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ABSTRACT 

MULTIOBJECTIVE SIMULATION-BASED METHODOLOGIES 
FOR 

MEDICAL DECISION MAKING 

By 
Ahmed Hassan Y oussefAgha 

June 21,2006 

A variety of methodologies have been employed for decision making related to 

the treatment of diseaseslinjury. Decision trees are a functional way in which to examine 

problems under uncertainty by providing a method to analyze decisions under risk 

(Detsky, 1996,97). However, conventional decision trees do not completely represent 

"the real world" since they cannot investigate problems that are cyclic in nature (Jaafari, 

2003). 

The stochastic tree that developed Hazen during 1992-to-1996 is one of the most 

relevant methods and techniques related to decision analyses that append more 

incorporation for medical intervention related to recurring diseaseslinjuries. "The 

approach combines features of continuous-time Markov chains with those of decision 

trees and that enable time to be modeled as a range where health state transitions can 

occur at any instant" (Hazen 1992-to-96). It can also accommodate patients' preferences 

regarding risk and quality of life. 

The importance of Hazen's stochastic tree was mentioned in the technical report, 

by Prof. Keefer et aI, Arizona State University, Summary of Decision Analysis 



Applications in the Operations Research Literature on 1990-to-2001 (Keefer, 2002). 

They stated that the work of Hazen, stochastic trees, is one of applications that presented 

significant advancement in decision analysis methodological tools. 

However, in medical decision making, Hazen stochastic tree model has some 

limits and restrictions. Hazen stochastic tree can only utilize an exponential distribution 

for health state sojourn, to simplify the rollback/recursive computations. Noticeably, 

some diseaseslinjury can be best represented by distributions such as Weibull 

distribution, Gamma distribution, Log-Logistic distribution, Log-Normal distribution, 

and Coxian distribution (Collett, 1999). In addition, the stochastic tree modeling 

technique does not have a method to correct differences between experimental 

circumstances/conditions and the cOlTesponding circumstances/conditions of a 

standard/current treatment. 

In this research we enhance Hazen's stochastic tree by developing an analytical 

model, and we extend its capabilities more by developing multi-objective simulation 

based methodologists for medical decision making. First, with our enhancement on the 

Hazen's stochastic tree, the model is improved by utilizing the Weibull Accelerated 

Failure Time model. This new technique will fill the gap between the experimental 

circumstances and the corresponding circumstances or conditions of standard/current 

treatment. Second, as simulation can be a final alternative for problems that are 

mathematically intractable for other techniques (Banks 1996), our multi-objective 

simulation based model for medical decision making extends the capabilities of Hazen 

stochastic tree. It adds more flexibility with the use of survival distributions for health 



states sojourn, and combines two sound theories: multi attribute utility (MAU) theory, 

and Ranking-Selection procedures. 

Indeed, our simulation model (considering patient's profile/preferences and health 

states survival/quality/cost, QAL Y) presents an investigation of the use of simulation on 

the stochastic tree, with associated techniques related to ranking and selection, and multi­

objectives decision analysis. 

Key words: Stochastic Tree, Treatments Models, Simulation Methodologies, 

Multi --objectives Decision Analysis, Patient's Profile, Patient's Preferences, Quality 

Adjusted Life Year (QAL Y), Health States Cost. 
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CHAPTER I 

INTRODUCTION 

Typical decision trees are a functional way in which to analyze problems under 

uncertainty by providing a mechanism to analyze decisions under risk (Detsky 1996, 97). 

Conventional decision trees examine complex issues composed of discrete sequential 

events such as, undergoing tests, receiving the tests results, and deciding on the optimal 

medical management. Conventional decision trees do not completely represent "the real 

world" since they cannot investigate disorders that are cyclic in nature (Jaafari, 2003). As 

a result, researchers have developed methodologies, via Markov processes, allowing for 

the examination of cyclic problems or recurrent diseases. 

Moreover, in medical decision making, decision trees models have some limits 

and restrictions, such as having a low dimensional preference summary (e.g. memory 

less, Markov, or Semi-Markov) to allow or feasibility for rollback calculations, lack of 

filling the gap between the experimental and practical medical intervention, limits related 

to specific survival distributions, and no capabilities to unify multiple performance 

measures into one scalar. So, further work is required to add more capabilities and 

extensions onto decision tree models to examine/study, accurately and with more reality, 

the health outcomes of medical interventions associated with cyclic disorders or recurrent 

diseases. 



Simulation is "a broad collection of methods and applications to mimic the 

behavior of real systems, usually on a computer with suitable software" (Kelton, 2001). 

Simulation is a methodology that has advantages, such as: (a) simulation can be a 

solution methodology of last alternative for problems that are mathematically intractable 

for other techniques; (b) even for problems that are mathematically tractable, simulation 

can often provide a higher level of detail than can other techniques. (c) Simulation can 

sometimes provide (approximate) answers at a smaller cost/effort to some problems 

which are fully tractable mathematically but whose solution may be cumbersome and 

time consuming (Banks 1996). Other advantages of simulation include the facts that it 

permits modification or design of medical intervention systems by trial and error, allows 

for easy exploration of the system's sensitivity to changes in the input parameters, and 

provides a highly controllable environment for experiments. Simulation can be valuable 

to the operations researcher as a means of testing the applicability and validity of 

mathematical models and expressions. 

This study has two main parts: First, a special case analytical model is developed, 

based on the earlier work of Hazen (1992-to-1996). Second, a simulation-based model is 

developed for further study. 

The stochastic tree model developed by Hazen combines features of continuous­

time Markov chains with those of conventional decision trees to analyze cyclic disorders 

and/or recurrent diseaseslinjuries (Hazen, 1992-1996). 

Hazen's stochastic tree model allows health state transitions to occur at any 

instant. Hazen's work, of stochastic tree, presents significant detail about a particular 

decision analysis methodological and implementation issue: in particular Hazen 
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described and presented the development and the use of a decision tree model; moreover, 

it discussed in depth subjective utility/value functions and tradeoffs between attributes. 

Hazen's stochastic tree technique resolved problems, related to recurrent diseases and 

injuries, inherent in conventional decision analysis methodologies (Keefer, 2002). 

The Hazen et al. model (Hazen, 1992-1996) maintains multiple input parameters 

and one performance measure, at a time; and run within constraints for recursive 

processing. In stochastic tree technique, the time spent in any health state is restricted to a 

low-dimensional or tractable preference summary (e.g. memory less, Markov, and Semi­

Markov) which guarantees both tractability recursive computations and convenience in 

assessment. Hazen's stochastic tree mode can only utilize an exponential distribution for 

health states stay time. Noticeably, some disorders can be best represented by different 

distributions such as Weibull distribution, Gamma distribution, Log-Logistic distribution, 

Log-Normal distribution, Coxian, and Quadratic distribution (Collett, 1999). In addition, 

the stochastic tree modeling technique does not have a method to correct differences 

between experimental circumstances/conditions and the corresponding circumstances 

and/or conditions of the standard/current treatment. 

A performance measure such as quality-adjusted life years (QAL Y) is the 

measure of health benefit to an individuaL QAL Y reflects the gain in expected utility of 

having some treatment. It can be used to represent utility only if individuals are willing to 

trade off years of life in a given health state for fewer years at an ideal health state at a 

constant rate, irrespective of the number of years spent in the state (Clarke 2004). In 

addition, it would be beneficial if these methodologies integrate an individual's specific 

health conditions such as smoking history, body mass index, and age. 

3 



For the first part of this research, we extend Hazen's stochastic modeling 

technique, which incorporates the memory-less exponential distribution by utilizing the 

Weibull Accelerated Failure Time model (WAFT). The WAFT model is memory-less 

when Weibull's shape parameter equals to one .. This new technique includes health 

conditions at the individual level and may not only provide a novel way in which to study 

QAL Y or other medical intervention outcomes, but also it may provide a novel way in 

which to analyze recurrent diseases. However, the enhanced model is still restricted to 

have a particular tractable preference summary- represented in the use of WAFT with 

shape parameter equals to one to fit with the memory less property the same as the use of 

the exponential distribution- for facilitating rollback computations. Consequently, it was 

still limited to the use of specific survival distributions, and had no capabilities to unify 

multi-performance measures into one scalar at a time. So, further work was required to 

add more capabilities and extensions not only for the related limitations on the use of 

specific survival distribution, but also to add multiple performance measures. 

Most of the ranking and selection (R&S) literature focuses on procedures that are 

designed for scalar performance measures (Bechhofer, 1995). However, some 

multivariate results do exist: Gupta (1979) described procedures that are based on scalar 

functions of the mean and covariance matrix of the multivariate populations. These 

procedures reduce the multivariate performance measure problem to a scalar performance 

measure problem. The procedures described in Gupta, require a complicated step of 

estimating a covariance matrix, and the approach does not belong to a class of procedures 

whose properties are easy understood (Morrice 2001). Kim et al utilized a Maxi-Min 

approach to optimize the characteristics of steel (Kim and Lin, 1999). Kim indicated, in 
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some situations that a Maxi-Min method may cause an unreasonable decision because it 

focuses on maximizing the poorest performing measure. For this reason, they advised 

performing "several approaches for the final decision" (Kim 1999, page 8). 

"In a medical related business setting, a different approach is often used: convert 

project performance over multiple measures to a scalar measure using costs" (Morrice 

2001, page 800). Even though this "costing" method of performance measures has 

advantages, it has some disadvantages too. Not enough resources and not accurately 

assigning a dollar value to intangibles and ambiguous measures (e.g., quality of life) 

affect perfect cost even though the data resource available. 

In our simulation modeling, we utilize an approach, similar to Morrice et al. 

(Morrice 1998, 1999), to this problem: convert multiple performance measures to a scalar 

performance measure using multiple attribute utility (MAU) theory (Keeney and Raiffa 

1992). MAU theory can be used with or without costing approach when good cost data 

are not available or when cost is not suitable as a measure of performance. 

For the second part of this research, we extend Hazen's stochastic tree using 

simulation model, MAU theory, and a statistical R&S with the indifference-zone 

approach of (see Law and Kelton, 2000), to select the best medical intervention 

configuration from a set of n configurations when a medical intervention performance is 

determined by m > 1 performance measures. In other words, we developed a simulation 

model that maintains multiple input parameters and multiple performance measures. 

Chapter2-Literature Review contains seven main sections: Decision Tree and 

Stochastic Tree, Markov Models, Survival Analyses, Screening and Ranking-Selection 

Procedures, Multiple Attribute Utility Theory, and Simulation. Each section defines, 

5 



describes, and illustrates the advantages and the disadvantages of the related decision 

model. Chapter3-Methods is divided into two parts. For the first part, four main sections 

explain the purpose of enhancing Hazen's stochastic tree model; then it goes through the 

enhanced model specifications, model updating using Weibull accelerated failure time 

model, and ends with a conclusion section. In the second part of the chapter, nine main 

sections describe our design of the simulation model that extends the use of the stochastic 

tree, details of how one uses the simulator in conjunction with MAO theory, the 

application of statistical ranking and selection, R&S, procedures to select the best 

medical intervention configuration of multiple possible configurations. Chapter4-Results­

illustrates examples for the application of the analytical and the simulation models, and 

discusses sensitivity analysis on models outputs; and finally it displays the advantages of 

our models. 
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2.1 BACKGROUND 

CHAPTER II 

LITERA TURE REVIEW 

Reviewing the most relevant methods and techniques related to decision analyses 

that can integrate or that append more integration for medical intervention in recurring 

diseases/injuries/disorders would be beneficial for the person who is interested in medical 

decision making application. 

Hazen's stochastic tree model based on medical decision tree 

methodology with a technique for solving continuous-time Markov cycle trees. But, the 

model was restricted to the exponential distribution for health states stay. So, in this 

chapter, section 2 to 4, we discuss and explain: decision-stochastic trees and their limits 

in section (2), Markov models and their limits in section (3), and survival analysis and its 

limits in section (4). In sections 5 to 7, we discuss and explain: Ranking-Selection 

procedures in section (5), Multi attribute utility theory in section (6), and finally will 

focus, in section (7), on Simulation models and simulation output analysis. 
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2.2. DECISION TREE - AND- STOCHASTIC TREE MODELS 

2.2.1 Decision Tree: Moore defined a decision tree by: it is a graphical device for 

analyzing decision under risk (Moore, 2001). A decision tree is an essential element of 

decision analysis under uncertainty (Raiffa, 1968; and Jaafari, 2003). One of the 

advantages of decision trees is the ability it offers to structure the decision problem by 

mapping out all feasible alternative actions. As such, it is mainly useful for analyzing 

complex sequential decisions when uncertainty is resolved at separate, discrete points in 

time. 

2.2.1.1 Decision Tree Limits: a decision tree is not a complete representation of 

"the real world" but rather a simplified and highly stylized model of the most important 

components (Allan Detsky, 1997). Decision analysis by traditional decision tree might be 

misused by decision makers tending to focus only on the initial decision to accept or 

reject the intervention at the cost of subsequent decisions being dependent on it, decision 

tree analysis forces decision maker to bring to the interdependences between the initial 

decision and subsequent decisions" (Jaafari, 2003). "With events and sequential decision­

making over extended periods of time, where consequences cannot be defined to cover 

the future, in a medical context, a Markov process had been incorporated into a decision 

tree to overcome the unmanageable decision tree" (Pliskin 1975). Also, to handle a 

continuous nature, there are two main options to handle such a situation: (1) approximate 

the continuous outcomes with a Pearson-Tukey approach, or (2) use the technique of 

Monte Carlo simulation designed to handle probability distributions of a continuous 

nature. (Moore, 2001) 
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2.2.2 Stochastic Tree: For enhancing the medical decision methodology, Beck 

and Pauker (1983) extended medical decision tree methodology to consider discrete-time 

Markov process-based models; which is helpful when the timing of a treatment is a 

critical variable. Recently, Hazen (1992, 93, 96, 98, & 2002) has developed stochastic 

trees as a technique for solving continuous-time Markov cycle trees. 

