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Magnetoactive soft materials (MSMs) are soft polymeric composites filled with magnetic particles that
are an emerging class of smart and multifunctional materials with immense potentials to be used in var-
ious applications including but not limited to artificial muscles, soft robotics, controlled drug delivery,
minimally invasive surgery, and metamaterials. Advantages of MSMs include remote contactless actua-
tion with multiple actuation modes, high actuation strain and strain rate, self-sensing, and fast response
etc. Having broad functional behaviours offered by the magnetic fillers embedded within non-magnetic
matrices, MSMs are undoubtedly one of the most promising materials in applications where shape-
morphing, dynamic locomotion, and reconfigurable structures are highly required. This review article pro-
vides a comprehensive picture of the MSMs focusing on the materials, manufacturing processes, programming
and actuation techniques, behaviours, experimental characterisations, and device-related achievements with
the current state-of-the-art and discusses future perspectives. Overall, this article not only provides a com-
prehensive overview of MSMs’ research and development but also functions as a systematic guideline
towards the development of multifunctional, shape-morphing, and sophisticated magnetoactive devices.
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1. Introduction

Smart materials are known for changing their one or more
properties in a controlled fashion in the presence of external stim-
uli such as temperature [1,2], humidity [3,4], pH [5], electric field
[6-9], magnetic field [10-16], and light [2,17-21]. Such stimuli-
responsive materials possess static and dynamic properties that
can be controlled to provide various interesting functional beha-
viours, for example, shape memory effect, reconfigurable structure,
sensing, actuation etc. Therefore, soft intelligent materials are
attracted in many applications including soft robotics [22,23],
biomedical engineering [24,25], shape-morphing structures
[26,27], sensors and actuators [12,22-30].

Magnetoactive materials are one of the biggest categories of
smart materials [31-42]. These functional and intelligent materials
are capable of changing their mechanical properties such as elastic,
damping, form and shape in the presence of an external magnetic
field. Fundamentally, a magnetoactive material consists of two
major constituents: a non-magnetic matrix and magnetic fillers.
Depending on the type of matrix materials, various types of magne-
toactive materials can be categorized. Magnetoactive materials can
broadly be classified into twomain categories:magnetoactive fluids
and magnetoactive solids. Magnetorheological (MR) fluids and fer-
rofluids are the two widely-used examples of magnetoactive/mag-
netic fluids, in which magnetic particles ranging from micro-size
to nano-size are suspended in a carrier fluid [31,36,43,44]. On the
other hand,magnetic particles are lockedwithin a solid carriermed-
ium in the case of magnetic solids, the common examples of mag-
netic solids are MR elastomers, MR plastomers, and MR foams
[33,34,45–57,267]. In thepresenceof anexternallyappliedmagnetic
field, the magnetic fluids are widely known for changing their vis-
cosities and thus the damping properties, whereas the magnetoac-
tive solids are known for changing their elastic properties (e.g.,
moduli). Both functional materials have their own advantages and
have been widely used in various applications in which tunable
2

damping and elastic properties are desired, for example, in vibration
isolators and absorbers [31,34,35,58-67].

The applications of magnetoactive soft materials (MSMs) are
not limited to the areas in which their damping or elastic proper-
ties play a major role. In recent years, we have been observing an
exponential growth of MSMs’ applications in the areas such as
soft-robotics [68,69] biomedical fields [70], sensors and actuators
[71-75], and shape-morphing structures [3,26,30,76,77] etc., in
which the shape-morphing or shape-shifting phenomena of these
soft-bodied responsive composite materials are the main charac-
teristics [6,10,22,78,79]. In addition to magnetoactive soft elas-
tomeric materials, magnetic soft gel-like materials (e.g.,
hydrogels filled with magnetic particles) have attracted a huge
amount of interest in both the research community as well as in
the industry due to various appealing advantages over pure mag-
netic fluids [80,81] or magnetoactive solids [82-88]. Such MSMs
can demonstrate intricate shape-morphing phenomena even in
the presence of a small amount of externally applied magnetic field
[89]. Hereafter, ‘‘MSMs” is used throughout the article to refer to
such shape-morphing magnetoactive soft materials that include
mostly soft deformable elastomers and polymeric gels. The note-
worthy aptitudes of MSMs include fast realization, programmable
shape, and untethered control via an external magnetic field.
Moreover, MSMs demonstrate other interesting capabilities, for
example, locomotion [16,90,91], highly programable [92,93], and
precise shape transformation [94,95] and even remote heat gener-
ation [96,97]. These superior behaviours make MSMs one of the
most potential candidate materials in the field of soft robotics,
minimum invasive surgery, controlled drug delivery in precision
medicine, and other biomedical applications as well as in sensors
and actuators [26,30,77]. However, most of the research outputs
are still laboratory-based prototypes, and there is yet a big room
for improvements to implement such outstanding multifunctional
materials in industrial applications. Therefore, it is always note-
worthy to explore the latest research and development of MSMs.
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Very recently, there are a couple of excellent review papers
appearing in the literature that focus on various aspects of multi-
functional materials such as three-dimensional (3D) printing, also
known as additive manufacturing (AM) techniques, hydrogels and
other soft polymers and their smart variants, active filler materials,
different actuation mechanisms, and the wide range of potential
applications of soft smart materials [27,98-108]. For instance, Li
and Pumera [109] give an exhaustive overview of microscale soft
robots made of multifunctional soft and active materials including
MSMs. Their review is focused on different 3D printing techniques
of soft materials followed by an excellent account of microrobots
that can potentially be used in biomedical applications. A very sim-
ilar review is published by Soto et al. [110], in which they mainly
discussed different soft materials, actuation, and propulsion/loco
motion/navigation mechanisms of microscale soft robots. Further-
more, Tan et al. [104] focused on smart polymers that can be used
in manufacturing the so-called soft micro-machines. On the other
hand, Kim et al. [98] give an extensive overview of various soft
composites used in manufacturing the actuator, a key part is in
the soft robots. Likewise, Liu et al. [24] give an excellent account
of soft and active hydrogels and their applications in producing soft
micro-machines such as actuators, sensors, harvesters, function
coatings etc. that authors termed as ‘hydrogel machines’. In
another review, Li et al. [23] show how biomimicry inspired
researchers to design more complex and intricate soft small-scale
machines. In this case, their main focus is the design freedom
offered by the 3D printing techniques to manufacture soft materi-
als. Hydrogels and their smart variants such as magneto-gels,
electro-gels, pH/humidity/light-responsive gels are the key materi-
als in almost all microscale soft machines. For a wide range of
works focused on these multifunctional materials, we refer to
[29,38,106,107,111-117]. We have seen that the 3D printing is an
inseparable part of synthesising soft and active machines with
extremely complex geometries. For instance, Wan et al. [106] give
an illustrative account of the four-dimensional (4D) printing (3D
printing of active materials such as MSMs is typically known as
the 4D printing) of soft materials using direct ink writing (DIW),
a widely used 3D printing technique for highly viscous paste-like
Fig. 1. The overall concept of this review work. (a) Illustration of magnetoactive materi
materials.
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soft materials. Almost all of the aforementioned review works
focus on different soft materials, actuation methods, 3D printing
techniques, and potential applications in which activating fields
include heat, light, electric-field, magnetic-field, humidity, pH are
briefly discussed.

There are a few articles available in the literature focusing par-
ticularly on an actuation method, i.e., magnetic field activated
materials [41,69,116,118-120]. The arrangements of magnetic fil-
lers and external fields play critical roles in obtaining desired
shape-morphing features of MSMs. In that regard, Cao et al. [37]
extensively studied various manipulation techniques of micro-
and nano-objects with magnetic fields. Furthermore, in a compre-
hensive account, Sanchez et al. [121] theoretically studied the
magnetic-field activated microstructural changes experienced by
a hybrid MSM consisting of both soft and hard-magnetic fillers.
Using molecular dynamics simulations, they predicted that the
combined use of both types of filler particles will create more com-
plex deformation phenomena such as elongation and contraction
even under a single magnetic field depending on its magnitude.
Field-driven 3D printing techniques have been proved to be effec-
tive in improving microstructural and mechanical properties with
tailored characteristics of additively manufactured composites.
These fields include electric-field, magnetic-field and acoustic-
field. Very recently, Hu [122] put forward an extensive overview
on field-assisted 4D printing including materials, processes and
potential applications. Despite few review papers focusing on the
materials and mathematical modelling of MSMs, any extensive
review highlighting all key aspects of the MSMs such as materials,
manufacturing processes, design of actuation mechanisms, and
potential applications are still limited in the literature. One of the
first attempts in this area is due to Wu et al. (2020) [118]. Therein,
they particularly focus on the multifunctional soft magnetoactive
composites by giving a brief account of matrix materials and fillers,
fabrication techniques, functions and operations, and potential
applications. Furthermore, Eshaghi et al. (2021) [123] exhaustively
explored various bio-inspired design options that have been used
in prototyping flexible robots based on magnetoactive soft materi-
als. Very recently, Lucarini et al [266] reported an extensive review
als and (b) illustration of the workflow for the shape-morphing magnetoactive soft



Fig. 2. The key raw materials to manufacture MSMs. (a) Matrix materials and (b) magnetic fillers along with MSMs working mechanisms. *adapted from [144] and **adapted
from [11].
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only on hard-magnetic soft polymers ranging from material syn-
thesis to computaional modelling. To this end, to the best of our
knowledge, a comprehensive review focusing on programming
and actuation techniques, magnetoactive material characterisa-
tions and summarising all potential applications across the length
scale is yet to be delivered, in addition to materials and manufac-
turing techniques. We aim to fill this gap.

A plethora of remarkable successes in the field of MSM can be
seen in recent years via a synergistic utilization of various poly-
meric matrices, magnetic fillers, and advanced manufacturing
techniques (3D printing) [11,12,77,96,118,124]. This review aims
to provide a full picture of the advancement of MSMs including
the choices of materials to their potential applications. Yet, our
specific focus is the shape-morphing/shape-shifting phenomena
offered by the MSMs. The overall scope of the review work is also
provided in Fig. 1. First, we discuss the selections of suitable mate-
rials to manufacture MSMs. Thereafter, fabrication strategies using
conventional methods (e.g., moulding) and advanced manufactur-
ing methods (e.g., 3D printing) are discussed. After that, the pro-
gramming, actuation, and experimental characterization
behaviour of MSMs are discussed in detail. We then extensively
focus on the potential applications offered by the MSMs. In this
case, for the first time, we use the length-scale as the yardstick
to categorise various shape-morphing/shape-shifting devices made
out of MSMs. Finally, we summarize the recent advancements with
an outlook towards the development of multifunctional and
sophisticated MSMs devices.
2. MSMs: Materials and syntheses

2.1. Materials

MSMs are a multi-material system. They consist of two main
materials of distinct characteristics; the first one is a non-
magnetic matrix and the second one is the magnetic filler. For an
overview of the materials of MSMs see Fig. 2. The behaviour of
the MSMs highly depends on the properties of the bulk matrix
materials and the embedded magnetic fillers. A proper selection
of the materials and the right structural design is necessary to real-
ize the shape-morphing properties with programable deformation
as well as large strains under the application of external stimuli.
4

2.1.1. Matrices
The shape-morphing structures can be achieved with flexible

matrix materials that are mechanically soft (possess modulus from
104 to 109 Pa [125]). The commonly used soft materials to develop
MSMs are elastomeric polymers which can largely be classified
into silicones, acrylate-based polymers, and polyurethanes.
Another most widely-used soft materials are hydrogels; both syn-
thetic and natural hydrogels and even the use of shape memory
polymers as MSMs’ matrix is gaining popularity [26,30,77]. One
of the key requirements of the matrix materials for MSMs is their
high elastic nature. In other words, the matrix materials must pos-
sess a reversible deformation under the application of an external
load.

In order to achieve large deformations in MSMs, soft elastomers
are the best choice. The very common choice of the soft elastomer
is the commercially available silicone-based matrices (e.g., Ecoflex,
Elastosil, Sylgard, and polydimethylsiloxane (PDMS)) due to their
facile synthesis process, mechanical and thermal stability, low cyc-
lic dissipations, insensitive to environmental degradation, biocom-
patibility, and non-toxic nature [11,45,126-130]. In a uniform
magnetic field, a combination of hard-magnetic particles and soft
elastomers provide an intricate shape-morphing phenomenon
such as twisting, bending, jumping, crawling, and coiling etc
[131]. On the other hand, the combination of soft-magnetic parti-
cles and soft elastomers provide an excellent enhancement of the
elastic and damping properties, which are typically known as mag-
netorheological (MR) elastomers [33,45]. See Section 2.1.2 for the
definition of soft-magnetic and hard-magnetic particles.

Other types of elastomeric matrices are acrylic-based polymers
which can be soft at different degrees by tuning the crosslinking
amount. One of the salient features of acrylic-based polymers is
that at the same time they facilitate 3D printing via photopolymer-
ization (e.g., micro-stereolithography [132]) due to the low viscos-
ity of the resin. Such 3D printable soft materials can also be mixed
with magnetic nanoparticles (MNPs) to develop magnetoactive
materials [133-135]. Hydrogels are another category of matrix
materials that have attracted tremendous attention to the develop-
ment of MSMs thanks to their extreme to medium softness, bio-
compatibility etc [24,80,84,86,87,136-138]. Hydrogels are
polymers that can contain water up to 90 wt% in polymeric net-
works. A common example of hydrogels is ethylene glycol (EG)-
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based polymers. Recently, the gelatin-based hydrogel has also been
used as a matrix material to develop untethered magnetic hydrogel
milli grippers [139] and even the use of highly flexible double net-
work hydrogels has been reported [140]. Other hydrogels such as
alginate-based [141,142], alginate-methylcellulose based [137],
and collagen-based [143] MSMs have also been demonstrated.
Compared to elastomers (e.g., silicone-based), magnetic hydrogels
have shown significant advantages for in vivo applications, because
of their superior biocompatibility, as well as their soft and wet nat-
ure [140]. Furthermore, shape memory polymers (SMPs) such as
polycaprolactone (PCL) are also used as the matrix materials in
MSMs [94]. In SMPs, magnetic particles are used as the media for
remote heating mechanisms. The magnetic particles vibrate within
the polymer network in the presence of an alternating magnetic
field and generate the heat required for the shape-morphing phe-
nomena of SMPs, for example, shape locking [94,96].
2.1.2. Magnetic fillers
The typical magnetic fillers are ferromagnetic particles and are

accountable for the responsive behaviour of the MSMs unless
otherwise a shape memory polymer is used as the matrix material.
The magnetic fillers are of two types: the first type is soft-magnetic
particles, and the second type is hard-magnetic particles.

