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vector of objective functions

I th objective function

I th normalized (standardized) objective function
mertia force on i th link in x-dim.

inertia force on i th link in y-dim.

j th inequality constraint

mertia of i th link

mertia of i th counterweighted link

inertia of i th counterweight

number of objective functions

lower bound on Fi

number of inequality constraints

scaling factor for the i th objective (fl)

mass of i th counterweighted link

mass of i th counterweight

constant

cg of i th counterweight

cg of i th counterweighted link

feasible solution space, supercriterion

inertia torque on i th link

upper bound on Fi

weighting factor for the i th objective

set of feasible design variables

starting design vector

optimum design vector

optimum design vector for i th objective

transpose of [ ]

structural error at i th design position

fuzzy intersection

grade of membership of 0

decision maker (designer)

in ground effect

one engine inoperative

out of ground effect

sea level standard conditions
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1. INTRODUCTION

Recent advances in engineering optimization have resulted in the development of techniques

for handling problems involving large numbers of design variables and/or constraints (Schmit

1981, Vanderplaats 1982). Usually a scalar-valued objective function is optimized over a

feasible design space and the result is often used as a guiding device in striving for the best

possible system. However, there often exist several engineering design problems, which involve

several, often conflicting, objectives to be considered by the designer.

The earliest work reporting the consideration of multiple objectives in mathematical

programming appears to be that of Kuhn and Tucker (1950). The progress in the field of

multicriteria optimization was summarized by Hwang and Masud (1979), Evans (1984), and

Stadler (1984). The consideration of competing design objectives in mechanical systems using

heuristic methods was discussed by Barrel and Marks (1974). The importance of game theory as

a design tool has been emphasized by Rao and Hati (1980) and Vincent (1983). Since no unique

solution, which would be optimum for all the individual objective functions, exists for a

multiobjective optimization problem, the concept of Pareto-optimality has been used in most of

the available methods. Several techniques for generating Pareto-optirnal solutions are presented
in this work.

In modeling most real world problems, a designer is often forced to state a problem in

precise mathematical terms rather than in terms of the real world which is often imprecise in

nature. The relationships and statements used for description may be imprecise not due to

randomness but because of inherent fuzziness in the systetn. Fuzziness is a type of imprecision

associated with fuzzy sets in which there is no sharp transition from membership to non-

membership. Further, with increasing system complexity, one's ability to make precise and

significant statements concerning a given system diminishes (Zadeh 1973). Consequently, the

closer one examines a real-world problem, the fuzzier its description becomes. Fuzzy set

theories can effectively model such domains in which the description of activities and

observations are "fuzzy", in the sense that there are no sharply defined boundaries of the set of

activities or observations to which the descriptions apply. These theories enable one to structure

and describe activities which differ from each other vaguely, to formulate them in models, and to

use these models for problem solving and decision making.

Fuzzy set theory was initiated by Zadeh in 1965. Since then for some ten years, the

mathematics of the subject was developed but few applications resulted. During the last decade,

these theories have been applied to various areas such as artificial intelligence, control, image

processing, pattern recognition, robotics, psychology, etc. The first application of fuzzy theories

to decision making processes was presented by Bellman and Zadeh (1970). This paper

prescribed basic concepts and definitions associated with a decision making process in a fuzzy

environment. Since then, these conceptual techniques have been employed to formulate and

solve several mathematical programming problems.

Zimmermann has applied fuzzy optimization techniques to linear programming problems

with single (1976) and multiple objectives (1978). An application of these theories to Preemptive

and Archimedian versions of goal programming problems has been presented by Hannan (1981).

Wang and Wang (1985) have used the method of level cut solutions for the fuzzy optimum

design of structures. Rao has employed fuzzy optimization techniques for the design of



mechanical (1987a) and structural systems (1987b). An application of these techniques to

multiobjective, multiple attribute decision making problems has been presented by Yager

(1979). The concept of efficient and weakly efficient solutions in the context of fuzzy

multiobjectivc problems has been discussed by Feng (1983) and Negotia (1981).

This work demonstrates the application and effectiveness of fuzzy theories in the formulation

and solution of two types of helicopter design problems involving multiple objectives. The first

problem deals with the determination of optimum flight parameters to accomplish a specified

mission in the presence of three competing objectives. The second problem addresses the

optimum design of the main rotor of a helicopter involving eight objective functions. A method

of solving the resulting fuzzy multiobjectivc problem using nonlinear programming techniques

is presented. Results obtained using fuzzy formulation are compared with those obtained using

crisp optimization techniques. The outlined procedure should bc useful in engineering design

situations where uncertainity arises about the preciseness of permissible parameters, degree of

credibility, and correctness of statements and judgements.

The fuzzy approach is also applied to the problem of integrated design of high speed planar

mechanisms. The integrated formulation combines both the kinematic and dynamic synthesis

aspects of mechanism design. The multiobjcctivc optimization techniques presented in this work

facilitate the design of a linkage to meet several kinematic and dynamic design criteria. The

method can bc used for motion, path, and function generation problems. The nonlinear

programming formulation also permits the imposition of constraints to eliminate solutions which

possess undesirable kinematic and motion characteristics. To model the vague and imprecise

information in the problem formulation, the tools of fuzzy set theory have been used. A method

of solving the resulting fuzzy multiobjective problem using mathematical programming

techniques is presented. In addition, several nonlinear shapes for membership functions are

considcred to determine their impact on the overall design process. It has been observed that the

final design is strongly influenced by the nature of designer's behavior with respect to fuzzy

objectives and constraints.

2. MULTIPLE OBJECTIVE DECISION MAKING - CRISP APPROACH

2.1 PROBLEM STATEMENT

A general multiple objective nonlinear programming (NLP) problem is of the following form

Minimize f(X)

subject tO

where

xe S=[X I xe Rn, gj(X)_<0] (i)

x = [xl,x2 .... x.l r (2)

_(X) = [fl(X),f2(x) .... fk(X)] T. (3)

For a single objective optimization problem, an optimum solution is defined as one that

minimizes the objective function fi(X) subject to the constraints gj(X)<0, j=l,2 .... m.



Attempting to define a vector minimal point asone at which all componentsof the objective
function vector f are simultaneouslyminimized is not an adequategeneralizationsince such
"utopia" points areseldomattainable.Thusa newoptimality concept,different from that usedin
scalar optimization, is necessaryto find a solution to the vector optimization problem. The
conceptof a Pareto-optimalsolution (Soland1979,Steuer1986)hasbeenfound to be useful in
this context.

Definition 1: A feasible solution X ° _ S is Pareto-optimal if there is no X _ S such that

fi(X) < fi(X*), i=l,2,..,k, and fio (X) < fio(X*) for at least one i0 _ [1,..,k].

Alternately, a design vector X* is Pareto-optimal if there exists no feasible vector X which

would decrease some objective function without causing a simultaneous increase in at least one

other objective function. Unless a problem is convex, only a locally optimal solution can be

guaranteed using standard mathematical programming techniques. Thus, the concept of Pareto-

optimality needs to be defined for a nonconvex problem as

Definition 2: A solution X* _ S is said to be locally Pareto-optimal if and only if there exists a

> 0 such that X* is Pareto-optimal in S n N(X',_) where N(X*,_) denotes a neighborhood of

X*,i.e. the set [XIX_ S, XE R n, IX-X*I2 <_i].

The set of Pareto-optimal solutions usually consists of an infinite number of points and

additional information is needed to order the Pareto-optimal set (Rosenthal 1985). This makes it

possible to bring in additional considerations which are not included in the optimization model,

thus making the multiobjective approach a flexible technique for most design problems. Several

numerical techniques have been suggested for solving a vector optimization problem. Each

method, in general, generates a different Pareto-optimal solution which reflects the decision

maker' s (DM's) preference structure.

2.2 SOLUTION TECHNIQUES

We now present some of the commonly used techniques (Rao 1984, Dhingra et al. 1990b) to

solve the vector minimization problem given by Eq. (1). In order to have a common basis for

comparison, and to avoid working with different objectives in different units, the objective

functions fi(X) are transformed into new objective functions (Fi) constructed as follows

Fi(X) = mi fi(X) i=l,2,..,k. (4)

Here, the positive constant multipliers ml,m2 .... m k are chosen so that

ml fl(X0) = m2 f2(X0) = "'" = mk fk(Xo) = M (5)

at any feasible starting vector Xo. This scaling procedure ensures that all the objective functions

are equal at a particular value of X0. Hereafter, it will be assumed that the k objective functions

correspond to the k scaled objective functions given by Eq. (4). Further, it will be assumed that

the nonlinear vector minimization problem given by Eq. (1) is nonconvex so that only locally

Pareto-optimal solutions are guaranteed. The nonconvexity assumption holds for most practical

design problems.
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The next few subsections discuss some of the techniques which are used to generate Pareto-

optimal solutions for the mathematical programming problem given by Eq. (1). Each of these

techniques require additional information from the DM, and in general, generate a different

Pareto-optimal solution.

2.2.1 Global Criterion Formulation

This method belongs to a category of multiple objective optimization techniques which

require no articulation of preferences on part of the decision maker once the problem objectives

and constraints have been defined. This entails that the DM be willing to accept whatever

solution is obtained by minimizing some global criterion F(X), for example, the sum of the

squares of the relative deviations of the individual objective functions from the feasible ideal

solutions. In other words, an optimum solution X ° is found by minimizing

P

k Fi(X)-Fi(X_)

F (X) = E Fi(X_') (6)
i=l

subject to

gj(X) <0 j=l,2 .... m.

The value ofp corresponds to the utility function of the DM and is usually taken as 2. The X_ is

the feasible ideal solution corresponding to the i th objective function, and is obtained by

minimizing Fi(X) with respect to the constraint set X _ S. For 1 < p < **, each solution obtained

by solving Eq. (6) is Pareto-optimal. Compromise solutions with p = 0- correspond to rain-max

criterion for which Pareto-optimality is not guaranteed.

2.2.2 Utility Function Formulation

In this approach, the vector minimization problem (Eq. (1)) is converted to

Maximize U (f)

subject to

(7)

gj(X)___0 j=l,2 .... m

where U(f) is the utility function of multiple objective functions. The rationale for using U(f) is

that the DM has some utility associated with each of the k objective functions. A utility function

U can have many forms (Farquhar 1977, Klein et al. 1985). The most common form assumes

that the DM's utility function is additively separable with respect to all the objective functions.