Hazen et aI, 1 992-to-2002, in the medical decision making field, has developed an 

approach that combines features of continuous-time Markov chains with those of 

decision trees and that enable time to be modeled as a range where health state transitions 

can occur at any instant. "It can also accommodate patients' preferences regarding risk 

and quality of life. The stochastic tree concerns itself with the recursive evaluation of 

utility function, that it is the calculation of an expected utility measure using iterative 

methods (CYCLIC) similar to the method of successive approximations (value iteration) 

in the stochastic Dynamic Programming". 

2.2.2.1 Stochastic Tree Limits: the stay in any health state is restricted to low­

dimensional preference summary (e.g. memory less) for the recursive computations and 

to fit with the Markov process property. So, Hazen's stochastic tree model was created 

with respect to exponential distribution only; nevertheless, there are other survival data 

should be represented in different sojourn (survival models) distributions, such as 

Weibull distribution, Gamma distribution, Log-Logistic distribution, Log-Normal 

distribution, Coxian, Quadratic, and Bathtub distribution that could be used (Collett, 

1999), 
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2.3. MARKOV MODELS 

Markov models provide a solution to the problem of modeling the natural history 

of chronic disease. Their simplicity, computational ease, and broad applicability to many 

clinical- and health-related situations make Markov models more attractive than other 

more complicated, modes of analysis. The Markov model assumes that the future is 

independent of the past given the present. When using Markov the random variable is 

indexed in time, which can be either discrete or continuous. Many random events are 

affected by what has happened before. 

Decision trees often include Markov models to calculate final outcomes or simply 

to collapse a bushy branch into one that is more manageable. The Markov model 

simplifies decision trees by defining a series of transition probabilities between health 

states. These probabilities define the progress of patients through the model. 

2.3.1 Classes of Markov Models: There are two broad classes of Markov 

models, Markov chains & Markov processes, defined by the determinants of the state 

transition probabilities. Markov chains contain constant transition probabilities, whereas 

Markov processes have time-dependent transition probabilities. Markov chains are easy 

to use and compute in cases where the disease has a short time horizon, because of the 

probability restriction; however, with more chronic conditions, the chance of moving 

between health states increases with age. Aging increases the risk of transition from a 

healthy state to one of sickness, thereby violating the constant state-transition probability 

assumption of Markov chains. Markov processes are used to model disease over longer 

time periods. 

10 



Behaving similar to the pure Markov model there is the semi-Markov process 

model. It is a probabilistic model useful in analyzing complex dynamical systems. 

However, with semi-Markov models, the transition rates in a particular state depend on 

the time already spent in that state (sojourn time) but that they do not depend on the path 

by which the present state was reached. Thus transition distributions in the semi-Markov 

process can be non-exponential. The semi-Markov theory involves the concepts of state 

and state transition. The most important statistics of the semi-Markov process are the 

interval transition probabilities. 

Markov processes are useful in representing events where the risk or frequency of 

events varies over time. Markov models and Markov chain theory have been applied to a 

variety of areas in science and medicine (Hazen literature group, 1992). 

2.3.1.1 Markov Models Limits: While conceptually and graphically well­

designed for representing event probabilities with repetitive chances, Markov models 

inherently are limited by the Markov property restriction and other assumptions placed on 

the transition probabilities. Recall that in the Markov model, the current state of health is 

the only information used to predict state transition probabilities. The Markov model has 

no memory of past events. This assumption often is violated in clinical situations, where 

most clinicians use past information to guide treatment decision making. 

2.3.3 Markov Decision Process: a Markov Decision Process (MDP) is just like a 

Markov Chain, except the transition matrix depends on the action taken by the decision 

maker (agent) at each time step. The agent receives a reward, which depends on the 

action and the state. The goal is to find a function, called a policy, which specifies which 

action to take in each state, so as to maximize some function of the sequence of rewards. 
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One can formalize this in terms of Bellman's equation, which can be solved using policy 

iteration. (Feinberg, 2002) 

Markov decision process is a mathematical representation of a sequential decision 

making problem in which: A system evolves through time. A decision maker controls it 

by taking actions at pre-specified points of time. Actions acquire immediate costs or 

accumulate immediate rewards and affect the subsequent system state. A MDP is used to 

identify a policy that maximizes the expected utility/reward. 

2.3.3.1 Markov Decision Process limits: the theory of MDP studies sequential 

optimization of discrete time stochastic systems. The basic objective of MDP is a 

discrete-time stochastic system whose transition mechanism can be controlled over time. 

The concept of dynamic programming, which is very important for MDPs, was 

systematically studied by Bellman in many publications; this concept has been used by 

several authors to approach various problems (see Feinberg, 2002). 

The dynamic programming principle in its classical form can be applied only to 

problems with an appropriate single objective function. For some objective functions or 

when the goal is to optimize one objective function under constraints on other criteria, the 

problem usually cannot be solved directly by dynamic programming. Convex analysis 

methods (Eugene, 2002, chapter 11), including linear and convex programming in finite 

and infinite dimensional spaces are usually more natural in these situations. 
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2.4 SURVIVAL ANALYSES 

Disease progression and its effect on survival follow a distribution related to age. 

More generally, systems or events that "decay" over time can be modeled using a 

survival or hazard function (Collett, 1999). Survival analysis and the hazard function are 

useful methods to model treatment effectiveness and program costs. The hazard function 

relates survival probabilities to survival times, to treatment costs, or to any other related 

factor. 

In clinical trials, treatment efficacy often is compared to a placebo or control 

group. A hazard function for the treatment group and control group is estimated to 

determine the total effectiveness of the intervention and the placebo. The difference 

(positive or negative) between the hazard functions is the benefit or cost of the treatment. 

Mathematically, effectiveness is measured by the area under the distribution curve or by 

taking the integral of the hazard function. 

2.4.1 Survival Analyses Limits: survival models often are used in clinical 

decision making, under uncertain conditions, to estimate life expectancies. Kuntz and 

Weinstein outlined two types of life expectancy biases that may arise in clinical decision 

modeling: misestimating bias and misspecification bias (Clarke 2004). Both biases 

potentially can limit the accuracy and validity of any conclusions drawn from a predictive 

model for survival. Misestimating bias arises because the expected value of a function is 

not equal to the function itself. For linear functions, the expected value of the function 

equals the function; however, for nonlinear functions, such as life expectancies and 

hazard functions, this is not true. 
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For most clinical situations, nonlinear functions do not adequately capture the 

relationship between survival time and life expectancies introducing miss-estimation bias 

into the model (Kuntz, 1995). Misspecification bias occurs when specifying the function 

to represent survival outcomes based on the patient's disease and treatment history. There 

are a number of parametric survival models available to the decision maker, including the 

Weibull, Makeham-Gomperz, and exponential models. Life expectancies are calculated 

from the area underneath the survival distribution. When survival distribution does not 

reflect the patient's conditional survival probability accurately, the life expectancy 

estimates derived from the distribution will be inherently biased (Collett, 1999, and 

Kuntz, 1995). 
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2.5 MULTI-COMPARISON and RANKING-SELECTION PROCEDURES 

Recent research has shown that multi-comparison procedures can be 

combined with ranking and selection procedures (R&S) for a variety of problems 

including the manufacturing, medical, and polling examples outlined above (see Nelson 

2001). Ranking and selection procedures are statistical methods designed to find the 

"best" system from a collection of competing alternatives (Nelson 1998 and 2003). 

2.5.1 Different Classes of Screening, Ranking-Selection Procedures: 

R&S procedures have been expanded over the last 22 years. Kim and Nelson, 

(2003), pages 110 and 111, stated four different classes of comparison problems, utilizing 

R&S, which arise in simulation studies. However; we consider that there are six different 

classes of comparison problems, mainly they are: 

1. Selecting the best system(s), of k systems, which has the largest or smallest 

expected performance measure; there are many procedures have been developed 

(see Bechhofer 1995, Kim-Nelson 2001, and (Nelson-Miler 1995). For example, 

Nelson and Miler have developed a Multiple comparison procedure (MCP) 

combined with the R&S procedure of Rinott (1978). Rinott procedure is one of 

the frequently used procedures in R&S. Rinott+MCP utilize a common random 

number to decrease the variance and to reduce the number of observations 

required to make a correct selection. (Besides selecting the best system among K, 

k ~2, select a subset of size m containing the best of K, & select the m best of K). 

2. Comparing all alternatives against a standard (comparison with a standard). The 

goal of comparison with a standard is to find systems whose expected 

performance measures are larger (smaller) than a standard and, if there are any, to 
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find the one with the largest (smallest) expected performance. For this type of 

problem, each alternative needs to be compared to the standard as well as other 

alternative systems. (see Nelson 1998, Nelson 2001, and Kim (2003). 

3. Selecting the system with the largest probability of actually being the best 

performer (multinomial selection). When we are interested in the actual value of 

performance measure and not the expected value of performance, then the goal is 

to select the design associated with the largest probability. (see Nelson 1998, and 

Bechhofer 1995). 

4. Selecting the system with the largest probability of success (Bernoulli selection). 

In Bernoulli selection problems, the basic output from each system on each 

replication is either one ("success") or zero ("fail") and the best is defined as the 

system with the largest probability of success. See chapter 7 of Bechhofer et aI, 

(1995), for a inclusive reference. 

5. A fifth approach is, by Morrice et aI, 1998, to convert multiple performance 

measures to a scalar performance measure using multiple attribute utility (MAU) 

theory. MAU theory can be used instead of a costing approach when good cost 

data are not available. Alternatively, MAU theory can be used to beautify costing 

information that is considered to be incomplete/ indefinable. This approach 

combines multiple attribute utility theory with statistical R&S using the 

indifference zone approach. And its goal is to select the best project configuration 

from a set of K configurations when project performance is measured over 

multiple performance measures. (Morrice 1998) 
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6. There is another formulation; the Bayesian approach: Instead of providing a 

probability of correct selection, (PCS), guarantee, Bayesian approaches attempt to 

allocate a finite data resources to maximize the posterior PCS of the selected 

system. (Chen 2000 and Chick 2001) are two recent references. 

A good procedure is one that delivers the desired the probability of correct 

selection (PCS) efficiently (with minimal simulated data) and is robust to its underlying 

assumptions. The "best" mainly means the maximum/minimum expected-value (or 

probability) of performance, such as expected cost. R&S origins to two papers: 

"Bechhofer (1954) established the indifference-zone formulation, (IZ), while Gupta 

(1956, 65) is credited with the subset selection formulation of the problem, and both were 

developed for the inference provided by hypothesis tests for the homogeneity of the k 

population parameters, usually means." (Kim 2(03) 

2.5.2 Multiple Comparisons: in statistics, there are different approaches of 

comparison such pair-wise comparisons. Case of comparing two alternative systems and 

case of comparison with a standard are two examples. Moreover, there is what called 

multiple comparisons, and multiple tests; a researcher would better to make a distinction 

between them. 

Our work, from this point of view, combines multiple comparisons, and ranking­

selection procedures. Multiple-comparison procedures (MCPs) treat the comparison 

problem as an inference problem on the performance parameters of interest. MCPs 

account for the error that arises when making simultaneous inferences about differences 

in performance among the systems. Usually, MCPs report to the user simultaneous 

confidence intervals for the differences. 
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Multiple Comparisons Procedure approaches the comparison problem by 

providing simultaneous confidence intervals on selected differences among the systems' 

parameters. Hsu, 1996, is good reference. MCP forms simultaneous confidence intervals 

for {fli- max !1s), where #i and i= 1,2 .. .. k, the difference between each system and the 

best of the rest. There are other procedures that combine more than approach in one. For 

example, Nelson (2001), developed what is called NSGS procedure combines a Gupta­

like subset-selection procedure and a Bechhofer-like ranking procedure. The NSGS is 

appropriate for terminating simulations or for steady-state simulations when multiple 

replications are employed. 

2.5.3 Multiple Comparisons and Multiple Tests: To make more than one 

decision in a statistically valid way, multiple inferences are involved. There are numerous 

alternative solutions for multiple inference problems---"some are very good, some 

perform reasonably well, and some are of questionable value. The wide variety of 

methods that are available can make the choice of technique difficult" Westfall et al. 

(1999). There are various methods, along with their pitfalls and advantages. There are 

various applications in many areas, including business, medicine, sociology, and 

engmeenng. 

The proper choice of a multiple inference procedure depends upon researcher 

inference objectives and data structure. In some statistical software there are procedures 

for such inferences (e.g. in such as SAS: the GLM, MIXED, and MULTTEST); in 

several types of problems, they are not particularly well accommodated, and so to fill this 

gap, there waslis a need for a set of macros and programs. Westfall et al. (1999) 

introduces some of the new methods, SAS-macros, and capabilities for multiple 
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comparisons, allow researchers to carry out multiple inferences in most applications of 

practical interest. 

"Multiple comparisons" usually refers to the comparison of mean values from an 

experiment with multiple groups. For displays, labeled A, B, and C, using the data to 

compare display A with display B, A with C, and B with C. This is the classic "multiple 

comparisons" application; and there is a variety of methods for such analyses (e.g., 

Tukey's method for comparing means in the SAS PROC GLM for example). 

" Multiple testing" on the other hand, concerns a broader class of applications. For 

example, a clinical trial designed to assess "efficacy" of a pharmaceutical compound 

might be considered "efficacious" if it reduces fever, or if it speeds recovery time, or if it 

reduces some pain. Here, there are three tests-a comparison of active compound with 

placebo for each of the three outcomes. This is an example of "multiple testing." 

The distinction between multiple comparisons and multiple tests is that, with 

multiple comparisons, the researcher typically compares mean values of the same 

measurement, while with multiple testing, the researcher considers multiple 

measurements. 