Fig. 2b provides an overview of the magnetic particles used in
the development of MSMs. The soft-magnetic particles have a nar-
row loading–unloading hysteresis loop, while the hard-magnetic
particles have a wider hysteresis loop and retain high magnetic
remanence and large coercivity in the magnetization process. The
most widely used soft-magnetic particle is carbonyl iron powder
(CIP), while Neodymium iron boron (Nd-Fe-B) is a common exam-
ple of hard-magnetic particles. On the other hand, it should be
noted that there are other kinds of soft-magnetic particles, that
are typically nanoparticles of oxides of pure ferromagnetic materi-
als such as Iron (II, III) oxide (Fe2O3, Fe3O4), and Cobalt (III) oxide
Co3O4 [145]. Similarly, other hard-magnetic particles include
Samarium-Cobalt (Sm-Co), Chromium (IV) oxide (CrO2), hard fer-
rite, and alnico alloys [118,145,146].

The soft-magnetic fillers loaded MSMs demonstrate shape-
morphing phenomena when there is a gradient in the magnetic
field (Fig. 2). This is a result of simple deflection due to the attrac-
tion of magnetic fillers towards the magnetic field [89,137]. On the
other hand, the hard-magnetic fillers loaded MSMs demonstrate
the shape-morphing phenomena even in the presence of a uniform
Fig. 3. The key manufacturing processes for developing MSMs. (a) Schematic illustration o
manufacturing or 3D printing method (reproduced from [155]) to develop MSMs.
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magnetic field. In the hard-magnetic fillers-filled MSMs, when the
magnetic particles are magnetized (see hysteresis loop, Fig. 2b),
they retain magnetic remanence and orientate the magnetic
domains in a specific direction. When such MSMs are exposed to
an external magnetic field, the aligned domains of the magnetic fil-
lers either repel or attract (depending on the pole of the magnet) in
the direction of the applied magnetic field resulting in an overall
change in the shape of the MSMs and, therefore, a shape-
morphing phenomenon is achieved [147,148]. Such phenomenon
has also been realized by the computational modelling of hard-
magnetic fillers based on soft materials [69,148,149]. These theo-
retical studies on the mechanics of hard-magnetic fillers not only
help to get insight into materials behaviour but also provide a use-
ful guideline for shape-changing structural designs and
optimisations.

It is noteworthy to mention here that the hard-magnetic fillers
have attracted a greater amount of interest within the MSMs
research community in contrast to the soft-magnetic fillers
because of the re-programmability and large deformations that
can be achieved just by a change in the magnetic pole of the exter-
nally applied magnetic field.
2.2. MSMs fabrication

The selection of matrix materials and fillers type play a decisive
role in determining desired properties of MSMs. Moreover, suitable
structural/geometrical designs and fabrication methods are also
instrumental to achieve the desired shape-morphing phenomena
of MSMs. Note that the shape-shifting phenomena of MSM systems
largely depend on the articulation of intricate designs. The com-
plex but fascinating designs are mainly inspired by nature (i.e., bio-
mimicry), geometric manipulations such as origami, kirigami etc.
[85,120,150,151]. In this case, the 3D printing techniques illus-
trated below not only open new horizons for further design com-
plexity and implementation but also offer a wide range of
customised design freedom for MSMs. In this section, general fab-
rication methods for soft magnetoactive polymeric composites are
discussed which are categorized into two groups as the conven-
tional methods and advanced manufacturing methods such as
the 3D/4D printing. Furthermore, some fabrication methods can
be termed as hybrid methods in which a traditional method and
an additive manufacturing technique are utilized, see Section 2.2.3
for details.
f a synthesis process. (b) Conventional method (reproduced from [154]) (c) Additive
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2.2.1. Conventional techniques
Moulding is the most widely used primitive and conventional

fabrication method for MSMs. In this case, the fabrication of MSMs
is similar to those of common polymer-based materials. The MSMs
synthesis procedures are illustrated in Fig. 3a. Raw materials of
MSMs usually consist of monomers, crosslinkers, initiators, and
magnetic particles, either hard or soft. Monomers provide the over-
all properties of the soft materials by forming polymer networks
whereas crosslinkers usually tune the mechanical stiffness/elastic-
ity of the polymeric networks. An initiator (it initiates the chemical
crosslinking, that’s why it is called initiator) is to trigger the poly-
merization process (also known as the solidification process) and it
will be usually a thermal or a photoinitiator. Magnetic particles are
filler materials that are the main responsive parts of the MSM com-
posites. Firstly, all the raw materials are properly mixed in which a
homogenous mixture can be achieved first via mechanical mixing
followed by sonication. Thereafter, the mixture is allowed to poly-
merize in the mould system. The polymerization can be completed
using a heat-assisted medium or under ultraviolet (UV) light
depending on the type of the initiator. Depending on the intended
use of MSMs, the solidification process can be performed with or
without the application of a magnetic field. In the absence of a
magnetic field during the polymerization process, more or less a
homogeneous (i.e., isotopic) MSM will be produced. Whereas, the
curing process performed under an applied magnetic field will
align or program the magnetic fillers to develop directional-
dependent (i.e., anisotropic) MSMs [33,152,153]. However, it
should be noted that, for the hard-magnetic fillers, the magnetic
domains can be oriented and magnetized in a specific direction
Fig. 4. 4D printing methods for developing MSMs. (a) Multi-material Direct Ink Writing
method with the application of a magnetic field (reproduced from [11,148]), (c) FDM me
Digital Light Processing/Projection (DLP) technique (reproduced from [133]). (e) Multi-m
develop MSMs (reproduced from [178]).
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even after being fully cured by exposing the MSM to an external
magnetic field [12,124,154]. Although the moulding technique is
a simple and robust process, however, it only has the capability
to manufacture two dimensional (2D) and simple three-
dimension (3D) geometries. Nevertheless, such regular shapes or
2D structures later can be engraved to acquire the desired shapes,
for instance, see [124].
2.2.2. 3D/4D printing techniques
Three-dimensional (3D) printing, also known as additive manu-

facturing (AM) is an advanced fabrication process whereby objects
are created directly from 3D model data of the computer-aided
design (CAD) in a layer-by-layer approach. 3D printing has been
employed in a number of different fields with various materials
including metal, polymers, composites, cement, and ceramics
[156-160]. The additive manufacturing of smart and multifunc-
tional materials is now referred as the 4D printing [27,106,161-
167]. The stimuli-responsive behaviour of 3D printed MSMs can
be considered as the 4th dimension and hence the term ‘4D print-
ing’, likewise used for other smart materials. The 4D printing offers
several unique advantages for the development of smart materials
and structures over traditional manufacturing processes. The most
important advantage is the reduction of the need for external
power or electromechanical systems to program the smart materi-
als’ microstructures [168]. Some of the other key advantages of AM
are limitless design freedom, capability to produce near-net shape
and end use parts, reduced post-processing requirements, high
material utilisation rate and less wastage [169]. Therefore, the
(DIW) method without applying a magnetic field (reproduced from [155]), (b) DIW
thod using a magnetic filament (reproduced from [79,176]) and (d)) An example of
aterials jetting of active and passive inks (reproduced from [177]) (f) TPP method to
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AM is undoubtedly the suitable technique to realize the highly
bespoke geometrical designs required in MSM applications.

American society for testing and materials (ASTM) international
F42 on additive manufacturing (2009) ascertained seven main pro-
cesses for the 3D printing of polymeric materials [170]. These are
Material Extrusion, Material Jetting, Binder Jetting, Sheet Lamina-
tion, Vat Photopolymerisation, Powder Bed Fusion, and Directed
Energy Deposition. Not all these printing methods are suitable
for MSMs yet. For instance, Fused Deposition Modelling (FDM/
FFM) and Direct Ink Writing (DIW) from the Material Extrusion,
inkjet 3D printing from the Material Jetting, Digital Light Process-
ing/Synthesis (DLP/DLS), Stereolithography (SLA) and Two-Photon
Polymerisation (TPP) from Vat Photopolymerisation, Selective
Laser Sintering (SLS) from Powder Bed Fusion have been consid-
ered in the 3D printing of magnetoactive composites, irrespective
of hard- or soft-magnetic fillers [156,158]. Note that DIW, DLP,
and SLA are ink-based 3D printing techniques in which the inks
(viscous fluids/low viscosity resins) are polymerized either using
heat or UV power or both at a time during the printing process.
In the following sections, the most widely used 3D printing meth-
ods used to develop MSMs are described. More details on the
3D/4D printing of polymers, some excellent reviews can be con-
sulted [29,100,103,106,171,265].

The key steps of frequently used 4D printing techniques to
develop MSMs are delineated in Fig. 4. Normally, a homogenous
mixture of the magnetic fillers laden print materials (i.e., cus-
tomized ink/filament/resin) is loaded into the 3D printer instead
of the commercially available materials to develop MSMs. As
described in Fig. 3a, a homogenous mixture of magnetic ink can
be generated by blending the key raw materials of MSMs.

2.2.2.1. DIW. The Direct Ink Writing (DIW) 3D printing method is
based on the extrusion of a viscous ink through a nozzle under
pressure using a computer-controlled dispenser [106]. The DIW
is one of the most common 3D printing techniques for the develop-
ment of MSMs via AM due to its simplicity and extreme ability to
dispense highly viscous inks. As illustrated in Fig. 4a and b, the
DIW printing technique can be performed either with or without
the application of an external magnetic field during the printing
and curing (solidification/polymerization) process. Various pat-
terns or alignments of the magnetic fillers within a polymeric
material can be achieved even without applying a magnetic field.
Whereas the application of a magnetic field during the printing
process allows to orient the magnetic domains of hard-magnetic
fillers within the printed patterns. The biggest advantage of apply-
ing a magnetic field during printing is that the magnetic domains
can be aligned in a highly customized and desired fashioned by
synchronizing the magnetic pole of the pooling magnet with the
printing patterns (by a computer-controlled dispenser). In order
to successfully print MSMs using a DIW printing method, the rhe-
ological properties of the printing inks play a vital role in which the
so-called shear-thinning and thixotropic properties of inks are
required. That means the printing inks must demonstrate a
decrease in viscosity while passing through the nozzles and
prompt recovery of the viscosity when a shear force is applied
and removed, respectively. The details of the rheological study
and parameters influencing the printing process for the DIW can
be found in articles [155,172].

2.2.2.2. FDM. The Fused Deposition Modelling (FDM) printing
method is mainly suitable for thermoplastic polymers, in which a
filament of such polymers is used. During the printing process,
the filament is melted to print on a bed (i.e., a print platform)
and solidified after being printed. For the development of MSMs,
the printing filaments need to be loaded with magnetic fillers
(sometimes other additives such as carbon nanotubes (CNTs) are
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also added) before printing in order to provide the magnetic
field-dependent properties. For instance, Fe3O4 is blended with
PLA to develop composite filaments for the FDM printing
[11,148] (Fig. 4c). Also, composite filaments of PCL (Polycaprolac-
tone)/TPU (Thermoplastic polyurethane) loaded with MNPs are
used to develop magnetoactive smart structures via the FDM 3D
printing [173-175].

2.2.2.3. DLP/DLS. Another ink-based 3D printing technique that has
attracted significant interest for MSMs fabrication is the DLP/DLS
(Digital Light Processing/Synthesis) technique [179]. The DLP 3D
printing takes the light-mediated conversion of a liquid resin com-
prising of monomer or oligomer into a solid object. As only pho-
tocurable resins can be used in the DLP techniques, to date, only
MNPs are utilized as magnetic fillers to develop MSMs via DLP
3D printing [180,181]. The use of micron-sized particles leads to
non-homogenous ink due to the sedimentation of the heavier par-
ticles. Hence, this is one of the basic reasons for not using micron-
sized fillers in DLP printing [181]. For a successful DLP printing, the
relation between UV (ultraviolet) light dose and the curing depth
of the resin has to be understood in detail. Other important param-
eters to be studied in the DLP printing process are exposer time per
projection, magnetic filler loading percentage, layer thickness, and
wait time before exposure. A number of different articles
[133,181,182] have investigated the optimization process of the
DLP printing for MSMs fabrication. Note that DLP/DLS is funda-
mentally different from other traditional SLA printing techniques.
The former uses a UV light source in the projection form and
focuses a layer (x-y plane) at a time while the latter uses the light
source in the laser form and focuses point by point in a single layer
(x-y plane) before moving to the next layer (z-axis), see Li and
Pumera [109] or Ligon et al. [170].

2.2.2.4. MJ. Material Jetting (MJ), also conventionally known as the
inkjet printing, is one of the powerful printing methods particu-
larly for low dimensional (2D) printing, where low viscosity inks
are deposited through micron-sized nozzles directly onto the sub-
strates (e.g., papers) [177,183,184]. Inkjet printing can be utilized
to create microscale to milliscale devices made of MSMs. One of
the biggest possibilities of MJ is that multi-inks can be deposited
at the same and cured in-situ to develop MSM devices. For
instance, Saleh et al. [177] demonstrated the development of co-
printing of active (magnetoactive) and passive inks and UV cured
to create a 3D structure via MJ (Fig. 4e). Nonetheless, one of the
main concerns associated with the MJ is the droplet formation,
which is governed by the physical parameters of the inks such as
viscosity and surface tension, which are therefore required to fall
within the specific requirements to successfully develop MSM
devices via MJ [183,184].

