4,961 research outputs found

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Generation and Rendering of Interactive Ground Vegetation for Real-Time Testing and Validation of Computer Vision Algorithms

    Get PDF
    During the development process of new algorithms for computer vision applications, testing and evaluation in real outdoor environments is time-consuming and often difficult to realize. Thus, the use of artificial testing environments is a flexible and cost-efficient alternative. As a result, the development of new techniques for simulating natural, dynamic environments is essential for real-time virtual reality applications, which are commonly known as Virtual Testbeds. Since the first basic usage of Virtual Testbeds several years ago, the image quality of virtual environments has almost reached a level close to photorealism even in real-time due to new rendering approaches and increasing processing power of current graphics hardware. Because of that, Virtual Testbeds can recently be applied in application areas like computer vision, that strongly rely on realistic scene representations. The realistic rendering of natural outdoor scenes has become increasingly important in many application areas, but computer simulated scenes often differ considerably from real-world environments, especially regarding interactive ground vegetation. In this article, we introduce a novel ground vegetation rendering approach, that is capable of generating large scenes with realistic appearance and excellent performance. Our approach features wind animation, as well as object-to-grass interaction and delivers realistically appearing grass and shrubs at all distances and from all viewing angles. This greatly improves immersion, as well as acceptance, especially in virtual training applications. Nevertheless, the rendered results also fulfill important requirements for the computer vision aspect, like plausible geometry representation of the vegetation, as well as its consistence during the entire simulation. Feature detection and matching algorithms are applied to our approach in localization scenarios of mobile robots in natural outdoor environments. We will show how the quality of computer vision algorithms is influenced by highly detailed, dynamic environments, like observed in unstructured, real-world outdoor scenes with wind and object-to-vegetation interaction

    Spatial Sound Rendering – A Survey

    Get PDF
    Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    ReLiShaft: realistic real-time light shaft generation taking sky illumination into account

    Get PDF
    © 2018 The Author(s) Rendering atmospheric phenomena is known to have its basis in the fields of atmospheric optics and meteorology and is increasingly used in games and movies. Although many researchers have focused on generating and enhancing realistic light shafts, there is still room for improvement in terms of both qualification and quantification. In this paper, a new technique, called ReLiShaft, is presented to generate realistic light shafts for outdoor rendering. In the first step, a realistic light shaft with respect to the sun position and sky colour in any specific location, date and time is constructed in real-time. Then, Hemicube visibility-test radiosity is employed to reveal the effect of a generated sky colour on environments. Two different methods are considered for indoor and outdoor rendering, ray marching based on epipolar sampling for indoor environments, and filtering on regular epipolar of z-partitioning for outdoor environments. Shadow maps and shadow volumes are integrated to consider the computational costs. Through this technique, the light shaft colour is adjusted according to the sky colour in any specific location, date and time. The results show different light shaft colours in different times of day in real-time
    corecore