Formalism: Technically, the problem of multiple comparisons-multiple testing 

problem can be described as the potential increase in Type I error that occurs when 

statistical tests are used repeatedly: If n independent comparisons are performed, the 

experiment-wide significance level 0. (alpha) is given by 

1 - (1 - Gper compar:iso.n.)n 1 

and it increases as the number of comparisons increases. 
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In order to retain the same overall rate of false positives (rather than a higher rate) 

in a test involving more than one comparison, the standards for each comparison must be 

more stringent. Intuitively, reducing the size of the allowable error (alpha) for each 

comparison by the number of comparisons will result in an overall alpha which does not 

exceed the desired limit, and this can be mathematically proved to be true. For instance, 

to obtain the usual alpha of 0.05 with ten comparisons requires an alpha of 0.005 for each 

comparison to result in an overall alpha which does not exceed 0.05. 

There has been a great deal of attention paid to developing better techniques for 

multiple comparisons, such that the overall rate of false positives can be maintained 

without inflating the rate of false negatives unnecessarily. Such methods can be divided 

into general categories (Benjamini 1995): 

• Methods where total alpha can be proved to never exceed 0.05 (or other chosen 

value) under any conditions. These methods provide "strong" control against 

Type I error, in all conditions including partially correct null hypothesis. 

• Methods where total alpha can be proved not to exceed 0.05 except under certain 

defined conditions. 

• Methods which rely on an omnibus or compilation test before proceeding to 

multiple comparisons. Typically these methods require a significant 

ANOV AlTukey range test before proceeding to multiple comparisons. These 

methods have "weak" control of Type I error 

• Empirical methods, which control the proportion of Type I errors, utilizing 

correlation and distribution characteristics of the observed data. 
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The advent of computerized resampling methods, such as Bootstrapping and 

Monte Carlo simulation, has given rise to many techniques in the latter category. In some 

cases where exhaustive permutation resampling is performed, these tests provide exact, 

strong control of Type I error rates; in other cases, such as bootstrap sampling, they 

provide only approximate control. 

21 



2.6 MULTI ATTRIBUTES UTILITY THEORY (MAU) 

MAU theory is one of the main analytical tools in the field of decision analysis. 

Simply, decision analysis is an approach to the solution of problems that are complex to 

solve informally. A MAU analysis of alternatives (in our research, treatment patterns) 

helps to identify the alternative that performs well on a majority of performance 

measures. The MAU methodology for the evaluation of a set of alternatives typically 

starts with (a) identifying of alternatives and measures, (b) estimating of the performance 

of the alternatives with respect to the measures, (c) developing utilities-weights for the 

measures, and (d) evaluating of the alternatives. 

The alternatives and the performance measures form a matrix in which each row 

corresponds to an alternative and each column represents a measure. The cells of the 

matrix contain estimates of the performance of each alternative on each of the measures. 

Next step generates a single attribute utility function over each measure that is scaled 

from 0 to 1, a weight for each measure, and a multiple attribute utility function derived 

from the single attribute utility functions and the weights. There is more than one method 

for assigning weights to the performance measures (Schoemaker 1982). A single attribute 

utility function is a scoring function that maps a performance measure from its range of 

possible values to [0, 1]. 

Regular forms of this function include concave, convex, linear, and "s" shaped 

for a mixture of the convex and concave functions. One known form for single attribute 

utility function is 

(YfJ) U(x) = G-H e- ..... (1) 
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The quantities G, H, and T are parameters that set by the decision maker (in medical 

literature, it is common to set G=H= 1 for patients, as patients are risk avoider. 

In the analysis utility theory involves gathering the measures into a "Unified-

Measure" of the desirability of each alternative. Utility theory provides the basis for the 

appropriate approach to combined the apparently unlike measures. 

If the decision maker's preferences are consistent with some special independence 

conditions, then a multiple attribute utility model U (Xl, x2 , ... , xn), where xi represents 

the level of performance on measure i, can be decomposed into an additive, 

multiplicative, or other well structured forms that simplify assessment. An additive 

multiple attribute utility model can be represented as follows: 

" 
IIh·l • '\'1"'" xJ == III'JI;{XJ (2) 

,:1 

Where Ui(.) is a single attribute utility function over measure i that is scaled from 

o to 1, Wi is the weight for measure i and sum of Wi = 1, I = 1,2, ... n. 

If the decision maker's preference structure is not consistent with the additive model (2), 

then the following multiplicative model may be used, which is based on a weaker 

independence condition: 

" 
I +kU(.\·I'.\·1 .. ·· .. \·n)= nIl tkk,lI j (\H (3) 

;=1 

Where uiC.) is also a single attribute utility function scaled from 0 to 1, the ki 's are 

positive scaling constants satisfying 0 ::::; k;::::; 1 , and k is an additional scaling constant that 

characterizes the interaction effect of different measures on preference. Methods for 

determining the value k can be found in Keeney and Raiffa, 1976. As a special case when 
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sum of ki = 1, the multiplicative model (3) reduces to the additive model (2) (Keeney and 

Raiffa, 1976). 

2.7 SIMULATION MODELS 

David Kelton et aI, (Kelton 2001), defined simulation as: "a broad collection of 

methods and applications to mimic the behavior of real systems, usually on a computer 

with suitable software". Jerry Banks et aI, (Banks 1995), had defined simulation as "the 

imitation of the operation of a real-world process or system over time". 

2.7.1 Simulation models 

• Monte Carlo Simulation: Monte Carlo models are prearranged likewise to Markov 

models, but their outcome evaluations are determined by repeated iterations of the 

model based on random assignment of model parameter. Monte Carlo simulation 

(traditional simulation) techniques use repeated random sampling from the 

probability distributions assigned to each of the crucial primary variables the 

patients flow of a treatment to arrive at output probability distribution for a given 

medication strategy. Monte Carlo simulation is a forward-looking technique based 

on a predetermined operating strategy; as such, it may be an appropriate model for 

path-dependent or history-dependent problems. (Jaafari, 2003) 

• Process Simulation: "process simulation permits investigation of an intervention 

concept to generate the expected units of output. It also permits investigation of 

the interrelationships among constituent parts of a medication study. Process 

simulation can be a prior to pilot medical-project operation." (Jaafari, 2003) 
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Process Simulation should run before startup or charge of the actual arrangement 

or, with the use of a spare offline system, anytime. 

• There is what is called Nevada Simulation; NEVADA Simulation, developed by 

David 1. Bryg, (1992); it is very competitive compared to Monte Carlo simulation 

in terms of accuracy and speed. NEVADA Simulation employs numerical 

integration to calculate functions of random variables. This technique contrasts to 

Monte Carlo simulation, which uses sampling to calculate functions of random 

variables. 

In our work, we utilize Monte Carlo simulation techniques. 

Simulation has advantages, (Jerry Banks, et al 1996): First, simulation can be a 

method of last alternative for problems that are mathematically intractable by any other 

techniques. Second, even for problems that are mathematically tractable, simulation can 

often provide a higher level of detail than can other techniques. Third, simulation can 

sometimes provide (approximate) answers at a smaller cost (or effort) to some problems 

which are fully tractable mathematically but whose solution may be cumbersome and 

time consuming. 

Other advantages of simulation include that it permits modification or design of 

medical intervention systems by trial and error, allows for easy exploration of the 

system's sensitivity to changes in the input parameters, and provides a highly controllable 

environment for experiments. Simulation can be valuable to the operations researcher as a 

means of testing the applicability and validity of mathematical models and expressions. 

2.7.1 Simulation Limits, the disadvantages of simulation as a technique are also 

primarily due to the fact that simulation is basically an experimental approach to solving 
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problems (Jerry Banks, et al 1996). As a result it is difficult to develop cause-and-effect 

relationships through simulation, especially when the system under consideration 

requires the specification of many input parameters and involves complex interactions. 

Finally, as with all experimental results (and, actually, more so) the statistical analysis of 

simulation results is difficult. What is the effect of the starting conditions of the 

simulation on the final results? What is the statistical confidence that can be attached to 

the results? 
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2.7.3 Output analysis for Terminating Simulations for the Fixed-Sample-size 

Consider output performance measure X, e.g., the average QAL Y for a patient in 

the single-treatment system. Let Xj be the value of the performance measure in the jth 

independent simulation replication, j= 1 ,2, ... ,n. Xj are lID observations of the performance 

measure 

Estimating the mean: 

The fixed-sample-size procedure for m=E(X) 

Choose n and make Independen t Replicatio ns of the simulation 

1 - a confidence interval for f.1 is 

- + ~ 
X (n) - tn- I ,I-aI2 ~-;;-' 

_ 1 Il 

where X (n) = - LXi' 
n i=1 

n 

L(X i - X(n))2 
and S 2 (n) = -'--i=--=-I _____ _ 

n -1 

Coverage: t-interval assumes normality of X I, X2, ... Xn. Robustness depends on the 

sample size and on the simulation model. Effect of departures from normality may be 

assessed with comparison to known results. 

Obtaining specified error: Absolute error f3 = IX (n) - ILl 
We make sufficiently many runs so that the half-length of the I-a confidence interval is 

equal to or less than ~ 
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Initially, make n runs 

t'(n) - t'(n) J I-a ~ P X(n)-tn_ I,I_aI2 n '5:.J1'5:.X(n)+tn_I,I_aI2 n 

= p IX(n) - pi S; t"_I'I-a/2t'~n) J 
'5:. P~X(n)-J1I'5:.f3) 

Assume the variance estimate will not change with increasing n, 

The total number of runs n: required to obtain error of at most f3 is 

* - . {. > . ~ < f3} na - mIn 1 - n. ti-I,I-aI2~~-

Obtaining specified error: Relative error 
r = IX (n) - 1l1/11l1 

We make sufficiently many runs so that the half-length of the I-a confidence 

interval, divided by the estimate of the mean, is equal to or less than y 

A sequential procedure 

Choose an initial number of replicatio ns no ~ 2 and define the confidence 

interval half - length as 

t'(n) J(n, a) = t n- I,I-aI2 n 

O. Make no replicatio ns and set n = no 

1. Compute X(n) and J(n,a) using X I ,X 2 "",X n 

2. If o(n, a)/IX(n)1 '5:. r', use X(n) as estimate of f.1 and stop. 

The 1- a confidence interval for f.1 is [X(n) - o(n, a), X(n) + o(n, a)] 

Otherwise set n = n + 1 and go to step 1. 

Recommendations: 

(1) no is recommended to be larger than or equal to 10 

(2) rno is recommended to be less than or equal to 0.15 
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2.7.4 Output Analysis for Terminating Simulations When n can be determined 

When n can be determined many methods may be applied to select best system, 

such as multiple comparison, ranking and selection, interactive analysis, etc. 

Example (1) (Goldsman, Nelson 1998): suppose that Airline-Reservation System, 

Consider k=4 different systems; and the objective is to maximize E[Time To Failure]. 

From experience, E[TTF] roughly 100,000 minutes for all four systems; and the 

indifference zone is 3000 minutes. 

• Solution by Interactive Analysis: an estimation approach: It considers 4 point 

estimators for E[TTF]'s; and estimates their standard errors; the goal is a vague, 

but well-founded, sense of confidence in the selected system; IA here contains the 

explicit confidence-interval judgment. 

The Method: m=number of micro-replication, b=number of macro-

replication; n=bm; the point estimator for fli , i=1,2,3,4 (the E[TTF] of 

system i) : 

_ Ib_ Ibm 
Y =-'Yo =-"Y'l I b £. IJ £. £. IJ 

j=l n j=ll=l 

With associated sample variance of the macro-replication estimators : 

S. 
- I sei - .fb 

The Assumptions: People choose a arbitrarily and small b & a can lead to large t-

values; Choose 1O<b<30 is often wise (Goldsman, Nelson, 1998); lfthe value of 

b is reasonably large, the effects of sequential sampling are negligible. 
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Initial run is designed just to gain a sense of the magnitude of the required 

production experiment in terms of time per replication and number of replications 

System: standard error (se) =21000, and b=m=5; indifference value=3000; so the 

(se) will need to drop to at most 1500; this means that the "worst -case" is 5000 

replications. 

• Solution by Ranking & Selection: it is to select the best system from a set of 

competing systems. The probability of a correct selection will be at least some 

user-specified value. For example, when variances are unknown two-stage R&S 

procedure such as Dudewicz-Dalal, (1997), and Rinott's (1978) procedure 

required; the two stages of sampling guaranteed PCS. The normal means 

procedure of Rinott, (1978): 

The Method: Ordering U[I]::S; U[2] ::s; .•. ::s; U[k] ; the two best U[kj,U[k-lj 

If U[kJ - u[k-lJ is very small, less than 8>0; it wouldn't matter which one we 

chose as best (8=3000). We take p* = 0.9 in our example; P(CS) 2: P*=0.9 

The first -stage sample means and sample variances 
h y - D(I) 2 

f;(l) = ! ---.!L s.2 = t/J;j -Ii ) 

j=1 bo I j=1 (4J -1) 

The sample variances are used to determine the number of macro-replications 

which must be taken in the second stage 

(a) h is a function in the number of replications n, the number of systems k, and 6. 