2.2.2.5. TPP. One of the most favoured vat-based 3D printing tech-
niques for micron-scale fabrications is the so-called multi-photon
polymerisation (also known as the two-photon polymerisation or
direct laser writing). In Two-Photon (i.e., TPP) process, for instance,
laser pulses at 800 nm wavelength is focused on photo-
polymerisable resins containing in a vat to initiate the curing pro-
cess [109,114,170]. Once the laser beam focuses a small volume of
photo-resin in which a suitable photoinitiator will absorb the two
photons of 800 nm wavelength and act as one photon of 400 nm
wavelength which is the range of UV light region. Such a photoini-
tiator will help in initiating cross-linking reactions among initia-
tors, monomers, and cross-linkers. In TPP, the laser only focuses
on a tiny volume of the photo-sensitive resin for creating a 3D
printed object without affecting areas outside the focal point
(Fig. 4f). With such excellent characteristics of creating micron to
nanoscale fabrications, TPP becomes one of the most used 3D



Table 1
Summary of 4D printing method for MSMs and general guidelines to select a suitable technique based on the information such as material requirements, print process
requirement as well as strengths and weaknesses of print methods.

Printing
method

Print material
requirement

Key materials parameters Key print process
parameters

Strengths & weaknesses of printing method

Strengths weaknesses

DIW – Low to high viscous
inks

– Heat/photo-curable
– Non-Newtonian

fluid

– Shear-thinning
Thixotropy

– Viscosity recovery
Rheology

– Dimensionless
print speed

– Dimensionless
print height

– Facile customization (apply mag-
netic field during printing)

– High viscosity ink
– Micro to nano-size active particles

– Low printing resolution
– Poor layer bonding
– Anisotropy

FDM – Thermoplastic
polymers filaments

– Modification of
filaments

– Thermal behaviour of
modified filament

– Morphology

– Extrusion
temperature

– Extrusion diameter
– Filament swelling

– Simple printing process
– Low cost

– Re-extrusion of modified
filament is needed

– Better with nanofillers

MJ – Low viscosity inks
– Heat/photo-curable
– -Newtonian fluid

– Viscosity
– Surface tension
– Density

– Droplet formula-
tion & deposition

– High print resolution
– Low viscosity ink

– Mostly nanosize fillers
– Nozzle clogging

DLP – Low viscosity inks
– Photo-curable only

– Filler loading
percentage

– Effect of additives
– Rheology

– Exposer time
– Layer thickness
– Wait before the

next exposer

– High resolution
– Fast printing process
– High surface finish

– Only photo-curable resin
– Micron-sized particles are

difficult to use

TPP – Photo polymers
only

– Laser beam only

– Thermoset resins
– Highly cross-liked

resins

– Smaller print
height

– Narrow focal vol-
ume of the laser

– Very high resolution
– Isotropic property
– Not layer-by-layer printing

– Costly instrument
– Slow printing process
– Limited materials

Fig. 5. Hybrid techniques for developing MSMs by combining conventional and digital methods. (a) The fabrication process of the tensegrity structure through the FDM 3D
printing technique and sacrificial mould technique (adapted from [187]) and (b) DLP-based 3D printing and MR fluid infilling of 3D printed metamaterial unit cells
(reproduced from [132]).
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printing techniques in manufacturing micro-and nanoscale MSM
devices using soft and hard-magnetic polymeric composites
[109]. For instance, using the TPP technique, Medina-Sanchez
et al. [185] created a micro-scale robot that can carry immotile
sperm cells having motion deficiencies towards successful
fertilisation.

Not only resin or ink-based materials are considered for the
MSMs 4D printing, but 3D printing of magnetic parts by laser pow-
der bed fusion (PBF) of iron oxide nanoparticle functionalized PA
(polyamide) powders have also been reported [186]. The current
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filament or powder-based 3D printing techniques have not yet pro-
vided the large deformations usually required for shape-morphing
phenomena. However, such 3D printing techniques provide added
research pathway for magnetoactive materials. Table 1 is created
to provide general guidelines to select a suitable 3D/4D printing
technique to manufacture MSMs.

2.2.3. Hybrid techniques
Successful designs of the shape-morphing constructs rely on a

clever structural design, however, the exclusive utilization of the



Fig. 6. Various functional behaviours exhibited by MSMs in the presence of an external and remotely controlled magnetic field.
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traditional method or 4D printing technique might not always be
the best option. Therefore, taking the advantage of a particular 3D
printing and combining it with another conventional method(s) is
noteworthy to implement to realize unique MSMs’ systems. Lee
et al. [187] reported magnetoactive structurally complex tenseg-
rity systems using FDM 3D printing and combining with a con-
ventional method (Fig. 5a). In their work, the tensegrity
structures consisting of monolithic tendon networks based on
magnetic smart materials was realized without an additional
post-assembly. Similarly, acrylic polymer-based smart metamate-
rials were developed combining DLP 3D printing and the conven-
tional method by Jackson et al. [132], see Fig. 5b. In their study,
an MR fluid was injected into 3D printed structures to develop
magnetoactive metamaterials with unique properties. Such works
might not offer fully shape-morphing structures; however, these
works provide the possibilities that we can effectively combine
AM and traditional methods to develop sophisticated magnetoac-
tive structures with multifunctional characteristics. Recent exam-
ples for the successful use of hybrid techniques to develop
magnetoactive materials that show shape-morphing behaviour
are biomimetic structures, e.g., inchworm, manta ray, and soft
grippers [188].
3. Behavioural characterisations of MSMs

MSMs demonstrate a number of exciting shape-morphing phe-
nomena in the presence of a static external magnetic field (con-
stant or variable) such as deflection or bending, elongation,
contraction, and coiling or twisting. With such interesting beha-
viours, MSMs further demonstrate more stimulating features such
as crawling, swimming, and even jumping in the presence of a
dynamic magnetic field (constant or variable). Here, static and
dynamic fields refer to the spatial position of the magnet in x, y,
and z coordinates, while the constant and variable refer fields to
the strength of the magnetic field (B in Tesla), see Fig. 6. Every so
often, the constant magnetic field is referred as a homogenous field
and a variable magnetic field is referred as a non-homogenous field
[89,189,190]. MSMs undergo various deformations (macroscopic/
microscopic or even nano level) to demonstrate such interesting
behaviours. These deformations could be the combination of differ-
ent types of working modes such as compressive, tensile, shear,
and biaxial. Therefore, characterizations and understanding of
mechanical/rheological properties of MSMs in both the absence
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and presence of an externally applied magnetic field is unavoidable
to successfully attain the targeted shape-shifting phenomena.
There are several testing methods available in the literature in
order to characterize the magneto-mechanical properties of mag-
netoactive materials. The rheological and magneto-mechanical
properties are major features of MSMs that need to be investigated
and, therefore, are discussed in this review. Our recent work [45]
can be referred to for the detailed and comprehensive overview
of the magneto-mechanical characterizations of the magnetoactive
polymers including MSMs.

3.1. Magneto-rheological experiments

Linear visco-elastic behaviour of MSMs can be investigated by
means of the rheological testing methods in both the absence
and presence of an externally applied magnetic field. Frequently
used commercially available rheometer instruments (e.g., Anton
Paar (Austria) & TA instruments (USA)) can be used to characterize
magneto-rheological properties of the MSMs. These systems do not
require any major modifications as such sophisticated instruments
already offer good control of a magnetic field in the experimental
tests (Fig. 7a-i). Generally, the responses of the storage modulus
(G’) and the loss modulus (G’’) within a linear visco-elastic region
are investigated using rheological analyses. The storage and loss
moduli represent the ability of MSMs to store and dissipate the
energy of distortion, respectively. The trend of G’ and G’’ with
respect to strain amplitude, frequency, temperature, and magnetic
field are studied in rheology [191-194], an example of amplitude
sweep is given in Fig. 7a-ii. With such standard and commercially
available magneto-rheometers, the data obtained via magneto-
rheological tests are more reliable for the computational modelling
of the behaviours of MSM within linear and small strain regions
[195]. Moreover, time-dependent properties such as stress-
relaxation behaviour can also be studied using rheology.

3.2. Magneto-mechanical experiments

Understanding the elastic modulus, elongation at failure, elastic
zone, plastic zone, toughness, heat dissipation under a cyclic load-
ing, fatigue failure and other several mechanical properties of the
MSMs, in both absence and presence of a magnetic field, allow
the smart and successful design and development of the multi-
functional MSMs without a failure. Unlike rheology, a bespoke lab-



Fig. 7. Mechanical behavioural characterization methods for MSMs: (a) magneto-rheological and (b) magneto-mechanical tests. (i) A widely-used rheometer apparatus with
a magnetic field (adapted from [196]) and (ii) the response of MSM using an amplitude sweep test in the rheometer (adapted from [197], (iii) schematic illustration of a
bespoke test setup for compressive properties of MSMs in compression/tensile loading and its response (adapted from [132]) and (iv) illustration of the shear test setup and
dynamic response of MSMs at different magnetic flux densities (adapted from [198]).
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oratory setup is required for magneto-mechanical characteriza-
tions of MSMs (Fig. 7b). However, note that such a customized
setup is mostly for the studies involving the magnetic fields, other-
wise existing standard instruments can be used. In order to inves-
tigate and understand the magneto-mechanical properties of
MSMs, exhaustive characterizations can be performed by imple-
menting various techniques such as compression tests, tensile
tests, shear tests, biaxial tests and fatigue tests with customized
test setups, they are well summarized in [45].

The magneto-mechanical testing can be both static and
dynamic, which can be decided depending on the nature of the
force/deformation to be experienced by the MSMs in the targeted
applications. A force versus displacement can be used to character-
ize the mechanical properties of MSMs where the structures of
MSMs are not regular in shape (not defined cross-section), as the
conversion of the corresponding force and displacement data to
the stress and strain data are non-trivial. Otherwise, for a
regular-shaped MSM specimen, the stress versus strain at various
magnetic fields with respect to strain rate and strain amplitude
at different testing modes can be investigated. Some very crucial
properties to be investigated for MSMs are elastic modulus/stiff-
ness, elongation at break, and the ultimate tensile strength. Note
that similar to the experimental study of MSMs, constitutive mod-
elling and numerical simulations of these fast-growing active
materials is an active area of current intense research [148,199-
212].
4. Programming and actuation

In shape memory polymers (SMPs), programming generally
refers to a method to teach the polymer a temporary shape. The
programming can usually be well-maintained unless it is activated
by an external stimulus such as heat, light, electric/magnetic field,
pH, etc. For MSMs, programming basically refers to the alignment
of the magnetic domains (especially for hard-magnetic fillers) or
10
magnetic particles (for soft magnetic fillers) in a specific or desired
fashion within the polymer networks. As demonstrated in Fig. 2,
the soft-magnetic fillers display shape-morphing behaviours due
to the gradient magnetic field, while the hard magnetic fillers
can demonstrate shape-shifting behaviours due to the attraction
or repulsion of the magnetic domains even in the presence of a uni-
form magnetic field. Therefore, the programming is much reason-
able for the hard-magnetic fillers, and thus hard-magnetic
particle-filled MSMs are more attractive in the case of producing
shape-morphing structures. On the other hand, soft-magnetic fil-
lers can be aligned to obtain anisotropic properties (e.g., modulus)
of the MSMs. Here, we, therefore, mainly focus on the program-
ming for the hard-magnetic fillers-based MSMs. At this point, the
programming essentially means magnetization of the hard-
magnetic fillers within the MSMs.

It must be noted that, for soft-magnetic fillers, the alignment or
patterning of the magnetic particles can only be performed during
the synthesis process. However, the programming of the hard-
magnetic fillers can be achieved even after the polymerization of
the matrix materials. This is one of the most striking features
and advantages of the hard-magnetic fillers over the soft-
magnetic fillers and thus allows the re-programmability.
4.1. One-way programming

One-way programming is the process of magnetizing the mag-
netic domains of the hard-magnetic fillers in a specific direction.
The techniques for one-way programming for MSMs are well
described in an article by Lum et al. [154]. There are two ways of
programming the magnetic domains; the first way is to magnetize
the hard-magnetic fillers’ domains only after the matrix material is
fully cured (solidified) [124] and the second way is to magnetize
the domains before or during the polymerization process of the
matrix materials [11]. However, it should be noted that the first
way of patterning/programming is not applicable to soft-



Fig. 8. One-way programming methods for MSMs. (a) A conventional method, in which elastomeric membranes are magnetized by an out-of-plane magnetic field induced by
an electromagnet after the elastomer is being fully cured and later engraved into the desired shapes (adapted from [124]). (b) A 4D printing method, in which magnetic
particles are magnetized at the printing nozzle tip before the structures are printed and the elastomer is cured afterwards (adapted from [11]).
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magnetic fillers. Such magnetization process can be achieved by
means of a conventional method or 4D printing method. The con-
ventional method is that magnetization is performed by exposing
the MSM composites to a large magnetic field (Fig. 8a). In the 4D
printing method, magnetization can be achieved before printing
the MSM composite inks (Fig. 8b). The first way of magnetization
does not provide greater flexibility as the magnetic domains can
only be aligned or oriented into a single specific direction depend-
ing on the magnetic pole of the pooling magnet. However, 4D
printing can be used to generate highly tailored patterns and align-
ment of the magnetic domains within the same structural design.
The pole of the pooling magnet can be synchronized with printing
patterns in the 4D printing process to achieve the desired orienta-
tion of the magnetic domains. Therefore, 4D printing is a much
more advanced technique and is highly emerging in the field of
MSMs.

Another notable work on one-way programming is the develop-
ment of magnetic anisotropy within the polymer networks by
means of the self-assembly of MNPs [213]. The study has demon-
strated that heterogeneous magnetic anisotropy can be achieved
for microactuators. The advantage of their technique is that the
programming was achieved before fabricating a static microstruc-
ture by applying a magnetic field during the crosslinking of the
matrix material. The actuation was achieved by a rotational torque
of the programmed chains of the MNPs for microactuators when
the magnetic field was applied. The technique can be applied to
both soft-magnetic and hard-magnetic fillers.

In addition to the programming of the magnetic fillers, the 4D
printing technique can be used for the programming of magnetic
shape memory composite structures [176]. For instance, using
FDM 3D printing, PLA/Fe3O4 composite shape memory polymer
structures were programmed in the printing process. The 3D print-
ing of such magnetic SMP provides the advantage that the pro-
gramming for SMPs is not necessarily to be performed after the
fabrication because the programmed SMP shape can directly be
3D printed.