Thus, if Ui(Fi) is the utility function corresponding to the objective function Fi, an overall utility
function U is defined as

k

U(F) = _ Ui(Fi). (8)
i=l

An optimum solution vector X ° is found by maximizing the total utility U(F) (Eq. (8)) subject to

the constraint set gj(X)< 0. A special form of Eq. (8) which has been extensively used in

multiobjective problems is given by



k

U =- _ wiFi(X) (9)
i=l

where w i is a scalar weighting factor associated with the i th objective function and indicates its

relative importance. This additively separable form of the utility function (Eq. (9)) is also

commonly referred to as the weighting method, and serves as a sufficient condition for the

calculation of Pareto-optimal solutions.

The main advantage of the utility function formulation is its simplicity. It is easier to assess
..-4,

k unidimensional utility functions (Ui's) than to assess U(F) directly. Similarly, it is easier to get

wi's from the decision maker. The disadvantage of this approach are there are few cases where

utility function is really additively separable, and wi depend not only on the achievement level

of F i but also the achievement level of Fi relative to Fj, for i # j. Further, if the problem is

nonconvex, this approach may miss all but a finite number of Pareto-optimal solutions.

223 Goal Programming Method

In goal programming, there are two basic models: the Archimedian model and the

Preemptive model. The Archimedian model deals with generation of candidate solutions whose

criterion vectors are closest, in a weighted Lp metric sense to the utopian set in the criterion

space. The preemptive model, on the other hand, generates solutions whose criterion vectors are

most closely related in a lexicographic sense, to points in the utopian set. The Archimedian

version of goal programming is considered in this work.

In the simplest version of Archimedian goal programming, a designer sets goals and relative

weights for each of the objective functions that he/she wishes to attain. An optimum solution X °

is then defined as the one that minimizes the weighted sum of the deviations from the set goals.

Thus, the goal programming formulation of a multiobjective problem leads to

 nio0" ,10,
subject to

gi(X)<0 i=1,2 .... m

Fj(X)-d_ +dj-=bj j=l,2 .... k (11)

d_ >0 j=l,2,..,k (12)

d]->0 j=l,2 .... k (13)

dj d]" =0 j=l,2 .... k (14)

where bj are the goals set by the designer for the j th objective function, and d_ and d]- are the
under- and overachievement from the target goals for the j th objective function. The value of p

III

is based on a utility function chosen by the designer. If the goals bj are set equal to Fj obtained

by minimizing individual objective functions Fj, it is not possible to obtain an overachievement

of the goals bj's. Consequently, the d]- need not be defined. Thus the goal programming

formulation given by Eqs. (10-14) reduces to



subject to

 ini zoi :l.l
gi(X) <0 i=1,2 .... m

d_>O j=l,2 .... k

d_" =Fj(X)-F_(X) j=l,2 .... k.

(15)

(16)

The goal constraints in the above formulation are soft constraints in the sense that they do not

restrict the original feasible region S. In effect, they augment the feasible region by casting S

into higher dimensional space, thereby creating the augmented goal programming feasible

region. However, if the goal vector is not chosen properly, there is no guarantee that the goal

programming formulation will terminate at a Pareto-optimal solution.

2.2.4 Goal Attainment Method

Goal attainment formulation requires setting up goals bl,b2 .... bk and weights wl,w2 .... wk

for the objective functions FI,F2 .... Fk respectively. The weights wi relate the relative under- or

overattainment of the desired goals (bi). The following problem is solved to determine the

optimal solution X*

Minimize -z (17)

subject to

gj(X) <0 j=l,2 .... m

Fi(X)- wiz -<bi i=1,2 .... k (18)

wi >0 i=1,2 .... k (19)

where z is a scalar variable unrestricted in sign. The weights wi are normalized so that

k

_" wi = 1.
i=l

(20)

In the case of the underattainment of the desired goals, a smaller weighting coefficient is

associated with the more important objective functions. For an overattainment of the desired

goals, a smaller weighting coefficient is associated with the less important objective functions.

The optimum solution obtained using the goal attainment formulation is fairly sensitive to the

goal vector (b"*)and the weighting vector (_) given by the DM. Depending upon the prescribed

values of the goal vector, it is possible that the weighting vector _ does not dictate the optimum

solution at all. Instead, the optimum solution X ° is determined by the nearest nondominated

solution point from b--'.This may require that _ be varied parametrically to generate the entire set

of Pareto-optimal solutions. Further, if the goal vector is not chosen properly, there is no

guarantee that the goal attainment formulation will terminate at a Pareto-optimal solution.
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2.2_5 Bounded Objective Function Formulation

In this method, the minimum and maximum .acceptable achievement levels for each

objective function F i are specified by the DM as U and U _ respectively. Then, an optimum

solution X ° is found by solving the following problem

subject to

Minimize Fr(X ) (21)

gj<O j=l,2 .... m

L i_<Fi(X)<U i i=1,2 .... k; i _ r. (22)

This method, also referred to as e-constraint method, can be shown to lead to weak Pareto-

optimal solutions. However, if the optimal solution to the above problem is unique, then the

resulting solution is Pareto-optimal. Further, by systematically varying U and U', the bounded

objective formulation can generate the entire set of Pareto-optimal solutions for even nonconvex

problems.

A difficulty with this method is to prescribe values for L i and U i prior to any preliminary

solution. Since the designer has to specify these values in an information void, this may result in

the mathematical programming problem given by Eqs. (21-22) into a problem with inconsistent

constraints. Another question which needs to be addressed with this approach is which objective

should be used for Fr (X).

2.2.6 Lexicographic Method

In the lexicographic method, the objectives are ranked in order of importance by the

designer. An optimum solution X* is obtained by minimizing the objective functions, starting

with the most important one and proceeding according to the order of importance of the

objectives. The rationale for this method is that individuals tend to make decisions in this
manner.

Let the subscripts of the objectives denote not only the objective function number, but also

the priority of the objective. The solution procedure is given as follows

1) Starting with X0, minimize F1(X) subject to the constraint set gj(X)< 0. Let the resulting
optimum solution be denoted as X_ and F_.

2) Starting from X_, minimize F2(X) subject to the constraint set gj(X) < 0, and an additional
constraint of the form 0.95 F_ <FI(X)< 1.05 F_. Let the resulting solution be X_, and

= F2(X2).
3) Proceeding as outlined in step (2), at the i th stage the resulting problem is given as: Starting

from X_-l, minimize Fi(X ) subject to the constraint set gj(X) < 0, and i-1 additional constraint of

the form 0.95 F_ <Fj(X) < 1.05 F_,j=I,2 .... i-1.

For a problem involving k criteria, there are a total of k.t ways in which the objective functions

can be ranked by the DM. Since the solution obtained using the lexicographic method is fairly

sensitive to the ranking of the objectives given by the DM, one should exercise caution in

applying this method when some objective functions are of nearly equal importance.



2.2.7 Game Theory Approach

In the cooperative version of game theory (Rao and Hati 1980), a multiobjective

optimization problem is viewed as a game problem involving several players, one corresponding

to each of the objective functions. The system is assumed to be under the control of these

intelligent adversaries, each willing to compromise his/her own objective in order to improve the

overall solution. The basic approach is summarized as follows

i) Using X0 as a starting point, solve k single objective optimization problems given by

Minimize Fi(X)

subject to

gj(X)_<O j=1,2 .... m (23)

Let the optimum solutions be X_, i=1,2 .... k.

ii) Construct a supercriterion or bargaining model S as

s - rI -
i=l

(24)

where

[Fiu = max F i(Xj i, j=l,2 .... k (25)

and X_ represents the Pareto-optimal solution obtained by solving the following problem

k

Minimize Fw(w,X)= _ wiFi(X)
i=l

(26)

subject to

gj(X)<0 j=l,2 .... m

k

w i = 1 (27)

i=1

wi>0 i=1,2 .... k. (28)

iii) Maximize the supercriterion and the find the optimal convex combination w of the objective

functions and the corresponding optimal solution to the problem, i.e. X = X_,. The game theory

approach as presented above not only yields a Pareto-optimal solution, but also results in an

optimum set of relative weights for the k objective functions.

3. MULTIPLE OBJECTIVE DECISION MAKING - FUZZY APPROACH

3.1 BASIC CONCEPTS
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Traditional schemes for design optimization assume that all the design data are known

precisely, that the constraints delimit a well defined set of feasible decisions, and that the

objective function is well defined and is easy to formulate. An optimal decision is that

combination of decision variables X ° which results in the "highest degree of satisfaction" for the

objective function fiX).

For a problem involving uncertainity and fuzziness in the design input data, this notion of

optimization needs to be modified. The objective function and the constraints constitute a class

of alternatives whose boundaries are not well defined. To deal with this imprecision

quantitatively, the tools of fuzzy set theory can be used. The fuzzy objective function and the

fuzzy constraints are characterized by their membership functions. Since the overall

optimization process requires a simultaneous satisfaction of the objective function and the

constraints, a decision or selection of a set of design variables is made by assuming that the

constraints are independent (i.e. the membership function for constraint gi is independent of

membership function of constraint gj, for i#j) and the logical and (rain) operator corresponds to

an intersection. This definition of a decision as the intersection of goals and constraints reflects

the interpretation of and in the hard (min) sense. The logical and does not allow any

compensation (tradeoff) at all, that is, an element of the intersection of two fuzzy sets cannot

compensate a low membership value of one of the intersected sets by a higher membership value

of the second one. However, the rain operator is most frequently employed in fuzzy optimization

problems (Zimmermann 1985) and has been used in the present work.

Consider a crisp nonlinear mathematical programming problem of the form

subject to

where

Minimize f(X)

gj (X) _<bj, j= 1,2,.., m (29)

X= (Xl,X 2 ..... xn) T. (3O)

The fuzzy analogue of the crisp nonlinear programming problem (29) can be stated as

Find X such that

f(X) _ F

gj(X) eCJj, j=l,2,..,m

(31)

(32)

m

where F, Gj denote the allowable tolerance interval for the fuzzy goal (f) and the fuzzy

constraint functions (gj). The bar over a symbol indicates that the expression or variable

contains fuzzy information. The fuzzy constraint gj _ Gj indicates that gj is a member of Gj

such that I.t_j(gj(X))> 0, where la_j is the membership function for the fuzzy set Gj. A fuzzy

feasible region is defined by considering all the fuzzy constraints as



m

R(X) = N Gj(X). (33)

This gives the overall degree of satisfaction of design vector X with respect to all the fuzzy

constraints. A design vector X is considered feasible provided laK(X) > 0. The differences in the

membership degrees of two vectors X1 and X2 imply nothing but variations in the degree of

satisfaction of X1 and X2 with respect to the constraint set. A fuzzy decision is now defined as

the confluence of the fuzzy goal _) and the fuzzy constraints (G1 ,G2 .... CJm) as:

_(X) = _ n G1 n 0,2 n .... ¢_Gm (34)

and in terms of membership values as

E l[m ]laD(X) = _(X) n N la_j(gj(X)) .
j=:

(35)

Because of the symmetry of this aggregation procedure with respect to fuzzy goals and fuzzy

constraints, there is no longer any distinction between the goals and the constraints of a decision

process. A sufficient condition for a unique maximum is that D be a strongly convex set,

namely, D is convex with a unimodal membership function. An optimum solution X* is one at

which the membership function of D attains its maximum, i.e.

where

laD(X*) = max laB(X), X e D

laD(X) = minj [lag(X),]_, i(gj(X))].