To find h value, named g, see Bechhofer, (1995), page 62. 
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(b) So bi - bo additional observations must be taken. Finally we get grand 
-

_ bi y. 
means Y i = L ....!L,i = 1,2, ... , k and select the system with largest }; 

j = l bi I 

(c) The macro-replication estimators, y~ y. y from the ith system are 
r1' 12 , ••. , Ib, 

assumed to be i.i.d. with expectation. If the number of micro-replications m is 

large enough the Central Limit Theorem (CLT) yields approximate normality for 

the macro-replication estimators. For sampling bo=20, intend to be used as the 

first stage: 

Table 1: Pilot experiment on Ranking & Selection 

1 2 3 4 

108286 107686 96167.7 89747.9 

29157.3 24289.9 25319.5 20810.8 

6519.8 5431.4 5661.6 4653.4 

699 485 527 356 

Table 2: Pilot experiment on Ranking & Selection Result 

1 2 3 4 

110816.5 106411.8 99093.1 86568.9 

872 1046.5 894.2 985.8 

Final Results : For the case k=4, P*=0.9; and h=2.720 (Bechhofer, (1995), page 62); 

for system 2, we needed to take 465 additional macro-replications in stage 2. We are 

at least 90% sure that we have made the correct selection (u(l) - U(2) >&=3000) 
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Output analysis for terminating simulations: 

Solution by Multiple comparisons: There is no distinction between micro and 

macro-replication y. = u. + B·· 
IJ I IJ 

Bij are iid normal (0,(12) 

- - t - - t (~-m~x~ -ds - r , (~-m~x~ +ds - t 
1*, n l~ n 

i is pooledestimatoroJ (12 d = dl-a,k(n-l),k 

x- =min{O,x} , x+ = max {O, x} 

Lower endpoint is 0, then system i is the best system 

Upper endpoint is 0, then system i is bad system 

Assumption: Data from one-way analysis of variance; use different random 

number seed to generate sample, so the relationships between samples are 

independent. Sample from normal and common variance 

Yij - normal distributi on V AR (Yij) = a 2 \;/ i, j 

Pilot experiment (Batch mean) 

Because n replications need to be large that samples may be normally distributed, so 

use batch mean method to generate sample. 

U sing batch mean will tend to form the normal distribution, but the drawback is the 

lose of degree of freedom 

Yil 'Yi2 , ... , Yin become to batch mean formal bimi = n 

- 1 ~ 
Yi/ = - L ~,(l-l)mi+ j 

m i j=l 
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For n=200, b=40 and m=5 

Table 3 

A Pilot Experiment on MCP 

Lower limit Y; -max Y Upper limit 
{",i 

-11349 7091 25530 

-31242 -12802 5638 

-25530 -7091. 11349 

-36172 -17732 708 

Since all system contained 0 no system could be declared to be the best. S=92449, 

d=2.078, n=8100 for final result. 

n;?:: ( J2dl - a ,k(n-l),k
CY )2 Let half interval of CI:::; 8 

£5 
Using Bartlett's test for equality variance, the result is different, so set b l =b2=b3=100, 

and b4= 150, let variance is same. 

Table 4 

Final Result on a Pilot Experiment on MCP 

Lower limit 

o 

-8284 

-12747 

-25409 

System 1 is the best. 

r: -maxY 
Zot:i 

5288 

-5822 

-9751 

-22675 

Upper limit 

8284 

o 

o 

o 
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Table 5: Comparison Methods' Differences and Similarities 

Micro Marco 
Method 

replication replication 

Yes Yes 

Yes Yes 

No distinguish 

CI Stage Assumption 

Sample from 
No One 

iid normal 

Sample from 
No Two 

iid normal 

iid normal 

Yes Two Common variance 

but will check it. 

It is difficult to have a common variance in n systems/models, so R&S have an advantage 

on MCP. R&S can handle comparison with not common variance. 

Table 6: Comparison Methods Advantages and Disadvantages 

Advantage 

oncompetitive system are eliminated quickly 

P{CS}2:P* 

provides inference about not only the best 

ystem, but also relationships among all the 
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Disadvantage 

of precise confidence 

better system is not 

more observations is 

distributional 



We will use Rinott's (1978), it used when variances are unknown; it is two-stage 

R&S procedure; the two stages of sampling guaranteed PCS. Rinott's (1978) procedure: 

Satage I: take a random sample of no observation from each system i. 

Stage II: calculate ~ and variance S2 for each system; take additional observation from 

each system I where, 

\
T 

, I. "', { r 21} hSi 

max 110, I ( T) I 

Where h=h (k, 1- a, no) is a constant determined by k, the number of systems being 

compared; I-a, the desired confidence level; and no, the number of first stage 

observations used to produce the variance estimator, (Si)2. The constant h increases in k, 

and decreases in a and no. The experiment design factor that is under our control is no, 

and it is recommended to be at least 20. Calculate new ~ and variance S2 for each system 

based on the combination results of stage I, and II. Select the treatment that has max Jl to 

be the best system. 

Our simulation model is not a steady-state simulation model; it is a terminating 

simulation. We assume that performance measures have no correlations, i.e. we suppose 

that the performance measures are utility independent; however, our model can handle 

performance measures which are utility dependent or utility independent. 

Nelson, et al. (2001), developed a procedure related to Rinott called NSGS 

procedure, it is appropriate when there are large number of replications, and for 

terminating simulations or for steady-state simulations when multiple replications are 

employed. The NSGS procedure requires that the output data from each system are i.i.d. 

normal, and that outputs across systems are independent, which leaves out CRN. Nelson 
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et al. (2001) showed that the NGSG procedure can handle a relatively large number of 

systems because the first-stage screening is pretty tight. Nelson et al. (2001) provide a 

revised version of the NGSG procedure, the Group-Screening procedure, in which one 

can avoid simulating all the systems simultaneously. But, in medical intervention, there is 

not large number of systems to be tested for specific recurrent disease. 
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CHAPTER III 

METHODS 

An Enhancement of the Stochastic Tree Model for Medical Decision 

Making (Model I) 

~odeII.Background 

While conventional decision models are an attractive way in which to model 

problems under uncertainty, they cannot investigate disorders that are recurring in nature. 

Stochastic tree models were developed to deal with cyclic disorders. Some stochastic tree 

models were developed to deal with recurrent diseases and to utilize a specific probability 

distribution for health states sojourn (see Hazen 1992-2001). However, some disorders 

are best represented by probability distributions other than that allowed by stochastic 

trees. Furthermore, such stochastic tree models cannot correct and consider boundary 

differences of the experimental treatment circumstances and conditions and the standard 

treatment circumstances and conditions. In this chapter we utilize the Weibull 

Accelerated Failure Time model (W AFT) to extend the stochastic tree modeling 

technique. This new technique is a novel way in which to analyze cyclic disorders and 

recurrent diseases. 
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Model I. Introduction 

Decision trees represent a functional way in which to analyze problems under 

uncertainty and provide a mechanism to analyze decisions under risk (Detsky, 1996-97). 

Conventional decision trees examine complex issues composed of discrete sequential 

events; such as, undergoing tests, receiving the tests results, and deciding on the optimal 

medical management. Conventional decision trees do not completely represent "the real 

world" since they cannot investigate disorders that are cyclic in nature (Jaafari, 2003). As 

a result, researchers have developed methodologies, via Markov processes, allowing for 

the examination of cyclic disorders. For example, Hazen developed a stochastic tree 

model, combining features of continuous-time Markov chains with those of conventional 

decision trees in order to analyze cyclic disorders (Hazen, 1992-2001). 

Hazen's stochastic tree model allows health state transitions to occur at any 

instant. In Hazen's stochastic tree technique, the time spent in any health state is 

restricted to a low-dimensional preference summary (e.g. memory less, Markov, and 

semi-Markov) for ease utility recursive computations. The notation of preference 

summary: memory less is an updatable preference summary in which conditional 

preference depends not at all on the past; the Markov summary is conditional preference 

depends only on the most recent state; the semi-Markov summary is conditional 

preference depends on the most recent state and its stay time. Hazen's stochastic tree 

modeling technique can only utilize an exponential distribution for health state sojourn. 

Noticeably, some re current diseases can be best represented by distributions such as 

Weibull distribution, Gamma distribution, Log-Logistic distribution, Log-Normal 

distribution, Coxian, and Quadratic distribution (Collett, 1999). In addition, the stochastic 
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tree modeling technique does not have a method to correct differences between 

experimental conditions and the corresponding conditions of a current treatment. 

Quality-adjusted life years (QAL Y s) are the measure of health benefit to an 

individual that reflects the gain in expected utility for the individual. QAL Y s can be used 

to represent utility only if individuals are willing to trade off years of life in a given 

health state for fewer years at an ideal health state at a constant rate, irrespective of the 

number of years spent in the state. In addition, it would be beneficial if these 

methodologies integrate an individual's specific health conditions (e.g. smoking history, 

body mass index). 

In this part of our study, we extend Hazen's stochastic modeling technique, which 

incorporates the memory-less exponential distribution by utilizing the Weibull 

Accelerated Failure Time model (WAFT). The WAFT model is memory-less when 

Wei bull 's shape parameter equals to one, but also integrates specific health conditions at 

the individual level. This new technique may not only provide a novel way in which to 

study QAL Y s, it may also provide a novel way in which to analyze recurrent diseases. 
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Model I. Specifications and Design 

Model I is an analytical model: An Enhancement of Hazen's Stochastic Tree 

Model Using Weibull Accelerated Failure Time Model for Medical Decision Making in 

Recurrent Diseases/Injuries Specification 

Use of Survival Analysis: Systems that "decay" over time can be modeled using a 

survival or hazard function. As a result survival analysis is a useful method in which to 

model treatment effectiveness and cost. In clinical trials, treatment efficacy often is 

compared between a placebo and control group. A hazard function for the treatment 

group and the control group can be estimated to determine the total effectiveness of both 

the intervention and the placebo. The difference between the respective hazard functions 

represents the benefit or loss associated with the treatment. 

Survivor and Hazard Functions: The survival time of a particular individual, t, 

can be regarded as the value of the random variable T representing survival time. Thus, 

the different values that T can take correspond to a probability distribution function,f(t). 

The distribution function of T is then given by: 

t 

F(t) = P(T < t) = f f(t)du 
o 

The survivor function S (t) is defined as the probability that the survival time is 

greater than or equal to t, that is, 

Set) = P(T ~ t) = 1- F(t) 

For recllirring sickness or weakness due to illness, the morbidity ratio as a function 

of that recurrence can be regarded as a survivor function for use in survival analysis. The 

hazard function is then defined as the probability that a patient's sickness/weakness level 
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will reach some defined failure criterion (a morbidity ratio reduction of m% at time t, 

conditional on the patient having survived to time t). Thus the hazard function is the 

instantaneous harm rate. Hence from (Collett, 1999, page 12), 

h (t) = lim P (t :s; T < t + ~ tiT ~ t) 
Ot-70 ~t 

For two events A and B with PCB #0, the conditional probability of A given B can 

be expressed as: 

P(AI B) = peA n B) 
PCB) 

Therefore, 

P( T S:IT) P(t~T<t+M) F(t+~t)-F(t) t ~ < t + ut ~ t = = -'--------
P(T~t) Set) 

Hence, 

h (t) = lim P Ct ~ T < t + & I T ~ t) = lim F (t + &) - F (t) . _1_ = F' (t ) 
OHO 8( OHO 8( Sct) Sct) 

The derivative of F (t) with respect to t isf(t). Hence, the hazard function h (t) 

used in survival analysis is defined as 

h (t) = F' (t ) = f (t) = - ~ (In S (t)) 
s (t) s (t) dt 

And, d d 
J(t) = h(t) * Set) = [--(InS(t»] * Set) = --Set) 

dt dt 
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Weibull Model: the Weibull distribution plays a.central role in the analysis of 

survival data. Introduced by Weibull in 1951, in industrial reliability testing, this 

distribution is fundamental to the parametric analysis of survival data. Research has 

demonstrated that improving health associated with a medical intervention can be most 

accurately represented by a survivor function using a Weibull density function (Collett, 

1999). The Weibull approach uses a "recursive" approach. That is, harm is updated 

throughout a patient's life, with the morbidities/weaknesses in period n adjusted for the 

patient's conditions in period n, and accumulated illness harm through period n-l . The 

Weibull model provides a better description of the non-linear accumulation of harm of 

the sickness levels when compared to traditional linear hypothesis of cumulative harm. 

The Weibull density function has the following form 

where (1) 

A: (or L) is the scale parameter and y (or G) is the shape parameter; with both parameters 

being non-negative. Figure 1 Three different curves of Weibull density function: 

- - - ------~-

0.35 ,-----------------, 

0.3 

0.25 

--III.eiWI(L:{l.CXJ78, <3=3) 

--III.eiWI(IAl.15, G=O.6) 

- - - ' III.eiW(IAl.cxn37, G=1.2) 

25 3l 
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When disease harm progresses, experimental morbidity tests follow a Weibull 

distribution with a baseline hazard function of the form 

Accelerated Failure Time Model: the accelerated failure time model is a general 

model for survival data, in which explanatory variables measured on an individual, are 

assumed to act multiplicatively on the time-scale. This means that the models can be 

interpreted in terms of the speed of progression of a disease, an interpretation that has 

immediate intuitive appeal. 

One interpretation of this model is that the lifetime of an individual on a new 

treatment is a multiple of the lifetime that the same individual would have experienced 

under a standard treatment by a constant. When the phenomenon of concern is death, 

values of less than unity correspond to acceleration in the time to death of an individual 

assigned to the new treatment. The standard treatment would then be the more suitable in 

terms of promoting longer life. Conversely, values of greater than one occur when the 

effect of the new treatment prolong life. In these circumstances the new treatment would 

be viewed as superior to the standard. The parameter is therefore termed the acceleration 

factor. 

The effect, due to different boundary conditions, is to increase or decrease the 

harm based on each of the patient's conditions. Under this assumption, the probability 

that a patient in the experimental group survives beyond time t is the probability that a 

patient in the non-experiment survives beyond time ~t, where ~ is an unknown, positive 

constant. Thus, the ~ term is analogous to the shift factor, a correction factor applied to 
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the patient in the experimental group to obtain the corresponding patient life in the non-

experimental group, and is caused by the differences of boundary conditions between 

experimental and non-experimental life. 

