1,284 research outputs found

    Piezoelectric Transducers Based on Aluminum Nitride and Polyimide for Tactile Applications

    Get PDF
    The development of micro systems with smart sensing capabilities is paving the way to progresses in the technology for humanoid robotics. The importance of sensory feedback has been recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it can be exploited not only to avoid objects slipping during their manipulation but also to allow safe interaction with humans and unknown objects and environments. In order to ensure the minimal deformation of an object during subtle manipulation tasks, information not only on contact forces between the object and fingers but also on contact geometry and contact friction characteristics has to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in dexterous manipulation capabilities and in the evaluation of objects properties such as type of material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of unstructured environments is made possible by touch through the determination of stress distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure detection systems should be integrated as an artificial tactile system. As illustrated in the Chapter I, the role of external stimuli detection in humans is provided by a great number of sensorial receptors: they are specialized endings whose structure and location in the skin determine their specific signal transmission characteristics. Especially, mechanoreceptors are specialized in the conversion of the mechanical deformations caused by force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by the central nervous system. Highly miniaturized systems based on MEMS technology seem to imitate properly the large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient application of flexible active materials to convert the mechanical pressure or stress into a usable electric signal (voltage or current). In the emerging field of soft active materials, able of large deformation, piezoelectrics have been recognized as a really promising and attractive material in both sensing and actuation applications. As outlined in Chapter II, there is a wide choice of materials and material forms (ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe) which are actively piezoelectric and exhibit features more or less attractive. Among them, aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but, at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for transducers and high thermal conductivity which implies low thermal drifts. The high chemical stability allows AlN to be used in humid environments. Moreover, all the above properties and its deposition method make AlN compatible with CMOS technology. Exploiting the features of the AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are proposed in this thesis. They are fabricated on general purpose Kapton™ substrate, exploiting the flexibility of the polymer and the electrical stability of the semiconductor at the same time. As matter of fact, the crystalline layers release a compressive stress over the polymer, generating three-dimensional structures with reduced stiffness, compared to the semiconductor materials. In Chapter III, a mathematical model to calculate the residual stresses which arise because of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice constants between the substrate and the epitaxially grown films is adopted. The theoretical equation is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional structures on compressive residual stress. Moreover, FEM simulations and theoretical models analysis are developed in order to qualitative explore the operation principle of curved membranes, which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-actuators and for the related design optimization. For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an exhaustive electromechanical characterization of the devices is carried out. A complete description of the microfabrication processes is also provided. As shown in Chapter IV, standard microfabrication techniques are employed to fabricate the array of DSDTs. The overall microfabrication process involves deposition of metal and piezoelectric films, photolithography and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT devices are designed and developed according to FEM and theoretical analysis and following the typical requirements of force/pressure systems for tactile applications. Experimental analyses are also accomplished to extract the relationship between the compressive residual stress due to the aluminum nitride and the geometries of the devices. They reveal different deformations, proving the dependence of the geometrical features of the three-dimensional structures on residual stress. Moreover, electrical characterization is performed to determine capacitance and impedance of the DSDTs and to experimentally calculate the relative dielectric constant of sputtered AlN piezoelectric film. In order to investigate the mechanical behaviour of the curved circular transducers, a characterization of the flexural deflection modes of the DSDT membranes is carried out. The natural frequency of vibrations and the corresponding displacements are measured by a Laser Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive the piezo-DSDTs. Finally, being developed for tactile sensing purpose, the proposed technology is tested in order to explore the electromechanical response of the device when impulsive dynamic and/or long static forces are applied. The study on the impulsive dynamic and long static stimuli detection is then performed by using an ad hoc setup measuring both the applied loading forces and the corresponding generated voltage and capacitance variation. These measurements allow a thorough test of the sensing abilities of the AlN-based DSDT cells. Finally, as stated in Chapter V, the proposed technology exhibits an improved electromechanical coupling with higher mechanical deformation per unit energy compared with the conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is well suited to realize large area tactile sensors for robotics applications, opening up new perspectives to the development of latest generation biomimetic sensors and allowing the design and the fabrication of miniaturized devices

    Novel Configurations of Ionic Polymer-Metal Composites (IPMCs) As Sensors, Actuators, and Energy Harvesters