(36)

(37)

3.2 SOLUTION STRATEGY FOR MULTIPLE OBJECTIVES

Consider a multiple objective optimization problem with k fuzzy goals fl ,f2 .... fk represented

by fuzzy sets Fi, i=l .... k and m fuzzy constraints gl,g2 .... gm represented by fuzzy sets Gj,

j=l .... m. By generalizing the analogy from the single objective function case, the resulting fuzzy

decision is given as

D=F1 nF2n "" nFknG1 nEJ2 n "'" nCJm. (38)

In terms of corresponding membership values for the fuzzy goals and the fuzzy constraints, the

resulting decision is

1[laD(X)= la_i(X) n Nlagj(gj(X)) (39)
"= j=l

or

la_(X) = mini, j [la_i (X),la_j (X)]. (40)

10



An optimum solution X* is one at which the membership function of the resulting decision D is

maximum, i.e.

_tB(X*) = max las(X), X _ D (41)

where I.ts(X) is given by Eq. (40).

The shape of the membership functions such as a linear, concave, or convex function, for

various objectives and constraints, can affect the optimum solution significantly. A linear

approximation has been most commonly used because of simplicity and expediency. But other

shapes for membership functions such as a concave or a convex function offer potential benefits

in terms of realism. In the present work, several possible common shapes for the membership

function of the various fuzzy goals are chosen consistent with varying perceptions of the

decision maker. These shapes are discussed in detail in section 3.3 on "Nonlinear membership

functions".

3.2.1 Computational Procedure

An efficient solution of the fuzzy multiobjective problem given by Eq. (41) is determined by

(i) finding the solutions of the individual single objective optimization problems, (ii) determining

the best and worst values for each of the objective functions, (iii) using these values as the

boundaries of the fuzzy ranges for the fuzzy objective functions in the corresponding

optimization problem, and (iv) solving the resulting fuzzy optimization problem.

A linear membership function of a fuzzy objective function, for example, is constructed as:

f°'
"-fi CX) + f_i ax if fi (X) >_f_i ax

(x) = fm.x _

1,

if f_n < fi(X) < if_ ax, i=l,2,..,k

if fi(X) <_f[n_n

(42)

where f[r_=minj fi(X;) and f[naX--maxj fi(X;), and X; is the optimum design vector of the j th

objective function. A linear membership function models a decision maker's constant

marginally increasing (or decreasing) membership value over the parameter range of interest and

is defined by fixing upper and lower levels of design parameter acceptability. When the fuzzy
constraints are stated as

gj(X) < bj + dj, j=l,2,..,m (43)

where dj denotes the distance by which the boundary of the j th constraint is moved, the linear
membership function for thej th constraint is constructed as:
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=

O,

1- gj(X)- bj
dj

1,

if gj (X) _ bj + dj

if bj < gj(X) < bj + dj, j=l,2,..,m

if gj(X) < bj.

(44)

Once the membership functionsof the fuzzy objectivesand the fuzzy constraints,i.e.p,p_and ['_i

are known, the fuzzy optimization problem (Eq. (41)) can be posed as an equivalent crisp

optimizationproblem as follows:

Find X and X which

subject to

Maximize X (45)

X < I.tp_(X), i=1,2 .... k (46)

_,< t_,j(X), j=l,2 .... m. (47)

This problem can be solved using standard single objective nonlinear programming techniques.

3.3 NONLINEAR MEMBERSHIP FUNCTIONS

One of the major assumptions in solving fuzzy mathematical programming problems in the

literature involves the use of linear membership functions for all fuzzy sets involved in a

decision making process. A linear approximation is most commonly used because of its

simplicity and is defined by fixing two points, the upper and lower levels of acceptability

(Zimmermann 1976, Rao 1987a,b). If fuzzy set theory is to be considered a purely formal

theory, such an assumption is acceptable, even though some kind of formal justification of this

assumption would be desirable. If, however, fuzzy set theory is used to model real decision

making processes, and an assertion is made that the resulting models are true models of reality,

then some kind of empirical justification for this assumption is necessary. In view of this, several

other (nonlinear) shapes for membership functions, such as concave or convex shaped

membership functions are analyzed to determine their impact on the overall design process. The

marginal rate of increase (or decrease) of membership values as a function of design parameter

values is not constant for these nonlinear membership functions, as is the case with linear

membership functions. These nonlinear shapes offer potential benefits in terms of realism and

are chosen consistent with varying perceptions of the decision maker (designer).

Several different shapes for the (monotonically decreasing) membership functions

corresponding to the fuzzy objective functions are presented, and later examined to determine

their impact on overall design process. These shapes correspond to what we define as positive

(convex), negative (concave), or zero (linear) value of the coefficient of membership satiation,

m(X) which is defined as follows (Dhingra et al. 1990c)

re(X) = li" (X), (48)
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where la"(X) is the secondderivative of the membership function. This definition is analogous

to the Arrow-Pratt measure of risk aversion and the Dyer-Sarin (1982) measure of value satiation

used in decision analysis for characterizing utility and measurable value functions respectively

(Keeney and Raiffa 1976, Keelin 1981). It may be noted that this definition of m(X) does not

include it, (X) because a linear transformation of membership functions is not possible, which is

the case with utility or value functions. A positive value of m(X) corresponds to increasing

marginal membership values at a given value of X (convex functions). Similarly a negative

value of m(X) corresponds to a decreasing marginal membership values (concave functions),

and m(X)=0 is equivalent to constant marginal membership values (linear functions). Second

order effects which determine whether re(X) is increasing, constant or decreasing over the

parameter range of interest, while retaining its sign, are also considered. The sine and

exponential (k > 0) functions model increasing and decreasing values of m(X) over the range of

definition (m(X) > 0). The logarithmic, quadratic, and exponential (k < 0) functions are used to

model increasing, constant and decreasing values of m(X) when the membership satiation

coefficient is negative. While the satiation coefficient retains its sign for these five functions, the

sign of m(X) changes over the range of definition for a hyperbolic function. The membership

function of a fuzzy goal can also be viewed as a kind of utility function representing the degree

of satisfaction or acceptance. Some of the nonlinear shapes which we have considered are shown

in Fig. 1 and are discussed below.

In the following five subsections dealing with different membership functions, z corresponds

to a particular value of the fuzzy objective function (Z) and Zmin and zmax are the fuzzy lower

and upper bounds of the fuzzy objective function.

3.3.1 Exponential

An exponential membership function is defined as

la2 =

1 if z < Zmin

0 if z _> Zmax

e -k 5 - e -k otherwise

1 -- e "k

(49)

where

z- Zmin
= (50)

Zma x -- Zmi.n

and k is a parameter prescribed by the decision maker. When k > 0, I.t2 is convex and

consequently models an increasing marginal rate of membership values. While m(X) is positive,

its value decreases over the entire range of interest. A negative value of m(X) can also be

modeled using the above function for the case when k < 0. Here again, the magnitude of m(X) is

decreasing over the range of definition.

3.3.2 Hyperbolic Function
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Thehyperbolicfunctionis convexover a part of the objective function values and is concave

over the remaining part. The rationale for such a shape (Friedman and Savage 1952) in our

problem context is as follows: When the decision maker is worse off with respect to a goal, the

decision maker tends to have a higher marginal rate of satisfaction with respect to that goal. A

convex shape captures that behavior in the membership function. On the other hand, when one is

better off with respect to a goal, one tends to have a smaller marginal rate of satisfaction. Such

behavior is modeled using the concave portion of the membership function. The complete

function is as follows:

t.t2(X)=0.5-0.5 tanh [ (z-_) _i] (51)

6
8 = (52)

Zmax - Zmin "

The above function has a membership value of 0.5 when z=Zavg=0.5*(Zmin+znuut), and is

symmetric with respect to the point Zavg. The decision maker's m(X) is positive and decreasing

from [Zmin, zavg], and is negative and increasing from [Zavg, zmax], with Zavg being the point of
inflection.

3.3.3 Quadratic Function

A quadratic function is used to model a negative, but constant value of m(X) on part of the

decision maker. The function is expressed as

a z2 + b z +c =la 2. (53)

Assuming that

1 if z < zmin
tz2 = 0 if z > Zmax

0.5 if z= Zavg

(54)

the values of a, b, and c can be determined by solving the equations:

a z,_ + b Zmi_ + c = 1.0

a z2_ +b Zm_x +c= 0.0

a z2vg + b Zavg + C = 0.5.

(55)

(56)

(57)

If zavg is taken to be 0.5*(Zmin + Zmax), the quadratic form given by Eq. (53) degenerates to a

linear form as a becomes equal to zero.

3.3.4 Logarithmic Function

A logarithmic function is also used to model decreasing marginal rates of membership

values. The function is given as follows
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1 ifz < Zmin
0.2 = 0 ifz>zm_

a + log (c - z) otherwise.

(58)

This concave function is characterized by a negative value of membership satiation coefficient

over the entire range of definition. However, the value of m(X) is increasing over the parameter

range of interest.

3.3.5 Sine Function

A sine function is used to model positive and increasing of m(X) on part of the decision

maker. This function is expressed as

I.t2 =

1 if z-< zmm

0 if z _> Zmax

otherwise.
1 -sin _ 5

(59)

where 5 is given by Eq. (50).

3.4 FUZZY GAME THEORY APPRAOCH

A variety of techniques for multiobjective optimization have been considered in section 2.2.

As will be seen later, each of these techniques, in general, generates a different solution. This is

due to the fact that each formulation has a different underlying preference structure. Game

theoretic class of methods for multiobjective optimization yield a unique solution which is

Pareto-optimal, require minimal amount of subjective information from the DM, require no

interpersonal comparison of utilities, are independent of positive linear transformations of fi's,

and ensure that at the final solution all the objectives are acceptable.

In game theory, a multiobjective engineering design problem is viewed as a game where

each player corresponds to an objective function. These players are competing with each other to

improve their overall situation subject to a limited supply of resources. Two theories have been

used to abstract the conflict of interest situation between the players; the non-cooperative model

based on the concept of Nash equilibrium, and the cooperative theory based on the concept of a

Pareto-optimal solution.