Now letting SExper (t) and SNon-Exper(t} be the survivor functions for some 

experimental treatment and the current standard of care, respectively. Then, the 

accelerated failure time model specifies that: !Exper(t) = !Nof!_Exper(cDt) -------------(2) 

for any value of the survival time t. 

Following the relationship between the survivor function Set), probability density 

functionf(t) and hazard function h(t), the relationship between the density and hazard 

functions can be derived as follows: 

The derivative with respect to time of (2) above, 

dS Exper (t) _ dS NOll _ Exper (<I> t ) 

dt dt 

Then we have 

-----------(3 ) 

According to the definition of the hazard function S (t) 
Exper 

We obtain 

hExper (t) = <l> hNollJxper (cDt) -----------(4) 

The parameter <l> must be non-negative; therefore, it is convenient to set cD as an 

exponential function. 

The Weibull Accelerated Failure Time Model: experiment is extremely 

important as a part of the medical intervention design. The information obtained from the 

experiment must be applied to predict the effectiveness of a proposed treatment. 
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However, it is inefficient and very difficult to make the boundary conditions of the 

experimental treatment exactly match those of the standard treatment. 

As a consequence, a correction factor, "<1>", is needed to correct for the difference 

in boundary conditions. To predict the patient performance, it is important to understand 

every feature of the correction factor. It should be noted that the comparison between 

original data curves and experiment curves needs to be made under the same test 

conditions. These conditions, if not the same, should be as similar as possible to eliminate 

potential bias. 

Under the assumption, if the health decline process of an experimental treatment 

is a Weibull function with scale parameter A and shape parameter y; the hazard function 

of the accelerated failure time model for the standard of care can be represented as the 

following: 

and its survivor function can be defined as 

t 

S Exper (t) = exp( - f hExper (u)du) = exp( -A<I>YtY) 
o 

which is a Weibull function with scale parameter A<I>Y and shape parameter y 

Having, J(t) = hazardJunction(t} * SurvivaIJunction(t}, then: 

J(t) = h(t) * Set) = (<I>Y AJ1Y-I) * exp( -A<I>YtY) ...... (5) 

Setting <Di= exp('L f3j Xja, the Accelerated Failure Time Model (AFTM) is a 

general model for survival data, in which explanatory variables Xi measured on an 
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individual are assumed to act multiplicatively on the time-scale and therefore affects the 

rate at which an individual proceeds along the time axis. 

This distribution has both the proportional hazards property and accelerated 

failure time property. The advantage of the Weibull Proportional Hazard model is that it 

can represent all the various experimental situations with an integrated equation in which 

the parameters can be easily estimated with linear regression. The AFT model introduces 

a method to correct for the boundary difference between experimental treatments and the 

standard of care. The Weibull accelerated failure time model is proposed as a way to 

bridge the gap caused by the difference of boundary conditions between medical non­

experiment results and the actual outputs when a new medical intervention applied on 

patient. 

Stochastic Tree: for enhancing the medical decision methodology, Beck and 

Pauker (1983) extended medical decision tree methodology to consider discrete-time 

Markov process-based models; which is helpful when the timing of a treatment is a 

critical variable. Recently, Hazen (1992, 93, 96, 98, & 2002) has developed stochastic 

trees as a technique for solving continuous-time Markov cycle trees. 

Hazen et aI, 1992-2002, in the medical decision making field, has developed a an 

approach that combines features of continuous-time Markov chains with those of 

decision trees and that enable time to be modeled as a range where health state transitions 

can occur at any instant. "It can also accommodate patients' preferences regarding risk 

and quality of life. The stochastic tree concerns it self with the recursive evaluation of 

utility function, that it is the calculation of an expected utility measure using iterative 

methods (CYCLIC) similar to the method of successive approximations (value iteration) 
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in the stochastic Dynamic Programming". 

Stochastic Tree Limits: the stay in any health state is restricted to low-

dimensional preference summary (e.g. Markov preference summary) for the recursive 

computations and to fit with the Markov process property. So, Hazen's stochastic tree 

model was created with respect to exponential distribution only; nevertheless, there are 

other survival data should be represented in different sojourn (survival models) 

distributions, such as Weibull distribution, Gamma distribution, Log-Logistic 

distribution, Log-Normal distribution, Coxian, Quadratic, and Bathtub distribution that 

could be used (Collett, 1999). 

Stochastic tree rollback: In 1996 Hazen and Pellissier proved that recursive 

procedures offer computational advantages for stochastic trees which are large and/or 

cyclic. They note that in general, the recursion is too computationally challenging to be 

useful, unless there are convenient preference summaries such as the memoryless 

property of the exponential distribution (i.e. the computations recursively depend on data 

one step only in the past, or depend on data of the first level of health states before the 

current state). Stochastic tree rollback is particularly simple with quality-adjusted 

duration as the outcome measure (see Hazen-Pellissier, Hazen-Pellissier-Chang 1996). 

To represent this, Hazen considered a schematic representation of a stochastic fork: 

G 

The stochastic fork, above, was formed by competing rates ~i > 0 at state y, where 

~ =Ii ~i and Pi = ~i I ~. Hi is itself a stochastic subtree for which the utility E[u(Hi Iyll)] has 

already been calculated. 
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E[u(Hi IY~)] is the expected utility (e.g. expected QALY or Cost) associated with the 

transition from all the stochastic subtrees Hi to state y, then at G, the E[u(G)]: 

v(y)+ L,(,uiE[u(Hi«yK)] 

E[u(G)] = ( r(y) + A ) 

v(y) + ,uL,(PiE[U(H i « yK)] 

E [u(G)] = ( r(y)+ A ) 

Here, l denotes a sojourn of random duration k in health state y. O:S v(y) :S 1 is a quality 

of life or a cost value specified to health state y, and 0< r(y) :S 1 is a patient's risk 

assessment factor to have treatment; r(y) could be a discount value on the associated cost 

of a health state y. r(Y)+A >0, and the symbol « means reached by. 

Our Model I Updating on Hazen's Formula 

Let u(yljl) is a utility associated at state y. To compute QAL Y or treatment Cost 

(the utility), of a health state y, and according Hazen's formula: 

t 
u(yExponential) = f (f v(y)e -r(y)*k dk) 

o 0 

For the state y sojourn, we replacing the exponential distribution, that Hazen used, 

with the WAFT model,f(t) = (<DYAyty-l) exp(-A<DYty). We set y to one in the WAFT 

distribution to keep W AFT having e.g. Markov preference summary property for rollback 

computations. To compute the utility using J..JJ>e-).</Jt, we have then: 

00 t 

u(y WAFT) = f (f v(y )e-r(y)*k dk) * Aq)e -A~*t dt ...... (7) 
o 0 
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In this formula, we have WAFT distribution behaving same as the exponential 

distribution, plus it has the patient's health condition too. 

u(y WAFT) = v(y)] (1- e -r(y)*t) * Af/Je -AI/J*t dt 
r(y) 0 

WAFf 1 u(y ) = v(y )/ ( r(y) + A(J> ) ---------(8) 

And r(y) + A(J> >0 

l a 1~ 1 ) = a + ~t . 
Let notation ~ . represents the affine function with slope ~ and 

intercept~, (see Hazen-Pellissier, 1996, page 794), Supposejand g are functions, let the 

symbol j 0 z denote functional composition of j and z, so that if () z)( t) = j( z( t)). 

Fitting with semi-Markovian utility, and according to Hazen-Pellissier, 1996, and 

Hazen- Pellissier-Chang, 1996, our recursive formula, under WAFT model, of the 

expected utility of G, will be: 

v(y) + ¢L (AiE[u(H i« / )] 

E[u(G)] = ( r(y) + A¢) = (10) 

v(y) + A¢ L (piE[u(H i« yK)] 

E [u(G)]=( r(y)+A¢ ) (11) 

r(y)+A(J> >0, and r(y)<>O 
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Subtrees, Hi are reached from state y at competing rates, see figure (2). We also, 

supposed that no toll is associated with the transition from state x to state y. Form (10) is 

used for a stochastic fork (arcs with rates); and form (11) is used for a chance fork (arcs 

with probabilities). 2Jti = f1 = 1, if there is chance fork reached by state y with immediate 

transition. 

Model I. Conclusion of the analytical model: "An Enhancement of Hazen's 

Stochastic Tree Model Using Weibull Accelerated Failure Time Model for Medical 

Decision Making in Recurrent Diseases/Injuries" 

Provided r(y)+Jc([> >0 for formula #8 and #10, in the risk neutral case r(y)=O, we 

gain quality adjusted duration U(yWAFT) = v(y)*(Jc([>yi. Focusing on Hazen and Pellissier 

model, there was a difficulty with the combination of memoryless utility and exponential 

duration that was: u(/xponential) diverges to +00 when rry)+Jc~ O. So only moderately risk 

seeker preference (-A~ r(y) ~ 0) may be portrayed (see Hazen and Pellissier, 1996, page 

796). Our using of WAFT distribution, will cause U(yWAFT) diverges to +00 when r(y)+Jc([> 

~O. Therefore more risk seeker preference (-A([> ~ r(y) ~ 0) may be portrayed when ([» 1. 

We introduce an extension to the analytical solution, stochastic tree modeling. In 

specific, the Weibull accelerated failure time model was utilized instead of an 

exponential distribution. This enhancement may increase the stochastic tree modeling 

technique's capabilities, by using different state sojourn distribution and by including a 

correct boundary difference between experimental treatment and the standard of care. 

However, the stochastic tree model utilizing the Weibull accelerated failure time 

model should be restricted to have a memory less property for the rollback computation 

with respect to the semi-Markov requirements. 
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Multiobjective Simulation-Based Model for Medical Decision Making 

On Recurrent Disease Treatment (Model II) 

Model II. Introduction 

A variety of methodologies have been employed for decision making related to 

the treatment of recurrent diseaseslinjury. This model presents an investigation of the use 

of simulation on the stochastic tree, with associated techniques related to ranking and 

selection, and multi-objectives decision analysis. 

The enhanced model, in the first part of this study, was still restricted to have the 

preference summary- memory less property- for the rollback computation. Consequently, 

it was still limited to specific survival distributions. So, further work was required to add 

more capabilities and extension not only for the related limitations on the use of specific 

survival distributions, but also to add multi-performance measures approach. 

For this second part of this research, we developed a simulation model that 

maintains multiple input parameters and multiple performance measures. In our study, 

the following research section describes our design of the simulation model that enhances 

and extends the use of stochastic tree, the application and details of how we use the 

simulator, multiple attribute utility theory, and statistical ranking and selection (R&S) to 

select the best medical intervention configuration of K > 1 possible configurations. 
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Model II. Background 

Many publications are related to stochastic models in medical decision making. 

Some researchers concentrate their efforts on medical outcomes and others focus on 

minimizing the cost of treatment. Integration and contribution of these can be obtained 

and it would be added valuable information. 

Traditional decision analysis is used to indicate decisions favoring good outcomes 

even if there is risk adjoining the decision. The value of each possible outcome of a 

decision, whether measured in costs and benefits or utility, is usually variable. As the 

number of treatment options and strategy choices has exploded and the cost of carrying 

out research has varied, the best treatment for all clinical situations cannot be determined 

by conducting randomized controlled trials only. 

Model II. Specifications and Design 

Most of the R&S literature focuses on procedures that are designed for scalar 

performance measures (Bechhofer, 1995). However, some multivariate results do exist. 

Gupta (1979) describes procedures that are based on scalar functions of the mean and 

covariance matrix of the multivariate populations. Gupta's procedures reduce the 

multivariate performance measure problem to a scalar performance measure problem. 

Unlike the procedures described in Gupta, our method does not require the complicated 

step of estimating a covariance matrix. As a result, the R&S approaches (i.e. Law and 

Kelton, 2000) that we use are simpler to implement and belong to a class of procedures 

whose properties are better understood. 
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In a medical setting, a different approach is often used: Convert project 

performance over multiple measures to a scalar measure using costs. Even though this 

type of "costing" or pricing out performance measures has many noticeable advantages, it 

has some disadvantages as well. For example, perfect cost data may not be available 

because of not enough resources. Moreover, it may be not easy to accurately attach a 

dollar value to intangibles (e.g., the quality of life) even if the resources are available. 

In our simulation model, we utilize an approach, similar to Morrice et al. (Morrice 

2001), to this problem: convert multiple performance measures to a scalar performance 

measure using multiple attribute utility (MAU) theory (Keeney and Raiffa 1976). MAU 

theory can be used with the costing approach and it can be used instead of a costing 

approach when good cost data are not available or when cost is not suitable as a measure 

of performance. 

In this research, we extend Hazen's stochastic tree using discrete event simulation 

modeling, MAU theory, and statistical R&S with indifference-zone approach of Law and 

Kelton, (2000), to select the best medical intervention configuration from a set of K 

configurations when a medical intervention performance is determined by n performance 

measures, n> 1. In our model, we follow the same combination technique of Morrice et al. 

(1998,1999) to link R&S procedure with MAU theory. 

We developed a simulation model that maintains multiple input parameters and 

multiple performance measures. This part of our research describes our design of the 

simulation model that enhances and extends the use of stochastic tree, the application and 

details of how we use the simulator, multiple attribute utility theory, and statistical 
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ranking and selection (R&S) to select the best medical intervention configuration of K > 1 

possible configurations. 

Figure 2 Our General Simulation Model's Components 
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Model II Definitions 

To determine to which type of experiment our simulation model belongs, the 

types of experiments should be briefed. There are three types of experiment: the first is 

Treatment Comparisons; its purpose is to compare several treatments of a factor (for 

example, suppose that one compares three diets and he/she would like to see if they are 

different in terms of effectiveness). The second is Variable Screening; (for example, 

suppose that one checks a large number of factors, but only a few are important, the 

experiment should identify the important, few, factors. The third is Response Suiface 

Exploration; after important factors have been identified, their impact on the system is 

explored to optimize the response. Our Model is related to the first type of experiments. 

