. These models can be used efficiently and effectively for
decision making problems in ill-structured situations. Further, since these techniques result in a
unified approach to a decision making process in the sense that there is no longer any distinction
between the goals and the constraints, they are, in general, able to achieve a superior solution
compared to other multiobjective optimization techniques.
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Table 1 Baseline Mission Profile Parameters.

Mission Requirements

Payload: 2200 1b

Crew weight: 190 1b

Aldtude at takeoff: SLS

Maximum flight alttude: 8000 ft
Maximum rate of climb: 1200 ft/min

Fuel cost: $1.25/gal

Maximum internal gross weight: 17500 Ib

Hover transmission limit: 2350 hp

40

Range: 180 n miles

Fuel reserve: 333 1b

Altitude of destination: SLS

Weight empty: 11500 1b

Maximum rate of descent: - 600 ft/min
Maintenance cost: $360/hr

Fuel capacity: 2958 1b

Transmission limit: 1950 hp



Table 2 Mission Parameters for Single Objective Optimizations.

Mission Starting  Minimize Minimize Minimize
Parameters  Yector Fuel cost  Flighttime  Total cost

Air Speed 117.5 125.2 1349 136.1
(kn) 117.5 103.1 128.5 127.9
117.5 94.1 125.2 124.1
117.5 90.1 124.8 122.6
117.5 90.3 127.7 124.1
117.5 128.8 151.6 152.0
117.5 102.0 135.8 134.4
117.5 88.4 127.9 125.5
117.5 81.9 124.1 120.6
117.5 78.8 123.0 118.7
Rate of 0.011 207.7 123.7 134.2
Climb 0.011 91.8 393 439
(ft/min) 0.011 45.5 12.1 21.5
0.011 10.4 -1.6 14.0
0.011 -363.6 -188.5 -230.4
-0.011 253.4 152.0 169.0
-0.011 148.8 84.4 94.4
-0.011 72.7 40.8 48.7
-0.011 15.2 10.5 20.2
-0.011 -481.4 -292.9 -337.3
Fuel (Ib) 2958.0 2418.8 2658.4 2635.1
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Table 3 Mission Parameters for Global, Utility, Lexicographic, Goal Attainment,
and Game Theory Formulations.

Mission Global Utility Lexico- Goal Game
Parameters  Criterion  Function  graphic  Atainment  Theory'
Air Speed 137.0 136.3 134.9 136.5 133.0
(kn) 118.0 125.6 109.9 120.7 110.0
108.2 120.4 99.1 1153 112.2

103.5 118.1 95.4 118.4 108.8

104.4 119.4 98.1 122.1 140.7

146.4 150.6 145.2 142.8 1324

117.9 130.3 1113 123.8 99.3

102.7 121.0 96.2 116.4 97.2

94.8 116.3 91.8 115.2 92.1

92.3 114.8 94.4 117.7 90.3

Rate of 201.2 152.5 258.7 160.8 252.2
Climb 94.6 52.7 113.3 56.8 -199
(ftYmin) 50.4 26.0 44.8 -23.6 50.7
16.3 12.3 -14 -21.7 -600.0

-377.7 -259.6 -437.6 -180.5 0.1

260.8 185.7 3223 180.5 398.1

163.3 107.3 169.8 78.6 24.7

04.3 55.6 56.2 17.8 63.2

375 19.9 -22.7 -25.6 23.6

-564.1 -378.1 -536.9 -257.1 -550.3

Fuel (Ib) 2499.4 2607.3 24744 2556.9 2471.2

T
¥ =1[0.583, 0.278, 0.139]T
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Table 4 Mission Parameters for Goal Programming and Bounded Objective
Formulations.

Mission Goal-1 Goal-2 Bound-1 Bound-2 Bound-3
Parameters

Air Speed 136.1 136.9 127.1 113.2 115.6
(kn) 133.2 114.8 103.6 114.6 1139
129.0 104.6 92.7 114.7 109.8
125.4 99.1 85.9 1137 107.6
124.6 97.5 84.3 115.2 109.3
151.0 147.7 1319 131.0 131.1

139.6 130.5 108.9 127.8 1247
133.1 122.0 943 124.2 118.5

129.1 98.8 86.4 121.7 114.5

126.9 90.7 80.5 119.7 113.5

Rate of 89.9 213.6 2034 933 112.5
Climb 430 98.0 106.2 34.1 63.6
(ft/min) 35.5 57.2 72.8 18.1 314
25.6 43.8 439 15.0 14.1

-203.8  -425.0 -434.6 -182.9 -248.3

105.1 148.4 2133 95.1 116.4

61.5 90.1 152.0 68.8 79.1

48.5 230.6 89.2 328 48.8

21.2 91.4 472 17.4 229

-239.8  -5543 -491.6 -227.6 -284.1

Fuel (Ib) 2645.8 2510.1 24234 2590.5 2555.5

E

1.

Goal-1 Goal programming with p=1.
Goal-2 Goal programming with p=2.
Bound-i Bounded objective formulation with i'" goal being optimized.
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Table S Results for Single and Multiple Objective Optimizations.

Objective Fuel Flight Total Function
Function!  Cost  Time Cost Evals.

Start 43726 3.00 1517.26

Single-1 38337 275 1372.83 1444
Single-2 427.39 237 1279.70 1496
Single-3 423.13  2.36 1272.43 1327

Global 398.18 2.4 1276.72 2105

Udliy 41801 237 127259 1529
Lexico 39359 246 127870 411l
Goal.l 42507 238 128168 1435

Goal-2 400.15  2.46 1285.50 1984
Bound-1 384.21 2.72 1363.75 1906
Bound-2 414.91 2.63 1362.17 810
Bound-3 408.50  2.63 1354.22 658
Goal-At 408.75 247 1298.03 2022
Game-Th 39299 251 1294.92 35825

T

Single-1 Minimize fuel cost.

