442 research outputs found

    Design of a reliability methodology: Modelling the influence of temperature on gate Oxide reliability

    Get PDF
    An Integrated Reliability Methodology (IRM) is presented that encompasses the changes that technology growth has brought with it and includes several new device degradation models. Each model is based on a physics of failure approach and includes on the effects of temperature. At all stages the models are verified experimentally on modern deep sub-micron devices. The research provides the foundations of a tool which gives the user the opportunity to make appropriate trade-offs between performance and reliability, and that can be implemented in the early stages of product development

    FUNDAMENTAL ISSUE IN SPACE ELECTRONICS RELIABILITY: NEGATIVE BIAS TEMPERATURE INSTABILITY

    Get PDF
    Negative Bias Temperature Instability (NBTI) in silicon based metal-oxide-semiconductor-field-effect-transistors (MOSFETs) has been recognized as a critical reliability issue for advanced space qualified electronics. The phenomenon manifests itself as a modification of threshold voltage (Vth) resulting in degraded signal timing paths, and ultimately circuit failure. Despite the obvious importance of the issue, a standard measurement protocol has yet to be determined. This is a consequence of a large amount of complexity introduced by the strong dependencies of NBTI on temperature, electric field, frequency, duty cycle, and gate dielectric composition. We have improved upon the traditional measurement techniques which suffered from an underestimation of the magnitude of Vth shifts because they failed to account for trapped charge relaxation. Specifically, we have developed a means for measuring the maximum effect of NBTI by virtue of a method that can continuously monitor the Vth(t) without having to remove the stressing voltage. The interpretation methodology for this technique is explained in detail and the relevant approximations are justified. We have evidenced temperature and vertical electric field dependent Vth shifts in SiO2 and HfSiON devices. Furthermore, we have collected substantial evidence that the traditional \uf044Vth=At\uf061 analysis fails to explain the experimental data in the early time domain. Finally, we have discovered that \uf044Vth(t) on p-channel field effect transistors with HfSiON gate dielectrics is dependent upon the magnitude of Vds during the stressing cycle. To our knowledge this is not anticipated by any prior modeling attempts. We justify the exclusion of short channel effects as a possibility, leading us to conclude that positive charge in the dielectric stack is laterall

    Reliability Investigations of MOSFETs using RF Small Signal Characterization

    Get PDF
    Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract Symbols Acronyms 1 Introduction 2 Fundamentals 2.1 MOSFETs Scaling Trends and Challenges 2.1.1 Silicon on Insulator Technology 2.1.2 FDSOI Technology 2.2 Reliability of Semiconductor Devices 2.3 RF Reliability 2.4 MOSFET Degradation Mechanisms 2.4.1 Hot Carrier Degradation 2.4.2 Bias Temperature Instability 2.5 Self-heating 3 RF Characterization of fully-depleted Silicon on Insulator devices 3.1 Scattering Parameters 3.2 S-parameters Measurement Flow 3.2.1 Calibration 3.2.2 De-embedding 3.3 Small-Signal Model 3.3.1 Model Parameters Extraction 3.3.2 Transistor Figures of Merit 3.4 Characterization Results 4 Self-heating assessment in Multi-finger Devices 4.1 Self-heating Characterization Methodology 4.1.1 Output Conductance Frequency dependence 4.1.2 Temperature dependence of Drain Current 4.2 Thermal Resistance Behavior 4.2.1 Thermal Resistance Scaling with number of fingers 4.2.2 Thermal Resistance Scaling with finger spacing 4.2.3 Thermal Resistance Scaling with GateWidth 4.2.4 Thermal Resistance Scaling with Gate length 4.3 Thermal Resistance Model 4.4 Design for Thermal Resistance Optimization 5 Bias Temperature Instability Investigation 5.1 Impact of Bias Temperature Instability stress on Device Metrics 5.1.1 Experimental Details 5.1.2 DC Parameters Drift 5.1.3 RF Small-Signal Parameters Drift 5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method 5.2.1 Measurement Methodology 5.2.2 Results and Discussion 6 Investigation of Hot-carrier Degradation 6.1 Impact of Hot-carrier stress on Device performance 6.1.1 DC Metrics Degradation 6.1.2 Impact on small-signal Parameters 6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs 6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling 6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation 6.2.3 Effect of Source and Drain Placement in Multi-finger Layout 6.3 Vth turn-around effect in p-MOSFET 7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters 7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability 7.2 TCAD Dynamic Simulation of Defects 7.2.1 Fixed Charges 7.2.2 Interface Traps near Gate 7.2.3 Interface Traps near Spacer Region 7.2.4 Combination of Traps 7.2.5 Drain Series Resistance effect 7.2.6 DVth Correction 7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation 8 Conclusion and Recommendations 8.1 General Conclusions 8.2 Recommendations for Future Work A Directly measured S-parameters and extracted Y-parameters B Device Dimensions for Thermal Resistance Modeling C Frequency response of hot-carrier degradation (HCD) D Localization Effect of Interface Traps Bibliograph