Our Simulation output analysis computes measures of performance using the 

output mean, variance, confidence interval. Our model can work for comparing 

alternative designs in both (1) Simulations with a single model and different input data, 

and (2) Simulations with different models. 

There are what is called terminating simulations, and non-terminating 

simulations. Our model is a terminating simulation. Terminating simulations, in which 

there is a natural event that specifies the length of each run; no useful information is 

obtained beyond termination; and termination time can be random. Non-terminating 

simulations, in which there is no natural event to specify the length of a run. 

So, for the effect of initial conditions in terminating simulations, initial conditions 

generally affect measures of performance, and initial conditions should be chosen so that 

they are representative of the state of the system. Because our model is not a non-
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terminating simulation model, our interest does not lie in the steady-state performance 

measures. 

Definition: One popular measure of treatment efficacy used in the medical 

decision making literature is mean quality-adjusted duration [Weinstein et al. 1980]. This 

measure is calculated by weighting the average duration spent in each particular health 

state by a quality rate proportional to the desirability of that state. Typically the Well 

state is assigned a quality factor of 1, the dead state 0, and other states intermediate 

values. The result for each treatment is a duration which, if spent entirely in the Well 

state, would be equivalent to receiving the treatment and all its consequences. 

Definition: A Stochastic Process is a family of random variables: (X(t), t <= T} 

where t is often interpreted as time; X( t) is the state of the process at time t; T is the index 

set of the process. 

• The process can be continuous or discrete. The state space of a stochastic process 

is the set of all possible values that X(t) can take on. The state space of the 

process is the set of all possible values that the random variables X(t) can assume. 

• Stochastic processes can be classified according to these characteristics: (1) the 

state space may be discrete (finite or countable) or continuous. Accordingly, the 

stochastic process is called a "discrete-state process" or a "continuous-state 

process". Discrete-state processes are also called "chains". (2) The time parameter 

is another characteristics of stochastic processes; if the set of points on the time 

axis at which changes in X(t) may take place is finite or countable, the stochastic 

process is called a "discrete-time process". On the other hand, if X(t) may change 

its value anywhere within a finite or infinite interval of the time axis, the process 
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is called a "continuous-time process". (3) The statistical dependency among the 

values of X(t) for different values of t. 

System Setting: Consider some type of treatment for a disease/injury and the 

modeling of the effects of that treatment. Suppose that the progression of the 

disease/injury following the treatment can be modeled as the progression of the patient 

through a series of states, enumerated as: 1,2, .. . n, where n will be defined as the 

terminating state. Let 

S= 

Transition Probability (I, J) = 

Time in State (I,J) = 

QoL (I) = 

Quality of Life = 

Number of States. 

the probability that a transition will be made from 

State 1 to State J. 

the distribution function representing the amount of 

time that the patient will spend in State I, given that 

a transition will be made to State 1. Note that this 

will only be defined if Transition Probability (I, J) 

>0. (This will be modeled as an Arena Expression). 

the Quality of Life associated with State I. 

a time persistent variable representing the quality of 

life at a particular point in time. 

Then Quality Adjusted Life Years is computed at the end of the simulation run 

(when the patient reaches the terminal state) as the integral over time of the Quality of 

Life. Each run of the model will yield a different value for QAL Y s, so 1000 runs will be 
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made of the demonstration run. The demonstration run will have 5 states, where State 5 

will be defined as the Terminal State, with the following transition: 

State: 

2 

3 

4 

5 

Model II. Inputs 

40 
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50 

10 
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o 

o 

40 

20 

The inputs of the model are Survival Distributions matrix, Transition Rates 

matrix, Patient's Risk assessment factors, Decision Maker's Risk assessment factor, Cost 

Discount Factor, Quality of Life, Medical Intervention Costs, and Performance Measures 

Weights: (1) the Survival distributions matrix, T, is a one-dimension matrix contains cells 

corresponding to patient's health states; each cell of the matrix may contain one value 

(median) or a survival distribution. A survival distribution, for a health state sojourn 

times, would be any survival distribution such as Exponential, Weibull, Weibull with 

accelerated failure time model, and Gamma, etc. (2) Transition Rates matrix (if any): due 

to moving from a state of life to another state; transition rates matrix would be a one­

dimension corresponding to patient's health states. (3) The Patient's Risk assessment 

factors (PatientRiskF): for patient's utility assessment, we use Hazen's payoff approach; 

this requires the physician to elicit from the patient his or her risk assessment. (4) 
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Decision Maker's Risk assessment'factor (DMRiskFactor): this requires the decision maker 

to determine his or her risk assessment. (5) Cost discount factor (CostDiscFactor): it is a 

factor to compute the treatment cost as a performance measure (6) Quality of life, QoL, 

it is a one-dimension matrix contains QoL values for patient's health states; each cell may 

contain a value or a distribution. (7) Medical cost of a health state, C, is a one-dimension 

or two-dimension matrix of the health states of life; each cell could contain one value or a 

distribution. (8) The importance level values or the weights for the performance 

measures, 11 and 12 • The decision maker utility function; 'Lli =1, if Ui are utility 

independent, 'Lli < > 1, if Ui are not utility independent. 

At the beginning of each simulation, some inputs are initials values. The system outputs 

may change by these values; for example, performance measures weights, Ii, that 

represent the DM preferences, and also the 1st Health State that the patient begins with. 

Model II. Computations 

For each replication the simulation system will compute seven formulas: 

1. The first formula is to compute the Individual's Attribute Utility Factor of Risk 

(IAUFt}, and IAUF1 = l-exp (- StayTime * PatientRiskF). This is a common 

formula for a risk avoider person. The formula fits with an individual faces a 

medical intervention that may have some level of risk. 

2. The second formula is to compute the Individual's Attribute Utility Factor of Cost 

(IAUF2), and IAUF2 = l-exp (-StayTime * CostDiscFactor). This is a common 

formula for a risk avoider person, who faces a costly medical intervention. 

3. Quality Adjusted Life Years for each state of life, QALY = QoL * IAUF1* T 
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4. Adjusted Cost for each state of life, COST = C * IAVF2 * StayTime 

5. Decision's maker utility function on QALY, PerfMeasure] , is a risk avoider utility 

function; its formula is: V] = l-exp( - QAL y* DMRiskFactor); and O:::;V] :::;1 

6. Decision's maker utility function on Cost, PerfMeasurel , is a risk avoider utility 

function; its formula is: V 2 = 1 - exp(- X * CostDiscFactor); hence X = 1/(Cost in 

$lO,OOOs), Cost <>0, and 0:::;V2 :::;1 

7. Expected decision maker's utility function can be: 

E (V) = WI *UI + W2*U2 if the VI and V2 are utility independent. 

UI (pe~treI) = 1 - exp ( - QALY * DM_RiskFactcr) 
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Figure 3: Risk avoider utility function on performance measure, QALY 
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U2 (perfl.\..teasure2) = 1 - eXJX - X * Ca;t1)jscFactcr) 

0.40 

0.35 

0.30 ~ 

0.25 

9 0.20 
- U2( X; DiscFad 0.07) 

- U2( X; DiscFad 0.01) 
0.15 

0.10 

0.05 

0.00 

0.00 2.00 4.00 6.00 8.00 

x = 11 Cost in $10,000s j 
Figure 4: Risk avoider utility function on performance measure, Treatment Cost 

Model II. Outputs 

At the end of each simulation, with n replications, the simulation system will output 

five performance measures: 

I . Mean of the first performance measure; which is QAL Y of all health states. 

2. Mean of the second performance measure; which is Cost of all health states. 

3. Mean of the utility function of the first performance measure on QALY, U1. 

4. Mean of the utility function of the second performance measure on Costs, U2. 

5. Expected Utility function, E(U), for the decision maker's, on Ul, and U2 
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Risk Utility Assessment Used In Model II 

Hazen-Pellissier, (1996), presented von Neumann-Morgenstern utility functions 

over stochastic trees that allow easy rollback computation. One such utility function is a 

risk-sensitive extension of QAL Y that allows different constant coefficients associated 

with risk aversion across health states. Continuous-risk utility assessment protocol, as 

described by Hazen (1997), differs from standard preference assessment protocols by 

offering choices between alternatives in which risks are present in continuous time. For 

medical applications, "continuous-risk utility assessment scenarios are both more realistic 

and more familiar than other simpler but more artificial standard gamble approaches". 

(Hazen 1997) We use/recommend the same protocol. 

To understand how continuous-risk utility assessment works consider the scenario 

in Figure # , used to assess a subject's risk attitude about future time spent in morbidity 

functional class IV for osteoarthritis of the hip. The subject is asked to determine what 

compensating immediate mortality risk p he is willing to gain to decrease his mortality 

rate from the high rate J.ll to a lower rate J.lO. The subject's response determined his or her 

coefficient of risk aversion for health state: "morbidity functional class IV". 

~ vs 

Figure 5 Continuous-risk assessment approach, by Hazen 1995. 

With this continuous-risk assessment approach, a patient must determine what 

chance p at immediate death he/she is willing to accept to improve his future mortality 

rate from J.ll to J.l o. 
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Model II Design on Arena Software 

Arena is a MS-Windows application, and all the typical Windows features and 

operations are available. Also, Arena is fully compatible with common MS-Windows 

software, such as MS-Word, and MS-Excel. In Arena models, the basic building blocks 

are called modules. These modules are flowchart and data objects that define the process 

to be simulated and are selected from panels in the project Bar. Flowchart modules 

describe the dynamic processes in the model. Flowchart can be as nodes or health states 

through which entities flow, or where entities begin or leave the model. 

Flowchart modules are usually connected to each other by somehow. In the Basic 

Process panel, the kinds of flowchart modules accessible are several such as Create, 

Dispose, Process, Decide, Assign, and Record. Each type of flowchart module has a 

distinguishing shape. 

Data modules define the characteristics of diverse process elements, such as 

entities, resources, and queues. In addition, data modules can set up variables and 

expressions and other types of numerical values that relate to the model. Icons for data 

modules, in what is called the Project Bar, look like little spreadsheet figures. The Basic 

Process panel's data models are several such as Entity, Queue, Resource, and Variable. 

Entities don't flow through data modules. Flowchart and Data modules are related to each 

other by user defined names for objects (e.g. Variables) that they have in common. 

On the following three pages, our general simulation model is displayed on 

Arena; and six illustration figures are shown for the model design and setting. 
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I initials 

Assignments: 

Variable, State of Life, 1 Add ... 

Variable, DM RiskFactore, .7 
Variable, Cost DiscountFactore, .03 
Variable, W1 :-:-5 

Edit... 

Delete Variable, W2,.4 
< E nd of list> 

OK Cancel Help 

Figure 7: Our General Simulation Model Initials 

Percentages: 

Tranoltlon P,obab,lrt, IState 01 Life 11 
Transition Probability (State of Life, 2) 
Transition Probability [State of Life, 3) 
Transition Probability [State of Life, 4) 
<End of ~st> 

FIO\\I Rate 

Add ... 

EdL 

Delete 

OK Cancel 

Figure 8: Our General Simulation Model Transition Probabilities Settings 
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IStayTime iJ ITime in State [State of Lk lJ 

L OK Cancel I, Help 

Figure 9: Our General Simulation Model Stay time Assignments 

Name: 

ICompute PeriMeas~res n 

Assignments: 

Variable Name: 

I PerfM easure 1_ QAL Y 

New Value: 

3 F~L (State of Life) x IUAF1 x Life 

,-_o_K __ I __ C_a_nc_e_l-..,I __ H_el_p_-l 

Figure 10: Our General Simulation Model Performance Measures Computing 
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IUofPerfMeasurel_QALY 

Tally Name: 

r Record into Set 

fUtility ofPerfMeasurel iJ 

"mpute Lltil ity , 
. PerfMeasuJS 

OK Cancel 

. Lltilityof 
., Perftl.leasure 1 

,lJIJ- .. ~-". 

Help 

Lltil ity o f 
PerfMeasure2 

Due to 
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Figure 11: Our General Simulation Model Performance Measures Recording 

,. . . - . 
Process [I1[8J 

Name: Type: 

'"'IA""'d-va-n-ce""'T'"'"im- e- t-o "'"T e-rm"'in-a""tin-g""S-ta-te-~~---3""". I Standard 

Logic - --------------------------. 

Action: 

I Delay 

Delay Type: 

Triangular 
Uniform 

Units: 

I Days 

Value (Mean): 

12 

OK 

AIocation: 

3 IValueAdded 3 

Std Dev: 

I' 

Cancel Help 

Figure 12: Our General Simulation Model Advancing Time 
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Ranking and Selection (R&S) Experimental Settings 

We employed the ranking and selection procedure of. The goal of this procedure 

is to make a statement of the best system; where, "best" refers to the system with the 

maximum performance measure of interest for ith alternative treatment and jth replication. 

The general approach involves: denoting correct selection with the notation CS. 

We want P(CS);;::: p* provided that Ili -Ilj ;;::: d*, where d* defines an indifference amount. 

For differences smaller than d* the choice may not be significant. The procedure is 

described on pages 30 and 31, We need not assume anything about the variances of Xij, 

as it is assumed that they are normally distributed. The procedure is, however, reasonably 

robust against departures of this assumption. 

Multi-Attribute Utility theory, MAU, (Keeney and Raiffa 1992, Clemen 1991): 

MAU is one of the major analytical tools of decision analysis. "A MAU analysis 

of alternatives (in our example, medical interventions) explicitly identifies the measures 

that are used to evaluate the alternatives, and helps to identify those alternatives that 

perform well on a majority of these measures, with a special emphasis on the measures 

that are considered to be relatively more important" (Morrice et aI, 1998, page 720). 