In the cooperative model, each player is considered a part of a team who is willing to

compromise his/her own payoff in order to improve the situation as a whole. A cooperative

game proceeds with the intent that the team wants to allocate the resources so that all the players

are as better off as possible. The team must then decide as to how the resources should be allo-

cated such that an improvement in the payoff of one player does not result in an unacceptable

loss for another player.
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It ispossible to combine the positiveaspectsof garnc theoreticand fuzzy formulationsto

yield superior and more robust methodologies for multiple objective decision making. Such a

methodology requires the introduction of new operators which are different from the ones used

in fuzzy formulation in section 3.2. A completely general formulation involves consideration of

design problems which have partly crisp and partly fuzzy objectives, as well as partly crisp and

partly fuzzy constraints. Such a formulauon is a subject of potential future research.

4. APPLICATIONS

The effectiveness of multiple objective optimization techniques for engineering design

problems is now demonstrated via an application to three design problems. The first problem

deals with the determination of optimum flight parameters, for a helicopter, to accomplish a

specified mission in the presence of three competing design objectives. The second problem

addresses the optimum design of main rotor blades of a helicopter to accomplish a specified

mission in the presence of eight different objective functions. Design example three presents a

novel approach for the design of high speed mechanisms where both kinematic and dynamic

criteria are addressed simultaneously.

4.1 FLIGHT TRAJECTORY OPTIMIZATION

4.1.1 Introduction

The problem of flight trajectory optimization has not received much attention in the

literature. Earlier attempts at this problem employed the principles of optimal control theory.

Recently, Shruster and Carpas (1983) have used optimal design techniques to achieve maximum

range for an unpowered gliding flight. The design variables for the seven segment trajectory

used in the analysis were the angle of attack for each leg of the mission. Jenkinson and Simos

(1985) have demonstrated the application of optimal design techniques to short haul, fixed wing

routes. The design variables used in their formulation are the indicated air speed, throttle setting,

and the propeller setting. A comprehensive review of the application of optimal design

techniques to various aspects of helicopter design problems can be found in Ashley (1982) and

Miura (1985).
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The design variables

beginning of each of the

the first nine segments

1,2,3,4,6,7,8,9 for a two

problem formulation

4.1.2 Problem Formulation

Flight profile optimization addresses the need for determining optimum flight parameters to

accomplish a specified mission for a given payload. The mission planning task is to select, prior

to the flight, the altitude-speed profile and the initial fuel load for the mission. The objectives,

for example, can be to minimize fuel cost, minimize flight time, minimize total cost, maximize

range, or maximize payload, etc. Earlier attempts at solving this type of problem have employed
the principles of optimal control theory (Schmitz 1971). However, if a mission can be discretized

into a finite number of segments, and if the flight conditions remain constant over each segment,

the flight trajectory optimization problem can be formulated as a standard mathematical

programming problem (Bennett 1985). This approach has been adopted in the present work.

For any specified mission, the flight profile optimization program (FPOP) generates an initial

mission description consisting of ten segments. This initial mission approximation assumes that

the fuel tanks are full at takeoff. The power required, and the fuel flow necessary for each

segment are computed based on atmospheric properties such as air density, temperature, and

wind speed. At the end of each mission segment, flight parameters such as helicopter altitude,

fuel consumed, flight time, gross weight, distance traveled, etc. are computed by FPOP. The

performance characteristics of the helicopter are derived from actual test data and are expressed

as follows: i) The power coefficient (Cp) is expressed as a continuous function of advance ratio

(It) for discrete values of thrust coefficient (Ct) using a seventh order polynomial representation;

ii) The engine fuel flow is expressed as a function of shaft horsepower for discrete values of

density altitude using a seventh order polynomial representation; iii) A seventh order polynomial

is used to express hover power coefficient as a continuous function of thrust coefficient for hover

OGE, and hover IGE.

The flight parameters such as the initial fuel load, indicated air speed at the beginning of

each of the ten segments, and the rate of climb at the beginning of the first nine segments are

varied during the design procedure. The rate of climb or descent for the fifth segment of a two

way mission, and the rate of descent for the tenth segment are not true independent variables.

The values of these parameters are computed based on the altitude values at the beginning of the

fifth (or tenth) segment and the destination altitude. From the initial profile determined by FPOP,

the NLP algorithm iterates the flight parameters until an optimum profile satisfying the imposed
constraints is determined.

for this problem are i) the initial fuel load, ii) indicated air speed at the

ten segments, and iii) the rate of climb (or descent) at the beginning of

for a one way mission; or rate of climb (or descent) for segments

way mission. The following behavior constraints are considered in the

1. Horsepower required for each segment < Horsepower available

2. Indicated air speed < VNE for each segment

3. Altitude for each segment < Maximum altitude

4. Takeoff weight < Maximum takeoff gross weight; or

Takeoff weight < Maximum weight for hover OGE; or

Takeoff weight < Maximum weight for hover IGE

5. Fuel required < Fuel available
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6. Error in terminalaltitudeis within theprescribedlimits.
The sideconstraints(ondesignvariables)includethefollowing

1. Rate of climb for each segment < Maximum rate of climb

2. Rate of descent for each segment < Maximum rate of descent.

Three objective functions, namely, the minimization of fuel cost, flight time, and total cost are

considered with prescribed values for payload and range.

4.1.3 Numerical Results - Crisp Formulation

For this design example dealing with flight trajectory optimization, the mission requirements

are specified in Table 1. A total of three objective functions, namely, minimization of fuel cost,

flight time, and total cost are considered. The optimum mission parameters (design variables)

obtained using single and various multiple objective optimization techniques are presented in

Tables 2-4. The values of objective functions corresponding to these optimum mission

parameters are given in Table 5. It may be noted from Table 5 that the three objectives

considered are conflicting in nature. A minimum fuel cost design results in poor values for the

flight time and total mission cost. Attempting to achieve a design with low flight time and/or

total cost results in a high rate of fuel consumption which in turn leads to a high fuel cost.

Single objective optimization techniques are unable to overcome this difficulty and yield a

solution which is characterized by a superior performance on one objective function and a

(generally) poor performance with respect to the remaining objective functions. Multiobjective

optimization techniques presented in this work are able to achieve a compromise by permitting a

tradeoff between the conflicting pairs of objectives. The resulting solutions exhibit good

performance with respect to all the objective functions. The optimum flight paths obtained using

single and some multiple objective optimization techniques are presented in Figs. 2-4.

4.1.4 Numerical Results - Fuzzy Formulation

The results from single objective optimizations yield a k x k matrix [M] defined as follows

(Dhingra et al. 1988, 1990a):

fl (X_) f2(X_)

h(x ) f2(x )
[M] =

fk(xP

fk(x )

h f2(xP fk(xP

"383.37 2.7485 1372.83]

427.39 2.3675 1279.70/

423.13 2.3592 1272.43J

(6O)

Once the best and the worst values of each of the three objectives are identified, the membership

functions of the three objectives are constructed as follows

(X) =

O_

l,

if fl (X) > 427.39

if 383.37 < ft (X) < 427.39

if fl (X) < 383.37

(61)
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 h(x) =

(X) = f

O,

-f2(X) + 2.74850.3893

1,

0r

--f3(X) + 1372.83

100.4

if f2(X) > 2.7485

if 2.3592 < f2(X) < 2.7485

if f2(X) < 2.3592

if f3 (X) > 1372.83

< f3(X) <
if 1272.43 1372.83

if f3(X) < 1272.43.

(62)

(63)

The membership functions of the design variables are constructed using the bounds given in
Table 6 as

 xt(X) =

Or

1- Y5- 

1,

if xj > 174.9

if 159.0 < xj < 174.9, j=2 .... 11

if Xj --<159.0.

(64)

"
xj - 63

O,

if xj _ 70

if 63<Xj<70, j=2 .... 11

if Xj < 63.

(65)

Membership functions of the remaining design variables are constructed in a similar fashion.

Figures 5-7 depict the membership functions corresponding to the upper and lower bounds on

design variables x2-x11 and the objective function fl. By permitting a 10% leeway, membership

functions of the thirty four behavior constraints present in the problem formulation are also

constructed. It may be noted that (for this problem) design variable x16 is not truly an

independent design variable. Its value is determined by the altitude at the beginning of the fifth

segment, and the destination altitude.

Since a design vector with the highest degree of membership to the fuzzy decision set is

required, the fuzzy multiobjective optimization problem is formulated as

Find X and _. which

Maximize _.

subject to

k < gf,(X), i=1,2,3 (66)
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_._<_g,(X), j=l,2 ....34 (67)

<lax,j(X), j=l .... 15,17 .... 20 (68)

_. < _x_(X), j=l .... 15,17 .... 20. (69)

The above problem has a total of 21 design variables and 75 constraints. The numerical results

obtained by solving this mathematical programming problem are presented in Table 7. The

optimum solution yields an overall satisfaction level (_.) of 79.9%. The optimum flight

trajectories obtained using single and multiple objective optimization techniques are presented in

Figs. 2-4 and 8. It can be seen from Fig. 2 that when the objective is to minimize the fuel cost,

the optimum flight parameters entail that the helicopter be flown at altitudes ranging from 5000

to 8000 ft for a good part of the total flight path. However, when the objective is to minimize the

flight time or the total cost, the helicopter is flown at altitudes below 4500 ft both during the

outbound and return segments of the mission. Also, the rates of climb and descent for the return

segment of the mission are higher compared to the corresponding values during the outbound

flight. This is due to the fact that some fuel has been consumed during the forward leg and the

payload has been delivered.

When all the three objectives are considered simultaneously, it is observed that crisp

multiobjective optimization (goal attainment etc.) schemes yield flight parameters which require

the helicopter be operated under 5000 ft. When the flight trajectory optimization problem is

solved using the techniques of fuzzy optimization, the helicopter altitude during each segment of

the flight path exceed the corresponding values given by crisp (single and multiobjective)

optimization schemes by as much as 1800 to 4000 ft (Fig. 8).

The fuzzy formulation also yielded the best of values for the three objectives at the optimum

solution. In fact, the optimum value of f3 (total cost) for fuzzy multiobjective formulation with

relaxed constraints is lower than the value obtained when t"3 is considered alone. All the

improvements are possible at the expense of relaxation of the maximum altitude constraint. The

maximum altitude attained by the helicopter using fuzzy formulation is 8160 ft compared to a

maximum value of 8000 ft for the crisp case. There is no need to change any of the other

helicopter parameters such as horsepower required, fuel tank capacity, etc.