Single-2 Minimize flight time.

Single-3 Minimize total cost.

Global Global criterion formulation.

Utility Utility function formulation.

Lexico Lexicographic method with order 1-2-3.

Goal-i Goal programming with p=i.

Bound-i Bounded objective formulation with i" goal being optimized.
Goal-At Goal attainment formulation.

Game-Th  Game theory formulation.
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Table § Bounds on Design Variables for Flight Profile Optimization.

Design Crisp Crisp Fuzzy Fuzzy
Variable Lower Bound Upper Bound Lower Bound Upper Bound

Xy 10.0 2957.7 9.0 3253.5
Xg—Xi1 70.0 159.0 63.0 174.9
X12—X15 -600.0 1200.0 -660.0 1320.0
X160 99.9 100.1 99.9 100.1
X,7—X10 -600.0 1200.0 -660.0 1320.0
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Table7 Mission Parameters for Fuzzy Optimization.

Design Varsables

Air Speeds: 140.3, 107.4, 95.3, 92.5, 99.0,
(kn) 148.0, 109.8. 93.5, 90.8, 92.8

Rates of Climb: 297.8, 129.1, 38.2, -43.5, -434.8,
(ft/sec) 352.3, 182.0, 36.7. -12.4, -564.1

Initial Fuel = 2418.4 lbs = 0.7987

Objective Functions

Fuel Cost = 392.29, Flight Time = 2.438 hrs,  Total Cost = 1260.81
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Table 8 Design Parameters for a Typical Small Helicoper.

Baseline Airframe: OH-58A Baseline Engine: T63
Required Payload: 970 1b Regquired Range: 300 n miles at SLS

Design Variables and bounds

Minimum Value Initial Value Maximum Value

Tipspeed (fUsec) 625.0 642.14 800.0
Radius (ft) 10.0 1437 18.0
Chord (ft) 0.5 0.59 20
Twist (deg) -20.0 -16.84 0.0

Engine Sizing Points

1. Hover OGE at 6000 / 37.6°F HP Avail = 350
2. Level Flight Speed = 132 kn at SLS HP Avail = 302

Design Constrainis

1. Engine power required for engine sizing point #1

2. Engine power required for engine sizing point #2

3. Max advancing tip mach number < 0.95

4. Hover blade loading coefficient 2 Ct < 0.18

5. Forward flight blade loading coefficient < 0.50-0.46u
6. Minimumt/K> 0.5

7

_ Maximum noise level <93 dB
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Table 9 Design Variables for Single Objective Optimizations.

Objective MR Radius Chord Twist Tip Speed Function

function (ft) (ft) (deg) (ft/sec) Evals.
Starting Point 14.37 059 -16.84 642.14
Gross Weight 11.90 050 -20.00 730.66 459
Total Cost 11.90 0.50 -19.99 730.74 464
Empty Weight 11.91 0.50 -20.00 730.80 410
Fuel Weight 13.31 0.53 -20.00 668.53 357
Endurance 16.00 050 -20.00 690.18 261
Dash Speed 12.49 059 -20.00 656.41 391
Hover Ceiling 16.00 0.50 -20.00 654.73 230
Noise Level 12.58 0.61 -20.00 647.68 363

——
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Table 10 Design Variables for Multiple Objective Optimizations.

Solution MR Radius Chord  Twist  Tip Speed

Technique® (f1) (fr) (deg) (ft/sec)
Global 13.59 0.5 -19.99 679.10
Udlity 12.86 0.50 -20.00 689.52
Goal-1 12.87 0.50 -20.00 689.48
Goal-2 14.09 0.50 -20.00 672.55
Lexico 12.21 0.56 -20.00 681.37
Bound-1 12.19 0.50 -20.00 725.06
Bound-2 12.18 0.50 -20.00 725.10
Bound-3 12.18 0.50 -20.00 725.11
Bound-4 13.46 0.52 -20.00 669.56
Bound-5 14.94 0.53 -19.22 647.88
Bound-6 14.35 0.59 -16.65 638.32
Bound-7 14.63 0.51 -17.25 660.05
Bound-8 13.24 0.65 -20.00 625.04
Goal-At 12.28 0.50 -20.00 712.85
Game-Th 13.38 0.50 -19.92 682.10
T

Global Gilobal criterion formulation.

Utility Utility function formulation.

Goal-i Goal programming with p=i.

Lexico Lexicographic method with order 1-2-3-4-5-6-7-8.

Bound-i Bounded objective formulation with ith objective being optimized.
Goal-At Goal attainment formulation.

Game-Th  Game theory formulation.
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Table 13Bounds on the Design Variables for Main Rotor Design.

Design Crisp Crisp Fuzzy Fuzzy
Variable Lower Bound Upper Bound Lower Bound Upper Bound

X 625.0 800.0 562.3 880.0
X3 10.0 16.0 9.0 17.8
X3 0.5 2.0 0.45 2.2
X4 -20.0 0.0 -22.0 0.0
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Tablel4 Main Rotor Parameters for Fusasy Optimisation.

Design Variables

MR Radius = 13.94 ft MR Chord = 0.52 ft
MR Twist = -19.98 deg  Tip Speed = 656.12 ft/sec
A" = 0.361

Objective Functions

Gross Weight = 2600 lbs Total Cost = 381 854
Empty Weight = 1197 lbs Fuel Weight = 433 lbs
Endurance = 3.48 hrs Dash Speed = 165.0 kn
Hover Ceiling = 7720 ft Noise Level = 89.4dB
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Fig. 11 A counterweighted link.
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Fig. 12 Terminology used to develcp the
Branching constraint.
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