    Get PDF
    This dissertation starts with describing the IPMC and defining its chemical structure and fundamental characteristics in Chapter 1. The application of these materials in the form of actuator, sensor, and energy harvester are reported through a literature review in Chapter 2. The literature review involves some electromechanical modeling approaches toward physics of the IPMC as well as some of the experimental results and test reports. This chapter also includes a short description of the manufacturing process of the IPMC. Chapter 3 presents the mechanical modeling of IPMC in actuation. For modeling, shear deformation expected not to be significant. Hence, the Euler-Bernoulli beam theory considered to be the approach defining the shape and critical points of the proposed IPMC elements. Description of modeling of IPMC in sensing mode is in Chapter 4. Since the material undergoes large deformation, large beam deformation is considered for both actuation and sensing model. Basic configurations of IPMC as sensor and actuator are introduced in Chapter 5. These basic configurations, based on a systematic approach, generate a large number of possible configurations. Based on the presented mechanisms, some parameters can be defined, but the selection of a proper arrangement remained as an unknown parameter. This mater is addressed by introducing a decision-making algorithm. A series of design for slit cylindrical/tubular/helical IPMC actuators and sensors are introduced in chapter 5. A consideration related to twisting of IPMCs in helical formations is reported through some experiments. Combinations of these IPMC actuators and sensors can be made to make biomimetic robotic devices as some of them are discussed in this chapter and the following Chapters 6 and 7. Another set of IPMC actuator/sensor configurations are introduced as a loop sensor and actuator that are presented subsequently in Chapter 6. These configurations may serve as haptic and tactile feedback sensors, particularly for robotic surgery. Both of these configurations (loop and slit cylindrical) of IPMCs are discussed in details, and some experimental measurements and results are also carried out and reported. The model for different inputs is studied, and report of the feedback is presented. Various designs of these configurations of IPMC are also presented in chapter 7, including their extension to mechanical metamaterials and soft robots

    Advanced Design Concepts and Efficient Finite Element Modeling for Dielectric Elastomer Devices

    Get PDF
    Dielectric elastomers (DEs) offer their use in numerous applications, due to their advantages compared to conventional actuators and sensors. They excel in properties such as lightweight, energy efficiency, low-noise and inherent compliance, just to name a few. In particular, actuator and sensor systems based on membrane DEs show their potential in many fields, from the automotive industry to consumer electronics. Defined procedures which permit an efficient design process are required in order to allow the development of novel DE devices. Additionally, numerical methods for the optimization of such processes are of interest. The first part of this dissertation provides advanced design methods for actuator and sensor applications. For DE actuators, systems biased with permanent magnets are investigated and design rules are derived in order to maximize the stroke for a given load case. For DE sensors, the field of high pressure measurements is developed, introducing concepts for intrusive and nonintrusive sensor systems. In the second part of this dissertation, numerical methods for membrane DE actuators based on the Finite Element method are derived. The main focus is fast computation time and numerical efficiency. Two approaches are presented, one based on a two-dimensional continuum formulation and one based on a three-dimensional membrane formulation. The resulting models allow the investigation of local field distributions, such as stresses, thickness and electric field.Dielektrische Elastomere (DE) bieten sich durch ihre Vorteile gegenüber herkömmlichen Aktoren und Sensoren für viele Anwendungen an. Sie zeichnen sich aus durch geringes Gewicht, hohe Energieeffizienz, geräuschlosen Betrieb und inhärente Dehnbarkeit. Um die Entwicklung neuer DE Anwendungen voranzutreiben, werden effiziente Auslegungsprozesse benötigt. Zusätzlich sind numerische Methoden zur Optimierung solcher Prozesse von Interesse. Der erste Teil dieser Dissertation entwickelt fortgeschrittene Entwicklungsmethoden für Aktorund Sensorsysteme. Für DE Aktoren werden Systeme mit Permanentmagneten als Vorspannmechanismus untersucht und eine Prozedur zur Maximierung des Aktorhubs für eine vorgegebene Last hergeleitet. Für DE Sensoren wird das Feld der Hochdruckmessung erschlossen, indem Konzepte für intrusive und nicht-intrusive Druckmessungen entwickelt werden. Der zweite Teil dieser Dissertation leitet numerische Modelle für die Simulation von DE Aktoren basierend auf der Finite Elemente Methode her. Der Hauptfokus liegt hierbei auf schnellen Rechenzeiten und numerischer Effizienz. Der erste diskutierte Ansatz basiert auf einer zweidimensionalen Kontinuumsformulierung, während der zweite Ansatz auf einer dreidimensionalen Membranformulierung basiert. Die resultierenden Modelle erlauben die Untersuchung lokaler Feldverteilungen, beispielsweise der mechanischen Spannung, der Dickenänderung und dem elektrischen Feld