4.2 MAIN ROTOR OPTIMIZATION

4.2.1 Introduction

The application of mathematical programming techniques to rotorcraft design problems was

first suggested by Stepniewski and Kalmbach (1970). Their paper addressed general concepts in

applying multivariable search methods to helicopter design problems. A year later, Bielawa

(1971) used linearized rotor dynamic equations to design rotor blades for minimum weight

subject to constraints on bending torsion flutter stability and natural frequencies. The problem

formulation used a total of five design variables to describe the blade structure. Little was done

for about ten years following these two early works, but in the last four to five years there has

been a renewed interest in the application of optimal design techniques to rotor blade design

problems. Bennet (1983) has studied the effect of blade twist distribution on the input power
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requiredfor hover, while keepingairfoil, rotor radius,and tip speedunchanged.The results
obtainedindicate that optimum twist reducesthe hoverpower by 1.55%comparedto linear
twist. Bennet(1985)hasalsoinvestigatedinto theapplicationof singleobjectiveoptimization
techniquesfor designingof main rotor bladesto meetspecificmissiongoalsand constraints.
The singlerotor analysisprogramwritten by Schwartzberg(1977)coupledwith two nonlinear
programmingalgorithmswasusedin the study.Friedmannand Shanthakumaran(1984)have
appliedstructural optimization techniquesto rotor bladedesignproblemsin order to reduce
transmittedvibratory forces.Thebladedynamicresponseandstability analysiswasbasedon a
fully coupled,flap-lagtorsionalanalysis.A 15-40%reductionin theamplitudeof thevibratory
forceswasobtainedby theauthors.

4.2.2 Problem Formulation

A design of the main rotor of a helicopter requires an integration of several analytical

disciplines such as aerodynamics, structures, noise, and mission analysis to achieve a viable and

an efficient design. An application of optimization techniques to rotor design problems can be

broadly divided under three categories: (i) global performance design of rotor, (ii) structural

design of blades, and (iii) aerodynamic and acoustic design.

The equations used for blade design in this work are limited to momentum theory

considerations to minimize the required input information, procedural detail, and computational

complexity without markedly compromising the utility of the solutions. The analysis scheme

incorporates mathematical models for hover, vertical flight, and forward flight conditions.

Mathematical models for engine performance, fuel consumption, and aircraft group weights are

also included in the analysis procedure. The design procedure utilizes the following computation

scheme: Initially the engine is sized to meet the most demanding power requirement among the

hover, vertical climb, and high speed segments of the mission, including the operation of a

multi-engined helicopter with one engine inoperative. The fuel weight and the aircraft

component group weights are computed next thus enabling the determination of available

payload capacity. A comparison of the available payload with the required payload leads to a

new gross weight estimation. The analysis loop is reentered with this new gross weight estimate

and the iteration is continued until a gross weight compatible with the payload requirements is
determined.

The power required is viewed as comprised of three power absorbing components

SHP = HPMR + HPTR + HPxM (70)

where SHP is the required shaft horsepower, HPMR, HPTR, and HPxM are the power required by

the main rotor, tail rotor, and the transmission system respectively. The power required by the

main and tail rotors are further subdivided into several components. For example, the power

required by the main rotor for level forward flight is expressed as the sum of parasite, profile,

induced power components, and an additional power required due to compressibility and stall

effects. The tail rotor power is taken to be the sum of tail rotor profile and induced power

requirements. Power requirements for other flight conditions are computed in a similar fashion.

The power lost in the transmission system is expressed as a constant percentage of the power

required by the main and tail rotors.
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The weight of the helicopter is computed based on a statistical analysis of the weights of 59

different helicopters. The weight breakdown includes the weight of the main rotor, body,

propulsion and transmission systems, instrumentation, landing gear, and tail rotor. The equations

used for the component weights are derived from a multiple regression analysis of existing

helicopters. Using the weight breakdown and cost per pound of various components, the cost of

the proposed helicopter is determined. The flyover noise level is expressed as a function of tip

speed, Mach number, and gross weight number. The handling qualities of the helicopter are

determined by the Lock number and the autorotation parameter. The fuel required for a mission

is computed in two different manners. The easiest way is to specify the required payload and

range for the mission. The second method of determining fuel consumption involves the

definition of the mission at ten individual segments. At each segment it is necessary to specify a

time at that segment, atmospheric properties, the velocity, and climb conditions. Upon

integrating the fuel flow rate over the duration of the segment, the fuel burned during any

mission segment is computed. The second method permits a much more detailed description of

the helicopter mission. The cruise speed, dash speed, endurance, as well as hover ceiling are also

computed as part of the analysis procedure.

The single-rotor helicopter design and performance estimation program (SSP1), developed

by Schwartzberg (1977) has been used in this work to design main rotor blades. The main rotor

radius, chord, twist, and tip speed are treated as design variables for this problem. The following

inequality constraints are considered in the problem formulation

1. Fuel required < Fuel available

2. Required payload < Available payload

3. Hover blade loading coefficient < specified value

4. Maximum advancing tip Mach number < specified value

5. Blade loading in forward flight < specified value

6. Hover horsepower < specified value

7. Hover horsepower for OEI < specified value

8. Horsepower for forward flight OEI < specified value

9. Horsepower for maximum speed < specified value

10. Horsepower for maximum sustained G level < specified value

11. Autorotation index > specified value

12. Maximum flyover noise level < specified value.

The objective functions considered include the following

1. Minimize gross weight

2. Minimize manufacturing cost

3. Minimize empty weight
4. Minimize mission fuel

5. Maximize endurance limit

6. Maximize dash speed

7. Maxinuze hover ceiling

8. Minimize noise level.

4.2.3 Numerical Results - Crisp Formulation
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This exampleaddressingthe designof main rotor blades,for a specifiedmission,involves
eight objective functions.The designdata for this exampleis given in Table 8. The optimum
bladeparametersobtainedby solvingeight singleobjectiveoptimizationproblemsarepresented
in Table9, whereastheresultsobtainedusingvariousmultipleobjectiveoptimizationtechniques
are given in Table 10. The objective function valuescorrespondingto theseoptimum blade
parametersarepresentedin Tables11and 12respectively. It maybe notedfrom Table 11 that
when the main rotor is designedfor minimum grossweight, the resultingdesignalso has the
minimumtotal costandminimumemptyweight.Theoptimumdesign,however,hasalow hover
ceiling and a low endurancelimit. Attempting to maximizethe endurancelimit and/or hover
ceiling resultsin anoisydesignwith highgrossweightanda highcostof manufacturing.Due to
theconflictingnatureof theseobjectives,singleobjectiveoptimizationtechniquesareunableto
obtaina satisfactorysolution.Multiobjectiveoptimization techniquespresentedherein areable
to achievea compromisebetweenthe conflicting pairs of objectives.The optimum solution
exhibitsgoodperformancewith respectto mostof theobjectivefunctions.

4.2.4 Numerical Results - Fuzzy Formulation

Using the results from single objective optimizations, the matrix [M]
follows

[M] =

2493 340703 1076 446 3.39 162.2 6040.7 89.1

2493 340697 1076 447 3.39 162.2 6039.7 89.1

2493 340747 1076 447 3.39 162.2 6042.1 89.1

2572 371346 1167 435 3.43 164.9 7169.1 89.2

2764 431364 1345 450 3.55 158.5 8815.4 91.3

2569 368691 1162 436 3.38 165.7 6114.7 88.4

2742 427478 1333 439 3.55 161.7 8933.1 90.7

2588 374821 1181 437 3.38 165.5 6047.4 88.4

is constructed as

(71)

Once the best and the worst values for each of the eight objectives are identified, the

membership functions of the eight objectives are constructed as follows

laf,(X) =

'1

if fl (X) > 2764

-ft(X) + 2764 [ if 2493 2764
< fl (x) <

271 J
if fl (X) < 2493

1,

(72)

_f2 (X) =

0_

-fe(X) + 431364

if f2 (X) _>431364

if 340697 < fz(X) < 431364

if fz(X) < 340697

(73)
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0,

I-f8 (X) + 91.3

= L
1,

if fs(X) > 91.3

if 88.4 <91.3
< fs(X)

if fs(X) < 88.4.

(74)

Using the bounds on design variables indicated in Table 13, the membership function of design

variable Xl is constructed as follows:

_, (X) =

,

if xl > 880

Xl-800_ if 800< <8801- 80 Xl

J
if xl < 800

,

(75)

II'
xl - 562.5

lax_ (X) = 62.5

0,

if Xl > 625.0

I if 562.5 < 625.0
< Xl

if xl < 562.5

(76)

Membership functions of the remaining design variables (x2-x4) are constructed in a similar

fashion. By permitting a 10% leeway, membership functions corresponding to the twelve

behavior constraints present in the formulation are also constructed. Once the membership

functions of all the fuzzy objectives and constraints are determined, the resulting fuzzy

optimization problem can be stated as

Find X and _, which
Maximize _.

subject to

_.<l.tfi(X), i=1,2 .... 8 (77)

_<_gj(X), j=l,2 .... 12 (78)

_._<l.txl(X), j=l .... 4 (79)

_,<_x_(X), j=l .... 4. (80)

The above problem has a total of 5 design variables and 28 inequality constraints. The results

obtained by solving this mathematical programming problem are presented in Table 14. The

optimum solution corresponds to an overall satisfaction level of 36.1%. It is observed from the

results obtained by solving crisp single and multiobjective optimization problems that the design

variable x3 (linear twist of the main rotor blades) is always at its lower bound (-20 °) at the
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optimum solution. This would seem to indicate that when the lower bound is relaxed in the fuzzy

formulation, the linear twist of the main rotor blades may go down even further. This is contrary

to what is obtained when the fuzzy optimization problem is solved. The linear twist for the fuzzy

optimum design is still close to -20 ° .

4.3 INTEGRATED DESIGN OF PLANAR MECHANISMS

4.3.1 Introduction

The design of high speed mechanisms requires a simultaneous consideration of both

kinematic and dynamic criteria. The kinematic considerations require that the difference

between the desired and generated motion be minimized over the entire range of motion,

whereas the dynamic considerations entail that the dynamic performance measures of the

resulting mechanism be optimized. In the conventional approach to mechanism design, the
kinematic criteria are met first. Then, at a later stage, with the link geometry already determined,

an improvement of the dynamic characteristics is addressed. This treatment of the dynamic

aspects of the problem at a later stage can sometimes seriously limit an improvement of the

dynamic performance measures. This paper presents a new multiobjective nonlinear

programming formulation which allows both kinematic and dynamic characteristics to

simultaneously influence the choice of design parameters.