Having said that the above-mentioned techniques are the most
common ways for one-way programming, there are few other
methods used for the re-programming of MSMs that can also be
used for one-way programming. These will be discussed in
Section 4.2.
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4.2. Re-programming

Re-programming refers to aligning magnetic domains or states
of magnetic fillers to a new direction from the prefabricated
designs and thus to realize another shape-morphing phenomenon
with the same structurally designed MSMs. Note that the re-
programming of MSMs should not change the intrinsic magnetic
properties of embedded magnetic fillers or the molecular proper-
ties of the matrix materials. In addition, the shape-morphing phe-
nomenon aims to achieve a customized actuation in a designed
fashion, therefore, re-programming should only be performed in
the desired spatial positions of the MSM system. Research studies
have adopted two different ways to re-program the magnetic
domains. The first way is to locally heat the magnetic fillers above
the Curie temperature of the hard-magnetic fillers and re-orient
the domains by exposing them to a pooling magnet [78], see
Fig. 9a. Usually, a laser heating technique is used for the localized
heating. Soft matrix materials should not change their molecular
properties by heating above the Curie temperature of the ferro-
magnetic particles. For instance, the re-programming has been
reported using CrO2 particles which have the Curie temperature
of about 118 �C that well falls within the operating temperature
of most elastomers [78,214]. The second way of re-programming
is to heat the components of matrix materials to their melting
point and thus to allow the free movement of the magnetic fillers
and the ferromagnetic state. Heating can be achieved by means of
localized heating, for example, direct laser writing (DLW) in a
highly controlled fashion [215] or bulk heating [216]. In bulk heat-
ing, a hierarchical structure comprising magnetic microspheres are
incorporated within an elastomeric matrix with static and rotat-
able ferromagnetic states. In these cases, the microspheres of phase
change polymers (e.g., PEG (Polyethylene glycol) or PCL (poly-
caprolactone) microspheres loaded with magnetic particles) are
used and are additional components of matrix materials (Fig. 9b
& 9c). In the rotatable ferromagnetic state, above the melting tem-
perature of the PEG/PCL microspores, the magnetic particle chains
can freely rotate. However, in the static ferromagnetic state below
the melting temperature of the PEG/PCL, the magnetic particle
chains are locked in the solidified PEG/PCL, maintaining the pro-
grammed ferromagnetic domain patterns [215,216]. In such pro-
gramming and re-programming conditions, the reported



Fig. 9. Techniques to re-program the magnetic fillers or the ferromagnetic state of MSMs. (a) Localized heating of the magnetic fillers using a laser heating technique to orient
the magnetic domains in the desired direction [78] and (b) illustration of the programming and re-programming processes using a DLW technique in the ferromagnetic states
of the magnetic fillers embedded within microspheres of polycaprolactone (PCL) [215]. (c) Rotatable and static ferromagnetic states of magnetic microspheres of Polyethylene
glycol (PEG) oligomers [216].
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temperature is about 60 �C to melt the microspheres, which is
much lower than the Curie temperature of magnetic fillers.

Very recently (2021), on-demand and highly re-programmable
MSM devices have been reported [119,217]. These advanced mate-
rials can alter the mechanical behaviour in the presence of a mag-
netic field using a design framework for a tileable mechanical
metamaterial with a stable memory at the unit-cell level. Encoding
the binary instructions of such novel metamaterials can provide
on-demand re-programmable mechanical properties in addition
to the stable memory effect.
4.3. Magnetic field-driven actuation

In MSMs, the actuation means attaining the shape-changing
phenomena of the designed structure by the application of an
external stimulus. The actuation can be categorized into two types,
i.e., (i) pure magnetic field-driven actuation and (ii) multi-stimuli
actuation [218,219]. In addition to a magnetic field, the other stim-
uli can be pH, heat, light, humidity, and electric field.

Magnetic field-driven actuation focuses only on the magnetic
field as the external stimulus. Such an actuating field can be gener-
ated either using permanent magnets or electromagnets. Perma-
nent magnets only offer a static pole of a magnet at a fixed
position. In contrast, an electromagnet provides the flexibility to
change the pole of the magnet without changing the spatial posi-
tion but by changing the pole of the supplied current. For an elec-
tromagnet, the amount of current in the electromagnet controls
the strength of the magnetic field. In contrast, for the permanent
magnet, the device itself can be rotated to switch the pole of the
magnet and similarly magnet itself can be moved toward or away
from the MSM specimen to change the strength of the magnetic
field.
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A number of different cases of magnetic actuation are sketched
in Fig. 10. For example, a magnetic field produced by a permanent
magnet can complexly change the shape of 3D printed tensegrity
for a soft robotics structure [187] (Fig. 10a). The use of an electro-
magnet to actuate the magnetic components is given in Fig. 10b, in
which soft intelligent structures are programmed to reshape and
reconfigure under the magnetic field required for soft robotics in
biomedical applications [220]. Similarly, the magnetic shape-
memory elastomers can be actuated using a magnetic field to
change shape as given in Fig. 10c [221]. Static and dynamic actua-
tion of 3D printed magneto-responsive soft robots can also be
achieved by using a permanent magnet in a static or dynamic
way, which was greatly demonstrated by a breakthrough study
in the field of magnetoactive soft materials [11], an example of
such actuation is given in Fig. 10d. In order to achieve the shape-
morphing phenomena such as bending, elongation, contraction,
and twisting, a static magnetic field can be applied, but an alternat-
ing magnetic field is the better way to achieve the shape-shifting
phenomena [84]. On the other hand, to achieve dynamic shape-
morphing phenomena such as crawling, swimming, and jumping,
a time-varying dynamic magnetic field has to be applied by chang-
ing the strength and spatial position of an external magnetic field.
MSM structures are untethered and show dynamic movement but
in a controlled fashion regulated by the external magnetic field,
therefore, possess high potential to be used in medical applica-
tions. More detailed applications will be discussed in Section 5.
4.4. Multi-stimuli actuation (magnetic field + other stimuli)

Magnetic field-based actuation in the MSMs is the only way
until recently. These single field-dependent characteristics of
MSMs limits their applications in areas where complex and multi-



Fig. 10. Examples of magnetic actuation of MSM-based structures. (a) A tensegrity structure composed of magnetic and non-magnetic components and their actuation [187].
(b) Magnetic actuation and forces exerted on a magnified part of the 3D-printed filament by an external magnetic field [220]. (c) Demonstration of magnetic shape-memory
effects in an unconstrained strip deformed in three dimensions via a magnetic field generated by a permanent magnet [221]. (d) Magnetic actuation of MSM specimen
developed via 3D printing and actuated by a permanent magnet [11].
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dimensional mobility required for various applications such as in
soft robotics [115,222]. Therefore, multi-stimuli actuation is much
needed for MSMs to widen their large and versatile applications.
Other stimuli such as humidity, light, sound, and heat can also be
coupled to actuate MSMs. In order for MSMs to be actuated by
other stimuli, some factors such as choice of matrix materials, for
example, the use of shape memory polymers and the choice of
other fillers like carbon-based materials (graphene oxide or carbon
nanotubes) have to be considered in the developmental phase.

Some interesting examples of multi-stimuli actuation are given
in Fig. 11. A multifunction MSM robot was made from multi-
responsive materials, which were fabricated through a magnetic-
field-assisted gradient assembly of soft magnetic particles (Fe3O4)
and graphene oxide as filler materials. Such MSMs demonstrate
shape morphing phenomena (capture, hold, carry, rotate and
release) when actuated by a combination of various stimuli such
as humidity, light, and magnetic field [222] (Fig. 11a). Here, it
should be noted that the light or sound is used to generate heat
within the MSMs. At the same time, MSMs and magnetic shape
memory polymers have attracted significant interest in the field
of multi-stimuli responsive smart structures in recent years. An
exciting example of MSMs and magnetic shape memory polymer
developed via 3D printing is illustrated in Fig. 11b, in which two
external stimuli, i.e., magnetic field and heat, are used simultane-
ously [77] to realize the fascinating shape-morphing phenomenon
such as bending. Another example includes a similar type of mag-
netic shape memory polymer which is actuated by means of a
magnetic field and heat generated by a photothermal process
[223] (Fig. 11c).

5. Applications of MSMs

Wang and Gao [224] helped us in recalling a six and a half dec-
ades old Hollywood science fiction movie Fantastic Voyage (1966).
In the science movie, a small-scale submarine is shown which can
meticulously navigate through the complex human fluidic blood
stream aiming to treat life-threatening diseases. Luckily, today
science is there to turn the human imagination into a reality.
Now, we may create a soft-bodied multifunctional, multi-
material tiny robot that can navigate through the human arteries
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to pick up any tissues for biopsy to identify possible illness, can
deposit a drug to a precise location for the cancer therapy, can
clean clogged arteries, can delivery human sperm to a targeted
place for the fertilisation, can contain a camera for image collec-
tions inside the human body, can even interact with an individual
cell, etc. to mention a few. However, in designing these fuel-free
bioinspired machines, several key features must be met, e.g., they
must be soft and compliant to human tissues, flexible, biocompat-
ible, biodegradable, non-toxic, etc. Moreover, these machines must
be controlled and navigated without any direct wire connection to
their surfaces (e.g., they must be tetherless, cable-less or tubeless).
In the last decade, as a result of intense research efforts due to the
pressing demand mainly from biomedical engineering, a plethora
of bioinspired untethered soft-bodied robots ranging from nanos-
cale to millimetre-scale have been proposed (and tested in vivo
conditions, to some extents) that can meet almost all of the afore-
mentioned criteria. In this case, soft- or hard-magnetic particle-
filled elastomers and hydrogels are the main candidates that can
be actuated remotely for propulsion and locomotion using a static
or dynamic magnetic field. In the following sections, such fuel-free
machines made of MSMs that are designed and are demonstrated
over the last few years [225-232] are discussed. For the first time,
here we attempt to present the applications of MSMs taking
length-scale as a gauge to categorize them. Macro-/milli-/micro-/
nanoscale is as sketched in Fig. 12. Please note that if one or more
dimensions (thickness/diameter/length/height) of the MSM device
fall within the stated range then such a device is included in the
corresponding classification. Additionally, a pie-chart is created
to provide an overview of the distribution of the length scale-
wise applications of MSMs ─ microscale devices are the most
prominent. See supplementary information for the detail of papers
collected to produce the pie chart.

5.1. Macroscale applications

In this section, shape-shifting actuators and soft robots made up
of MSMs where their sizes vary from several centimetres to metres
are covered. One of the earliest shape-morphing applications of
MSMs at the macroscale is due to Bose et al. [233]. They prepared
a ring-shaped MSM body that is placed in a valve-type device. It



Fig. 11. Multi-stimuli actuation of MSMs. (a) A simple claw with distinct actions is controlled under specific stimuli; complex, and cooperative motilities were realized by
various cooperative conversions using different external stimuli [222]. Different deformation modes achieved by cooperatively controlling the temperature and magnetic
field for a 3D printed MSM, (a-e) asterisk design with alternating material distribution and magnetization directions [77]. (c) Shape-memory magnetic polymer actuated by
the application of a magnetic field and photothermally generated heat, a rotation of a shape-memory flower while pulsing the light-emitting diode [223].

Fig. 12. The length scale-wise classification and pie-chart showing the distribution of scale-wise MSM applications considered in this review.
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Fig. 13. (a) One of the earliest MSM-based prototypes used in a valve for controlling air flow (adapted from [233]), (b) prototype of an artificial muscle biceps based on the
MSMs that mimics human hands (reproduced from [89]), (c) A jellyfish-like robot having two soft tentacles made of the programmable MSM. The robot could propel itself on
an oil–water interface by bending its tentacles back and forth when a magnetic excitation coil is used resulting in a smooth movement of the artificial arm (adapted from
[154]), (d) A swimming robot that mimics the propulsion mechanisms of a swimming frog (taken from [147]).
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can control air or fluid flow in a nozzle, see Fig. 13a. The inside
diameter of the circular ring is approximately 4 mm while the out-
side ring is about 1.5 cm. When the ring expands radially and
closes the gap between the steel bar and the MSM ring, the air
stops flowing. For the actuation purpose, a spatially varying mag-
netic field is created in the closable gap. The matrix is a silicone
elastomer of various Shore hardnesses filled with micrometre-
size iron particles (i.e., soft-magnetic particles).

Lu et al. [234] proposed a generalised strategy for inculcating
shape-programming in magnetically activated soft materials.
Using the method, a continuous spatial and temporal magnetisa-
tion can be created within a magneto-responsive soft composite
polymer that can be actuated further by an external magnetic field.
The authors further demonstrated the efficiency of their method by
designing millimetre-scale bio-inspired soft machines such as
jellyfish-like soft robots, synthetic cilia etc. (Fig. 13c).

Although a wide range of artificial muscles made of electro-
active polymers on the macroscale has been proposed in the liter-
ature over the last two decades [235-237], only very few efforts are
made to create similar synthetic muscles using MSMs. For instance,
Nguyen et al. [89] made a model of biceps muscles using soft-
magnetic polymeric composites. Under an external magnetic field,
the artificial muscles can show several modes of deformations
including extension, contraction, and bending. Their results
demonstrated that the artificial biceps could mimic human hands
by operating under multiple cycles of contraction, elongation,
and bending (Fig. 13b).

Inspired by the flexibility, resilience, and promptness of
motions of biological worms, a worm-like robot of several cen-
timetres long is proposed by Niu et al. [238]. In contrast to most
other bio-inspired machines where active hard-or soft magneto-
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particles are embedded into the robot body, this body is made of
a pure polymeric material in which a set of permanent magnets
are decorated over its surface resulting in easy manufacturability
of the macroscale machine. Moreover, due to its relatively larger
size over other micro-or millirobots, this magnetically actuated
untethered robot can be more suitable for carrying larger loads
and for regular inspection tasks such as the identifications of
defects/leakages in gas/water pipelines. Magnetoactive metamate-
rials have a plethora of applications ranging from materials with
tunable properties to soft robotics. However, under the activation
of a switching magnetic field, a functional component of metama-
terial demonstrates mirror symmetry resulting in a single mode of
actuation that limits their wide range of applications. In that
regard, Wu et al. [147] devised a new set of programmable magne-
toactive composites in which various parts are joined together to
create symmetry-breaking multimodal actuation. This novel strat-
egy of asymmetric multimodal actuation opens new horizons in
which shape-shifting metamaterials can be used for bio-inspired
soft-bodied robots that can give crawling, jumping, bending loco-
motions. Moreover, this method can be highly scaled up, as an
example, they devised four-leg soft robots mimicking a frog (sev-
eral centimetres) locomotion (Fig. 13d).
5.2. Milliscale applications

In contrast to the limited numbers of macroscale structures
consisting of MSMs, there are a sizeable amount of prototypes
out of magnetoactive polymers at the millimetre scale available
in the literature, see [239-242]. In this section, some selected
shape-morphing designs and applications, that have been pro-
posed over the last decade, are discussed.