Our simulation model can run using the decision maker's preferences with the 

MAU additive or multiplicative model, In our examples we used two performance 

measures, which are UI(QALY) and U2(Treatment cost). 

In MAU theory, the additive model is used if the UI and U2 are utility independent. E(U) 

= 11* UI + 12* U2 , where O~ li~ 1; 'i,li =1. And, the model multiplicative model is used 
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if the U1 and U2 are not utility independent. E(U) = iJ* U 1 + 12* U 2+ (1-1]-12)* U1* U2 

,where, O:s Ii :s 1; 'f, Ii <>1 

Supposing RTi is the decision maker's assessed risk tolerance and Ai and Bi are 

scaling constants for measure i. a popular form is used in our model (see Clemen 1991, p. 

379).The form is single-attribute utility function: 

1l.(X) = A _ B.e(x,RT,) 
I I I I 

Settings: Assume that there are 1<>2 medical intervention, with different 

configurations. For 

denote a vector of random variables representing the performance measures for 

configuration k. Let E[u(Xk)) denote the expected utility (unknown) for configuration k 

and let 

This denotes the ordered expected utility values. The goal is to select the project 

configuration with the largest expected utility E[U(X[k])). If the R&S procedure accurately 

identifies the configuration with the largest expected utility, a "correct selection" (CS) is 

made. 

In the two-stage R&S procedure, such as Law and Kelron, guarantees that the 

probability of a correct selection, P {CS} ?..P*, whenever: E [U(X[k])) - E [U(X[k-l])) = 8 

p* is specified by the decision maker, and 8 is a practical significance difference 

between system X[kJ and X[k-IJo In practice, the selection of 8 depends on the decision of 

the decision maker. 
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Determ~ning () Value: Suppose that there is a performance measure X on two 

systems, X[kj and X[k-lj, and 8 represents the accepted difference, needed by the decision 

maker to distin$uish between the two systems. 8 is computed by t5= 1}.t5} + I2.t52 where t5i 

represents a val~e computed by t5i=E [U(X[kj)] - E [U(X[k-lj)], and Ii represents the level of 

importance, aSSligned by the decision maker to each performance measure, ~ Ii :S 1 

(Butler and Morrice, 1998 & 2001). 

For example, suppose that there are two performance measures, Cost and QAL Y, 

measured for two systems. For the system number k and the system number k-1, 

t5}=E[u(CoSt[kj)] - E[u(CoSt[k_lj)], and t52=E[u(QALY[kj)] - E[u(QALY[k_lj)]. Suppose 

t5}=0.007, t52=0.O 18 and the decision maker assigned the performance measure "Cost" a 

higher level of importance iJ =0.65, and the performance measure "QAL Y" a level of 

importance I2 =0.35. Then t5 = 0.65*.007 + 0.35*0.018 = 0.011-

In this s~udy, we applied our simulation model on an example that compared three 

treatment systems related to breast cancer related treatments. We used expected 

performance measures on Cost and QAL Y. 

To estall>lish an indifference zone for t5i, its recommended to assess t5i in the units 

of the perform~nce measure and then converting to a number on the utility, (0, 1), scale. 

We will construct an indifference-zone-preference-zone diagram on the performance 

measure, (QALY, and Cost) by using the same procedure utilizing certainty equivalents 

on the single-a~tribute utility functions. 

Having: E[UJ(X[K]})] = UJ(CE[K]}) 

The indifferenae zone is defined by: 

UJ(CE[K]}) - UJ(CErK-l]1) >= t51 
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To estal:lllish the indifference-preference-zone on the original performance 

measure: "one <can invert ul(CE[K]l) and uI(CE[K-I]1) and establish an indifference zone 

based on CE[K]I and CE[K_I]I. The curve that divides the indifference zone from the 

preference ZOM is constructed by setting: ul(CE[K]l) - U\(CE[K-I]1) = 81 and solving for 

CE[K]I' The resultant expression for the curve dividing the indifference zone from the 

preference zone is" (Morrice, 2001) 

Where, RT is the risk factor, and B is constant, we will sit it to 1 to fit with the risk 

avoider utility function, (Morrice, 2001): UlXi) = 1- e-xi 
RTi 

1110,000 

$160,000 

:i SI40,OOO 
i! a $120,000 

$\00.000 

$10,000 

Indifference 
Zone 

CI{IK-1JoI) 

Zone 

Figure 13 indifference-zone and preference-zone diagram. It is corresponding to 81 equal 

to 0.2, for the clOst-utility function. This figure is taken from (Morrice, 2001). 
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Sensitivity Analysis: Most applications of multiattribute utility theory focus on a 

series of sensitivity analyses to set up a sense of the robustness of the recommendations 

generated by the MAU model (Dyer et al. 1998). One common technique is to determine 

the impact of varying performance measure's weights, which are assessed by the decision 

maker, or the patient's risk factors, which are assessed by the decision maker, of the 

MAU model. Often this analysis is performed by varying one weight/factor at a time 

while the ratios among the other weights/factors are held constant. (Morrice et al. 1999). 

We used this approach to study patient's risk factors sensitivity for the breast cancer 

treatments application discussed in this research. Though, varying one patient's risk 

factors at a time can be misleading because it pays no attention to the potential interaction 

that can result from concurrent manipulations of multiple patient's risk factors (Butler et 

al. 1997). This matter can be eased by evaluating all probable combinations of 

weights/factors via Monte Carlo simulation (Butler et al. 1997). First, in randomly 

generating weights/factors for k attributes is to select k-1 independent random numbers 

from a uniform distribution on (0, 1). Second, is to rank these numbers. We were able to 

use this information in a Monte Carlo simulation sensitivity analysis of the patient's risk 

factors. 
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3.2.7 Conclusion of the Model (II) 

Indeed, there are a number of issues that must be recognized as important for the 

success of our approach. Because we use a payoff model this requires elicitation by 

decision maker of both a utility function for each measure as well as a "weight," or 

indication of relative importance. Techniques for handling these types of elicitations are 

available (e.g. Clemen 1991 and Keeney and Raiffa 1976). And for patient's risk 

assessment, we recommend what is called continues risk assessment (Hazen 1995, 

Hazen-Chang, 1996). 

The idea for the methodology outlined, in our simulation model, model II, is 

based on interactions of enhanced medical stochastic model, for evaluating multi 

treatment outcomes, with real decision makers whose decision inputs are the results of 

simulation experiments. 
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CHAPTER IV 

RESULTS 

An enhancement of the stochastic tree model for medical decision 
making 

Stroke places a huge burden on society in terms of premature death, disability, 

and costs of care. Increasingly, the cost-effectiveness of new interventions needs to be 

demonstrated before their widespread implementation. Clinical trials are unable to 

measure the long-term impact of such new interventions in stroke care, and a modeling 

approach is necessary. The Stroke Outcome Model has been developed using enhanced 

model of Hazen stochastic tree as a flexible tool for this purpose. Our model is used to 

undertake economic analyses of antiplatelet therapy for the prevention of recurrent 

strokes, and of stroke unit care and thrombolytic therapy in acute stroke. 

CDC- Stroke Facts: Stroke is the third leading cause of death after heart disease 

and cancer and a leading cause of serious, long-term disability. In 2002, stroke killed 

162,672 people (61 % of them women), accounting for about 1 of every 15 deaths. The 

death rate was 56 per 100,000 populations. Stroke death rates are substantially higher for 

African Americans than for whites (2002 rates per 100,000 population: 82 for black men, 

72 for black women, 54 for white men, and 53 for white women). For other racial and 

ethnic groups, 2002 stroke death rates per 100,000 population were 48 for AsianslPacific 

Islanders, 41 for Hispanics, and 37 for American Indians/Alaska Natives. Approximately 

74 



50% of stroke deaths occur before the person reaches the hospital. Each year, about 

700,000 people suffer a stroke (about 500,000 first attacks and 200,000 recurrent attacks). 

From the early 1970s to the early 1990s, the estimated number of non institutionalized 

stroke survivors increased from 1.5 million to 2.4 million. Medicare spent $3.6 billion in 

1998 on stroke survivors discharged from short-stay hospitals. 

Michael Chambers et aI, (2002), developed decision-analytic model that 

represents the management of acute stroke and long-term care and prevention of 

recurrence for stroke survivors. The latter consists of semi-Markov state-transition 

processes, with health states defined by therapy, disability, and occurrence of further 

stroke. He concluded that development of this model highlights the need for improved 

information on prognosis and resources used by stroke survivors and the importance of 

differentiating between economically distinct end points such as death, disabled survival 

and non-disabled survival, which may be combined as outcomes in clinical trials. 

otter vucular .. 
ewnls J Pfewnlkln or recurrence 

1i Recullrn::e r I . 
Coherl .. ·Prrnary .. Sln~C8 ~ N.ulecare Ratab· ~ Lcr'g-larm 

pFEMll1lon (;venl I Eady I Laler Inakln care 

~ I 
Oealh r 

Figure 14: Schematic overview of Stroke Outcome Model. 

This figure is taken from Michael Chambers et al (2002). 
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Michael Chambers et al (2002) developed a long term care/prevention of recurrence 

module too; but their long term model does not compute Stroke outcomes. 

Hazen on 1992 introduced a continuous-time analog of the Markov-cycle tree, the 

stochastic tree, which combines features of decision trees [Raiffa 1968] and stochastic 

process transition diagrams. Stochastic tree diagrams not only can depict continuously 

distributed temporal uncertainties, but, like decision trees, can be rolled back to 

determine optimal decisions. 

We introduce a possible extension to the analytical solution, stochastic tree 

modeling. In specific, the Weibull accelerated failure time model was utilized instead of 

an exponential distribution. This enhancement may increase the stochastic tree modeling 

technique's capabilities, by using different state sojourn distribution and by including a 

correct boundary difference between experimental treatment and the standard of care. 

Example I: the Enhanced Stochastic Tree Model to Compute QAL Y for Stroke 

To calculated the QAL Y using the WAFT formula, on Chapter 3, we considered 

the same stroke model of Hazen, on figure 4, with the same probabilities and rates: 

ms=0.05, me=0.065, Pe=0.38, mO=0.0l11, Pb=0.6667; the quality adjustments: v(well) 

=1.0, and v(PostBigStrok)=0.2, v(PostSmallStrok)=0.8. In addition, we set for WAFT the 

initial values of: Patient's conditions factor <I> = 0.7, A. =0.009, and Patient's Risk 

Assessment factor r(y) to 0.12. 
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Figure 15: Stochastic Tree Model to Compute QAL Y for Stroke 

Table 7: Results of Stochastic Tree Model to Compute QALY for Stroke 

Stroke BigStroke PostBigStr BigStroke Small Stroke Stroke 

n Well «Well «Stroke «Big «PostBi,g «Stroke «Small 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 7.162 0.352 0.155 1.361 0.000 5.442 0.000 
2 7.163 0.353 0.163 1.432 0.105 5.445 0.003 
3 7.163 0.353 0.164 1.436 0.111 5.445 0.003 
4 7.163 0.353 0.164 1.436 0.111 5.445 0.003 

The symbol «means "reached by" 

Table 1 shows that computing the QAL Y converges, because of Markov process, 

to the value of7.163 years. To check the effect of Patient's conditionsfactor, on the 

Stroke example, we set Patient's Risk Assessment factor r(y) = 0.12 and three initial 

different values to Patient's conditions factor <D = 0.35,0.7, 1.5 and 3, for WAFT. The 

QALY results: 8.128,7.947,7.608, and 7.163 respectively. 

We introduce a possible extension to the analytical solution, stochastic tree 

modeling. In specific, the Weibull accelerated failure time model was utilized instead of 

an exponential distribution. This enhancement may increase the stochastic tree modeling 
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technique's capabilities, by using different state sojourn distribution and by including a 

correct boundary difference between experimental treatment and the standard of care. 

However, the stochastic tree model utilizing the Weibull accelerated failure time 

model should be restricted to have a memory less property for the rollback computation 

with respect to the semi-Markov requirements. On other words, the W AFf model is 

used in Hazen's stochastic tree model framework, with an application to study stroke. 

The WAFT extends the stochastic tree model capabilities. In addition, inclusion of the 

W AFT in the stochastic tree model framework creates a correct boundary difference 

between experimental and the non-experimental regimens. 

Further work would be an extension to the stochastic tree modeling technique by 

integration with simulation, and screening and selection procedures, to have more fully 

explore the response of stochastic tree models. To explore this response in a systematic 

way, multiple factors must be considered simultaneously with identifying "best" 

configurations combinations for some recurrent disease representation on stochastic tree. 

The W AFT model is used in Hazen's stochastic tree model framework, with an 

application to study stroke. The WAFT extends the stochastic tree model capabilities. In 

addition, inclusion of the W AFf in the stochastic tree model framework creates a correct 

boundary difference between experimental and the non-experimental regimens. 

A stochastic tree model using the W AFT model, by including a patient's health 

conditions, may more exactly calculate outcome measures associated with cyclic 

disorders or recurrent diseases/injuries. However, this new extended stochastic tree 

modeling technique still has a preference summary-memory less property. Future studies 

that combine simulations, screening and selection procedures, as well as multi attribute 
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utility theory in the stochastic tree model framework are warranted to more fully explore 

the robustness of the stochastic tree model technique for recurrent diseases. 

4.2. Multiobjectives Simulation-Based Methodologies for Medical 
Decision Making 

We have applied our simulation model of treatment choice for ductal carcinoma 

in situ (DCIS), a precancerous condition whose treatment is controversial (Hazen, 

Morrow and Venta 1999). Traditionally, DCIS was a rare disease treated by mastectomy, 

but modern mammography has converted this unusual entity into a common pathological 

finding (Silverstein et al. 1992, Hiramatsu et al. 1995). Recently the need for surgery as 

extensive as mastectomy has been questioned, and alternatives have been proposed such 

as lumpectomy, or lumpectomy in conjunction with radiation treatment or the drug 

tamoxifen. Here the possible interventions for the patient's ipsilateral breast are portrayed 

following diagnosis of DCIS. The possible interventions are mastectomy, lymphectomy 

followed by radiation therapy (XRT), or lumpectomy only. The data and the probabilities 

such as pSurgDeath (equal to 0.14%) of surgical death under mastectomy are contained 

in a spreadsheet tables on the next two pages. 