The application of optimization techniques to the design of planar mechanisms is well

known. A number of surveys (Root and Ragsdell 1976) are available which furnish

comprehensive reviews of the application of optimization techniques to the design of planar

mechanisms. However, despite the importance of both kinematic synthesis and dynamic design

in the development of high speed mechanisms, most of the work so far has focussed either only

on the optimization of kinematic criteria (Han 1966, Pugh 1984) or on the optimization of

dynamic criteria alone (Berkof and Lowen 1971, Rao and Kaplan 1986). Relatively few

investigations have addressed the design of mechanisms for a simultaneous optimization of

kinematic and dynamic characteristics. Fox and Willmert (1967) first addressed the design of

four bar path generating mechanism with constraints on input driving torque and ground bearing

forces. Conte et al. (1975) have studied the design of a path generating four bar linkage for three

precision points while minimizing the maximum value of shaking force over a cycle. Four

kinematic parameters were used as design variables to improve the dynamic characteristics of

the resulting mechanism. Kakatsios and Tricamo (1984) have used optimization techniques to

design four bar path generating mechanisms with improved kinematic and dynamic

characteristics. The problem formulation allowed for a trade off between the kinematic and

dynamic criteria. The performance of several dynamic measures, which were imposed as

inequality constraints, was improved at the expense of kinematic criteria (structural error).

Rigelman and Kramer (1987) have used selective precision synthesis method to design a four bar

mechanism for minimum input power while satisfying several kinematic and dynamic

constraints.

All the works mentioned above which have considered both kinematic and dynamic aspects

of mechanism design, lack one or more of the following: i) Consideration of multiple objectives

in the nonlinear programming formulation, ii) Ensuring that the resulting mechanism is free of

branch, order, and Grashof defects, iii) Addition of counterweights to moving links to improve
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the dynamic performance measures of the resulting mechanism, iv) Incorporating techniques to

model vague and imprecise statements in mechanism design problems.

Further, these prior formulations utilizing optimization techniques for mechanism design

used only one kinematic or dynamic attribute as an objective function and treated the remaining

attributes as inequality constraints. Due to the conflicting and competing nature of these criteria,

one can seldom select a single attribute which can be used as an objective function of the

mathematical programming formulation. Further, by imposing constraints that the remaining

kinematic and dynamic criteria be kept below certain acceptable levels, one can end up with an

impossible or inferior solution depending upon the choice of acceptable levels. Multiobjective

optimization techniques tend to overcome these difficulties in an efficient manner.

This work presents a new multiobjective formulation for the design of planar high speed

mechanisms which overcomes all the previous shortcomings. The formulation is general enough

to facilitate the design of a mechanism for motion, path, and function generation tasks. The

kinematic characteristics are influenced by link dimensions and orientations, whereas the

dynamic performance is improved by varying link dimensions and orientations, and by the
addition of counterweights to all moving links. In addition, it is ensured that the designed

mechanism is free of any motion defects, namely Grashof's defect, branch defect, and order

defect. Further, to account for the presence of vague and imprecise statements in the problem

statement, the tools of fuzzy set theory have been used.

4.3.2 Kinematic Criteria

The primary application of optimization techniques to the design of high speed mechanisms

considered in the present work, consists of choosing mechanism and counterweight variables for

a planar four bar linkage shown in Fig. 9. Two kinematic criteria are considered in the present

work. The first criterion may be given as the location and orientation of a rigid body (motion

generation), the coordinates of a tracer point along a prescribed path (path generation),

coordinated rotations of input and output links (function generation), or some combination of

position and orientation specifications. The second criterion deals with the minimization of the

deviation of the transmission angle from its ideal value (90 ° ) over the entire range of motion.

The dynamic criteria consist of the minimization of input driving torque, ground bearing forces,

and the shaking forces and shaking moments transmitted to the ground link over a cycle. The

complete optimization problem for a four bar path generating linkage is developed next.

A four bar mechanism is to be synthesized to generate a given path with coordinated rotation

of the input link. Using Fig. 9, the coordinates of the path described by the coupler point P are

given as:

Xg i = XO, + r2 cos(02s+02i+_) + r5 COS(03i +O_) -- r6 sin(03i +0_) (81)

Ygi = Yo. + r2 sin(02s+02i+o_) + r5 sin(03i +or) + r6 cos(03i +ct) (82)

where (Xo,,, YoA) are the coordinates of the ground pivot OA, tX is the angular orientation of the

ground link, r i (i=1,2 .... 6) are the link lengths, 02s is the starting position of the input link, and

02i and 03i are the angular orientations of links 2 and 3 at the i th design position. Let the

corresponding desired values of the path coordinates be given as (Xdi, Ydi). The first objective
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(fl) considered is the minimization of structural error over the entire range of motion:

,=, (83)

where N denotes the number of design points into which the path is divided. The minimization

of fl can be achieved by varying the link lengths rl- r6 and the ground pivot parameters

XOA, Yo^, and o_.

The second kinematic criterion (f2) is to minimize the deviation of the transmission angle (y)

from its ideal value (90 ° ) over the entire range of motion:

f2 = 8 = "/max -- 90 + "/min -- 90 (84)

where the minimum and maximum values of y over a complete cycle are given as:

r2 +r] - (rl -r2 )2

COS ]tmi n = 2 r3 r4

r2 +r 2 - (rt + re )2

COS _max = 2 r 3 r 4

(85)

(86)

The following behavior constraints are imposed on the design problem:

The mechanism should satisfy the loop closure equation at each design position. This is achieved

by using an equality constraint of the form

2 r2r 4 cos(02-04) - 2 rlr 4 cos 04 + 2 rlr 2 cos 02 + r3z =r{ + r_ + r4z (87)

at each design position. In addition, the structural error at each design point is constrained to be

less than a specified small quantity A, i.e.

e i < A i=1,2 .... N. (88)

A further design restriction, which assures that the input link be a crank, can be stated as:

rl + r2 < r3 + r4 (89)

- 12Ir3 r4 <Irl r212 (90)

In addition, the value of transmission angle (7) over the entire cycle is constrained as:

n 5n
-- < y< -- (91)
6 6

Further, to ensure that the resulting mechanism is free of any branch and order defects, a set of

four inequality constraints are imposed at each design position. These constraints are developed
later.
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In the present work, a value of N=10 is used and the coordinates of the prescribed path are

assumed as follows (Han 1966):

Xdi = 0.4 -- sin 2 r_ (ti - 0.34) (92)

Ydi = 2.0 -- 0.9 sin 2 rc (ti - 0.5) (93)

where

i-1
ti - (94)

N

The coordinated input link orientations are determined using

02i = 2 r_ ti. (95)

4.3.3 Dynamic Analysis

Two techniques, namely, kinetostatic and time response approaches, can be used to study the

dynamics of mechanisms. In the kinetostatic approach, the motion of the system is completely

known, and the purpose of analysis is to determine bearing reactions, shaking forces etc.

resulting from that motion, as well as the driving torque required to produce that motion. A

solution to this problem can be written as a set of nonlinear algebraic equations. The time

response analysis, on the other hand, involves the determination of motion of the mechanism

given the actuating force or torque history. A solution to this problem results in a set of nonlinear

differential equations which have to be solved numerically. In the present work, the kinetostatic

method of dynamic analysis is employed.

The dynamic analysis procedure described is valid for a general four bar linkage shown in

Fig. 9. The rigid links are assumed to have a general shape and the revolute joints are considered

to be frictionless. Each of the links has a length ri, i=1,2,3,4, and each of the moving links has a

mass m i and a moment of inertia Ii, i=2,3,4 with respect to the center of mass which is defined

by rg i and 0i as shown in Fig. 9. The equations of equilibrium for each of the three moving links

shown in Fig. 10, results in the following system of equations:

Fo2x = F23x - F12x (96)

Fo2y = F23y - Fl2y (97)

T s + To2 - F32 x r2 sin 02 + F32y r2 cos 02

- Fo2x rg2 sin(02 + 02) + Fo2y rg2 cos(02 + 02) = 0 (98)

Fo3x = F34x - F23x (99)

Fo3y = F34y - F23y (100)

To3 + F34x r3 sin 03 - F34y r3 cos 03

- Fo3x rg3 sin(03 + 03) + Fo3y rg3 cos(03 + 03) = 0 (101)

Fo4x =- F34x - F14x (102)
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Fo4y = - F34y - Fl4y

To4 - F34x r4 sin On + F3,1y r4 cos 04

- Fo4x rg4 sin(04 + ¢_4) + F04y rg4 cos(04 + _4) = O.

(103)

(104)

Since all inertia forces (Foix, Foiy) and couples (Toi) are known, one can solve this system of

nine equations for the x and y components of the four bearing reactions (Fl2, F23, F34, F14) and

the input driving torque (Ts).

The shaking force (SF) is the resultant force on the ground link:

SF = F21 + F41. (105)

Alternately, by using Eqs. (96-104) one gets:

SF x = FO2 x + F03 x + F04 x (106)

SFy = Fo2y + Fo3y + Fo4y. (107)

The shaking moment about an arbitrary point P on the ground link is given as:

SM = -T s - F4t x el sin _1 + F41y el cos x¢1

- F21x e2 sin _2 + F21y e2 cos xt/2. (108)

When P is the midpoint of link OAO B (Fig. 10),

rl

e 1 = e 2 =

_1 = 0, _t/2 = 180

and the expression for the shaking moment reduces to

rl

SM=--_-- [F12y-F14y l-Ts. (109)

The dynamic analysis is performed at every five degree rotation of the input link. This results in

a total of 72 evaluations during each cycle of crank rotation. The ultimate objective is to design a

mechanism which requires the minimum driving torque, and transmits minimum forces and

moments to the ground. Thus two objective functions are selected as f3 = max F12 and

t"4 = max Fin, where max F12 and max Fla are the maximum values of ground bearing forces

realized during one input crank revolution. The next dynamic criterion, f5 is taken as the max Ts,

or the maximum value of input driving torque required over a cycle. Finally the last two

objective functions f6 and t"7, are chosen as the maximum values of shaking force and shaking

moment respectively. Thus the optimization problem has a total of seven objective functions.

4.3.4 Counterweighted Linkage
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The dynamic performance of the mechanism is also improved by the addition of

counterweights to all moving links. The counterweights are restricted as follows:

i) Each link i may have only one counterweight i.

ii) Each counterweight is circular and is tangent to the link pivot point.

iii) Each counterweight has a radius rci, thickness tci, and is located at an angle 0ci with respect

to link i as shown in Fig. 1 I.

iv) All counterweights have the same density p.

