2,235 research outputs found

    Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke

    Get PDF
    It is well documented that neurological deficits after stroke can disrupt motor control processes that affect the smoothness of reaching movements. The smoothness of hand trajectories during multi-joint reaching depends on shoulder and elbow joint angular velocities and their successive derivatives as well as on the instantaneous arm configuration and its rate of change. Right-handed survivors of unilateral hemiparetic stroke and neurologically-intact control participants held the handle of a two-joint robot and made horizontal planar reaching movements. We decomposed endpoint jerk into components related to shoulder and elbow joint angular velocity, acceleration, and jerk. We observed an abnormal decomposition pattern in the most severely impaired stroke survivors consistent with deficits of inter-joint coordination. We then used numerical simulations of reaching movements to test whether the specific pattern of inter-joint coordination deficits observed experimentally could be explained by either a general increase in motor noise related to weakness or by an impaired ability to compensate for multi-joint interaction torque. Simulation results suggest that observed deficits in movement smoothness after stroke more likely reflect an impaired ability to compensate for multi-joint interaction torques rather than the mere presence of elevated motor noise

    Robot Learning from Human Demonstration: Interpretation, Adaptation, and Interaction

    Get PDF
    Robot Learning from Demonstration (LfD) is a research area that focuses on how robots can learn new skills by observing how people perform various activities. As humans, we have a remarkable ability to imitate other human’s behaviors and adapt to new situations. Endowing robots with these critical capabilities is a significant but very challenging problem considering the complexity and variation of human activities in highly dynamic environments. This research focuses on how robots can learn new skills by interpreting human activities, adapting the learned skills to new situations, and naturally interacting with humans. This dissertation begins with a discussion of challenges in each of these three problems. A new unified representation approach is introduced to enable robots to simultaneously interpret the high-level semantic meanings and generalize the low-level trajectories of a broad range of human activities. An adaptive framework based on feature space decomposition is then presented for robots to not only reproduce skills, but also autonomously and efficiently adjust the learned skills to new environments that are significantly different from demonstrations. To achieve natural Human Robot Interaction (HRI), this dissertation presents a Recurrent Neural Network based deep perceptual control approach, which is capable of integrating multi-modal perception sequences with actions for robots to interact with humans in long-term tasks. Overall, by combining the above approaches, an autonomous system is created for robots to acquire important skills that can be applied to human-centered applications. Finally, this dissertation concludes with a discussion of future directions that could accelerate the upcoming technological revolution of robot learning from human demonstration

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    Macro-continuous computed torque algorithm for a three-dimensional eel-like robot

    Get PDF
    International audienceThis paper presents the dynamic modeling of a continuous three-dimensional swimming eel-like robot. The modeling approach is based on the "geometrically exact beam theory" and on that of Newton-Euler, as it is well known within the robotics community. The proposed algorithm allows us to compute the robot's Galilean movement and the control torques as a function of the expected internal deformation of the eel's body

    Singularity Avoidance of Task-Redundant Robots in Pointing Tasks: On Nullspace Projection and Cardan Angles as Orientation Coordinates

    Get PDF
    Robot manipulators are often deployed in tool-symmetric tasks, which only requires defining end effector position and pointing direction. In this case six-axis serial industrial robots and full-mobility (spatial) parallel robots have one degree of task redundancy. Using Cardan angles as orientation coordinates, a unified formulation of the position-level and second-order inverse kinematics problem is set up for both robot types. An efficient scheme for difference-quotient approximation of gradients of performance criteria for projection into the task redundancy's nullspace is presented. The simulation example of a hexapod robot shows that avoiding and exiting parallel robot singularities of type II is possible with the nullspace of all joints. The nullspace controller scheme can be used in offline trajectory optimization and in online motion generation

    Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives

    Get PDF
    In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS) generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space), they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well
    corecore