Example: 

To utilize our simulation model to select the best DC IS treatment, the data tables required 

for the three treatment models are: transition probability matrix, transition rates matrix, 

quality of life table, initials for the simulation systems table, annual treatments cost table 

(synthetic data), and health states survival distribution table (synthetic data). 
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Table 8 Table 9 
Quality of Life (QoL) Health State's Stay Time Distributions, in years 
State QoL State Survival distributions 
Death 0.00 Death 0 
Healthy 1.00 Healthy Norm(35,5) 
Immediate Cancer 0.70 Immediate Cancer Weib(0.15,0.5) 
Invasive Cancer 0.70 Invasive Cancer Epxo(0.08) 
Post LymphOnly 1.00 Post LymphOnly Weib(0.00087,3.0) 
Post LymphRad 0.95 Post LymphRad Cont(O,O, .25,4,.50,9,.75,11,1,27) 
Post Mastectomy 0.90 Post Mastectomy Norm(7,5) 

values are synthetic 

Table 10 Table 11 
Annual treatment Cost I"IVI f h' I' mba a ues or t e Slmu attOn system 
State Dollars Variable Initial Value 

Healthy $500 Patient's Risk Factor 0.10 
Immediate Cancer $7,000 Decision Maker's Risk Factor 0.90 
Invasive Cancer $5,000 Cost Discount Factor 0.01 
Post LymphOnly $6,000 WI 0.60 
Post LymphRad $4,000 W2 0.40 
Post Mastectomy $3,000 State of Life changeable due to model 

values are synthetic 
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Table 12 
Transition Probability Matrix 

Immediate Invasive Post Post Post 

State Death Healthy Cancer Cancer LymphOnly LymphRad Mastectomy 

Death 0 0 0 0 0 0 0 
Healthy 0 0 0 0.39 0 0.61 0 
Immediate Cancer 1.00 0 0 0 0 0 0 
Invasive Cancer 1.00 0 0 0 0 0 0 
Post LymphOnly 0 0.98 0.02 0 0 0 0 
Post LymphRad 0 0.98 0.02 0 0 0 0 
Post Mastectomy 0 0.98 0.02 0 0 0 0 

Table 13 

Transition Rates 

Immediate Invasive Post Post Post 
State Death Healthy Cancer Cancer LymphOnly LymphRad Mastectomy 
Death 0 0 0 0 0 0 0 
Healthy 0 0 0 0.044 0 0 0 
Immediate Cancer 0.001 0 0 0 0 0 0 
Invasive Cancer 0.003 0 0 0 0 0 0 
Post LymphhOnly 0 0 0 0 0 0 0 
Post LymphRad 0 0 0 0 0 0 0 
Post Mastectomy 0 0 0 0 0 0 0 
III case of Lymphh node treatment model, the value 0.044 be 0.017 
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4.2.2 The Simulation Model on the Stochastic Tree to Compute the Expected Utility 

function of QAL Y and Cost attributes of three Breast Cancer Treatments 

Mestectorry 

f~-

Figure 16: The Simulation model for Mastectomy 

~ ,­
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Figure 17: The Simulation model for Lumpectomy Only 
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Figure 18: The Simulation model for Lumpectomy followed by Radiation therapy 

4.2.3 Results of our Simulation Model on the Stochastic Tree 

For the three DCIS treatments three simulation systems developed, k = 3, the 

above data tables utilized, two utility dependent performance measures, QAL Y and Cost, 

included, the patient's risk assessment factor set to 10%, decision maker's risk 

assessment factor set to 90%, initial replications bo set to 20, and the significant 

difference J set to 0.006. Using Dudewicz and Dalal (1975) or Rinott, (1978) : the first-

stage sample means and sample variances, Sj were computed. The sample variances are 

used to determine the number of macro-replications which must be taken in the second 

stage bi ~ maX{bo{(~i n 
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h is a function in the number of replications bo, the number of systems k, and b. the value 

of h was determined (h=2.431), see Bechhofer, (1995), page 62. 
-

_ b i y .. 
For bo replications, we computed grand means Y i = I ~,i = 1,2, ... , k 

j=! b i 

and selected the system with largest Y i 

The macro-replication estimators, ~1' ~2 , ... , ~bi from the ith system are assumed to be 

i.i.d. with expectation. If the number of micro-replications is large enough the Central 

Limit Theorem (CLT) yields approximate normality for the macro-replication estimators. 

Table 14: CDIS pilot experiment; the first stage results 

L&Rad L.only Mastec 

0.485 0.442 0.492 

0.01536 0.0108 0.02402 

0.0034 0.0024 0.0054 
38 20 94 

In stage two, to compute the grand means :Y i ' we re-run the simulation model of 

Lumpectomy followed by Radiation therapy (L&Rad) 38 macro-replications, and we re-

run the simulation model of Mastectomy 94 macro-replications. The results: 

Table 15: CDIS the second stage results 

L&Rad L.only Mastec 

0.485 0.442 0.487 

0.0024 0.0024 0.0029 
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We are at least 90% sure that we have made the correct selection (u(l) - U(2) >0=0.006); 

The best system will be the one with the max average; which is Mastectomy. 

4.2.4 Sensitivity Analysis 

A sensitivity analysis was made to check whether selecting Mastectomy was 

sensitive to the change of patient's and decision maker's risk assessment factors . The 

patient's risk assessment factor changed from 10% to 90%, and the decision maker's risk 

factor changed from 90% to 10%. For the same three systems of DCIS treatment and for 

initial replications bo = 20, the pilot experiment of the first stage is shown on table ## 

Table 16: CDIS pilot experiment for the sensitivity analysis; the first stage results 

L&Rad L.only lM,lstectomVl 

0.4265 0.4345 0.4058 

0.0138 0.0092 0.0401 

0.0031 0.0020 0.0090 

31 20 263 

For the final results of the pilot experiment after changing the patient's and the DM's risk 

assessment factors, in stage two, we re-run the L&Rad model 31 macro-replications; and 

we re-run the mastectomy model 263 macro-replications. 

Table 17: CDIS the second stage results, for the sensitivity analysis 

L&Rad L.only 

0.4245 0.4345 0.4070 

0.0028 0.0020 0.0027 
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The results show that the decision was sensitive to the change of patient's risk factor and 

the change of DM's risk factor, and the best system is changed to be lumpectomy only 

instead of Mastectomy. 

To check the effect of patient's illness conditions factor, utilizing Weibull 

Accelerated Failure Time model, on the expected utility of lumpectomy followed by 

radiation therapy of DCIS, we run the Lymph and Radiation simulation model (figure #) 

with different stay time distributions. We set the stay time of the Immediate Cancer and 

Invasive Cancer health states to be weibull ($1-., 1), where I-. is the scale parameter (0.08), 

and $ is the patient's illness conditions factor, <1>=1,2,3,4, and 5. 

For n=30 replications, patient's risk assessment factor 0.50, decision maker' risk 

assessment 0.50, and for two utility dependent performance measures, QAL Y and Cost, 

the results is shown on the following figure 19 

ExIrct Utility of 
~ctorqr FoIIo~d by Radation 'Iherapy ofIXIS 

0.493 

0.492 

0.491 

0.49 

0.489 

0.488 

0.487 

0 1 2 3 4 5 6 

pltient's illness conitiom factor, cJ) 

Figure 19: Expected utility of Lymph Radiation Therapy. The curve shows that the 

expected utility changes when the patient's illness conditions factor changes. 
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4.3. Discussi~m and Conclusion 

The imnortance of Hazen's stochastic tree was mentioned in the technical report, 

by Prof. Keefer! et al (2002), "Summary of Decision Analysis Applications in the 

Operations Res~arch Literature, 1990-2001". The report declared that the work of Hazen 

et al. (1998), who provided an introduction to stochastic trees and related software to be 

used in medical decision making, is one of the application that presented significant detail 

about a particu~ar decision analysis methodological issue (Keefer, 2002). However, there 

are still no wid¢ly accepted techniques for incorporating variability in the estimates of the 

parameters/ pe~formance measures of a decision tree. 

For cOn}plex stochastic decision trees with random variable parameters, 

simulation app~ication of such a system is important in order to introduce key 

components an~ processes that provide a source of data for reliable implementation. One 

of the many prqblems for which simulation has been found to be a useful and powerful 

tool is designing and operating stochastic models, such as probabilistic trees. The 

stochastic tree ~s a model which could integrate of simulations, survival analysis 

approaches, an<ll ranking-selection procedures (Hazen, 1992, Hazen & Pellissier, 1996). It 

would be bene~icial to add development to the stochastic tree for decision analyses for 

medical interv~ntion in recurrent diseases. 

In this r~search, we used parametric survival models, such as the Weibull 

Accelerated Failure Time Model, to include patient's conditional survival probability 

accurately. Moteover, in our enhanced model on Hazen's stochastic tree, we combined 

the Wei bull Accelerated Failure Time model into our model to fill the gap between the 
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experimental and actual/current medical intervention for recurrent diseases or injury. 

Also, our multi~objective simulation-based model has the facility to use not only 

exponential distribution for states sojourn but also the parametric survival models too. 

"There have been fewer methods proposed and thus little software developed for 

analyzing multiple test data, due to difficulties relating to the covariances among the 

variables" Westfall et al. (1999). Our multi-objective simulation-based model developed 

for analyzing multiple performance measure/test without difficulties relating to the 

covariances among the variables. 

Our multi-objective simulation-based model gives the facility to the decision 

maker to set his/her policy through the use of Multi-Attributes Utility theory (MAU). 

Moreover, the use of MAU is appropriate for multi-objective functions; this would be an 

advantage over the dynamic programming principle. In the analysis, utility theory 

involves gathering the measures into a "Unified-Measure" of the desirability of each 

alternative. Utility theory provides the basis for the appropriate approach to combine the 

apparently unlike measures. 

Our simulation model is easy to use and compute in chronic cases, when the 

chance of moving between health states increases with age. It fits with the fact that aging 

increases the risk of transition from a healthy state to one of sickness, thereby violating 

the constant state-transition probability assumption in Markov chains (e.g. using the 

Weibull Accelerated Failure Time Model). Our system can behave as Markov processes 

that are used to model disease over longer time periods. In addition to behaving similarly 

to the pure Markov model our simulation model fits with the semi-Markov process 

model. It is a model useful in analyzing complex dynamic systems, and its transition rates 
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in a particular state depend on the time already spent in that state (sojourn time), but they 

do not depend on the path by which the present state was reached. 

In our simulation model, we used the MAU to unify multi tests (multi­

performance measures) into one scale (Morrice, 1998). Thus we utilized a Ranking­

Selection procedure of Rinott, (1978), to select the system with the largest expected 

performance measures (Bechhofer 1995, Kim-Nelson 2001, Nelson-Miler 1995). 

The weights represent another confounder and affect the relative importance of a 

performance measures, its impact on the variation, and its impact on the computing 

should be tested by sensitivity analysis. Our example, of three medical interventions for 

breast cancer treatment, demonstrates that our approach can be applied to realistic 

medical problems in which simulation is utilized. 

The idea presented by Chick et al (1998, 2001), who use a Bayesian technique to 

determine the number of additional replications required to reduce the risk of an incorrect 

selection, one could extend our simulation based methodology to include their work; 

however, their work focuses on a single criterion. That would ease some of the 

computational burden associated with the used R&S procedures. Using of common 

random numbers would facilitate variance reduction to our work that has combination 

with R&S procedures (Nelson et al 1995 and Goldsman et al 1998). 
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4.4. Our approach Advantages. 

Applying R&S procedures on MAD theory outputs allows good performance on 

one criterion to compensate for poor performance on another, and we assess the 

comparative importance of each criterion. Previous work on multivariate R&S 

procedures has been limited by the lack of a trade-off method that allows the decision 

maker to combine explicitly different performance measures (Gupta, 1979). 

Our approach closely relates to the common medical-business management of 

assigning preferences to different performance measures. Similar to the solution achieved 

by Morrice et al (1998 and 2001), in industry, our solution does not require complications 

like a covariance matrix, which was used by Gupta (1979). 

Our approach leads to a reasonable decision; for example, it avoids Kim and Lin 

(1999) approach that in some situations focuses on maximizing the poorest performing 

criterion (they used the MaxiMin approach). And, unlike Kim and Lin, we do not 

perform "several approaches for the final decision" 

Certainly, there are several issues that must be recognized as important for the 

success of our approach. Because we use a payoff model this requires elicitation by 

decision maker of both a utility function for each measure, for example: QAL Y and 

COST, as well as a "weight," or indication of relative importance. Techniques for 

handling these types of elicitations are available (e.g. Clemen 1991 and Keeney and 

Raiffa 1976). And for patient's utility assessment, we use Hazen's payoff approach; this 

requires the physician to elicit from the patient his or her risk assessment. 

The idea for the methodology outlined in this research is based on integration of 

an enhanced medical stochastic model, for evaluating multi medical 
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intervention/treatment outcomes, with real decision makers, who use decision inputs 

computed by simulation experiments combining patient's preferences, condition, and 

health states. 

Our work result represents a combination of two sound theories: multi-attribute 

utility theory and ranking and selection with an enhancement/extension of Hazen's 

stochastic tree model using simulation. This synthesis extends the use of medical 

stochastic models, simulation, and ranking-selection literature by accommodating 

multiple criteria, and provides another application area for multi-attribute utility theory. 
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