The counterweight radii, thicknesses, and locations are treated as design variables. The

combined mass and inertia properties of the counterweighted link are obtained as follows:

mi = mi + mci (1 10)

(mi P,i) 2 = (mi rgi) 2 + (rnci rci) 2 + 2 mirgimcirci cos(Oi - Oci) (111)

and

Oi = tan-1 mirgisinOi + rncircisinOci
mirgiCOSOi + mcircicosOci

(112)

The counterweight properties are given as follows:

mci = _; P rc2i tci

mc i rc2i
Ici -

2

Therefore,

Ii = Ii + Ici + rnci e2 + mi d2

(113)

(114)

(115)

or,

Ii = Ii + Ici + mcir2i + mirg2i- mi _.2. (116)

The quantities mi andli are to be used in place of m i and I i in Eqs. (96-104).

4.3.5 Development of Branching Constraint

A mechanism is said to suffer from a branch defect when it meets all the design

requirements, but has coupler points on both branches of the coupler curve. This requires the

mechanism to be disassembled and reassembled at one or more intermediate positions in order to

complete the desired motion. A constraint of the form given by Eq. (130) can be used at each

design position to avoid this defect. This constraint is developed as follows:

At the reference position (subscript o), one has (Fig. 12):

--} _01 ) __}(1)OAA = -- m (117)

The area of triangle A B OB is given as
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whichcanalsobewrittenas

where

1
A= -_-r3r4 singo (118)

1
A = _- det (119)

det = [ (k_ - k_)lx)) (k_)2) - m(y2)) -(k_2x _ - m(x2)) (k_2y)- k_ )) ]. (120)

Using Eqs. (118-120) one gets

det
sin go - (121)

r3 r4

At the j th position which corresponds to a rotation of link AB by an angle 0j with respect to the
starting position, one gets:

-_ _(0l) .__, e i 0i ___ __,(1)OA A = ( -- r0 ) + rj - m (122)

-* -* _02) -_ e i 0j --9(2)O8B = rj +( -r0 ) -m (123)

The area of triangle A B O B is given as:

1

A = -_- r3 r4 sin 12j

which yields:

where

sin Vtj =
AjBj-cj Dj

r3 r4

Aj = (kD2) - k_)lx)) cos 0j - (k_) - k_)_)) sin 0j

(124)

(125)

(126)

Bj = yj + (k_)2x)- x 0) sin 0j + (k_) - Y0) cos 0j - m(y2) (127)

Cj = (k_)2) - k_)_)sin 0j - (k_2)- k_ ))cos 0j (128)

Dj = xj + (k_)2) - Xo) cos 0j + (k_)2y)- Yo) sin 0j - m(x2).

A constraint of the form

sin go sin laj > 0

at each of the N design positions would ensure that the mechanism does not branch.

(129)

(130)
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4.3.6 Development of Order Defect Constraint

A linkage is said to suffer from an order defect if the designed mechanism is unable to pass

through all the design positions in the correct order. For path generation problems, when the

input link orientations (¢_i) are also treated as design variables, the following three constraints

can be added at each design position to ensure that the mechanism is free of any order defect:

0<¢_i <2_ i=l,2 .... N (131)

ON -_t <-2 _ (132)

0i+l -- 0i -> 0 i=1,2 .... N-1. (133)

4.3.7 Numerical Results - With Linear�Nonlinear Membership Functions

The optimization problem presented has seven objective functions, eighteen design variables

and thirty four behavior constraints. In addition, the eighteen design variables are also subject to

side constraints limiting their minimum and maximum values. The single objective optimization

problems are solved first, and the optimum values of the objective functions are given in Table

15.

Using the results of the single objective optimizations, the procedure outlined under the sub-

section "Computational Procedure" is followed, and the membership functions for the seven

fuzzy goals and the thirty four fuzzy constraints are constructed. This results in a problem with a

total of nineteen design variables and forty one constraints (Dhingra and Rao 1989). The results

obtained by solving this fuzzy optimization problem are summarized in Table 16. Table 17

presents a comparison between the results obtained when only structural error (fl) is minimized
with those obtained when all seven objectives are considered simultaneously with linear

membership functions employed for all the fuzzy goals. It may be noted from Table 17 that

when all the seven objectives are considered simultaneously, the dynamic characteristics of the

resulting mechanism improve by factors ranging from 3.65 to 13.34 when compared with the

mechanism for which only the structural error is optimized. These improvements in dynamic

performance measures have been achieved at the expense of smactural error (fl) which has

worsened by a factor of 8.22. Keeping in mind that all the remaining kinematic and dynamic

performance measures (f2-f6) have improved substantially, a structural error of 0.2161

associated with the optimum design is still fairly low from the viewpoint of a mechanism

designer.

When nonlinear shapes are employed for the membership functions corresponding to the

fuzzy objective functions, the kinematic and dynamic performance measures of the resulting
mechanism exhibit similar trends for various values of the membership satiation coefficient.

The results obtained using quadratic, exponential (k < 0), and logarithmic membership functions

are similar, as these three functions model a negative value of m(X). However, the results

obtained using these three functions are fairly different from those obtained with membership
functions which model constant or increasing marginal membership satiation values. Hence, it

is important to accurately assess the nature of the membership functions (e.g., concave, convex,

or linear), i.e. the sign of the membership satiation coefficient influences the optimum results

significantly.
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An insight into the nature of this design problem in conjunction with the optimization results

given in Table 15 led to the conclusion that if f2 (i.e. [i) is dropped from the goal set, the

remaining objectives can be improved significantly. This is borne out by the results obtained

(Table 18) when only six objectives are considered in the multiobjective problem. It can be

observed from Table 17 that, when all the six objectives (fl, and f3-f T) are considered

simultaneously, the dynamic characteristics of the resulting mechanism show an even greater

improvement when compared with the linkage for which only the swuctural error is optimized.

The improvement factors for the dynamic performance measures vary from 38.6 to 91.8.
Further, the structural error has increased by a much smaller amount (1.19) compared to the case

when all seven objectives are considered (8.22). These substantial improvements in both

kinematic and dynamic performance measures have been achieved at the expense of the

transmission angle objective (f2) which has worsened by a small (1%) amount with respect to

the starting point. Thus, for this planar mechanism design problem, substantially improved

kinematic and dynamic characteristics can be obtained when only six objectives are considered.

The results obtained using the muhiobjective formulation presented also represent a

significant improvement over those obtained by Kakatsios and Tricamo (1984). It can be seen

from Table 17 that the improvement factors vary anywhere from 2.59 (for structural error) to

59.85 (for input driving torque) when comparing the Kakatsios and Tricamo results to the

multiobjective formulation results using six criteria. This corroborates an observation made

earlier that prior formulations which have used only one kinematic or dynamic attribute as an

objective function, and treated the remaining attributes as inequality constraints, can lead to

inferior solutions. This results from the fact that the conflicting and competing nature of several

kinematic and dynamic criteria seldom permits one to select a sirlgle attribute which can be used

as an objective function in the mathematical programming formulation. It has been demonstrated

that proposed muhiobjective optimization techniques overcome these difficulties in an efficient

manner. Further, the iafluence of nonlinear shapes modeling various marginally increasing and

decreasing membership values has also been examined under the purview of this work. The

combined effect of both the membership functions and the fuzzy aggregation operators on the

overall design process is a subject of potential future research.

5. CONCLUSIONS

The concept of Pareto-optimal solutions in the context of crisp and fuzzy helicopter design

problems is introduced. Several techniques for generating Pareto-optimal solutions are

discussed. The effectiveness of multiple objective optimization techniques in the formulation

and solution of design problems are demonstrated via an application to helicopter design

problems. These techniques are expected to provide a systematic methodology to formulate and

solve muhiobjective problems in a form directly applicable to engineering design. A comparison

is also made between the relative efficiency of various muhiobjective techniques. It is found that

there is The set of Pareto-optimal solutions generated using the seven different crisp multiple

objective optimization techniques presented earlier are, in general, different from each other.

This is due to the fact that each methodology has a different underlying preference structure

supplied by the decision maker.
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Methods suchas the global criterion formulation require no articulation of preference
structureon partof theDM andcanleadto a solutionfor whicha particularobjectivefunction
value at the optimum solution may be completelyunacceptableto the DM. Methodswhich
requirean a priori articulationof preferenceinformationon partof the DM includethe utility
function, bounded objective, goal programming, goal attainment, and lexicographic
formulations. The major advantageof utility function methodsis that if the utility functionis
correctlyassessedandused,it will ensurea mostsatisfactorysolutionto theDM. However,the
assessmentof utility functionfor evenasimpleproblemis verydifficult. Theboundedobjective,
goal programming, goal attainment methodsare computationallyefficient, but they yield
solutionswhich are fairly sensitiveto thegoal vectorprescribedby the DM. The gametheory
approachnot only providesanoptimumdesignvector,but alsoyieldsanoptimal setof weights
for variousobjective functions.This in turn leadsto amost satisfactorysolutionwith respectto
all the competingobjectives.However,the computationaleffort requiredis the maximumfor
this approach.Thus, there is no multiple objective optimization techniquewhich can be
consideredsuperiorto all other techniques.Consequently,one shouldexercisecaution when
usingaparticulartechniqueto solveaclassof multipleobjectiveengineeringdesignproblems.

The fuzzy optimization techniquespresentedin this work are expectedto be extremely
useful during the initial stagesof conceptualdesignof engineeringsystemswherethe design
goalsandconstraintshavenot beenclearly identifiedor stated.Thesetechniquescaneffectively
model thevagueand impreciseinformationpresentin theobjectivefunction andconstraintsto
formulatefuzzy goalsandconstraints.Thesemodelscanbeusedefficiently andeffectively for
decisionmaking problemsin ill-structuredsituations.Further,sincethesetechniquesresult in a
unifiedapproachto a decisionmakingprocessin thesensethat thereis no longeranydistinction
betweenthe goalsand the constraints,they are, in general,able to achievea superiorsolution
comparedto othermultiobjectiveoptimizationtechniques.
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Table

Mission Requirements

Payload: 2200 Ib

Crew weight: 190 Ib

Altitudeattakeoff:SLS

Maximum flightaltitude:8000 ft

Maximum rateof climb: 1200 fv'min

Fuel cost:$ 1.25/gal

Maximum internalgrossweight: 17500 Ib

Hover transmissionlimit:2350 hp

I Baseline Mission Profile Parameters.

Range: 180 n miles

Fuel reserve: 333 lb

Altitude of destination: SLS

Weight empty: 11500 lb

Maximum rate of descent: - 600 ft/min

Maintenance cost: $360/hr

Fuel capacity: 2958 lb

Transmission limit: 1950 hp

4O



Table 2 Mission Parameters for Single Objective Optimizations.

=.