Fig. 14. (a) An untethered jellyfish-inspired soft millirobot that could realize multiple functionalities in moderate Reynolds number (adapted from [234]), (b) A milliscale
robot with multiple locomotion modes is navigating through an artificially-made stomach, ultra-sound photography of the robotic motion, the micromachine can walk, grab
an object by curling in a C-shape configuration and release it at a new position by uncurling (reproduced from [244]), (c) Magnetically actuated soft capsule endoscope for
fine-needle capillary biopsy, various parts of the robot, the working mechanism of the robot with a needle, external magnetic setup (adapted from [12]), (d) A bioinspired
multilegged soft machine that can jump, crawl carrying ten times more load than its body weight both in dry and wet conditions (taken from [92]).
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Ren et al. [234] devised a millimetre scale jellyfish-inspired
swimming soft robot that can navigate fluid flows at a moderate
Reynolds number (Re). The main body of the robot consists of a
magnetoactive polymeric composite in which Nd-Fe-B is used as
the hard-magnetic particle embedded in a soft silicone elastomer.
In designing the soft-bodied millirobot, biomimicry of jellyfishes,
i.e., scyphomedusae ephyra has been demonstrated. The lappets
of the fish-turn-robot are actuated by a remote-controlled mag-
netic field that can generate fluid flows around its body. Such
diverse flows may create multiple functionalities, e.g., propulsion,
predation, mixing etc., see Fig. 14a. Lu et al. [243] proposed a
leg/foot-based millirobot that imitates the foot structures of many
living organisms, in contrast to the wing-based bioinspired soft-
bodied robots. One of the most striking features of such a multi-
legged soft micro-machine is that it can operate and walk both
in dry and wet conditions (Fig. 14d). In designing the miniature
robot, they explore the weight/foot height, leg spacing per step
etc from hundreds of foot-based living organisms and obtain a
leg height/foot space ratio resulting in a soft-bodied robot that
can carry weight more than hundred times of its own weight.
Moreover, it can climb up obstacles that are aligned even ninety
degrees of its main walking trajectory and can jump over a height
that is even ten times taller than its own height.

In recent years, untethered capsule-based endoscopes have
transformed the landscape of biomedical diagnostic methods
inside the human body, particularly in the gastrointestinal (GI)
tract in which various diseases can occur. To date, in order to iden-
tify any illness in the areas, capsule robots have been utilised to
collect specific tissues and surface photographs using different
imaging techniques. However, such wireless capsules cannot col-
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lect tissues from layers of the GI tract at a greater depth. To circum-
vent these drawbacks, very recently, Son et al. [244] devised a soft-
bodied capsule endoscope containing fine-needle which can collect
tissue samples for biopsies at a greater depth in the gastrointesti-
nal tract such as from mucosa/submucosa layers (Fig. 14c). For
actuation and locomotion in the capsule robot, an externally
applied magnetic field is used. As described in the previous Sec-
tion 5.2, most of the existing bioinspired miniaturised soft robots
have limited modes of locomotion. In contrast, Hu et al. [12]
devised a millimetre-scale magnetoactive soft robot with multi-
modal locomotion (Fig. 14b). Using hard-magnetic micro-size par-
ticles and with the help of wireless magneto-actuation, the robot
can swim in a fluid flow, can jump over obstacles larger than its
body height, can crawl in a narrow and confined channel, in addi-
tion to the usual walk-and-roll locomotion. Such a multimodal
locomotion capability of a bio-inspired shape-shifting biocompati-
ble micromachine adds a new dimension to the biomedical engi-
neering, cell delivery, and drug release by pick-and-place action,
minimally invasive surgery, to mention a few.

5.3. Microscale applications

MSM based shape-morphing and locomotive devices have
demonstrated a huge potential to utilise in biomedical areas such
as in controlled and precision drug deliveries. Therefore, in con-
trast to macroscale or milliscale machines, micro/nanoscale
devices get more attention. The underlying reason for this is rela-
tively easy navigation and locomotion of such micro/nanoscale
MSM devices inside the human body [245-256]. Every so often
such devices are frequently called as MedBots [109]. They are



Fig. 15. (a) Experimental and simulation results of a thermal responsive microgripper and magnetic particle doped microdevice grapes and transports an object under a
magnetic probe (a-i), while the microgripper captures and excision of cells from a live cell fibroblast clump (a-ii) (adapted from [218]). (b) An untethered magnetic micro
helix captures a paralysed sperm cell and delivers it to the oocyte for fertilisation (adapted from [185]). (c) Programming the microstructure of the soft machine parts (tails,
heads) using magnetic nanoparticles, single and double layers and a uniform rotating magnetic creates locomotion of the flagellated soft micromachines (c-i) and images
present various time lapses of two different machines (c-ii) (adapted from [257]).
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designed and navigate in such a way so that they can be operated
in confined and complex terrains, difficult-to-reach places inside
the human body in which complex physiological environmental
conditions do exist.

In the process of drug and cell deliveries, cargo transportation
and manipulations, the gripping capacity of bioinspired soft robots
is a crucial issue. However, most of the cargo transporting micro-
machines, especially those that are made of soft hydrogels, have
very limited mechanical stiffness to grip an object securely. There-
fore, Greger et al. [218] proposed a bi-layered microgripper in
which a soft layer is made of photo-cured hydrogels and a rela-
tively non-swellable stiff layer is fabricated using an MSM. Swel-
ling and deswelling of the hydrogel layer under appropriate pH
and thermal conditions create large mechanical deformations
resulting in gripping and un-gripping capabilities of the microgrip-
per, see Fig. 15a. Furthermore, the incorporation of soft-magnetic
particles in one of the layers gives enough flexibility to remotely
controlled the micromachine. Unicellular living organisms such
as bacteria are great sources of designing soft, flexible micromachi-
nes that can navigate through complex and confined terrains. In
this case, Huang et al. [257] devised a soft microswimmer made
of magneto-hydrogels that has programmable propulsion capabil-
ity with shape-morphing features. In manufacturing the micro-
robot, the main body is synthesised using a multi-layered
magneto-gel in which MNPs are anisotropically deposited during
the curing process to create programmable folding behaviour
(Fig. 15c). While the long flagella structure creates enough locomo-
tion for the microswimmer, swelling and de-swelling characteris-
tics of its main body generate flexible morphology that can be
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used to accommodate the soft-bodied robot in a closed and con-
fined space.

Soft-bodied microrobots can not only transport drugs, cargos, or
can take images using an embedded camera from a delicate loca-
tion inside the human body, but also, they can be used for carrying
living cells for a specific purpose. For instance, Medina-Sanchez
et al. [185] created a soft spermbot, a microscale robot, that can
carry immotile sperm cells having motion deficiencies towards
successful fertilisation (Fig. 15b). To create an artificially motile
sperm cell, metal-coated polymer micro helices are designed along
with the immotile but otherwise functional sperm in which the
magnetoactive polymer used in the microtubes can be activated
for a remotely controlled locomotion. Note that the tail of the func-
tional sperm helps the propulsion, hence, this micromachine is
called a hybrid microscale spermbot. Such a cellular cargo deliver-
able robot opens up new hopes for robot-assisted fertilisation. It is
noteworthy to mention here that most of the microscale proto-
types controlled by magnetic actuation, that are available in the lit-
erature [258]. However, they are also being used in preventing
environmental populations, e.g., removing water pollutants. Ber-
nasconi et al. [258] devised a 3D printed multi-material and mul-
tifunctional micromotor that can be used for cleaning pollutants
from contaminated waters. For that, they deposited different
metallic nanolayers having pollutant killing capabilities within a
polymeric matrix. For untethered navigation and control of the
micromachine, they used an externally applied magnetic field.
Note that this type of wireless microdevice is greatly advantageous
over other cleaning machines as the micro-robotic machine can
easily be deployed to a place of ‘difficult-to-access’ for pollution
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controls and the monitoring of various chemical and physical
contaminations.
5.4. Nanoscale applications

Despite significant advances in designing small-scale devices,
there are still pressing needs for these flexible soft-bodied devices
down to a smaller scale. For instance, when the need for interac-
tions of the devices with cell levels inside the human body, their
size must be at the nanoscale that will render localised diagnosis
and treatment methods with greater precision and efficacy [259].
In an effort to produce tetherless soft and flexible nanorobots, Chen
et al. [260] synthesised electromagnetic hybrid nanowires that can
perform controlled drug delivery to a specific cell. In contrast to
other large scale soft devices that are solely made of magnetoactive
polymers or magneto-hydrogels, this machine is based on a core–
shell manufacturing strategy in which an MSM is used as the core
(inside) and a piezoelectric polymer is used as the shell (outside),
see Fig. 16b (bottom). The key advantage of this hybrid nanorobot
is that when an external magnetic field is used for its movement
(e.g., propulsion and controlled navigation), the same field may
change the polarisation on the robotic surfaces. These changes will
trigger on-demand magnetoelectrically assisted drug release to
specific cells.

Navigation of nanoscale MSM devices in biological fluids is
complicated due to the very low Reynolds number [225-
228,231]. This drawback can only be overcome if the tiny system
can break the symmetry of motion to achieve net displacement.
Overcoming this constraint, Jang et al. [261] devised magnetic mul-
tilink nano swimmers in which the planner undulation can be cre-
ated thanks to an external oscillating magnetic field, see Fig. 16a.
The nano swimmers have three parts; one polymeric tail, two
magneto-responsive metallic nanowires that are connected by
tube-type polymeric hinges. For the synthesis of such a tiny sys-
tem, they used three different micro/nanofabrication techniques:
electrodeposition, layer-by-layer deposition, and selective etching.
Fig. 16. (a) Various components of 3-link nano swimmer that are activated by an oscillati
links (adapted from [261]), (b) Schematic representation of an anti-cancer drug delivery c
released by applying an external time-varying magnetic field. (b, top) Rotational moveme
from [260]).
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6. Concluding remarks and outlook

The past few years have seen exponential growth in the field of
magnetoactive soft materials. This is due to the fact that the MSMs
offer a highly adjustable and wide range of properties that can be
controlled not only by an external magnetic field but also by using
other stimuli. The shape-morphing behaviour of the MSMs shows
potentials to use in a number of applications not only in academic
research but also in the industry. The emergence of sophisticated
fabrication techniques such as 4D printing takes the possibility of
using MSMs to the next generation by introducing on-demand
programming/re-programming and highly customized structures
with complex geometries.

Having said that the development of MSMs is rapidly growing,
it should be noted that the research and development is still not
well-established considering the fact that the use of shape-
morphing behaviours of MSMs in real engineering applications
(e.g., soft robotics or medical devices). However, the tremendous
progress in various aspects of MSMs provides a promising direction
towards the successful implementation of them in different fields.
Table 2 provides a comprehensive summary to understand differ-
ent aspects of MSMs retrieved from some of the great achieve-
ments in recent years. As reviewed in this work, the material
section is comparatively matured than other aspects and consider-
ation of common types of materials (for both matrix as well as the
fillers) can be remarked. The common matrix material is silicone-
based soft elastomers, yet the use of other matrices such as shape
memory polymers (e.g., PCL) can also be found. The iron oxide NPs
is a classical soft-magnetic filler whereas the NdFeB is the exten-
sively used hard-magnetic filler.

It can be observed that the use of digital manufacturing (3D/4D
printing) is widely adopted in fabricating the MSM specimens due
to the versatility and design freedom offered by the techniques to
uniquely configure the magnetic domains or magnetic fillers. Note
that the 4D printing not only offers the manufacturing of unique
and tailored structures but also saves time and provides a higher
degree of flexibility by offering the programming of magnetic
ng magnetic field. Schematic and microscopic images of the nanorobot with 1-/2-/3-
ore–shell nanowire device in which the drug is loaded onto the wire (bottom) and is
nt of the wire in the x-y plane while it is following a heart-shaped path (reproduced



Table 2
Summary of a few highly notable works on MSMs.

Matrix Filler Fabrication Testing Programming Actuation Behaviour/
characteristic

Ref.

Silicone NdFeB + silica
NP

4D printing (DIW) Ink rheology
Shear properties
(shear modulus
330 kPa)

4D printing
(field:50 mT)

Magnetic field (field up to
200 mT)

Unthread, fast
responsive soft
robotics

[11]

Silicone (Ecoflex) NdFeB Conventional,
moulding

Biocompatibility,
Young’s modulus

Magnetized by
1.65 T magnetic
field

Magnetic field (up to 20
mT)

Small scale
multimodal
locomotion,
medical
applications

[12]

Acrylate-based Fe3O4 NPs 4D printing (DLP) Ink rheology,
photo rheology,
DMTA

None Magnetic field Stretching,
shapeshifting,
folding

[133]

PLA Fe3O4 NPs 4D printing (FDM) DSC, TGA 4D printing (no
field)

Magnetic field and heat Coiling,
shapeshifting

[176]

PLA + PDMS/Ecoflex Fe3O4 NPs Hybrid
(3DP + conventional)

Magneto-
mechanical

None Magnetic field (250 mT) Tensegrity,
torsion, Auxetic
walking

[187]

PDMS NdFeB Conventional (spin-
coating)

Elastic modulus
(2–5 MPa)

Magnetized by
2.3 T magnetic
field

Very low magnetic field
(<2 mT)

Self-attach,
transport cargo,
and swim Soft
robot, fast
response

[124]

PDMS CrO2 Conventional moulding Elastic modulus Heat assisted
magnetic (re)
programming
(1.5 T field)

Magnetic field (60 mT) Reprogrammable
Soft machines

[78]

Ecoflex NdFeB@PCL Conventional Mechanical
testing

Laser writing
heat-assisted
(re)
programming
(about 1.1 T)

Magnetic field (150 mT) Reconfigurable
magnetic soft
microrobots

[215]

Vinyl polysiloxane NdFeB 3D
printing + conventional

Mechanical
testing

Magnetic field
(41.4 mT)

Magnetic field (41.4 mT) Mechanical
metamaterials

[217]

Acrylate-based NdFeB + silica
NP

Multi-material 3D
printing (DIW)

DMA 4D printing Heat + magnetic field (65
mT)

Expansion,
contraction, shear,
and bending

[77]

Polyurethane Fe Conventional
(moulding)

– None Photothermal + magnetic Bistable, grabbing,
soft robotics

[223]
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domains on-set of the printing process. One of the biggest advan-
tages of using the 4D printing process is a reduced amount of the
externally applied magnetic field for programming. For instance,
it has been reported that the use of just 50 mT (magnetic field) is
sufficient to orient the magnetic domains at the nozzle tip in the
4D printing process [11], whereas the need of a strong external
pooling magnet is required to program magnetic domains after
moulding (magnetic field as high as 2300 mT has been reported
so far in the literature [124]). Nevertheless, there are some impor-
tant materials and process concerns related to high-throughput
manufacturing via 4D printing. For example, several physical prop-
erties of materials such as viscosity, shear-thinning, thixotropic,
processability, and printability of composite customized inks/fila-
ments play a critical role in the successful 3D/4D printing of the
MSMs. Moreover, the conventional and digital manufacturing pro-
cesses can effectively be combined to obtain exciting shape-
morphing behaviours of MSMs as reported in recent studies
[187,188].