    Transistor Degradations in Very Large-Scale-Integrated CMOS Technologies

    Get PDF
    The historical evolution of hot carrier degradation mechanisms and their physical models are reviewed and an energy-driven hot carrier aging model is verified that can reproduce 62-nm-gate-long hot carrier degradation of transistors through consistent aging-parameter extractions for circuit simulation. A long-term hot carrier-resistant circuit design can be realized via optimal driver strength controls. The central role of the V GS ratio is emphasized during practical case studies on CMOS inverter chains and a dynamic random access memory (DRAM) word-line circuit. Negative bias temperature instability (NBTI) mechanisms are also reviewed and implemented in a hydrogen reaction-diffusion (R-D) framework. The R-D simulation reproduces time-dependent NBTI degradations interpreted into interface trap generation, Δ N it with a proper power-law dependency on time. The experimental evidence of pre-existing hydrogen-induced Si–H bond breakage is also proven by the quantifying R-D simulation. From this analysis, a low-pressure end-of-line (EOL) anneal can reduce the saturation level of NBTI degradation, which is believed to be caused by the outward diffusion of hydrogen from the gate regions and therefore prevents further breakage of Si–H bonds in the silicon-oxide interfaces

    DEEP SUBMICRON CMOS VLSI CIRCUIT RELIABILITY MODELING, SIMULATION AND DESIGN

    Get PDF
    CMOS VLSI circuit reliability modeling and simulation have attracted intense research interest in the last two decades, and as a result almost all IC Design For Reliability (DFR) tools now try to incrementally simulate device wearout mechanisms in iterative ways. These DFR tools are capable of accurately characterizing the device wearout process and predicting its impact on circuit performance. Nevertheless, excessive simulation time and tedious parameter testing process often limit popularity of these tools in product design and fabrication. This work develops a new SPICE reliability simulation method that shifts the focus of reliability analysis from device wearout to circuit functionality. A set of accelerated lifetime models and failure equivalent circuit models are proposed for the most common MOSFET intrinsic wearout mechanisms, including Hot Carrier Injection (HCI), Time Dependent Dielectric Breakdown (TDDB), and Negative Bias Temperature Instability (NBTI). The accelerated lifetime models help to identify the most degraded transistors in a circuit in terms of the device's terminal voltage and current waveforms. Then corresponding failure equivalent circuit models are incorporated into the circuit to substitute these identified transistors. Finally, SPICE simulation is performed again to check circuit functionality and analyze the impact of device wearout on circuit operation. Device wearout effects are lumped into a very limited number of failure equivalent circuit model parameters, and circuit performance degradation and functionality are determined by the magnitude of these parameters. In this new method, it is unnecessary to perform a large number of small-step SPICE simulation iterations. Therefore, simulation time is obviously shortened in comparison to other tools. In addition, a reduced set of failure equivalent circuit model parameters, rather than a large number of device SPICE model parameters, need to be accurately characterized at each interim wearout process. Thus device testing and parameter extraction work are also significantly simplified. These advantages will allow circuit designers to perform quick and efficient circuit reliability analyses and to develop practical guidelines for reliable electronic designs

    Simulation of charge-trapping in nano-scale MOSFETs in the presence of random-dopants-induced variability