    The shape – morphing performance of magnetoactive soft materials

    Get PDF
    Magnetoactive soft materials (MSMs) are soft polymeric composites filled with magnetic particles that are an emerging class of smart and multifunctional materials with immense potentials to be used in various applications including but not limited to artificial muscles, soft robotics, controlled drug delivery, minimally invasive surgery, and metamaterials. Advantages of MSMs include remote contactless actuation with multiple actuation modes, high actuation strain and strain rate, self-sensing, and fast response etc. Having broad functional behaviours offered by the magnetic fillers embedded within non-magnetic matrices, MSMs are undoubtedly one of the most promising materials in applications where shape-morphing, dynamic locomotion, and reconfigurable structures are highly required. This review article provides a comprehensive picture of the MSMs focusing on the materials, manufacturing processes, programming and actuation techniques, behaviours, experimental characterisations, and device-related achievements with the current state-of-the-art and discusses future perspectives. Overall, this article not only provides a comprehensive overview of MSMs’ research and development but also functions as a systematic guideline towards the development of multifunctional, shape-morphing, and sophisticated magnetoactive devices

    Flexible Over-the-Tube Device for Soft-Tethered Colonoscopy

    Get PDF
    Soft-tethered colonoscopes were proposed for safe and effective colon navigation, yet the deployment of front-wheel actuated colonoscopes is hindered by contact interactions with the lumen along the entire soft tether. To mitigate this problem, this study introduces an over-the-tube flexible device aimed to assist colonoscope deployment. The device is composed of three pneumatically driven actuators devised to repeatedly perform a two-phase operation: (phase I) to advance along the tether up to a working position relatively close to the colonoscope’s tip; (phase II) to clamp and drag the tether forward, upon anchoring to colonic wall. This way, a distal tether portion is freed, thus reducing the aforementioned limitations and fostering effective front-wheel navigation. Considering anatomical/clinical constraints and a 2N resistive force, we designed and prototyped a system with an inner and outer diameter of 12 and 26 mm, respectively, a length of 91 mm, and operating pressures equal to 150, 50 and 15 kPa for clamping the tether, elongating the device and safely anchoring to the colonic wall, respectively. The device was successfully tested, achieving locomotion speeds up to 4.9 and 2.2 mm/s, and tether freeing rates up to 2.9 and 1.8 mm/s, in tabletop conditions and in a colon phantom, respectively

    Biohybrid robotics: From the nanoscale to the macroscale

    Full text link
    Biohybrid robotics is a field in which biological entities are combined with artificial materials in order to obtain improved performance or features that are difficult to mimic with hand-made materials. Three main level of integration can be envisioned depending on the complexity of the biological entity, ranging from the nanoscale to the macroscale. At the nanoscale, enzymes that catalyze biocompatible reactions can be used as power sources for self-propelled nanoparticles of different geometries and compositions, obtaining rather interesting active matter systems that acquire importance in the biomedical field as drug delivery systems. At the microscale, single enzymes are substituted by complete cells, such as bacteria or spermatozoa, whose self-propelling capabilities can be used to transport cargo and can also be used as drug delivery systems, for in vitro fertilization practices or for biofilm removal. Finally, at the macroscale, the combinations of millions of cells forming tissues can be used to power biorobotic devices or bioactuators by using muscle cells. Both cardiac and skeletal muscle tissue have been part of remarkable examples of untethered biorobots that can crawl or swim due to the contractions of the tissue and current developments aim at the integration of several types of tissue to obtain more realistic biomimetic devices, which could lead to the next generation of hybrid robotics. Tethered bioactuators, however, result in excellent candidates for tissue models for drug screening purposes or the study of muscle myopathies due to their three-dimensional architecture
    corecore