It is interesting to see that the use of a very low magnetic field
as low as 2 mT [124] has been reported to successfully demon-
strate the actuation of MSMs. Such a low field actuation of MSMs
can also demonstrate exciting phenomena such as self-attach,
transport cargo, swim, soft and fast response robots. In comparison
to the programming, the magnetic field needed for the actuation of
MSMs remains much uniform among the various studies in terms
of the strength of an external magnet. The frequent magnetic field
reported for the actuation of an MSM specimen demonstrating key
behaviours typically remains below 200 mT. Few common charac-
teristics of MSMs include the untethered soft robot, shapeshifting,
19
and a re-programmable soft machine that has been demonstrated
ranging from the nanoscale to the macroscale. Such interesting
characteristics are highly desirable in the biomedical field, for
example, controlled and precision drug delivery, localized and
minimally invasive surgery.

One of the key applications of small-scale soft robots is in
biomedical engineering, e.g., controlled and precision drug delivery
and cell transportation, where the reduction of fuel-free machine
sizes will greatly enhance their potentials. Despite significant
advances in designing and in vivo testing of milli-and microscale
devices for performing specific tasks that are not possible using
conventional rigid machines, there are still pressing needs for these
flexible soft-bodied devices down to a smaller scale. For instance,
when the need for interactions of the devices with cell levels inside
the human body, their size must be at the nanoscale that will ren-
der localised diagnosis and treatment methods with greater preci-
sion and efficacy [259].

Fig. 17 provides an impression of the future perspectives of
MSMs research and development with potential areas to be
focused on. These areas of MSMs can be classified into three major
categories: material-related, process-related, and device-related. In
materials, one of the biggest prospects is expanding the horizons of
multi-stimuli responsive materials. For matrix materials, as
reported by several studies, the use of shape memory polymers
is one of the common trends [77,96]. For fillers, the consideration
of carbon-based materials (e.g., CNTs & graphene oxide), in addi-
tion to magnetic fillers, has been reported and is unquestionably
one of the potential directions. Having said that the consideration
of the multi-stimuli responsive materials is needed, it should be
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kept in mind that one of the biggest applications of MSMs lies in
the biomedical field. Hence, the biocompatibility of the MSMmate-
rials remains one of the core concerns. Therefore, the catalogue of
soft polymers and hydrogels and their fillers with biocompatible
behaviours must be extended [10]. Furthermore, the integration
of both soft-magnetic and hard-magnetic fillers into a single
MSM device is highly interesting and provides a complex phe-
nomenon as reported in recent studies [94,121], and it is therefore
arguably one of the potential dedicated areas in the near future. In
the fabrication process, the use of digital manufacturing tech-
niques (3D/4D printing) is the future of MSM developments, yet
the process must not affect the intrinsic properties of MSM mate-
rials such as biocompatibility and magnetization. Fig. 18 illustrates
the additive manufacturing process-related guidelines for selecting
a suitable AM method to develop MSM devices [114]. Note that
TPP, having the smallest printing area and resolution among all
Fig. 18. Scale-wise AM process-related guidelines for selecting a suitable manufacturing
for various 3D printing techniques (adapted from [114]).

20
additive manufacturing techniques, is one of the main 3D printing
methods for nanoscale MSMs devices. Furthermore, more innova-
tive and faster approaches are required to speed up the printing
process in synthesising both macroscale and nanoscale smart
products. Artificial intelligence (AI) such as machine learning and
data-driven modelling is extensively developed to optimise com-
positions of composite materials [262-264]. Such newly emerging
techniques need to be considered in future to integrate into the
process for providing an in-situ optimization and tailored process-
ing for MSMs. Not only materials and process techniques are
essential and play a vital role in the field of MSMs but the devices
that are going to be used in real applications should be more intel-
ligent. The intelligent MSM devices are expected to be self-sensing
to make their own decision to adjust to the changes in the environ-
ment and should be operated by low power resulting in a reason-
ably low-cost system [222].
process for MSM devices, where the print area is plotted against the print resolution
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printed stimuli-responsive magnetic nanoparticle embedded alginate-
methylcellulose hydrogel actuators, Addit. Manuf. (2020) 101275.

[138] E.C. Frachini, D.F. Petri, Magneto-Responsive Hydrogels: Preparation,
Characterization, Biotechnological and Environmental Applications, J. Braz.
Chem. Soc. 30 (10) (2019) 2010–2028.

[139] S.R. Goudu, I.C. Yasa, X. Hu, H. Ceylan, W. Hu, M. Sitti, Biodegradable
Untethered Magnetic Hydrogel Milli-Grippers, Adv. Funct. Mater. 30 (50)
(2020) 2004975.

[140] J. Tang, Y. Qiao, Y. Chu, Z. Tong, Y. Zhou, W. Zhang, S. Xie, J. Hu, T. Wang,
Magnetic double-network hydrogels for tissue hyperthermia and drug
release, J. Mater. Chem. B 7 (8) (2019) 1311–1321.

[141] M.M. Abrougui, M.T. Lopez-Lopez, J.D. Duran, Mechanical properties of
magnetic gels containing rod-like composite particles, Philos. Trans. R. Soc. A
377 (2143) (2019) 20180218.
23
[142] L. Pang, X. Dong, C. Niu, M. Qi, Dynamic viscoelasticity and
magnetorheological property of magnetic hydrogels, J. Magn. Magn. Mater.
498 (2020) 166140.

[143] S. Karagiorgis, A. Tsamis, C. Voutouri, R. Turcu, S.A. Porav, V. Socoliuc, L.
Vekas, M. Louca, T. Stylianopoulos, V. Vavourakis, Engineered magnetoactive
collagen hydrogels with tunable and predictable mechanical response, Mater.
Sci. Eng., C 111089 (2020).

[144] J. Berasategi, D. Salazar, A. Gomez, J. Gutierrez, M.S. Sebastián, M. Bou-Ali, J.M.
Barandiaran, Anisotropic behaviour analysis of silicone/carbonyl iron
particles magnetorheological elastomers, Rheol. Acta 59 (7) (2020) 469–476.

[145] M. Sitti, D.S. Wiersma, Pros and cons: Magnetic versus optical microrobots,
Adv. Mater. 32 (20) (2020) 1906766.

[146] L. Wang, Y. Kim, C.F. Guo, X. Zhao, Hard-magnetic elastica, J. Mech. Phys.
Solids 142 (2020) 104045.

[147] S. Wu, Q. Ze, R. Zhang, N. Hu, Y. Cheng, F. Yang, R. Zhao, Symmetry-Breaking
Actuation Mechanism for Soft Robotics and Active Metamaterials, ACS Appl.
Mater. Interfaces 11 (44) (2019) 41649–41658.

[148] R. Zhao, Y. Kim, S.A. Chester, P. Sharma, X. Zhao, Mechanics of hard-magnetic
soft materials, J. Mech. Phys. Solids 124 (2019) 244–263.

[149] J. Tian, X. Zhao, X.D. Gu, S. Chen, Designing Ferromagnetic Soft Robots
(FerroSoRo) with Level-Set-Based Multiphysics Topology Optimization, in:
IEEE International Conference on Robotics and Automation (ICRA) 2020,
2020, pp. 10067–10074.

[150] S. Chen, J. Chen, X. Zhang, Z.-Y. Li, J. Li, Kirigami/origami: unfolding the new
regime of advanced 3D microfabrication/nanofabrication with ‘‘folding”,
Light Sci. Appl. 9 (1) (2020) 75.

[151] D. Wang, D. Chen, Z. Chen, Recent Progress in 3D Printing of Bioinspired
Structures, Front. Mater. 7 (286) (2020).

[152] K. Hu, J. Sun, Z. Guo, P. Wang, Q. Chen, M. Ma, N. Gu, A novel magnetic
hydrogel with aligned magnetic colloidal assemblies showing controllable
enhancement of magnetothermal effect in the presence of alternating
magnetic field, Adv. Mater. 27 (15) (2015) 2507–2514.

[153] T. Mitsumata, S. Ohori, Magnetic polyurethane elastomers with wide range
modulation of elasticity, Polym. Chem. 2 (5) (2011) 1063–1067.

[154] G.Z. Lum, Z. Ye, X. Dong, H. Marvi, O. Erin, W. Hu, M. Sitti, Shape-
programmable magnetic soft matter, Proc. Natl. Acad. Sci. 113 (41) (2016)
E6007–E6015.

[155] A.K. Bastola, M. Paudel, L. Li, Development of hybrid magnetorheological
elastomers by 3D printing, Polymer 149 (2018) 213–228.

[156] R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions, Nature 540
(7633) (2016) 371–378.

[157] Y.W.D. Tay, B. Panda, S.C. Paul, N.A. Noor Mohamed, M.J. Tan, K.F. Leong, 3D
printing trends in building and construction industry: a review, Virtual Phys.
Prototyp. 12 (3) (2017) 261–276.

[158] X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix
composites: A review and prospective, Compos. B Eng. 110 (2017) 442–458.

[159] Q. Wei, H. Li, G. Liu, Y. He, Y. Wang, Y.E. Tan, D. Wang, X. Peng, G. Yang, N.
Tsubaki, Metal 3D printing technology for functional integration of catalytic
system, Nat. Commun. 11 (1) (2020) 4098.

[160] A. Zolfagharian, L. Durran, S. Gharaie, B. Rolfe, A. Kaynak, M. Bodaghi, 4D
printing soft robots guided by machine learning and finite element models,
Sens. Actuators, A 328 (2021) 112774.

[161] S. Tibbits, The emergence of ‘‘4D printing”| TED Talk, 2013.
[162] M. Champeau, D.A. Heinze, T.N. Viana, E.R. de Souza, A.C. Chinellato, S.

Titotto, 4D Printing of Hydrogels: A Review, Adv. Funct. Mater. (2020)
1910606.

[163] M. Falahati, P. Ahmadvand, S. Safaee, Y.-C. Chang, Z. Lyu, R. Chen, L. Li, Y. Lin,
Smart polymers and nanocomposites for 3D and 4D printing, Mater. Today
(2020).

[164] M.C. Mulakkal, R.S. Trask, V.P. Ting, A.M. Seddon, Responsive cellulose-
hydrogel composite ink for 4D printing, Mater. Des. 160 (2018) 108–118.

[165] L.-H. Shao, B. Zhao, Q. Zhang, Y. Xing, K. Zhang, 4D printing composite with
electrically controlled local deformation, Extreme Mech. Lett. 39 (2020)
100793.

[166] S.K. Melly, L. Liu, Y. Liu, J. Leng, On 4D printing as a revolutionary fabrication
technique for smart structures, Smart Mater. Struct. 29 (8) (2020) 083001.

[167] M. Bodaghi, R. Noroozi, A. Zolfagharian, M. Fotouhi, S. Norouzi, 4D Printing
Self-Morphing Structures, Materials 12 (8) (2019).

[168] E. Pei, G.H. Loh, S. Nam, Concepts and Terminologies in 4D Printing, Appl. Sci.
10 (13) (2020) 4443.

[169] I. Gibson, D.W. Rosen, B. Stucker, M. Khorasani, Additive Manufacturing
Technologies, Springer, 2021.

[170] S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D Printing
and Customized Additive Manufacturing, Chem. Rev. 117 (15) (2017) 10212–
10290.

[171] D. Kokkinis, M. Schaffner, A.R. Studart, Multimaterial magnetically assisted
3D printing of composite materials, Nat. Commun. 6 (1) (2015) 8643.

[172] H. Yuk, X. Zhao, A new 3D printing strategy by harnessing deformation,
instability, and fracture of viscoelastic inks, Adv. Mater. 30 (6) (2018)
1704028.

[173] E. Dohmen, A. Saloum, J. Abel, Field-structured magnetic elastomers based on
thermoplastic polyurethane for fused filament fabrication, Philos. Trans. R.
Soc. A 378 (2171) (2020) 20190257.

