9,213 research outputs found

    Mammalian Brain As a Network of Networks

    Get PDF
    Acknowledgements AZ, SG and AL acknowledge support from the Russian Science Foundation (16-12-00077). Authors thank T. Kuznetsova for Fig. 6.Peer reviewedPublisher PD

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    An "All Hands" Call to the Social Science Community: Establishing a Community Framework for Complexity Modeling Using Agent Based Models and Cyberinfrastructure

    Get PDF
    To date, many communities of practice (COP) in the social sciences have been struggling with how to deal with rapidly growing bodies of information. Many CoPs across broad disciplines have turned to community frameworks for complexity modeling (CFCMs) but this strategy has been slow to be discussed let alone adopted by the social sciences communities of practice (SS-CoPs). In this paper we urge the SS-CoPs that it is timely to develop and establish a CBCF for the social sciences for two major reasons: the rapid acquisition of data and the emergence of critical cybertools which can facilitate agent-based, spatially-explicit models. The goal of this paper is not to prescribe how a CFCM might be set up but to suggest of what components it might consist and what its advantages would be. Agent based models serve the establishment of a CFCM because they allow robust and diverse inputs and are amenable to output-driven modifications. In other words, as phenomena are resolved by a SS-CoP it is possible to adjust and refine ABMs (and their predictive ability) as a recursive and collective process. Existing and emerging cybertools such as computer networks, digital data collections and advances in programming languages mean the SS-CoP must now carefully consider committing the human organization to enabling a cyberinfrastructure tool. The combination of technologies with human interfaces can allow scenarios to be incorporated through 'if' 'then' rules and provide a powerful basis for addressing the dynamics of coupled and complex social ecological systems (cSESs). The need for social scientists to be more engaged participants in the growing challenges of characterizing chaotic, self-organizing social systems and predicting emergent patterns makes the application of ABMs timely. The enabling of a SS-CoP CFCM human-cyberinfrastructure represents an unprecedented opportunity to synthesize, compare and evaluate diverse sociological phenomena as a cohesive and recursive community-driven process.Community-Based Complex Models, Mathematics, Social Sciences

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability

    Get PDF
    The integrated - environmental, economic and social - analysis of climate change calls for a paradigm shift as it is fundamentally a problem of complex, bottom-up and multi-agent human behaviour. There is a growing awareness that global environmental change dynamics and the related socio-economic implications involve a degree of complexity that requires an innovative modelling of combined social and ecological systems. Climate change policy can no longer be addressed separately from a broader context of adaptation and sustainability strategies. A vast body of literature on agent-based modelling (ABM) shows its potential to couple social and environmental models, to incorporate the influence of micro-level decision making in the system dynamics and to study the emergence of collective responses to policies. However, there are few publications which concretely apply this methodology to the study of climate change related issues. The analysis of the state of the art reported in this paper supports the idea that today ABM is an appropriate methodology for the bottom-up exploration of climate policies, especially because it can take into account adaptive behaviour and heterogeneity of the system's components.Review, Agent-Based Modelling, Socio-Ecosystems, Climate Change, Adaptation, Complexity.
    corecore