Mission Starting Minimize Minimize Minimize

Parameters Vector Fuel cost Flight time Total cost

Air Speed

(kn)

117.5 125.2 134.9 136.1

117.5 103.1 128.5 127.9

117.5 94.1 125.2 124.1

117.5 90.1 124.8 122.6

117.5 90.3 127.7 124.1

117.5 128.8 151.6 152.0

117.5 102.0 135.8 134.4

117.5 88.4 127.9 125.5

117.5 81.9 124.1 120.6

117.5 78.8 123.0 118.7

Rate of

Climb

(ft/min)

0.011 207.7 123.7 134.2

0.011 91.8 39.3 43.9

0.011 45.5 12.1 21.5

0.011 10.4 -1.6 14.0

0.011 -363.6 -188.5 -230.4

4).011 253.4 152.0 169.0

4).011 148.8 84.4 94.4

4).011 72.7 40.8 48.7

-0.011 15.2 10.5 20.2

4).011 -481.4 -292.9 -337.3

2958.0 2418.8 2658.4 2635.1

., ii. ,,= ..
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Table 3 Mission Parameters for Global, Utility, Lexicographic, Goal Attainment,

and Game Theory Formulations.

Mission Global Utility Lexico- Goal Game

Parameters Criterion Function graphic Attainment Theory )

Air $1:_ed

(kn)
137.0 136.3 134.9 136.5 133.0

118.0 125.6 109.9 120.7 110.0

108.2 120.4 99.1 115.3 112.2

103.5 118.1 95.4 118.4 108.8

104.4 119.4 98.1 122.1 140.7

146.4 150.6 145.2 142.8 132.4

117.9 130.3 111.3 123.8 99.3

102.7 121.0 96.2 116.4 97.2

94.8 116.3 91.8 115.2 92.1

92.3 114.8 94.4 117.7 90.3

Rate of

Climb

(ft/min)

201.2 152.5 258.7 160.8 252.2

94.6 52.7 113.3 56.8 -19.9

50.4 26.0 44.8 -23.6 50.7

16.3 12.3 -1.4 -21.7 -600.0

-377.7 -259.6 -437.6 - 180.5 0.1

260.8 185.7 322.3 180.5 398.1

163.3 107.3 169.8 78.6 24.7

94.3 55.6 56.2 17.8 63.2

37.5 19.9 -22.7 -25.6 23.6

-564.1 -378.1 -536.9 -257.1 -550.3

Fuel (lb) 2499.4 2607.3 2474.4

i i i J, ' • ..

2556.9 2471.2

"t

-..it. °

W = [0.583, 0.278, 0.139] '1"
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Table 4 Mission Parameters for Goal Programming and Bounded Objective
Fonnula6ons. t

Mission

Parameters

Goal- I Goal-2 Bound- I Bound-2 Bound-3

Air Speed

(kn)
136.1 136.9 127.1 113.2 115.6

133.2 114.8 103.6 114.6 113.9

129.0 104.6 92.7 114.7 109.8

125.4 99.1 85.9 113.7 107.6

124.6 97.5 84.3 115.2 109,3

151.0 147.7 131.9 131.0 131.I

139.6 130.5 108.9 127.8 124.7

133.l 122.0 94.3 124.2 118.5

129.1 98.8 86.4 121.7 114.5

126.9 90.7 80.5 119.7 113.5

Rate of

Climb

(ft/min)

89.9 213.6 203.4 93.3 112.5

43.0 98.0 I06.2 34.1 63.6

35.5 57.2 72.8 18.1 31.4

25.6 43.8 43.9 15.0 14.1

-203.8 --425.0 -434.6 -182.9 -248.3

105.1 148.4 213.3 95.1 116,4

61.5 90.I 152.0 68.8 79.1

48.5 230.6 89.2 32.8 48.8

21.2 91.4 47.2 17.4 22.9

-239.8 -554.3 -491.6 -227.6 -284.I

2645.8 25 I0.1 2423.4 2590.5 2555.5

Goal- I

Goal-2

Bound-i

Goal programming with p=l.

Goal programming with p=2.

Bounded objective formulation with i th goal being optimized.
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Table 5 Results for Single and Multiple Objective Optimizations.

' --- , ,l, r ,,

Objective Fuel Flight Total Function
Function t Cost Time Cost Evals.

Start 437.26 3.00 1517.26

Single-1 383.37 2.75 1372.83 1444

Single-2 427.39 2.37 1279.70 1496

Single-3 423.13 2.36 1272.43 1327

Global 398.18 2.44 1276.72 2105

Utility 418.01 2.37 1272.59 1529

Lexico 393.59 2.46 1278.70 4111

Goal-I 425.07 2.38 1281.68 1435

Goal-2 400.15 2.46 1285.50 1984

Bound-1 384.21 2.72 1363.75 1906

Bound-2 414.91 2.63 1362.17 810

Bound-3 408.50 2.63 1354.22 658

Goal-At 408.75 2.47 1298.03 2022

Game-Th 392.99 2.51 1294.92 35825

II ,, • , ,

?

Single-1

Single-2

Single-3
Global

Utility
I_xico

Goal-i

Bound-i

Goal-At

Gam¢-Th

Minimize fuel cost.

Minimize flight time.

Minimize total cost.

Global criterion formulation.

Utility function formulation.

Lexicographic method with order 1-2-3.

Goal programming with p---i.

Bounded objective formulation with ith goal being optimized.

Goal attainment formulation.

Game theory formulation.
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Table 6 Bounds on Deslgn Variables for Flight Profile Optimization.

Design C risp C risp Fuzzy Fuzzy

Variable Lower Bound Upper Bound Lower Bound Upper Bound

xI I0.0 2957.7 9.0 3253.5

x2-xtl 70.0 159.0 63.0 174.9

XI2--Xls -600.0 1200.0 -660.0 1320.0

xt6 99,9 100.1 g9.9 I00.I

xlv--X_o -600.0 1200.0 -660.0 1320.0
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TableT Mission Parameters for Fuzzy Optimization.

Desifn Variables

Air Speeds: 140.3, 107.4, 05.3, 02.5, gQ.0,

(kn) 148.0, 100.8, 03.5, 90.8, 02.6

Rates of Climb: 207.8, 120.1, 38.2, -43.5, -434.8,

(ft/sec) 352.3, 182.0, 36.7,-12.4,-564.1

Initial Fue{ = 2418.4 ibs = 0.7987

Ob3"eet,'ve Functions

Fuel Cost -- 392.2g, Flight Time -- 2.438 hrs, Total Cost -- 1269.81
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Table 8 Design Parameters for a Typical Small Helicopcr.

Baseline Airframe: OH-58A

RexluiredPayload: 970 Ib

BaselineEngine: T63

Required Range: 300 n miles atSLS

Design Variables and bounds

Minimum Value Initial Value Maximum Value

Tipspeed (fusee) 625.0 642.14 800.0

Radius (ft) 10.0 14.37 18.0

Chord fit) 0.5 0.59 2.0

Twist (deg) -20.0 - 16.84 0.0

Engine Sizing Points

1. Hover OGE at 6000'/37.6°F

2. Level Flight Speed = 132 kn at SLS

Design Constraints

1. Engine power required for engine sizing point #1

2. Engine power required for engine sizing point #2

3. Max advancing tip roach number < 0.95

4. Hover blade loading coefficient 2 CT < 0.18

5. Forward flight blade loading coefficient < 0.50 - 0.46 la

6. Minimum t / K > 0.5

7. Maximum noise level < 93 dB

HP Avail = 350

HP Avail - 302
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Table 9 Design Variables for Single Objective Optimizations.

II |,,, r r , , , I_ , , |,, ,, .....

Objective MR Radius Chord Twist Tip Speed

function (ft) (ft) (deg) (ft/sec)

Function

Evals.

Starting Point 14.37 0.59 - 16.84 642.14

Gross Weight 11.90 0.50 -20.00 730.66
Total Cost 11.90 0.50 - 19.99 730.74

Empty Weight 11.91 0.50 -20.00 730.80

Fuel Weight 13.31 0.53 -20.00 668.53

Endurance 16.00 0.50 -20.00 690.Ig

Dash Speed 12.49 0.59 -20.00 656.41

Hover C.c/ling 16.00 0.50 -20.00 654.73

Noise Level 12.58 0.61 -20.00 647.68

459

464

410

357

261

391

23O

363
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Table I 0 Design Variables for Multiple Objective Optimizations.

Solution MR Radius Chord Twist Tip Speed

Technique t (ft) (it) (deg) (ft/se¢)

Global 13.59 0.5 -19.99 679.10

UtiLity 12.86 0.50 -20.00 689.52

Goal-1 12.87 0.50 -20.00 689.48

Goal-2 14.09 0.50 -20.00 672.55

Lexico 12.21 0.56 -20.00 681.37

Bound- 1 12.19 0.50 -20.00 725.06

Bound-2 12.18 0.50 -20.00 725.10

Bound-3 12.18 0.50 -20.00 725.11

Bound-4 13.46 0.52 -20.00 669.56

Bound-5 14.94 0.53 - 19.22 647.88

Bound-6 14.35 0.59 -16.65 638.32

Bound-7 14.63 0.51 -17.25 660.05

Bound-8 13.24 0.65 -20.00 625.04

Goal-At 12.28 0.50 -20.00 712.85

Garne-Th 13.38 0.50 -19.92 682.I0

Global

Utility
Goal-i

Laxico

Bound-i

Goal-At

Game-Th

Global criterion formulation.

Utility function formulation.

Goal progrananing with p=i.

Lcxicographic method with order 1-2-3-4-5-6-7-8.

Bounded objective formulation with i u_ objective being optimized.
Goal attainment formulation.

Game theory formulation.
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Table 13Bounds on the Design Varlables for Msln Rotor Design.

Design Crisp Crisp Fuzzy Fuzzy

Variable Lower Bound Upper Bound Lower Bound Upper Bound

x I 625.0 800.0 562.5 880.0

x_ 10.0 16.0 9.0 17.6

x 3 0.5 2.0 0.45 2.2

x 4 -20.0 0.0 -22.0 0.0
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T&bl_4 Main Rotor Parameters for Fussy Optimisation.

Design Var,'ables

.'v[R Radius -- 13.94 ft

M2:t. Twist -- -19.98 deg

,k* -- 0.361

Chord = 0.52 ft

Tip Speed = 656.12 ft/sec

Objective Functions

Gross Weight = 2600 Ibs

Empty Weight -- 1197 Ibs

Endurance -- 3.48 hrs

Hover Ceiling -- 7720 ft

Total Cost _ 381 654

Fuel Weight = 433 Ibs

Dash Speed -- 165.0 kn

Nolse Level ----Sg.4dB
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theories presented is illustrated by formulating and solving two different engineering design problems. The ftrst one involves
the flight trajectory optimization and the main rotor design of helicopters.The second one is concerned with the integrated

kinematic-dynamic s.__utheSis-_ofplanar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy
formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are

qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life
design problems on a more rational basis.
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