[174] S. Kumar, R. Singh, T. Singh, A. Batish, On mechanical characterization of 3-D
printed PLA-PVC-wood dust-Fe3O4 composite, J. Thermoplast. Compos.
Mater. (2019). 0892705719879195.

http://refhub.elsevier.com/S0264-1275(21)00727-9/h0560
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0560
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0560
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0565
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0565
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0565
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0570
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0570
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0570
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0575
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0575
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0575
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0580
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0580
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0585
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0585
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0590
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0590
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0595
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0595
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0595
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0600
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0600
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0600
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0605
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0605
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0605
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0610
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0610
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0615
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0615
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0615
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0620
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0620
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0620
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0620
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0625
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0625
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0630
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0630
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0630
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0635
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0635
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0635
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0640
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0640
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0640
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0645
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0645
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0645
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0645
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0650
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0650
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0650
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0655
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0655
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0655
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0660
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0660
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0660
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0665
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0665
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0665
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0665
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0670
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0670
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0675
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0675
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0675
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0680
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0680
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0685
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0685
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0685
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0690
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0690
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0690
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0695
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0695
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0695
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0700
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0700
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0700
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0705
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0705
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0705
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0710
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0710
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0710
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0715
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0715
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0715
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0715
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0720
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0720
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0720
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0725
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0725
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0730
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0730
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0735
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0735
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0735
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0740
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0740
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0745
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0745
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0745
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0745
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0745
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0750
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0750
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0750
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0750
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0755
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0755
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0760
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0760
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0760
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0760
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0765
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0765
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0770
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0770
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0770
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0775
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0775
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0780
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0780
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0785
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0785
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0785
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0790
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0790
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0795
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0795
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0795
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0800
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0800
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0800
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0810
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0810
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0810
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0815
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0815
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0815
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0820
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0820
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0825
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0825
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0825
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0830
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0830
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0835
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0835
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0840
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0840
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0845
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0845
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0845
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0850
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0850
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0850
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0855
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0855
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0860
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0860
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0860
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0865
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0865
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0865
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0870
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0870
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0870


A.K. Bastola and M. Hossain Materials & Design 211 (2021) 110172
[175] T.M. Calascione, N.A. Fischer, T.J. Lee, H.G. Thatcher, B.B. Nelson-Cheeseman,
Controlling magnetic properties of 3D-printed magnetic elastomer structures
via fused deposition modeling, AIP Adv. 11 (2) (2021) 025223.

[176] F. Zhang, L. Wang, Z. Zheng, Y. Liu, J. Leng, Magnetic programming of 4D
printed shape memory composite structures, Compos. A Appl. Sci. Manuf.
125 (2019) 105571.

[177] E. Saleh, P. Woolliams, B. Clarke, A. Gregory, S. Greedy, C. Smartt, R. Wildman,
I. Ashcroft, R. Hague, P. Dickens, C. Tuck, 3D inkjet-printed UV-curable inks
for multi-functional electromagnetic applications, Addit. Manuf. 13 (2017)
143–148.

[178] X. Wang, X.-H. Qin, C. Hu, A. Terzopoulou, X.-Z. Chen, T.-Y. Huang, K.
Maniura-Weber, S. Pané, B.J. Nelson, 3D Printed Enzymatically Biodegradable
Soft Helical Microswimmers, Adv. Funct. Mater. 28 (45) (2018) 1804107.

[179] T. Xu, J. Zhang, M. Salehizadeh, O. Onaizah, E. Diller, Millimeter-scale flexible
robots with programmable three-dimensional magnetization and motions,
Science, Robotics 4 (29) (2019) eaav4494.

[180] R. Domingo-Roca, J. Jackson, J. Windmill, 3D-printing polymer-based
permanent magnets, Mater. Des. 153 (2018) 120–128.

[181] G. Shao, H.O.T. Ware, L. Li, C. Sun, Rapid 3D Printing Magnetically Active
Microstructures with High Solid Loading, Adv. Eng. Mater. 22 (3) (2020)
1900911.

[182] B. Nagarajan, P. Mertiny, A.J. Qureshi, Magnetically loaded polymer
composites using stereolithography—Material processing and
characterization, Mater. Today Commun. 25 (2020) 101520.

[183] B. Derby, Inkjet printing of functional and structural materials: fluid property
requirements, feature stability, and resolution, Annu. Rev. Mater. Res. 40
(2010) 395–414.

[184] D. Jang, D. Kim, J. Moon, Influence of fluid physical properties on ink-jet
printability, Langmuir 25 (5) (2009) 2629–2635.

[185] M. Medina-Sánchez, L. Schwarz, A.K. Meyer, F. Hebenstreit, O.G. Schmidt,
Cellular cargo delivery: Toward assisted fertilization by sperm-carrying
micromotors, Nano Lett. 16 (1) (2016) 555–561.

[186] T. Hupfeld, S. Salamon, J. Landers, A. Sommereyns, C. Doñate-Buendía, J.
Schmidt, H. Wende, M. Schmidt, S. Barcikowski, B. Gökce, 3D printing of
magnetic parts by laser powder bed fusion of iron oxide nanoparticle
functionalized polyamide powders, J. Mater. Chem. C 8 (35) (2020) 12204–
12217.

[187] H. Lee, Y. Jang, J.K. Choe, S. Lee, H. Song, J.P. Lee, N. Lone, J. Kim, 3D-printed
programmable tensegrity for soft robotics, Sci. Robot. 5 (45) (2020)
eaay9024.

[188] S. Qi, H. Guo, J. Fu, Y. Xie, M. Zhu, M. Yu, 3D printed shape-programmable
magneto-active soft matter for biomimetic applications, Compos. Sci.
Technol. 188 (2020) 107973.

[189] G.V. Stepanov, S.S. Abramchuk, D.A. Grishin, L.V. Nikitin, E.Y. Kramarenko, A.
R. Khokhlov, Effect of a homogeneous magnetic field on the viscoelastic
behavior of magnetic elastomers, Polymer 48 (2) (2007) 488–495.

[190] L.V. Nikitin, G.V. Stepanov, L.S. Mironova, A.N. Samus, Properties of
magnetoelastics synthesized in external magnetic field, J. Magn. Magn.
Mater. 258–259 (2003) 468–470.

[191] W. Li, M. Nakano, Fabrication and characterization of PDMS based
magnetorheological elastomers, Smart Mater. Struct. 22 (5) (2013) 055035.

[192] G. Zhang, H. Wang, J. Wang, J. Zheng, Q. Ouyang, Dynamic rheological
properties of polyurethane-based magnetorheological gels studied using
oscillation shear tests, RSC Adv. 9 (18) (2019) 10124–10134.

[193] C. Gila-Vilchez, A.B. Bonhome-Espinosa, P. Kuzhir, A. Zubarev, J.D. Duran, M.T.
Lopez-Lopez, Rheology of magnetic alginate hydrogels, J. Rheol. 62 (5) (2018)
1083–1096.

[194] H.-N. An, B. Sun, S.J. Picken, E. Mendes, Long time response of soft
magnetorheological gels, J. Phys. Chem. B 116 (15) (2012) 4702–4711.

[195] B.L. Walter, J.-P. Pelteret, J. Kaschta, D.W. Schubert, P. Steinmann, Preparation
of magnetorheological elastomers and their slip-free characterization by
means of parallel-plate rotational rheometry, Smart Mater. Struct. 26 (8)
(2017) 085004.

[196] C. Liu, M. Hemmatian, R. Sedaghati, G. Wen, Development and Control of
Magnetorheological Elastomer-Based Semi-active Seat Suspension Isolator
Using Adaptive Neural Network, Front. Mater. 7 (171) (2020).

[197] Y. Xu, X. Gong, S. Xuan, Soft magnetorheological polymer gels with
controllable rheological properties, Smart Mater. Struct. 22 (7) (2013)
075029.

[198] A. Dargahi, R. Sedaghati, S. Rakheja, On the properties of magnetorheological
elastomers in shear mode: Design, fabrication and characterization, Compos.
B Eng. 159 (2019) 269–283.

[199] P. Saxena, M. Hossain, P. Steinmann, A theory of finite deformation magneto-
viscoelasticity, Int. J. Solids Struct. 50 (24) (2013) 3886–3897.

[200] D. Garcia-Gonzalez, M. Hossain, A microstructural-based approach to model
magneto-viscoelastic materials at finite strains, Int. J. Solids Struct. 208–209
(2021) 119–132.

[201] B. Wang, L. Kari, Constitutive model of isotropic magneto-sensitive rubber
with amplitude, frequency, magnetic and temperature dependence under a
continuum mechanics basis, Polymers 13 (3) (2021) 472.

[202] W. Chen, L. Wang, Z. Yan, B. Luo, Three-dimensional large-deformation model
of hard-magnetic soft beams, Compos. Struct. 266 (2021) 113822.

[203] M. Mehnert, M. Hossain, P. Steinmann, Towards a thermo-magneto-
mechanical coupling framework for magneto-rheological elastomers, Int. J.
Solids Struct. 128 (2017) 117–132.
24
[204] R. Zhang, S. Wu, Q. Ze, R. Zhao, Micromechanics Study on Actuation Efficiency
of Hard-Magnetic Soft Active Materials, J. Appl. Mech. 87 (9) (2020).

[205] S. Santapuri, R.L. Lowe, S.E. Bechtel, M.J. Dapino, Thermodynamic modeling of
fully coupled finite-deformation thermo-electro-magneto-mechanical
behavior for multifunctional applications, Int. J. Eng. Sci. 72 (2013) 117–139.

[206] K.A. Kalina, A. Rabloff, M. Wollner, P. Metsch, J. Brummund, M. Kästner,
Multiscale modeling and simulation of magneto-active elastomers based on
experimental data, Phys. Sci. Rev. (2020) 20200012.

[207] K.A. Kalina, J. Brummund, P. Metsch, M. Kästner, D.Y. Borin, J.M. Linke, S.
Odenbach, Modeling of magnetic hystereses in soft MREs filled with NdFeB
particles, Smart Mater. Struct. 26 (10) (2017) 105019.

[208] D. Mukherjee, M. Rambausek, K. Danas, An explicit dissipative model for
isotropic hard magnetorheological elastomers, J. Mech. Phys. Solids 151
(2021) 104361.

[209] A. Rajan, A. Arockiarajan, Bending of hard-magnetic soft beams: A finite
elasticity approach with anticlastic bending, Eur. J. Mech. A. Solids (2021)
104374.

[210] K. Haldar, Constitutive modeling of magneto-viscoelastic polymers,
demagnetization correction, and field-induced Poynting effect, Int. J. Eng.
Sci. 165 (2021) 103488.

[211] D.D. Barreto, A. Kumar, S. Santapuri, Extension-Torsion-Inflation Coupling in
Compressible Magnetoelastomeric Thin Tubes with Helical Magnetic
Anisotropy, J. Elast. 140 (2) (2020) 273–302.

[212] M. Rambausek, F.S. Göküzüm, L.T.K. Nguyen, M.-A. Keip, A two-scale FE-FFT
approach to nonlinear magneto-elasticity, Int. J. Numer. Meth. Eng. 117 (11)
(2019) 1117–1142.

[213] J. Kim, S.E. Chung, S.-E. Choi, H. Lee, J. Kim, S. Kwon, Programming magnetic
anisotropy in polymeric microactuators, Nat. Mater. 10 (10) (2011) 747–752.

[214] M. Li, Y. Wang, A. Chen, A. Naidu, B.S. Napier, W. Li, C.L. Rodriguez, S.A.
Crooker, F.G. Omenetto, Flexible magnetic composites for light-controlled
actuation and interfaces, Proc. Natl. Acad. Sci. 115 (32) (2018) 8119–8124.

[215] H. Deng, K. Sattari, Y. Xie, P. Liao, Z. Yan, J. Lin, Laser reprogramming magnetic
anisotropy in soft composites for reconfigurable 3D shaping, Nat. Commun.
11 (1) (2020) 6325.

[216] H. Song, H. Lee, J. Lee, J.K. Choe, S. Lee, J.Y. Yi, S. Park, J.-W. Yoo, M.S. Kwon, J.
Kim, Reprogrammable ferromagnetic domains for reconfigurable soft
magnetic actuators, Nano Lett. (2020).

[217] T. Chen, M. Pauly, P.M. Reis, A reprogrammable mechanical metamaterial
with stable memory, Nature 589 (7842) (2021) 386–390.

[218] J.C. Breger, C. Yoon, R. Xiao, H.R. Kwag, M.O. Wang, J.P. Fisher, T.D. Nguyen, D.
H. Gracias, Self-folding thermo-magnetically responsive soft microgrippers,
ACS Appl. Mater. Interfaces 7 (5) (2015) 3398–3405.

[219] W. Chen, M. Sun, X. Fan, H. Xie, Magnetic/pH-sensitive double-layer
microrobots for drug delivery and sustained release, Appl. Mater. Today 19
(2020) 100583.

[220] S. Roh, L.B. Okello, N. Golbasi, J.P. Hankwitz, J.A.C. Liu, J.B. Tracy, O.D. Velev,
3D-Printed Silicone Soft Architectures with Programmed Magneto-Capillary
Reconfiguration, Adv. Mater. Technol. 4 (4) (2019) 1800528.

[221] P. Testa, R.W. Style, J. Cui, C. Donnelly, E. Borisova, P.M. Derlet, E.R. Dufresne,
L.J. Heyderman, Magnetically Addressable Shape-Memory and Stiffening in a
Composite Elastomer, Adv. Mater. 31 (29) (2019) 1900561.

[222] B. Han, Y.-Y. Gao, Y.-L. Zhang, Y.-Q. Liu, Z.-C. Ma, Q. Guo, L. Zhu, Q.-D. Chen,
H.-B. Sun, Multi-field-coupling energy conversion for flexible manipulation of
graphene-based soft robots, Nano Energy 71 (2020) 104578.

[223] J.A.-C. Liu, J.H. Gillen, S.R. Mishra, B.A. Evans, J.B. Tracy, Photothermally and
magnetically controlled reconfiguration of polymer composites for soft
robotics, Sci. Adv. 5 (8) (2019) eaaw2897.

[224] J. Wang, W. Gao, Nano/microscale motors: biomedical opportunities and
challenges, ACS Nano 6 (7) (2012) 5745–5751.

[225] B. Thiesen, A. Jordan, Clinical applications of magnetic nanoparticles for
hyperthermia, Int. J. Hyperth. 24 (6) (2008) 467–474.

[226] M. Moros, J. Idiago-López, L. Asín, E. Moreno-Antolín, L. Beola, V. Grazú, R.M.
Fratila, L. Gutiérrez, J.M. de la Fuente, Triggering antitumoural drug release
and gene expression by magnetic hyperthermia, Adv. Drug Deliv. Rev. 138
(2019) 326–343.

[227] N.J. François, S. Allo, S.E. Jacobo, M.E. Daraio, Composites of polymeric gels
and magnetic nanoparticles: Preparation and drug release behavior, J. Appl.
Polym. Sci. 105 (2) (2007) 647–655.