    Get PDF
    The growing variability of electrical characteristics is a major issue associated with continuous downscaling of contemporary bulk MOSFETs. In addition, the operating conditions brought about by these same scaling trends have pushed MOSFET degradation mechanisms such as Bias Temperature Instability (BTI) to the forefront as a critical reliability threat. This thesis investigates the impact of this ageing phenomena, in conjunction with device variability, on key MOSFET electrical parameters. A three-dimensional drift-diffusion approximation is adopted as the simulation approach in this work, with random dopant fluctuations—the dominant source of statistical variability—included in the simulations. The testbed device is a realistic 35 nm physical gate length n-channel conventional bulk MOSFET. 1000 microscopically different implementations of the transistor are simulated and subjected to charge-trapping at the oxide interface. The statistical simulations reveal relatively rare but very large threshold voltage shifts, with magnitudes over 3 times than that predicted by the conventional theoretical approach. The physical origin of this effect is investigated in terms of the electrostatic influences of the random dopants and trapped charges on the channel electron concentration. Simulations with progressively increased trapped charge densities—emulating the characteristic condition of BTI degradation—result in further variability of the threshold voltage distribution. Weak correlations of the order of 10-2 are found between the pre-degradation threshold voltage and post-degradation threshold voltage shift distributions. The importance of accounting for random dopant fluctuations in the simulations is emphasised in order to obtain qualitative agreement between simulation results and published experimental measurements. Finally, the information gained from these device-level physical simulations is integrated into statistical compact models, making the information available to circuit designers

    Negative Bias Temperature Instability And Charge Trapping Effects On Analog And Digital Circuit Reliability

    Get PDF
    Nanoscale p-channel transistors under negative gate bias at an elevated temperature show threshold voltage degradation after a short period of stress time. In addition, nanoscale (45 nm) n-channel transistors using high-k (HfO2) dielectrics to reduce gate leakage power for advanced microprocessors exhibit fast transient charge trapping effect leading to threshold voltage instability and mobility reduction. A simulation methodology to quantify the circuit level degradation subjected to negative bias temperature instability (NBTI) and fast transient charge trapping effect has been developed in this thesis work. Different current mirror and two-stage operation amplifier structures are studied to evaluate the impact of NBTI on CMOS analog circuit performances for nanoscale applications. Fundamental digital circuit such as an eleven-stage ring oscillator has also been evaluated to examine the fast transient charge transient effect of HfO2 high-k transistors on the propagation delay of ring oscillator performance. The preliminary results show that the negative bias temperature instability reduces the bandwidth of CMOS operating amplifiers, but increases the amplifier\u27s voltage gain at mid-frequency range. The transient charge trapping effect increases the propagation delay of ring oscillator. The evaluation methodology developed in this thesis could be extended to study other CMOS device and circuit reliability issues subjected to electrical and temperature stresses

    Negative Bias Temperature Instability And Charge Trapping Effects On Analog And Digital Circuit Reliability

    Get PDF
    Nanoscale p-channel transistors under negative gate bias at an elevated temperature show threshold voltage degradation after a short period of stress time. In addition, nanoscale (45 nm) n-channel transistors using high-k (HfO2) dielectrics to reduce gate leakage power for advanced microprocessors exhibit fast transient charge trapping effect leading to threshold voltage instability and mobility reduction. A simulation methodology to quantify the circuit level degradation subjected to negative bias temperature instability (NBTI) and fast transient charge trapping effect has been developed in this thesis work. Different current mirror and two-stage operation amplifier structures are studied to evaluate the impact of NBTI on CMOS analog circuit performances for nanoscale applications. Fundamental digital circuit such as an eleven-stage ring oscillator has also been evaluated to examine the fast transient charge transient effect of HfO2 high-k transistors on the propagation delay of ring oscillator performance. The preliminary results show that the negative bias temperature instability reduces the bandwidth of CMOS operating amplifiers, but increases the amplifier\u27s voltage gain at mid-frequency range. The transient charge trapping effect increases the propagation delay of ring oscillator. The evaluation methodology developed in this thesis could be extended to study other CMOS device and circuit reliability issues subjected to electrical and temperature stresses
    corecore