[228] N.S. Satarkar, J.Z. Hilt, Magnetic hydrogel nanocomposites for remote
controlled pulsatile drug release, J. Control. Release 130 (3) (2008) 246–251.

[229] X. Zhao, J. Kim, C.A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, D.J. Mooney, Active
scaffolds for on-demand drug and cell delivery, Proc. Natl. Acad. Sci. 108 (1)
(2011) 67.

[230] C.A. Cezar, S.M. Kennedy, M. Mehta, J.C. Weaver, L. Gu, H. Vandenburgh, D.J.
Mooney, Biphasic Ferrogels for Triggered Drug and Cell Delivery, Adv.
Healthcare Mater. 3 (11) (2014) 1869–1876.

[231] S.A. Meenach, J.Z. Hilt, K.W. Anderson, Poly(ethylene glycol)-based magnetic
hydrogel nanocomposites for hyperthermia cancer therapy, Acta Biomater. 6
(3) (2010) 1039–1046.

[232] C. Peters, M. Hoop, S. Pané, B.J. Nelson, C. Hierold, Degradable Magnetic
Composites for Minimally Invasive Interventions: Device Fabrication,
Targeted Drug Delivery, and Cytotoxicity Tests, Adv. Mater. 28 (3) (2016)
533–538.

[233] H. Böse, R. Rabindranath, J. Ehrlich, Soft magnetorheological elastomers as
new actuators for valves, J. Intell. Mater. Syst. Struct. 23 (9) (2012) 989–994.

http://refhub.elsevier.com/S0264-1275(21)00727-9/h0875
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0875
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0875
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0880
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0880
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0880
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0885
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0885
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0885
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0885
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0890
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0890
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0890
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0895
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0895
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0895
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0900
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0900
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0905
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0905
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0905
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0910
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0910
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0910
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0915
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0915
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0915
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0920
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0920
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0925
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0925
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0925
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0930
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0930
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0930
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0930
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0930
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0935
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0935
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0935
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0940
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0940
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0940
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0945
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0945
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0945
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0950
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0950
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0950
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0955
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0955
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0960
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0960
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0960
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0965
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0965
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0965
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0970
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0970
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0975
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0975
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0975
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0975
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0980
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0980
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0980
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0985
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0985
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0985
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0990
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0990
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0990
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0995
http://refhub.elsevier.com/S0264-1275(21)00727-9/h0995
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1000
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1000
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1000
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1005
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1005
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1005
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1010
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1010
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1015
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1015
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1015
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1020
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1020
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1025
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1025
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1025
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1030
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1030
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1030
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1035
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1035
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1035
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1040
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1040
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1040
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1045
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1045
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1045
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1050
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1050
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1050
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1055
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1055
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1055
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1060
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1060
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1060
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1065
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1065
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1070
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1070
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1070
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1075
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1075
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1075
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1080
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1080
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1080
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1085
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1085
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1090
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1090
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1090
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1095
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1095
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1095
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1100
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1100
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1100
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1105
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1105
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1105
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1110
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1110
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1110
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1115
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1115
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1115
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1120
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1120
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1125
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1125
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1130
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1130
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1130
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1130
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1135
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1135
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1135
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1140
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1140
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1145
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1145
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1145
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1150
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1150
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1150
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1155
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1155
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1155
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1160
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1160
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1160
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1160
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1165
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1165


A.K. Bastola and M. Hossain Materials & Design 211 (2021) 110172
[234] Z. Ren, W. Hu, X. Dong, M. Sitti, Multi-functional soft-bodied jellyfish-like
swimming, Nat. Commun. 10 (1) (2019) 2703.

[235] T.J. Wallin, J. Pikul, R.F. Shepherd, 3D printing of soft robotic systems, Nat.
Rev. Mater. 3 (6) (2018) 84–100.

[236] A. Zolfagharian, A.Z. Kouzani, S.Y. Khoo, A.A.A. Moghadam, I. Gibson, A.
Kaynak, Evolution of 3D printed soft actuators, Sens. Actuators, A 250 (2016)
258–272.

[237] J.Z. Gul, M. Sajid, M.M. Rehman, G.U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, K.
H. Choi, 3D printing for soft robotics–a review, Sci. Technol. Adv. Mater. 19
(1) (2018) 243–262.

[238] H. Niu, R. Feng, Y. Xie, B. Jiang, Y. Sheng, Y. Yu, H. Baoyin, X. Zeng, MagWorm:
A Biomimetic Magnet Embedded Worm-Like Soft Robot, Soft Robot. (2020).

[239] A. de Oliveira Barros, J. Yang, A review of magnetically actuated milli/micro-
scale robots locomotion and features, Critical ReviewsTM, Biomed. Eng. 47 (5)
(2019).

[240] V.K. Venkiteswaran, L.F.P. Samaniego, J. Sikorski, S. Misra, Bio-inspired
terrestrial motion of magnetic soft millirobots, IEEE Rob. Autom. Lett. 4 (2)
(2019) 1753–1759.

[241] J. Zhang, E. Diller, Untethered miniature soft robots: Modeling and design of a
millimeter-scale swimming magnetic sheet, Soft Rob. 5 (6) (2018) 761–776.

[242] X. Du, H. Cui, T. Xu, C. Huang, Y. Wang, Q. Zhao, Y. Xu, X. Wu, Reconfiguration,
Camouflage, and Color-Shifting for Bioinspired Adaptive Hydrogel-Based
Millirobots, Adv. Funct. Mater. 30 (10) (2020) 1909202.

[243] N. Meng, X. Ren, G. Santagiuliana, L. Ventura, H. Zhang, J. Wu, H. Yan, M.J.
Reece, E. Bilotti, Ultrahigh b-phase content poly (vinylidene fluoride) with
relaxor-like ferroelectricity for high energy density capacitors, Nat. Commun.
10 (1) (2019) 1–9.

[244] D. Son, H. Gilbert, M. Sitti, Magnetically actuated soft capsule endoscope for
fine-needle biopsy, Soft Rob. 7 (1) (2020) 10–21.

[245] R. Bayaniahangar, S. Bayani Ahangar, Z. Zhang, B.P. Lee, J.M. Pearce, 3-D
printed soft magnetic helical coil actuators of iron oxide embedded
polydimethylsiloxane, Sens. Actuators, B 326 (2021) 128781.

[246] L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Artificial
bacterial flagella: Fabrication and magnetic control, Appl. Phys. Lett. 94 (6)
(2009) 064107.

[247] H. Ceylan, I.C. Yasa, O. Yasa, A.F. Tabak, J. Giltinan, M. Sitti, 3D-printed
biodegradable microswimmer for theranostic cargo delivery and release, ACS
Nano 13 (3) (2019) 3353–3362.

[248] R. Tognato, A.R. Armiento, V. Bonfrate, R. Levato, J. Malda, M. Alini, D. Eglin, G.
Giancane, T. Serra, A stimuli-responsive nanocomposite for 3D anisotropic
cell-guidance and magnetic soft robotics, Adv. Funct. Mater. 29 (9) (2019)
1804647.

[249] M. Dong, X. Wang, X.Z. Chen, F. Mushtaq, S. Deng, C. Zhu, H. Torlakcik, A.
Terzopoulou, X.H. Qin, X. Xiao, 3D-Printed Soft Magnetoelectric
Microswimmers for Delivery and Differentiation of Neuron-Like Cells, Adv.
Funct. Mater. 30 (17) (2020) 1910323.

[250] S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B.J. Nelson, H. Choi,
Fabrication and characterization of magnetic microrobots for three-
dimensional cell culture and targeted transportation, Adv. Mater. 25 (41)
(2013) 5863–5868.

[251] Z. Yang, L. Zhang, Magnetic actuation systems for miniature robots: A review,
Adv. Intell. Syst. 2 (9) (2020) 2000082.
25
[252] P. Fischer, A. Ghosh, Magnetically actuated propulsion at low Reynolds
numbers: towards nanoscale control, Nanoscale 3 (2) (2011) 557–563.

[253] S. Jeon, A.K. Hoshiar, K. Kim, S. Lee, E. Kim, S. Lee, J.-Y. Kim, B.J. Nelson, H.-J. Cha,
B.-J. Yi, A magnetically controlled soft microrobot steering a guidewire in a
three-dimensional phantom vascular network, Soft Rob. 6 (1) (2019) 54–68.

[254] S. Wu, C.M. Hamel, Q. Ze, F. Yang, H.J. Qi, R. Zhao, Evolutionary Algorithm-
Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active
Materials, Adv. Intell. Syst. 2 (8) (2020) 2000060.

[255] U. Bozuyuk, O. Yasa, I.C. Yasa, H. Ceylan, S. Kizilel, M. Sitti, Light-triggered
drug release from 3D-printed magnetic chitosan microswimmers, ACS Nano
12 (9) (2018) 9617–9625.

[256] H. Li, G. Go, S.Y. Ko, J.-O. Park, S. Park, Magnetic actuated pH-responsive
hydrogel-based soft micro-robot for targeted drug delivery, Smart Mater.
Struct. 25 (2) (2016) 027001.

[257] H.-W. Huang, M.S. Sakar, A.J. Petruska, S. Pané, B.J. Nelson, Soft
micromachines with programmable motility and morphology, Nat.
Commun. 7 (1) (2016) 1–10.

[258] R. Bernasconi, E. Carrara, M. Hoop, F. Mushtaq, X. Chen, B.J. Nelson, S. Pané, C.
Credi, M. Levi, L. Magagnin, Magnetically navigable 3D printed
multifunctional microdevices for environmental applications, Addit. Manuf.
28 (2019) 127–135.

[259] J. Li, B.E.-F. de Ávila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for
biomedicine: Delivery, surgery, sensing, and detoxification, Sci. Rob. 2 (4)
(2017).

[260] X.Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Özkale, Q. Li, E. Siringil, F.
Mushtaq, L. Di Tizio, B.J. Nelson, Magnetoelectrics: Hybrid Magnetoelectric
Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric
Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery (Adv.
Mater. 8/2017), Adv. Mater. 29 (8) (2017).

[261] B. Jang, E. Gutman, N. Stucki, B.F. Seitz, P.D. Wendel-García, T. Newton, J.
Pokki, O. Ergeneman, S. Pané, Y. Or, B.J. Nelson, Undulatory Locomotion of
Magnetic Multilink Nanoswimmers, Nano Lett. 15 (7) (2015) 4829–4833.

[262] K. Guo, Z. Yang, C.-H. Yu, M.J. Buehler, Artificial intelligence and machine
learning in design of mechanical materials, Mater. Horiz. 8 (4) (2021) 1153–
1172.

[263] J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, Recent advances and
applications of machine learning in solid-state materials science, npj Comput.
Mater. 5 (1) (2019) 83.

[264] G. Pilania, Machine learning in materials science: From explainable
predictions to autonomous design, Comput. Mater. Sci. 193 (2021) 110360.

[265] Abishek Kafle, Eric Luis, Raman Silwal, Houwen Matthew Pan, Pratisthit Lal
Shrestha, Anil Kumar Bastola, 3D/4D Printing of Polymers: Fused Deposition
Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography
(SLA), Polymers 13 (2021) 3101, https://doi.org/10.3390/polym13183101.

[266] Sergio Lucarini, Mokarram Hossain, Daniel Garcia Gonzalez, Recent advances
in hard-magnetic soft composites: synthesis, characterisation, computational
modelling, and applications, Composite Structures (2021). In press.

[267] Miguel Angel Moreno-Mateos, Jorge Gonzalez-rico, María Luisa Lopez
Donaire, Angel Arias, Daniel Garcia Gonzalez, New experimental insights
into magneto-mechanical rate dependences of magnetorheological
elastomers, Composites Part B Engineering 224 (2021) 109148, https://doi.
org/10.1016/j.compositesb.2021.109148.

http://refhub.elsevier.com/S0264-1275(21)00727-9/h1170
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1170
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1175
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1175
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1180
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1180
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1180
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1185
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1185
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1185
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1190
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1190
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1195
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1195
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1195
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1195
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1195
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1200
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1200
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1200
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1205
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1205
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1210
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1210
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1210
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1215
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1215
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1215
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1215
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1220
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1220
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1225
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1225
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1225
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1230
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1230
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1230
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1235
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1235
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1235
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1240
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1240
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1240
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1240
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1245
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1245
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1245
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1245
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1250
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1250
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1250
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1250
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1255
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1255
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1260
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1260
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1265
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1265
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1265
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1270
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1270
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1270
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1275
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1275
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1275
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1280
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1280
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1280
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1285
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1285
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1285
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1290
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1290
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1290
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1290
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1295
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1295
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1295
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1300
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1300
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1300
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1300
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1300
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1305
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1305
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1305
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1310
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1310
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1310
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1315
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1315
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1315
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1320
http://refhub.elsevier.com/S0264-1275(21)00727-9/h1320
https://doi.org/10.3390/polym13183101
http://refhub.elsevier.com/S0264-1275(21)00727-9/opt752UnYUAPD
http://refhub.elsevier.com/S0264-1275(21)00727-9/opt752UnYUAPD
http://refhub.elsevier.com/S0264-1275(21)00727-9/opt752UnYUAPD
https://doi.org/10.1016/j.compositesb.2021.109148
https://doi.org/10.1016/j.compositesb.2021.109148

	The shape – morphing performance of magnetoactive soft materials performance
	1 Introduction
	2 MSMs: Materials and syntheses
	2.1 Materials
	2.1.1 Matrices
	2.1.2 Magnetic fillers

	2.2 MSMs fabrication
	2.2.1 Conventional techniques
	2.2.2 3D/4D printing techniques
	2.2.2.1 DIW
	2.2.2.2 FDM
	2.2.2.3 DLP/DLS
	2.2.2.4 MJ
	2.2.2.5 TPP

	2.2.3 Hybrid techniques


	3 Behavioural characterisations of MSMs
	3.1 Magneto-rheological experiments
	3.2 Magneto-mechanical experiments

	4 Programming and actuation
	4.1 One-way programming
	4.2 Re-programming
	4.3 Magnetic field-driven actuation
	4.4 Multi-stimuli actuation (magnetic field + other stimuli)

	5 Applications of MSMs
	5.1 Macroscale applications
	5.2 Milliscale applications
	5.3 Microscale applications
	5.4 Nanoscale applications

	6 Concluding remarks and outlook
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary material
	References


